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Preface

The Encyclopedia of Biometrics provides a comprehensive reference to concepts, technologies, issues, and trends in

the field of biometrics. The volume covers all important aspects – research, development, and applications,

including biometric sensors and devices, methods and algorithms, sample quality, system design and implemen-

tation, databases, performance testing, information security, and standardization. Leading experts around the

world contributed to this collection of over 200 in-depth essays accompanied by more than 600 definitional

entries.

The focus of the encyclopedia is on immediate, yet comprehensive, information in an easy-to-use format

which is accessible to researchers and scientists, system designers, engineers, programmers, students, practi-

tioners, and government agents working in the broad field of biometrics. It is available as a print edition as well as

a fully searchable version with extensive cross-referencing and updates as new trends and terms arise.

Key Features at a Glance

� Serves as an immediate point of entry into the field for in-depth research

� Covers biometrics of face, fingerprints, iris, vein, voice, hand, ear, gait, skin, tongue, dental, odor, skull,

and DNA

� A–Z format allows intuitive and easy-to-use access

� Cross-referenced entries

� Internationally renowned editorial board, from across the scientific and engineering disciplines and

geographies

� Balanced coverage
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Montréal, Québec H3C 1K3

Canada

Mohamed.cheriet@etsmtl.ca

GIRIJA CHETTY

National Centre for Biometric Studies

University of Canberra

ACT 2601

Australia

Girija.Chetty@canberra.edu.au

List of Contributors xiii



ALEX HWANSOO CHOI

Department of Information Engineering

Myongji University

Seoul 137-060

South Korea

alexchoi@tech-sphere.com

SEUNGJIN CHOI

Department of Computer Science

Pohang University of Science and Technology

San 31 Hyoja-dong

Nam-gu, Pohang 790-784

Korea

seungjin@postech.ac.kr

MICHAL CHORAŚ
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Sagem Sécurité

Le Ponant de Paris - 27

rue Leblanc - 75512, Paris cedex 15

France

jcfondeur@morpho.com

MARC FRIEDMAN

Retica Systems Inc.

201 Jones Road, Third Floor West

Waltham, MA 02451

USA

m.friedman@retica.com

PASCAL FUA

School of Computer and Communication Science

Ecole Polytechnique Federale de Lausanne

IC-CVLab, Station 14

Lausanne CH-1015

Switzerland

pascal.fua@epfl.ch

KENNETH G. FURTON

Department of Chemistry and Biochemistry

International Forensic Research Institute

Florida International University

Miami, FL 33199

USA

furtonk@fiu.edu

JIHYEON JANG

Inha University

253, Yonghyun-dong

Nam-gu Incheon 402-751

Korea

jhjang@vision.inha.ac.kr

List of Contributors xv



IOANNIS PATRAS

Department of Electronic Engineering

Queen Mary University of London

Mile End Rood

London E1 4NS

UK

I.Patras@elec.qmul.ac.uk

WEN GAO

Institute of Computing Technology

Chinese Academy of Sciences

Beijing, People’s Republic of China

and

Peking University

Beijing, People’s Republic of China

Wgao@pku.edu.cn

LU GAO

CDM Optics, Inc.

4001 Discovery Dr., Suite 130

Boulder, CO 80303

USA

lu.gao@cdm-optics.com

CARMEN GARCIA-MATEO

University of Vigo

36310, Vigo

Spain

carmen@gts.tsc.uvigo.es

SONIA GARCIA-SALICETTI

TELECOM SudParis

9 Rue Charles Fourier

Evry 91011

France

Sonia.Salicetti@int-edu.eu

XIN GENG

Deakin University

Melbourne, VIC 3125

Australia

xgeng @deakin.edu.au

SHAOGANG GONG

Queen Mary

University of London

Mile End Road

London E1 4NS

UK

sgg@dcs.qmul.ac.uk

JAVIER ORTEGA-GARCIA

Biometric Recognition Group - ATVS

Escuela Politecnica Superior

Universidad Autonoma de Madrid

Campus de Cantoblanco

Madrid 28049

Spain

Javier.Ortega@uam.es
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Area de Tratamiento de Voz y Señales (ATVS)
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Abstract Syntax Notation One
A notation commonly used to define abstract syntax

and semantics of the data structures (formats), to

convey messages in computer communication (similar

to XSD, but using a simpler syntax and allowing binary

as well as XML encodings of the data). The definitions

are independent of any programming language, but it

is common for tools to map them into specific pro-

gramming languages such as C, C++ and Java, and to

provide run-time modules that will allow values of

those data structures to be encoded in a standardized

form and sent to other computer systems. Once de-

fined at the abstract level, ASN.1 messages can be

conveyed (through standards and tool support) into

a variety of encodings, including very compact binary

encodings and human-readable XML encodings.

▶Biometric Technical Interface, Standardization
ACBio instance
An ACBio instance is a data structure generated by

a Biometric Processing Unit (BPU) and contains

data that can be used by an external ‘‘validator’’ pro-

cess of a biometric verification process to authenticate

the BPU and its functional transaction data and

other information. The validating data is typically

in the form of digitally signed certificates that

authenticate the BPU entity and, where appropriate,

security relevant aspects of its performance. Examples

include: authentication of stored biometric refer-

ences (templates) used for verification, and certi-

fication of the performance capabilities of the

biometric technology used in the recognition process.

The ACBio instance is digitally signed and bound to
# 2009 Springer Science+Business Media, LLC
the functional transaction data from the BPU. The

digitally signed certificates are provided by a trusted

3rd party organisation through an evaluation and

certification procedure that is not defined by the

ACBio standard.

A BPU is a functional component of a biometric

transaction system that operates at a uniform security

level. It contains one or more subprocesses, the last of

which generates the ACBio instance for the BPU and

outputs it together with the functional transaction data

from the BPU. The ACBio instance can be used by a

subsequent ‘‘validator’’ process of a biometric verifica-

tion process to authenticate the BPU and its functional

transaction data and other information.

▶Biometric Security, Standardization
Acceleration
Acceleration of pen-movement during the signing

process.

This feature is used for on-line signature verification.

There are two ways to obtain the acceleration feature.

One way is to measure the pen acceleration directly with

accelerometers integrated into the pen. The other way is

to compute the acceleration from other measurements,

for example, from the second-order derivative of the pen

position signal with respect to time.

▶ Signature Recognition
Access Control
▶Access Control, Logical

▶Access Control, Physical



2 A Access Control, Logical
Access Control, Logical

VANCE BJORN

DigitalPersona Inc., Redwood City, CA, USA
Synonym

Logon, Password management
Definition

Logical access control is the means and procedures

to protect access to information on PCs, networks,

and mobile phones. A variety of credential types may

be used, such as passwords, tokens, or biometrics, to

authenticate the user. These credentials may represent

something the user knows (password), something the

user has (token), or a physical trait of the user

(biometrics). A logical access control system will im-

plement a method to enroll and associate credentials

with the user, and then to request that one or more

of the user’s credentials be authenticated for access to

the resource (application, network, device, or operating

system). The logical access control system may also log

all access attempts for use in auditing who and when

someone accessed a specific resource.
Introduction

The key used to open almost any door in the digital

realm has traditionally been the password. This was the

natural consequence of the fact that somewhere some-

one manipulated data, from a desktop personal com-

puter (PC) and to prevent this, using passwords began.

Furthermore, from a theoretical standpoint, a password

can offer extremely strong security since the only place a

password needs to be stored is in the user’s mind.

In practice however, the mind is a terrible place to

store complex secrets; people cannot easily remember

complex passwords so they write them down or reveal

them to others, and most people end up using the same

password everywhere. Exploiting the human factors

which affect security is increasingly the quickest path

for hackers to break into computer systems. In addi-

tion, there are many automated points of attacks on

password-based security systems. For instance, a user’s

password can be compromised via insertion of a
hardware or software-based keylogger to trap the key-

strokes as they are being entered. And, as computers

gain speed, it has become easy to reverse a crypto-

graphic hash, or any other cryptographic representa-

tion of a password stored in the computer, even if the

password is very complex.

End users do not want to be encumbered with

complexities and inconveniences that slow them

down while doing their job. On the other hand, busi-

nesses increasingly find out that they must implement

strong authentication to satisfy industry and govern-

ment auditors. It is fairly straightforward for a system

administrator to patch a piece of software or install

a firewall, but it is not trivial to tackle the human

factors of security. A secure password policy, such

as requiring users to change their passwords every

month enforces complexity in construction but in

reality makes it more likely that users will find ways

to simplify and recall, such as by writing their passwords

down on a note under their keyboard. Information

technology support costs also go up as more people

forget their passwords and need to call the helpdesk.

In the end, since passwords are chosen not by the

system administrator in a corporation, but by the end

users, the system administrator must rely on each user

to follow the policy. This typically becomes the weakest

link in network security. Other methods, such as tokens

and smartcards, succumb to the same challenge – it

remains the end user who bears the responsibility of

maintaining the security of the credential.

The need to move away from password-based sys-

tems can be summarized as follows:

� Weak passwords are easy to crack. Most people set

their passwords to words or digits they can easily

remember, for example, names and birthdays of

family members, favorite movie or music stars,

and dictionary words. In 2001, a survey of 1,200

British office workers conducted by CentralNic

found that almost half chose their own name, a

pet’s name, or a family member’s name as a pass-

word. Others based their passwords on celebrity or

movie character names, such as ‘‘Darth Vader’’ and

‘‘Homer Simpson’’. Such passwords are easy to

crack by guessing or by simple brute force dictio-

nary attacks. Although it is possible, and even ad-

visable, to keep different passwords for different

applications and to change them frequently, most

people use the same password across different
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applications and never change it. Compromising a

single password can thus cause a break in security

in many applications. For example, a hacker might

create a bogus Web site enticing users with freebies

if they register with a login name and password.

The hacker could then have a good chance of suc-

cess in using the same login name and password to

attack the users’ corporate accounts.

� Strong passwords are difficult to remember. In an

effort to address weak passwords, business often

enforce policies to make passwords strong, for ex-

ample, a business may require that a password is at

least 8 characters long, contains at least one digit and

one special character, and must be changed every

couple of weeks. Such policies backfire. Certainly,

longer complex random passwords are more secure,

but they are so much harder to remember, which

prompts users to write them down in accessible

locations such as Post-It notes hidden under the

keyboard, an unprotected electronic file on their

computer, or other electronic devices such as cellular

phones or personal digital assistants (PDAs), creat-

ing a security vulnerability. Else, people forget their

passwords, which create a financial nightmare to

businesses as they have to employ helpdesk support

staff to reset forgotten or expired passwords. Cryp-

tographic techniques can provide very long pass-

words (encryption keys) that the users need not

remember; however, these are in turn protected by

simple passwords, which defeat their purpose.

� Password cracking is scalable. In a password-based

network authentication application, a hacker may

launch an attack remotely against all the user

accounts without knowing any of the users. It

costs the hacker almost the same amount of time,

effort, and money to attack millions of accounts as it

costs to attack one. In fact, the same password (for

example, a dictionary word) can be used to launch

an attack against (a dictionary of) user accounts.

Given that a hacker needs to break only one pass-

word among those of all the employees to gain

access to a company’s intranet, a single weak pass-

word compromises the overall security of every sys-

tem that user has access to. Thus, the entire system’s

security is only as good as the weakest password.

� Password and tokens do not provide nonrepudiation.

When a user shares a password with a colleague, there

is no way for the system to know who the actual user

is. Similarly, tokens can be lost, stolen, shared,
duplicated or a hacker could make a master key that

opens many locks. Only biometrics can provide a

guarantee of authentication that cannot subsequently

be refused by a user. It is very hard for the user to

deny having accessed a biometric-based system.

Biometrics provide the only credential that does not

rely on the end user to maintain its security. Further-

more, biometric systems are potentially cheaper to

support and easier to use since the end user does not

need to remember complex secrets.

Shrink-wrapped packaged software solutions are

available today to enable the use of biometric-based

authentication to logon to virtually any consumer and

enterprise application, including Microsoft Windows

networks, websites, web services, and virtual private

networks. Since few applications or operating systems

implement native biometric authentication, the role of

many such software solutions is to map a successful

biometric authentication to the user’s long and com-

plex password, which is then used by the application

for logon. The end user, however, will likely not need to

know his or her underlying password or be able to

enter it, and thus, a biometric solution effectively elim-

inates passwords for the user. Similarly, a user’s bio-

metric credential can be bound to the private key

associated with a digital certificate to facilitate digital

signing of data, such as financial transactions, email,

forms, and documents. In addition, to aid compliance

the system administrator can access an event log to

confirm that a biometric match was performed for

access and whether the match was successful or not.

Fingerprint-based solutions, in particular, have

emerged as the most common method for logical ac-

cess control with biometrics. The use of a fingerprint

requires the user to declare their credential with a

definitive action, such as a finger press or swipe for

authentication. Fingerprint readers have attained the

size, price, and performance necessary to be integrated

in a range of logical access devices, including note-

books, keyboards, mouse, and smartphones.

It is typical for the logical access control applica-

tions to have only one user per biometric reader, a

reader that may be attached to the user’s PC or embed-

ded in her notebook or smartphone. This is unlike

most other commercial applications such as physical

access control, time and attendance, or authentication

at point of sale terminals, where the biometric reader

would be shared among many users. Certain logical
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access control application deployments may offer the

biometric authentication as a choice to the users.

A user could chose to use the biometric system or

chose to continue using the passwords. In such deploy-

ments, the intention of the enterprise is to provide

maximum end user convenience while still availing

cost savings by reducing helpdesk calls. The above prop-

erties of logical access control deployments drive funda-

mentally different requirements for the single-user

biometric reader in terms of accuracy, ease of use, cost,

size, and security, as compared to the requirements for

the shared-use biometric readers. Shared-use biometric

readers traditionally focus on ease of use, durability, and

accuracy over a wide demographic population. Single-

use biometric readers prioritize low cost, small size, and

cryptographic security. For fingerprint-based readers,

this trend has manifested itself through the use of place-

ment-based readers for shared-use applications, and

swipe-based readers for single-use applications.

Most platforms and peripherals that come with

embedded fingerprint readers include software to ac-

cess the local PC and applications. These applications

may include biometric-based access to the PC, pre-

boot authentication, full disk encryption, Windows

logon, and a general password manager application

to facilitate the use of biometric for other applications

and websites. Such a suite of applications protects the

specific PC on which it is deployed and makes personal

access to data more secure, convenient, and fun. Com-

panies such as Dell, Lenovo, Microsoft, and Hewlett-

Packard ship platforms and peripherals pre-loaded

with such capability. However, these are end user uti-

lities with the scope of use only on the local PC. As a

result, they may be challenging and costly to manage if

deployed widely in an enterprise since each user will

need to setup, enroll his or her biometric, and config-

ure the appropriate policy, all by themselves. Usually

the user is given the option to use the biometric system

as a cool individual convenience, rather than enforced

by an enterprise-wide authentication policy.

The other major class of logical access control bio-

metric application for the enterprise network is server-

based solutions. These solutions typically limit the

flexibility given to the end user and instead focus on

the needs of the organization and the system adminis-

trator to deploy, enroll users’ biometric credentials

into the enterprise directory, and centrally configure

enterprise-wide policies. An enterprise-wide policy,

however, drives stronger requirements for the
reliability, security, and interoperability of the biomet-

ric authentication. If it is a business policy that every-

one in the organization must use the biometric system

for authentication, the reliability of the biometric sys-

tem must be higher than a ▶ client-side-only solution

where the user can opt in to use the biometric system

just for convenience. A ▶ server-based logical access

control solution generally needs to be interoperable

with data coming from many different biometric read-

ers since not every platform in the organization will use

the same model of the biometric reader. Interoperabil-

ity can be accomplished at either the enrollment tem-

plate level or the biometric image level. Lastly, since a

server-based solution typically stores biometric cre-

dentials in a central database, the security model of

the whole chain from the reader to the server must be

considered to protect against hackers and maintain

user privacy. However, unlike government deploy-

ments that store the user’s actual biometric image(s)

for archival purposes, a biometric solution used for

enterprise authentication typically stores only the bio-

metric enrollment templates.

Biometric systems remove the responsibility of man-

aging credentials from the hands of the end users and

therefore resolve the human factors affecting the system

security. However, the flip side is that the biometric

capture and match process must be trustworthy. Logical

access control for users is typically accomplished

through a client device, such as a notebook or desktop

PC, by authenticating the user to a trusted, managed

server. The root challenge of protecting the biometric

match process is to remove all means by which a hacker

could affect the user authentication by tampering with

the client operating system. This can be accomplished

by carefully monitoring the health of the client

operating system with adequate virus and spyware soft-

ware, and in the future, with the use of trusted comput-

ing, or, if operating from an untrusted client, by

removing the client operating system entirely from the

system security equation. The practical means to ac-

complish this is by either performing the biometric

match in a secure coprocessor, or by encrypting or

digitally signing the raw biometric data on the biometric

reader itself so that the biometric data is trusted by the

server. Of course, depending on the threats present in a

given environment, some deployments of logical access

control may need to resolve more than just the human

factors of security and will need to use multiple factors

of authentication, such as two-factor (biometric and
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password) or even three-factor (biometric, smartcard,

and PIN) to protect against active adversaries.

After many years of fits and starts as a niche tech-

nology, the use of biometrics for logical access control

has gained a foothold in protecting corporate assets

and networks as the cost of solutions has gone down,

and the security and reliability has gone up. Use of

biometric authentication for logical access control

resolves threats that other secret-based methods such

as passwords and tokens cannot, the main threat being

the human factors that lower security and are costly

and difficult to manage. No security method is a magic

bullet, but biometric solutions for logical access con-

trol can be a reliable tool or layer to add to a holistic

approach to enterprise security.

Specifically, biometrics-based logical access control

has found a home in the healthcare and financial indus-

tries to help satisfy government compliance directives.
Healthcare

Compliance with the security requirements of the

Health Insurance Portability and Accountability Act

(HIPAA) of 1996 accelerated the adoption of biometric

systems in the U.S. healthcare industry. This regulation

does not specify the use of biometrics explicitly, but it

states that access to any healthcare data must be re-

stricted through strong user authentication. Such a

requirement made the access to healthcare information

technology systems and patient data more burden-

some. The healthcare industry turned to the biometric

systems to get a good balance of convenience, security,

and compliance. The Joint Commission on Accredita-

tion of Healthcare Organizations (JCAHO) auditing

requirements also contributed to the adoption rate.

Once the healthcare industry was educated on the

biometric technologies, it adopted biometric systems

for other applications as well. Today the healthcare

industry uses biometric systems in many different

applications to reduce fraud prevalent in the industry

and to provide convenience to medical professional

without compromising their need for quick and easy

access to critical health data. The majority of initial

adoption in the healthcare industry was in the employee

facing applications. Customer-facing applications have

started getting some traction recently. Some examples

of business objectives in the healthcare industry that

are successfully met with biometrics deployments are:
� Restrict logical access to medical information

systems

� Improve hospital efficiency and compliance

� Improve pharmacy efficiency and compliance

� Reduce medical benefits fraud

� Patient verification
Financial

In the U.S., Financial Services Modernization Act of

1999, also known as Gramm-Leach-Bliley Act of 1999

mandates high standards of safeguarding financial

transactions, data, and assets. The U.S. Sarbanes-Oxley

(SOX) Act of 2002 requires higher security standards for

data that is financial or confidential. According to this

act, any public company may be liable if it has not taken

adequate steps to protect financial records and data. The

government considers financial records to be confiden-

tial and private. It is imperative that they are secure and

access is allowed only to authorized users. Many existing

passwords and security policies would not be consid-

ered sufficient under SOX. Compliance with these two

acts is contributing to an increase in the rate of adoption

of biometrics in the financial sector applications. In this

respect, the financial industry is somewhat similar to the

healthcare industry – adoption of biometric systems in

both these industries is being accelerated by government

regulations.
Related Entries

▶Asset Protection

▶Biometrics Applications, Overview
Access Control, Physical

COLIN SOUTAR

Broadway Avenue, Toronto, ON, Canada
Synonyms

Biometric Readers; Biometric PAC; Physical Access

Control



6 A Access Control, Physical
Definition

The use of biometric technologies within physical

access control systems is one of the most broadly

commercialized sectors of biometrics, outside of foren-

sic applications. A key issue for the successful integra-

tion of biometrics within a physical access control

system is the interface between the biometric and

the access control infrastructures. For this reason, the

biometric system must be designed to interface appro-

priately with a wide range of access control systems.

Also, the usability demands of a physical access control

system are significant as, typically, all users need to

be enrolled for subsequent successful usage more or

less on a daily basis. The most significantly-deployed

biometric types for access control are: fingerprint;

hand geometry; face and iris.
Introduction

The use of biometrics within physical access control

(PAC) systems is one of the most broadly commercia-

lized sectors of biometrics, outside of forensic applica-

tions. The requirements for the use of biometrics

within a larger physical access control system are de-

pendent on the interaction with existing access control

infrastructures. For this reason, the biometric system

must be designed to interface appropriately with a

wide range of access control systems. Also, the usability

demands of a physical access control system are signif-

icant as all users need to be enrolled for successful

usage more or less on a daily basis. The most signifi-

cantly deployed biometric types for access control are:

fingerprint; hand geometry; face and iris. A more re-

cent set of requirements for biometric systems for PAC

is that it is also interoperable with logical access control

systems – the most broadly recognized example of this

requirement is defined in FIPS 201 [1] for access con-

trol to federal facilities and computers.
Verification Versus Authorization

As discussed in the introduction, biometric PAC is one

of the most commercially deployed applications of

biometrics. One of the keys to the success of this appli-

cation is the capability to interface with multiple PAC
systems AND to isolate the act of user verification from

themore general PAC system operation of authorization.

Achieving these two factors allows a biometric device to

be seamlessly added to existing access control systems.

The role that biometric systems serve within the

context of a physical access control system is generally

to provide evidence (herein referred to as ‘‘verification’’)

that an individual is who he/she claims to be. This claim

is based on an established persona or user that the

individual has within the PAC system. It is important

to distinguish between the individual’s identity; an

identifier (see [2]) by which they are known to a secu-

rity system – in this case, the PAC system; and

the verification process which simply verifies that they

are the valid owner of the identifier. It is also important to

distinguish between authentication (accomplished here

via biometric verification) and authorization. Authenti-

cation verifies the individual’s identity, and authorization

permits them to continue with access to the building or

facility, based on their status within the PAC system.

As background, consider the various steps compris-

ing the registration of a new user within a PAC system.

� An administrator of the PAC system will establish

the unique identity of the individual. This is typi-

cally achieved through the use of so-called ‘‘breeder

documents’’ such as employee records, driver’s li-

cense, passport, etc.

� If the individual is identified as unique, the security

system will establish the individual as a new user of

the system, and assign a unique identifier by which

they are known to the system. An example of an

identifier would be the Wiegand data string for

physical access control.

� The individual will be instructed to enroll

their biometric and the biometric system will create

a biometric template that is associated with the user.

� The template will be bound to the identifier, either

by physically storing them in related locations in

the biometric or security system, or by binding

them together using encryption or a digital signa-

ture me chanism, to create a user record (see Fig . 1).

Subsequently, when the user requests to access a facil-

ity, the following steps are undertaken:

� An individual establishes a claim to the system

that he/she is a valid user of the system. This is

usually achieved either by inputting the username

associated with the user, or by presenting a card
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comprising biometric template and user identifier.

Access Control, Physical. Figure 2 Separation of

biometric authentication and system authorization.
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or other credentials to the system to make the

claim.

� The security system ensures that the user record of

the claimed user is available to the biometric sys-

tem (either by transmitting it to the biometric

system, or by selecting it within the biometric sys-

tem), where it will be unbound to produce the

template and identifier. Note that as part of the

unbinding process either the PAC security system

(see Fig . 2) or the biometric system (or both) may

verify the authenticity of the user record, by, for

example, checking a digital signature.

� The individual is requested to verify that they are

the valid owner of the user record, by comparing a

live biometric sample with that represented by the

template in the user record.

� If a successful match occurs, the identifier that was

stored in the user record is relayed to the PAC system

where the user is authorized, to rights and privileges

according to their PAC security system.

This separation between the authentication of the indi-

vidual and the authorization of the user is critical for

successful integration of biometric systems into general

PAC systems. It provides an explicit segregation between

the verification process in the biometric system and the

rights and privileges that the user is assigned by the

security system. This is especially important when con-

sidering issues such as the revocation of a user’s rights

and privileges in a very immediate manner across a wide

area system – i.e., a user can still locally verify, but no
access action will be permitted as the PAC security

system has denied access as a result of the user’s autho-

rization privileges having been revoked.
Weigand Format

The most prevalent format for an identifier within

a PAC system is the 26-bit Wiegand Format [3]. The

26-bit Wiegand code comprises of 1 parity bit; 8 bits of

facility code; 16 bits of identity code; and 1 stop bit.

These data thus contains the identifier by which the

user is known by a particular access control system.

Note that this identifier is explicitly unrelated to the

individual’s biometric, as described in the previous

section. Other formats for identifiers include federal

identifiers such as CHUID and FASCN.
Typical Biometrics used for Access
Control

Biometrics that are typically used for PAC are those

which can provide excellent enrollment rates; through-

put rates; and low false rejection rates. The false accept

rate is typically set at a rate which is commensurate

with the PAC security system requirements, and the

false reject rate is thus set by default. Typical biometrics

used for PAC are: fingerprint technology; hand geom-

etry; iris technology; and facial recognition. Tradition-

ally, fingerprint and hand geometry have been the
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main biometrics used for PAC. As the performance of

facial recognition systems improve, for example via

dedicated lighting, or by using 3-D surface or texture,

this biometric modality is becoming more popular for

PAC applications. Similarly, as the cost decreases, and

the usability (via verification on the move), of iris

recognition systems improves, this modality is also

becoming more popular for PAC. Furthermore, sys-

tems have been deployed using several of the above

biometrics in a combined multi-biometric system.
Access Control, Physical. Figure 3 Examples of

fingerprint and 3-D facial biometric devices for

Physical Access Control.
Interaction with Logical Access
Control

As the number of users enrolled in a PAC system that are

migrated over to the use of biometrics increases, there is

a desire to have the PAC systems interoperable with

logical applications systems. This interoperability has

several aspects: template interoperability (i.e., it is pref-

erable that the user need not re-enroll for different

systems); identifier interoperability (this is especially

important where the rights and privileges of the user

should span both physical and logical access applica-

tions); and event synchronization (for example, a user

cannot be granted access to a computer in a room for

which they are not authorized to enter). These require-

ments are more recently being designed into biometric

PAC systems; as such PAC systems are required to be a

component in a converged physical and logical access

control system. A particular example of such as system

would be a U.S. Federal system based on HSPD-12,

which, in 2004, mandated the establishment of a

standard for the identification of Federal employees

and contractors, subsequently defined by the Federal

Information Processing Standard Publication 201

(FIPS 201), Personal Identity Verification (PIV) of Fed-

eral Employees and Contractors in February 2005 and

Biometric Data Specification for Personal Identity Veri-

fication, NIST Special Publication 800-76 (SP 800-76).

SP 800-76 describe the acquisition and formatting

specifications for the biometric credentials of the PIV

system and card. In particular, for fingerprints, it calls

for compliance to the ANSI/INCITS 378 fingerprint

minutiae data interchange format standard for storing

two of the captured fingerprints (the left and right

index fingers) on the card for use in user verification.

This process enables the template interoperability re-

quired for a converged physical and logical application.
In addition, a unique number stored on the PIV card,

known as the CHUID (Cardholder Unique Identifier)

is used as the single identifier by which the user is

known to both the physical and logical access control

systems, thus satisfying the requirement of identifier

interoperability as described above.
Related Entries

▶Access Control, Logical

▶Biometric Applications, Overview

▶Biometric System Design

▶ Interoperable Performance

▶Multibiometrics
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ACE-V
ACE-V is the four phase identification protocol

which includes analysis, comparison, evaluation, and

verification.

▶Earprints, Forensic Evidence of
Action Categorization
▶Psychology of Gait and Action Recognition
Action Understanding
▶Psychology of Gait and Action Recognition
Active (Contour, Shape,
Appearance) Models
▶Deformable Models
Acupuncture
Acupuncture is a treatment where sharp, thin needles

are inserted in the body at very specific points. It is one

of the forms of treatment in traditional Chinese

medicine.

▶ Skull, Forensic Evidence of
AdaBoost
AdaBoost (short for Adaptive Boosting) is a machine

learning algorithm that learns a strong classifier by com-

bining an ensemble of weak (moderately accurate) clas-

sifiers with weights. The discrete AdaBoost algorithm

was originally developed for classification using the ex-

ponential loss function and is an instance within the

boosting family. Boosting algorithms can also be derived

from the perspective of function approximation with

gradient descent and applications for regression.

▶ Face Detection
Adapted Fusion
Adapted fusion in the framework of multi-biometric

score fusion refers to the techniques in which a baseline

fusion function is first constructed based on some gen-

eral knowledge of the problem at hand, and then adjust-

ed during the operation of the system. The adaptation

can be based on ancillary information such as: the user

being claimed (adapted user-specific fusion), quality

measures of the input biometrics (▶ quality-based fu-

sion), or other kind of environmental information

affecting the various information channels being fused.

▶ Fusion, User-Specific
Adaptive Learning
▶ Incremental Learning
Affective Computing
The research area concerned with computing that

relates to, arises from, or deliberately influences
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emotion. Specifically, the research area of machine

analysis of human affective states and employment of

this information to build more natural, flexible (affec-

tive) user interfaces goes by a general name of affective

computing. Affective computing expands HCI by in-

cluding emotional communication together with ap-

propriate means of handling affective information.

▶ Facial Expression Recognition
Albedo
For a reflecting surface, Albedo is the fraction of the

incident light that is reflected. This is a summary

characteristic of the surface. Reflection can be quite

complicated and a complete description of the reflec-

tance properties of a surface requires the specification

of the bidirectional reflectance distribution function as

a function of wavelength and polarization for the

surface.

▶ Iris Device
Alignment
Alignment is the process of transforming two or more

sets of data into a common coordinate system. For

example, two fingerprint scans acquired at different

times each belong to their own coordinate system;

this is because of rotation, translation, and non-linear

distortion of the finger. In order to match features

between the images, a correspondence has to be

established. Typically, one image (signal) is referred

to as the reference and the other image is the target,

and the goal is to map the target onto the reference.

This transformation can be both linear and nonlinear

based on the deformations undergone during acqui-

sition. Position-invariant features, often used to avoid

registration, face other concerns like robustness to

local variation such as non-linear distortions or

occlusion.

▶Biometric Algorithms
Altitude
Altitude is the angle between a line that crosses a plane

and its projection on it, ranging from 0� (if the line is
contained in the plane) to 90� (if the line is orthogonal
to the plane). This measure is a component of the pen

orientation in handwriting capture devices.

▶ Signature Features
Ambient Space
The space in which the input data of a mathematical

object lie, for example, the plane for lines.

▶Manifold Learning
American National Standards
Institute (ANSI)
ANSI is a non-government organization that develops

and maintains voluntary standards for a wide range of

products, processes, and services in the United States.

ANSI is a member of the international federation of

standards setting bodies, the ISO.

▶ Iris Device
Anatomy
It is a branch of natural science concerned with the

study of the bodily structure of living beings, especially

as revealed by dissection. The word ‘‘Anatomy’’



Anatomy of Eyes A 11

A
originates from the Old French word ‘‘Anatomie,’’ or a

Late Latin word ‘‘Anatmia.’’ Anatomy implies, ‘‘ana’’

meaning ‘‘up’’ and ‘‘tomia’’ meaning ‘‘cutting.’’

▶Anatomy of Face

▶Anatomy of Hand
Anatomy of Eyes

KRISTINA IRSCH, DAVID L. GUYTON

The Wilmer Ophthalmological Institute, The Johns

Hopkins University School of Medicine, Baltimore,

MD, USA
Definition

The human eye is one of the most remarkable sensory

systems. Leonardo da Vinci was acutely aware of its

prime significance: ‘‘The eye, which is termed the win-

dow of the soul, is the chief organ whereby the senso

comune can have the most complete and magnificent

view of the infinite works of nature’’ [1]. Human beings

gather most of the information about the external

environment through their eyes and thus rely on sight

more than on any other sense, with the eye being the

most sensitive organ we have. Besides its consideration

as a window to the soul, the eye can indeed serve as

a window to the identity of an individual. It offers

unique features for the application of identification

technology. Both the highly detailed texture of the

iris and the fundus blood vessel pattern are unique to

every person, providing suitable traits for biometric

recognition.
Anatomy of the Human Eye

The adult eyeball, often referred to as a spherical globe,

is only approximately spherical in shape, with its largest

diameter being 24 mm antero-posteriorly [2, 3].

A schematic drawing of the human eye is shown in

Fig. 1. The anterior portion of the eye consists of the

cornea, iris, pupil, and crystalline lens. The pupil serves

as an aperture which is adjusted by the surrounding
▶ iris, acting as a diaphragm that regulates the amount

of light entering the eye. Both the iris and the pupil are

covered by the convex transparent cornea, the major

refractive component of the eye due to the huge differ-

ence in refractive index across the air-cornea interface

[5]. Together with the crystalline lens, the cornea is

responsible for the formation of the optical image on

the retina. The crystalline lens is held in place by

suspensory ligaments, or zonules, that are attached to

the ciliary muscle. Ciliary muscle actions cause the

zonular fibers to relax or tighten and thus provide

accommodation, the active function of the crystalline

lens. This ability to change its curvature, allowing

objects at various distances to be brought into sharp

focus on the retinal surface, decreases with age, with

the eye becoming ‘‘presbyopic.’’ Besides the cornea

and crystalline lens, both the vitreous and aqueous

humor contribute to the dioptric apparatus of the

eye, leading to an overall refractive power of about

60 diopters [3]. The aqueous humor fills the anterior

chamber between the cornea and iris, and also fills

the posterior chamber that is situated between the

iris and the zonular fibers and crystalline lens. Togeth-

er with the vitreous humor, or vitreous, a loose gel

filling the cavity between the crystalline lens and

retina, the aqueous humor is responsible for main-

taining the intraocular pressure and thereby helps the

eyeball maintain its shape. Moreover, this clear watery

fluid nourishes the cornea and crystalline lens. Taken

all together, with its refracting constituents, self-adjust-

ing aperture, and finally, its detecting segment, the eye

is very similar to a photographic camera. The film of

this optical system is the ▶ retina, the multilayered

sensory tissue of the posterior eyeball onto which the

light entering the eye is focused, forming a reversed and

inverted image. External to the retina is the choroid, the

layer that lies between retina and sclera. The choroid is

primarily composed of a dense capillary plexus, as well

as small arteries and veins [5]. As it consists of numer-

ous blood vessels and thus contains many blood cells,

the choroid supplies most of the back of the eye with

necessary oxygen and nutrients. The sclera is

the external fibrous covering of the eye. The visible

portion of the sclera is commonly known as the

‘‘white’’ of the eye.

Both iris and retina are described in more detail in

the following sections due to their major role in bio-

metric applications.
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Iris

The iris may be considered as being composed of

four different layers [3], starting from anterior to

posterior: (1) Anterior border layer which mainly con-

sists of fibroblasts and pigmented melanocytes, inter-

rupted by large, pit-like holes, the so-called crypts of

Fuchs; (2) Stroma containing loosely arranged collagen

fibers that are condensed around blood vessels and

nerve fibers. Besides fibroblasts and melanocytes, as

present in the previous layer, clump cells and mast

cells are found in the iris stroma. It is the pigment in
the melanocytes that determines the color of the iris,

with blue eyes representing a lack of melanin pigment.

The sphincter pupillae muscle, whose muscle fibers

encircle the pupillary margin, lies deep inside the stro-

mal layer. By contracting, the sphincter causes pupil

constriction, which subsequently results in so-called

contraction furrows in the iris. These furrows deepen

with dilation of the pupil, caused by action of the dilator

muscle, which is formed by the cellular processes of the

(3) Anterior epithelium. The dilator pupillae muscle

belongs to the anterior epithelial layer, with its cells

being myoepithelial [6]. Unlike the sphincter muscle,



Anatomy of Eyes. Figure 2 Composite view of the

surfaces and layers of the iris. Crypts of Fuchs (c) are seen

adjacent to the collarette in both the pupillary (a) and

ciliary zone (b). Several smaller crypts occur at the iris

periphery. Two arrows (top left) indicate circular

contraction furrows occurring in the ciliary area. The

pupillary ruff (d) appears at the margin of the pupil,

adjacent to which the circular arrangement of the

sphincter muscle (g) is shown. The muscle fibers of the

dilator (h) are arranged in a radial fashion. The last sector at

the bottom shows the posterior surface with its radial folds

(i and j). (Reproduced with permission from [5]).
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the muscle fibers of the dilator muscle are arranged in a

radial pattern, terminating at the iris root; (4) Posterior

pigmented epithelium whose cells are columnar and

more heavily pigmented in comparison with the

anterior epithelial cells. The posterior epithelial layer

functions as the main light absorber within the iris.

A composite view of the iris surfaces and layers

is shown in Fig. 2, which indicates the externally visible

iris features, enhancing the difference in appear-

ance between light and dark irides (iris features and

anatomy). Light irides show more striking features in

visible light because of higher contrast. But melanin is

relatively transparent to near-infrared light, so viewing

the iris with light in the near-infrared range will uncover

deeper features arising from the posterior layers, and

thereby reveals even the texture of dark irides that is

often hidden with visible light.

In general, the iris surface is divided into an inner

pupillary zone and an outer ciliary zone. The border

between these areas is marked by a sinuous structure,

the so-called collarette. In addition to the particular

arrangement of the iris crypts themselves, the structur-

al features of the iris fall into two categories [7]: (1)

Features that relate to the pigmentation of the iris

(e.g., pigment spots, pigment frill), and (2) move-

ment-related features, in other words features of the

iris relating to its function as pupil size control (e.g.,

iris sphincter, contraction furrows, radial furrows).

Among the visible features that relate to the pig-

mentation belong small elevated white or yellowish

Wölfflin spots in the peripheral iris, which are pre-

dominantly seen in light irides [3]. The front of the

iris may also reveal iris freckles, representing random

accumulations of melanocytes in the anterior border

layer. Pigment frill or pupillary ruff is a dark pigmen-

ted ring at the pupil margin, resulting from a forward

extension of the posterior epithelial layer. In addition

to the crypts of Fuchs, predominantly occurring

adjacent to the collarette, smaller crypts are located in

the periphery of the iris. These depressions, that are

dark in appearance because of the darkly pigmented

posterior layers, are best seen in blue irides. Similarly,

a buff-colored, flat, circular strap-like muscle becomes

apparent in light eyes, that is, the iris sphincter.

The contraction furrows produced when it contracts,

however, are best noticeable in dark irides as the base

of those concentric lines is less pigmented. They ap-

pear near the outer part of the ciliary zone, and are
crossed by radial furrows occurring in the same region.

Posterior surface features of the iris comprise structural

and circular furrows, pits, and contraction folds. The

latter, for instance, also known as Schwalbe’s contraction
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folds, cause the notched appearance of the pupillary

margin.

All the features described above contribute to a

highly detailed iris pattern that varies from one

person to the next. Even in the same individual,

right and left irides are different in texture. Besides

its uniqueness, the iris is a protected but readily

visible internal organ, and it is essentially stable over

time [7, 8]. Thus the iris pattern provides a suitable

physical trait to distinguish one person from another.

The idea of using the iris for biometric identification

was originally proposed by the ophthalmologist Burch

in 1936 [9]. However, it took several decades until two

other ophthalmologists, Flom and Safir [7], patented

the general concept of iris-based recognition. In 1989,

Daugman, a mathematician, developed efficient algo-

rithms for their system [8–10]. His mathematical for-

mulation provides the basis for most iris scanners

now in use. Current iris recognition systems use infra-

red-sensitive video cameras to acquire a digitized image

of the human eye with near-infrared illumination in the

700�900 nm range. Then image analysis algorithms

extract and encode the iris features into a binary code

which is stored as a template. Elastic deformations asso-

ciated with pupil size changes are compensated for

mathematically. As pupil motion is limited to living

irides, small distortions are even favorable by providing

a control against fraudulent artificial irides [8, 10].

Imaging the iris with near-infrared light not only

greatly improves identification in individuals with very

dark, highly pigmented irides, but also makes the system

relatively immune to anomalous features related to

changes in pigmentation. For instance, melanomas/

tumorsmaydevelopon the iris andchange its appearance.

Furthermore, some eye drops for glaucoma treatment

may affect the pigmentation of the iris, leading to colora-

tion changes or pigment spots. However, as melanin is

relatively transparent to near-infrared light and basically

invisible tomonochromatic cameras employedbycurrent

techniques of iris recognition, none of these pigment-

related effects causes significant interference [9, 10].
Retina

As seen in an ordinary histologic cross-section, the

retina is composed of distinct layers. The retinal layers

from the vitreous to choroid [2, 3] are: (1) Internal

limiting membrane, formed by both retinal and vitreal
elements [2]; (2) Nerve fiber layer, which contains the

axons of the ganglion cells. These nerve fibers are

bundled together and converge to the optic disc,

where they leave the eye as the optic nerve. The cell

bodies of the ganglion cells are situated in the (3)

ganglion cell layer. Numerous dendrites extend into

the (4) inner plexiform layer where they form synapses

with interconnecting cells, whose cell bodies are locat-

ed in the (5) inner nuclear layer; (6) Outer plexiform

layer, containing synaptic connections of photorecep-

tor cells; (7) Outer nuclear layer, where the cell bodies

of the photoreceptors are located; (8) External limiting

membrane, which is not a membrane in the proper

sense, but rather comprises closely packed junctions

between photoreceptors and supporting cells. The

photoreceptors reside in the (9) receptor layer. They

comprise two types of receptors: rods and cones. In

each human retina, there are 110–125 million rods and

6.3–6.8 million cones [2]. Light contacting the photo-

receptors and thereby their light-sensitive photopig-

ments, are absorbed and transformed into electrical

impulses that are conducted and further relayed to

the brain via the optic nerve; (10) Retinal pigment

epithelium, whose cells supply the photoreceptors

with nutrients. The retinal pigment epithelial cells

contain granules of melanin pigment that enhance

visual acuity by absorbing the light not captured by

the photoreceptor cells, thus reducing glare. The most

important task of the retinal pigment epithelium is to

store and synthesize vitamin A, which is essential for

the production of the visual pigment [3]. The pigment

epithelium rests on Bruch’s membrane, a basement

membrane on the inner surface of the choroid.

There are two areas of the human retina that are

structurally different from the remainder, namely the

▶ fovea and the optic disc. The fovea is a small depres-

sion, about 1.5 mm across, at the center of the macula,

the central region of the retina [11]. There, the inner

layers are shifted aside, allowing light to pass unimpeded

to the photoreceptors. Only tightly packed cones, and

no rods, are present at the foveola, the center of the

fovea. There are also more ganglion cells accumulated

around the foveal region than elsewhere. The fovea is

the region of maximum visual acuity.

The optic disc is situated about 3 mm (15 degrees of

visual angle) to the nasal side of the macula [11]. It con-

tains no photoreceptors at all and hence is responsible

for the blind spot in the field of vision. Both choroidal

capillaries and the central retinal artery and vein supply
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the retina with blood. A typical fundus photo taken with

visible light of a healthy right human eye is illustrated in

Fig. 3, showing the branches of the central artery and

vein as they diverge from the center of the disc. The

veins are larger and darker in appearance than the

arteries. The temporal branches of the blood vessels

arch toward and around the macula, seen as a darker

area compared with the remainder of the fundus,

whereas the nasal vessels course radially from the

nerve head. Typically, the central ▶ retinal blood ves-

sels divide into two superior and inferior branches,

yielding four arterial and four venous branches that

emerge from the optic disc. However, this pattern

varies considerably [6]. So does the choroidal blood

vessel pattern, forming a matting behind the retina,

which becomes visible when observed with light in the

near-infrared range [12]. The blood vessels of the cho-

roid are even apparent in the foveal area, whereas

retinal vessels rarely occur in this region.

In the 1930s, Simon and Goldstein noted that

the blood vessel pattern is unique to every eye. They

suggested using a photograph of the retinal blood

vessel pattern as a new scientific method of identifica-

tion [13]. The uniqueness of the pattern mainly

comprises the number of major vessels and their

branching characteristics. The size of the optic disc

also varies across individuals. Because this unique
Anatomy of Eyes. Figure 3 Fundus picture of a right human
pattern remains essentially unchanged throughout

life, it can potentially be used for biometric identifica-

tion [12, 14].

Commercially available retina scans recognize the

blood vessels via their light absorption properties. The

original Retina Scan used green light to scan the retina

in a circular pattern centered on the optic nerve head

[14]. Green light is strongly absorbed by the dark red

blood vessels and is somewhat reflected by the retinal

tissue, yielding high contrast between vessels and tis-

sue. The amount of light reflected back from the retina

was detected, leading to a pattern of discontinuities,

with each discontinuity representing an absorbed spot

caused by an encountered blood vessel during the

circular scan. To overcome disadvantages caused by

visible light, such as discomfort to the subject and

pupillary constriction decreasing the signal intensity,

subsequent devices employ near-infrared light instead.

The generation of a consistent signal pattern for the

same individual requires exactly the same alignment/

fixation of the individual’s eye every time the system is

used. To avoid variability with head tilt, later designs

direct the scanning beam about the visual axis, there-

fore centered on the fovea, so that the captured vascu-

lar patterns are more immune to head tilt [12]. As

mentioned before, the choroidal vasculature forms a

matting behind the retina even in the region of the
eye.
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macula and becomes detectable when illuminated with

near-infrared light. Nevertheless the requirement for

steady and accurate fixation still remains a problem

because if the eye is not aligned exactly the same way

each time it is measured, the identification pattern will

vary. Reportedly a more recent procedure solves the

alignment issue [15]. Instead of using circular scanning

optics as in the prior art, the fundus is photographed,

the optic disc is located automatically in the obtained

retinal image, and an area of retina is analyzed in fixed

relationship to the optic disc.
Related Entries

▶ Iris Acquisition Device

▶ Iris Device

▶ Iris Recognition, Overview

▶Retina Recognition
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Synonyms

Anatomic; Structural and functional anatomy
Definition

Facial anatomy – The soft-tissue structures attached

to the bones of the facial skeleton, including epi-

dermis, dermis, subcutaneous fascia, and mimetic

musculature.
Introduction

Face recognition is a leading approach to person recog-

nition. In well controlled settings, accuracy is compara-

ble to that of historically reliable biometrics including

fingerprint and iris recognition [1]. In less-controlled

settings, accuracy is attenuated with variation in pose,

illumination, and facial expression among other factors.

A principal research challenge is to increase robustness

to these sources of variation, and to improve perfor-

mance in unstructured settings in which image acquisi-

tion may occur without active subject involvement.

Current approaches to face recognition are primarily

data driven. Use of domain knowledge tends to be limit-

ed to the search for relatively stable facial features, such as

the inner canthi and the philtrum for image alignment,

or the lips, eyes, brows, and face contour for feature

extraction. More explicit reference to domain knowledge

http://academia.hixie.ch/bath/eye/home.html
http://academia.hixie.ch/bath/eye/home.html
http://www.cse.msu.edu/~cse891/Sect601/textbook/5.pdf
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of the face is relatively rare. Greater use of domain

knowledge from facial anatomy can be useful in improv-

ing the accuracy, speed, and robustness of face recogni-

tion algorithms. Data requirements can be reduced, since

certain aspects need not be inferred, and parameters may

be better informed. This chapter provides an introduc-

tion to facial▶ anatomy that may prove useful towards

this goal. It emphasizes facial skeleton and muscula-

ture, which bare primary responsibility for the wide

range of possible variation in face identity.
Anatomy of Face. Figure 1 Mimetic musculature and

underlying facial skeleton. � Tim Smith.
Morphological Basis for Facial Variation
Among Individuals

The Skull

It has been suggested that there is more variation

among human faces than in any other mammalian

species except for domestic dogs [2]. To understand

the factors responsible for this variation, it is first neces-

sary to understand the framework of the face, the skull.

The bones of the skull can be grouped into three general

structural regions: the dermatocranium, which sur-

rounds and protects the brain; the basicranium,

which serves as a stable platform for the brain; and

the viscerocranium (facial skeleton) which houses most

of the special sensory organs, the dentition, and the

oronasal cavity [3]. The facial skeleton also serves as

the bony framework for the ▶mimetic musculature.

These muscles are stretched across the facial skeleton

like a mask (Fig. 1). They attach into the dermis, into

one another, and onto facial bones and nasal cartilages.

Variation in facial appearance and expression is due in

great part to variation in the facial bones and the skull

as a whole [2].

The viscerocranium (Fig. 2) is composed of

6 paired bones: the maxilla, nasal, zygomatic (malar),

lacrimal, palatine, and inferior nasal concha. The

vomer is a midline, unpaired bone; and the mandible,

another unpaired bone, make up the 13th and 14th

facial bones [3]. While not all of these bones are visible

on the external surface of the skull, they all participate

in producing the ultimate form of the facial skeleton.

In the fetal human there are also paired premaxilla

bones, which fuse with the maxilla sometime during

the late fetal or early infancy period [2]. Separating the

bones from one another are sutures. Facial sutures
are fairly immobile fibrous joints that participate in

the growth of the facial bones, and they absorb some of

the forces associated with chewing [2]. Variation in the

form of these bones is the major reason that people

look so different [4].

While there are many different facial appearances,

most people fall into one of three types of head

morphologies: ▶ dolicocephalic, meaning a long, nar-

row head with a protruding nose (producing a lepto-

proscopic face); ▶mesocephalic, meaning a

proportional length to width head (producing a meso-

proscopic face); and brachycephalic, meaning a short,

wide head with a relatively abbreviated nose (produc-

ing a euryproscopic face) (Fig. 3).

What accounts for this variation in face shape?

While numerous variables are factors for this variation,

it is largely the form of the cranial base that establishes

overall facial shape. The facial skeleton is attached to the

cranial base which itself serves as a template for estab-

lishing many of the angular, size-related, and



Anatomy of Face. Figure 2 Frontal view (left) and side view (right) of a human skull showing the bones that make

up the facial skeleton, the viscerocranium. Note that only the bones that compose the face are labeled here. Key: 1 – maxilla,

2 – nasal, 3 – zygomatic (malar), 4 – lacrimal, 5 – inferior nasal concha, 6 –mandible. The vomer is not shown here as it is located

deeply within the nasal cavity, just inferior to the ethmoid (eth). While the maxilla is shown here as a single bone it remains

paired and bilateral through the 20’s and into the 30’s [2]. The mandible is shown here as an unpaired bone as well. It

begins as two separate dentaries but fuses into a single bone by 6 months of age [2]. Compare modern

humans, Homo sapiens , with the fossil humans in Fig. 6 , noting the dramatic enlargement of the brain and reduction

in the ‘‘snout’’. � Anne M. Burrows.

Anatomy of Face. Figure 3 Representative human head

shapes (top row) and facial types (bottom row). Top left –

dolicocephalic head (long and narrow); middle –

mesocephalic head; right – brachycephalic head (short and

wide). Bottom left – leptoproscopic face (sloping forehead,

long, protuberant nose); middle – mesoproscopic face;

right – euryproscopic face (blunt forehead with short,

rounded nose). � Anne M. Burrows
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topographic features of the face. Thus a dolicocephalic

cranial base sets up a template for a long, narrow face

while a brachycephalic cranial base sets up a short, wide

face. A soft-tissue facial mask stretched over each of

these facial skeleton types must reflect the features of

the bony skull. While most human population fall into a

brachycephalic, mesocephalic, or dolicocephalic head

shape, the variation in shape within any given group

typically exceeds variation between groups [2]. Overall,

though, dolicocephalic forms tend to predominate in

the northern and southern edges of Europe, the British

Isles, Scandinavia, and sub-Saharan Africa. Brachyce-

phalic forms tend to predominate in central Europe

and China and mesocephalic forms tend to be found in

Middle Eastern countries and various parts of Europe

[4]. Geographic variation relates to relative genetic

isolation of human population following dispersion

from Africa approximately 50,000 years ago.

Variation in facial form is also influenced by sex,

with males tending to have overall larger faces. This
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dimorphism is most notable in the nose and forehead.

Males, being larger, need more air in order to support

larger muscles and viscera. Thus, the nose as the en-

trance to the airway will be longer, wider, and more

protrusive with flaring nostrils. This larger nose is

associated with a more protrusive, sloping forehead

while female foreheads tend to be more upright and

bulbous. If a straight line is drawn in profile that passes

vertically along the surface of the upper lip, the female

forehead typically lies far behind the line with only the

tip of the nose passing the line. Males, on the other

hand, tend to have a forehead that is closer to the line

and have more of the nose protruding beyond the

line [2, 5]. The protruding male forehead makes

the eyes appear to be deeply set with less prominent

cheek bones than in females. Because of the less pro-

trusive nose and forehead the female face appears to be

flatter than that of male’s. Males are typically described

as having deep and topographically irregular faces.

What about the variation in facial form with

change in age? Facial form in infants tends to be

brachycephalic because the brain is precocious relative

to the face, which causes the dermatocranium and

basicranium to be well-developed relative to the vis-

cerocranium. As people age to adulthood, the primary

cue to the aging face is the sagging soft-tissue: the

▶ collagenous fibers and▶ proteoglycans of the dermis

decline in number such that dehydration occurs. Ad-

ditionally, subcutaneous fat deposits tend to be reab-

sorbed, which combined with dermal changes yields a

decrease in facial volume, skin surplus (sagging of the

skin), and wrinkling [4].
Musculature and Associated Soft Tissue

Variation in facial appearance among individuals is also

influenced by the soft tissue structures of the facial

skeleton: the mimetic musculature, the superficial

▶ fasciae, and adipose deposits. All humans generally

have the same mimetic musculature (Fig. 4). However,

this plan does vary. For instance, the risorious muscle,

which causes the lips to flatten and stretch laterally, was

found missing in 22 of 50 specimens examined [6].

Recent work [7, 8] has shown that the most common

variations involve muscles that are nonessential for

making five of the six universal facial expressions of

emotion (fear, anger, sadness, surprise, and happiness).
The sixth universal facial expression, disgust can be

formed from a variety of different muscle combinations,

so there are no ‘essential’ muscles. The most variable

muscles are the risorius, depressor septi, zygomaticus

minor, and procerus muscles. Muscles that vary the least

among individuals were found to be the orbicularis oris,

orbicularis occuli, zygomaticus major, and depressor

anguli oris muscles, all of which are necessary for creat-

ing the aforementioned universal expressions.

In addition to presence, muscles may vary in form,

location, and control. The bifid, or double, version of

the zygomaticus major muscle has two insertion points

rather than the more usual single insertion point. The

bifid version causes dimpling or a slight depression to

appear when the muscle contracts [6, 9, 10]. The

platysma muscle inserts in the lateral cheek or on

the skin above the inferior margin of the mandible.

Depending on insertion region, lateral furrows are

formed in the cheek region when the muscle contracts.

Muscles also vary in the relative proportion of slow to

fast twitch fibers. Most of this variation is between mus-

cles. The orbicularis occuli and zygomaticus major

muscles, for instance, have relatively high proportions

of fast twitch fibers relative to some other facial mus-

cles [11]. For the orbicularis oculi, fast twitch fibers are

at least in part an adaptation for eye protection. Varia-

tion among individuals in the ratio of fast to slow

twitch fibers is relatively little studied, but may be an

important source of individual difference in facial

dynamics. Overall, the apparent predominance of

fast-twitch fibers in mimetic musculature indicates a

muscle that is primarily capable of producing a quick

contraction but one that fatigues quickly (slow-twitch

fibers give a muscle a slow contraction speed but will

not fatigue quickly). This type of contraction is consis-

tent with the relatively fast neural processing time for

facial expression in humans [8].

A final source of variation is cultural. Facial move-

ments vary cross-culturally [12] but there is little liter-

ature detailing racial differences in mimetic muscles.

To summarize, variation in presence, location, form,

and control of facial muscles influences the kind of

facial movement that individuals create. Knowledge

of such differences in expression may be especially

important when sampling faces in the natural environ-

ment in which facial expression is common.

While there are no studies detailing individual

variation in the other soft tissue structures of the face,



Anatomy of Face. Figure 4 Human mimetic musculature in (A.) frontal and (B.) right side views. Key: 1 – orbicularis

occuli m., 2 – frontalis m., 3 – procerus m., 4 – corrugator supercilli m., 5 – zygomaticus minor m., 6 – buccinator

m., 7 – orbicularis oris m., 8 – mentalis m., 9 – depressor labii inferioris m., 10 – depressor anguli oris m., 11 – risorius m.,

12 – zygomaticus major m., 13 – levator labii superioris m., 14 – levator labii superioris alaeque nasi m., 15 – nasalis

m., 16 – depressor septi m., 17 – occipitalis m., 18 – posterior auricularis m., 19 – superior auricularis m., 20 – anterior

auricularis m., 21 – platysma m. Color coding represents depth of musculature with muscles colored yellow being the

most superficial, muscles colored blue being intermediate in depth, and muscles colored purple being the deepest. Note

that the buccinator m. (#6) is not considered to be a mimetic muscle but it is included here as a muscle located on the

face that is innervated by the facial nerve [7]. � Anne M. Burrows.
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they may also affect facial appearance. The facial soft-

tissue architecture is a layered arrangement with the

epidermis and dermis being most superficial, followed

by the subcutaneous fat, superficial fascia, mimetic

musculature, and deep facial fascia (such as the

parotid/masseteric fascia) and the buccal fat pad [13].

The superficial fascia mainly consists of the SMAS (the

superficial musculoaponeurotic system). This is a con-

tinuous fibromuscular fascia found in the face that

invests and interlocks the mimetic muscles. It sweeps

over the parotid gland, up to the zygomatic arch, across

the cheeks and lips and down to the region of the

platysma muscle. This sheet is also attached to the

deep fascia of the face and the dermis [13]. The collagen

fibers found throughout the SMAS deteriorate with age,

contributing to the sagging facial appearance during the

aging process. In addition, fat deposits in the facial region,

especially the buccal fat pad located between themasseter

muscle and the orbicularis oris muscle, also break down

with age and contributes to the sagging [13].
Contributing to change with age are the cumulative

effects of individual differences in facial expression.

When facial muscles contract, facial lines and furrows

appear parallel to the direction of the contraction. With

aging, the elasticity of the skin decreases, and those

expressions that occur frequently leave their traces; facial

lines, furrows, and pouches become etched into the

surface as relatively permanent features.
Asymmetry

Faces are structurally asymmetric, often with one side

larger than the other. Structural asymmetry, approxi-

mated by distance from facial landmarks to center

points, ranges from 4 to 12% average difference,

depending on the landmark measured [14]. The right

side tends to be larger, and facial landmarks on the

right side tend to be rotated more inferiorly and

posterior to than those on the left [14]. Facial
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asymmetry is perceptually salient (Fig. 5) and can

result from multiple factors. These include genetic

variation, growth, injury, age, and depending on type

of asymmetry, sex.

Recent evidence suggests that individual differences

in asymmetry may be a useful biometric. When asym-

metry metrics were added to a baseline face recogni-

tion algorithm, Fisher-Faces, recognition error in the

FERET database decreased by close to 40% [15]. These

findings are for 2D images. Because some aspects of

asymmetry are revealed only with 3D measurement,

error reduction may be greater when 3D scans are

available.

Another factor that may contribute to the appear-

ance of asymmetry is facial expression. While most

of the variation in asymmetry at peak expression is

accounted for by structural asymmetry (i.e., basal or

intrinsic asymmetry at rest) [16], movement asymme-

try contributes less but significant variance to total

asymmetry. A function of movement asymmetry may

be to attenuate or exaggerate apparent asymmetry. The

influence of facial expression in face recognition has

been relatively little studied.
Anatomy of Face. Figure 5 Left: original face images taken

symmetrical face made of the left half of the original face. Righ

original face. Notice the difference in nasal regions in both ind

[14]. � Elsevier.
Evolution of Human Face Forms

The first recognizable human ancestor was Australo-

pithecus. The gracile (slender or slight) australopithe-

cines, such as A. africanus, are direct ancestors toHomo

and modern humans. The craniofacial skeleton of the

gracile australopithecines is characterized by having rel-

atively large brains when compared tomodern apes (but

smaller thanHomo) and massive molar teeth with large

jaws. Large jaws need large muscles to move them,

which in turn leave large muscle markings such as the

sagittal crest and a flaring mandibular angle. Powerful

chewing stresses were dealt with in the facial skeleton

by placing anterior pillars on either side of the nasal

apertures. These anterior pillars were massive vertical

columns supporting the anterior part of the hard pal-

ate. Any facial mask stretched over this facial skeleton

would have been influenced in appearance by these

bony features. Overall, australopithecines had a doli-

cocephalic head with a prominent, prognathic ‘‘snout’’

relative to modern humans [17].

In Homo erectus, the ‘‘snout’’ is greatly reduced as

are the molars (Fig. 6). The sagittal crest and anterior
under balanced bilateral lighting. Middle: a perfectly

t: a perfectly symmetrical face made of the right half of the

ividuals caused by left–right asymmetry of the nasal bridge.



Anatomy of Face. Figure 6 Frontal (left) and right views

(right) of fossil humans. a.) Australopithecus africanus, b.)

Homo erectus, c.) H. neanderthalensis. Abbreviations: AP:

anterior pillar; SC: sagittal crest; BR: brow ridges. Note the

relatively small neurocranium in A. africanus and the

relative states of dolicocephaly and leptoproscopy,

reflecting the small brain. Note also the anterior pillars and

massive jaws. While a brow ridge is present in this species,

it is relatively small compared to Homo. In H. erectus, note

the enlarging neurocranium and wider face with a reduced

‘‘snout’’, reflective of the enlarging brain in this species

relative to A. africanus. Additionally, the anterior pillars

have disappeared and the size of the jaw is reduced but

the brow ridges enlarge. Similarly, H. neanderthalensis has

an even larger brain and greater reduction of the ‘‘snout’’

relative to H. erectus. � Tim Smith
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pillars thus disappear and the head shape becomes

more brachycephalic as in modern humans, due to

the dramatic increase in brain size. The nasal aperture

becomes much wider, and the nares in this species

attain the downward facing posture as in modern

humans. A prominent brow ridge develops inH. erectus

that is lost in modern humans [17].
Neanderthals, H. neanderthalensis, are the most

recent fossil human. Their brain size was actually larger

than that of modern humans. Neanderthals are gener-

ally characterized by an enormous nasal opening, a

reduced snout relative to H. erectus but larger than

in modern humans, and a swollen, ‘‘puffy’’ appearance

to the face in the region of the malar bones [17].

What might the face have looked like in each of

these fossil humans? What might their facial expres-

sion repertoire have been? Facial musculature does not

leave muscle markings behind on the bones so it can-

not be described with any degree of certainty. However,

since the mimetic musculature in primates follows a

very conservative pattern from the most primitive

strepsirhines through humans [8], it is logical to

assume that mimetic musculature in fossil humans

was very similar to our own and to chimpanzees, our

closest living relative.
Conclusions

Variation in facial appearance among human indivi-

duals is considerable. While the mimetic musculature

produces facial movements, of which facial expressions

of emotions are best known, it is not the major source

of this variation. The major source is in the facial

skeleton itself. Three representative head types have

been identified, dolico-, meso-, and brachycephalic.

These types correspond to geographic dispersion of

human populations over the past 50,000 years or

more. Within each of these types, there is considerable

variation, which is likely to increase in light of demo-

graphic trends. Such individual differences in facial

anatomy have been relatively neglected in face recogni-

tion research. Asymmetry is a recent exception. Pre-

liminary work in 2D images suggests that inclusion of

asymmetry metrics in algorithms may significantly

reduce recognition error. Because many asymmetry

metrics are 3D, their relative utility may be even greater

where 3D imaging is feasible. Asymmetry, of course, is

only one type of individual variation in facial anatomy.

Others are yet to be explored. The anatomical record

suggests that such work could be promising.

Fossil humans had facial skeletons drastically dif-

ferent from contemporary humans, Homo sapiens. In

general, human facial skeletons have evolved from a

long, narrow form with a prominent ‘‘snout’’ to one in

which the face is more ‘‘tucked under’’ the braincase.
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Facial expression and face recognition are major com-

ponents of communication among humans. Under-

standing the evolution of the human facial form

provides a window for an understanding of how and

why so much emphasis is placed on the face in recog-

nition of individual identity.
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▶Anatomy of Friction Ridge Skin
Anatomy of Friction Ridge Skin

R. AUSTIN HICKLIN

Noblis, Fairview Park Drive, Falls Church, VA, USA
Synonyms

Anatomy of Fingerprint; Palmprint anatomy
Definition

Friction ridge skin refers to the skin of the palms of the

hands and fingers as well as the soles of the feet and toes.
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Friction ridge skin can be differentiated from the skin of

the rest of the body by the presence of raised ridges, by

epidermis that is thicker and structurally more com-

plex, by increased sensory abilities, by the absence of

hair, and by the absence of sebaceous glands. The pres-

ence of friction ridges enhances friction for skin used in

grasping. Note that the term ▶ fingerprint refers to an

impression left by the friction skin of a finger rather

than the anatomical structure itself.
Introduction

The palms of the hands and fingers as well as the soles of

the feet and toes have skin that is distinctly different

from the skin of the rest of the body. This skin is known

as thick skin, volar skin, or hairless skin by anatomists,

but is known as friction ridge skin in the biometric and

forensic communities due to the distinctive patterns of

raised ridges that can be used in identification.
Surface Features

Friction ridge skin is covered with a corrugated texture of

ridges that enhance the ability of the hand (and feet) to

grasp or grip surfaces. The ridges are three-dimensional

structures with irregular surfaces, separated by narrower

furrows or valleys. The surface features of friction ridge

skin are often divided into three levels of detail: ▶ ridge

flow and pattern for an area of skin (level-1 features);

ridge path and ▶minutiae for a specific ridge (level-

2 features); and dimensional, edge shape, and pore

details within a specific ridge (level-3 features) [1, 2].

The morphological patterns of ridge flow vary with

the location. When comparing the areas of friction ridge

skin, the most complex patterns can usually be found on

the outermost (distal) segments of the fingers, at the

interdigital portion of the palm across the bases of

the fingers, on the tips of the toes, and at the portion

of the sole across the bases of the toes. The ridges in

these areas often have tightly curving patterns with con-

tinuously changing direction. The complexity of ridge

flow in these areas is because of the fetal development of

volar pads in those areas (discussed below in Friction

Skin Development). The other areas of friction skin,

such as the extreme tips and lower joints of the fingers,

and the lower portion of the palm, usually contain gently

curving ridges without dramatic changes in direction.
For the distal (outermost) segments of the fingers,

ridge flow falls into three general pattern classifications:

(1) whorls, in which the ridge flow forms a complete

circuit; (2) loops, in which the ridge flow enters from

one side, curves, and returns in the same direction from

which it came; and (3) arches, in which the ridge flow

enters from one side and exits the opposite side. The

most common patterns are ulnar loops, or loops in

which the flow points to the ulna (the bone in the

forearm closest to the little finger). The most complex

patterns (double loop, central; pocket loop, and acci-

dental) are considered subclasses of whorls. In very rare

circumstances, friction skin is composed of dissociated

small sections of ridges that do not form continuous

ridges, a genetic condition known as dysplasia [1].

Ridges are of varying lengths, and may be as short as

a segment containing a single pore, or may continue

unbroken across the entire area of friction skin. The

points where specific ridges end or join are known as

minutiae, and are of particular interest: ridge endings

and bifurcations are the features most frequently used in

identification. Very short ridges containing a single pore

are known as dots. Many fingerprints have thin, imma-

ture, often discontinuous ridges known as incipient

ridges between the primary ridges as shown in Fig. 2.

The ridges vary markedly in diameter and frequency

between different parts of the body: for example, the

ridges of the soles of the feet are notably coarser than

those of the palms and fingers, and the ridges of the little

fingers are often finer than those of the other fingers. The

diameter of ridges increases with an individual’s size,

with male ridges generally larger than for females, and

adult ridges notably larger than for children. Within a

given small section of skin, some ridges may be finer or

coarser than the others in the surrounding area.

The ridges are punctuated by a series of sweat

pores. While on average the spacing of the pores is

relatively regular, the specific locations of pores are

distinctive features that are used in identification.

Friction skin flexes along lines known as flexion

creases. The most prominent of the flexion creases are

the interphalangeal creases that separate the segments of

the fingers, and the thenar and transverse creases of the

palm. A variety of minor flexion creases are particularly

notable on the palm. Flexion creases form along areas in

which the skin is more strongly attached to the under-

lying fascia [3]. The smallest of the flexion creases are

known as white lines, which occur randomly over the

skin [1]. The prevalence and depth of white lines
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increases with age. White lines are especially prevalent

on the lower joints of the fingers, and on the thenar

(base of the thumb). In some cases, a large number of

white lines make the underlying ridges difficult to

discern, as shown in Fig. 1.
Friction Skin Structure

Skin is a protective barrier that contains nerve recep-

tors for a variety of sensations, regulates temperature,

allows the passage of sweat and sebaceous oils, and

houses the hair and nails. Friction ridge skin is differ-

entiated from thin skin not just by the presence of

raised papillary ridges, but also by epidermis that is

much thicker and structurally more complex, by

increased sensory abilities, by the absence of hair, and

by the absence of sebaceous glands.
Anatomy of Friction Ridge Skin. Figure 1 Friction skin ridge

from a lower finger joint. Note the minor creases (white lines

Anatomy of Friction Ridge Skin. Figure 2 Friction ridge skin

impressions. Note the variation in appearance of details, espec

rightmost image.
Skin throughout the body is composed of three

basic layers: the hypodermis, dermis, and epidermis.

The innermost hypodermis (also known as subcu-

taneous tissue or the superficial fascia) is made of

connective tissue that stores fat, providing insulation

and padding. The hypodermis varies in thickness, but

is particularly thick in friction ridge skin [3, 4].

The dermis is composed of dense connective tissue

that provides strength and plasticity. The dermis houses

blood vessels, nerve fibers and endings, and sweat glands.

In non-friction ridge skin, the dermis also contains

sebaceous (oil) glands, hair follicles, and arrector pili

muscles, which raise hair and cause ‘‘goose bumps’’ [4].

The boundary between the dermis and epidermis is

of particular interest for friction ridge skin. The dermis

and epidermis are joined by papillae, which are colum-

nar protrusions from the dermis into the epidermis, and

rete ridges, which are the areas of the epidermis
flow: whorl and loop finger patterns, and unpatterned skin

), especially in the middle and right images.

with corresponding inked and optical live scan fingerprint

ially the incipient ridges. The pores are clearly visible in the
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surrounding the papillae. The papillae anchor the epi-

dermis and contain nerve endings and blood vessels.

Papillae in thin skin are small, relatively infrequent,

and are not arranged in any particular pattern. In

friction ridge skin, the papillae are densely arranged

in curved parallel lines by pairs, with pairs of papillae

surrounding the sweat pores [3] (Fig. 3).

The epidermis provides the outermost protective

layer, and is structurally very different between friction

ridge and thin skin. The epidermis does not contain

blood vessels, and therefore the basement membrane,

which joins the dermis and epidermis, serves as the

medium through which nutrient and waste passes.

The lowest level of the epidermis (stratum basale) con-

tains a single layer of basal generative cells, which are

anchored to the basement membrane. These basal

cells continuously create columns of new cells. It takes

12–14 days for a cell to progress from the innermost

basal layer to the outermost horny or cornified layer

of the epidermis. During this time, the cell flattens

forms interconnections with the neighboring cells, is

filled with keratin (the tough protein found in hair
Anatomy of Friction Ridge Skin. Figure 3 (a) Structure of fr
and nails), and dies. The dead cells are continuously

exfoliated, with the entire epidermis being renewed

approximately every 27 days. The thickest portion of

the cornified layer of cells is generated along the lines

of paired papillae, resulting in visible friction ridges,

punctuated with pore openings. The epidermis in

friction ridge skin is 0.8–1.44 mm thick, as compared

to 0.07–1.12 mm thickness elsewhere. Heavy use can

result in substantially increased thickness of the epi-

dermis, in the form of calluses or corns [3, 4].
Friction Skin Development

The individual characteristics of friction ridge skin are

determined during fetal development, based on a com-

bination of genetic and random factors. The overall

pattern of friction ridges is determined by the forma-

tion and regression of volar pads in the fetus. Starting

at approximately 6 or 7 weeks of gestational age, human

fetuses form swellings of tissue in what will later be-

come the dermis: 11 of these volar pads generally
iction ridge [5]. (b) Examples of friction ridge features.
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develop on each hand, with 1 at each fingertip, 4 inter-

digital pads at the bases of the fingers, 1 thenar pad at

the ball of the thumb, and 1 hypothenar pad along the

outside of the palm. Each foot has 11 pads in

corresponding locations. The size, shape, and period

of development of the volar pads are determined to a

large extent by genetics. The pads continue to grow for

a few weeks and then regress as the rest of the hands and

feet grow. The volar pads are usually no longer evident

by about 16 weeks of gestational age. During the period

of volar growth and regression, starting at about 10

weeks of gestational age, the basal epidermal cells

begin a stage of rapid proliferation, especially sur-

rounding the sweat glands. Since this process occurs

while the volar pads are regressing, the result is that the

growing cells fuse together along the lines of stress

created by the collapse of the volar pads. While the

overall form of the ridges follows the contours of

volar pads, the specific paths, bifurcations, and endings

of the ridges are determined by the stresses encountered

during growth [1, 6, 7].

The overall form of the ridges is determined by the

topography of the volar pads, with the pattern class

determined by the height and symmetry of the volar

pads. This can be seen most easily in examining the

areas without volar pads, such as the lower joints of the

fingers and the lower palm: the ridge flow in these areas

is generally simple, with ridges flowing across the area

without dramatic changes in direction. If volar pads

are small the resulting pattern will be an arch, with

simple ridge flow similar to the areas without volar

pads. If the volar pads are large and centered, the

resulting pattern will be a whorl, with ridge flow fol-

lowing the circuit of the pad.

Because of the genetic basis for volar pad forma-

tion, overall ridge flow or pattern classification is often

similar between siblings, especially identical twins.

For the same reason, fingerprint patterns on an indi-

vidual’s left and right hands are often similar to mirror

images of each other. However, because the path of any

individual ridge results from chaotic stresses, the details

of minutiae are specific to the individual.
Prevalence

Friction skin covers the palms and soles of all anthro-

poid primates (monkeys, apes, and humans), as well as

on portions of the prehensile tails of some New World
monkeys. Some but not all prosimian primates

(lemurs) have friction skin on portions of their palms

and soles [8]. Friction skin is unusual in other mam-

mals, but is found on portions of the grasping hands

and feet of two species of tree-climbing marsupials

(koalas and one form of phalanger) [9]. Note in all

cases that friction ridge skin is associated with

grasping surfaces: the ridges increase friction, and the

greater density of nerve endings improves tactile

sensitivity.
Problems in Capturing Friction Skin
Features

Friction ridge skin is a flexible, three-dimensional

surface that will leave different impressions depending

on factors including downward or lateral pressure,

twisting, and the medium used. Even when only con-

sidering clear impressions, the details of fingerprints

and ▶ palmprints vary subtly or substantially between

impressions. As downward pressure increases, the ap-

parent diameter of the valleys decreases and the ridges

widen. The frequency of ridges is affected by lateral

compression or stretching. A bifurcation of a physical

ridge does not always appear as a bifurcation in the

corresponding print, but may appear to be a ridge end-

ing under light pressure. Incipient ridges may become

more discontinuous or vanish altogether under light

pressure. Pores are not always evident in fingerprints

even at high resolution, which can be explained in

part by the tendency to fill with liquid such as sweat

or ink. This variability between different impressions

of an area of friction skin is responsible for much of

the complexity of matching fingerprints, whether per-

formed by human experts or automated recognition

systems.
Related Entries

▶Anatomy of Hand

▶ Fingerprint Classification

▶ Fingerprint Individuality

▶ Fingerprint Recognition Overview

▶Palmprint Feature

▶Palmprint Matching



28 A Anatomy of Hand
References

1. Ashbaugh, D.R.: Quantitative-Qualitative Friction Ridge Analy-

sis: An Introduction to Basic and Advance Ridgeology. CRC

Press, Boca Raton, Florida (1999)

2. Scientific Working Group on Friction Ridge Analysis, Study and

Technology (SWGFAST): Glossary, Version 1.0. http://www.

swgfast.org/Glossary_Consolidated_ver_1.pdf (2003)

3. Standring, S. (ed.): Gray’s Anatomy: The Anatomical Basis of

Clinical Practice, 39th edn. Elsevier, London (2004)

4. Weiss, L. (ed.): Cell and Tissue Biology: ATextbook of Histology,

6th Edition. Urban & Schwarzenberg, Baltimore (1988)

5. Federal Bureau of Investigation: The Science of Fingerprints, Rev

12–84. U.S. Government Printing Office, Washington, DC

(1984)

6. Maceo, A.: Biological Basis of Uniqueness, Persistence, and Pat-

tern Formation. In: 4th International fingerprint symposium,

Lyon, France, 17–19 May 2006. http://www.interpol.int/Public/

Forensic/fingerprints/Conference/May2006/presentations/2Alice

MaceoPart1.pdf, 2AliceMaceoPart2.pdf (2006)

7. Wertheim, K., Maceo, A.: The Critical Stage of Friction Ridge

and Pattern Formation. J. Forensic Ident. 52(1), 35–85 (2002)

8. Ankel-Simons, F.: Primate Anatomy: An Introduction. Aca-

demic Press, San Diego (2000)

9. Henneberg, M., Lambert, K.M., Leigh, C.M.: Fingerprint homo-

plasy: koalas and humans. naturalSCIENCE.com. Heron Pub-

lishing, Victoria, Canada (1997)
Anatomy of Hand

AMIOY KUMAR
1, TANVIR SINGH MUNDRA

2,

AJAY KUMAR
3

1,2Biometrics Research Laboratory, Department of

Electrical Engineering, Indian Institute of Technology

Delhi, New Delhi, India
3Department of Computing, The Hong Kong

Polytechnic University
Synonyms

Hand physiology; Hand structure
Definition

The ▶ anatomy of human hand is quite unique and

includes the configuration of bones, joints, veins, and
muscles. The physiological interconnection and struc-

ture of these parts are responsible for the structure of

the human hand. The functional area of hand includes

the five fingers, palm, and the wrist. Among a number

of biometric modalities that are used for human

identification, hand-based modalities achieve high

performance and have very high user acceptance.

A hand-based biometric system integrates several

physiological and/or behavioral features that have

their individuality in the anatomy of hand. The

prime focus of this study is on internal and physiologi-

cal structure of human hand which defines the unique-

ness of various hand related biometric modalities.
Introduction

The anatomical study of human hand is not new; it

dates back to prehistoric times, but it is finding new

applications in the field of biometrics. The proper

understanding of structure requires the knowledge of

function in the living organism. As one of the basic life

sciences, anatomy is closely related to medicine and to

other branches of biology. The hands of the human

being are the two multi-fingered body parts located at

the end of each arm. It consists of a broad palm with

five fingers, each attached to the joint called the wrist.

The back of the hand is formally called the dorsum of

the hand. The uniqueness of the human hand, as

compared to the other animals comes from the fact

that all the fingers are independent of each other and

the thumb can make contact with each finger.

The anatomy of hand is the key to ascertain the indi-

viduality of hand-based biometrics. The hand-geometry

biometric largely represets the anatomy of hand bones

and muscles. The hand-vein biometric represents the

uniqueness in the anatomyof hand-veinswhile the palm-

print represents ▶ epidermis on the palm. The behav-

ioral biometrics like signature is also highly dependent

on the anatomy of bones and muscles. Therefore the

study of hand anatomy is fundamental to ascertain the

individuality of hand-based biometrics.
Structure of the Human Hand

The internal structure of hand is an assortment of

bones, muscles, nerves, and veins.

http://www.swgfast.org/Glossary_Consolidated_ver_1.pdf 
http://www.swgfast.org/Glossary_Consolidated_ver_1.pdf 
http://www.interpol.int/Public/Forensic/fingerprints/Conference/May2006/presentations/2AliceMaceoPart1.pdf
http://www.interpol.int/Public/Forensic/fingerprints/Conference/May2006/presentations/2AliceMaceoPart1.pdf
http://www.interpol.int/Public/Forensic/fingerprints/Conference/May2006/presentations/2AliceMaceoPart1.pdf
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Bones

The structure of the hand is primarily attributed to the

bones comprising the human hand. The hand is com-

posed of 27 bones, broadly divided into three groups

called carpals, metacarpals, and phalanges (Fig. 1). The

wrist of the hand consists of a cluster of bones named

as carpals. These bones are considered as a part of wrist

and are responsible for the to-fro and back-forth

movement of the wrist. These are eight in number

and are named as:
1.
 Scaphoid
 2.
 Lunate
3.
 Triquetrum
 4.
 Pisiform
5.
 Trapezium
 6.
 Trapezoid
7.
 Capitate
 8.
 Hamate
Anatomy of Hand. Figure 1 Skeletal structure of the

human hand.
Metacarpals are the intermediate part of the fingers

and the wrist [1]. This cluster of bones make the

central part of the hand called the palm. The metacar-

pals are five in number and are named as:
9.
 First metacarpal
(Thumb)
10.
 Second metacarpal
(Index finger)
11.
 Third metacarpal
(Middle finger)
12.
 Fourth metacarpal
(Ring finger)
13.
 Fifth metacarpal (Little
finger)
The remaining fourteen bones are called the pha-

langes. These are named as follows:
14.
 Proximal
 15.
 Medial
16.
 Distal
Anatomy of Hand. Figure 2 Phalanx bones of the

human hand.
There are two in the thumb, and three in each of the

four fingers, as shown in (Fig. 2). The distal phalanges

carry the nails, the middle phalanges are in the middle

and the proximal phalanges are closest to the palm.

Bones are the most important structure of the human

hand and responsible for almost all the activities of the

hand. Even so, bones structures in the hand are not a

popular candidate for biometric authentication. Being a

hidden structure of hand, the acquisition of hand bone

images is very difficult. However, the hand bone struc-

tures are useful in forensic identification especially in

situations when other physiological structures are not

available, e.g. during accidents/fire. The individuality of

hand bone structures is generally believed to be low due

to the high similarity in the bone types.
Muscles

Muscles are like the building blocks on the bones.

These not only make the hand robust in gripping

but also are very helpful in its movement. The mus-

cles of the human hand are composed of two types of

tissue, namely the extrinsic muscle groups and intrin-

sic muscle groups [3]. The extrinsic groups of muscles

are generally present in dorsal (back) part of the hand,

or palmer (grasping) part of the hand. It is broadly
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divided into extensors, present on dorsal part and

flexors, present on the palmar part of the hand. The

extensor muscles are further divided into those whose

movement is around wrist as:
1.
 Extensor carpi radialis
longus
2.
 Extensor carpi radialis
brevis
3.
 Extensor carpi ulnaris
Anatomy of Hand. Figure 3 Extrensor muscles of
the hand.
4.
 Abductor pollicus
longus
5.
 Extensor pollicus
brevis
6.
 Extensor pollicus longus
 7.
 Extensor digiti minimi
8.
 Extensor digitorium
And those whose movement is around digits (the

four fingers without the thumb) of hand as:

All the extensor muscles are shown in (Fig. 3).

Unlike extrinsic muscles, the intrinsic muscles of

the hand are originated at wrist and hand. It can be

divided as: Dorsal and Volar muscles. The dorsal intrin-

sic muscles (Fig. 4) can be further subdivided into:
1.
 Dorsal interossei
 2.
 Abductor digiti minimi
Anatomy of Hand. Figure 4 Dorsal intrinsic muscles.
The volar intrinsic muscles are present in two

layers:

1. Superficial layer
1.1.
 Abductor digiti minimi
 1.2.
 Flexor digiti minimi
1.3.
 Lumbricals
 1.4.
 Adductor pollicis
1.5.
 Abductor pollicis brevis
2. Deep layer
2.1.
 Oppones digiti minimi
 2.2.
 Palmar interossei
The superficial and deep muscles are shown in

Figs. 5a and 5b.

Due to intrinsic features of human hand, the

muscles are weak candidate for biometric identifica-

tion. Muscles are covered by skin and hence it is very

difficult for an imaging system to capture muscle

structures independently. The acquisition of muscle

structure requires very complex imaging techniques,

such as magnetic resonance imaging which is very

expensive. While capturing hand geometry or palm-

print images, the muscles have very little or no effect

on hand surface when the user-pegs are employed

to constrain the hand movement. However, the
peg-free hand imaging introduces some effect due to

the independent movement of fingers. One of the

major weaknesses with muscles as biometric trait

is that with the change in age, it begins to loose its

shape and strength. Due to change in shape the

hand surface of a young man looks quite different as

compared to an old man. However, being an internal

part of hand surface, muscles are quite stable with

respect to changes in humidity and temperature.

Another advantage with the possible usage of muscle

as a biometric trait is that being hidden structure it is

very difficult to spoof and any change in muscle

structure requires very complex surgical operations.
Nerves

The nerves are a very important part of hand

and helpful in sensing objects. These internal struc-

tures are also responsible for carrying the sensory in-

formation from one part of the body to the other.
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These nerves are quite stable and unique candidate for

potential biometric identification. There are two ways

of discussing nerve distribution in wrist and hand of

human body. These are:

The peripheral nerves are distributed around wrist

and hand and can be classified as:
1.
 Peripheral nerves or
 2.
 Dermatomes nerves
The dermatomic regions of the skin are very sensi-

tive from medical point of view, as pain in this area

indicates spinal damage. Nerves in these areas are

originated from dorsal root (single spinal nerve root)

[4]. These root nerves are:
1.1.
 Median nerve
 1.2.
 Ulnar nerve
1.3.
 Radial nerves
 1.4.
 Lateral cutaneous
nerve of forearm
Anatomy of Hand. Figure 6 The peripheral nerves

1.5.
distribution in arm and wrist of human hand.

Medial cutaneous
nerve of forearm
(musculocutaneous
nerve)
1.1.
 C5
 1.2.
 C6
1.3.
 C7
 1.4.
 C8
1.5.
 T1
 1.6.
 T2
Nerve root C5 is associated with radial nerve, C6 is

associated with median nerve, and C7 is associated

with both median and radial nerve. C8 forms the

median, ulnar, and radial nerve. T1 root is of Medial

cutaneous nerve of forearm. All the root and peri-

pheral nerves are shown in Fig. 6.
However, nerves are also the hidden structure and

therefore very difficult to be imaged. This is the prin-

cipal reason why the nerve structures are not yet been

explored for biometric identification.
Palmprint

The human palm is defined as the inner portion of the

hand starting from the wrist to the root of the fingers.
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The print is an impression made when the body part is

pressed against some surface. A palmprint therefore

illustrates the physical properties of skin pattern such

as lines, points, minutiae, and texture [2]. Palmprint

identification can be seen as the capability to uniquely

identify a person amongst others, by an appropriate

algorithm using the palmprint features. The palmprint

features are mainly developed during the life processes,

due to biological phenomenon, with the growth of

fetus in the uterus. Even a minute change in these

inherent phenomenon, changes the complete life pro-

cess and hence the structure of two different palms is

expected to be never the same. The main features of

interest from the palmprints are as follows:

1. Minutiae features from the palm friction ridges

2. Principal lines, which are the most, darken lines on

the palm

3. The thinner and irregular lines, as compared to

principle lines called wrinkles

4. Datum points, which are the end points of princi-

pal lines

In the most palmprint recognition approaches,

various texture features are acquired from the 2D

images. However, a limitation of such a system is that

the acquired images and hence the accuracy of such

systems is highly sensitive to the illumination changes.

Recent research in this area has shown promising

results using simultaneously acquired 3D palmprint

features [5]. A 3D scanner can be used to capture the

palmprint surface. Such acquisition not only reduces

the effect of illumination, but also provides a better

curvature of principle lines, depth, and wrinkles of the

palmprint. The palmprint systems employing 3D pal-

mar features are certainly more reliable and robust to

security threats as compared to those systems employ-

ing only 2D features.

Most of the above discussed palmprint features are

acquired from low resolution images (approximately

100 pixels per inch). Such extracted features and

matching algorithms cannot suit a typical forensic

application. More palmprint features such as: palmar

friction ridges, palmar flexion creases, palmar texture,

minutiae etc., can be utilized for recognition purposes.

Friction ridges are folded pattern of palm skin with

sudoriferous gland but without hair. The palmar fric-

tion ridges are formed during the embryonic skin

development but after the appearance of flexion

creases [6, 7]. The palmer friction ridges originate
from the deeper ▶ dermis layer within the first twelve

weeks of fetal development.

As shown in Fig. 7, the flexion creases appearing on

palmar surface can be grouped in three categories:

major flexion, minor flexion, and secondary creases.

The major flexion creases are the largest creases and

include distal transverse (heart-line), radial transverse

(life-line), and proximal transverse (head-line). These

major flexion creases are highly visible large lines that

are often employed as reference while aligning two

palmprints for biometric identification. The minor flex-

ion creases, along with the secondary creases and min-

utiae locations, serve as reliable features for palmprint

identification for forensic [6] and civilian applications.
Fingerprint

The impression of friction ridges formed from the

inner surface of fingers and thumb is referred to as

fingerprint. The formation of finger tips is similar

to the formation of blood vessels or capillaries during

the growth of fetus in the uterus. The formation of

skin and the volar surface of palm or sole in the

fetus are due to the flow of amniotic fluids in a

micro-environment. With the minor change in the
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hand dorsal surface.
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flow of amniotic fluids and the position of fetus in the

uterus, the minute skin structures around palm or

finger tips begins to differentiate. Thus, the finer

details present on fingertips are determined by very

minute biological phenomenon in a micro-environ-

ment. Even a small difference in micro-environment,

changes the process of cell formation completely and

these structures vary from hand to hand. The similarity

of these minute structural variations is virtually im-

possible to detect [8]. In biometrics literature, finger-

print is treated as one of the most reliable modality due

to its high structural variance from hand to hand as

even identical twins have different fingerprints [9]. A

fingerprint broadly consists of a pattern of ridges/

valleys. Its uniqueness is attributed to the ridge char-

acteristics and their inter-relationship. Minutiae points

in the fingerprints are defined as ridge endings, the

point where the ridges end abruptly, or ridge bifurca-

tion/trifurcation, where the ridges are divided into

different branches. These patterns have shown to be

quite immune to aging and biological changes. The

fingerprint features are extracted from the character-

istics of frictin ridges and generally into three

categories:

1. Macroscopic ridge ridge flow patterns (core and

delta points)

2. Minutiae features (ridge endings and bifurcations)

3. Pores and ridge contour attributes (incipient

ridges, pore, shape and width)
Finger Knuckle

The joints from phalanx bones (Fig. 2) of human

hands generate distinct texture patterns on the

finger-back surface, also known as the dorsum of

hand. In particular, the image pattern formation from

the finger-knuckle bending is quite unique and makes

this surface a distinctive biometric identifier. Figure 8

identifies three finger knuckles, from each of the

finger, which can be potentially employed for per-

sonal identification. The anatomy of fingers allows

these knuckles to bend forward and resist backward

motion [2]. Therefore each of three finger-knuckle

(Fig. 8) results in a very limited amount of crease and

wrinkles on the palm-side of the fingers. The anatomy

of joints from the phalanax bones results in a greater

amount of texture pattern from the middle finger

knuckle surface, from each of the fingers, and has
emerged as another promising modality for the bio-

metric identification.
Hand Geometry

The anatomy of hand shape depends upon geometry of

hand, length, width of fingers, and the span of the hand

in different dimensions. The hand geometry biometric

is not considered suitable for personal identification

for the large scale user population as the hand geome-

try features are not highly distinctive. The requirement

of the low cost imaging and low-complexity in feature

extraction makes this biometric highly suitable for

small scale applications (office attendence, building

access etc.). The typical imaging setup for the acquisi-

tion of hand geometry images employ pegs to con-

strain the movement of fingers. However, recent

publications have illustrated that the peg-free imaging

can also be used to acquire images for hand geometry

measurements. Such images can be used to extract

length, width, perimeter, and area of palm/finger sur-

face. These geometrical features of the hand can be

simultaneously extracted with other biometric fea-

tures, e.g. palmprint or fingerprint [10]. The anatomy

of two human hands is quite similar and therefore

hand geometry features from the left and right hands

are expected to be similar. This is unlike the finger-

print or iris which shows characteristic distinctiveness

in two separate (left and right) samples. The hand

gestures also play very important anatomical repre-

sentation in our daily life. Some of the examples of

such activities are, waving the hand for familiar faces,

making use of hands to call someone, representing the

sign of victory with hands, fingers are used to point
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someone, etc. The 3D hand gestures are a potential

modality for gesture recognition and pose estimation

and highly depend on the anatomy of individual’s

hands [11].
Hand Veins

Veins are hidden underneath the skin, and are generally

invisible to the naked eye and other visual inspection

systems. The pattern of blood veins is unique to every

individual, even among identical twins. The veins are

the internal structure responsible for carrying blood

from one body part of the body to the other. Veins that

are present in the fingers, palmar, and back of the hand

surface are of particular interest in biometric identifi-

cation. There are mainly two types of veins found on

the dorsum of the hand, namely cephalic and basilic.

Basilic veins are the group of veins attached with the

surface of the hand. It generally consists of upper part

of the back of hand. Cephalic veins are the group of

veins attached with the wrist of the hand. It is often

visible form the skin. The vein pattern of human hand

can also be represented in the same way as fingerprint

and palmprint by ridges and bifurcation points [12].

Figure 9 shows the vein struc ture on the back of human

hand or on the palm dorsum surface. The spatial arr-

angement of the vascular network in the human body

is stable and unique in individuals [13]. The prime

function of vascular system is to provide oxygen to

body parts. As the human body increases with age it

extends or shrinks with the respective change in the

body. Thus, the shape of hand vein changes with the
Anatomy of Hand. Figure 9 Veins in the human hand.
physiological growth. During the adult life generally no

major growth takes place and hence vein patterns are

quite stable at the age of 20–50 years, at a later age the

vascular system begins to shrink with the decline in the

strength of bones and the muscles. These changes in

vascular system make the vein pattern loose the earlier

pattern. As the vascular system is a large and essential

system of the body, it is largely affected by any change

in the body; either by nature or by disease. Diabetes,

hypertension, atherosclerosis, metabolic diseases, or

tumors [14] are some diseases which affect the vascular

systems and make it thick or thin.

The temperature of veins is quite different from its

surrounding skin due to temperature gradient of skin

tissues containing veins. This change in temperature

can easily be observed in an image, captured by infra

red thermal camera. However, such imaging is largely

influenced by room temperature and humidity due to

sensitivity of thermal cameras to these factors. Incor-

rect information about any of such factors can result in

wrong approximation of temperature and affect the

visibility of vein patterns. Based on the fact that

the superficial veins have higher temperature than

the surrounding tissue, the vein pattern at the back

of the hand can be captured using a thermal camera.

Other important aspect of vein anatomy relates to their

spectral properties. Vein absorbs more infrared light as

compared to its surrounding skin. This is due to level

of blood oxygen saturation in the vein patterns. There-

fore the vein pattern of a human hand can also be

acquired using low-cost near infrared imaging [12].

The absorption and scattering property of infrared

light depends upon exact wavelength used at the time

of imaging, while at some wavelength arteries absorb

more light than veins. Thus the same image of veins

and arteries, acquired at low wavelength generates dif-

ferent intensity images.
The Reflectance Spectrum of
Hand Skin

Besides the internal inherent structures that constitute

the hand anatomy (as discussed above), some other

biological properties of human hand can also be utilized

to acquire unique features for biometric identification.

One of such properties is the existence of distinguishing

patterns in skin reflectance. The biological composition

of skin and its response varies from individual to
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individual. The spectral behavior of skin can be

quantitatively measured as the ratio of light reflected

over the incident light for a particular wavelength. This

spectral analysis is one of themost reliable approaches to

detect spoof biometric samples; as research in this area

shows that the spectrum in the case of a mannequin is

quite different from human skin [15]. It is important to

note that the spectral characteristics of the palm are

quite identical to that of back of hand with little increase

in wavelength due its reddish color. The spectral reflec-

tance of skin is quite independent of any particular race

or species and therefore it cannot be used for any such

classification. However, the darker skin reflects smaller

proportion of incident light, therefore the variation in

curvature is also low [15].
Summary

The structure of human hand is quite complicated and

consists of a variety of soft tissues and bones. The hand

based biometrics system exploits several internal

and external features that are quite distinct to an indi-

vidual. However, some features or traits have been ob-

served to be highly stable while some are more

conveniently acquired (e.g. hand geometry). The indi-

viduality in the uniqueness of the hand based bio

metrics is highly dependent on the intrinsic anatomical

properties of the hand. There has been very little work to

explore several anatomical characteristics of hand, e.g.

muscles, nerves, etc., for biometric identification. The

success of a biometric modality highly depends on its

uniqueness or the individuality, which can be better ex-

plored from the human anatomy and the biological

process that generates corresponding physiological

characteristics.
Related Entries

▶Palmprint, 3D

▶Hand Geometry

▶Hand Vein

▶Palmprint Features
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Analysis-by-Synthesis
Analysis by synthesis is the process that aims to analyze

a signal or image by reproducing it using a model. The

objective is to find the value of the model parameters

that synthesize the closest image possible in the span of

the model. It is then an optimization problem that
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requires the setting of a cost function (e.g., sum of

squares) and of a model with a small number of para-

meters. The model must be able to generate typical

variations (such as pose, illumination, identity and

expression for face images), to enable the analysis of a

signal or image that includes expected variations.

The analysis-by-synthesis approach of hetero-

geneous face matching compares between an enroll-

ment image A and an image A0 which is synthesized

from an input probe image in such a way that the

image properties of A0 resemble those of A.

▶ Face Sample Synthesis

▶Heterogeneous Face Biometrics
Analytic Study
An analytic study is one where the goal is the utiliza-

tion of the information gathered for improvement

of the process going forward as opposed to an enumer-

ative study.

▶Test Sample and Size
And-Or Graph
An And-Or graph is a 6-tuple for representing an

image grammar G

Gand-or ¼ S;VN;VT;R;S; P

where S is a root node for a scene or object category,

VN is a set of non-terminal nodes including an And-

node set and an Or-node set, VT is a set of terminal

nodes for primitives, parts and objects, R is a number

of relations between the nodes, S is the set of all valid

configurations derivable from the grammar, and P is

the probability model defined on the And-Or graph.

▶And-Or Graph Model for Faces
And–Or Graph Model for Faces
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Synonym

And–Or Graph Model
Definition

For face modeling, an▶And–Or graph model was first

proposed in [1] as a compositional representation for

high resolution face images. In an And–Or graph, the

And nodes represent coarse-to-fine decompositions

and the Or-nodes represent alternative components

for diversity. The And–Or graph face model, as illu-

strated in Fig. 1, has three levels: the first level describes

the general appearance of global face and hair; the

second level refines the representation of the facial

components (eyes, eye brows, nose, mouth) by model-

ing the variations of their shapes and subtle appear-

ance; and the third level provides further details of the

face components and divides the face skin into nine

zones where the wrinkles and speckles are represented.

The And–Or graph provides an expressive model for

face diversity and details, and thus is found to be

especially efficient for applications in ▶ face sketching

generation and ▶ face aging simulation.
Introduction

Human faces have been extensively studied in com-

puter vision and graphics for their wide applications:

detection, recognition, tracking, expression recogni-

tion, and nonphotorealistic rendering (NPR). Many

face models have been proposed, for example,



And–Or Graph Model for Faces. Figure 1 An illustration of the compositional And–Or graph representation of human

face. The left column is a face image at three resolutions. All face images are collectively modeled by a three-level And–Or

graph in the middle column. The And nodes represent decomposition and the Or nodes represent alternatives. Spatial

relations and constraints are represented by the horizontal links between nodes at the same level. By the selection of

alternatives, the And–Or graph turns into a parse graph for a face instance. The right column represents the dictionaries at

three scales: DH
I, DM

I, and DL
I. From Xu et al. [1].
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EigenFace [2], FisherFace [3], Laplacianfaces [4] and

their variants [5], deformable templates [6], the active

shape models, and active appearance models [7, 8, 9].

Most of these models are mainly used for face detec-

tion, localization, tracking, and recognition.

Although these face models have achieved reasonable

successes in face detection, recognition, and tracking,

they use templates of fixed dimensions at certain low-

middle resolutions, and thus are limited by their expres-

sive powers in describing facial details in higher resolu-

tions, for example, subtle details in the different types of

eyes, nose, mouths, eyebrows, eyelids, muscle relaxations

due to aging, skin marks, motes, and speckles. Conse-

quently, these models are less applicable to applications

that entail high precision, such as face sketch generation

and face aging simulation. For the latter tasks, Xu et al.

[1] proposed a compositional And–Or graph represen-

tation for high-resolution face images. Adopting a
coarse-to-fine hierarchy with the Or nodes represent-

ing the alternatives, the And–Or graph can represent a

large diversity of human faces at different resolutions.
Compositional And–Or Graph
Representation for Faces

A compositional And–Or graph describes all types

of faces collectively at low, medium, and high resolu-

tions, as shown in Fig. 1. There are three types of nodes

in the And–Or graph: And-nodes, Or-nodes and leaf-

nodes. An And-node either represents a way for decom-

position at higher resolution or terminates in a Leaf-

node at lower resolution. An Or-node stands for a

switch pointing to a number of alternatives compo-

nents. For example, an Or-node of eye could point to

different types of eyes. A leaf-node is an image patch or
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image primitive with shape and appearance attributes.

The And–Or graph has horizontal lines (see dashed) to

specify the spatial relations and constraints among the

nodes at the same level. By choosing the alternatives at

Or nodes, the And–Or graph turns into an And-graph

representing a face instance, which is called a parse

graph. Thus, the And–Or graph is like a ‘‘mother tem-

plate,’’ which produces a set of valid face configura-

tions, each of which is a composition of the image

patches or primitives at its leaf nodes.

At low resolutions, the face is represented as a tradi-

tional Active Appearance Model (AAM) [8], which

describe the general face shape, skin color, etc. At medi-

um resolutions, the face node expands to a number of

Or-nodes for facial components (eyebrows, eyes, nose,

and mouth) and skin zone. For each component, a

number of AAM models are used as the alternatives

for the Or node. At high resolutions, the nodes of facial

component and skin zone further expand into a number

of Or-nodes describing the local structure of compo-

nents and free curves (wrinkles, marks, etc.) in detail.
Model Computation

For an input high-resolution face image, the algorithm

computes a parse graph in a Bayesian framework in

three levels from coarse to fine.

At the first level, the face image is down-sampled, and

the algorithm computes the AAM-like representation

WL with global transform T, geometrical deformation

ageo, and photometric appearance bpht by maximizing

the posterior probability,

WL ¼ argmax pðIobsL jWL;DI ÞpðWLÞ
WL ¼ ðT ; ageo; bphtÞ: ð1Þ

At the second level, a number of AAM-like models

are trained for each facial component. The algorithm

takes a down-sampled medium resolution face image

andWL as the input and conducts a constrained search

for WM conditioned on WL. The variables are

computed by maximizing the posterior probability,

WM ¼ argmax pðIobsM jWL;WM ;DI ;DCP
I Þ

pðWM jWLÞ
WM ¼ ðli; ai

li ;geo
; bi

li ;pht
Þ6
i¼1

ð2Þ

At the third level, the face area is decomposed into

zones that refine the sketches of local structures, based
on the searching results at medium resolution level.

The variables at this layer are inferred by maximizing

the posterior,

WM ¼ argmax pðIobsH jWM ;WH ;DCP
I ;DSK

I Þ
pðWH jWM Þ

WH ¼ ðK ; fðlk; t k; akÞ : k ¼ 1; 2; :::;KgÞ ð3Þ
Applications

The And–Or graph face model has been applied to two

applications: automatic face sketch and portraiture

generation in [11] and face aging simulation in [10].

Min et al. [11] developed an automatic human

portrait system based on the And–Or graph represen-

tation. The system can automatically generate a set of

life-like portraits in different artistic styles from a fron-

tal face image as shown in Fig. 2. The And–Or graph is

adopted to account for the variabilities of portraits,

including variations in the structures, curves, and

drawing style. Given a frontal face image, a local

AAM search is performed for each facial component,

based on the search result, the hair and collar contours

can be inferred. Then, using predefined distances, a

template matching step finds the best matching tem-

plate from sketch dictionaries for each portrait com-

ponent. Finally, the strokes of specific style will render

each component into stylistic results. Making good use

of the large sketch dictionaries in different styles, it can

conveniently generate realistic portraits with detailed

face feature of different styles.

Suo et al. [10] augmented the compositional face

model [1] with aging and hair features. This aug-

mented model integrates three most prominent aspects

related to aging changes: global appearance changes

in hair style and shape, deformations and aging effects

of facial components, and wrinkles appearance at vari-

ous facial zones. Then face aging is modeled as a

dynamic Markov process on this graph representation,

which is learned from a large dataset. Given an input

image, the aging approach first computes the parse

graph representation, and then samples the graph

structures over various age groups according to

the learned dynamic model. Finally the sampled

graphs generate face images together with the dic-

tionaries. Figure 3 is an illustration of the dynamic

model for aging over the parse graphs. I1 is an input



And–Or Graph Model for Faces. Figure 3 An aging process can be modeled by a Markov Chain on the parse graphs Gt

where t is an age period. The first row is an aging sequence of face, I1 is the input image, and the other four are simulated

aged images. The second row is the graph representations of the image sequence. Third row is the corresponding parse

graphs Gt, which form a Markov Chain. Yimg,t includes the parameters for generating the images from Gt and Ydyn the

parameters for aging progression. From Suo et al. [10].

And–Or Graph Model for Faces. Figure 2 The result of applying compositional And–Or graph model to portraiture

generation. (a) is an input frontal face image, (b) is a draft sketch obtained by image processing methods based on AAM

search result of face contour and face component, (c)–(e) are separately three rendered results by the sketch dictionaries

in literary, pencil, and colored style. From Min et al. [11].
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Annotated Face Model. Figure 4 (a) is a training subset for dynamic learning of face aging. (b) is one simulated result of

eye aging. From Suo et al. [10].
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young face image and G1 is its graph representation.

I2 to I5 are four synthesized aged images in four

consecutive age groups generated by G2 to G5. {G1,

G2, . . . ,G5} is a chain of parse graphs describing face

aging procedure.

The compositional model decomposes face into

parts, and this strategy provides the potential of

learning the statistics of each node separately. In Suo

et al. [10], aging dynamics are learned from similar

par ts cropped from different pers ons, Fig . 4(a) gives a

training subset of eye aging and (b) is the aging results.

Human experiments have validated that this aging

process is perceptually plausible.
Summary

The compositional And–Or graph model is an expres-

sive representation of high-resolution human face.

With the selection of alternatives at Or nodes, the

And–Or graph can model the large diversity of differ-

ent faces as well as the artistic styles. The decomposi-

tion allows learning of parts and the spatial constraints,

and alleviates the difficulty of training set collection. The

model has been applied to automatic portrait generation

and face aging simulation. The authors’ argue that the

model should also improve other applications such as

face recognition and expression analysis.
Related Entries

▶And–Or Graph

▶ Face Aging

▶ Face Sketching
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Annotated Face Model
The annotated face model (AFM) is a 3D model of a

human face. The AFM defines the control points of

subdivision surfaces and it is annotated into different
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areas (e.g., mouth, nose, eyes). Using a global parame-

terization of the AFM, the polygonal representation of

the model can be converted into an equivalent geome-

try image representation.

▶ Face Recognition, 3D-Based
Anthropometry
Anthropometry is the study of human body measure-

ments for use in anthropological classification and

comparison. It has been used to assess nutritional

status, to monitor the growth of children, and to assist

in the design of office furniture and garment.

▶Background Checks
Anthroposcopy
Anthroposcopy is about visual observation of the

human body such as skin color, body shape, in contrast

to more objective and precise anthropometry which is

about the measurement of the hyman body.

▶Gait, Forensic Evidence of
Anti-Spoofing
A biometric spoof is an artificials mimic of a real

biometric. Anti-spoofing is a technical measure against

biometric spoofing. Liveness detection is one of such

techniques.

▶Biometric Liveness

▶Biometric Spoofing Prevention

▶ Liveness Detection: Fingerprint

▶ Liveness Detection: Iris
Appearance-Based Gait Analysis
Gait analysis by using information contained in an

image, with or without using temporal information.

▶Gait Recognition, Motion Analysis for
Application Programming Interface
(API)
An API is a set of software functions by which a

software application can make requests of a lower

level software service, library, or Operating System

(OS). It is a way for one piece of software to ask

another piece of software to do something. In the

case of OS calls, the application may request basic

functions such as file system access. Other APIs are

more specific to the servicing software. For example,

BioAPI is a set of biometric programming functions

that can be used to develop a biometric system.

▶ Interfaces, Biometric

▶ Large Scale System Design
Artifact
An artifact is a man-made object or device; in connec-

tion to biometrics, artifacts are man-made imitations

of biometric traits to circumvent a biometric system.

An example of an iris artifact is a contact lens with

printed or hand-painted iris patterns.

▶ Liveness Detection: Iris
Artificial Biometrics
▶Biometric Sample Synthesis
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Artificial Digital Biometrics
▶Biometric Sample Synthesis
Artificial Fingerprints
▶ Fingerprint Sample Synthesis
Artificial Image Biometrics
▶Biometric Sample Synthesis
ASN.1
▶Abstract Syntax Notation one
Asset Protection
▶Transportable Asset Protection
Association
▶Human Detection and Tracking
Attack Trees
An attack tree is a diagram which graphically shows the

conceptual structure of a threat on a computer system.
It was designed by Bruce Schneier [(1999) Attack Trees.

Dr. Dobb’s Journal] to help organize analysis of system

security. Attack trees are multi-level diagrams with one

root and leaves, and children. Each node describes a

condition which is either necessary or sufficient to enable

the node above. For example, the attack (root node)

‘‘Open Safe’’, may occur due to ‘‘Pick Lock,’’ ‘‘Learn

Combo’’, or ‘‘Cut Open Safe’’. The node ‘‘Learn Combo’’

may, in turn, occur due to nodes ‘‘Eavesdrop’’ or ‘‘Bribe’’,

which in turn depend on further factors. Further analysis

of the attack tree may be performed by assigning each

block a parameter (feasibility, required technical skill,

expense) and calculating the cost for the overall attack.

▶Biometric Vulnerabilities, Overview
Audio–Visual-Dynamic Speaker
Recognition
▶ Lip Movement Recognition
Audio-Visual Fusion
Audio-visual fusion combines audio and visual informa-

tion to achieve higher person recognition performance

than both audio-only and visual-only person recogni-

tion systems. There exist various fusion approaches,

including adaptive approaches, which weight the contri-

bution of audio and video information based on their

discrimination ability and reliability.

▶ Lip Movement Recognition
Audio-Visual Speaker Recognition
In audio-visual speaker recognition, speech is used to-

gether with static video frames of the face or certain parts

of the face (face recognition) and/or video sequences of

the face or mouth area to improve person recognition

performance. The main advantage of audio-visual
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biometric systems lies in their improved robustness, and

resilience to spoofing. Each modality can provide inde-

pendent and complementary information and therefore,

prevent performance degradation due to the noise pres-

ent in one or both of the modalities.

▶ Lip Movement Recognition
Audio-Visual Speech Processing
Under some circumstances, such as in very noisy envir-

onments, it could be useful to use not only the acoustic

evidence of the speech, but also visual evidence by

recording the movement of the lips and processing

both evidences together. This processing of audio and

visual speech is commonly referred to as audio-visual

speech processing.

▶Voice Device
Authentication
Biometric authentication is a synonym for biometric

recognition, meaning either verification or identifica-

tion in biometrics.

▶Biometrics, Overview

▶ Fraud Reduction, Overview

▶Verification/Identification/Authentication/Recogni-

tion: The Terminology
Authentics Distribution
The probability distribution of the match score a bio-

metric for cases where one instance of a biometric

template is compared against another instance derived

from the same individual as the first.

▶ Iris on the Move
Automated Fingerprint
Identification System
A computerized system that acquires, stores, and man-

ages a large scale fingerprint database and criminal

history, and provides fingerprint search service for

biometric identification and fraud prevention.

▶ Fingerprint, Forensic Evidence of

▶ Fingerprint Matching, Automatic
Automatic Classification of
Left/Right Iris Image
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Synonym

Mislabeled Iris data correction
Definition

Many iris acquisition devices capture irises from a

single eye at a time. The device operator must typically

enter meta-data such as name, address, and which eye

by hand. In many deployment scenarios it is easy for

the device operator to be distracted and mislabel the

eyes. Such mislabeling can pose serious problems for

database indexing. In this article, the authors describe

an extremely efficient algorithm for automatic classifi-

cation of eyes into left/right categories. This algorithm

makes use of the iris/pupil segmentation information

that is already computed for most iris recognition

algorithms, so it poses a minimal computational load

and requires minimal modifications to existing iris

recognition systems.
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Figure 1 A right eye image.

Automatic Classification of Left/Right Iris Image.

Figure 2 Illustration of the relative location of eye balls

and camera.
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Introduction

Iris recognition is generally considered to be one of the

most effective biometric modalities for biometric iden-

tification [1]. Iris is a good biometric because (1) the

iris is rich in texture and that texture has many degrees

of freedom [2]; (2) the iris is both protected and acces-

sible; (3) the iris texture is thought to be stable through-

out most of a person’s life, barring catastrophic injury, or

illness; (4) the fraction of a the population that cannot

present an iris due to injury or congenital defect such as

aniridia is small; (5) the iris can be easily accessed in a

non-contact manner from moderate distances.

The performance and reliability of all biometric

identification systems depend crucially on the quality

of the enrollment data. Many real-world application

scenarios use single-iris acquisition devices that are

prone to mislabeling of left versus right iris due to

human error. If the enrollment database has been cor-

rupted by such errors, it is necessary to search both left

and right eyes during verification or identification. For

iris recognition algorithms in general, this results in

roughly a factor of two increases in the computational

cost of the search – for any individual for whom the

enrollment images are swapped. Hence, scrubbing en-

rollment databases of such errors will be useful as long as

the automatic procedure has an error rate which is

smaller than the error rate of the human device opera-

tors. The authors have developed an algorithm that

classifies iris images into left/right categories based on

an analysis of the pupil and iris segmentation data that is

already available in the pre-processing stage of most iris

recognition algorithms. Hence, it does not introduce an

increase in the computational load and can provide

significant increase in the search efficiency for enroll-

ment databases that have left/right classification errors.
Basis of the Algorithm

Figure 1 shows an example of a right eye image in

which the main components of the eye can be seen:

pupil, iris sclera, eyelid, and eyelashes. Note the

▶ punctum lacrimale, the D-shaped corner where the

upper eyelid meets lower eyelid. For right eye images

this is always on the right and for a left eye images, it

is on the left. The location of the punctum lacrimale

is one of the most effective ways for humans to distin-

guish left eyes from right eyes.
Though the punctum lacrimale is easily distin-

guished by humans, it is currently a challenging feature

for machine vision systems. Furthermore, the punc-

tum lacrimale is not always visible in iris recognition

images (due to sensor acquisition and processing) and

in some cases it is not particularly prominent which

causes difficulty even for humans. Other eye-shape

characteristics have been used for left/right classifica-

tion, but all of them suffer from the same sorts of

inherent person to person variability of eye shape. To

avoid these problems, the authors chose to consider

analysis of simpler iris image characteristics: the geo-

metric locations of the pupil and iris that are already

computed by most iris recognition algorithms. This

analysis can be understood with the help of Fig. 2, an

illustration of the relative positions of the left eye, right

eye and a camera at a particular location; the dotted

line denotes the line of sight for each of the two eyes.

It is observed that the distance between the camera

and the eyes is not infinity; the two lines of sight are

not parallel to each other. Rather, they intersect with

each other at an angle.

Figure 3 shows images of left and right eyes looking

at the same camera. It is seen that the pupil in the left
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iris marked with x and ., respectively. (b) An example image of left eye with center of pupil and iris marked with x and

respectively.
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eye is located closer to its punctum lacrimale (i.e., to

the right of the iris center) and the pupil of the right

iris is similarly located closer its punctum lacrimale

(i.e., to the left of the iris center). These observations

(backed with empirical evaluations) can provide a

simple, elegant, yet very effective left/right classifier

for iris images. Note that the relative position of the

center of the pupil and iris: if the center of the

pupil is on the left side of the center of the iris, it

is more likely that this is a left iris eye; otherwise, it is

more likely to be a right iris eye.

The algorithm can be summarized as:

1. Perform ▶ iris localization. This can be done by

using any kind of iris segmentation algorithm com-

mercially or available academically, as long as it is

effective, precise [2–11] and provides the (x, y)

image coordinates of the pupil and iris.

2. Retrieve the x-coordinate of both the center of

pupil and iris.

3. If the x-coordinate of the center of pupil is smaller

than x-coordinate of the center of iris, classify it as

left eye image.

4. If the x-coordinate of the center of pupil is larger

than x-coordinate of the center of iris, classify it as

right eye image.

5. If the x-coordinate of the center of pupil is exactly

the same as x-coordinate of the center of iris, then a

decision can not be made with this algorithm and

input from other pattern classifiers (e.g., punctum

lacrimale detector, eye-shape analysis, or random

guess) can be used.

Since this method is used for the existing localization/

segmentation data that is extracted in most deployed
iris recognition systems it poses a minimal additional

computational load. The precision of the algorithm

vastly depends on the accuracy of the iris localization

process. In summary, the proposed methodology does

not add any overhead to existing iris processing frame-

work, and can be executed extremely fast and can be

used as a meta-analysis tool to rectify already acquired

datasets. In the case that a decision cannot be made,

the tool can prompt the user to manually see if he can

identify the eye or further feature detectors such as

punctum lacrimale detectors or eye-shape analysis

can be used to make the decision and in some cases,

a random assignment might be acceptable.
Algorithm Performance

The authors evaluated the algorithm on NIST’s

Iris Challenge Evaluation (ICE) 2005 database [12].

The ICE 2005 dataset contains a total of 2953 irises

made up from 1528 left irises and 1425 right irises

captured from an LG EOU 2200 single iris capture

unit. For these experiments, the images were segment-

ed using the segmentation algorithm described in. One

of the 2953 irises was incorrectly segmented; that

image had an iris that was badly off-axis nature – an

outlier in this dataset; that image was omitted from the

subsequent analysis.

The segmentation data was analyzed using the left/

right classification algorithm; the results are shown

in Table 1. The data for all images and the left and

right eyes is presented separately. The error rates are

below 1%. The fraction of images for which a decision

could not be made is �6%.
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on ICE 2005 database

Category Image count Misclassified Undecided Correct identification rate

All images 2953 27 172 99.1%

Left 1528 15 78 99%

Right 1425 12 94 99.2%
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If the algorithm is used for purely automated clas-

sification and assigned the undecided cases at random,

a classification error rate of the order of approximately

4% would be achieved. Only 5.8% of the images were

not able to be classified as left or right, and the ability

to determine this is crucial as it allows either to prompt

human input or to employ further more complex

feature extraction to see if a determination can be

done. However from the 94% of the images that were

automatically determined that a classification decision

could be made to whether they belong to left or right

irises, the authors’ classification algorithm made the

correct label assignment 99.1% of the time which is a

significant achievement of the proposed algorithm.

The implications of this approach is that it allows to

reduce the computational search time of matching by a

factor of 2 by applying a fully automatic method to

partition left/right iris datasets. For an iris recognition

system with a large database with high loading, this

could result in a substantial reduction in the cost of

the server farm needed to support the system.
Summary

Automatic left/right classification of iris images is

important in iris recognition systems. The authors have

presented a simple algorithm for automatic classification

that is efficient, effective and introduces minimal addi-

tional computational load on the system. Experimental

test on the ICE 2005 database demonstrate that the

algorithm can provide fully automated classification

and has the ability to determine when it is not confident

to make a correct classification decision, on the ICE

dataset this was approximately 5.8% of the data where

it determined that further human input or other feature

extraction processing is necessary. On the remaining

94.2% of the images that it determined a decision

could be made, it achieved a correct classification rate

of 99.1% on labeling the images as left or right irises.
This can provide a roughly 2� reduction in the compu-

tational load for irises matching in large databases.
Related Entries

▶ Image Pattern Recognition

▶ Iris Databases

▶ Iris Recognition, Overview
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Average Correlation Energy (ACE)
The result of applying a correlation filter is a two-

dimensional correlation plane. The average energy of

this plane can be estimated by first summing up the

squares of the values on every pixel and then dividing it

by the total number of the pixels. This value is called
average correlation energy. It is important to minimize

this term in the design of correlation filters because it

represents the average height of the sidelobes on the

correlation plane. If we would like to see a sharp peak

on the correlation plane for the authentic comparison,

criteria for minimizing sidelobes has to be added into

the optimization process.

▶ Iris Recognition Using Correlation Filters
Azimuth
In a plane, the angle measured clockwise from a coor-

dinate axis and a line, with values ranging from 0� to

360�. This measure is a component of the pen orienta-

tion in handwriting capture devices.

▶ Signature Features

http://iris.nist.gov/ice/presentations.htm
http://iris.nist.gov/ice/presentations.htm
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Synonyms

Vetting; Credit check; Personal information search;

Preemployment screening; Disclosure check; Criminal

record search; Criminal history check
Definitions

There are multiple types of Background checks that

all involve reviewing past, recorded behavior:

1. Job Applicants: When people apply for a position

of trust (e.g., a school teacher, a lawyer, or bank

teller) a background check is part of the way of

determining if the applicant is suitable – a positive

result. These are known as Applicant or Civil Back-

ground Checks. In the US:

(a) If there is a state or federal law requiring a

national check then applicant fingerprints

(with minimal supporting biographic infor-

mation) can be submitted to the Federal

Bureau of Investigation (FBI) for a search.

(b) If the applicants are seeking federal employ-

ment then their biographic data and finger-

prints can be submitted to the FBI for a search.

(c) If the applicants are applying for a job not cov-

ered by a state or federal law they are restricted

to commercial background checking services –

companies that have aggregated financial, court,

motor vehicle and other records.

2. Applicants for Credit: When people apply for

credit cards or a large financial commitment (e.g.,

a mortgage) a background check is part of the way

of determining if the applicant is suitable – a
# 2009 Springer Science+Business Media, LLC
positive result. These are known as Credit Checks

and are performed by commercial background

checking services.

3. Applicants for Government Benefits: When people

apply for a visa, passport, drivers license, social

security and other benefits governments use vary-

ing levels of background checks to weed out fraud

(e.g., multiple applications with different identities

but for the same subject), previously denied per-

sons, etc. Other than possibly checks for visas, most

of these checks say nothing about the suitability of

a person for trustworthiness.

4. Criminals: In the criminal justice community Back-

ground Checks are used when a person is arrested

to determine if an arrestee already has a criminal

record that they are hiding – a negative result that

will be used in setting bail, sentencing, etc. In

the US:

5. Arrestee fingerprints (with minimal supporting

biographic information) can be submitted to the

FBI for a search.

Background Checks are primarily based on textual

information (e.g., name and date of birth) searches of

bank, court, credit card issuer, and other files or textual

searches and in some cases are combined with biomet-

ric based (e.g., fingerprint) searches of criminal or

undesirable persons (e.g., persons previously deported)

records.

The ANSI/IAI 2-1988 American National Standard

for Forensic Identification Glossary of Terms and

Acronyms defines ▶ ‘‘criminal history check’’ as ‘‘A

search of name indices and/or fingerprint files to deter-

mine whether or not a subject has a prior criminal

record.’’

The same American National Standard glossary

defines ‘‘criminal history’’ as ‘‘A chronological summary

of an individual’s criminal activity which may include

the dates of the activity, the individual’s name, aliases

and other personal descriptors, the identities of the

reporting agencies, the arrest charges, dispositions, etc.’’
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The UK Criminal Records Bureau performs an

Enhanced Disclosure Check (the same check as the

▶ Standard Disclosure but with a local police record

check) to establish criminal backgrounds.

A ▶Credit Check is an automated credit record

search conducted through various major credit

bureaus.
Introduction

Background checks became important to ▶ law en-

forcement about the time that large numbers of people

started moving to cities as a by-product of the Indus-

trial Revolution. Prior to that few people ever ventured

far form their birthplace – a place where they were

known and their history was known. The need to link

people to their criminal histories drove police forces

in London, Paris, and Buenos Aires to examine▶ iden-

tification methodologies such as ▶fingerprint recog-

nition and ▶ anthropometry in the late 1800s – the

surviving approaches are now classified as members of

the science called biometrics. Simon Cole’s 2001 book

provides a good history of criminal identification [1].

In the post World War II era international travel

became far more common than before the war. A

parallel can be drawn with the movement during the

Industrial Age within countries – now criminals and

terrorists were freely crossing borders – hoping to leave

their criminal/terrorist records behind. Even if the

world’s police records were all suddenly accessible

over the Internet – they would not all be in the same

character set. While many are in the Roman alphabet,

others are in Cyrillic, Chinese characters, etc., this

poses a problem for text search engines and investiga-

tors. Fortunately biometrics samples are insensitive to

the nationality or country of origin of a person. Thus a

search can be theoretically performed across the world

using fingerprints or other enrolled biometric modal-

ities. Unfortunately the connectivity of systems does

not support such searches other than on a limited

basis – through Interpol. If the capability to search

globally were there the responses would still be textual

and not necessarily directly useful to the requestor.

One response to the challenge of international travel

has been that nations collect biometric samples, such as

the United Arab Emirates does with▶ Iris Recognition,

Overview, at their points of entry to determine if a

person previously deported or turned down for a visa

is attempting to reenter the country illegally.
A wide variety of positions of trust in both the

public and private sectors require ▶ verification of

suitability either as a matter of law or corporate policy.

A person is considered suitable if the search for back-

ground impediments is negative. A position of trust

can range from a police officer or teacher; to a new

corporate employee who will have access to proprietary

information and possibly a business’s monetary assets;

or to an applicant for a large loan or mortgage. Certain

classes of jobs are covered by federal and state/provin-

cial laws such as members of the military and school

teachers/staff.

A background check is the process of finding infor-

mation about someone which may not be readily

available. The most common way of conducting a

background check is to look up official and commer-

cial records about a person. The need for a background

check commonly arose when someone had to be hired

for high-trust jobs such as security or in banking.

Background checks while providing informed and

less-subjective evaluations, however, also brought

along their own risks and uncertainties.

Background checks require the ‘‘checking’’ party to

collect as much information about the subject of the

background check as is reasonably possible at the be-

ginning of the process. Usually the subject completes

a personal history form and some official document

(e.g., a driver’s license) is presented and photocopied.

The information is used to increase the likelihood of

narrowing the search to include the subject, but not

too many others, with the same name or other attri-

butes such as the same date and place of birth.

These searches are typically based on not only an

individual’s name, but also on other personal identi-

fiers such as nationality, gender, place and date of

birth, race, street address, driver’s license number, tele-

phone number, and Social Security Number. Without

knowing where a subject really has lived it is very

hard for an investigation to be successful without

broad access to nationally aggregated records. There

are companies that collect and aggregate these records

as a commercial venture.

It is important to understand that short of some

biometric sample (e.g., fingerprints) the collected in-

formation is not necessarily unique to a particular

individual. It is well known that name checks, even

with additional facts such as height, weight, and DOB

can have varying degrees of accuracy because of iden-

tical or similar names and other identifiers. Reduced

accuracy also results from clerical errors such as
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misspellings, or deliberately inaccurate information

provided by search subjects trying to avoid being

linked to any prior criminal record or poor financial

history.

In the US much of the required background infor-

mation to be searched is publicly available but not

necessarily available in a centralized location. Privacy

laws limit access in some jurisdictions. Typically all

arrest records, other than for juveniles, are public

records at the police and courthouse level. When

aggregated at the state level some states protect them

while others sell access to these records. Other relevant

records such as sex offender registries are posted on the

Internet.

For more secure positions in the US, background

checks include a ‘‘National Agency Check.’’ These

checks were first established in the 1950s and include

a name-based search of FBI criminal, investigative,

administrative, personnel, and general files. The FBI

has a National Name Check Program that supports

these checks. The FBI web site [2] provides a good

synopsis of the Program:

Mission: The National Name Check Program’s

(NNCP’s) mission is to disseminate information

from FBI files in response to name check requests

received from federal agencies including internal

offices within the FBI; components within the

legislative, judicial, and executive branches of the

federal government; foreign police and intelligence

agencies; and state and local law enforcement agen-

cies within the criminal justice system.

Purpose: The NNCP has its genesis in Executive Order

10450, issued during the Eisenhower Administra-

tion. This executive order addresses personnel

security issues, and mandated National Agency

Checks (NACs) as part of the preemployment vet-

ting and background investigation process. The FBI

is a primary NAC conducted on all U.S. govern-

ment employees. Since 11 September, name check

requests have grown, with more and more custo-

mers seeking background information from FBI

files on individuals before bestowing a privilege –

whether that privilege is government employment

or an appointment, a security clearance, attendance

at a White House function, a Green card or natu-

ralization, admission to the bar, or a visa for the

privilege of visiting our homeland. . . .

Function: The employees of the NNCP review and

analyze potential identifiable documents to
determine whether a specific individual has been

the subject of or has been mentioned in any FBI

investigation(s), and if so, what (if any) relevant

information may be disseminated to the requesting

agency. It is important to note that the FBI does not

adjudicate the final outcome; it just reports the

results to the requesting agency.

Major Contributing Agencies: The FBI’s NNCP Section

provides services to more than 70 federal, state, and

local governments and entities. . . . The following

are the major contributing agencies to the NNCP:
� U.S. Citizenship and Immigration Services –

Submits name check requests on individuals

applying for the following benefits: asylum,

adjustment of status to legal permanent resi-

dent, naturalization, and waivers.

� Office of Personnel Management – Submits

name check requests in order to determine an

individual’s suitability and eligibility in seeking

employment with the federal government.

� Department of State – Submits FBI name

check requests on individuals applying for

visas. . . . [2]
In the US government background checking pro-

cess, a ▶ credit check ‘‘is included in most background

investigations except the basic NACI investigation

required of employees entering Non-Sensitive (Level 1)

positions [3].’’

Background checks were once the province of gov-

ernments. Now commercial companies provide these

services to the public, industry, and even to govern-

ments. These commercial checks rely on purchased,

copied, and voluntarily submitted data from second

and third parties. There are many commercial compa-

nies that accumulate files of financial, criminal, real

estate, motor vehicle, travel, and other transactions.

The larger companies spend substantial amounts of

money collecting, collating, analyzing, and selling this

information.

At the entry level, customers of these aggregators

include persons ‘‘checking out’’ their potential room-

mates, baby sitters, etc. At the mid-level employers use

these services to prescreen employees. At the high end

the data is mined to target individuals for commercial

and security purposes based on their background (e.g.,

financial and travel records.) The profiling of persons

based on background information is disturbing in that

the files are not necessarily accurate and rarely have

biometric identifiers to identify people positively.
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For an example of the problem, there is no need to look

further than the news stories about post 9–11 name-

based screening that kept Senator Kennedy on the

no-fly list because he shared a name with a suspected

person – and that was a government maintained file.

Historically the challenge in background checking

has been (1) when people usurp another person’s

identity that ‘‘checks out’’ as excellent, (2) when people

make up an identity and it is only checked for negative

records not for its basic veracity, and (3) when persons

try to hide their past or create a new past using multi-

ple identities to gain benefits or privileges they might

otherwise not be entitled to receive. A second identity

could be created by simply changing their date and

place of birth, of course it would not have much

‘‘depth’’ in that a simple check would reveal no credit

history, no driver’s license, etc. yet for some applicants

checking is only to determine if the claimed identity

has a negative history or not – not to see if the person

really exists. All of these challenges render many name

or number-based (e.g., social security number) back-

ground checks ineffective.

Several countries, states, and provinces are under-

taking one relatively simple solution to stolen identities.

Asmore andmore records become digital, governments

can link birth and death records – so a person cannot

claim to be a person who died at a very early age and

thus having no chance of a negative record. People were

able to use these stolen identities as seeds for a full set

of identification documents. Governments and finan-

cial institutions are also requiring simple proof of

documented residence such as mail delivered to an

applicant from a commercial establishment to the

claimed address and a pay slip from an employer.

Denying people easy ways to shift identities is a critical

step in making background checks more reliable.

The most successful way to deal with these chal-

lenges has been to link persons with their positive (e.g.,

driver’s license with a clean record) and negative his-

tory (e.g., arrest cycles) biometrically. The primary

systems where this linkage is being done are in the

provision of government services (motor vehicle

administration and benefits management) and the

criminal justice information arena (arrest records and

court dispositions). Currently, few if any financial

records are linked to biometric identifiers and the

major information aggregators do not yet have bio-

metric engines searching through the millions of

records they aggregate weekly. The real reason they
have not yet invested in this technology stems primar-

ily from the almost total lack of access to biometric

records other than facial images. This provides some

degree of privacy for individuals while forcing credit

bureaus to rely on linked textual data such as a name

and phone number, billed to the same address as on

file with records from a telephone company, with an

employment record.

The inadequacy of name-based checks was redocu-

mented in FBI testimony in 2003, regarding checking

names of persons applying for Visas to visit the US.

Approximately 85% of name checks are electronically

returned as having ‘‘No Record’’ within 72 hours. A

‘‘No Record’’ indicates that the FBI’s Central Records

System contains no identifiable information regarding

this individual. . .’’ This response does not ensure that

the applicants are using their true identity but only

that the claimed identity was searched against text-

based FBI records – without any negative results.

The FBI also maintains a centralized index of cri-

minal arrests, convictions, and other dispositions. The

data is primarily submitted voluntarily by the states

and owned by the states – thus limiting its use and

dissemination. The majority of the 100 million plus

indexed files are linked to specific individuals through

fingerprints. The following information about the

system is from a Department of Justice document

available on the Internet [4].

This system is an automated index maintained by

the FBI which includes names and personal identifica-

tion information relating to individuals who have been

arrested or indicted for a serious or significant criminal

offense anywhere in the country. The index is available

to law enforcement and criminal justice agencies

throughout the country and enables them to deter-

mine very quickly whether particular persons may

have prior criminal records and, if so, to obtain the

records from the state or federal databases where

they are maintained. Three name checks may be

made for criminal justice purposes, such as police

investigations, prosecutor decisions and judicial sen-

tencing. In addition, three requests may be made

for authorized noncriminal justice purposes, such as

public employment, occupational licensing and the

issuance of security clearances, where positive finger-

print identification of subjects has been made.

Name check errors are of two general types:

(1) inaccurate or wrong identifications, often called

‘‘false positives,’’ which occur when all three name
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checks of an applicant does not clear (i.e., it produces

one or more possible candidates) and the applicant’s

fingerprint search does clear (i.e., applicant has no

FBI criminal record); and (2) missed identifications,

often called ‘‘false negatives,’’ which occur when the

three name checks of an applicant’s III clears (i.e.,

produces no possible candidates) and the applicant’s

fingerprint search does not clear (i.e., applicant has an

FBI criminal record). Although errors of both types

are thought to occur with significant frequency – based

on the experience of state record repository and FBI

personnel – at the time when this study was begun,

there were no known studies or analyses documenting

the frequency of such errors.

In contrast, fingerprint searches are based on a

biometric method of identification. The fingerprint

patterns of individuals are unique characteristics that

are not subject to alteration. Identifications based on

fingerprints are highly accurate, particularly those pro-

duced by automated fingerprint identification system

(AFIS) equipment, which is in widespread and increas-

ing use throughout the country. Analyses have shown

that AFIS search results are 94–98% accurate when

searching good quality fingerprints.

Because of the inaccuracies of name checks as com-

pared to fingerprint searches, the FBI and some of the

state criminal record repositories do not permit name-

check access to their criminal history record databases

for noncriminal justice purposes.
Where Do Biometrics Fit In?

When executing a background check there are several

possible ways that biometric data can be employed. As

seen governments can collect large samples (e.g., all ten

fingers) to search large criminal history repositories.

The large sample is required to ensure the search is cost

effective and accurate. The time to collect all these

fingerprints and extract the features can be measured

in minutes, possibly more than ten, while the search

time must be measured in seconds to deal with the

national workloads at the central site.

Other programs such as driver’s license applicant

background checks are sometimes run using a single

facial image. These are smaller files than fingerprints,

collected faster using less costly technology, but have

somewhat lower accuracy levels thus requiring more

adjudication by the motor vehicle administrators.
As companies (e.g., credit card issuers) start to

employ biometrics for convenience or brand loyalty –

they are very likely to use the biometrics not just for

identity verification at the point of sale but to weed out

applicants already ‘‘blacklisted’’ by the issuer. These

biometric samples will need to be of sufficient density

to permit identification searches and yet have a subset

that is ‘‘light weight’’ enough to be used for verification

in less than a second at a point of sale.
Temporal Value of Background Checks

In the US under the best conditions a vetted person

will have ‘‘passed a background check’’ to include an

FBI fingerprint search, a NAC, a financial audit, per-

sonal interviews, and door-to-door field investigation

to verify claimed personal history and to uncover any

concerns local police and neighbors might have had.

This is how the FBI and other special US agencies and

departments check their applicants. Unfortunately,

this is not sufficient. Robert Hanssen, Special Agent

of the FBI was arrested and charged with treason

in 2001 after 15 years of undetected treason and over

20 years of vetted employment.

Even more disturbing is a 2007 case where Nada

Nadim Prouty pleaded guilty to numerous federal

charges including unlawfully searching the FBI’s Auto-

mated Case Support computer system. Ms. Prouty was

hired by the FBI in 1999 and underwent a full back-

ground check that included fingerprints. In 2003 she

changed employers, joining the CIA where she under-

went some level of background check. Neither of these

checks nor earlier checks by the then INS disclosed her

having paid an unemployed American to marry her to

gain citizenship.

Without being caught, criminals have the same

clean record as everyone else, with or without bio-

metrics being used in a background check. While FBI

agent’s fingerprints are kept in the FBI’s AFIS system,

those of school teachers and street cops are not. This

means if any of them were arrested only the FBI’s

employees’ fingerprints would lead to notification of

the subject’s employer. Rap (allegedly short for Record

of Arrests and Prosecutions) sheets are normally

provided in response to fingerprint searches. A rela-

tively new process called Rap-Back permits agencies

requesting a background check to enroll the finger-

prints such that if there is a subsequent arrest
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the employer will be notified. Rap-Back and routine

reinvestigations addresses part of the temporal prob-

lem but in the end there is no guarantee that a

clean record is not a misleading sign – just an indica-

tor of no arrests, which is not always a sign of

trustworthiness.
Privacy Aspects

Performing a complete and accurate background check

can cause a conflict with widely supported privacy laws

and practices. The conflicts come from most ‘‘privacy

rights’’ laws being written to inhibit certain govern-

ment actions not to uniformly limit commercial aggre-

gation and sharing of even questionable data on a

background-data-for-fee basis.

Robert O’Harrow’s book [5], points out two seri-

ous flaws on the privacy side of the commercial back-

ground check process.

� ‘‘Most employees who steal do not end up in public

criminal records. Dishonest employees have lear-

ned to experience little or no consequences for

their actions, especially in light of the current

tight labor market,’’ ChoicePoint tells interested

retailers. ‘‘A low-cost program is needed so com-

panies can afford to screen all new employees

against a national theft database.’’ The database

works as a sort of blacklist of people who have

been accused or convicted of shoplifting [6].

� Among other things the law restricted the govern-

ment from building databases of dossiers unless the

information about individuals was directly relevant

to an agency’s mission. Of course, that’s precisely

what ChoicePoint, LexisNexis, and other services

do for the government. By outsourcing the collec-

tion of record, the government doesn’t have to

ensure the data is accurate, or have any provisions

to correct it in the same way it would under the

Privacy Act [7].

These companies have substantially more information

on Americans than the government. O’Harrow reports

that Choice Point has data holdings of an unthinkable

size:

� Almost a billion records added from Trans Union

twice a year

� Updated phone records (numbers and payment

histories) from phone companies – for over 130

million persons
� A Comprehensive Loss Underwriting Exchange

with over 200 million claims recorded

� About 100 million criminal records

� Copies of 17 billion public records (such as home

sales and bankruptcy records)

The United Nations International Labor Organization

(ILO) in 1988 described ‘‘indirect discrimination’’

as occurring when an apparently neutral condition,

required of everyone, has a disproportionately harsh

impact on a person with an attribute such as a criminal

record.’’ [8] Thus pointing out the danger of cases where

criminal records ‘‘include charges which were not proven,

investigations, findings of guilt with non-conviction and

convictions which were later quashed or pardoned. It also

includes imputed criminal record. For example, if a per-

son is denied a job because the employer thinks that they

have a criminal record, even if this is not the case [9].’’

This problem is recognized by the Australian gov-

ernment, which quotes the above ILO words in its

handbook for employees. The handbook goes on to

say, ‘‘The CRB recognises that the Standard and En-

hanced Disclosure information can be extremely sensi-

tive and personal, therefore it has published a Code

of Practice and employers’ guidance for recipients of

Disclosures to ensure they are handled fairly and used

properly’’ [10].
Applications

Background checks are used for preemployment

screening, establishment of credit, for issuance of

Visas, as part of arrest processes, in sentencing deci-

sions, and in granting clearances. When a biometric

check is included, such as a fingerprint-based criminal-

records search, there can be a higher degree of confi-

dence in the completeness and accuracy of that portion

of the search.

Seemingly secure identification documents such as

biometric passports do not imply a background check

of the suitability of the bearer – but only that the person

it was issued to is a citizen of the issuing country. These

documents permit positive matching of the bearer to

the person the document was issued to – identity

establishment and subsequent verification of the bearer.

It is unfortunately easy to confuse the two concepts:

a clean background and an established identity. The US

Government’s new Personal Identity Verification (PIV)

card, on the other hand, implies both a positive
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background check and identity establishment. The

positive background check is performed through a

fingerprint-based records search. The identity is estab-

lished when a facial image, name, and other identity

attributes are locked to a set of fingerprints. The fin-

gerprints are then digitally encoded and loaded on the

PIV smart card; permitting verification of the bearer’s

enrolled identity at a later date, time, and place.
Summary

Background checks are a necessary but flawed part of the

modernworld. Their importance has increased substan-

tially since the terrorist attacks on 9/11 in the US, 11-M

in Spain, and 7/7 in London. Governments use them

within privacy bounds set by legislatures but seem to

cross into a less constrained world when they use com-

mercial aggregators. Industry uses them in innumerable

process – often with little recourse by impacted custo-

mers, employees, and applicants. Legislators are addres-

sing this issue but technology is making the challenge

more ubiquitous and at an accelerating rate.

Biometric attributes linked to records reduce the

likelihood of them being incorrectly linked to a wrong

subject. This is a promise that biometrics offers us – yet

the possible dangers in compromised biometric records

or systems containing biometric identifiers must be

kept in mind.
Related Entries

▶ Fingerprint Matching, Automatic

▶ Fingerprint Recognition, Overview

▶ Fraud Reduction, Application

▶ Fraud Reduction, Overview

▶ Identification

▶ Identity Theft Reduction

▶ Iris Recognition at Airports and Border-Crossings

▶ Law Enforcement

▶Verification
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Background Subtraction
Segmentation of pixels in a temporal sequence of

images into two sets, a moving foreground and a static

background, by subtracting the images from an esti-

mated background image.
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Definition

The back-of-hand vascular recognition is the process

of verifying the identity of individuals based on their

subcutaneous vascular network on the back of the

hand. According to large-scale experiments, the pat-

tern of blood vessels is unique to each individual, even

among identical twins; thereby the pattern of the hand

blood vessels on the back of the hand can be used as

distinctive features for verifying the identity of indivi-

duals. A simple back-of-hand vascular recognition sys-

tem is operated by using ▶ near-infrared light to

illuminate on the back of the hand. The deoxidized

hemoglobin in blood vessels absorb more infrared rays

than surrounding tissues and cause the blood vessels to

appear as black patterns in the resulting image cap-

tured by a camera, sensitive to near-infrared illumina-

tion. The image of back-of-hand vascular patterns is

then pre-processed and compared with the previously

recorded vascular pattern ▶ templates in the database

to ▶ verify the identity of the individual.
Introduction

▶Biometric recognition is considered as one of the

most advanced security method for many security

applications. Several biometric technologies such as

fingerprint, face, and hand geometry have been

researched and developed in recent years [1]. Com-

pared with traditional security methods such as pass

codes, passwords, or smart cards, the biometric securi-

ty schemes show many priority features such as high

level security and user convenience. Therefore, biomet-

ric recognition systems are being widely deployed in

many different applications.

The back-of-hand vascular pattern is a relatively

new biometric feature containing complex and stable

blood vessel network that can be used to discriminate a

person from the other. The back-of-hand vascular pat-

tern technology began to be considered as a potential

biometric technology in the security field in early

1990s. During this period, the technology became

one of the most interesting topics in biometric research

community that received significant attention. One of

the first paper to bring this technology into discussion

was published by Cross and Smith in 1995 [2]. The

paper introduced the ▶ thermographic imaging tech-

nology for acquiring the subcutaneous vascular
network of the back of the hand for biometric applica-

tion. However, the thermographic imaging technology

is strongly affected by temperature from external envi-

ronment; therefore, it is not suitable to apply this

technology to general out-door applications.

The use of back-of-hand vascular recognition in

general applications became possible when new imag-

ing techniques using near-infrared illumination and

low-cost camera have been invented [3]. Instead of

using far-infrared light and thermographic imaging

technology, this technology utilizes the near-infrared

light to illuminate the back of the hand. Due to the

difference in absorption rate of infrared radiation,

the blood vessels would appear as black patterns in

the resulting image. The cameras to photograph the

back-of-hand vascular pattern image can be any low-

cost cameras that are sensitive to the range of near-

infrared light.

Although the back-of-hand vascular pattern tech-

nology is still an ongoing area of biometric research,

it has become a promising identification technology in

biometric applications. A large number of units

deployed in many security applications such as infor-

mation access control, homeland security, and com-

puter security provide evidence to the rapid growth of

the back-of-hand vascular pattern technology. Com-

pared to the other existing biometric technologies,

back-of-hand vascular pattern technology has many

advantages such as higher authentication accuracy

and better ▶ usability. Thereby, it is suitable for the

applications in which high level of security is required.

Moreover, since the back-of-hand vascular patterns lies

underneath the skin, it is extremely difficult to spoof or

steal. In addition, lying under skin surface, back-of-

hand vascular pattern remains unaffected by inferior

environments. Therefore, the back-of-hand vascular

pattern technology can be used in various inferior

environments such as factories, army, and construction

sites where other biometric technologies have many

limitations. Because of these advanced features, the

back-of-hand vascular pattern technology is used in

public places.
Development History of the Back-of-
Hand Vascular Recognition

As a new biometric technology, back-of-hand vascular

pattern recognition began to receive the attention
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from biometric community from 1990s. However, the

launch of the back-of-hand vascular recognition sys-

tem into the market was first considered from 1997.

The product model named BK-100 was announced by

BK Systems in Korea. This product was sold mainly in

the local and Japanese market. In the early stage of

introduction, the product had limitations for physical

access control applications. More than 200 units

have been installed in many access control points

with time and attendance systems in both Korea and

Japan. Figure 1(a) shows a prototype of the BK-100

hand vascular recognition system.

The first patent on the use of the back-of-hand

vascular pattern technology for personal identification

was published in 1998 and detailed in reference [4].

The invention described and claimed an apparatus and

method for identifying individuals through their sub-

cutaneous hand vascular patterns. Consecutively, other

subsequent commercial versions, BK-200 and BK-300,

have been launched in the market. During the short

period of time from the first introduction, these pro-

ducts have been deployed in many physical access

control applications.

The technology of back-of-hand vascular pattern

recognition was continuously enhanced and developed

by many organizations and research groups [5–11].

However, one of the organizations that made promising

contributions to the development of the back-of-hand

recognition technology is Techsphere Co., Ltd. in Korea.

As the results from these efforts, a new commercial

product under the name VP-II has been released.

Many advanced digital processing technologies have

been applied to this product to make it a reliable and

cost-effective device. With the introduction of the new

product, the scanner becamemore compact to make the
Back-of-Hand Vascular Recognition. Figure 1 Prototype

of hand vascular recognition system; (a) BK-100 and

(b) VP-II product.
product suitable to be integrated in various applica-

tions. The product also provided better user interface

to satisfy user-friendly requirements and make the sys-

tem highly configurable. Figure 1(b) shows a prototype

of the VP-II product.

Various organizations and research groups are

spending efforts to develop and enhance the back-of-

hand vascular pattern technology. Thousands of

back-of-hand products have been rapidly installed and

successfully used in various applications. Researches

and product enhancements are being conducted to

bring more improvements to products. Widespread in-

ternational attention from biometric community will

make the back-of-hand vascular pattern technology as

one of the most promising technologies in security field.
Underlying Technology of Back-of-Hand
Vascular Recognition

To understand the underlying technology of the back-

of-hand vascular recognition, the operation of a typical

back-of-hand vascular recognition system should be

considered. Similar to other biometric recognition sys-

tem, the back-of-hand vascular recognition system

often composes of different modules including image

acquisition, feature extraction, and pattern matching.

Figure 2 shows a typical operation of the back-of-hand

vascular recognition system.
Image Acquisition

Since the back-of-hand vascular pattern lies under-

neath the skin, it cannot be seen by the human eye.

Therefore, it cannot use the visible light that occupies a

very narrow band (approx. 400–700 nm wavelength)

for photographing the back-of-hand vascular pat-

terns. The back-of-hand vascular pattern image can

be captured under the near-infrared light (approx.

800–1000 nm wavelength). The near-infrared light

can penetrate into the human tissues to approximately

3 mm depth [10]. The blood vessels absorb more

infrared radiation than the surrounding tissues and

appear as black patterns in the resulting image. The

camera used to capture the image of back-of-hand

vascular pattern can be any low-cost camera that is

sensitive to the range of near-infrared light. Figure 3

shows an example of images obtained by visible light

and near-infrared light.
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The back-of-hand images obtained by visible light (left)

and by infrared light (right).

Back-of-Hand Vascular Recognition. Figure 2 Operation

of a typical back-of-hand vascular recognition system.
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Pattern Extraction

One of the important issues in the back-of-hand vas-

cular recognition is to extract the back-of-hand vascu-

lar pattern that can be used to distinguish an

individual from the others. Pattern extraction module

is to accurately extract the back-of-hand vascular

patterns from raw images which may contain the un-

desired noises and other irregular effects. The perfor-

mance of the back-of-hand vascular recognition

system strongly depends on the effectiveness of the

pattern extraction module. Therefore, the pattern
extraction module often consists of various advanced

image processing algorithms to remove the noises and

irregular effects, enhance the clarity of vascular pat-

terns, and separate the vascular patterns from the

background. The final vascular patterns obtained by

the pattern extraction algorithm are represented as

binary images. Figure 4 shows the procedure of a

typical feature extraction algorithm for extracting

back-of-hand vascular patterns from raw images.

After the pattern extraction process, there still could

be salt-and-pepper type noises. Thus, noise removal

filters such as medial filters may be applied as a post-

processing step.
Pattern Matching

The operation of a back-of-hand vascular recognition

system is based on comparing the back-of-hand vascu-

lar pattern of a user being authenticated against

pre-registered back-of-hand patterns stored in the

database. The comparison step is often performed by

using different type of pattern matching algorithms to

generate a matching score. The structured matching

algorithm is utilized if the vascular patterns are repre-

sented by collections of some feature points such as line-

endings and bifurcations [13]. If the vascular patterns

are represented by binary images, the template match-

ing algorithm is also utilized [14]. The matching score

is then used to compare with the pre-defined system

threshold value to decide whether the user can be

authenticated. For more specific performance figures

for each algorithm, readers are referred to [4–7].
Applications of Back-of-Hand Vascular
Recognition

The ability to verify identity of individuals has become

increasingly important in many areas of modern life,

such as electronic governance, medical administration

systems, access control systems for secured areas, and

passenger ticketing, etc. With many advanced features

such as high level of security, excellent usability, and

difficulty in spoofing, the back-of-hand vascular rec-

ognition systems have been deployed in a wide range of

practical applications. The practical applications of the

back-of-hand vascular recognition systems can be

summarized as following:
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Office access control and Time Attendance: The wide

use of back-of-hand vascular recognition technology is

physical access control and identity management for

time and attendance. The recognition systems utilizing

the back-of-hand vascular technology are often instal-

led to restrict the access of unauthorized people. The

integrated applications with back-of-hand vascular

recognition systems will automatically record the

time of entering and leaving the office for each em-

ployee. Furthermore, the time and attendance record

for each employee can be automatically fed to the

resource management program of the organization.

This provides a very effective and efficient way to

manage the attendance and over-time payment at

large-scale organizations.

Port access control: Due to the overwhelming secu-

rity climate in recent years and fear of terrorism, there

has been a surge in demand for accurate biometric

authentication methods to establish a security fence

in many ports. Airports and seaports are the key

areas through which terrorists may infiltrate. Due to

its high accuracy and usability, fast recognition speed,

and user convenience, the back-of-hand vascular rec-

ognition systems are being employed for access control

in many seaports and airports. For example, back-of-

hand vascular recognition systems are being used

in many places at Incheon International Airport

and many airports in Japan [14]. In addition, major

Canadian seaports (Vancouver and Halifax) are fully

access-controlled by back-of-hand systems.

Factories and Construction Sites: Unlike other bio-

metric features which can be easily affected by dirt or
oil, the back-of-hand vascular patterns are not easily

disturbed because the features lie under the skin of

human body. Therefore, the back-of-hand vascular

pattern technology is well accepted in applications

exposed to inferior environments such as factories or

construction sites. The strengths and benefits of the

back-of-hand vascular pattern technology become

more obvious when it is used in these applications

because other existing biometric technologies show

relatively low usability and many limitations when

used in inferior environments.
Summary

The back-of-hand vascular pattern technology has

been researched and developed in the recent decades.

In a relatively short period, it has gained considerable

attention from biometric community. The rapidly

growing interest in the back-of-hand vascular pattern

technology is confirmed by the large number of re-

search attempts which have been conducted to im-

prove the technology in recent years. Although the

back-of-hand vascular pattern has provided a higher

accuracy and better usability in comparison with other

existing biometric technologies, more research need to

be performed to make it more robust and tolerant

technology in various production conditions. The fu-

ture research should focus on development of higher

quality image capture devices, advanced feature extrac-

tion algorithms, and more reliable pattern matching

algorithms to resolve pattern distortion issue.



60 B Barefoot Morphology Comparison
Related Entries

▶ Finger Vein

▶ Finger Vein Biometric Algorithm

▶ Finger Vein Pattern Imaging

▶ Finger Vein Reader

▶Palm Vein Image Device

▶Palm Vein
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Barefoot Morphology Comparison
This describes the comparison carried out by a forensic

expert to determine if two footprints could, or could

not, have been made by the same person.

▶ Forensic Barefoot Comparisons
Base Classifier
This term is used to indicate the base component of a

multiple classifier system. In other words, a multiple

classifier system is made up by a set of base classifiers.

Some authors use this term only when the multiple

classifier system is designed using a single classification

model (e.g., a decision tree) and multiple versions of

this base classifier are generated to build the multiple

classifier system.

▶Multiple Classifier Systems
Baseline Algorithm
Baseline algorithm is a simple, yet reasonable, algo-

rithm that is used to establish minimum expected

performance on a dataset. For instance, the eigenfaces

approach based on principal component analysis is the

baseline algorithm for face recognition. And, the sil-

houette correlation approach establishes the baseline

for gait recognition.

▶Performance Evaluation, Overview
Baum-Welch Algorithm
The Baum-Welch algorithm is the conventional, recur-

sive, efficient way to estimate a Hidden MarkovModel,
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that is, to adjust the parameters of the model given the

observation sequence. The solution to this problem per-

mits to develop amethod to train self-learning classifiers.

▶Hidden Markov Models
Bayes Decision Theory
A probabilistic framework for assigning an input pattern

(e.g., a feature vector) to a class (or category) so as to

minimize the risk associated with misclassification. The

risk itself is computed as a function of several factors

including the conditional probabilities describing the

likelihood that the input pattern belongs to a particular

class and the cost of misclassification as assessed by the

practitioner. In some cases, the risk function is defined

purely in terms of the probability of error. The various

probabilities characterizing the framework are estimated

using a set of training data comprising patterns whose

class information is known beforehand.

▶ Fusion, Score-Level
Bayes Rule
Bayes theorem or Bayes rule allows the estimation of the

probability that, a hypothesis H is true when presented

with a set of observations or evidence E. Let P(H) be

the best estimate of the probability that hypothesis H

is true prior to the availability of evidence E. Hence,

P(H) is known as the prior probability of H. Let P(E|H)

be the conditional probability (likelihood) of observing

the evidence E given that, H is true and P(E) be the

marginal probability of E. Then, the posterior probabil-

ity of hypothesis H given evidence E is.

PðH jEÞ ¼ PðEjHÞPðHÞ
PðEÞ

According to the Bayes rule, the posterior probability is

proportional to the product of the likelihood and the

prior probabilities.

▶ Soft Biometrics
Bayesian Approach/Likelihood Ratio
Approach
This approach used for interpreting evidence is based

on the mathematical theorem of Reverend Thomas

Bayes, stating the posterior odds are equal to the

prior odds multiplied the likelihood ratio (LR). If

using prior odds, one will speak of the Bayesian ap-

proach, and if using only the LR, one will speak of the

likelihood ratio approach.

In forensic science, the weight of evidence E (DNA,

glass, fingerprints, etc.) is often assessed, using the

ratio of two probabilities estimated given by two pro-

positions (i.e., LR). One hypothesis is suggested by the

prosecution (Hp) and the other by the defence (Hd).

Two propositions could be for example ‘‘The blood

recovered from the crime scene comes from the suspect’’

versus ‘‘The blood recovered from the crime scene does

not come from the suspect, but from someone else,

unrelated to him.’’ The likelihood ratio (LR) is therefore

constructed as the ratio of the two probabilities of the

observations given in each proposition. It can take any

value between zero and infinity. Values inferior to one

favor the defence proposition and values above favor the

prosecution proposition. This metric is used worldwide

and has been the subject of numerous publications.

Verbal scales for reporting LR have been suggested, as

an example values from 1,000 and upwards would pro-

vide very strong support for Hp.

The likelihood ratio approach permits to evaluate

evidence using a balanced, logical, and scientific view.

It helps avoiding erroneous reasoning, such as the

prosecution or the defence fallacy.

▶ Forensic DNA Evidence
Bayesian Hypothesis Test
Given a segment of speech Y and a speaker S, the

speaker verification task consists indetermining if Y

was spoken by S or not. This task is often stated as

basic hypothesis test between two hypotheses: If Y

comes from the hypothesized speaker S it is H0, and

if Y is not from the hypothesized speaker S it is H1.
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A likelihood ratio (LR) between these two hypotheses

is estimated and compared to a decision threshold y.
The LR test is given by:

LRðY ;H0;H1Þ ¼ pðyjH0Þ
pðyjH1Þ ð1Þ

where Y is the observed speech segment, p(Y|H0) is the

likelihood function for the hypothesis H0 evaluated

for Y, p(Y|H1) is the likelihood function for H1, and

y is the decision threshold for accepting or rejecting

H0. If LR(Y, H0, H1) > y, H0 is accepted else H1 is

accepted.

A model denoted by lhyp represents H0, which is

learned using an extract of speaker S voice. The model

l
hyp

represents the alternative hypothesis, H1, and is

usually learned using data gathered from a large set of

speakers. The likelihood ratio statistic becomes
pðY jlhypÞ
pðY jl

hyp
Þ.

Often, the logarithm of this statistic is used giving the

logLR (LLR):

LLRðY Þ ¼ logðpðY jlhypÞÞ � ðpðY jl
hyp

ÞÞ: ð2Þ

▶ Speaker Matching
Behavioral Biometrics
Behavioral biometrics is the class of biometrics based on

various human actions as opposed to physical character-

istics. Typically, behavioral biometrics is used only in

verification frameworks. Examples of behavioral

biometrics include: keystroke recognition, speaker/voice

recognition, and signature. Behavioral biometrics is ar-

guably more replaceable than physiological biometrics,

as the context in which they are based can often be

changed (i.e., keystroke recognition, voice, etc.).

▶Keystroke Recognition
BIAS
▶Biometric Identity Assurance Services
Bias-Variance Decomposition
Bias-variance decomposition is an important tool for

analyzing machine learning approaches. Given a

learning target and the size of training data set, it

breaks the expected error of a learning approach

into the sum of three nonnegative quantities, i.e.,

the intrinsic noise, the bias, and the variance. The

intrinsic noise is a lower bound on the expected error

of any learning approach on the target; the bias mea-

sures how closely the average estimate of the learning

approach is able to approximate the target; the vari-

ance measures how much the estimate of the learning

approach fluctuates for the different training sets of the

same size.

▶Ensemble Learning
Bi-directional Reflectance
Distribution Function (BRDF)
Let us assume that the irradiance received by an ele-

mentary surface from a point light source is DE, and
that the radiance from the elementary surface emits in

an outgoing direction toward the viewer is DL. BRDF
is defined as the ratio of DE/DL, i.e., the ratio of the

radiance in the outgoing direction to the incident

irradiance. The unit of BRDF is sr�1.

▶ Image Formation
Bifurcation
The point at which a blood vessel splits or forks into

two branches. An individual’s unique pattern of retinal

blood vessel bifurcations can be used as a feature space

for retinal biometric encoding.

▶ Simultaneous Capture of Iris and Retina for

Recognition
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Binary Hypothesis
B

The binary hypothesis represents a decision maker

with only two hypotheses to choose from. For

biometrics, this usually means that the sensor has

identified the genuine user or an imposter.

▶ Fusion, Decision-Level
Binary Morphology
Operations on binary images using convolution-type

kernels (the ‘‘structuring elements’’) and basic set

operations and image translations. Also called image

morphology or mathematical morphology.

▶ Segmentation of Off-Axis Iris Images
Binomial Distribution
A major class of discrete probability distribution that

describes the likelihood of outcomes from runs of

Bernoulli trials (conceptually coin tosses with two pos-

sible results from each toss, having stable but not

necessarily equal probabilities). A binomial distribu-

tion is described by two parameters: the probability of

one of the outcomes (which implies the probability of

the other); and the number of trials (or coin tosses)

conducted. If the two outcome probabilities are equal,

then the distribution is symmetrical; otherwise it is

not. If one measures the fraction of outcomes of one

type that occur in a certain number of tosses, then the

mean of the distribution equals the probability of that

outcome, and its standard deviation varies inversely as

the square-root of the number of trials conducted.

Thus, the larger the number of trials, the tighter this

distribution becomes. The tails of a binomial distribu-

tion attenuate very rapidly because of the factorial

combinatorial terms generating it, particularly when

the number of trials is large. The binomial should not
be confused with, nor interchanged with, a Gaussian

distribution, which describes continuous instead of dis-

crete random variables, and its domain is infinite unlike

the compact support of the binomial. Under certain

statistical conditions, even correlated Bernoulli trials

generate binomial distributions; the effect of correlation

is to reduce the effective number of trials. When

IrisCodes from different eyes are compared, the distri-

bution of normalized fractional Hamming distance

scores follows a binomial distribution, since compari-

sons of IrisCode bits are effectively Bernoulli trials.

▶ Score Normalization Rules in Iris Recognition
BioAPI
BioAPI is Biometric Application Programming Inter-

face. BioAPI 2.0 is a widely recognized international

standard created by the BioAPI consortium and

defined in ISO/IEC 19784-1:2005.

▶Biometric Technical Interface, Standardization

▶ Finger Vein Pattern Imaging
BioAPI Framework
A module supplied by one vendor that provides the

linkage (via the BioAPI API and SPI interfaces) be-

tween application modules and Biometric Service Pro-

viders from other independent vendors that support

the standardized interfaces.

▶Biometric Technical Interface, Standardization
BioAPI Interworking Protocol
A fully specified protocol running over the Internet

(including Secure Socket Layer) that allows one BioAPI
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Framework to communicate with another BioAPI

Framework. This allows applications in one computer

system to communicate with Biometric Service Provi-

ders (BSPs) in one or more computer systems, where

the applications and BSPs are only aware of the local

BioAPI API or SPI interface, and are not aware of the

communications protocol. It provides a seamless inte-

gration of application and BSP modules running in

different systems to provide for many forms of

distributed biometric application.

▶Biometric Technical Interface, Standardization
Biological Motion
The motion arising from the movement of living things.

Although the term is consistent with viewing an action

in natural conditions with full lighting, it is commonly

used in the field of visual perception to denote motion

patterns arising from viewing conditions with reduced

visual information such as just the motion of specific

points on the body or the silhouette. Human gait is a

common example of biological motion.

▶Psychology of Gait and Action Recognition
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Biometric Engines
Definition

Biometric algorithms are automated methods that en-

able a biometric system to recognize an individual by
his or her anatomical/behavioral traits [1]. They con-

sist of a sequence of automated operations performed

by the system to verify or identify its ownership. These

operations include quality assessment, enhancement,

feature extraction, classification/indexing, matching

and fusion, as well as compression algorithms, often

used to reduce storage space and bandwidth.
Introduction

Biometric recognition is achieved by comparing the

acquired biometric sample (the ‘‘query’’) with one or

more biometric samples that have been captured pre-

viously and stored in the system database (the ‘‘refer-

ence’’ or ‘‘gallery’’). The process of creating the

database is called enrollment. The process of compar-

ing samples is called verification if the query comes

along with a claimed identity (in this case the ‘‘query’’

is compared to the biometric data of the claimed

identity), or identification if no identity claim is

made (in this case the ‘‘query’’ is compared to all the

biometric data in the database).

The biometric sample is acquired by a biometric

device and produces an electronic representation

of high-dimensional signals (e.g., fingerprint or face

images, signature dynamics) [2]. Most often, to

avoid the ‘‘▶ curse of dimensionality,’’ these high-

dimensional signals are not directly compared; instead,

a more compact representation of the signal – called

‘‘template’’ – is extracted from the raw signal and is

used for the comparison. The various processes used to

compare them are called biometric algorithms. These

processes include assessing and enhancing the quality

of the biometric signal, extracting and matching salient

features, and information fusion at various stages.

Compression and classification/indexing are also key

components of biometric algorithms to optimize the

resources needed (space and time).

Biometric techniques are effective to recognize

people because the characteristics of biometric traits

are distinct to each individual. In practice, however,

variations (inherent in the biometric trait or how it is

presented during acquisition) and noise, as well as

intrinsic limitations of biometric sensing techniques

can cause the accuracy of the system to drop signifi-

cantly. It is necessary to develop biometric algorithms

that are robust to these variations; namely, to extract

salient and reproducible features from the input and to
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match these features efficiently and effectively with the

templates in the database. Addressing all the problems

requires the combination of various techniques to

obtain the optimal robustness, performance, and

efficiency, which is a key step in biometric algorithm

design.
Compression

Many applications require storage or transmission of

the biometric data (e.g., images). These data can be

large and it is often desirable to compress them to save

storage space or transmission bandwidth. This com-

pression can be either lossless or lossy. Lossless com-

pression algorithms guarantee that every single bit of

the original signal is unchanged after the data is un-

compressed. Higher compression ratio can be achieved

with lossy compression at the cost of altering the orig-

inal signal. Artifacts introduced by lossy compression

may interfere with subsequent feature extraction and

degrade the matching results.

Biometric systems often use lossy compression,

chosen in such a way that a minimal amount of critical

information is lost during the compression, to achieve

the best balance between data quality and representa-

tion size. Standardization bodies have defined com-

pression protocols for each biometric so that any user

of the system can reconstruct the original signal. They

also specify the compression ratio that must be used to

preserve the quality of the biometric data. As an exam-

ple, standards currently exist for the compression of

fingerprints (WSQ for 500ppi and JPEG-2,000 for

1,000ppi), facial images (JPEG-2,000), voice data

(CELP) [3, 4].
Quality Assessment

Biometric quality refers to the usefulness of a biomet-

ric sample in terms of the amount of discriminatory

information. Quality assessment is the algorithm that

calculates and assigns a quantitative quality score to a

biometric sample based on its character (e.g., inherent

features), fidelity (e.g., signal to noise ratio), or utility

(e.g., correlation with system performance) [5].

Quality measure can be used for various applica-

tions in a biometric system: (1) to provide quality

feedback upon enrollment to improve the operational
efficiency of biometric systems; (2) to improve the

matching performance of biometric systems, e.g.,

local quality can be used to assist feature extraction

and assign confidence to features during matching; and

(3) to improve performance of multi-biometric

systems, e.g., quality can be used to derive weights or

statistical significance of individual sample or modality

in fusion.

There are two main paradigms for quality assess-

ment algorithms: a ‘‘bottom-up’’ approach reflecting

character and fidelity; and a ‘‘top-down’’ approach

based on observed utility [5]. In the ‘‘bottom-up’’

approach, quality measure is used to determine a sam-

ple’s ‘‘improvability’’ (i.e., the improvement that can

be gained by recapturing the biometric). If a sample

does not inherently have many features, recapturing

will not benefit the performance. On the other hand, if

the signal to noise ratio is very high, recapturing may

help obtain additional salient features. In the ‘‘top-

down’’ approach, the utility of a sample is used to

determine a performance estimate. This estimate can

be used to disregard (emphasize) features that have

strong (weak) correlation with utility.

Development of quality assessment algorithms and

algorithms that use the estimated quality information

is an active area of research in biometric community.

The NIST biometric quality workshop [6] provides a

forum for the community to share new research and

development in biometric quality assessment. An open

source software to measure fingerprint quality has also

been developed and released by NIST [7]. Standards

committees from around the world are working to in-

corporate the concept of quality into the biometric stan-

dards, e.g., ISO/IEC 29794 [8], with the aim of uniform

interpretation and interoperability of quality scores.
Enhancement

Enhancement, in the context of biometrics, is the pro-

cess of improving the signal quality with or without

knowing the source of degradation (this definition

includes restoration). The general goal is to increase

the signal to noise ratio, although, many interpreta-

tions of signal/noise can be applicable. Enhancement

typically employs prior knowledge about the acquired

signal to facilitate automatic feature extraction algo-

rithms or to provide better visualization for manual

processing.
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The quality of a signal can be affected by environ-

mental conditions, sensor noise, uncooperative/un-

trained subjects, inherent low quality biometrics, etc.

In order to ensure that the performance of a biometric

algorithm will be robust with respect to the quality of

the acquired signal, additional algorithms/heuristics

must be employed to improve the clarity of the desired

traits in the signal. Different types of normalization

(e.g., histogram equalization) or filtering approaches

(e.g., Gabor wavelets) can be employed to separate

noise from biometric signals [9]. Segmentation (i.e.,

detecting the meaningful part of the signal and dis-

carding the background) is another example of en-

hancement that is classically used.
Feature Extraction

During feature extraction, the biometric data is pro-

cessed to extract a set of salient and discriminatory

features that represent the underlying biometric trait.

These features can either have a direct physical counter-

part (e.g., minutiae for fingerprints), or indirectly

related to any physical trait (e.g., filter responses for iris

images) [10]. The extracted set is commonly referred to

as the template and is used as an input for matching and

filtering (classification/indexing). Ideally, the extracted

features are consistent for the same subject (small

intra-class variation) and are distinct between different

subjects (small inter-class similarity). In practice, how-

ever, factors such as poor image quality and distortion

can greatly affect the accuracy of feature extraction.

Feature extraction can be related to dimensionality

reduction, where the raw input signal is often in high

dimension, containing redundant and irrelevant infor-

mation [2]. Feature extraction transforms the original

data space into a lower dimension by retaining the

most discriminatory information possible. In fact,

standard dimensionality algorithms (e.g., PCA) are

commonly employed to extract features for face im-

ages. Regardless of the trait, the feature extraction

algorithm greatly controls the performance of match-

ing [10]. If feature extraction can separate the subjects

in the feature space, simple matching algorithms can

be employed. If feature extraction performs poorly, it

may not be possible to design a matching algorithm

that will provide sufficient accuracy.

For some applications, especially those where multi-

ple systems need to work together, algorithms need to be
interoperable. That is, in particular, the extracted fea-

tures, or templates are encoded in such a way that they

can be used by any matching system that follow the same

encoding standard. This is crucial for large-scale applica-

tions, such as biometric passport, especially when the

template storage space is small. Once again, standardiza-

tion bodies play an important role in defining common

formats to store the biometric templates. The Minutiae

Interoperability Exchange Test (MINEX) [11], con-

ducted by NIST, quantified the impact on system per-

formance to use fingerprint minutiae standards in

comparison to proprietary formats.
Matching

A matching algorithm compares the features extracted

from the query with the stored templates in the data-

base to produce scores that represent the (dis)simil-

arity between the input and template. A matching

algorithm must cope with variations of the extracted

features [12]. These variations may be the result of

modification (e.g., scar, aging, disease), occlusion (e.g.,

beard, glasses), presentation (pose, displacement, non-

linear distortion), and noise (lighting, motion blur) of

the biometric trait. Variations resulting from the presen-

tation of the biometric are typically handled through the

use of invariant features or by trying to ‘‘align’’ the two

templates. A common approach to alleviate some varia-

tions is to introduce certain flexibility (or tolerance) in

the matching of individual features (local matching)

and obtain an accumulated probability value (global

matching) for computing the final match score. In

many cases, this approach is shown to exhibit some

complementary nature, increasing robustness to errors

while preserving high accuracy. Integration (fusion) of

various feature representations in a matching algorithm

or combining different matching algorithms seems to be

the most promising way to significantly improve the

matching accuracy.

In the final stage, matching must provide a decision,

either in the form of validating a claimed identity or

providing a ranking of the enrolled templates to per-

form identification. The biometric matching algorithms

range from simple nearest neighbor algorithms, to so-

phisticated methods such as support vector machines.

Thresholding techniques are used to decide if the dis-

tance of the claimed identity (in verification) or first

rank (in identification) is sufficient for authentication.
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In large systems, such as countrywide ID or law

enforcement systems, when throughput is high or

when matching decision has to be determined online

in real time (e.g., border crossing), the time of an

individual match must be very small. This imposes

strong constraints on the design of the matching algo-

rithm. In order to achieve both high accuracy and

speed, ▶multistage matching techniques are often

used. Furthermore, biometric algorithms can often be

implemented in a parallel architecture, and the proces-

sing of matching can be distributed over many CPUs.
Filtering (Classification/Indexing)

With the rapid proliferation of large-scale databases,

one to one matching of the query with each template

in the database would be computationally expensive.

A filtering process is, hence, usually employed to re-

duce the number of candidate hypotheses for matching

operation. Filtering can be achieved by two different

approaches: classification and indexing [10].

Classification algorithms, or classifiers, partition a

database into a discrete set of classes. These classes can

be explicitly defined based on the global features of the

biometric data, e.g., ‘‘Henry classes’’ for fingerprints

[13]; or implicitly derived based on data statistics [10].

General biometric classification algorithms can be

divided into rule-based, syntactic-, structural-based,

statistical- and Neural Network-based and multi-

classifier methods. Sometimes, a single-level classifica-

tion is not efficient enough as data may be unevenly

distributed among these classes. For example, more

than 90% of fingerprints belong to only three classes

(left loop, right loop, and whorls). To continue nar-

rowing down the search, some classes can be further

divided into more specific categories, also known as

sub-classification. Once templates in a database are

classified, matching time can be greatly reduced by

comparing the query only with templates belonging

to the same class assigned to the query.

Indexing algorithms [10], on the other hand, pro-

vide a continuous ordering of the database. This process

is also often referred as continuous classification, where

biometric data are no longer partitioned into disjoint

classes, but associated with numerical vector represen-

tations of its main features. This can also be regarded

as an extremely fast matching process, where feature

vectors can be created through a similarity-preserving
transformation and the matching is performed by

comparing the query only with those in the database

whose vector representation are close to that of the

query in the transformed space.

Because they can be extremely fast, filtering techni-

ques are often used as a first stage in multistage match-

ing. Indexing is often preferred over classification,

since it enables to avoid classifying ambiguous data

(e.g., by adjusting the size of the neighborhood con-

sidered for matching) and can be designed to be virtu-

ally error free.
Fusion

Biometric systems can be designed to recognize a per-

son based on information acquired from multiple

biometric sources. Such systems, also known as multi-

biometric systems, offer substantial improvement

with regard to enrollment and matching accuracy

over traditional (uni) biometric systems [12, 14]. The

algorithm that combines the multiple sources of infor-

mation in a multibiometric system is called fusion.

Biometric fusion can be performed at four different

levels of information, namely, sensor, feature, match

score, and decision levels [12, 14]. Fusion algorithms

can be used to integrate primary biometric traits (e.g.,

fingerprint and face) with soft biometric attributes

(e.g., gender, height and eye color). Besides improving

recognition accuracy, information fusion also increases

population coverage (by avoiding ‘‘failure to enroll’’

and deters spoof attacks in biometric systems [14].
Related Entries

▶Biometric Sample Acquisition

▶Biometric, Overview
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Synonyms

Key binding; Secure biometrics; Template protection
Definition

‘‘User data’’ stands for the private information of the

biometric system user, for example the identity num-

ber, e-mail address or any other significant or insignif-

icant character string, which can be transformed into

ASCII code in computer systems. Binding of biometric

and user data is a method which aims to solve the

issues of security and privacy involved with biometric

system. As an important method of Biometric
Encryption, binding of biometric and user data has

two main functions, one is protecting the biometric

template from attacks, where cancelable biometric

templates can be generated; and the other is embed-

ding user data into the biometric template, where user

data will be reproduced if and only if biometric match-

ing succeeds.
Introduction

As an identity authentication method, biometrics bases

recognition on an intrinsic aspect of the human being

and the use of biometrics requires the person to be

authenticated as physically present at the point of the

authentication [1]. With more and more application

examples, biometrics recognition system exposes some

intrinsic defects; the most serious is the security and

privacy issue involved with raw biometric data [2].

Biometric data is difficult to cancel in case it is lost or

obtained by an attacker. The lost biometric may be

used for cross-matching between different databases

and can bring disastrous results to user data. Because

of this kind of hidden danger, people resort to a more

secure biometric system, called Biometric Encryption

or Biometric Cryptosystems [3]. Among the various

methods of Biometric Encryption, binding of biomet-

ric and user data is the most practical and promising

one, which is named Key Binding Method. This is

different from the other key-related method: Key Re-

lease (Fig. 1).

The commonly collected user data includes name,

any form of ID number, age, gender, and e-mail ad-

dress, etc. The user data which is bound with biometric

in the algorithm layer, say e-mail address or social

security ID, should be protected from being stolen by

the attackers, while the nonsensitive data can be open.

In the enrollment stage of the Biometric Encryption

system, the biometric feature extraction procedure is

the same as in the traditional system. After the feature is

obtained, it will be bound with user data (e.g., identity

number, password, etc) in some way, thus yielding a

cancelable biometric template, which will be stored as a

private template and used to match the query samples.

In the matching stage, the user provides his/her bio-

metric and the user-specific data to the biometric sys-

tem. Then, the same feature extraction and binding

procedure will be conducted inside the system. The

two private templates are compared in the traditional

http://www.incits.org/tc_home/m1htm/2006docs/m1060948.pdf
http://www.incits.org/tc_home/m1htm/2006docs/m1060948.pdf
http://www.itl.nist.gov/iad/894.03/quality/workshop07/index.html
http://www.itl.nist.gov/iad/894.03/quality/workshop07/index.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43583
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43583
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manner in which the biometric system works and a

matching score or YES/NO decision is given. In some

algorithms, famous fuzzy vault algorithm for instance,

if matching succeeds, the user-specific key is repro-

duced and released. The key can be used in different

conventional cryptographic circumstances.
Challenges

The difficulty of binding biometric and user data lies

mostly in how the fuzziness of biometrics and the

exactitude of user data (key) are bridged.
Fuzziness of Biometrics

Unlike the password-based identity authentication

system, biometric signals and their representations

(e.g., fingerprint image and its computer representa-

tion) of a person vary dramatically depending on the

acquisition method, acquisition environment, and

user’s interaction with the acquisition device [2].

Acquisition condition variance: The signal cap-

tured by a sensor varies with the identifier as well as

the acquisition equipment. For example, fingerprint

images are usually captured with contacting sensors,
e.g., capacitive sensor, inductive sensor, and optical sen-

sor. The mechanism of imaging fingerprint is mapping

a three-dimensional object to a two-dimensional

plane. Since the finger tip is nonrigid and the mapping

procedure cannot be controlled precisely, the captured

fingerprint images change in minute details from

time to time, but are still within a certain metric dis-

tance of intra-class difference. When the sensor’s surface

is not large enough or the user provides only part of the

finger to the sensor, the acquired image area does not

cover the whole finger. Different fingerprint images

from the same finger may include different parts of

the finger. In addition, translation and rotation are

very common in different samples from the same finger.

Another good example to show the acquisition condi-

tion variance is facial image acquisition. Illumination

change influences the captured facial image in

real circumstances. Moreover, the greatest variance

is in the facial expression, including the kinds of mod-

alities used to express different emotions. Almost

all kinds of biometric modalities have to bear this

variance.

Circumstances and time variance: Change in

outer circumstances may also cause the captured bio-

metric signal to vary more or less. While taking the

fingerprint, for example, the environmental tempera-

ture and humidity may render the finger too dry or too
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damp to be captured. Low-quality fingerprint images

are very common in real application systems and en-

hancing (i.e., preprocessing) them is a challenging

research direction in the traditional fingerprint recog-

nition field. Generally, the fingerprint does not change

with time because the skin on the finger tip may not

change much with age. But many modalities cannot

resist the temporal change, e.g., face, gait, palm, voice,

and so on. In particular, the face varies greatly with

age; facial images captured from the same person at

different ages differ vastly. How one estimates the aging

model of a person also makes an important research

issue in the face recognition field. In addition, there are

other factors which can influence the captured biomet-

ric signal for some specific modality.

Feature extraction variance: Almost all the feature

extraction algorithms are based on signal processing or

image processing methods. They are not exact when

processing different biometric samples. Noise is often

introduced in the extraction procedure, especially of

the low-quality samples.

All the above factors can make the samples from the

same subject seem different and the ones from different

subjects quite similar. Large intra-class differences and

small inter-class differences will be the result due to these

reasons. However, a cryptosystem requires exact com-

puting and operation. A tiny change in input may cause

an enormous difference in output, for example, for the

hash function. So bridging the fuzziness of biometrics

and the exactness of cryptography becomes the greatest

challengein the binding of biometric and user data.
Encrypted Template Alignment

The second challenging problem is how to align the

encrypted biometric templates. One of the purposes of

binding biometric and user data is to conceal raw bio-

metric data. Thus original features cannot be used for

alignment after binding to prevent the original template

from being stolen. Nevertheless, the alignment stage has

to be conducted to locate the various biometric samples

in the same metric space and to ensure the authentica-

tion accuracy. So the feature used in the alignment stage

must satisfy two conditions: (1) it will not reveal origi-

nal biometric data and (2) it must assure alignment

accuracy to some extent. The concept of Helper Data

satisfying these conditions was proposed [4]. Taking the

case of the fingerprint as an example, the points with
maximum local curvature around the core are detected

and used for alignment without leaking the minutiae

information. Theoretically, the system security can be

estimated according to information theory from the

information published by Helper Data [5].
Theory and Practice

The theories of Secure Sketch [5] and Fuzzy Extractor

[5] lay the foundation for the binding of biometric and

user data and give some significant theoretic results

from the point of view of information theory. In the

various binding methods of biometric and user data,

Bioscrypt [6], Biohashing [7], Fuzzy Commitment [8],

and Fuzzy Vault [9] are the most representative to

address the problem of security and privacy. These

algorithms will be described in detail in the next section.
Fuzzy Commitment Scheme

Fuzzy Commitment scheme [8] is one of the earliest

methods of binding biometric and user data. It is

actually an ordinary commitment scheme (a primitive

in cryptography) taking biometric templates as private

keys, and employing error correcting codes to tackle

the fuzziness problem of biometric templates.

As an ordinary cryptographic commitment, the fuzzy

commitment scheme has two procedures: committing

and decommitting. To commit a bit string x, first gener-

ate a codeword c from x according to a prespecified error

correcting code, then apply some cryptographic hash

function (or one-way function) to c, the ultimate com-

mitment is (h(c), w + c), where w is a biometric template

related string with the same length of c. To decommit a

commitment, the user has to provide a biometric tem-

plate related string w’ which is close to that in the

committing procedure; the verifier uses it to decode the

correct codeword c, then checks whether the hash value

of c equals the stored hash value in the commitment, and

accepts the commitment if they are equal, rejects other-

wise. The fuzzy commitment scheme is essentially a

Secure Sketch as observed by Dodis et al. [5].
Secure Sketch

A Secure Sketch is a primitive component proposed by

Dodis et al. [5] to extract helper data from the input
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biometric sample and to reconstruct the original sam-

ple according to the helper data without storing the

raw biometric template. A Secure Sketch consists of

two procedures. The first procedure outputs a bit

string (called helper data) from the enrolled biometric

template and stores the bit string while discarding the

enrolled biometric template. In the second procedure,

the query sample is inputted. The biometric template

could be reconstructed according to the query and

the helper data if the distance between the query

and the template is less than a specified threshold in

terms of some metric space.

The security of a Secure Sketch is estimated as the

loss of the min-entropy of the enrolled biometric tem-

plate between the sketch values before and after thebit

string is provided; the less the loss the better. In case

the distance between the two biometric templates is

measured by the number of positions in which the two

binary represented biometric templates differ, e.g., in

Hamming metric space, two basic constructions based

on error correcting codes are known: code-offset con-

struction and syndrome construction. In case the dis-

tance between the two biometric templates is measured

by the number of elements that occur only in one of

the two duplicate-free set represented biometric tem-

plates, e.g., in set difference metric space, the construc-

tion is called a PinSketch. In case the distance between

two biometric templates is measured by the smallest

number of character insertions and deletions required

to change one biometric template into another one,

e.g., in edit metric space, the metric space is first

transformed into another metric space that is easy to

handle by embedding injections with some distortion

that is tolerable, and then treated as in the transformed

metric space.

A Secure Sketch can be used to construct a fuzzy

extractor. Fuzzy vault and fuzzy commitment in this

context are essentially Secure Sketches in Hamming

metric space and set difference metric space, respectively.
Fuzzy Extractor

A fuzzy extractor is a primitive component proposed by

Dodis et al. [5] to obtain a unique bit string extracted

from the biometric template provided in enrollment

whenever the query biometric template is close enough

to the enrolled biometric template. The random bit

string can be further used as a private key of the user.
A fuzzy extractor consists of two procedures. The

first procedure outputs a bit string and a helper data

from the enrolled biometric template, stores the helper

data while it discards the bit string and the enrolled

biometric template. The second procedure outputs the

bit string from the first procedure if the distance be-

tween the query biometric template and the enrolled

biometric template is less than a specified parameter,

given a query biometric template and helper data from

the first procedure.

The security of a fuzzy extractor is estimated as

the statistics distance between the bit string and a

uniform random distribution when the helper data is

provided; the closer the better. A fuzzy extractor can be

constructed easily from any Secure Sketch. A fuzzy

extractor itself is also an important primitive component

in biometric based cryptosystems. Fuzzy extractors with

robustness [5] are considered to protect against a kind

of active attack, i.e., an adversary might intercept and

change the helper data in a way to obtain biometric

template-related private information of the user

who blindly applied his biometric template on the

fraud helper data. Fuzzy extractor with reusability [5]

is also considered to secure against a kind of

active attack, i.e., a collusion attack from multiple

application servers to which a user is enrolled by the

same fuzzy extractor scheme, each server obtaining a

different helper data and by collusion there exists the

risk of exposure of private user data, e.g., biometric

template.
Bioscrypt

Bioscrypt [6], a method of binding biometric and user

data, is the first practical Biometric Encryption algo-

rithm to the authors’ knowledge. The binding is based

on performing a Fourier Transform of a fingerprint.

In the enrollment stage (Fig. 2), several fingerprint

images, denoted by f(x) are inputted and Fourier

Transformation and other operations are performed

to result in H(u). H(u) composes two components:

magnitude |H(u)| and phase ei’H ðuÞ. The magnitude

component |H(u)| is discarded and the phase ei’H ðuÞ

is preserved. A random array is generated according to

RNG (Random Number Generator), denoted by R.

The phase components of R, denoted by ei’RðuÞ, are
used to multiply with ei’H ðuÞ and results stored in

HstoredðuÞ. In addition, c0ðxÞ is produced from the
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Fourier Transformation of the number of fingerprints

and stored into a lookup table together with an N-bit

key k0, where k0 and c0ðxÞ are linked with a link

algorithm. On the other hand, k0 is used to encrypt S

bits of HstoredðuÞ and then the result will be hashed to

obtain an identification code id0. After the above pro-

cedure, HstoredðuÞ, the Lookup table, and the identifi-

cation code id0 are stored together in a template (called

Bioscrypt by the authors).

In the verification stage (Fig. 3), after inputting the

query fingerprint sample and the Fourier Transforma-

tion operation, the identification code c1ðxÞ is com-

puted according to the HstoredðuÞ in the Bioscrypt.

Through the link algorithm, a key k1 is released from

the Lookup table in the Bioscrypt. id0 is released syn-

chronously to be used for comparing in the next step.

S bits of HstoredðuÞ is encrypted with k1 and the result

is hashed to result in id1. id1 is compared to id0 and

if they are identical the identification succeeds, other-

wise fails.
Biohashing

Biohashing [7] is also a typical Biometric Encryption

algorithm binding biometric and user data. In the
beginning, it uses the fingerprint, followed by face-

hashing [10], palmhashing [11], and so on.

Toeh et al. [7] proposed the two-factor identity

authentication method combining fingerprint and

tokenized random number (i.e., user data). The Wave-

let Fourier Mellin Transformation (WFMT) feature of

fingerprint is employed (Fig. 4) and iterative inner

product operations are performed on WFMT and the

user-specific pseudo-random number stored in the

user’s token (Fig. 5). Quantization is then conducted

on the inner product value according to the preset

threshold. Thus, from a fingerprint image a bit-string

can be obtained, which is used for matching in terms of

Hamming distance.

However, the authentication performance of bio-

hashing will decrease greatly if the token (i.e., the user

data) is stolen by the attacker, which is called the

token-stolen scenario. Related experiments have con-

firmed this point. That is to say, tokenized random

number plays a more important role than the biomet-

ric itself in the biohashing algorithm.

Some subsequent work has focused on improving

the performance in the token-stolen scenario, e.g.,

Lumini and Nanni’s work [12], which are briefly de-

scribed below. They improved the performance by

dramatically increasing the length of the biohashing
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output. The following are the specific solutions leading

to the reported improvement:

1. Normalization: Normalizing the biometric vectors

by their module before applying the BioHashing

procedure, such that the scalar product <x|ori> is

within the range [�1, 1]
2. t Variation: Instead of using a fixed value for t, using
several values for tand combining with the ‘‘SUM

rule’’ the scores obtained by varying t between tmax

and tmin, with p steps of tstep ¼ ðtmax-tminÞ=p
3. Spaces augmentation: Since the dimension of the

projection space m cannot be increased at will,

using more projection spaces to generate more
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BioHash codes per user. Let k be the selected num-

ber of projection spaces to be used; the Biohashing

method is iterated k times on the same biometric

vector in order to obtain k bit vectors bi, i = 1, 2,. . .,

k. Then the verification is carried out by combining

the classification scores obtained by each bit vector

(BioHash code). The random generation can be

performed in an iterative manner, thus requiring

a single Hash key K: in such a way that the random

generator is not reinitialized by a new key until the

complete generation of the k bases is not performed

4. Features permutation: Another way to generate

more BioHash codes, without creating more

projection spaces, is to use several permutation

methods of the feature coefficients in x during

the projection calculation: using q permutations

of x obtained by round-shifting the coefficients of

a fixed amount thus obtaining q bit vectors. As

above the verification is carried out by combining

the classification scores obtained by each bit vector
Fuzzy Vault

The Fuzzy Vault algorithm [9] is a practical method of

binding biometric and user’s private key. It consists of

the following two steps:

1. A user Alice places a secret (K) in the vault, and

locks it with an unordered set A
2. Another user Bob tries to access the secret (K) with

another unordered set B (i.e., unlock the vault)

Bob can access the secret (K) if and only if the two

unordered sets B and A overlap substantially.

Specifically, the Fuzzy Vault can be depicted as

follows:

1. Encoding the Vault: A user Alice selects a polyno-

mial p of variable x encoding K, then computes the

project p(A) of the unordered set A on the polyno-

mial p, thus (A, p(A)) can construct a finite point

set. Some chaff points are then randomly generated

to form R with the point set (A, p(A)); R is the so-

called Vault. The chaff point set is vital to hide the

secret K, and the point numbers in it are more than

the real point set

2. Decoding the Vault: Another user Bob tries to access

the secret (K) with another unordered set B. If the

elements in B and the ones in A overlap substan-

tially, then many points in B will lie in the polyno-

mial p. So Bob can use correction code technology

to reconstruct p, and consequently access the secret

K. However, if a large proportion of points in B and

A do not overlap, due to the difficulty of recon-

structing the polynomial, it is almost infeasible to

attain p over again.

The security of Fuzzy Vault scheme is based on the

polynomial reconstruction problem. This scheme is
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highly suitable for hiding biometric data, because it

works with unordered sets (e.g., fingerprint minutiae),

and can tolerate difference (element number or kind or

both) between the two sets A and B to some extent.

The idea of ‘‘fuzzy fingerprint vault’’ [13] and

‘‘fuzzy vault for fingerprint’’ [4] are also proposed

aiming to solve the problems of fingerprint template

protection. Fuzzy Vault for face [14] and iris [15] have

also been proposed recently.
Performance Evaluation

Performance evaluation of the binding of biometric

and user data should be conducted based mainly on

two aspects: accuracy and security. Accuracy reflects

the effect after binding of biometric and user data as an

enhanced identity authentication way, and security can

provide information on the probability that the system

will be attacked successfully.

1. Accuracy: The accuracy of biometric-like identity

authentication is due to the genuine and imposter

distribution of matching. The overall accuracy

can be illustrated by Receiver Operation Character-

istics (ROC) curve, which shows the dependence of

False Reject Rate (FRR) on False Accept Rate (FAR)

at all thresholds. When the parameter changes,

FAR and FRR may yield the same value, which is

called Equal Error Rate (EER). It is a very impor-

tant indicator to evaluate the accuracy of the bio-

metric system, as well as binding of biometric and

user data.

2. Security: The security of the binding of biometric

and user data depends on the length of user data,

which is converted to binary 0/1 expression. It

assumes the attacker has full knowledge about the

binding method, but can only mount brute-force

attack on the system. So the system security is

weighed by bit length of the user data. Typically,

the security of the iris binding system is 140-bit,and

that of fingerprint is 128-bits. However, typical face

binding algorithm holds only 58-bit security [3].
Summary

Binding of biometric and user data is a kind of tech-

nique to tackle the issues of security and privacy
arising frequently in traditional biometric systems. It

may decrease the accuracy performance to some ex-

tent, but generally, the security and privacy of the

system are enhanced.
Related Entries

▶Privacy Issues

▶ Security Issues, System Design
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Definition

A biometric application is the sum of the functionality,

utilization, and role of a biometric technology in oper-

ation. Biometric technologies such as fingerprint, face

recognition, and iris recognition are utilized in a range

of applications that vary in terms of performance

requirements, operational environment, and privacy

impact. Biometric technology selection – which mo-

dality to utilize and what hardware and software to

deploy – is typically driven in large part by the appli-

cation. Biometric applications can be generalized into

four categories. The first application category is

controlling access to data, such as logging into a device,

PC, or network. The second application category is

controlling access to tangible materials or areas, such

as physical access control. The third application cate-

gory is to validate a claimed identity against an existing

credential, such as in a border control environment.

The fourth application is to register or identify indivi-

duals whose identities need to be established biome-

trically, most often using centralized or distributed

databases. Beyond this high-level decomposition, an

application taxonomy can be defined that spans 12

distinct biometric applications. This taxonomy takes

into account factors such as the user’s motivation and

incentive, the location of biometric data storage and

matching, the nature of the data or materials that the
biometric is protecting, and the role of non-biometric

authentication and identification techniques.
Introduction

The need for secure, reliable identity validation

and confirmation has driven the adoption of bio-

metric technologies in a diverse range of applications.

Biometric applications can be generalized into four

categories. The first application category is control-

ling access to data, such as logging into a device, PC,

or network. The second application category is

controlling access to materials or areas, such as physi-

cal access control. The third application category is to

validate a claimed identity against an existing creden-

tial, such as in a border control environment. The

fourth is to register or identify individuals whose iden-

tities need to be established by biometric means, most

often using centralized or distributed databases. Law

enforcement and military uses of biometrics are pri-

mary examples of this fourth application category.

Though the four generalized functionalities pro-

vide an overview of how biometrics can be applied, a

more detailed taxonomy is required to capture the full

breadth of biometric application. The large majority of

biometric utilization and ▶ deployment can e grouped

into one of twelve applications:

� Law Enforcement (forensics): Biometric technologies

have long been utilized as a secure means to identify

alleged criminals. In this particular application, an

individual’s fingerprints are used to determine or

confirm an identity against a central record store.

The FBI currently holds one of the largest biometric

databases, comprised of tens of millions of civil and

criminal fingerprint records.

� Background Checks: Biometric technologies are used

to execute background checks as a condition of em-

ployment for many government and commercial pro-

fessions. While background checks may be executed

against the same databases used in criminal searches,

the applications differ in that background check or

“civil” records are typically not retained – they are

discarded after the result is returned to the querying

agency.

� Surveillance: Biometric technologies are deployed

locate, track, and identify persons in a field of view

(i.e., in a given space or area). Historically,
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surveillance applications required laborious and mo-

notonous monitoring of cameras. Biometrics auto-

mates the process through the utilization of face

recognition technology; biometric surveillance sys-

tems can be configured to alert officials to the presence

of individuals of interest.4

� Border Control: The ever-increasing volume of inter-

national travel necessitates implementation of tech-

nologies that can automate, streamline, and expedite

border crossing. Driven by international standards

for biometric-enabled passports, as well as ad hoc

regional efforts, countries utilize fingerprints, iris,

and face recognition technologies in border control

applications ranging from localized to nationwide.

Deployed properly, biometrics can ensure that screen-

ing resources are routed toward travelers whose risk

profile is unknown.

� Fraud Reduction: Biometric technology can be

deployed in public-sector applications to prevent

individuals from claiming benefits under multiple

identities. Government agencies have utilized iris

and fingerprint recognition as a means to deter “dou-

ble dipping” at the state and federal levels.

� Trusted Traveler: This application enables users to

traverse security checkpoints with reduced likelihood

of rigorous security inspections. Iris recognition and

fingerprint are the leading technologies in this high-

profile biometric application.

� Physical Access Control: Physical access control is use

of biometrics to identify or verify the identity of

individuals before permitting access to an area. Com-

panies and government agencies deploy technologies

such as fingerprint, hand geometry, and iris recogni-

tion to control key entry and exit points.

� Time and Attendance: Biometrics can serve as a

commercial application to assist in employee man-

agement. In this particular application, devices are

used to track employee attendance. Hundreds of com-

mercial deployments utilize hand geometry and fin-

gerprint recognition to ensure the integrity of work

hours and payroll.

� Consumer Recognition: This application refers to the

confirmation of one’s identity in order to execute a

commercial transaction. Conventional authentica-

tion methods have utilized keycards, PIN numbers

and signatures to ensure the validity of a given trans-

action. Biometrics can reduce reliance on tokens and

passwords and can provide consumers with a sense of

assurance that their transactions are secure.
Fingerprint recognition is a common technology

deployed in this application.

� Remote Authentication: Biometrics provide a secure

method of authentication for remote access to impor-

tant information by allowing mobile device users to

be accurately identified.1 Previous deployments have

utilized fingerprint and voice recognition.

� Asset Protection: This application describes the need

to protect digital information and other sensitive

materials from unauthorized users. One common

application is the use of fingerprint recognition on

safes to protect sensitive documents. Biometrics also

serves to compliment already in-place security meth-

ods such as passwords and user identification on

computer workstations.

� Logical Access Control: Biometrics is used to control

access to systems and/or devices based on physical

characteristics. It is commonly used to control access

to centralized databases, healthcare information, or

financial records. Many deployments have utilized

fingerprint recognition due to its proven reliability,

ease-of-use, and accuracy.

As seen by the aforementioned application descrip-

tions, biometric technology is typically used in applica-

tions where it can improve security, increase efficiency,

or enhance convenience. Additionally, biometrics allow

users to forego the responsibility of creating passwords

and carrying keycards while maintaining a level of

security that meets, and in some cases surpasses, that

of conventional authentication methods.
Discussion

Each application utilizes biometrics as a solution to an

identified authentication problem. There exist, howev-

er, key differentiating factors that help to distinguish

one application from another. Some of these distinc-

tions include the environment in which biometrics has

been implemented, the purpose that biometrics is

intended to serve, and the methods in which

biometrics is utilized to serve its purpose.

The application of biometrics in law enforcement

has utilized fingerprint recognition as a reliable means

to identify criminals. Biometrics enable officials to

conduct automated searches, compare biometric infor-

mation of suspects against local, state, and national

databases, and process mug shot-database
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comparisons.3 A typical deployment would utilize a

live-scan system, AFIS technology including matching

hardware and software, and face recognition software.

Though such a scenario is common for law enforce-

ment related applications, recent trends have begun to

push for mobile biometric devices in order to identify

individuals in the field without the need to retain

suspects for extended periods of time. Law enforce-

ment applications of biometrics are unique in that they

implement widely-adopted standards for imaging,

data transmission, and file formats. These standards

allow jurisdictions to share fingerprint and face data in

an interoperable fashion, even when biometric hard-

ware and software are sourced from different suppliers.

Increasingly, law enforcement biometric systems are

deployed to search suspected terrorist data as well as

data collected in military applications.

Background checks utilize biometric systems to de-

termine the identity of an individual and to retrieve his

or her historical records. Biometric background check

systems collect high-quality fingerprints for submission

to state or federal systems that determine whether a

given set of fingerprints is linked to criminal or other

derogatory records. For example, some government

agencies require individuals to submit biometric data

for employment purposes. Fingerprint recognition tech-

nology is primarily used due to the extensive collection

of fingerprint images currently held by government

officials.

Surveillance applications utilize biometric technol-

ogy, primarily face recognition, to locate and identify

individuals without their awareness. Such applications

are designed to collect biometric data without an ex-

plicit, direct presentation. By contrast, fingerprint and

vein recognition technologies require individuals to

voluntarily submit biometric measurement to the

device. Surveillance application can, however, measure

one’s biometrics from a distance. A typical deployment

would be to implement biometrics into already-

existing security cameras or to install customized cam-

eras whose resolution and performance characteristics

are sufficient for acquisition of enrollable face images.

In the future, gait recognition is envisioned as a sur-

veillance technology capable of operating at greater

distances than face recognition.2 The technology

could then notify officials to the presence of specific

individuals in highly trafficked areas such as airport

terminals. One challenge facing biometric surveillance

is individual movement. Previously deployed systems
have shown that quick and sudden actions can cause

recognition performance to decrease. Some implemen-

ters have attempted to overcome this challenge by

installing cameras in locations in which movement is

limited such as entrances and staircases.

Border control focuses upon the management of

international borders at targeted locations. At busy

points of entry, it can be a difficult process to accu-

rately and efficiently identify individuals. A common

solution is to compliment conventional security pro-

tocols, such as identification cards, with biometric

security methods such as fingerprint devices. This

allows for 1:1 biometric matches that can reduce the

time required to confirm the user’s identity. There

are some complications, however, when implementing

biometrics into border management. One challenge

typically faced is the assurance of cross-jurisdictional

interoperability. It can prove to be difficult to have

bordering nations to agree upon a single standard.

Biometric technology can provide a considerable

financial benefit to both the government and general

public. Biometric systems are deployed in public ser-

vices applications for fraud reduction, detecting and

deterring the use of multiple identities to receive enti-

tlements such as welfare payments. If a previously

enrolled individual attempts to claim another identity,

the biometric system recognizes this and officials are

alerted. Past deployments have utilized stationary fin-

gerprint or iris recognition systems that have been

installed within government facilities.

The trusted traveler application enables frequent

travelers to bypass extensive and time consuming

security check points after their initial enrollment. At

enrollment, passengers submit their identification

information and biometric data, which is then used

to conduct a background check. Once the individual

has been cleared as non-threatening and their identity

is verified, the agency can then distribute a specialized

traveler’s smart card that contains the traveler’s infor-

mation and biometric data.3 With this smart card,

the traveler can utilize specialized security checkpoints

to gain access to airport terminals quickly and conve-

niently. Terminals install automated systems that

determine whether to deny or grant access to the

traveler based on their biometric information. Typical

trusted traveler systems utilize gated entry points to

prevent forced entry, smart cards that store biometric

templates, and face, fingerprint, or iris recognition

technology to verify the individual’s identity. The
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commercial benefits of trusted traveler programs ac-

crue when a critical mass of registrants is reached, as

well as when additional programs are incorporated

into the “trusted” framework.

Biometric physical access control deployments are

most often implemented to control employee access to

secure or protected areas. Typically, the biometric

reader is installed as a stationary system in which the

user must verify his or her identity against a card-

based, reader-based, or centralized template. Physical

access control is one of the most well-established bio-

metric applications, with hundreds of devices on the

market ranging from inexpensive, standalone finger-

print readers to highly automated iris recognition

devices. Fingerprint, face recognition, hand geometry,

and vein recognition are also commonly deployed for

physical access control.

Aside from maintaining a high level of security,

biometric applications can help to serve the commercial

sector for financial benefits. Biometrics used for time

and attendance confirm the presence of an individual

at a specific time, date, and location. Because of

the potential difficulty of tracking the hours of

thousands of employees at larger facilities, time and

attendance applications allow management to auto-

matically eliminate the possibility of “buddy-punch-

ing”, tardiness, or absence without their knowledge.

Automating this process can also lead to time savings

with payroll management. Hand geometry recognition

and fingerprint are the most-frequently deployed bio-

metric technologies in this application. Deployers

often need to overcome the learning curve associated

with device acclimation and the challenge of end-user

acceptance.

Biometrics are deployed in financial sector applica-

tions to provide convenience and security for the con-

sumer. Numerous banks have deployed fingerprint

and vein recognition technology at ATMs as a method

to enhance identification and security. The use of

biometric technology bypasses the need for users to

carry identification cards and to remember lengthy

PIN numbers. Another possible application of bio-

metric technology within the financial sector is to use

biometrics in customer service call centers. This spe-

cific example utilizes voice recognition technology to

bypass the need for customers to provide their identi-

fication details and verify their information. Instead,

voice recognition technology automates the customer

authentication process, and allows representatives to
immediately aid the consumer, saving time and in-

creasing productivity.

Remote authentication utilizes biometrics to verify

individuals in different locations, and allows for unsu-

pervised secure authentication. Web-based financial

transactions without biometrics typically consist of an

extended identification number, PIN number, and/or

user information to verify an individual as authorized.

This single factor authentication, however, can be easily

replicated. Biometric technologies such as voice recog-

nition or mobile fingerprint recognition can provide an

added layer of security to reduce customer fraud.

Biometric logical access control applications allow

authorized users to gain access to systems or devices

containing highly sensitive information such as health-

care information and financial records. A common

approach would be to utilize inexpensive fingerprint

peripherals (for workstations) or integrated fingerprint

devices (for laptops). The user must provide his or her

biometric information in order to gain access to sensi-

tive device or system. It can be a challenge to deploy

biometrics for logical access control because end-users

may feel uncomfortable with supplying such personal

information to gain access to information. It would be

crucial to provide sufficient lead time for users to

become accustomed wit the device and aware of what

information is being recorded and not recorded.
Summary

Biometrics technologies are currently deployed in a

wide range of mission-critical government and com-

mercial applications. Due to its wide range of func-

tionality, biometric technology can be utilized in a

number of applications to provide an added-level

of security and convenience beyond that of conven-

tional security methods. Additionally, biometrics can

be implemented in parallel with legacy systems to

enable a gradual transition from conventional security

systems to enhanced biometric security. As seen from

previous deployments, some biometric modalities bet-

ter serve one application than another; limiting factors

include environment, size, and end-user compliance.

Though each application serves its own purpose, ap-

plying biometrics achieves the overarching goal of ac-

curately identifying or verifying an individual’s

identity while enhancing security, efficiency, and/or

convenience.
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Related Entries

▶Access Control, Logical

▶Access Control, Physical

▶ ePassport

▶ Law Enforcement

▶ Surveillance

▶Time and Attendance
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Biometric Capture
It refers to the stage of the biometric authentication

chain in which the biometric treat is transformed into

an electrical signal, which is useful for further

processing.

▶Biometric Sensor and Device, Overview
Biometric Capture Device
Biometric capture device is a device that captures sig-

nal from a biometric characteristic and converts it to a

digital form (biometric sample) suitable for storing,

and automated comparison with other biometric

samples.

▶ Fingerprint Image Quality
Biometric Characteristic
Biological and behavioral characteristic of an individ-

ual that can be detected and from which distinguish-

ing, repeatable biometric features can be extracted

for the purpose of automated recognition of indivi-

duals. Biological and behavioral characteristics are

physical properties of body parts, physiological and

behavioral processes created by the body and combi-

nations of any of these. Distinguishing does not neces-

sarily imply individualization (e.g., Galton ridge

structure, face topography, facial skin texture, hand

topography, finger topography, iris structure, vein

structure of the hand, ridge structure of the palm,

and retinal pattern).

▶Multibiometrics and Data Fusion, Standardization
Biometric Cryptosystem
Biometric cryptosystems refer to systems which can

be used for securing a cryptographic key using

some biometric features, for generating a cryptograph-

ic key from biometric features, or to a secure biometric

template. Specifically, the following operational modes

can be identified. In the key release mode the crypto-

graphic key is stored together with the biometric tem-

plate and the other necessary information about the

user. After a successful biometric matching, the key is

released. In the key binding mode, the key is bound to

the biometric template in such a way that both of them

are inaccessible to an attacker and the key is released

when a valid biometric is presented. It is worth pointing

out that no match between the templates needs to be

performed. In the key generation mode, the key is

obtained from the biometric data and no other user

intervention besides the donation of the required

biometrics is needed.

▶Encryption, Biometric

▶ Iris Template Protection

▶ Security Issues, System Design
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Biometric Data
B

Biometric data, also called biometric sample or biomet-

ric record, is any data record containing a biometric

sample of any modality (or multiple modalities), wheth-

er that data has been processed or not. Biometric data

may be formatted (encoded) in accordance with a stan-

dard ormay be vendor specific (proprietary) andmay or

may not be encapsulated with themetadata. Examples of

biometric data include a single compressed fingerprint

image, a four-finger slap image formatted as an ANSI/

NIST ITL1-2000 Type-14 record, a record containing

fingerprint minutiae from the right and left index fin-

gers, a digital passport face photo, two iris images within

a CBEFF structure, or an XML encoded voice sample.

▶Biometric Interfaces
Biometric Data Acquisition
▶Biometric Sample Acquisition
Biometric Data Block (BDB)
▶Biometric Data Interchange Format, Standardization
Biometric Data Capture
▶Biometric Sample Acquisition
Biometric Data Interchange Format
▶Biometric Data Interchange Format, Standardization
Biometric Data Interchange Format,
Standardization
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Synonyms

Biometric Data Interchange Format; Biometric Data

Block (BDB); Biometric Reference
Definitions

Biometric Data Interchange Formats define an encod-

ing scheme according to which biometric data is stored

in a ▶ biometric reference. In most cases the stored

data will be used for future comparisons with biomet-

ric data stemming from the same or different subject.

Encoded data should not only contain a digital repre-

sentation of a ▶ biometric characteristic (e.g., finger-

print image, face image) but also relevant metadata

that impacted the capturing process (e.g., resolution

of fingerprint sensor). Standardized Data Interchange

Formats are a fundamental precondition to implement

open systems where biometric data can be processed

with components of different suppliers.
Introduction

Biometric systems are characterized by the fact that

essential functional components are usually dislocated.

While the enrolment may take place as part of an

employment procedure in a personal office or at a

help-desk, the biometric verification often takes place

at different location and time. This could occur when

the claimant (the data subject) approaches a certain

physical access gate or requests logical access to an IT

system. No matter whether the recognition system

operates in verification or identification mode, it

must be capable to compare the fresh biometric data

captured from the subject with the stored reference

data. Applications vary in the architecture, especially

with respect to the storage of the biometric reference.
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Some applications store the reference in a database

(either centralized or decentralized), while other applica-

tions use token-based concepts like the ePassport [1] in

which subjects keep control of their personal biometric

data as they decide for themselves whether and when

they provide the token to the controlling instance [2].

The recognition task is likely to fail if the biometric

reference is not readable according to a standardized

format. While closed systems that are dedicated to spe-

cific applications – say access control to a critical infra-

structure – could be designed on proprietary format

standards only, any open system implementation

requires the use of an interoperable, open standard to

allow for enrolment and recognition components to be

supplied from different vendors. An operator should

also be able to develop a system such that generators

(and also verifiers) of biometric references can be

replaced – should one supplier fail to guarantee service.

Furthermore, it is desired that the same biometric refer-

ence could be used in different applications: It may serve

as a trusted traveler document or as ID for eGovern-

ment applications. Applications that may be quite dif-

ferent in nature will require the biometric data to be

encoded in one harmonized record format. Due to the

nature of the different biometric characteristics being

observed, an extensive series of standards is required.

Some biometric systems measure stable biological char-

acteristics of the individual that reflect anatomical and

physiological structures of the body. Examples of these

types are facial or hand characteristics. Other biometric

systems measure dynamic behavioral characteristics,

usually by collecting measured samples over a given

time span. Examples are signature/sign data that is

captured with digitizing tables or advanced pen systems

or voice data that is recorded in speaker recognition

systems. The ISO/IEC JTC1/SC37 series of standards

known as ISO/IEC IS 19794 (or the 19794-family)

meets this need. This multipart standard includes cur-

rently 13 parts and covers a large variety of biometric

modalities ranging from finger, face, iris, signature,

hand-geometry, 3-D face, voice to DNA data.

Many applications embed the biometric data as a

▶Biometric Data Block (BDB) in a data container

such as the Common Biometric Exchange Format

Framework (CBEFF) [3] that provide additional func-

tionality such as integrity protection of the data

through digital signatures or the storage of multiple

recordings from various biometric characteristics in

one data record. Thus the CBEFF container is also
appropriate to represent data for multimodal biomet-

ric systems. The BDB is a concept described in the

CBEFF standard. The CBEFF standard is a component

of the SC37 layered set of data interchange and inter-

operability standards.
Format Structures

The prime purpose of a biometric reference is to repre-

sent a biometric characteristic. This representation

must allow a good biometric performance when being

compared to a fresh verification sample as well as allow-

ing a compact coding as the storage capacity for some

applications (e.g., the RFID token with 72 Kbytes) may

be limited. A further constraint is that the encoding

format must fully support the interoperability require-

ments. Thus, encoding of the biometric characteristic

with a two-dimensional digital representation of, e.g., a

fingerprint image, face image, or iris image is a promi-

nent format structure formany applications. The image

itself is stored in standardized formats that allow high

compression ratio. Facial images are stored according

to JPEG, JPEG2000. For fingerprint images a Wavelet

Scalar Quantization (WSQ) has been proven to be a

highly efficient encoding. It can be shown that a 300

kbyte image can be compressed to a 10 KByte WSQ file

without compromising the biometric performance [4].

Compression formats such as JPEG2000 furthermore

can encode a specific region of interest in higher quali-

ty using limited compression, and more aggressively

compress the remainder background image. A good

example is the encoding of the iris in high resolution,

while all other areas of the image such as the lids may

essentially be masked out. In such a case, images can

be compressed down to 2.5 KByte and still yield an

acceptable performance [5].

Nonetheless SmartCard-based systems such as the

European Citizen Card [6] or the U.S. PIVCard [7] not

only require further reduction of the format size but

also a good computational preparation of the compar-

ison step especially in environments with low compu-

tational power. Comparison-On-Card is an efficient

concept to realize privacy protection: The relevant

concept is that the biometric reference is not disclosed

to the potentially untrusted recognition system. Hence

the fresh recognition sample is provided to the card

and comparison and decision are performed by the

trusted SmartCards. Samples are encoded in a template
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format, as a vector of individual features that were

extracted from the captured biometric sample. This

process is quite transparent as for example in the finger-

print analysis: The essential features of a fingerprint are

minutia locations (ridge endings and ridge bifurcations)

and directions and potentially extended data such as

ridge count information between minutia points. This

data is relevant information for almost every fingerprint

comparison subsystem and standardizing a minutia for-

mat was a straightforward process [8].

These feature-based format standards encode only

the structured information – none of the various con-

cepts and algorithms that extract minutia points has

been included in the standardization work. Many

approaches for these tasks have been published in the

academic literature; nevertheless, solutions in products

are considered as intellectual property of the suppliers

and therefore usually not disclosed.

Furthermore, it became necessary to cope with

different cultures in identifying minutia points. Thus

minutia definitions based on ridge ending versus defi-

nitions based on valley skeleton bifurcations became

sub-types of the standard. While these ambiguities

cover the variety of approaches of industrial imple-

mentations, an impressive interoperability can still

be achieved, as it was proven in two independent

studies [9, 10].

Requirements from biometric recognition applica-

tions are quite diverse: Some applications are tuned on

high biometric performance (low error rates) in an

identification scenario. Other applications are tuned

to operate with a low capacity token in a verification

scenario. Where database systems are designed, the

record format sub-type is the appropriate encoding.

In other applications the token capacity may be ex-

tremely limited and thus the card format sub-type that

exists in ISO/IEC IS 19794 for the fingerprint data

formats in Part 2, 3 and 8 is the adequate encoding.

Other parts such as 19794-10, which specifies the

encoding of the hand silhouette, have been designed

to serve implementations that are constrained by stor-

age space. In general the concept of compact encoding

with the card format is to reduce the data size of a BDB

down to its limits. This can be achieved when necessary

parameters in the metadata are fixed to standard

values, which makes it obsolete to store the header

information along with each individual record.

For all data interchange formats it is essential to

store along with the representation of the biometric
characteristic essential information (metadata) on the

capturing processing and the generation of the sample.

Note that in the case of the card format sub-type fixed

values may be required as discussed above. Metadata

that is stored along with the biometric data (the bio-

metric sample at any stage of processing) includes

information such as size and resolution of the image

and (e.g., fingerprint image, face image) but also rele-

vant data that impacted the data capturing process:

Examples for such metadata are the Capture Device

Type ID, that identifies uniquely the device that was

used for the acquisition of the biometric sample and

also the impression type of a fingerprint sample, which

could be a plain live scan, a rolled live scan, non-live

scan or stemming from a swipe sensor. Furthermore,

the quality of the biometric sample is an essential

information that must be encoded in the metadata.

In general, an overall assessment of the sample quality

is stored on a scale from 0 to 100, while some formats

allow additional local quality assessment such as the

fingerprint zonal quality data or minutia quality in

various fingerprint encoding standards [8, 11]. The

rationale behind this quality recording is to provide

information that might weigh into a recapture deci-

sion, or to drive a failure to acquire decision. A bio-

metric system may need to exercise quality control on

biometric samples, especially enrollment, to assure

strong performance, especially for identification sys-

tems. Furthermore, multimodal comparison solutions

should utilize quality to weigh the decisions from the

various comparison subsystem to improve biometric per-

formance. Details on how to combine and fuse different

information channels can be found in the ISO technical

report on multibiometric fusion [12]. A local quality

assessment may also be very meaningful as environ-

mental factors (such as different pressure, moisture, or

sweat may locally degrade the image quality of a fin-

gerprint) and thus degrade biometric performance.

In general the metadata in an ISO data interchange

format is subdivided into information related to the

entire record which is stored in the general header and

specific information related to one individual view,

which is stored in the view header. The existence of

multiple views is of course dependent on the applica-

tion and the respective modality used. In the case of a

fingerprint recognition system it is a common ap-

proach, in order to achieve a higher recognition per-

formance, to store multiple views such as right and left

index finger together as separate views in one BDB.
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The general structure of ISO data interchange for-

mat standards is:

1. General header

2. View 1 (mandatory)

a. View header

b. View data

3. Views 2-N (optional)

a. View header

b. View data

This structure is not yet implemented in all Parts of

ISO/IEC 19794, but harmonization in this regard is

expected in the revision process of these standards.

Common elements of the general header are the

format identifier, the version number of the standard,

the length of the record, Capture Device ID, the num-

ber of views in the record, and other complementary

information.

Elements of the view header are dependent on the

modality in use. Typical represented information for a

biometric fingerprint sample includes the finger posi-

tion (right thumb, right index finger, . . ., left index

finger, . . ., left little finger), the view number (in the

record), the impression type (live-scan plain, live-scan

rolled, etc.), finger quality, and number of minutia.

Often, the mere specification for the encoding of

the biometric data and the metadata is not enough

to assure interoperability. For some biometric modal-

ities, the context of the capture process is also impor-

tant, and best practices for the capture procedures of the

biometric characteristics are described in the standards.

The capture of face images suitable for biometric com-

parison is described in an amendment to ISO/IEC

IS 19794-5 [13]. This amendment provides suitable

constraints for illumination, backgrounds, and how

to avoid shadows on the subject’s face. Other stan-

dards, such as the iris standard ISO/IEC IS 19794-6

include such information in an annex of the base

standard [14].
Published Standards

After the international subcommittee for biometric

standardization, SC37, was founded in 2002 [15]. The

first standards were already published after an ex-

tremely short preparation period in summer 2005.

Standardization in the field of information tech-

nology is pursuit by a Joint Technical Committee
(JTC) formed by the International Organization for

Standardization (ISO) and the International Electro-

technical Commission (IEC). An important part of the

JTC1 SC37 subcommittee’s activities is the definition

of data interchange formats in its Working Group 3

(WG3) as described in the previous section. WG3 has,

over its first years of work concentrated on the devel-

opment of the ISO 19794 family, which includes cur-

rently the following 13 parts:

Part 1: Framework (IS)

Part 2: Finger minutiae data (IS)

Part 3: Finger pattern spectral data (IS)

Part 4: Finger image data (IS)

Part 5: Face image data (IS)

Part 6: Iris image data (IS)

Part 7: Signature/Sign time series data (IS)

Part 8: Finger pattern skeletal data (IS)

Part 9: Vascular image data (IS)

Part 10: Hand geometry silhouette data (IS)

Part 11: Signature/Sign processed dynamic data (WD)

Part 12: - void -

Part 13: Voice data (WD)

Part 14: DNA data (WD)

The first part includes relevant information that is

common to all subsequent modality specific parts such

as an introduction of the layered set of SC37 standards

and an illustration of a general biometric system with a

description of its functional sub-systems namely the

capture device, signal processing sub-system, data stor-

age sub-system, comparison sub-system, and decision

sub-system. Furthermore, this framework part illus-

trates the functions of a biometric system such as

enrolment, verification, and identification, and explains

the widely use context of biometric data interchange

formats in the CBEFF structure.

Part 2–Part 14 then detail the specification and pro-

vide modality related data interchange formats for both

image interchange and template interchange on feature

level. The 19794-family gained relevance, as the Interna-

tional Civic Aviation Organization (ICAO) adopted

image-based representations for finger, face, and iris for

storage of biometric references in Electronic Passports

[13, 14, 16]. Thus the corresponding ICAO standard

9303 includes a normative reference to ISO 19794 [17].

Another relevant standard for the global exchange

of biometric data has been developed by the National

Institute of Standards and Technology (NIST) as

American National Standard [18]. This data format
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is the de-facto standard for the interchange of finger-

print and facial information for forensic purposes

among criminal police institutions. It is also intended

to be used in identification or verification processes.

This standard supports fingerprint images, fingerprint

minutia, iris images, face images, as well as support for

any CBEFF encapsulated biometric data.

The American and Japanese standardization com-

mittees are developing national standards in parallel to

the SC37 international standards. Many of the projects

inside SC37 had been initiated by and received signifi-

cant support from national standard developments.

However with the full constitution of SC37 as one of

the most active and productive committees inside the

JTC1 many national standardization committees – and

essentially all European countries – have stopped the

development of pure national standards. Most of the

available resources are now focused on and invested in

the development and procurement of international

standards with the JTC1.
Interoperability and Future Needs

With the current set of data format standards open

biometric systems can be developed, which can provide

interoperability among suppliers. However, as the prime

purpose of a biometric system is to achieve a good

recognition performance, a core objective is to achieve

a good interoperability performance, e.g., the perfor-

mance associated with the use of a generator and com-

parison subsystems from different suppliers. This goal

of good interoperability performance can be achieved

when conformance of each supplier to the data form

standard is reached. The concept of conformance testing

supports customers and suppliers. A conformance test-

ing protocol verifies that data records generated by an

implementation are compliant to the standard. Testing

can be subdivided in three levels:

1. Data format conformance: proof that data fields

specified in a data format standard do exist and

are filled in a consistent manner. The result of this

test indicates whether all the fields are included and

values in those fields are in the defined range. This

check is conducted on a field-by-field and byte-by-

byte operation and is often referred to as ‘‘Level 1

conformance testing.’’

2. Internal consistency checking: In the second level of

conformance testing the data record is tested for
internal consistency, such as relating values from

one field of the record to other parts or fields of the

record are conformant. This test is often referred to

as ‘‘Level 2 conformance testing.’’

3. Semantic conformance: In the third level of

conformance testing the values in the data fields are

investigated whether or not they are faithful repre-

sentation of the biometric characteristic, e.g., for a

fingerprint image whether minutia points identified

are indeed bifurcation or end points of papillary

ridges. The test requires standardized sample data

on the one hand and elaborated semantic confor-

mance tests, that are yet not developed.

Along with the definition of conformance testing stan-

dards, the standardization of sample quality standards

is the most important and pressing work to be solved

in SC37. The standardization of quality scores is im-

portant as it allows for increased interoperability of

reference data. The system that utilizes a biometric

reference enrolled under a different quality policy

may still be able to leverage that reference if it can

understand and make use of the quality information

relevant to that biometric reference. Thus, the quality

standards and technical reports provide guidance to

assure interoperability. The technical reports provide

guidance about what is relevant to comparability that

should be measured for a given biometric characteris-

tic. Currently, quality standardization exists for an

overall framework, along with guidance for fingerprint

images and face images.

The SC37 standards community has also initiated

the revision projects for the 19794 standards. This revi-

sion process will not only enable further harmonization

of all 19794-parts under one framework, but also respect

technology innovations and discuss options, whether or

not for future-proof usage of the standard the encoding

of the data fields should support an XML encoding.
Related Entries

▶Biometric System Design, Overview

▶Common Biometric Exchange Formats Framework

Standardization

▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of

▶ Face Image Data Interchange Format

▶ Finger Data Interchange Format, International

Standardization
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▶ Iris Image Data Interchange Formats, Standardization
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▶Vascular Image Data Format, Standardization
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A BDIR is a data package containing biometric data
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biometric data interchange format standard.
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Biometric Data Interchange
Standard
Biometric Data Interchange Standard is a published

documentary specification of a data record for clear

exchange of subject’s biometric data between two
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▶Biometric Sensor and Device, Overview
Biometric Encryption
▶Encryption, Biometric
Biometric Engines
▶Biometric Algorithms
Biometric Features
Biometric features are the information extracted from

biometric samples which can be used for comparison

with a biometric reference. For example, characteristic

measures extracted from a face photograph such as eye

distance or nose size etc. The aim of the extraction of

biometric features from a biometric sample is to re-

move superfluous information which does not con-

tribute to biometric recognition. This enables a fast

comparison and an improved biometric performance,

and may have privacy advantages.
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Definition

Biometric Identity Assurance Services, or BIAS, is

a collaborative standards project between the Inter-

national Committee for Information Technology

Standards (INCITS), Technical Committee M1 –

Biometrics and the Organization for the Advancement

of Structured Information Standards (OASIS). BIAS

provides an open framework for deploying and invoking

biometric-based identity assurance capabilities that can

be readily accessed using services-based frameworks.

BIAS services provide basic biometric identity assurance

functionality as modular and independent operations

that can be assembled in many different ways to perform

and support a variety of business processes.
Introduction

In reviewing the current biometric-related standards

portfolio and ▶ service-oriented architecture (SOA)

references, it became apparent that a gap exists in the

availability of standards related to biometric services.

There are several existing biometric-related standards

describing how to format either biometric data specif-

ically or transactions containing identity informa-

tion (including biometric information) for use in a

particular application domain. However, these standards

do not readily fit into an SOA. As enterprise architectures

are increasingly built on SOA models and standards,

biometric applications, such as those that perform bio-

metric capture functions, require a consistent set of ser-

vices to access other biometric-based resources. In this

context, a biometric resource could be a database with

biometric information, a one-to-many search engine, or

a system that performs one-to-one verifications. BIAS

seeks to fill the gap by standardizing a set of biometrics-

based identity assurance capabilities that applications

can invoke remotely across a services-oriented frame-

work in order to access these biometric resources.
Scope

Although focused on biometrics, BIAS recognizes that

there are nonbiometric elements to an identity. While

the services have been built around biometric-related

operations, nonbiometric information can be referenced

in several of the service calls. BIAS services do not
prescribe or preclude the use of any specific biometric

type. BIAS is primarily focused on remote service invo-

cations, and therefore, it does not deal directly with

any local biometric devices. Recognizing the need for

vendor independence, BIAS attempts to be technology,

framework, and application domain independent.

BIAS establishes an industry-standard set of prede-

fined and reusable biometric identity management ser-

vices that allow applications and systems to be built

upon an open-system standard rather than implement-

ing customone-off solutions for each biometric resource.

BIAS defines basic biometric-related business level opera-

tions, including associated data definitions, without con-

straining the application or business logic that

implements those operations. The basic BIAS services

can be assembled to construct higher level, composite

operations that support a variety of business processes.
INCITS and OASIS Collaboration

The development of the BIAS standard requires expertise

in two distinct technology domains: biometrics, with

standards leadership provided by INCITS M1 [1], and

service architectures, with standards leadership

provided by OASIS [2]. The two groups are collabor-

ating to produce two associated standards. The

INCITS M1 standard [3] defines biometric services

used for identity assurance, which are invoked over

a services-based framework. It is intended to provide

a generic set of biometric (and related) functions and

associated data definitions to allow remote access to

biometric services. The related OASIS standard [4]

specifies a set of patterns and bindings for the imple-

mentation of BIAS operations (which are defined

in the INCITS M1 standard) using Web services and

service-oriented methods within XML-based transac-

tional Web services and service-oriented architectures.

Existing standards are available in both fields and

many of these standards provide the foundation

and underlying capabilities upon which the biometric

services depend. The INCITS standard leverages the exist-

ing biometric and identity-related standards and formats.

The OASIS standard leverages known information ex-

change and assurance patterns (such asmessage reliability

acknowledgments), and functions (such as repository use

and calls) arising in service-oriented systems, and poten-

tially leverages those functions and features that are al-

ready embedded in existing SOAmethods and standards.
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Currently, the INCITS M1 standard has been pub-

lished as INCITS 442. The OASIS standard, which

depends on the INCITS M1 standard, is still in draft

form in the OASIS technical committee and is expected

to be finalized in 2009.

Architecture

The BIAS architecture consists of the following com-

ponents: BIAS services (interface definition), BIAS
Biometric Identity Assurance Services. Figure 1 BIAS Applic

INCITS 422-2008 with permission of the American National Stan

Technology Industry Council (ITIC). No part of this material may

system or otherwise, or made available on the Internet, a public

consent of the ANSI. Copies of this standardmay be purchased f

642-4900, http://webstore.ansi.org.
data (schema definition), and BIAS bindings.

The BIAS services expose a common set of opera-

tions to external requesters of these operations.

These requesters may be an external system, a Web

application, or an intermediary. The BIAS services

themselves are platform and language independent.

The BIAS services may be implemented with differing

technologies on multiple platforms. For example,

OASIS is defining Web services bindings for the BIAS

services.
ation Environment. ITIC. This material is reproduced from

dards Institute (ANSI) on behalf of the Information

be copied or reproduced in any form, electronic retrieval

network, by satellite, or otherwise without the prior written

rom the ANSI, 25West 43rd Street, New York, NY 10036, (212)

http://webstore.ansi.org
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Figure 1 depicts the BIAS services within an appli-

cation environment. BIAS services provide basic bio-

metric functionality as modular and independent

operations that can be publicly exposed directly and/

or utilized indirectly in support of a service-provider’s

own public services.
Services

BIAS defines two categories of services: primitive and

aggregate. Primitive services are basic, lower-level opera-

tions that are used to request a specific capability. Aggre-

gate services operate at a higher-level, performing a

sequence of primitive or other operations in a single

request. An example of an aggregate service would be

where a one-to-many search (identify), which results in a

‘nomatch,’ is immediately followed by the addition of the

biometric sample into that search population (enroll).

BIAS provides primitive services for the following

areas:

1. Manage subject information: adding or deleting

subjects, or associating multiple subjects into a

single group.

2. Managing biographic information: adding, updat-

ing, deleting, or retrieving biographic information

on a particular subject.

3. Managing biometric information: adding, updat-

ing, deleting, or retrieving biometric information

on a particular subject.

4. Biometric searching/processing: performing bio-

metric one-to-one or one-to-many searches, check-

ing biometric quality, performing biometric fusion,

or transforming biometric data from one format to

another.

BIAS also defines several aggregate services. The intent of

BIAS is to standardize the service request; organizational

business rules will determine how the service is actually

implemented. The standard aggregate services include

Enroll, Identify, Verify, and Retrieve Information.
Summary

The BIAS standard represents the first collaboration

between INCITS M1 and OASIS, bringing these two

organizations together to define a set of standardized

biometric services that can be invoked within a

services-oriented framework. The services are defined
at two levels and correspond to basic biometric opera-

tions. BIAS is technology and vendor independent, and

therefore, it may be implemented with differing tech-

nologies on multiple platforms.
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another. These components may be devices, software,

or entire systems. Implied in this definition is the

exchange of information – generally that of biometric

data. Interfaces are key elements of biometric system

architecture and design and provide the basis for

interoperability.
Introduction

Biometric systems are composed of subsystems and

components, the configuration and interrelationship

of which describe the system architecture. For the

system to function, these components must interact

with one another across intra-system interfaces. The

system itself may be a part of a larger ‘‘system of

systems’’ in which inter-system interfaces also exist.

In a biometric (or biometrically enabled) system, the

interface involves the exchange of biometric data or

the invocation of ▶ biometric services.

Biometric interfaces exist at a variety of levels –

from low-level internal interfaces within a capture

device, for instance, to inter-system messaging inter-

faces, such as between law enforcement systems in

different countries (Fig. 1).

The biometric process involves a series of steps in-

cluding data collection (capture), processing (fea-

ture extraction), storage, and matching depending

on the operation (i.e., enrollment, verification, or
Biometric Interfaces. Figure 1 Interface Types and Levels.
identification). Biometric data may be transferred be-

tween components performing these operations or to

an application controlling or using the results of the

operation. A biometric interface exists whenever bio-

metric data is transferred from one system component

to another, internally or externally. The following sec-

tions describe data interchange, device interfaces, appli-

cation programming interface and communications,

and messaging interfaces.
Data Interchange

▶Biometric data may exist in a variety of forms –

‘‘raw’’ biometric sample data captured by a sensor

device, partially processed data (e.g., a biometric sam-

ple that has undergone a degree of image processing),

or a fully processed biometric reference template or

recognition sample suitable for matching. Likewise,

this data may be formatted and encoded in different

ways. An image, for example, can be compressed or

uncompressed. Biometric data may exist as a single

sample or be packaged together with other like or

unlike samples from the same individual. It may exist

in a proprietary format or in a standard format, with

or without associated metadata.

Whenever data is exchanged between components

or systems, the format and encoding of that data must

be understood by both the sending and the receiving
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entities. This implies that the format information is

defined in a document of some type. If both ends of the

interface are owned/controlled by the same entity (e.g.,

a device manufacturer) then the definition may be

less formal or be contained within some larger spe-

cification. As the relationship between the endpoints

becomes more loosely coupled, more formal and rig-

orous data definitions are needed.

In a closed system, the data format can be whatever

works. It can be highly customized and proprietary. In

open systems, however, data formats need to be stan-

dardized so that they can be understood by a wide

variety of producers and consumers of biometric

data. Today, data interchange format standards exist

for most modalities, although at the raw/image levels.

Standard template formats exist only for fingerprint

biometrics.

In addition to the biometric data itself, standards

exist for encapsulating (‘‘packaging’’) that data. This

includes defined structures, standard metadata headers,

and security information. Examples of such standards

are the Common Biometric Exchange Formats Frame-

work (CBEFF) and ANSI/NIST ITL1-2007 [1, 2].

More information on data interchange standards

can be found in the chapter on Standardization.
Device Interfaces

Biometric sensor devices capture biometric data and

sometimes provide additional capabilities to process,

store, and/or match it. For an application to integrate

a biometric device, an interface to that device must

exist and be defined. This includes the physical inter-

face, the communications protocol, and the data/

message exchange.

Physical interfaces to biometric devices generally

utilize industry standards which define both the physical

interface and communications protocols. Because bio-

metric data samples (especially raw data such as images)

can be very large, an interface that provides adequate

speed and bandwidth is desirable. In the early days of

electronic fingerprint scanners, IEEE 1284 parallel inter-

faces were the norm. Today, the Universal Serial Bus

(USB) or IEEE 1394 (‘‘Firewire™’’) are more commonly

used. Some biometric sensors are commodity items

such as cameras, microphones, or signature pads.

A common software interface for devices is TWAIN

whose purpose is to provide and foster a universal
public standard which links applications and image

acquisition devices. It supports image acquisition

from a scanner, digital camera, or another device and

imports it directly into an application. Many commod-

ity devices provide TWAIN-compliant device drivers.

To interface to a biometric device from a software

application, operating system (OS) support is re-

quired. This is generally accomplished via a ‘‘device

driver’’. Most devices provide Windows™ device dri-

vers; however, support for other platforms (such as

Linux, Unix, OS2, etc.) is a bit more spotty.

In addition to the device drivers, biometric device

manufacturers usually provide software developer kits

(SDKs) to control and access the functionality of their

device. Applications interface to SDKs via a defined

application programming interface (API) as described

in the following.
Software Interfaces

Biometric software modules are components that pro-

vide a set of biometric functions or capabilities via

a software interface. This includes biometric proces-

sing and matching algorithms or control of a biometric

device. Reusable software packages are called SDKs.

Biometric SDKs with standardized interfaces are called

biometric service providers (BSPs).

APIs can be either ‘‘high level’’ or ‘‘low level’’. In

terms of biometrics, a high level API provides a set of

more abstract, generalized functions (e.g., ‘‘Enroll’’)

whereas a lower level API provides more specific,

atomic functions (e.g., ‘‘Capture Fingerprint Image’’

or ‘‘Set Contrast’’). The lower the level, the more

modality- and even vendor/device-specific it is. An

example of a low level biometric API standard is

the Speaker Verification API (SVAPI) developed in

the mid-90’s and championed by Novell [3].

A software application interfaces to an SDK or BSP

via an API. The first biometric SDKs appeared in the

mid-90’s. Most SDK APIs are vendor specific. They are

defined by the manufacturer to be highly tailored to the

features and capabilities of their product. The advantage

of such APIs is that they can be very efficient and

provide sophisticated controls. Standard biometric

APIs also exist, which define a common interface defi-

nition for a category of services. This allows an applica-

tion to be written once to the standard API and utilize

any biometric SDK/BSP that conforms to the standard.
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Early APIs were defined using ‘C’ language con-

structs. However, more recently the trend is to define

object oriented interfaces in terms of Java, .NET, or

COM in order to be more easily integrated into object-

oriented applications.

The most well known biometric API is the BioAPI.

This standard was originally developed by a group of

over 100 organizations from industry, government,

and academia and published in 2000 as an open sys-

tems industry specification [4]. Subsequently, version

1.1 was published as an American National Standard

(INCITS 358) and version 2.0 as an international stan-

dard (ISO/IEC 19784) [5, 6].

The BioAPI interface defines a set of functions (and

associated data structures), including biometric, data-

base, and unit (device) operations, component manage-

ment functions, utility functions, and data handle,

callback, and event operations. High level biometric

operations such as enroll, verify, and identify are

provided as well as more primitive operations such as

capture, create template, process (feature extraction),

verify match, identify match, and import. Conformance

categories identify which functions and options are

required for a given product class.

To perform module management functions, a

BioAPI framework component is included as part of

the API/SPI (service provider interface) architecture.

This allows dynamic insertion and control of BSPs and

devices, as well as a discovery mechanism (Fig. 2).

BioAPI is defined as a ‘C’ interface, though a Java

version is in progress. The version 1.1 framework has

been ported to Win32, Linux, Solaris, and WinCE
Biometric Interfaces. Figure 2 BioAPI Architecture.
platforms and a variety of wrappers (e.g., JNI, C#)

have been developed.

Another ‘‘standard’’ biometric API is BAPI. This

API was developed by I/O Software and later licensed

to Microsoft who included it in their XP Home

Edition as the interface to their fingerprint device.

This API originally provided 3-levels of interface – a

high level similar to BioAPI, a mid-level, and a lower

(device) level interface. BAPI has not been made pub-

licly available or formally standardized.

More recently, the Voice Extensible Markup Lan-

guage (VoiceXML) was created for creating voice user

interfaces that use automatic speech recognition

(ASR) and text-to-speech synthesis (TTS). It was de-

veloped by the VoiceXML Forum and published by

the W3C. ‘‘VoiceXML simplifies speech application

development by permitting developers to use familiar

Web infrastructure, tools and techniques. VoiceXML

also enables distributed application design by separating

each application’s user interaction layer from its

service logic.’’ [7] An extension to VoiceXML called

Speaker Identification and Verification (SIV) is in

progress [8].

In addition to group developed APIs, there have been

biometric APIs developed by application and middle-

ware vendors. The latter standardize an interface to their

particular product or product line. In this case, the

application/middleware vendor defines an interface

such that any biometric technology vendor wishing to

be integrated (or resold) with that application must

conform to the application vendor’s API. It may be a

biometric specific API or a more general ‘‘authentication

method’’ API. While this has been successful to some

extent, the drawback is that the technology vendors must

provide different flavors of their SDK for each such

application, which may become difficult to maintain.
Communications and Messaging
Interfaces

When biometric information is passed between sys-

tems or subsystems, a communications or messaging

interface may be used. This is generally defined in terms

of message content and protocol. The best known are

those used by the justice community. The FBI’s Elec-

tronic Fingerprint Transmission Specification (EFTS)

and the Interpol Implementation (INT-I) both utilize

the ANSI/NIST ITL1-2000 standard to define
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transactions (request and response messages) with their

respective systems [2, 9, 10] (note that the EFTS and

ANSI/NIST standards have recently been revised; how-

ever, at the time of this article, they had not yet

been implemented. Interpol is expected to follow

suit) [11, 12].

ANSI/NIST ITL1-2000/2007 defines the content, for-

mat, and units of measurement for electronically encod-

ing and transmitting fingerprint, palmprint, facial/

mugshot, and SMT images, and associated biographic

information. It consists of a series of ‘‘record types’’, each

containing a particular type and format of data. For

example, a Type-4 record contains a high resolution

grayscale fingerprint image, a Type-9 record contains

minutiae data, a Type-10 facial or SMT images, a Type-

14 variable-resolution tenprint images, etc. An XML

version of the 2007 standard was recently released [13].

EFTS and INT-I define transactions in terms of

these records and further define the content of ‘‘user-

defined fields’’. For example, EFTS defines a type of

transaction (TOT) called a CAR (Criminal Tenprint

Submission, Answer Required) that ‘‘contains ten

rolled and four plain impressions of all ten fingers, as

well as information relative to an arrest or to custody

or supervisory status and optionally may include up to

4 photos of the subject.’’ [8] It nominally consists of a

Type 1 (header), Type 2 (descriptive text), 14 Type-4,

and 0-4 Type-10 records.
Services Interfaces

Today’s biometric systems are being built upon what is

commonly referred to as a ‘‘service oriented architec-

ture (SOA)’’. In an SOA, requesting applications/sys-

tems are decoupled from those systems which provide

biometric services and allows biometric operations to

be invoked and resources to be accessed remotely,

usually across an open or closed network, including
the internet. These services interfaces may be custo-

mized or standardized.

The most often used protocols for such services are

XML over Hypertext Transmission Protocol (HTTP)

or Simple Object Access Protocol (SOAP) over HTTP.

SOAP services are defined in terms of ▶Web Services

Definition Language (WSDL) and frequently utilize a

set of existing web services standards. Service providers

may post their WSDL to a directory which can be read

by potential users or, in closed systems, may be

provided directly to known requesters.

A service provider offers a set of remote biometric

services such as biometric data storage and retrieval,

1:1 face verification, or 1:N iris or fingerprint search/

match. The requester invokes the operation by sending

a service request with the associated data to the service

provider. The service provider accepts the request, per-

forms the operation, and returns the results as a service

response (Fig. 3).

Although today most services interfaces are

system specific, a project known as Biometric Identity

Assurance Services (BIAS) is in progress to standardize

a set of generic biometric Web services. (See BIAS

section of the Standardization chapter for more

information.)
Summary

Biometric interfaces provide a means to exchange bio-

metric data, perform data transactions, and invoke

biometric services. This can occur at several different

levels and between different types of biometrics and

system components. All biometric interfaces involve

transfer of biometric data and must be specified

in some way. An interface definition may be proprie-

tary, as is frequently done in closed systems, or stan-

dardized. Biometric interfaces are key aspects of the

overall biometric system architecture and design.
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Related Entries

▶Biometric Sensor and Device, Overview

▶Biometic System Design, Overview

▶ Standardization
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Biometric Key Generation
▶Encryption, Biometric
Biometric Locking
▶Encryption, Biometric
Biometric Match-on-Card, MOC
▶On-Card Matching
Biometric Modality
The biometric characteristic which is used in a biomet-

ric process is known as biometric modality.

▶Multibiometrics and Data Fusion, Standardization
Biometric PAC
▶Access Control, Physical
Biometric Performance Evaluation
Standardization
▶Performance Testing Methodology Standardization
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▶Biometric Sample Quality
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Biometric Quality Standards
▶Biometric Sample Quality, Standardization
Biometric Readers
▶Access Control, Physical
Biometric Recognition
▶Biometrics
Biometric Reference
One or more stored biometric samples, biometric tem-

plates or biometric models attributed to a biometric

data subject and used for comparison.

▶Biometric Data Interchange Format, Standardization
Biometric Registration Authority
▶Common Biometric Exchange Formats Framework

Standardization
Biometric Sample
See ‘‘Biometric data.’’

▶Biometric Interfaces
Biometric Sample Acquisition

DALE SETLAK

AuthenTec, Inc., Melbourne, Fl, USA
Synonyms

Biometric data acquisition; Biometric data capture;

Biometric front end; Biometric sensing; Fingerprint

capture; Fingerprint reading; Fingerprint scan; Image

capture; Iris capture; Iris scan
Definition

Biometric sample acquisition is the process of captur-

ing information about a biological attribute of the

subject, as it exists within a specific time frame. The

objective is to measure data that can be used to derive

unique properties of the subject that are stable and

repeatable over time and over variations in acquisition

conditions.

Typically, the capture process measures a physical

property that is affected by the biological characteristic

of interest, and converts the measured data into a format

that is suitable for analysis – typically a digital electronic

format compatible with computerized analysis.

For simplicity, in this discussion, it is assumed that

behavioral biometrics are biological attributes that

have a temporal dimension and are included in the

discussion as such.

In classic biometric systems such as criminology

systems, there is a definitive separation (in both

time and space) between biometric sample acquisition

and the processing and matching of that sample. For

example, an arresting officer may collect a suspect’s

fingerprints at a booking station in the sheriff ’s office.

The fingerprints may then be sent to the FBI for pro-

cessing and matching against a fingerprint repository.

In contrast, real-time biometric ID verification sys-

tems, such as those used for login on a laptop comput-

er, do not have that clear separation. In laptop

computers, for example, the sample processing and

matching will begin operating, while sample acquisi-

tion is still in progress. Information from those ana-

lyses can then be used to optimize the sample

acquisition in real time, significantly improving the

overall performance of the system, but blurring the
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subsequent processes.
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Introduction

This article will start out by examining the high level

requirements that apply generally to many types of

biometric sample acquisition. The biometric sample

acquisition process will then be decomposed into its

essential elements and each of those discussed briefly.

It then examines how each of the essential elements

is applied, using the fingerprint ridge pattern as the

example biological property, and also examines the

real-world implementation embodied in the recently

popular fingerprint login systems on laptop compu-

ters. The article then reviews some of the new require-

ments imposed on biometric sample acquisition

systems when they become essential elements of the

secure, trusted computing, and communication sys-

tems that are needed by applications such as mobile

commerce and mobile banking.
Biometric Sample Acquisition. Figure 1 Biometric

sample acquisition process decomposition
Generalized Requirements for Biometric
Sample Acquisition

The fundamental requirements for the biometric sam-

ple acquisition process are driven by the needs of the

biometric matching process. At the conceptual level,

these requirements boil down to the following two:

� To be able to distinguish a large number of people

from each other, a biometric property must contain a

large amount of information entropy. In state space

terms, the property must have a very large number of

distinguishable states. As a result, most biometric

characteristics are complex properties represented as

arrays of information such as 2- or 3-dimensional

images of biological structures (e.g., fingerprints), or

segments of time series data (e.g., speech segments).

Biometric sample acquisition then becomes the task

of making a large number of measurements that

have well known interrelationships in space and/or

in time, with sufficient resolution and accuracy to

develop the required large measurement state space.

� To avoid failing to recognize a previously enrolled

person, the biometric matching process needs

repeatable detail among all the samples of the

biometric property data. The key is minimizing
sample variability. Ideally, the biometric sample ac-

quisition system should capture the same biometric

property data across the full range of conditions in

which it is used. This can become a significant chal-

lenge given the wide variability in the biological

structures being measured across the human popula-

tion and the wide range of environmental conditions

in which some biometric systems must function.

Sample variability can come from a variety of sources

including:

� Intrinsic biological variability

� Environmental variability

� Sample presentation variability

� Biological target contamination

� Acquisition losses, errors, and noise

Good biometric sample acquisition systems minimize

the effects of these sources of variability.
Process Decomposition

For our discussion here, the sample acquisition process

can be decomposed into three parts:

1. The measurement physics

2. The transducers

3. The electronic data acquisition

Figure 1 illustrates this decomposition.
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The Measurement Physics

Starting with a biological attribute of interest, a physi-

cal sensing method is selected, usually involving an

energy flow that originates from, or has been modified

by the biological attribute to be measured.

Different physical sensing mechanisms may be

more or less sensitive to the biological attribute of

interest. A key element in selecting the sensing mecha-

nism is the intrinsic signal to noise ratio. A mechanism

that has high sensitivity to the attribute of interest and

low sensitivity to other influences is likely to have a

favorable signal to noise ratio [1].
The Transducers

The energy flow associated with a sensing method may

be measurable by several different types of transducers.

Transducers convert the energy associated with a phy-

sical measurement into a representative electronic

signal. Different transducers may be more or less effec-

tive in extracting the biological information from the

energy flow.
The Electronic Data Acquisition

Electronic data acquisition equipment converts the

transducer output signal into a standardized form

that can be manipulated by digital computers [2].

This digitized data becomes the input to the feature

extraction and pattern matching processes.

The data acquisition process typically involves [3]:

� Generating excitation energy and applying it to

the biological structures to be measured and/or

to the transducers

� Amplifying the transducer signals

� Multiplexing the signals from a multitude of trans-

ducers to a small number of signal processing

nodes

� Canceling or filtering noise in the transducer

signals

� Time-sampling the transducer signals

� Digitizing the (typically analog) transducer signals

� Assembling the digitized signals into a formatted

data stream for delivery to a microprocessor for

further processing [4]
An Example Biometric Sample
Acquisition Process

For example, select the fingerprint ridge pattern as the

biological attribute to be measured.
Example Sensing Physics and Transducers

The fingerprint ridge pattern is able to generate or

influence several different types of energy, and hence,

may be amenable to several different measurement

methods. Each type of energy can be measured by

several types of transducers. Designing the biometric

sample acquisition system then involves finding the

optimum combination of measurement methods and

transducer type for the application [5].
Pressure

Fingerprint ridges and valleys can apply different

amounts of pressure to a contact surface. Awide variety

of transduction methods can detect such spatial pres-

sure variations. These span the range from arrays of tiny

nano-switches, to the legacy inkpad and card systems

used with fax-machine-like card scanners.
Optical Energy

Fingerprint ridges and valleys differ in their abilities to

reflect light, absorb light, and diffuse light. When one

of the various forms of optical energy has been applied

to the fingerprint region of the skin, camera-like image

capture devices can then capture the fingerprint pat-

terns from the resulting light. Figure 2 illustrates the

energy conversions involved in a typical optical finger-

print reader.
Electrical Energy

The fingerprint ridge and valley pattern can affect the

movement of electrical energy in several different ways,

and electrical energy can be measured by several differ-

ent types of transducers. Arrays of electrical transdu-

cers then measure the patterns in the electrical energy
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flow to develop a 2-dimensional image of the finger-

print pattern that can be very similar to the images

produced by optical measurements.
Acoustical and Thermal Energy

Both acoustical energy and thermal energy propagate

more efficiently through the fingerprint ridges than

through the air spaces in the valleys between the ridges.

Arrays of acoustical and thermal transducers then can

detect the pattern of ridges in contact with the array,

and generate images similar to those produced by the

optical and electrical methods discussed above.
Example Electronic Data Acquisition

Arrays of all the above types of transducers can be

fabricated today on the top surfaces of silicon

integrated circuits [6]. The transducers can then be

connected directly to silicon electronic circuits that

perform the data acquisition tasks described in the

previous section of this article. The integration of

arrays of transducers with data acquisition circuitry
Biometric Sample Acquisition. Figure 2 Example of

optical fingerprint sample acquisition process
on a single silicon chip has reduced the size and cost

of biometric sample acquisition systems by a factor of

over 100 within the 10 years between 1997 and 2007,

enabling a wide variety of new biometric identity veri-

fication applications that had previously been cost

prohibitive.
Real-World Implementation –Biometric
Sample Acquisition Systems in
Widespread Use Today

If you have a laptop computer purchased in 2007 or

later, there is a good chance as it has a biometric

sample acquisition system built into it – in the form

of a small fingerprint sensor integrated into the key-

board. The fingerprint sensor can be used as a conve-

nient alternative to passwords when you logon to your

computer, or when you access a password protected

website. Figure 3 is a photograph of a laptop computer

with a built-in fingerprint sensor.

The fingerprint sensors integrated into laptop com-

puters use tiny bits of electrical energy as discussed

above to detect the fingerprint pattern of a finger

when you slide your finger across the sensor. There

are two types of sensing physics in common use in

today’s laptops. One type uses electrical energy to

measure differences in electrical capacitance between

pixels near a fingerprint ridge and pixels near a valley.

The other type uses small radio frequency signals to

detect the fingerprint shape in the conductive layer of

skin just beneath the surface. Both types of sensors are

fabricated as silicon devices, with integrated transdu-

cers and data acquisition electronics.
Biometric Sample Acquisition. Figure 3 Fingerprint

Sensor in Laptop computer
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New Requirements for Security in
Biometric Sample Acquisition

Biometric sample acquisition systems have begun to

take a roll in user identity verification in mobile com-

puting and communication systems. Examples include

the previously discussed fingerprint enabled laptops

and biometrically secured cellphones as well. This is a

different type of role than that played by biometric

systems in the forensic and criminology worlds, be-

cause these new systems operate in unsupervised and

usually insecure situations. This section examines

some of the implications of that new role for biometric

sample acquisition and the new requirements imposed

on biometric sample acquisition by that role.
Using Biometric Data in Trustworthy
Identity Verification

While biometric verification is often used as a replace-

ment for passwords, biometric methods when applied

to identity verification function more like a handwrit-

ten signature and less like a password. This is not

surprising, since a handwritten signature is considered

as a form of biometric identity verification.

It can be argued that biometric sample data of any

kind cannot be considered secret, hence ▶Trustwor-

thy Biometric Identity Verification in unsupervised

situations requires the biometric sample acquisition

system to function as a kind of trusted agent [7],

essentially certifying (to some reasonable degree of

confidence) the validity of the biometric sample that

it generates. The role is somewhat analogous to that of

a Notary in handwritten signature situations. This new

role imposes new requirements on the biometric sam-

ple acquisition system that do not exist in the heavily

supervised biometric acquisition processes associated

with criminology and forensics.

While it is not the intention here to discuss the full

scope of trusted biometric identity verification sys-

tems, the biometric sample acquisition part of that

system inherits certain requirements that can be dis-

cussed in this context. Thus, for biometric sample

acquisition systems designed to function within un-

attended identity verification systems, the added

requirements include resistance to a number of attack

vectors that could be used to falsify the biometric

sample that the system delivers.
Trusted Biometric Sample Acquisition
Systems

A trusted biometric sample acquisition system inherits

atleast the following requirements:

� Resistance to fake biometric target presentation.

� This capability is also called ▶Biometric Spoof

Prevention. It provides an appropriate degree of

protection against attacks like the use of a face

mask to fool a face recognition system, or movie

hero James Bond’s use of molded latex rubber

finger coverings to fool a fingerprint reader.

� Resistance to acquisition system tampering.

� The requirement here is to prevent an attacker

from accessing the internal operation of the bio-

metric sample acquisition system, where he could

force it to output different information than it is

actually measuring. This requirement may impose

hardened packaging requirements on the biometric

sample acquisition system.

� Resistance to device/system substitution.

� The system as a whole should be able detect if

an alternate device has been substituted for all or

any portion of the biometric sample acquisition

system. This typically imposes cryptographic

capabilities on the biometric sample acquisition

system.

� Resistance to communications attacks (e.g., man-

in-the-middle, and replay).

� The acquired biometric sample must be securely

delivered to the subsequent processing stages either

by a physically inaccessible data channel or by

cryptographic methods.

All these requirements are designed to enhance the

trustworthiness of the biometric sample capture

event. When a trusted biometric sample acquisition

system is integrated into an overall trusted biometric

system (e.g., a ▶ sealed local biometric identity verifi-

cation system), unsupervised biometric identity verifi-

cation can be performed with reasonable levels of

confidence, without concern that biometric properties

are intrinsically not secret.
Related Entries

▶Biometric Applications, Overview

▶Biometrics, Overview
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▶Biometrtic Sensor and Device, Overview

▶ Security and Liveness, Overview
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Synonyms

Biometric quality evaluation; Performance of biomet-

ric quality measures
Definition

The intrinsic characteristic of a biometric signal may

be used to determine its suitability for further proces-

sing by the biometric system or assess its conformance

to preestablished standards. The quality score of a

biometric sample signal is a scalar summary of the

sample’s quality.

Quality measurement algorithm is regarded as a

black box that converts an input sample to an output

scalar. Evaluation is done by quantifying the association

between those values and observedmatching results. For

verification, these would be the false match and non-

match rates. For identification, the matching results
would usually be false match and nonmatch rates [1],

but these may be augmented with rank and candidate-

list length criteria. For a quality algorithm to be effec-

tive, an increase in false match and false nonmatch

rates is expected as quality degrades.
Introduction

Biometric quality measurement algorithms are increas-

ingly deployed in operational biometric systems [2, 3],

and there is now international consensus in industry

[4], academia [5], and government [6] that a statement

of a biometric sample’s quality should be related to its

recognition performance. That is, a quality measure-

ment algorithm takes a signal or image, x, and pro-

duces a scalar, q ¼ Q(x), which is predictive of error

rates associated with the verification or identification

of that sample. This chapter formalizes this concept

and advances methods to quantify whether a quality

measurement algorithm (QMA) is actually effective.

What is meant by quality? Broadly a sample should

be of good quality if it is suitable for automated

matching. This viewpoint may be distinct from the

human conception of quality. If, for example, an ob-

server sees a fingerprint with clear ridges, low noise,

and good contrast then he might reasonably say it is of

good quality. However, if the image contains few min-

utiae, then a minutiae-based matcher would underper-

form. Likewise, if a human judges a face image to be

sharp, but a face recognition algorithm benefits from

slight blurring of the image then the human statement

of quality is inappropriate. Thus, the term quality is

not used here to refer to the ▶fidelity of the sample,

but instead to the ▶ utility of the sample to an auto-

mated system. The assertion that performance is ulti-

mately the most relevant goal of a biometric system

implies that a quality algorithm should be designed to

reflect the sensitivities of the matching algorithm. For

fingerprint minutiae algorithms, this could be the ease

with which minutiae are detected. For face algorithms,

it might include how readily the eyes are located.

Quality evaluation methods should not rely on the

manual annotation of a data set because this is imprac-

tical for all but small datasets, not least because human

examiners will disagree in this respect. The virtue of

relating quality to performance is that matching trials

can be automated and conducted in bulk. The essay

notes further that quality algorithms that relate to
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human perception of a sample, quantify performance

only as much as the sensitivities of the human visual

system are the same as those of a biometric matcher.

One further point is that performance related qual-

ity evaluation is agnostic on the underlying technolo-

gy: it would be improper to force a fingerprint quality

algorithm to produce low quality values for an image

with few minutia when the target matching algorithm

is nonminutia based, as is the case for pattern based

methods [7].

Evaluation of quality measurement algorithms

should be preferably done in large scale offline trials,

which offer repeatable, statistically robust means of

evaluating core algorithmic capability.

Prior work on quality evaluation, and of sample

quality analysis generally, is limited. Quality measure-

ment naturally lags recognition algorithm develop-

ment, but has emerged as it realized that biometric

systems fail on certain pathological samples. Alonso

et al. [8] reviewed five algorithms and compared the

distributions of the algorithms’ quality assignments,

with the result that most of the algorithms behave

similarly. Finer grained aspects of sample quality can

be addressed. For instance, Lim et al. [9] trained a

fingerprint quality system to predict the accuracy of

minutia detection. However, such methods rely on the

manual annotation of a data set, which as stated above

is impractical.
Properties of a Quality Measure

This section gives needed background material, includ-

ing terms, definitions, and data elements, to support

quantifying the performance of a quality algorithm.

Throughout this chapter, low quality values are used

to indicate poor sample properties.

Consider a data set D containing two samples, di
(1)

and di
(2) collected from each of i ¼ 1, . . ., N indivi-

duals. The first sample can be regarded as an enroll-

ment image, the second as a user sample collected later

for verification or identification purposes. Suppose

that a quality algorithm Q can be run on the ith

enrollment sample to produce a quality value

q
ð1Þ
i ¼ Qðdð1Þi Þ; ð1Þ

and likewise for the authentication (use-phase) sample

q
ð2Þ
i ¼ Qðdð2Þi Þ: ð2Þ
Thus, it has been suggested that these qualities are

scalars, as opposed to vectors for example. Operation-

ally, the requirement for a scalar is not necessary: a

vector could be stored and used by some application.

The fact that quality has historically been conceived

of as scalar is a widely manifested restriction. For

example, BioAPI [10] has a signed single byte value,

BioAPI_QUALITY; and the headers of the ISO/IEC

biometric data interchange format standards [11]

have five-byte fields for quality with only one byte

allocated for quality score. This chapter does not fur-

ther address the issue of vector quality quantities other

than to say that they could be used to specifically direct

re-acquisition attempts (e.g., camera settings), and if

considered, their practical use would require applica-

tion of a discriminant function.

The discussion now formalizes the premise that bio-

metric quality measures should predict performance.

A formal statement of such requires an appropriate,

relevant, and tractable definition of performance. Con-

sider K verification algorithms, Vk, that compare pairs

of samples (or templates derived from them) to pro-

duce match (i.e., genuine) similarity scores

s
ðkÞ
ii ¼ Vkðdð1Þi ; d

ð2Þ
i Þ; ð3Þ

and similarly nonmatch (impostor) scores

s
ðkÞ
ij ¼ Vkðdð1Þi ; d

ð2Þ
j Þ i 6¼ j: ð4Þ

Now, to posit that two quality values can be used to

produce an estimate of the genuine similarity score

that matcher k would produce on two samples

s
ðkÞ
ii ¼ Pðqð1Þi ; q

ð2Þ
i Þ þ EðkÞii ; ð5Þ

where the function P is some predictor of a matcher k’s

similarity scores, and Eii is the error in doing so for the

ith score. Substituting (1) gives

s
ðkÞ
ii ¼ PðQðdð1Þi Þ;Qðdð2Þi ÞÞ þ EðkÞii ; ð6Þ

and it becomes clear that together P and Q would be

perfect imitators of the matcher Vk in (3), if it was not

necessary to apply Q to the samples separately. This

separation is usually a necessary condition for a quality

algorithm to be useful because at least half of the time

(i.e., enrollment) only one sample is available. The

obvious consequence of this formulation is that it is

inevitable that quality values will imprecisely map to

similarity scores, i.e., there will be scatter of the known
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scores, sii, for the known qualities qi
(1) and qi

(2). For

example, Fig. 1 shows the raw similarity scores from a

commercial fingerprint matcher versus the trans-

formed integer quality scores from NIST fingerprint

image quality (NFIQ) algorithm [6, 12], where

NFIQ native scores are mapped to Q ¼ 6�NFIQ (so

that higher quality values indicate good ‘‘quality’’).

Figure 1(a) also includes a least sq uares linear fit, and

Fig . 1(b ) show s a cubic spline fit of the same data. Bot h

trend in the correct direction: worse quality gives lower

similarity scores. Even though the residuals in the spline
Biometric Sample Quality. Figure 1 Dependence of raw ge

input samples.
fit are smaller than those for the linear, they are still not

small. Indeed even with a function of arbitrarily high

order, it will not be possible to fit the observed scores

perfectly if quality values are discrete (as they are for

NFIQ). By including the two fits of the raw data, it is not

asserted that scores should be linearly related to the two

quality values (and certainly not locally cubic). Accord-

ingly, it is concluded that it is unrealistic to require

quality measures to be linear predictors of the similarity

scores; instead, the scores should be a monotonic func-

tion (higher quality samples give higher scores).
nuine scores on the transformed NFIQ qualities of the two
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Evaluation

Quality measurement algorithms are designed to

target application-specific performance variables. For

verification, these would be the false match rate (FMR)

and false nonmatch rate (FNMR). For identification,

the metrics would usually be FNMR and FMR [1], but

these may be augmented with rank and candidate-list

length criteria. Closed-set identification is operation-

ally rare, and is not considered here.

Verification is a positive application, which means

samples are captured overtly from users who are moti-

vated to submit high quality samples. For this scenario,

the relevant performance metric is the false nonmatch

rate (FNMR) for genuine users because two high qual-

ity samples from the same individual should produce a

high score. For FMR, it should be remembered that false

matches should occur only when samples are biometri-

cally similar (with regard to a matcher) as for example

when identical twins’ faces are matched. So, high quality

images should give very low impostor scores, but low

quality images should also produce low scores. Indeed,

it is an undesirable trait for a matching algorithm to

produce high impostor scores from low quality samples.

In such situations, quality measurement should be used

to preempt submission of a deliberately poor sample.

For identification, FNMR is of primary interest. It

is the fraction of enrollee searches that do not yield the

matching entry on the candidate list. At a fixed thresh-

old, FNMR is usually considered independent of the

size of the enrolled population because it is simply

dependent on one-to-one genuine scores. However,

because impostor acceptance, as quantified by FMR,

is a major problem in identification systems, it is

necessary to ascertain whether low or high quality

samples tend to cause false matches.

For a quality algorithm to be effective, an increase

in FNMR and FMR is expected as quality degrades.

The plots in Fig. 2 shows the relationship of trans-

formed NFIQ quality levels to FNMR and FMR.

Figure 2(a) and 2(c) are boxplots of the raw genuine

and impostor scores for each of the five NFIQ quality

levels. The scores were obtained by applying a commer-

cial fingerprint matcher to left and right index finger

impressions of 34,800 subjects. Also shown are boxplots

of FNMR and FMR. The result, that the two error rates

decrease as quality improves, is expected and beneficial.

The FMR shows a much smaller decline. The non-

overlap of the notches in plots of Fig. 2(a) and 2(b)
demonstrates ‘‘strong evidence’’ that the medians of the

quality levels differ [13]. If the QMA had more finely

quantized its output, to L > 5 levels, this separation

would eventually disappear. This issue is discussed

further in section ‘‘Measuring Separation of Genuine

and Impostor Distributions’’.
Rank-Ordered Detection Error Tradeoff
Characteristics

A quality algorithm is useful, if it can at least give an

ordered indication of an eventual performance. For

example, for L discrete quality levels there should no-

tionally be L DET characteristics. In the studies

that have evaluated performance measures [1, 5, 12, 14,

15, 16], DET’s are the primary metric. It is recognized

that DET’s are widely understood, even expected, but

note three problems with their use: being parametric in

threshold, t, they do not show the dependence of

FNMR (or FMR) with quality at fixed t, they are used

without a test of the significance of the separation of L

levels; and partitioning of the data for their computa-

tion is under-reported and nonstandardized.

This chapter examines threemethods for the quality-

rankedDET computation. All three useN paired match-

ing images with integer qualities qi
(1) and qi

(2) on the

range [1, L]. Associated with these are N genuine

similarity scores, sii, and up to N(N � 1) impostor

scores, sij where i 6¼ j, obtained from some matching

algorithm. All three methods compute a DET charac-

teristic for each quality level k. For all thresholds s, the

DET is a plot of FNMR(s) =M(s) versus FMR(s) = 1�
N(s), where the empirical cumulative distribution func-

tions M(s) and N(s) are computed, respectively, from

sets of genuine and impostor scores. The three methods

of partitioning differ in the contents of these two sets.

The simplest case uses scores obtained by comparing

authentication and enrollment samples whose qualities

are both k. This procedure (see for example, [17]) is

common but overly simplistic. By plotting

FNMRðs;kÞ¼
sii : sii � s; q

ð1Þ
i ¼ q

ð2Þ
i ¼ k

n o���
���

sii : sii <1; q
ð1Þ
i ¼ q

ð2Þ
i ¼ k

n o���
���
;

FMRðs;kÞ¼
sij : sij > s; q

ð1Þ
i ¼ q

ð2Þ
j ¼ k; i 6¼ j

n o���
���

sij : sij >�1; q
ð1Þ
i ¼ q

ð2Þ
j ¼ k; i 6¼ j

n o���
���
;

ð7Þ



Biometric Sample Quality. Figure 2 Boxplots of genuine scores, FNMR, impostor scores, and FMR for each of five

transformed NFIQ quality levels for scores from a commercial matcher. Each quality bin, q, contains scores from

comparisons of enrollment images with quality q(1) � q and subsequent use-phase images with q(2) ¼ q, per the

discussion in section ‘‘Rank-Ordered Detection Error Tradeoff Characteristics’’. The boxplot notch shows the median; the

box shows the interquartile range, and the whiskers show the extreme values. Notches in (d) are not visible because

the medians of FMRs are zero therefore outside the plot range.
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the DETs for each quality level can be compared. Al-

though a good QMA will exhibit an ordered relation-

ship between quality and error rates, this DET

computation is not operationally representative because

an application cannot usually accept only samples with

one quality value. Rather, the DETmay be computed for

verification of samples of quality k with enrollment

samples of quality greater than or equal to k,

FNMRðs;kÞ¼
sii : sii � s; q

ð1Þ
i � k; q

ð2Þ
i ¼ k

n o���
���

sii : sii <1; q
ð1Þ
i � k; q

ð2Þ
i ¼ k

n o���
���
;

FMRðs;kÞ¼
sij : sij > s; q

ð1Þ
i � k; q

ð2Þ
j ¼ k; i 6¼ j

n o���
���

sij : sij >�1; q
ð1Þ
i � k; q

ð2Þ
j ¼ k; i 6¼ j

n o���
���
;

ð8Þ
The situation is modeled in which the enrollment sam-

ples are at least as good as the authentication (i.e., user
submitted) samples. Such a use of quality would lead to

▶ failures to acquire for the low quality levels.

If instead performance across all authentication

samples is compared against enrollment samples of

quality greater than or equal to k,

FNMRðs; kÞ ¼
sii : sii � s; q

ð1Þ
i � k

n o���
���

sii : sii < 1; q
ð1Þ
i � k

n o���
���
;

FMRðs; kÞ ¼
sij : sij > s; q

ð1Þ
i � k; i 6¼ j

n o���
���

sij : sij > �1; q
ð1Þ
i � k; i 6¼ j

n o���
���
;

ð9Þ
The situation where quality control is applied only

during enrollment is modeled. If repeated enrollment

attempts fail to produce a sample with quality above

some threshold, a failure-to-enroll (FTE) would be

declared. This scenario is common and possible
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because enrollment, as an attended activity, tends to

produce samples of better quality than authentication.

The considerable differences between these three

formulations are evident in the DETs of Fig. 3 for

which the NFIQ algorithm [6] for the predicting per-

formance of a commercial fingerprint system was ap-

plied to over 61,993 genuine and 121,997 impostor
Biometric Sample Quality. Figure 3 Quality ranked detectio

corresponding to five transformed NFIQ levels. (Note that the

unconventional in that it does not transform the data by the

operating characteristic plots 1�FNMR on a linear scale instea

verification performance).
comparisons (NFIQ native scores were transformed

to Q ¼ 6 � NFIQ). In all cases, the ranked separation

of the DETs is excellent across all operating points. It is

recommended that (8 ), as shown in Fig . 3(b), be used

because it is a more realistic operational model.

However, as relevant as DET curves are to expected

performance, revisited here is a very important
n error tradeoff characteristics. Each plot shows five traces

DET used here plots FNMR vs. FMR on log scales. It is

CDF of the standard normal distribution. The receiver

d. These characteristics are used ubiquitously to summarize
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complication. Because DET characteristics quantify

the separation of the genuine and impostor distribu-

tions and combine the effect of quality on both genu-

ine and impostor performance, the separate effects of

quality on FNMR and FMR is lost sight of.

In any case, it is concluded that DETs, while familiar

and highly relevant, confound genuine and impostor

scores. The alternative is to look at the specific depen-

dence of the error rates on quality at some fixed thresh-

old. Indeed for verification applications, the variation in

FNMRwith quality is key because the majority of trans-

actions are genuine attempts. For negative identification

systems (e.g., watchlist applications) in which users are

usually not enrolled, the variation of FMRwith quality is

critical. This approach is followed in the next section.
Error Versus Reject Curves

It is proposed to use error versus reject curves as an

alternative means of evaluating QMAs. The goal is to

state how efficiently rejection of low quality samples

results in improved performance. This again models

the operational case in which quality is maintained by

reacquisition after a low quality sample is detected.

Consider that a pair of samples (from the same subject),

with qualities qi
(1) and qi

(2), are compared to produce a

score sii
(k), and this is repeated for N such pairs.

Thresholds u and v are introduced that define levels

of acceptable quality and define the set of low quality

entries as

Rðu; vÞ ¼ j : q
ð1Þ
j < u; q

ð2Þ
j < v

n o
: ð10Þ

The FNMR is the fraction of genuine scores below

threshold computed for those samples not in this set

FNMR ðt ; u; vÞ ¼ sjj : sjj � t ; j 62 Rðu; vÞ� ��� ��
sjj : sjj < 1� ��� �� : ð11Þ

The value of t is fixed (Note that any threshold may be

used. Practically it will be set to give some reasonable

false non-match rate, f, by using the quantile function

the empirical cumulative distribution function of the

genuine scores, t ¼ M �1(1 � f ).) and u and v are

varied to show the dependence of FNMR on quality.

For the one-dimensional case, when only one qual-

ity value is used the rejection set is

RðuÞ ¼ j : Hðqð1Þj ; q
ð2Þ
j Þ < u

n o
ð12Þ
where H is a function of combining two quality mea-

sures into a single measure. FNMR is false non-match

performance as the proportion of nonexcluded scores

below the threshold.

FNMRðt ; uÞ ¼ sjj : sjj � t ; j 62 RðuÞ� ��� ��
sjj : sjj < 1� ��� �� ð13Þ

If the quality values are perfectly correlated with the

genuine scores, then when t is set to give an overall

FNMR of x and then reject proportion x with the

lowest qualities, a recomputation of FNMR should be

zero. Thus, a good quality metric correctly labels those

samples that cause low genuine scores as poor quality.

For a good quality algorithm, FNMR should decrease

quickly with the fraction rejected. The results of apply-

ing this analysis are shown in Fig. 4. Note that the

curves for each of the three fingerprint quality algo-

rithms trend in the correct direction, but that the even

after rejection of 20% the FNMR value has fallen only

by about a half from its starting point. Rejection of

20% is probably not an operational possibility unless

an immediate reacquisition can yield better quality

values for those persons. Yoshida, using the same ap-

proach, reported similar figures [18]. Note, however,

that for NFIQ, the improvement is achieved after re-

jection of just 5%. In verification applications such as

access control, the prior probability of an impostor

transaction is low and thus, the overall error rate is

governed by false nonmatchers. In such circumstances,

correct detection of samples likely to be falsely rejected

should drive the design of QMAs.

Figure 5 shows error versus reject behavior for the

NFIQ quality method when the various H(q1, q2) com-

bination functions are used. Between the minimum,

mean, and geometric mean functions there is little dif-

ference. The geometric mean is best (absent a signifi-

cance test) with steps occurring at values corresponding

to the square roots of the product of NFIQ values. The

gray line in the figure shows H ¼ ffiffiffiffiffiffiffiffiffi
q1q2

p þ Nð0; 0:01Þ;
where the gaussian noise serves to randomly reject sam-

ples within a quality level and produces an approxima-

tion of the lower convex hull of the geometric mean

curve. The green line result, for H ¼ j q1 � q2 j, shows
that transformed genuine comparison score is unrelated

to the difference in the qualities of the samples. Instead,

the conclusion is that FNMR is related to monotonic

functions of the two values. The applicability of this

result to other quality methods is not known.



Biometric Sample Quality. Figure 4 Error versus reject performance for three fingerprint quality methods. (a) and (b)

show reduction in FNMR and FMR at a fixed threshold as up to 20% of the low quality samples are rejected. The similarity

scores come from a commercial matcher.

Biometric Sample Quality. Figure 5 Dependence of the error versus reject characteristic on the quality combination

function H(.). The plots show, for a fixed threshold, the decrease in FNMR as up to 60% of the low quality values are

rejected. The similarity scores come from commercial matchers. The steps in (a) are result of discrete quality metric.

Continuous quality metrics such as in (b), do not usually exhibit such steps.
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Generalization to Multiple Matchers

It is a common contention that the efficacy of a quality

algorithm is necessarily tied to a particular matcher. It

is observed that this one-matcher case is commonplace

and useful in a limited fashion and should, therefore,

be subject to evaluation. However, it is also observed
that it is possible for a quality algorithm to be capable

of generalizing across all (or a class of) matchers, and

this too should be evaluated.

Generality to multiple matchers can be thought of

as an interoperability issue: can supplier A’s quality

measure be used with supplier B’s matcher? Such a

capability will exist to the extent that pathological
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samples do present problems to both A and B’s match-

ing algorithms. However, the desirable property of

generality exposes another problem: it cannot be

expected to predict performance absolutely because

there are good and bad matching systems. A system

here includes all of the needed image analysis and

comparison tasks. Rather, it is asserted that a quality

algorithm intended to predict performance generally

need only be capable of giving a relative or rank order-

ing, i.e., low quality samples should give lower perfor-

mance than high quality samples.

The plots of Fig. 6 quantify this generalization for

the NFIQ algorithm using the error versus reject curves

of section ‘‘Error Versus Re ject Cur ves’’. Fig ure 6(a )

includes five traces, one for each of five verification

algorithms. The vertical spread of the traces indicates

some disparity in how well NFIQ predicts the perfor-

mance of the five matchers. A perfectly general QMA

would produce no spread.
Measuring Separation of Genuine and
Impostor Distributions

Quality algorithms can be evaluated on their ability to

predict how far a genuine score will lie from its

impostor distribution. This means instead of evaluat-

ing a quality algorithm solely based on its FNMR
Biometric Sample Quality. Figure 6 Error versus reject char

verification algorithms and (b) three operational data sets. The

matchers were run on a common database.
(i.e., genuine score distribution), the evaluation can

be augmented by including a measure of FMR be-

cause correct identification of an enrolled user

depends both on correctly finding the match and on

rejecting the nonmatches. Note also that a quality

algorithm could invoke a matcher to compare the

input sample with some internal background samples

to compute sample mean and standard deviation.

The plots of Fig. 7 show, respectively, the genuine

and impostor distributions for adjusted NFIQ values,

1, 3, and 5. The overlapping of genuine and impostor

distributions for the poorest NFIQ means higher rec-

ognition errors for that NFIQ level, and vice versa; the

almost complete separation of the two distribution for

the best quality samples indicates lower recognition

error. NFIQ was trained to specifically exhibit this

behavior.

The Kolmogorov–Smirnov is considered statistic.

For better quality samples, a larger KS test statistic

(i.e., higher separation between genuine and impostor

distribution) is expected. Each row of Table 1 shows KS

statistics for one of the three quality algorithms tested.

KS statistics for each quality levels u ¼ 1, . . ., 5

are computed by first computing the genuine (i.e.,

{sii: (i, i) 2 R(u)}) and impostor (i.e., {sij: (i, j) 2 R

(u), i 6¼ j}) empirical cumulative distributions, where R

(u) ¼ {(i,j): H(qi
(1), qj

(2)) ¼ u}. Thereafter, the largest

absolute difference between the genuine and impostor
acteristics showing how NFIQ generalizes across (a) five

steps in (a) occur at the same rejection values because the



Biometric Sample Quality. Figure 7 There is a higher degree of separation between the genuine and impostor

distribution for better quality samples as measured by NFIQ.

Biometric Sample Quality. Table 1 KS statistics for

quality levels of three quality algorithms

Quality algorithm Q ¼ 1 Q ¼ 2 Q ¼ 3 Q ¼ 4

Quality algorithm 1 0.649 0.970 0.988 0.993

Quality algorithm 2 0.959 0.995 0.996 0.997

Quality algorithm 3 0.918 0.981 0.994 0.997
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distributions of quality u is measured and plotted.

(Note that to keep quality algorithm providers anony-

mous KS statistics of the lowest four quality levels were

reported.)
Summary

Biometric quality measurement is an operationally

important and difficult problem that is nevertheless

massively under-researched, in comparison to the pri-

mary feature extraction and pattern recognition tasks.
It was asserted that quality algorithms should be de-

veloped to explicitly target matching error rates, and

not human perceptions of sample quality.

Several means were given for assessing the efficacy

of quality algorithms. The existing practice was

reviewed, cautioned against the use of detection error

tradeoff characteristics as the primary metrics, and

instead advanced boxplots and error versus reject

curves as preferable. This chapter suggests that algo-

rithm designers should target false non-match rate as

the primary performance indicator.
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Synonyms

Biometric quality; Sample quality
Definition

Open documented data structures for universally

interpretable interchange of ▶ biometric sample

quality data.

▶Biometric data interchange standards are needed

to allow the recipient of a data record to successfully

process data from an arbitrary producer. This defines

biometric interoperability and the connotation of the

phrase ‘‘successfully process’’ the data, in this case,

▶Biometric Sample Quality score, can be accurately

exchanged and interpreted by different applications.

This can only be achieved if the data record is both

syntactically and semantically conformant to the doc-

umentary standard.
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Introduction

Performance of biometric systems depends on the qual-

ity of the acquired input samples. If quality can be

improved, either by sensor design, user interface design,

or by standards compliance, better performance can be

realized. For those aspects of quality that cannot be

designed-in, an ability to analyze the quality of a live

sample is needed. This is useful primarily in initiating

the reacquisition from a user, but also for the real-time

selection of the best sample, and the selective invocation

of different processing methods. That is why quality

measurement algorithms are increasingly deployed in

operational biometric systems. With the increase in

deployment of quality algorithms, rises the need to

standardize an interoperable way to store and exchange

of biometric quality scores.
Roles

With advancement in biometric technologies as a reli-

able identity authentication scheme, more large-

scale deployments (e.g., e-passport) involving multiple

organizations and suppliers are being ruled out. There-

fore, in response to a need for interoperability, biomet-

ric standards have been developed.

Without interoperable biometric data standards, ex-

change of biometric data among different applications is

not possible. Seamless data sharing is essential to identi-

ty management applications when enrollment, capture,

searching, and screening are done by different agencies,

at different times, using different equipment in different

environments and/or locations. Interoperability allows

modular integration of products without compromising

architectural scope, and facilitates the upgrade process

and thereby mitigates against obsolescence.

This chapter focuses on biometric quality standardi-

zation. Broadly biometric quality standards serve the

same purpose as many other standards, which is to

establish an interoperable definition, interpretation,

and exchange of biometric quality data. Like other stan-

dards, this creates grounds for a marketplace of off-the-

shelf products, and is a necessary condition to achieve

supplier independence, and to avoid vendor lock-in.

Biometric quality measurement has vital roles to

play in improving biometric system accuracy and effi-

ciency during the capture process (as a control-loop

variable to initiate reacquisition), in database
maintenance (sample update), in enterprise wide quali-

ty-assurance surveying, and in invocation of quality-

directed processing of samples. Neglecting quality mea-

surement will adversely impact accuracy and efficiency

of biometric recognition systems (e.g., verification and

identification of individuals). Accordingly, biometric

quality measurement algorithms are increasingly

deployed in operational systems [1, 2]. These motivated

for biometric quality standardization efforts.

Standards do not themselves assure interoperabil-

ity. Specifically, when a standard is not fully prescrip-

tive, or allows for optional content, then two

implementations that are exactly conformant to the

standard may still not interoperate. This situation

may be averted by applying further constraints on the

application of the standard. This is done by means of

‘‘application profile’’ standards which formally call out

the needed base standards and refine their optional

content and interpretation.
Standards Development Organizations

Standards are developed by a multitude of standards

development organizations (SDOs) operating in a

great variety of technical disciplines. SDO’s exist within

companies and governments, and underneath trade

associations and international body umbrellas. Interna-

tional standards promise to support larger marketplaces

and the development process involves more diverse and

thorough review and so consensus is more difficult to

achieve. Standard development processes are conducted

according to definitive sets of rules. These are intended

to achieve consensus standards that are technically

sound, implementable, and effective.

The following list gives an overview of the rele-

vant SDOs. Note that the published standards are

usually copyrighted documents and available only by

purchase.

� ISO/IEC JTC 1/SC 37: SubCommittee 37 (SC 37)

Biometrics was established in mid 2002 as the most

new of seventeen active subcommittees beneath

Joint Technical Committee 1 (JTC 1) and its parent

the International Standard Organization (ISO)

and the International Electrotechnical Commission

(IEC) (ISO maintains a catalog of its standards

development efforts at http://www.iso.org/iso/en/

CatalogueListPage.CatalogueList). The scope of

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
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JTC 1/SC 37 is standardization of generic biometric

technologies pertaining to human beings to sup-

port interoperability and data interchange among

applications and systems. The establishment of

JTC 1/SC 37 provided an international venue to

accelerate and harmonize formal international bio-

metric standardization and to coalesce a wide range

of interests among information technology and

biometric industry and users of biometric-based

solutions for multiple identification and verifica-

tion applications. SC 37 portfolio is divided into six

working groups of SC 37. The body responsible for

biometric quality standardization is Working

Group 3. The group is the largest Working Group

in SC 37 and develops biometric data interchange

format standards, which have the highest profile

adoption in the marketplace.

� M1: M1 is Technical Committee of the Inter-

National Committee for Information Technology

Standards (INCITS). It serves as the United States

Technical Advisory Group (TAG) to SC 37. It was

established in June 2002 and is responsible for for-

mulating U.S. positions in SC 37 where it holds the

U.S. vote. It is also a standards development organi-

zation in its own right. Its standards are published in

the US, but may be purchased worldwide.

� ANSI/NIST The U.S. National Institute of Stan-

dards and Technology (NIST) is also a SDO. It

developed the ANSI/NIST standards for law en-

forcement under the canvass process defined by

American National Standard Institution (ANSI).
The ISO/IEC 29794 Biometric Sample
Quality Standard

In January 2006, the SC37 Biometrics Subcommittee of

JTC1 initiated work on ISO/IEC 29794, a multipart

standard that establishes quality requirements for ge-

neric aspects (Part 1), fingerprint image (Part 4), facial

image (Part 5), and possibly, other biometrics later.

Specifically, part 1 of this multi-part standard specifies

derivation, expression, and interpretation of biometric

quality regardless of modality. It also addresses the

interchange of biometric quality data via the multipart

ISO/IEC 19794 Biometric Data Interchange Format

Standard [4]. Parts 4 and 5 are technical reports (not

standard drafts) which address the aspects of biometric

sample quality that are specific to finger images and
facial images as defined in ISO/IEC 19794-4 and ISO/

IEC 19794-5 respectively.

The generic ISO quality draft (ISO/IEC 29794-1)

requires that quality values must be indicative of rec-

ognition performance in terms of false match rate, false

non-match rate, failure to enrol and failure to acquire.

Furthermore, it considers three components of bio-

metric sample quality namely character, fidelity and

utility. The character of a sample indicates the richness

of features and traits from which the biometric sample

is derived. The fidelity of a sample is defined as the

degree of similarity between a biometric sample and its

source, for example, a heavily compressed fingerprint

has low fidelity. The utility of a sample reflects the

observed or predicted positive or negative contribution

of an individual sample to the overall performance of a

biometric system. Utility is a function of both the

character and fidelity of a sample and is most closely

indicative of performance in terms of recognition error

rates (i.e., false match rate, false non-match rate, fail-

ure to enrol and failure to acquire).

Part 1 of multipart ISO/IEC 29794 draft standard

defines a binary record structure for the storage of a

sample’s quality data. It establishes requirements on

the syntax and semantic content of the structure. Spe-

cifically it states that the purpose of assigning a quality

score to a biometric sample shall be to indicate the

expected utility of that sample in an automated com-

parison environment. That is, a quality algorithm

should produce quality scores that target application

specific performance variables. For verification, the

metric would usually be false-match and false-non-

match rates that are likely to be realized when the

sample is matched.

In addition, revision of all parts of ISO/IEC 19794

Biometric Data Interchange Format began in January

2007. This opened the opportunity to revise or add

quality-related clauses (e.g., compression limits) to

data format standards so that conformance to those

standards ensures acquisition of sufficient quality sam-

ples. This constitutes quality by-design. To enable an

interoperable way of reporting and exchanging bio-

metric data quality scores, the inclusion of a five-byte

quality field to the view header in each view of the data

in a Biometric Data Block (BDB) for all parts of ISO/

IEC 19794 is being considered. By placing quality field

in the view header (as opposed to general header) of a

BDB, one can precisely report quality score for each

view of a biometric sample (Fig. 1). Table 1 shows the



Biometric Sample Quality, Standardization. Figure 1 Structure of header in a biometric data block as defined in ISO/

IEC 19794-x.

Biometric Sample Quality, Standardization. Table 1 Structure of five-byte quality field that SC 37 Working Group 3 is

considering

Description Size (byte)
Valid
values Note

Quality Score 1 [0-100] 255 0: lowest; 100: highest; 255: Failed Attempt

Quality Algorithm
Vendor ID

2 [1,65535] These two bytes uniquely identifies the supplier (vendor) of quality score

Quality Algorithm
ID

2 [1,65535] These two bytes uniquely identifies the algorithm that computes the
quality score. It is provided by the supplier (vendor) of quality score
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structure of the quality filed that SC 37Working Group

3 is currently considering.

The one-byte quality score shall be a quantitative

expression of the predicted matching performance of

the biometric sample. Valid values for quality score are

integers between 0 and 100, where higher values indi-

cate better quality. Value 255 is to handle special cases.

An entry of ‘‘255’’ shall indicate a failed attempt to

calculate a quality score. This values of quality score is

harmonized with ISO/IEC 19784-1 BioAPI Specifica-

tion (section 0.5) [6], where ‘‘255’’ is equivalent to

BioAPI ‘‘-1’’ (Note that BioAPI, unlike ISO/IEC

19794 uses signed integers).

To enable the recipient of the quality score to dif-

ferentiate between quality scores generated by different

algorithms, the provider of quality scores shall be

uniquely identified by the two most significant bytes

of four-byte Quality Algorithm vendor ID (QAID).

The least significant two bytes shall specify an integer

product code assigned by the vendor of the quality

algorithm. It indicates which of the vendors algorithms

(and version) was used in the calculation of the quality

score and should be within the range 1 – 65535.

Different quality assessment methods could be

used to assess quality of a biometric sample,

for example, quality algorithm A could be used at the

time of enrollment, but the verification phase might

deploy quality algorithm B. To accomodate
interchange of quality scores computed by different

quality algirithms, multiple blocks of quality as

shown in Table 1 could be encoded in a view header.

Block(s) of quality data as shown in Table 1 is preceded

by a single byte which value indicates how many blocks

of quality data are to follow. A value of O means no

attempt was made to calculate a quality score (i.e. no

quality score has been specified). This is equivalent to

BioAPI ‘‘�2’’. The structure of the quality field is

modality independent and therefore generalizable to

all parts of ISO/IEC 19794.

The ISO/IEC 29794 standard is currently under de-

velopment, and ISO/IEC 19794 is currently under revi-

sion. The reader is cautioned that standards under

development or revision, are subject to change; the docu-

ments are owned by the respective working groups and

their content can shift due to various reasons including,

but not limited to technical difficulties, the level of sup-

port, or the need to gain consensus.
The ANSI/NIST ITL 1-2007 Quality Field

Initiated in 1986, this standard is the earliest and

most widely deployed biometric standard. It establishes

formats for the markup and transmission of textual,

minutia, and image data between law enforcement

agencies, both within United States and internationally.
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Value Interpretation

0-25 Unacceptable: The sample cannot be used for the purpose specified by the application. The sample needs to
be replaced using one or more new biometric samples.

26-50 Marginal: The sample will provide poor performance for the purpose specified by the application and in most
application environments will compromise the intent of the application. The sample needs to be replaced
using one or more new biometric samples.

51-75 Adequate: The biometric data will provide good performance in most application environments based on the
purpose specified by the application. The application should attempt to obtain higher quality data if the
application developer anticipates demanding usage.

76-100 Excellent: The biometric data will provide good performance for the purpose specified by the application.
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The ANSI/NIST standard includes defined Types

for the major biometric modalities. The standard

is multimodal in that it allows a user to define a

transaction that would require, for example, finger-

print data as Type 14, a facial mugshot as Type 10,

and the mandatory header and metadata records

Type 1 and 2. These are linked with a common nu-

meric identifier.

In its latest revision [8], the standard adopted the

ISO five-byte quality field (Table 1) structure, but

unlike ISO/IEC 29794, it allows for multiple quality

fields, where each quality score could be computed by

a different quality algorithm supplier. In addition, it

mandates NIST Fingerprint Image Quality (NFIQ) [9]

for all Type 14 records.
The BioAPI Quality Specification

ISO/IEC 19784 Biometric Application Programming

Interface (BioAPI) [7] (and its national counterpart

The BipAPI specification [6]) allows for quality mea-

surements as an integral value in the range of 0–100

with exceptions that value of ‘‘-1’’ means that the

quality field was not set by the Biometric Service Provider

(BSP) and value of ‘‘-2’’means that quality information is

not supported by the BSP. The primary objective of

quality measurement and reporting is to have the BSP

inform the application how suitable the biometric sample

is for the purpose specified by the application (as

intended by the BSP implementer based on the use

scenario envisioned by that BSP implementer), and the

secondary objective is to provide the application with

relative results (e.g., current sample is better/worse than

previous sample). BioAPI also provides guidance on gen-

eral interpretation of quality scores as shown in Table 2.
Summary

The benefit of measuring and reporting of biometric

sample quality is to improve performance of biomet-

ric systems by improving the integrity of biometric

databases and enabling quality-directed processing in

particular when utilizing multiple biometrics. Such

processing enhancements result in increasing probabil-

ity of detection and track accuracy while decreasing

probability of false alarms. Given these important roles

of biometric sample quality in improving accuracy

and efficiency of biometric systems, quality measure-

ment algorithms are increasingly deployed in opera-

tional systems. Biometric Sample Quality standards

have been developed to facilitate universal seemless

exchange of sample quality information.

Related Entries

▶ Face Image Quality Assessment Software

▶ Face Sample Quality

▶ Fingerprint Image Quality

▶ Fusion, Quality-Based

▶ Interoperability

▶ Iris Image Quality
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Synonyms

Synthetic biometrics; Artificial biometrics; Artificial dig-

ital biometrics; Artificial image biometrics; Intermediate

biometrics
Definition

Biometric sample synthesis is the computer generation

of simulated digital biometric data using parametric

models. Parametric models are in general the computer

creation steps derived from the empirical analysis of

digitized biometric patterns or mathematical equations

from the physics of the biometric sample’s creation.
Introduction

Biometric sample synthesis is the art and science of

creating artificial digital biometrics that mimic real
digital biometric samples. Researchers involved in the

creation of synthetic biometric samples may have any

number of possible noble goals; included in these may

be striving for a fundamental understanding of the

factors that affect the digitization process of real

human biometric samples for a specific type of bio-

metric sensor, attempting to improve or test com-

puter algorithms used in biometric security devices,

striving for statistically realistic equations of human

populations, or simply attempting to efficiently

computer-generate an image that is similar in visual

appearance to a digitized biometric image.

No matter what the underlying reason for creating

synthetic biometrics by researchers, the movie indus-

try’s quest for realistic computer-generated artificial

personas has led to ▶ physics-based models to control

physical form, motion, and illumination properties of

materials [1]. Computer-generated human character-

istics now address a broad range of human details

including facial features, skin, hair, and gait, as well

as more nuanced bodily movements, such as emotive

gestures and even eye movement. The Association for

Computing Machinery (ACM) Special Interest Group

on Computer Graphics (SIGGRAPH) has a large

body of work spanning over three decades with the

long-standing goal of achieving photo-realism in the

computer generation of synthetic images [2]. This

achievement of modeling, animation, and rendering

of visual human subjects is widely viewed in feature

films, commercial art, and video games. An example of

the state-of-the-art in the synthesis of an image-based

facial biometrics is illustrated in Fig. 1.

The ultimate goal of biometric sample synthesis

can be summarized as; the use of a standard computer

model containing parameter settings that provide the

ability to create a synthetic corpus of biometrics, which

would be indistinguishable from that of a corpus of

biometric samples obtained from real people.
Factors Affecting Biometric Samples

There are a number of factors that directly affect real

biometric samples, which the process of biometric

sample synthesis must take into account. For example,

biological human responses to environmental condi-

tions are known to directly influence a biometric sam-

ple such as: heat to sweat, cold to shivering, or light

level on pupil dilation. Likewise, the environment can

http://www.itl.nist.gov/iad/894.03/quality/workshop/presentations.html
http://www.itl.nist.gov/iad/894.03/quality/workshop/presentations.html
http://www.itl.nist.gov/iad/894.03/quality/workshop/presentations.html
http://www.itl.nist.gov/lad/894.03/quality/workshop/presentations.html
http://www.itl.nist.gov/lad/894.03/quality/workshop/presentations.html


Biometric Sample Synthesis. Figure 1 Rendering of a

synthetic face using 13 million triangles and a bidirectional

surface scattering distribution function (BSSRDF) model for

subsurface light scattering and an oily reflection layer

(http://graphics.ucsd.edu/�henrik/papers/face_cloning/)

(Reproduced with permission from the author).
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also directly affect the biometric digitizing device; for

example, fog, rain, smoke or light level decrease a video

camera’s ability to get a clear image, or water on a

fingerprint device’s platen can adversely affect the

quality of the image. The environment can also cause

behavioral changes that affect biometric sample acqui-

sition; for example, influencing the clothes we wear

during hot or cold weather or during a cloudy or sunny

day, or whether or not we are likely to be wearing

sunglasses, gloves, or certain types of headgear.

Additionally, one’s occupation can affect the exposure

of a biometric to specific environments that may

degrade the quality of the biometric sample. The im-

pact of handling rough surfaces on the skin ridges and

troughs on the fingers and hands of people in certain

occupations can directly affect the quality of bio-

metric samples from some biometric fingerprint digi-

tizing devices.

Regional location also affects the likelihood of

finding various ethnicities who may wear different

kinds of hats, different styles of facial hair growth, or

various types of garments, which may directly influ-

ence biometric sample acquisition. Additional factors

may effect biometric sample acquisition through the

presentation of a biometric to the digitizing device.
An example is the habituation of users to fingerprint

sensor technologies that require pressing the sensor’s

platen; users unfamiliar with the technology are more

likely to press extremely hard or very lightly, while

habituated users are more likely to provide a closer to

nominal amount of pressure when placing a digit on

the device. The amount of pressure may (or may not)

adversely affect the biometric feature extraction algo-

rithm used by the vendor. For example, light pressure

could decrease the number of minutia available to the

biometric matching algorithm.

Genetic factors also play an important role in

biometrics. Examples here include the generally smaller

size of Asian fingerprints, gender, skin color, and

others. Another environmental factor that can affect a

biometric is our health, in the sense that our unique

genetic makeup and our environmental exposure to

triggering factors can make us more susceptible to

(for example) diseases that can affect a biometric.

Here an example is psoriasis that can affect the skin,

which (if located on the hand or fingers) can affect the

quality of a finger or palm acquisition device’s digitized

image that in turn can affect the ability of the biometric

feature extraction algorithm to extract a consistent

biometric feature. Finally, the natural process of aging

and relationships with exposure to the sun affects the

quality or number of features available for biometric

matching algorithms.

The method of sample measurement also directly

affects the quality and depth of information obtained

about the real biometric trait that the device is attempting

to measure. Examples are optical, electrical resistance, or

ultrasound for fingerprint devices, and number of pixels

used by a digital-camera to acquire images of the face.

The final representation of the synthetic biometric sam-

ple must adequately mimic the digitization process on

the biometric sample. Figure 2 illustrates the taxonomy

framework that distinguishes between the feedback

effects of environment on unmeasured biometric sam-

ples and the measurement/digitization process [3].

How all these factors directly or indirectly affect

biometric samples is an ongoing research activity in

the field of biometrics.
Synthesis Methods

Synthesis of image-based biometrics has been achieved

for the most widely recognized digital-image type

http://graphics.ucsd.edu/~henrik/papers/face_cloning/


Biometric Sample Synthesis. Figure 2 A conceptual biometric-environment-sensor interaction model for

understanding the taxonomy of modeled parameters in synthetic biometrics.
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biometrics of fingerprint, face, and iris. Table 1 identifies

the available model types for a number of widely used

biometric modalities.

The methods used for biometric sample synthesis

can be categorized depending on the approach for

feature synthesis. These are loosely placed into statisti-

cal or physical modeling categories based on character-

istics of the biometric formation process.

Physical models are those that are based on the

physics of how the biometric is created. Examples of

biometric features that have physical models for the

body part containing the biometric sample include

stress/strain finger growth models that have been used

to describe fingerprint patterns, craniofacial 3D growth

models, and speech synthesis models for the human

vocal tract.

▶ Statistical models are those that use ▶ empirical

analysis of real 2D or 3D biometric images to create

empirically derived statistical information that can be

parameterized into some sort of equation or algorithmic

synthesis steps to create a synthetic biometric sample.

The SFinGe fingerprint generation tool in Fig. 3 is one

example of the use of this intermediate-pattern type of

biometric feature generator. This tool also exemplifies

the parametric or mathematical model of synthesis.

Face creation and morphing tools, such as the one

from FaceGen Modeler from Singular Inversions, Inc.

(Fig. 4) is another example of a statistical modeling tool

that also provides age progression functionality as well as
the ability to rotate, translate, add texture, or make a

number of possible modifications to face/head models.

Validated statistical models would (at a minimum)

be those models that have been rigorously validated to

match across a wide range of human ethnic popula-

tions under specific image-gathering conditions that

could affect the image. Matching could be achieved by

using quantile-quantile (q-q) plots to show that the

distributions from the two different populations are

identical as was done by Daugman for iris codes [4].

The broader view would be the validation of these

models across the human populations and the widest

variety of possible environments and devices.

After the statistical taxonomy, parameters are under-

stood for the acquisition of a particular biometric sam-

ple, the tool can be configured to generate a large number

of synthetic biometric samples (as shown in Fig. 5).
Uses of Synthetic Biometrics

Synthetic biometric samples should not be considered

a replacement for real biometric samples, which are

still needed to understand the specifics of how the

biometric acquisition device and system as a whole

handles real world conditions. Mansfield and Wayman

provide a warning about the ‘‘external validity’’ from

the use of artificial images due to the bias that can

result from their generation [5]. This bias is introduced



Biometric Sample Synthesis. Table 1 Synthetic biometric data generation

Fingerprint Face Iris Voice

Synthetic
generation

Yes Yes Yes Yes

Model types Physical – finger/skin growth
model; Statistical – level
2 minutiae

Physical – craniofacial growth &
human skin light scattering
models; Statistical – morphable
feature

Statistical –
feature

Statistical and
Physical –
articulatory

Validated
statistical
models

No No Partial No

Biometric Sample Synthesis. Figure 3 The SFinGe tool as an example of the synthesized intermediate biometric

patterns based on an empirical statistical model.
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during the analysis of the training set of images used in

creating the parametric equations. However, synthetic

biometric samples offer a number of potential uses,

some positive and some negative.

Among the positive useful benefits of synthetic

biometric sample is a cost-effective means for studying

a biometric system’s algorithmic sensitivity to specific

biometric images from a variety of sensor types, or the

performance impacts from biometric images that have

been affected by any of a number of various environ-

mental or presentation factors.

Injecting synthetic biometric images into real world

or synthetic world scenes provides an ability to perform

operational scenario testing in a laboratory environ-

ment. The modeled ‘‘subjects’’ can be generated
randomly according to statistical models of a target

population or in this randomly generated target popu-

lation, very specific real or synthetic biometrics can be

injected to determine gross failure to detect rates in a

system context. Operational scenarios can include

videos of synthetic subjects walking through a security

checkpoint, and in the system context could include

a specifically injected individual with specific behavior-

al characteristics, or individual wearing troublesome

garments, such as sunglasses. Validated biometric mod-

els could also be used in the area of fingerprinting where

they could readily provide the effects of age, ethnicity,

and gender on performance. Biometric systems engi-

neers could run a vast array of potential scenarios to

categorize the performance of a layered security system



Biometric Sample Synthesis. Figure 4 A photographic image of a live person added to a 3D face model (Reproduced

with permission from the original author).

Biometric Sample Synthesis. Figure 5 Methodology for creating synthetic sample databases using parametric models.
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that contains security devices that have a known reli-

ability, or can use it to optimize camera locations and

lighting conditions.

National security support can be provided in the

areas of border control in airports, border crossings,

and in ports – by providing the capability to under-

stand potential vulnerabilities through controlled

areas. Countries that lack sufficient biometric diversity
to test border control systems for under-represented

ethnic groups would certainly benefit from the ability

to inject synthetic biometrics from these groups

to insure the system is not biased in its ability to

properly handle those individuals. Systems that

under-perform on specific ethnic groups mostly lacked

sufficient training data for the engineers building the

system.
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Synthetic biometric samples are not associated with

specific individuals; hence one could then argue that

they enhance privacy. Biometric databases generally

must be encrypted and secured for protection of an

individual’s identity, especially when additional meta-

data about that individual providing the biometric

sample is accumulated in the same data-gathering ex-

ercise. Synthetic biometric samples do not have this

restriction.

A sensitive subject for some is the use of biometrics

by governments. The U.S. Department of Defense’s

anti-terrorism total information awareness system

attracted significant congressional and public scrutiny

concerning the privacy, policy and potential abuses of a

system whose intended purpose was to protect U.S.

citizens from individuals known to want to cause the

U.S. harm. A concern about the potential ultimately

led to the cancellation of the program and is summar-

ized in a December 2003 audit report from the Inspec-

tor General of the U.S. Department of Defense [6].

There should be few if any restrictions on sharing

the parameters used to create synthetic biometric sam-

ples or entire synthetic biometric databases. Further,

assuming the modeling science can progress to an

advanced state, the engineers and researchers could

eventually create standard models, from which they

would only need to exchange parameter settings to

allow anyone to recreate specific or statistically similar

synthetic biometric samples.

Another benefit to using synthetic biometrics is the

cost and time savings from the need to acquire real

biometric samples for testing systems. Provided the

device acquisition and the impacts from factors like

environmental changes are model-able, and the effects

of presentation variations are well understood, realistic

synthetic samples can be quickly generated. The syn-

thetic samples can subsequently be used to augment or

perhaps someday reduce the need for system scenario

tests, saving money.

As with a number of technologies, synthetic

biometrics generators have the potential for misuse.

Among these uses are as rapid ‘‘hill-climbing’’ biometric

generation devices that can be used to identify people

in a biometric system that has not taken appropriate

security safeguards to thwart hill-climbing attacks.

Another potential misuse would be to characterize an

individual’s biometric with specific parameters, which

could then be used to generate specific synthetic

biometrics that could fool biometric systems across a
wide variety of possible sensors and environmental con-

ditions through the creation of phony biometrics. For-

tunately, biometric system engineers are cognizant of

these potential security vulnerabilities and routinely

take appropriate precautions to counter potential

attacks from phony biometrics [7, 8].
Summary

Biometric technology becoming a ubiquitous addition

to many modern security technologies. The synthesis

of biometric samples has important benefits that may

one day play an important role in the future of

biometrics. The likelihood that image biometric sam-

ple synthesis of facial or body characteristics may be-

come nothing more than a scientific curiosity is

remote. This is due to the movie industry’s quest to

create lifelike animated avatars.

The biometrics industry lacks validated models.

This shortfall remains one of the primary issues facing

the use of synthetic biometrics. In addition, the accu-

rate transformation of a specific synthetic biometric

between sensors and environments remains as an im-

portant next step that has been achieved to a certain

degree by at least some of the vendors of these

products.

The ultimate potential for synthetic biometrics is

providing a cost-effective method to avoid widely pub-

licized biometric deployment failures. The poster child

deployment failure was the Boston Logan Airport’s

attempt to utilize a face recognition system that

according to reports failed to match the identities of

38% of a test group of employees. Had the deployment

specifics (lighting conditions, algorithms, camera type,

angles, etc.) been checked in the lab with a synthesized

environment with injected real and synthetic biometric

avatars, it is entirely possible that this snafu could have

been avoided [9].

Despite some potentially negative uses, there are

significant potential benefits from biometric sample

synthesis. Increases in sophistication, reliability, and

accuracy of synthetic biometrics will improve the

potential for decreasing false match and false non-

match rates in systems through the use of finely tuned

biometric samples to allow algorithm improvements

to account for numerous noise inducing factors. This

improvement would be cost effective and privacy

enhancing – provided the synthetics accurately reflect
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what a real subject’s biometric would (or could) appear

like to the system’s biometric template extraction and

matching algorithms.

Biometric sample synthesis is a technology with

promising applications – the potential of which has

not been fully realized.
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Biometric Security Measure
Biometric security measure (or security countermea-

sure) is a technological or procedural system designed

to protect a biometric system from active attack (Bio-

metric security threat). Examples of security measures

include: liveness detection which is designed to detect

spoof biometric samples; and cancelable biometrics

and biometric encryption which are designed to pro-

tect against attacks on Biometric template security.

Examples of procedural measures include surveillance

and supervision of sensors. Biometric security mea-

sures are not designed to defend from zero-effort

impostors; as this aspect of the biometric system

would be considered the biometric performance.
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Definition

Biometrics holds out the promise of increased confi-

dence in personal authentication processes compared

with traditional passwords and tokens (e.g., keys and

cards). This is because of the direct link between the

biometric characteristic and the individual (strong

binding) compared with the indirect link represented

by passwords and tokens (weak binding).

Biometric Systems are IT systems that include bio-

metric recognition functionality. The security of
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biometric systems shares much with the traditional IT

system security, but there are some factors that are

biometric specific. These include threats such as spoof-

ing and the personal nature of biometric data that re-

quire special handling.

The earliest work on biometric security standards

related to biometric security management for the fi-

nancial services sector. However the recent growth in

the deployment of biometric systems, particularly in

public domain applications such as passports, visas,

and citizen cards, has given a strong impetus to the

development of standards that address the comprehen-

sive requirements of biometric systems and application

security. Consequently, there is now a concerted effort

by the two major standards groups involved ISO

(International Organization for Standards)/IEC JTC 1

(Joint Technical Committee 1 (The IT Standards Com-

mittee of ISO)) SC37 (Biometric Standards Subcom-

mittee of JTC 1) and SC 27 (IT Security Standards

Subcommittee of JTC 1) to cooperate to develop the

new guidelines and standards needed to deploy bio-

metric systems securely in the modern world.

Current areas of study include

1. Biometric security evaluation.

2. Biometric transaction security.

3. Protection of biometric data.

4. Guidance for specifying performance requirements

to meet security and usability needs in applications

using biometrics.
Introduction

The rapid growth of biometric technology for authen-

tication in public domain applications, such as pass-

ports, visas, border control and citizen card schemes, is

fuelling an intensive program of work to develop in-

ternational standards for future biometric systems. The

availability of standards provides suppliers with a set of

specifications and ‘‘good practices’’ as targets for their

products, and gives system designers more confidence

that their systems will work as intended and be inter-

operable with other products designed to conform to

the same standards. Alongside the technical standards,

corresponding security standards are needed to ensure

that biometric applications can be designed, built, and

deployed with adequate protection for the system and

for its users.
Since biometric systems are also IT systems, the

threats to security will share some aspects with those

of IT systems generally. However, there are specific

considerations for biometric systems that lie out-

side the normal. These include areas such as vulner-

abilities, which include the threat of spoofing with

an artifact (e.g., gummy fingerprint), mimicry, the

capture and replay of biometric data, and privacy con-

cerns because of the personal nature of biometric data.

Function creep and identity theft are examples of

possible misuse that are particularly relevant to bio-

metric applications. The consequence of these special

factors is that, for biometric systems, security con-

siderations need to extend beyond the system to

include protection for the biometric data of indivi-

duals whose biometric data are processed by or stored

on the system.

Although there is already a rich vein of IT security

standards available that are applicable to biometric

systems, the use of biometrics brings new, biometric-

specific, security requirements that existing standards

do not deal with. Biometric and IT security standards

bodies are currently focused on the development

of new biometric security standards that address

the deficiencies.

The biometric and IT security standards commu-

nities need to collaborate closely because of the vital

need for shared expertise and also because of the inev-

itable dependencies between standards specifying the

technology and others aimed at security. For example,

providing end-to-end security assurance of biometric

transactions across a network will require security infor-

mation to be generated and processed by the biometric

hardware and software at each end of the connection

as well as on the linking network. These end-points

are governed by the technical biometrics standards

BioAPI (Biometric Application Programming Inter-

face) [1] and CBEFF (Common Biometric Exchange

Format Framework) [2] developed by SC 37, and these

have strong interdependencies with ACBio (Authenti-

cation Context for Biometrics) [3], the biometric

transaction security standard under development in

SC 27. This and other examples are discussed in more

detail in later sections of this article.

Close liaison between SC 37 and SC 27 has existed

since the formation of SC 37 in December 2002. Each

subcommittee has appointed liaison officers who

attend meetings of both the subcommittees and take

responsibility for identifying projects requiring
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cooperation between SC 27 and SC 37 and ensuring

that relevant experts can be provided to support them.

Recent action taken by SC 37 will further strengthen

the cooperation with SC 27 through a coordinated

support group operating within SC 37. The motivation

is not only for the reasons given earlier but also

because much of the biometrics expertise essential for

the biometric security standards work is concentrated

in SC 37.

The following sections of this article provide a brief

discussion of the biometric security issues currently

being addressed by the standards community and the

associated standards development projects. Readers

should however note that, although the information

here was correct at the time of writing, many of these

standards are still in development and are evolving

rapidly; in consequence, some of the information will

inevitably become out of date. Readers are therefore

urged to visit the web sites of the relevant international

standards subcommittees for the current status of bio-

metric security standards. The URLs are listed in the

reference section at the end of the article [4, 5].
Biometric Data Management
Standards

Biometric Data Management is concerned with the

broader issues of management and procedural mea-

sures for protecting biometric data. These include

awareness training and accounting and auditing pro-

cedures as well as a reference to technical measures

such as those described in this article.

Historically, this work originated from the ANSI X9

subcommittee in the US X9.84 Standard – Biometric

Information Management – Security (2003) [6]. X9.84

progressed into the international standards domain to

become the starting point for the development of ISO

19092-2008 – Financial services – Biometrics – Security

Framework [7]. ISO 19092 is a biometric-specific

extension of ISO 17799, the Code of Practice for Infor-

mation Security Management, which is now subsumed

into the ISO 27000 family of ISMS standards [8].
Biometric Data Security Standards

Biometric data stored and processed in biometric sys-

tems are security sensitive. Their loss or disclosure could
potentially lead to the undermining of the authentica-

tion integrity of the system and misuses such as func-

tion creep, identity theft, and breaches of personal

privacy. The disclosure of biometric reference data

(e.g., fingerprint templates) might provide identifying

information for an attacker to transfer to an artifact for

use in a spoofing attack, or to generate an electrical

signal that could be directly injected in an electronic

attack. If exported for use elsewhere without the author-

ity of the individual, this would constitute function

creep and possibly a breach of privacy. In many

countries, such practices are regulated by data protec-

tion legislation or codes of conduct.

To guard against these threats, various procedural

and technical measures can be employed. Current

technical standards work focuses on the protection of

stored biometric data, including biometric samples

and biometric references, using cryptographic techni-

ques such as digital signatures and encryption.

The core standard for biometric data storage and

exchange is ISO/IEC 19785 CBEFF (Common Biomet-

ric Exchange Format Framework). CBEFF is a multi-

part standard where Part 4–Security block format

specifications–provides for the protection of biometric

data integrity and confidentiality.

The CBEFF standard defines a basic block of bio-

metric data called a BIR (Biometric Information

Record). The BIR is further subdivided into a Standard

Block Header (SBH), a Biometric Data Block (BDB)

containing the biometric data themselves (which may

be encrypted), and a Security Block (SB). The SBH

header includes indicators of the security mechanisms

that are used to protect the data. The SB security block

contains relevant security information such as cryp-

tographic checksums, digital certificates, and data

encryption algorithm specifications etc. that are used

to guarantee the integrity and confidentiality of the

data. The details of these options and the structure of

SB are being standardized in 19785-4 CBEFF Part 4,

using The Internet Society’s RFC 3852 CMS (Crypto-

graphic Message Syntax) [9]. The specifications within

the CBEFF security block are planned to encompass

the security requirements associated with the ACBio

(Authentication Context for Biometrics) standard [3],

which is being developed in SC 27 to provide end-to-

end assurance for biometric transactions. Essentially,

the CBEFF security block will contain a set of ACBio

instances which contain data that can be used to vali-

date the end-to-end integrity of the biometric
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transaction. Further information on ACBio appears in

the next section of this article.

SC 37 biometric standards are being modified

in order to support ACBio. The effect on CBEFF has

been described, but the BioAPI (ISO/IEC 19784-1 In-

formation technology – Biometric application pro-

gramming interface – Part 1: BioAPI specification) is

also in the process of being updated to accept BIRs,

including Security Blocks. An Amendment 3 to the

BioAPI standard is under development to deal with

the extended requirement for the provision of security

of data.

One approach to protecting biometric data is to

replace the central database of biometric references by

storage of each enrollee’s reference on a personally

held smartcard. This is often advocated by groups

concerned about the privacy implications of centra-

lized biometric databases. Secure smartcards could also

provide the necessary biometric processing, the main

system capturing the biometric sample, passing the

sample to the smartcard for matching against the ref-

erence stored on the card, and authenticating the

result delivered by the smart-card. This is what is

known as ‘‘On-card matching’’. A claimant could

carry the smartcard with him/her; present the card to

the system together with a biometric sample; and as-

sure the system that he/she is genuine by allowing

the secure processor of the smartcard to perform the

comparison between the live sample and the stored

reference. In this way, the biometric data and the

comparison algorithm are immune from attacks on

the central system.

The SC 37 19794-2 Fingerprint Minutia Standard

includes a section specifying a compact format finger-

print minutiae standard suitable for the limited storage

capability of smartcards. We envision that more stan-

dards may be necessary, especially standards that allow

for more interoperability between the smartcard and

the IT system.
Biometric Transaction Security
Standard – ACBio

Transaction security standards are well established in

the IT world, principally driven by the banking and

financial sectors where transactions need to be secure

not only over private networks but also between banks

and customers using the Internet. These standards
typically involve secure protocols using digital certifi-

cates and data encryption to guarantee the integrity

and confidentiality of remote transactions. If transac-

tions are to include biometric authentication, the se-

curity envelope needs to extend to provide assurance

for the biometric elements of the transaction. Such

assurance might include the authentication of the bio-

metric hardware (e.g., fingerprint reader), certification

of biometric performance capability, the quality of the

current biometric authentication instance, and the

integrity of the biometric data transfer process.

This is the scope of the SC 27 standard 24761

Authentication Context for Biometrics (ACBio) [3].

ACBio specifies the structure of data that can provide

the necessary assurance for a remote biometric verifi-

cation transaction.

ACBio models a biometric transaction as a set of

processes executed by Biometric Processing Units

(BPUs). A BPU places relevant security data into a

block called an ACBio instance. BPUs generate and

transmit ACBio instances together with the associated

biometric transaction data. ACBio instances secure the

integrity of the data, using security techniques such

as digital signatures and cryptographic checksums.

ACBio instances can also contain data that provide

the means of assuring other aspects of the transaction

such as validation of the biometric hardware used and

the certification of the performance capability of the

biometric verification process.

Transactions passing between BPUs will typically

accumulate a collection of ACBio instances associated

with the various processing stages. Each ACBio in-

stance will contain security markers (cryptographic

checksums, digital signatures etc.) that can provide

assurance for the corresponding process stages. Fur-

ther details are beyond the scope of this article, but the

security techniques used can provide protection

against the substitution of ‘‘bogus’’ components and

data replay attacks as well as general threats to the

integrity of the transaction data.

ACBio instances depend on other biometric and

security standards for their operation and effect. Inter-

dependencies with the CBEFF and BioAPI standards

have already been described in the Biometric Data

Security Standards section. Other standards are also

referenced by ACBio. An ACBio instance uses data

types defined in the RFC 3852 CMS (Cryptographic

Message Syntax) standard [2]. ACBio instances also

use X.509 digital certificates [10]. For the certification
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of biometric performance capability, ACBio calls on

the SC 37 19795 series of biometric performance test

standards [11]. To provide test results in a suitable

format for use by ACBio, work has begun in SC 37

on the 29120 standard: Machine-readable test data for

biometric testing and reporting [12]. Work is also

expected in SC 27 to produce a standard for the elec-

tronic format of cryptographic modules that will be

used by ACBio. Finally, ACBio refers to the SC 27

19792 Biometric Evaluation Methodology standard

[13] to provide security assurance for the biometric

hardware and software used in an application.

ACBio will therefore use existing cryptographic

and digital certificate techniques to assure transaction

data integrity end-to-end. The integrity of the biomet-

ric hardware and the performance and security of the

biometric technology will be provided by external

evaluation schemes, and the results will be embedded

in machine-readable data formats that can be authen-

ticated by the validation of the biometric verification

process as required.

The multiple dependencies between SC 27 and SC

37 standards for the successful operation of ACBio call

for close ongoing cooperation between the two sub-

committees to ensure consistency and interoperability

of the standards. Other collaborations are also re-

quired. In the area of smart cards, there is collabora-

tion between SC 17 and SC 27 to include in ACBio an

informative annex of command sequences for the real-

ization of ACBio on STOC (STore On Card) cards and

OCM (On Card Matching) cards. A STOC card is a

smart card that stores the biometric reference data on

the card, but does not perform the biometric verifica-

tion, and an OCM card is a smart card that both stores

biometric reference data and performs the biometric

comparison between the reference and the input bio-

metric sample data.
Biometric System Security Evaluation
Standards

Historical Background

Biometrics is about identification and verification.

However, in many systems, failures of identification or

verification will have security implications. Often the

reason that biometric technology is used is because of

the perceived increase in assurance of correct
identification or verification that biometrics will pro-

vide. However, to reliably assess this level of assurance, a

properly constituted security evaluation procedure is

needed.

Security evaluation of IT systems is now well estab-

lished. Various evaluation schemes exist for specific

market sectors such as antivirus products and smart-

cards. The internationally recognized standard for IT

security evaluation is ISO 15408 – Common Criteria

[14]. This is a government-developed scheme aimed

primarily at evaluation for government use, but it is

also recognized and used commercially as a ‘‘gold

standard’’ for security evaluation. Evaluations are per-

formed by government-licensed evaluation laboratories

in member countries and the results are recognized

across the participant countries (and wider) through

a mutual recognition agreement.

Although the Common Criteria evaluation method-

ology is generic and therefore suitable for biometric

system evaluations, there are a number of special factors

that need to be considered when undertaking biometric

system security evaluations. These include statistical

performance testing and biometric-specific vulnerabil-

ities. This was first recognized during a pioneering Com-

mon Criteria evaluation of a biometric fingerprint

verification system in Canada in 2000 [15], which led

the evaluation team to investigate and develop the

methodology to deal with the special factors. Subse-

quently, this work was further developed by an infor-

mally constituted group of biometric and Common

Criteria experts to produce a biometric evaluation ad-

dendum for the Common Criteria Methodology known

as the Biometric Evaluation Methodology or BEM [16].

The BEM describes the special requirements of a bio-

metric system security evaluation and gives guidance to

evaluators on how to address these requirements in a

Common Criteria evaluation. At the time of writing, the

BEM had not attained official status as a formal part of

CC methodology. Nonetheless, it is frequently refer-

enced as a source of information on CC and other

security evaluations of biometric products and systems.
ISO/IEC 19792: Information Technology –
Security Techniques – Security Evaluation
of Biometrics [13]

This international standard is currently under devel-

opment in SC 27. Project 19792 is not targeted at a



Biometric Security, Standardization B 127

B

specific evaluation scheme such as Common Criteria;

rather, its aim is to provide guidance to developers and

evaluators on security concerns for biometric systems

and to specify a generic methodology for their evalua-

tion. It is similar to the BEM, but is not limited to

Common Criteria evaluations and contains more

detailed information on potential threats, countermea-

sures, and evaluation requirements. Like the BEM, it

assumes that evaluators are familiar with the broader IT

security evaluation issues and does not address these.

19792 covers biometric-specific security issues of

the system as a whole as well as threats and potential

vulnerabilities of the component parts. It describes

technical and nontechnical threats and how these

may be reduced or eliminated by appropriate counter-

measures. It provides guidance to evaluators on testing

and the assessment of potential vulnerabilities and

countermeasures, and it defines the responsibilities of

vendors and evaluators in the evaluation process.

Biometric-specific aspects of system security and

evaluation methodology covered by 19792 include.

Statistical Performance Testing

Biometric comparison decisions (match and nonmatch)

are not certainties, but are prone to false match and false

non-match errors. Comparison results are therefore

often expressed in terms of the probabilities of correct

and incorrect decisions, the actual numbers being

expressed in terms of statistical performance figures.

An example of what this means in practical terms is

that for an access control application with a false match

rate of 1%, if 100 randomly chosen impostors were to

present their own biometric characteristic to the system

while claiming to be legitimate enrollees, one of them

might succeed in gaining admittance through chance

error. The quantification of errors through robust per-

formance testing therefore forms one part of a biometric

system security evaluation. The international standard

for biometric testing and reporting is provided by the

multipart ISO/IEC standard 19795 [11].

The significance of biometric error rates to security

depends on the purpose of the identification or verifica-

tion in the application domain. For access control, the

false match rate may be the most important security

relevant factor, but for applications such as passport or

ID card registration, an important requirement will be

the successful detection of attempts to register multiple

times under different claimed identities. Here, the sys-

tem needs to search its biometric database to determine
if there is an apparent match with any existing enrollee.

If a false non-match occurs during the search, a multiple

enrolment attempt may succeed and therefore, for this

function, the false non-match rate statistics will be the

most important security consideration.

Biometric System Threats and Countermeasures

The use of biometrics brings potential security threats

and vulnerabilities that are distinct from those of other

IT technologies, including spoofing, mimicry, and

disguise. Further details of these threats and exam-

ples of countermeasures can be found in the defini-

tional entries for ▶Biometric System Threats and

▶Countermeasures.

Human Security and Privacy Concerns

Since biometric systems collect and store the personal

data of its enrollees, security measures are necessary

to protect the data and the privacy of the enrollees. This

is another important difference between systems using

biometrics for authentication and those that depend on

inanimate entities such as passwords and tokens.

People have a right to privacy regarding the use and

sharing of their personal data, that is, data about their

lifestyle, preferences, habits etc. that can be linked to

them as individuals. Such data should be collected,

processed, and stored only with the informed consent

of the individual and only for the declared and author-

ized purpose. Unauthorized disclosure and misuse can

lead to undesirable consequences such as identity theft

and function creep. Biometric data are regarded as

particularly sensitive, because their strong binding to

specific persons may make it difficult for individuals to

repudiate transactions authorized by biometric

authentication.

Technical security measures such as data encryp-

tion and the use of cryptographic signatures to bind

data to an application can help to secure biometric

data, but usually, complete protection also requires

administrative controls and sanctions implemented

within an overall system security policy.
Future Directions for Biometrics
Security Standards

The first generation of biometric standards may be

characterized as a collection of largely self-contained

or stand-alone parts that provide the essential building
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blocks for future biometric systems. These build-

ing blocks are now largely in place, but the course of

their development has uncovered new areas of work

that need to be addressed by a second generation of

biometric standards.

Building on the experience of developing the earlier

standards, the second generation will target the bro-

ader requirements for system and application level

standards. The new standards will tackle areas that

were omitted from the first generation standards and

serve to bind together the earlier work to furnish a

comprehensive standards package that will meet the

wider systems and applications level standards require-

ments. Biometric system designers and implementers

need these standards to support the rapid growth in

large public domain biometric systems that we are now

seeing, including passports, visas, border control appli-

cations and financial transaction systems. Many of

these systems are international in reach and raise im-

portant privacy and other human concerns as well as

major technical challenges.

In the security area, work is needed on standards

that deal with such issues as

1. The use of multimodal biometrics to increase the

security that biometric authentication offers;

2. Comparing and quantifying the security capabil-

ities of biometrics and password- and token-based

authentication technologies individually and in

combination;

3. Assessing the requirement for biometric perfor-

mance in the context of a system where biometrics

provides only one element of security as part of an

overall system security policy;

4. The potential role of biometric authentication in

identity management systems;

5. Locking biometric data to specific applications to

prevent misuse and potential identity theft;

6. Referencing, interpreting, and using other relevant

security standards, for example, US Government

Federal Information Processing Standards FIPS

140 for data encryption; X.509 digital certificates,

in the domain of biometric security standards.

Some groundwork has already begun. In the United

States, the InterNational Committee for Information

Technology Standards (INCITS) M1 Standards Com-

mittee has picked up on earlier work by theUSNational

Institute of Standards and Technology (NIST) on Elec-

tronic Authentication and E-Authentication for US
Federal Agencies [17, 18] and produced a study report

on the use of biometrics in e-authentication [19].

A special group has been formed by SC 37 to study

and develop a proposal for future work on providing

guidance for specifying performance requirements to

meet security and usability needs in applications using

biometrics. Both this initial study and any subsequent

work will require close cooperation and involvement

of experts from other standards subcommittees, in

particular, SC 27.
Related Entries

▶Biometric Technical Interfaces

▶ International Standardization

▶ International Standardization Finger Data Inter-

change Format

▶Performance Testing Methodology Standardization
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Biometric Security Threat
Biometric Security Threat is an approach of active

attack against vulnerability in a biometric system

(see Biometric system: vulnerabilities). Threats may

be broadly classified as: Presentation attacks (spoof-

ing), in which the appearance of the biometric sample

is physically changed or replaced; Biometric processing

attacks, in which an understanding of the biometric

algorithm is used to cause incorrect processing and

decisions; Software and networking vulnerabilities,

based on attacks against the computer and networks

on which the biometric systems run; and Social and

presentation attacks, in which the authorities using the

systems are fooled. To defend against a biometric secu-

rity threat, a biometric security measure may be used.

▶ Security and Liveness, Overview
Biometric Sensing
▶Biometric Sample Acquisition
Biometric Sensor and Device,
Overview

GEPPY PARZIALE

iNVASIVE CODE, Barcelona, Spain
Synonyms

Biometric sensors; Biometric devices
Definition

A biometric sensor is a transducer that converts a

biometric treat (fingerprint, voice, face, etc.) of a per-

son into an electrical signal. Generally, the sensor reads

or measures pressure, temperature, light, speed, elec-

trical capacity or other kinds of energies. Different

technologies can be applied to achieve this conversion

using common digital cameras or more sophisticated

combinations or networks of sensors.

It is important to highlight that the output

signal of a sensor or device is only a representation of

the real-world biometrics. Hence, if B is a biometrics

of a real-world and s is the transfer function of a

sensor or a device, the output signal is B
0 ¼ s(B) and

B
0 6¼ B.

A biometric device is a system which a biometric

sensor is embedded in. Communication, processing

and memory modules are usually added to provide

additional functionalities that the biometric sensor

cannot if standalone.

Interchanging the terms sensor and device is

very a common practice, even if they are two differ-

ent concepts. A sensor is responsible only for the

conversion of a biometrics into an electrical signal.

Instead, when a processor and a memory module

are also involved, the term device is more appropriate.

http://www.commoncriteriaportal.org/
http://www.cse-cst.gc.ca/services/cc/bioscrypt-eng.html
http://www.cse-cst.gc.ca/services/cc/bioscrypt-eng.html
http://www.cesg.gov.uk/policy_technologies/biometrics/media/bem_10.pdf
http://www.cesg.gov.uk/policy_technologies/biometrics/media/bem_10.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://www.whitehouse.gov/omb/memoranda/fy04/m04-04.pdf
http://www.whitehouse.gov/omb/memoranda/fy04/m04-04.pdf
http://m1.incits.org
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Introduction

Biometrics identification and verification are slowly

penetrating the security market. The convenience of

avoiding to recall passwords and/or loose tokens

(id cards, smart-cards, etc.) is one of the strongest

advantage of biometrics compared to the legacy secu-

rity tools. Moreover, biometrics concretely links a per-

son to her/his identity, compared to the traditional

approaches that associate the person identity to a

token or a password that can be forged, lost, forgotten

or used by other people.

The most sensitive step in the biometric authenti-

cation chain is the ▶ biometric capture. The accuracy

and the repeatability of this process influence the

remaining steps of the chain. Since the output signal

of a device is only a representation of the real-world

biometrics, the choice of the representation type is a

very important issue, because it should try to meet

the four biometric axioms: uniqueness, repeatability,

permanence and collectibility [1]. However, this is a

very complex task influencing the choice of a technol-

ogy used and the design of the sensor/device for a

defined application.

Biometrics sensors must be designed taking into

account many factors. User convenience, portability,

electrical and optical characteristics and price are only

some of them. They are very important factors when

choosing among different sensors for a defined appli-

cation. However, they cannot be always met and the

right balance of these factors has to be found according

to the final application in which a biometric sensor

will be involved.

Below, the main features of a biometric sensor and

device are reported. This is not intended to be an

exhaustive list of features and only the most important

characteristics are highlighted.
User Acceptance

User acceptance is an important factor that has to be

taken into account during the choice of a technology

and the design of a biometric device. Easy-to-use devices

are preferable to user-unfriendly ones. For example,

devices pointing lasers to the eyes or providing small

electrical current to the body of a person are for sure

difficult to be accepted by the final user. Sensors touch-

ing a person body are less preferred than remote sensors
or device re-used to touch many individuals are not well

accepted for hygienic reasons. Some biometric devices

could be difficult to be accepted because of cultural or

religious motivations.

In general, biometrics sensors and devices can

be classified in two main families: intrusive and non-

intrusive. The closer the device to the person, the more

intrusive the device. For example, a surveillance camera

able to identify people face remotely is less intrusive than

imaging sensors touching the user eye to scan the retina.

Some biometric devices need the user to cooperate

during the capture and offer her or his own biometrics.

Other devices do not need any user cooperation. More-

over, when an operator is needed during the normal

use, the device can be classified as a supervised device,

while when the user can operate the sensor with no

extra support, it can be classified as an unsupervised

device. Usually, unsupervised devices are preferred to

supervised ones, because they do not need extra

human resources to operate.
Portability

Form factor and weight are sometimes very important

characteristics that must be taken into account during

the design of a biometric sensor, because they can

influence its portability. Embedding a face or finger-

print or iris sensor (or all together) in a mobile hand-

held computer or laptop or cellphone is becoming a

very attractive solution for different kinds of applica-

tions. When the portability is important, the sensor is

usually embedded in a more complex device contain-

ing all the functionalities (signal processing, commu-

nication, matching, etc.) that the biometrics sensor

cannot provide alone. The possibility to process locally

the captured biometrics requires the existence of pro-

cessor and memory modules. Instead, when the pro-

cessing is performed remotely a communication

interface must be considered as part of this more

complex device. In both cases, the power consumption

becomes an issue, because the need of supplying the

energy through portable batteries can limit the choice

of the technology.
Ruggedness and Lifetime

When a biometric device has to be installed or carried in

difficult environments (very low or high temperature,
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high humidity, vibrations, dust, noisy locations) or

when mechanical moving parts are involved (line-scan

cameras, auto-focusing cameras, auto-position sensors,

etc.) important features are the ruggedness and the life-

time. These influence the maintenance costs of the

device. Thus, during the design, these features have to

be taken into account and special housing or materials

must be used for the sensor manufacturing.
Calibration

The standard functionality of a sensor is usually influ-

enced by the external or internal factors and thus, it

can change during time, due to temperature, pressure

or humidity variations or due to some mechanical

movements. To reduce this problem, sensors need

to pass a periodical procedure to restore the initial

operational conditions. This process is called sensor

or device ▶ calibration.

Calibration refers to different processes used accord-

ing to the type of sensor and the technologies involved

for the capture. Electrical calibration is the process used

to restore the initial electrical conditions that could

change over time due, for example, to temperature

variations. Mechanical calibration is performed instead

when a device has moving parts. In this case, mechanical

frictions starts to appear during the normal sensor life

altering themeasure the sensor was designed for. Optical

calibration is instead the process used to re-focus lenses

or re-establish the initial illumination conditions.

The calibration is sometimes a process that is also

needed when the sensor is used for the first time (out-

of-the-box). Due to inaccuracies of the manufacturing,

the sensor functionality can be slightly different than

the defined one. Positioning, orientation or placement

of sensor parts can be sometimes very difficult and

the production process are usually not free of imper-

fections. Thus, the first time the device is used and then

periodically, a calibration procedure is needed. This

can be a manual, semi-automatic or fully-automatic

procedure. Fully-automatic calibration is usually pos-

sible when the biometric device does not contain me-

chanical and optical parts. In this case, the sensor

calibration is usually obtained using special electrical

circuits controlling the status of the device and re-

establishing the correct initial electrical conditions.

Optical calibration often requires the use of special

▶ optical targets. These are mechanical models used
to measure pre-defined known values against which

the output of the sensor is compared. Mechanical

calibration is usually done manually by an experienced

operator, reviewing all the mechanical functionalities.
Operating Conditions

The set of conditions (e.g., voltage, temperature, humid-

ity, pressure, etc.) over which specified parametersmain-

tain their stated performance rating are called operating

conditions. When these are not respected, the biometric

sensor could not work as defined by the manufacturer.

The operating conditions must be chosen according to

the final sensor applications. Sensors used for military

applications have usually very large operating condi-

tions and the devices is supposed to work under huge

stress (high or low temperatures, vibrations, dust, high

humidity, etc.). As other electrical or mechanical com-

ponents, biometric sensors must meet some standard

requirements and pass a certification process. For

example, ▶ ISO certifications define the electrical and

mechanical characteristics that an electronic device

should meet to be sold.
Sensor Interface

The possibility to interface a sensor or device with

other sensors or devices and with a processing unit is

an important feature that must be considered when

choosing a sensor for a defined biometric application.

USB and Firewire can be the best choice, when the

biometric sensor needs to be connected to a standard

PC. When the data throughput is an issue, optical

fibers or gigabit ethernet are possible solutions. More-

over, if the quantity of data the sensor has to transfer to a

processing unit is large, the interface must be able to

transfer this data as fast as possible to avoid long latency.

Wired or wireless communication interfaces can be cho-

sen according the final application.
Power Supply

Low-current absorption is usually a very required fea-

ture for a biometric device, because this facilitate

to embed it in other devices. Usually the basic sensors

(e.g. cameras and microphones) do not need to drain
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too much current, but when illuminators (▶ Light

Emission Diode or optical fibers) or mechanical move-

ments (line scanning cameras) or heating generators

(palmprint devices reducing the halo effect) are involved,

then extra power is needed. Modern communication

interfaces as USB 2.0, Firewire and Ethernet can supply

power to the sensor with no need of extra wires. This is a

very interesting alternative especially when the biometric

application requires a portable device connected to a

laptop.
Failure Rate

Failure Rate is the frequency with which an engineered

system or component fails. It can be expressed in fail-

ures per hour. Mean Time Between Failures (MTBF) is

the mean (average) time between failures of a system,

and is often attributed to the useful life of the device

i.e., not including infant mortality or end-of-life, if

the device is not repairable. Calculations of MTBF

assume that a system is renewed, i.e. fixed, after each

failure, and then returned to service immediately after

failure. The average time between failing and being

returned to service is termed mean-down-time

(MDT) or mean-time-to-repair (MTTR).
Cost

The cost of a biometric device or sensor is a very

important factor influencing the final target applica-

tion in which the device or the sensor will be involved.

The final costs depend on many factors. The availabi-

lity of the basic technology used for the biometric

capture is one of them. If special and sophisticated

technologies are used instead of the common ones,

the costs of the device increase. Moreover, the produc-

tion materials, the manufactured number of samples

and the maintenance are also factors influencing the

final costs.
Sensor Resolution

Sensor resolution refers to the ability of a device to

acquire, scan or distinguish details of the acquired

biometric treat. Depending on the sensor type, it can
be distinguished among spatial, frequency, time and

radial resolution. For example, a face device can be an

area-sensor and its spatial resolution measures the

quantity of details of the face skin it can acquire.

Spatial resolution represents the number of pixels in

a unitary length and is usually expressed in pixel-per-

inch or shortly, ppi. Frequency resolution represents the

ability of a device to distinguish frequency variations.

Time resolution measures the abilityof a sensor todistin-

guish time variations. For example, microphones

used as speech devices should have a certain capacity to

recognize fast speakers. Radial resolution represents the

ability of a sensor to distinguish variation in the

distance.

The increase of the resolution increases the accuracy

of the sensor and usually its final cost. In many applica-

tions, a trade-off between resolution and final cost must

be found.
Optical and Imaging Characteristics

When a biometric sensor generates as output signal an

image and an optical system is involved in the capture

process, the choice of a sensor is based on optical

characteristics.

Image Depth or Dynamic Range determines how

finely a sensor can represent or distinguish differences

of intensity. It is usually expressed as a number of gray

levels or bits. For example, 8 bits or 256 gray levels is a

typical dynamic range of fingerprint image or 24 bits or

256 Red, Green and Blue (RGB) levels which is typical of

face image.

TheModulation Transfer Function (MTF) or Spatial

Frequency Response represent the relationship between

the input and the output signal of a sensor. Spatial

frequency is typically measured in cycles or line pairs

per millimeter (lp ∕mm). The more extended the

response, the finer the detail and the sharper the image.

MTF is the contrast at a given spatial frequency f relative

to contrast at low frequencies and it ca be computed

with the following (1):

MTF ¼ 100%
Cðf Þ
Cð0Þ ; ð1Þ

where C(f ) ¼ (Vmax �Vmin) ∕(Vmax þVmin) is the con-

trast at frequency f and C(0)¼ (VW � VB) ∕(VW þ V B)
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is the low frequency contrast. VB, VW, Vmin and Vmax

represent the luminance for black areas, the luminance

for white areas, the minimum luminance for a pattern

near spatial frequency f and the maximum luminance

for a pattern near spatial frequency f, respectively.

Geometric Image Accuracy represents the absolute

value of the difference D ¼ X � Y, between the dis-

tance Xmeasured between any two points on the input

image and the distance Ymeasured between those same

two points on the output image. This is a very impor-

tant parameter especially for devices having a very large

capture area. This feature is measured using special

optical targets.

The capacity of a sensor to capture the whole

biometrics in a single image is expressed by the

Field-of-View (FoV). For a digital camera, this repre-

sents the angular extent of the observable object that is

seen at any given moment. For some biometrics

devices, it is fundamental to capture the biometrics in

a single capture. For example, hand-geometry devices

needs to capture the full hand in a single shot. Sweep

fingerprint sensors allow only the capture of a finger-

print in different instant of times, since their FoV is

very limited.

Precise focus is possible at only one distance; at that

distance, a point object will produce a point image.

Depth-of-Field (DoF) represents the range of distance

in which the object remains focused. This is a very

important feature for remote cameras, since it repre-

sents the location in which the biometrics must be

placed to be always focused.

The Intensity Linearity represents the capacity of a

device to reproduce the intensity level values correctly.

To prove this feature, a target with gradually varying

grayscale levels is usually used for this scope.

The grayscale levels on the output image are compared

with the grayscale levels on the input target to measure

the accuracy of the representation. Large varia-

tions in the representation lead that the sensor is

calibrated.

The Signal-to-Noise Ratio is a measure of the level

of noise introduced by the sensor during the biometric

capture. This is usually measured using a special opti-

cal target representing an intensity level as a reference.

The Framerate is the number of frames per time

unit that a sensor can generate. It is usually measured

in frames ∕s. These parameter is very important when

the object movements are involved (sweep devices,
touchless devices, gait device, face device) during the

biometric capture.

In optics, the F-number (sometimes called focal

ratio, f-ratio, or relative aperture) of an optical system

expresses the diameter of the entrance pupil in terms of

the effective focal length of the lens; in simpler terms,

the f-number is the focal length divided by the aperture

diameter. It is a dimensionless number that is a quan-

titative measure of lens speed, an important concept in

photography.

The Shutter-speed is the time that a detector needs

to capture a single image. In photography, shutter

speed is the length of time while the shutter is

open; the total exposure is proportional to this expo-

sure time or duration of light reaching the film or

image sensor.
Summary

Biometric sensors and devices are slowly penetrating

the security market, because of the advantages of

biometrics with respect to traditional security means

as passwords and tokens. The choice of a sensor for a

defined application is usually dependent on some elec-

trical, ergonomic, optical, mechanical and other char-

acteristics. An overview of this important features has

been here reported.
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Biometric Services
Biometric functions offered and performed by a

service provider on behalf of a requester, usually re-

motely. Biometric services may include biometric data

management, 1:1 verification, or 1:N identification

services.

▶Biometric Interfaces
Biometric Specific Threats
Synonyms

Attacks; Threats; Vulnerabilities
Definition

Spoofing is the use of an artifact containing a copy of

the biometric characteristics of a legitimate enrolee to

fool a biometric system. Examples include: gummy

fingers, photograph of a face or iris pattern, artificial

hand, etc., depending on the modality of the biometric

characteristic.

Mimicry is imitating someone else’s behavior to

fool a biometric system that uses human behavior

rather than biology as a distinguishing characteristic.

Examples include signature and voice recognition.

Disguise is concealing biometric characteristics to

avoid recognition. It can apply to biological and be-

havioral characteristics and may or may not involve the

use of artifacts.

Weak algorithms are biometric algorithms designed

to work effectively with the normal range of human

characteristics that may behave unpredictably when

presented with highly abnormal input signals. This

could produce much higher error rates than usual for

these abnormal cases. Such signals could be introduced

through the use of artefacts or electronically injected

via signal replay, e.g., fingerprint with an abnormally

high (or low) number of minutiae points.

Capture/replay attack is the capture and subsequent

replay of signals flowing in a biometric system, either

electrically injected or via transfer to an artifact.
If the biometric system returns a score to the user

indicating how close a submitted sample is to thematch-

ing decision threshold, it may be possible for an attacker

to conduct a methodical attack by making small altera-

tions to successively submitted samples, looking to grad-

ually nudge the score until it passes the matching

decision threshold. This is a hill climbing attack.

Database attack is the unauthorized access to bio-

metric data held in the system database, may allow an

attacker to inject data or transfer it to an artifact to fool

the system.

Biometric systems have environmental vulnerabili-

ty. Abnormal conditions, like lighting, could cause a

biometric system to behave unpredictably, possibly

leading to high error rates. Knowledgeable attackers

could exploit such a weakness by creating adverse

environmental conditions.

▶Biometric Security, Standardization
Biometric Spoof Prevention
Biometric spoofing is a method of attacking biometric

systems where an artificial object is presented to the

biometric sample acquisition system that imitates the

biological properties the system is designed to mea-

sure, so that the system will not be able to distinguish

the artifact from the real biological target.

Biometric spoof prevention involves providing the

system with measurement and analysis mechanisms

that help differentiate the real biological target from

various classes of fake targets. There are several

approaches to implementing biometric spoof detec-

tion and they are:

� Highly detailed analysis of the primary biometric

data can detect and reject low resolution spoofs

� Measurement of secondary properties of the

biological target can make spoof fabrication more

difficult

� Measurement of variation in the biometric prop-

erty over short time durations can help reject rigid

and stationary spoofs

� Simultaneous measurement of a second biometric

property of the same biological target can
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significantly increase the complexity and difficulty

involved in fabricating fake target artifacts.

▶Anti-Spoofing

▶Biometric Sample Acquisition
Biometric Strength of Function
The strength of security of the biometric system, being

measured through the FAR achieved in an operational

environment.

▶User Interface, System Design
Biometric Subsystem Transaction
Time
▶Operational Times
Biometric System
The integrated biometric hardware and software used

to conduct biometric identification or authentication.

Biometrics is the measurement of physical character-

istics, such as fingerprints, DNA, retinal patterns, or

speech patterns, for verifying the identity of

individuals.

▶Biometrics

▶Multispectral and Hyperspectral Biometrics
Biometric System Components
Elements of a biometric system, including capture,

feature extraction, template generation, matching,

and decision.

▶User Interface, System Design
Biometric System Design, Overview
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Definition

Biometric system design is the process of defining the

architecture, selecting the appropriate hardware and

software components and designing an effective ad-

ministration policy such that the biometric system

satisfies the specified requirements. The requirements

for a biometric system are typically specified in terms

of six major design parameters, namely, accuracy,

throughput, cost, security, privacy and usability.
Introduction

In general, biometric systems consist of seven basic

modules that operate sequentially [1] as shown in

Figure 1. These building blocks or modules include

(i) a user interface incorporating the biometric rea-

der or sensor, (ii) a quality check module to deter-

mine whether the acquired biometric sample is of

sufficient quality for further processing, (iii) an en-

hancement module to improve the biometric

signal quality, (iv) a feature extractor to glean only

the useful information from a biometric sample that

is pertinent for the person recognition task, (v) a

database to store the extracted features along with

the biographic information of the user, (vi) a matcher

to compare two feature sets during recognition and

to determine their degree of similarity and (vii) a

decision module that determines the user identity

based on the similarity (match scores) output by the

matcher.

Though all biometric systems are composed of

the same basic modules, there are three main steps

involved in the design of a biometric system. Firstly,

the designer needs to choose the appropriate architec-

ture for a biometric system. Secondly, the hardware and

software components required for the implementation

of the architecture must be selected. Finally, appropri-

ate policies must be defined for the effective adminis-

tration of the biometric system. Before the essay dwells
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deeper into these three issues, it is important to remem-

ber that the goal of any design process is to develop a

system that satisfies the requirements of the application.

Hence, most of the design decisions in a biometric

system are fundamentally driven by the nature or

functionality of the application and the specified

requirements.

The functionalities provided by a biometric system

can be broadly categorized as verification and identifica-

tion [2]. In verification, the user claims an identity and

the system verifies whether the claim is genuine by

comparing the input biometric sample to the template

corresponding to the claimed identity. In identification,

the user’s biometric input is compared with the tem-

plates of all the persons enrolled in the database and the

system returns either the identity (in some scenarios,

multiple identities whose templates have high similarity

to the user’s input may be returned by the system.). Of

the person whose template has the highest degree of

similarity with the user’s input or a decision indicating

that the user presenting the input is not an enrolled user.
Design Specifications

The six basic design specifications [3] of a biometric

system are presented below. While some of the para-

meters like accuracy and throughput can be
Biometric System Design, Overview. Figure 1 Basic buildin
measured quantitatively, factors such as security, privacy

and usability are generally addressed in a qualitative

manner.
Accuracy

A biometric system can make two types of errors,

namely, false non-match and false match. When the

intra-user variation is large, two samples of the same

biometric trait of an individual (mate samples) may not

be recognized as a match and this leads to a false non-

match error. A false match occurs when two samples

from different individuals (non-mate samples) are incor-

rectly recognized as a match due to large inter-user

similarity. Therefore, the basic measures of the accuracy

of a biometric system are False Non-Match Rate (FNMR)

and False Match Rate (FMR). In the context of biomet-

ric verification, FNMR and FMR are also known as False

Reject Rate (FRR) and False Accept Rate (FAR), respec-

tively. In biometric identification, the false match and

false non-match errors are measured in terms of the

False Positive Identification Rate (FPIR) and False Neg-

ative Identification Rate (FNIR), respectively [4].

Accuracy requirements for a biometric system de-

pend on the application. For example, a verification

application usually involves co-operative users and may

require a low FMR (0.1% or less), while a relatively high
g blocks of a biometric system.
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FNMR (1%–5%) may be acceptable. On the other hand,

a negative identification application like airport screen-

ing may require both a low FNIR to prevent undesirable

individuals from circumventing the system and a low

FPIR to avoid causing inconvenience (in the form of

secondary screening) to the other passengers.
Throughput

Throughput refers to the number of transactions that

can be handled by the biometric system per unit time.

Since the input is matched only to a single template in

verification, throughput is not a major issue in verifica-

tion systems. However, for the sake of user convenience

it is essential that the entire process of sample acquisi-

tion, feature extraction, and matching be completed

within a few seconds even in verification applications.

Throughput is a major concern in the identification

mode because it requires matching the biometric query

to all the templates in the database. Therefore, large-scale

identification systems employ special schemes (both

hardware and software) such as indexing, binning, or

filtering to facilitate efficient searching of the database

and thereby improve the system throughput.
Cost

The cost of a biometric system includes the cost of all the

components of the biometric system and the recurring

costs required for the operation, maintenance, and up-

grade of the system.Often, there is a tradeoff between the

cost of the biometric components and the performance

(accuracy, throughput, and usability) of the biometric

system. Furthermore, the intangible costs such as those

incurred due to the errors made by the biometric system

must also be considered while designing a biometric

system. A thorough cost-benefit analysis is essential

prior to any biometric system deployment.
Security

Since biometric systems provide a more secure and

reliable authentication functionality compared to pass-

word and token-based systems, it is now being widely

deployed in many real-word applications. However,

the biometric system itself is vulnerable to a number

of attacks [5] such as usage of spoofed traits and
tampering of biometric data, communication chan-

nels, or modules. These attacks may either lead to

circumvention of the biometric system or denial-of-

service to legitimate users. Hence, a systematic analysis

of these security threats is essential when designing a

biometric system.
Privacy

While biometrics facilitates secure authentication by

providing an irrefutable link to the identity of a person,

it also raises privacy concerns. One major objection

raised by privacy experts is the problem of function

creep, where the acquired biometric data is abused for

an unintended purpose. For example, allowing linkage

of identity records across biometric systems may facil-

itate tracking of users without their knowledge. Hence,

due diligence must be exercised during the design

process and appropriate checks and balances must be

incorporated in the biometric system to protect the

privacy of users [6].
Usability

Usability of a biometric system can be measured in

terms of different factors like effectiveness (Can users

successfully provide high-quality biometric samples?),

efficiency (Can users quickly authenticate themselves

without errors?), satisfaction (Are users comfortable

using the system?), and learnability (Do users get habi-

tuated to the system?) [7]. Two common metrics used

to measure the effectiveness of use of a biometric system

are the Failure to Enroll Rate (FTER) and Failure to

Capture Rate (FTCR). If an individual cannot interact

correctly with the biometric user interface or if the

biometric samples of the individual are of very poor

quality, the sensor or feature extractor may not be able

to process these individuals. Hence, they cannot be

enrolled in the biometric system and the proportion of

individuals who cannot be enrolled is referred to as

FTER. In some cases, a particular sample provided by

the user during authentication cannot be acquired or

processed reliably. This error is called failure to capture

and the fraction of authentication attempts in which the

biometric sample cannot be captured is denoted as

FTCR. Usability depends on the choice of the biometric

trait, the design of the user interface and sensor quality.
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Design Issues

Given the design specifications of the biometric system

and the nature of the biometric system, a system

designer needs to address the following three issues

systematically.
Biometric System Architecture

Architecture of a biometric system is primarily defined

by the storage location of the templates and the loca-

tion of the matcher. The templates (or the template

database) may be stored in (1) a centralized/distibuted

server, (2) local workstation at the client side, and (3) a

portable device such as smart card or token that is in

the possession of the user. Similarly, matching may also

take place at any one of the above three sites. This

allows for a wide range of possible architectures rang-

ing from a fully centralized model, where the templates

reside on the server and matching also takes place at

the server, to a completely decentralized model (e.g.,

match-on-card or system-on-device), where all the

biometric processing takes place on the device and

the template never leaves the device. Other intermedi-

ate architectures are also possible. For example, the

template may be stored on a smart card and during

authentication, the client workstation may read the

template off the card and match it with the input

biometric to provide access. Note that feature extrac-

tion usually takes place only at the client side (on the

local workstation or the portable device) to avoid costs

involved in transmitting the raw biometric sample over

a communication network.

The most important factor that decides the biomet-

ric system architecture is the mode of operation of the

biometric system. While it is possible to de-centralize

the database (e.g., storing the biometric templates on

personalized smart cards) in the verification mode,

identification mode necessarily requires centralized

databases. Other characteristics of the application such

as cooperative versus non-cooperative users, overt ver-

sus covert recognition, attended versus un-attended

application, on-site versus remote authentication, etc.

also influence the architecture of a biometric system.

In the special case of multibiometric systems [8]

that involve integration of evidence from different

biometric sources, the term architecture may also in-

clude the design of the fusion methodology. The fusion
architecture in a multibiometric system is determined

by the following three factors: (1) sources of informa-

tion that need to be combined (i.e., different modal-

ities like face, fingerprint and iris, different instances of

the same trait like left and right index fingers, etc.), (2)

the acquisition and processing sequence (i.e., cascade,

parallel or hybrid), and (3) the type of information to

be fused (i.e., features, match scores, decision, etc.).
Hardware/Software Implementation

Once the architecture of the biometric system has been

defined, the system designer/integrator needs to select

the appropriate hardware and software components to

implement the chosen system. If the system designer

also manufactures all the required components like the

biometric sensor, feature extraction, and matching

modules, it is relatively easy to put all these pieces

together to build the complete biometric system.

However, in the biometrics field, the vendors who

design the biometric system or develop the application

around it typically partner with another set of vendors

who build the biometric hardware and software mod-

ules and create OEM (Original Equipment Manufac-

turer) solutions. Therefore, the following issues need

to be considered by the system designers [9].

� Sample Acquisition: The biometric sensor or the

sample acquisition hardware plays a very impor-

tant role in determining the performance and us-

ability of a biometric system. Apart from its ability

to acquire or record the biometric sample of the

user precisely, other factors such as the size, cost,

robustness to different environmental conditions,

etc. must also be considered when selecting the

biometric sensor. Another problem that needs to

be addressed during sample acquisition is how to

deal with poor quality biometric samples.

� User Interface: The design of a good user interface is

also critical for the successful implementation of a

biometric system. An intuitive, ergonomic and easy

to use interface may facilitate rapid user habituation

and enable the acquisition of good quality biometric

samples from the user. Demographic characteristics

of the target population like age and gender and

other cultural issues (e.g., some users may be averse

to touching a sensor surface) must also be consid-

ered when designing the user interface.
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� Biometric Processing Components: This includes the

hardware and/or software required for performing

the core biometric processing tasks of feature ex-

traction and matching. Usually, the vendors supply

software development kits (SDKs) to perform these

tasks. The system designer must examine whether

these components are proven and tested by reliable

third party evaluations. Other factors to be con-

sidered include the cost/performance tradeoff and

the availability of documentation and product

support.

� Communication Channels: The establishment of

secure communication links between the different

modules of the biometric system is one of the

key steps in ensuring the security of the entire

system. Tamper resistance, cryptographic algo-

rithms, and challenge-response mechanisms must

be incorporated to secure the communication chan-

nels so as to avoid vulnerabilities such as denial-of-

service, replay attacks, man-in-the-middle attacks,

etc.

� Database Design: The system designer is typically

entrusted with the task of storing and retrieving

the biometric templates and other user informa-

tion in/from a database. Therefore, the organi-

zation of the records in the database must be

addressed carefully to avoid unnecessary delays

that may decrease the throughput. The database

design is especially important in the case of large

scale identification systems.

� Interoperability: When a biometric system is designed

using components obtained frommultiple vendors, it

is very important to ensure their interoperability.

If possible, it is always better to use products that are

compliant with the existing or emerging standards so

that they can be replaced seamlessly in future. In the

case of software components, the system designer

must also check compliance with different operating

systems and platforms.
Administration Policy

Setting the administration policy of a biometric system

is one of the critical steps in ensuring the successful

deployment of a biometric system. The administration

policy may cover a variety of issues including:

� Integrity of Enrollment : The success of any biomet-

ric recognition system is mainly decided by the
integrity of the enrollment process. If an adversary

can enroll into the system surreptitiously (under a

false identity) by producing his or her biometric

traits along with false credentials (e.g., fake pass-

ports, birth certificates, etc.), the effectiveness of the

biometric system gets completely nullified. Hence,

the administrator needs to set appropriate policies

that will guarantee the integrity of enrollment.

� Quality of Enrollment Samples: Enrollment is gen-

erally performed under human supervision to en-

sure that good quality biometric samples are

obtained from the users. Furthermore, the admin-

istrator needs to define policies such as the number

of enrollment samples required, the minimum

sample quality required for enrollment, ways to

select the best quality samples, user training, and

exception procedures for persons who are unable to

provide good quality samples.

� System Configuration: This includes setting system

parameters such as the matching threshold (which

determines the FMR and FNMR of the system), the

number of unsuccessful trials allowed before an

account is locked, the alarms to be generated, tem-

plate update policies, etc.

� Exception Handling : Biometric systems are usually

riddled with exception handling procedures (or fall-

back systems) to avoid inconvenience to genuine

users. For example, when a user has an injury in

his finger, he may still be granted access based on

alternative authentication mechanisms without

undergoing fingerprint recognition. Such exception

processing procedures can be easily abused to cir-

cumvent a biometric system. It is very important to

define appropriate policies for handling such excep-

tions so that an adversary cannot exploit this poten-

tial loophole easily.

� Privacy Measures: Given the sensitivity of the bio-

metric information, it is essential to set policies

that will prevent insiders and external adversaries

from modifying or tampering the template data-

base or using the biometric data for unintended

tasks. Measures such as strict audit of access logs

must be implemented to protect the user’s privacy.
Summary

Designers of biometric systems need to define the sys-

tem architecture, address the implementation issues,
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and set the administration policies in such a way that

the design specifications like accuracy, throughput,

cost, security, privacy, and usability are met. However,

this is generally a complicated task because some of the

design requirements may be contradictory. Depending

on the nature of the application, a number of tradeoffs

such as cost versus accuracy, accuracy versus through-

put, usability versus cost, accuracy versus security may

be involved in the design of a biometric system. Opti-

mizing these requirements so as to obtain the maxi-

mum return-on-investment is a challenging problem

that requires a systematic design approach.
Related Entries
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Definition

Agent-based biometric systems use the computational

notion of intelligent autonomous agents that assist the

users and act on their behalf to develop systems that

intelligently facilitate biometrics-enabled transactions,

giving them the ability to learn from the users and

adapt to application needs, thus enhancing recognition

performance and usability.
Introduction

The ultimate effectiveness and success of biometric

systems to a large part is dependent on the user experi-

ence when interacting with such systems. It is therefore

essential that issues of user interaction and experience

are considered when designing biometric systems. As

user behavior and expectations as well as application

requirements and operating conditions can vary widely,

it becomes important to consider how systems can be

developed that can adapt and learn to provide the

best possible performance in a dynamic setting.

Here the paradigm of intelligent software agents

may be effectively utilized to design and implement

biometric systems that can dynamically respond to

user and application needs. Intelligent autonomous

agents and multiagent systems form a rapidly expand-

ing research field [1]. Agents can be defined as software

subsystems that interact with some environment and

are capable of autonomous action, while representing

the interests of some user or users. Such agents may

know about their users’ wishes and goals using a pre-

supplied knowledge base as well as through a learning

system. They can then use this knowledge to seek the

accomplishment of their users’ goals. While seeking

such goals in a flexible response to their environment,

agents may be designed to be proactive in exploiting

any opportunities that may be available. They may also

cooperate and compete with other agents and may

have other valuable properties such as mobility and

adaptability.
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A group of interacting agents may be implemented

to form a multiagent system (MAS) [2]. These are

systems composed of multiple interacting agents that

can be used to tackle applications, which are not pos-

sible to handle effectively with just a single agent and

are well suited to situations where multiple perspec-

tives of a problem-solving situation may be exploited.

Interactions in a MAS may include cooperation, coor-

dination, and negotiation between agents.

Negotiating agents are of particular importance in

electronic commerce and the proliferation of Internet-

based applications is a driving force for research and

development of such multiagent systems [3]. Such

multiagent systems when applied to user authentica-

tion applications can facilitate a bargain between the

needs of the information provider for establishing suf-

ficient trust in the user on the one hand and the

confidentiality of the user’s personal information and

the ease of use of the system on the other hand. Such a

balance may need to be achieved for each different

service, transaction or session and may even be dyna-

mically modified during use. Multiagent systems can

provide an effective framework for the design and

implementation of such systems.

Other areas of active research and development in

the field of ▶ intelligent agents include software devel-

opment environments and specialist programming

and agent communication languages as well as the

design of the overall architecture where layered or

hybrid architectures, involving reactive, deliberative,

and practical reasoning architectures continue to be

of considerable interest [4].
Challenge of Complexity

The application of biometric systems in most realistic

scenarios is bound to face the challenge of complexity

resulting from a range of interrelated sources of varia-

bility that are likely to affect the performance and

overall effectiveness of such systems.

These sources include, for example, users’ physio-

logical/behavioral characteristics, users’ preferences,

environmental conditions, variability of the communi-

cation channels in remote applications, and so on. If

one considers the users’ biometric characteristics

alone, it is clear that with a widening user base it is

important to consider the impact of ‘‘outliers’’ – those

users who find it difficult or impossible to use the
system. Failure to enrol on biometric systems or to

consistently provide useable images for biometric

matching may be due to a range of factors including

physical or mental disability, age, and lack of familiar-

ity or training in the use of the particular biometric

systems deployed. In many applications, it is essential

to ensure that no part of the user population is exclud-

ed from access and therefore, measures must be intro-

duced to handle such outliers in a way that does not

reduce the security or usability of the system.

One approach to address this issue, as well as to

tackle the other grand challenges of biometrics such as

performance, security, and privacy [5] is to adopt a

multibiometric approach [6]. In multibiometric sys-

tems, information from several sources of identity are

combined to produce a more reliable decision regard-

ing identity. This may include fusing information

from a number of modalities such as face, voice, and

fingerprint, using a different sensor and biometric

matching module for each modality. Here informa-

tion may be fused at various stages of processing,

including fusion of biometric features extracted

from each modality (feature fusion) or fusion of

matching scores after matching of each the biometric

samples against the respective templates for each mo-

dality (score fusion). There is a wide, extensive, and

varied literature on such multimodal identification

systems [6]. While in most of the reported works,

attention is generally focused on a multimodal recog-

nition procedure based on a fixed set of biometrics, it is

clearly possible to adopt a more flexible approach in

choosing which modalities to integrate depending on

individual user needs and constraints – thus removing,

or at least reducing, the barrier to use by ‘‘outlier’’

individuals and facilitating universal access through

biometrics.

Research has shown the potential advantages of a

more flexible structure for multibiometric systems

allowing an element of reevaluation and adaptation

in the information fusion process [7]. Mismatched

recognition and training conditions can lead to a re-

duced recognition accuracy when compared to

matched conditions, suggesting that robust recogni-

tion may require a degree of adaptation. Inclusion of

biometric sample quality information can further en-

hance the fusion process [8]. Here, an estimate is made

of the quality of the live biometric sample and this is

used to adapt the operation of the fusion module,

which may have been trained earlier incorporating
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knowledge from both biometric samples and their

associated quality.

The move towards multibiometrics further accent-

uates system complexity and the burden on the bio-

metric system users to efficiently utilize such systems.

Instead of having to provide a sample for only one

sensor, there is a set of sensors to interact with. There

is more effort required from the user and more choices

available in the design of the interaction with the

system. Intelligent agents can thus provide a valuable

way forward for designing and managing intelligent

and adaptable user interfaces, while multiagent archi-

tectures can facilitate the negotiation of trust, security,

and privacy requirements of system users.

With an agent-based biometric system selection of

a variable set of biometric modalities can be accom-

modated to match the demands of a particular task

domain or the availability of particular sensors. For

example, a multimodal system should be able to deal

with situations where a user may be unwilling or sim-

ply unable to provide a certain biometric sample, or

where a preferred biometric modality cannot support a

required degree of accuracy. The deployment of a mul-

timodal approach, where it is possible to chose from a

menu of available modalities and modes of interaction,

can therefore help to overcome barriers to access. In

the case of users with disabilities, where the use of a

particular modality (e.g., speech) may be difficult or

impossible, identity information is captured through

alternative sensors to suit the user constraints.

When considering remote and unsupervised

biometrics-enabled access, it is essential to build in

protection against attacks on the system. In particular,

it is essential to establish ‘‘liveness’’ of the biometric

input to protect against spoofing and replay attacks.

This is an important consideration as for many mod-

alities biometric samples can easily be recorded, even

without the subjects’ active cooperation, and it may be

equally easy to present such recorded samples at the

sensor or at other stages of processing to gain unau-

thorized access. While some progress has been made in

integrating liveness detection in individual modalities,

it is likely that an agent-managed multimodal frame-

work provides a platform with additional flexibility to

support more advanced robustness measures. For ex-

ample, the agent interface can be deployed to provide a

sophisticated challenge/response mechanism making it

much more difficult to use replay attacks and much
easier to establish the appropriate level of confidence in

the liveness of samples.

Another important consideration when deploying

biometrics in remote and networked applications is to

ensure the legitimate requirements of the users at the

client side to reveal only as much personal biometric

information as may be necessary for establishing their

access rights and no more, thus ensuring that the

release of their private information is limited and con-

trolled. At the same time, on the server side, there is the

need to establish the identity of user with as high a

confidence as may be required for a particular type of

information access. Clearly these goals at the client and

server sides are in contention and a negotiating mul-

tiagent architecture may be effectively utilized to en-

gage in such negotiation on behalf of the users at the

server and client sides.
Agent Architectures

The agent paradigm may be employed in a number of

ways to enhance the performance of biometric systems.

Its value is perhaps best illustrated in a multimodal

biometric system for remote authentication and infor-

mation access through a communication network.

Here the management of the user interface, handling

the information fusion process and the negotiation

between the information user and information server

across a network may all be delegated to a set of

autonomous agents. An example of such a system for

a healthcare application, using a multimodal biometric

interface, has been the IAMBIC project [9], which is

outlined below to illustrate possible applications of

intelligent agent technologies in a biometric authenti-

cation setting (Fig. 1).

On the client side of such a client–server architec-

ture, a set of agents will be cooperating to manage the

user interface and to address the user’s specific require-

ments and constraints. A user interface agent manages

the direct interaction with the user, establishing,

according to past user choices and behavior as well as

the requirements of the current transaction, the set of

biometric measurements that must be obtained from

the user, as well as assessing the quality and reliability of

the measurements from each of the available biometric

recognition modules. This agent defines the mode of

interaction with the user according to the user
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constraints and characteristics such as computer litera-

cy, familiarity with the system being used, and so on.

The interface agent may also be responsible for the

capture of other important non-biometric informa-

tion. Additional environmental data may be captured

by the available sensors (e.g., for the face modality a

sample of background illumination may be captured).

Analysis can be performed on these samples to deter-

mine the quality of any acquired data; this can be used

to help the agent to analyze any possible systematic

enrollment and/or verification failures. The results

from this type of analysis can be used to provide

feedback to the user or to system operators to improve

future performance. The agent may offer immediate

suggestions to a user who is finding it difficult to

provide useable samples on how better to interact

with the system or may request from a user whose

performance has been declining over a period of time

to re-enroll on to the system, thus ensuring that the

biometric template ageing effects are minimized.

Additionally, the acquired samples may be asso-

ciated with appropriate quality scores and this infor-

mation can be passed on the fusion stage. The interface
agent will also manage the individual biometric

modules that will produce features and/or matching

scores or decisions. Depending on the level at

which the fusion takes places (sample, feature, score

or decision) [10], the appropriate information is trans-

mitted to the fusion agent to manage the fusion

process.

A fusion agent can be used for the integration of the

biometric measures taken from the user. Its main role is

to choose the best technique for combining several

different biometric measures. The design of the

fusion agent requires knowledge of the types of bio-

metrics measured, as well as of their corresponding

characteristics and of the levels of confidence in claimed

identity that they can typically generate. This agent may

have a set of different fusion algorithms to choose from.

Biometric samples, features, matching scores, or deci-

sions obtained from the interface agent as well as sam-

ple quality and environmental information obtained

from the user are passed on to the fusion agent, which

in turn can produce an overall confidence score, which

will be passed to the access agent for transmission to the

server agent.
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The access agent is then responsible for negotiating

the access to the required data (e.g., medical records or

other sensitive data) on behalf of the user. Essentially,

this agent receives access information from the interface

agent, locates the data, chooses the best location (in the

event that the data can be found in different places),

contacts the sources of the desired information and

negotiates its release with the appropriate server agent

(s). The access agent is responsible for the negotiation

with the server agent and has its goal to achieve the

release of the requested information. The goal of the

server agent is to ensure that the information is only

released to authorized users. It must ensure that suffi-

cient confidence is reached in the identity of the claimed

user. What may be considered as sufficient confidence

may depend on the sensitivity of the data requested and

the class of user who is accessing the information. If the

result of the activities of the interface and fusion agents

does not provide enough evidence to satisfy the server

agent, it may enter into negotiation with them through

the access agent. As part of this negotiation, a re-mea-

surement of the biometric samples, as well as the recal-

culation of the combined output, may be required

under specific conditions.

Optionally a directory agent may be deployed for

discovering and cataloging all relevant information

about location of services within the network. In a

healthcare system, for instance, this agent may store

information onwhich databases contain particular infor-

mation about the patients, medical tests, and treatments.

Additionally, information may be stored with regards to

databases of biometric information for matching and

authentication as well as information regarding, where

suitable and trusted algorithms for matching, fusion, and

sample quality assessment may be obtained to facilitate

the agents’ tasks. In the search for information, this agent

may also suggest the best way of accessing required

information (for example, in the situation where several

databases contain the information specified), based on

network traffic, distance, and so on.

Such a community of interacting agents can be

implemented using a number of different methodolo-

gies for agent-based systems. These include methodol-

ogies for modeling the agents and their interactions,

schemes for representing agent knowledge and lan-

guages for facilitating the communication between

agents in unambiguous ways [4, 11, 12]. An important

aspect of agent communication, especially in the con-

texts where biometrics may be involved, is to ensure
the security and privacy of the information exchanged

between agents. The incorporation of encryption and

secure communication techniques is therefore an im-

portant consideration in the application of agent tech-

nologies to security applications.
Summary

To overcome some of the existing challenges that limit

the performance and acceptability of biometric sys-

tems, as well as to develop future applications incor-

porating the vision of ambient intelligence, increasingly

systems of greater complexity are being devised. Such

systems are required to cope with large user commu-

nities, increased requirements for accuracy, security,

and usability. The additional complexity of such sys-

tems provides a suitable ground for the exploitation of

the intelligent agent paradigm. Multibiometric systems

in particular provide a viable approach for overcoming

the performance and acceptability barriers to the wide-

spread adoption of biometric systems. An agent-based

architecture can provide the support needed for the

management of multimodal biometrics for person rec-

ognition and access authorization within an overall

security framework for trusted and privacy-preserving

information exchange.
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Synonyms

Biometric interchange formats; CBEFF; BioAPI; BIP;

Tenprint capture
Definition

There are three main sets of international biometric tech-

nical interface standards. The first set is the Common

Biometric Exchange Formats Framework (▶CBEFF)

Standards that provide for the addition of meta-data

(such as date captured, expiry date, capture device infor-

mation, and security information supporting integrity,

and/or encryption) to a biometric data format (a finger-

print image or minutiae, an iris image, dynamic infor-

mation related to a signature, etc – a Biometric Data
Block, or BDB). The second set is the Biometric Appli-

cation Programme Interface (▶BioAPI) standards that

provide for interchange of biometric information be-

tween modules (provided by different vendors) within

a single biometric system. The third is the ▶BioAPI

Interworking Protocol (BIP) that provides for the ex-

change of biometric information and control of bio-

metric devices between systems (provided by different

vendors) over a network.
Introduction

This entry in the Encyclopedia describes the main

standards specified by ISO/IEC JTC1/SC 37/WG2.

WG2 is the Working Group responsible for Biometric

Technical Interface Standards.
Biometric Data Records

There are many different forms of biometrics that can

be used for human recognition (see Biometric Data

Interchange Format, Standardization). These include

the image of a face, a fingerprint, an iris, a signature,

DNA, or a portion of speech. In general, comparison

requires that features be extracted from the captured

data to enable computers to identify the closeness of a

match between enrolled data (data that is intended to be

used for recognition purposes) and data captured for

the purposes of authentication of the human being at a

later time (see Biometric System Design, Overview).

There are approximately 15 standards [1] covering

data interchange formats for recording such data, and

all result in the specification of a Biometric Data

Record – a data structure (specified down to the bit-

level) that records the captured data, with different

formats for the data captured before feature extraction

and for that captured after feature extraction.

When used for interchange purposes with CBEFF

(Common Biometric Exchange Formats Framework),

a Biometric Data Record is called a Biometric Data

Block (BDB), sometimes referred to as ‘‘an opaque

data block’’.
CBEFF Wrappers

For interchange purposes, a Biometric Data Record

needs to be associated with meta-data (described
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below) that relates to that BDB. The package of a BDB

with the meta-data (and possibly a Security Block) is

then called a CBEFF Biometric Information Record, or

CBEFF BIR. One of the most important pieces of

meta-data is to identify (using a world-wide unambig-

uous identification) the BDB that is included in the

BIR, without the need to know the encoding of the

BDB. Without this meta-data, the nature of the BDB

(finger-print, face image, etc) needs to be known by

some side-channel as the BDB formats are generally

not self-identifying. A point to be mentioned here is

that the encodings used in current BDB formats are

sufficiently similar in their initial part that intelligent

software could determine which format is present, but

the meta-data provides an identification without hav-

ing to attempt to decode the BDB.

This is the first useful level for the interchange or

storage of biometric data, unless the same modality

or BDB format is used in the database or application

always.

There are several forms for a BIR, designed for dif-

ferent applications. Some are binary-encoded, some are

XML-encoded. These are described below. The format of

a BIR is generally referred to as a Patron Format, as it is

defined by a recognized standards development organi-

zation that is the producer of open standards – standards

that are subject to vetting procedures that ensure that

they are technically accurate and have wide-spread

approval (a CBEFF Patron). As at 2008, there is only

one registered CBEFF Patron, ISO/IEC JTC1 SC37,

though others are expected to follow, and there are

many registered biometric organisations.
BioAPI Interfaces and Exchanges

If a BIR has to be passed between modules from differ-

ent vendors in a single system, then the interfaces

between such modules need to be defined and standar-

dized at the level of a programme language interface.

This is the purpose of the BioAPI set of standards,

currently defined in terms of C interfaces, but use of

other implementation languages is not precluded.

The BioAPI standard enables one or more applica-

tions to control and interact with one or more biomet-

ric devices or processes that transform a BDB (e.g., by

feature extraction), typically by passing a BIR and

control information in a standardized manner
(allowing implementation of the relevant modules by

different vendors).
BioAPI Interworking Protocol

BioAPI Interworking Protocol (BIP) is the final step

in the interchange of biometric data. It builds on

the BioAPI functions and parameters, but provides a

bit-level specification (language and platform inde-

pendent) of the protocol exchanges needed, over iden-

tified network carriers, to allow an application in one

system to interact with devices in a remote system,

either to control their operation and graphical user

interface, or to collect a BIR (including one or more

BDBs – Biometric Data Records – and security infor-

mation) from them.

It is not quite true to say that BIP is the final step.

There is a requirement to include in BIP transfers the

transfer of certificates related to the security policy and

certified security of the devices that are being used in

distributed biometric capture and processing. This

work is in progress in 2008, and is beyond the scope

of this essay.
CBEFF

▶Common Biometric Exchange Framework Formats,

Standardization.
History and Motivation

It was recognized at an early stage that definition of

formats for recording biometric data (iris, fingerprint,

face, signature) etc. was not sufficient for interchange

purposes, and that a minimum requirement was the

addition of some meta-data. CBEFF defines the ele-

ments of such meta-data as forming a Biometric Infor-

mation Record (BIR).

One important (and mandatory) element in a

CBEFF BIR is to identify the format of a BDB (finger-

print, face image, signature, etc.), so registration of

identifiers for BDB formats (and other related formats)

became an essential part of the CBEFF work.

CBEFF (Common Biometric Exchange Formats

Framework) started life as a USA Standard with a
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A simple BIR.
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slightly different title (Common Biometric Exchange

File Formats), and was proposed for fast-tracking

when ISO/IEC JTC1 SC37 was first established.

In the event, it went through the normal standar-

dization process and many changes were made during

that process. CBEFF Part 1 [2] was published as an

International Standard in 2006.

There are four parts to the CBEFF set of Inter-

national Standards.

CBEFF Part 1 [2] defines (at the abstract level)

a set of data elements that can be used to record

meta-data. Note that the definition at the abstract

level means that a set of values and their semantics

are specified, but the multiple ways of encoding those

in a bit-pattern representation are not specified at

this level. Additional specifications are needed for the

encoding of those values (e.g., using various forms

of binary or character representation, including XML

representation, and use of empty fields to denote

common default values). These encoding issues are

covered in CBEFF Part 3.

Some data elements are mandatory for inclusion in

a ▶CBEFF wrapper (a CBEFF Patron Format), but

most are optional for use in the definition of a

CBEFF Patron Format. The abstract value ‘‘NO

VALUE AVAILABLE’’ is also frequently included for

various data elements. This is important, as it enables

mappings from a BIR that contains a very little

meta-data to one that provides for the recording of

all (meta-)data elements. The rules for this mapping

are specified in CBEFF Part 1 [2]. Care should be taken

when reading that a data element is ‘‘mandatory’’. This

statement is made at the abstract level. When using an

actual encoding of a header, it is always assumed that

the associated patron format is known (otherwise it

could not be decoded), and some patron formats can,

and do, support only a single value for the ‘‘manda-

tory’’ data elements, and encode those as an empty

field (zero bits, zero octets).

CBEFF Part 2 [3] (published 2006) specifies the

operation of a Registration Authority that assigns

world-wide unambiguous identifications for all the

‘‘things’’ in the CBEFF architecture that need unam-

biguous identifications. CBEFF Part 2 Registration is

described below.

CBEFF Part 3 [4] (published 2007) defines (at the

bit-level) a number of Patron formats that are of gen-

eral utility (BioAPI defines another, and the profile for
the sea-farer’s identity card, where the encoding space

is very limited). See 4.4 below.

CBEFF Part 4 [5] (work in progress in 2008)

defines (at the bit-level) a Security Block format, but

others are expected to be added, including a minimal

one for the sea-farer’s identity card. CBEFF Part 4

Security Block (SB) formats is described below.
CBEFF Part 1 Data Elements

CBEFF defines (at the abstract level – devoid of encod-

ing) a number of data elements, with their values, and

the semantics of each value.

It also defines an architecture, where there is nor-

mally an SBH (Standard Biometric Header) that con-

tains the meta-data elements, a BDB, and (optionally) a

Security Block (SB) that contains details of encryption

and integrity parameters. This is depicted in Fig. 1.

The following summarizes the data elements

(meta-data) currently defined in CBEFF Part 1.

CBEFF Version: The version of the CBEFF specifi-

cation used for the elements of the SBH.

BDB Format owner and format type: These meta-

data elements identify the (registered) biometric orga-

nization that has defined the BDB format and the

identifier (typically an integer from zero upwards)

that has been registered as its identification (see

CBEFF Part 2 Registration). They are mandatory in a

BIR, and identify the BDB that is contained in the BIR.

A point to be mentioned here is that there are BIR

formats that contain multiple BDBs, but discussion of

these is outside the scope of this essay.

BBD Encryption and BIR integrity options: These

meta-data elements are mandatory, but are simple bi-

nary values saying whether the BDB is encrypted or not,

or whether there is an integrity value for the BIR

provided in a Security Block. If either of these is

‘‘YES’’, then the Security Block has to be present to

provide the necessary security details, otherwise the

Security Block is absent. We are operating here at the

abstract level. A particular patron format may support
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only one of these values. If only one is supported by a

particular patron format (e.g., NO encryption, NO in-

tegrity), then these values can be encoded as a null

coding (depending on the nature of the encoding), so

need not take up bit-space (which matters for some

applications).

BDB Biometric type and sub-type: This provides a

broad identification of the nature of the BDB. Its value

can be deduced from the ‘‘Format owner and format

type’’, but only through the registration authority, and

it is not computer friendly. It identifies the broad

nature of the format (finger, face, signature, ear, iris,

vein, etc.), with the subtype identifying which finger

or ear or iris, etc. The categorization is a bit ad hoc,

and has changed over time, and will probably continue

to change.

BDB Product owner and product type: These two data

elements identify the owner (a registered biometric

organization – see CBEFF Part 2 Registration) and iden-

tification of the device/software used to produce the BDB.

BDB Creation date and validity period: The date

on which the BDB was created, and the start and end

of validity period. The use of the validity period is

depends on the application.

BDB Purpose: This identifies the reason for the

capture of the BDB – for enrolment or for verification

(and there are other options). The use of this field in

actual applications is not clear yet.

BDB Processed level: Again, this is implicit in the

registered identifier, but it gives a broad indication of

whether this is ‘‘raw’’ data, an enhanced image, or a

format that has extracted features from an image.

Values are ‘‘raw’’, ‘‘intermediate’’, or ‘‘processed’’,

which are very broad terms. The author is not aware

of systems that use or require this information.

BDB Quality: This is quite an important field, but

there is still a lot of work ongoing to determine

‘‘quality’’ values for a BDB. It relates to whether a

fingerprint is known to be smudged or not, how

many pixels were used in the capturing of an image,

whether a signature had enough turning points for

minutiae extraction, etc. Work is ongoing in this

area. (See Biometric Sample Quality, Standardization).

It is likely that when the ongoing work is completed,

this part of the Standard will be amended.

BDB Index: A meta-data element that can be used

to point to a database entry for the BDB, rather than

having the BDB encoded as part of the BIR. The use of
this for storage is clear, but it is arguable that it is not

needed, as the BIR is only defined at the abstract level,

so encoding a BDB is not needed. The author is not

aware of any current use.

Challenge/response: This provides data for security

purposes when trying to retrieve the associated BDB

from a database (like the registration procedure

followed in a bank where a question is asked (e.g., ‘‘a

favourite book’’) and the response to that). It is not yet

clear as to how this field can be practically used.

Security Block (SB) Format owner and type: These

meta-data elements identify the (registered) biometric

organization that has defined the SB format, and the

identifier (typically an integer from zero upwards) that

has been registered as its identification (see CBEFF

Part 2 Registration). They are mandatory if a security

block is included.

BIR Creator, creation date, and validity period:

These data elements recognize that the BDB may

have been created at a certain time, but that this BIR

(following possible processing – perhaps on a remote

machine) may have been produced by a different ven-

dor at a different time. The ‘‘creator’’ is just a string

of Unicode characters, is not registered, and hence,

may not be unambiguous. Examples of a ‘‘creator’’

might be ‘‘US Dept of State’’ or ‘‘Passport Australia’’.

BIR Patron Format Owner and type: The main

(probably the only) use is in the complex BIR format,

when a different BIR can be embedded in a simple BIR,

and BIR Patron Format Owner and type identifies

the nature and encoding of the embedded BIR.

BIR Patron header version: Aversion number (major

and minor) assigned in the patron format definition.

BIR Index: A self-reference to a database entry for

this BIR. The author is not aware of its any current use.

BIR Payload: A transparent string of octets asso-

ciated with the BDB. The author is not aware of its any

current use.

Sub-header count: This is a device to handle a BIR

that contains multiple BDBs with different SBHs

applied to each. The details are out of the scope of

this essay.
CBEFF Part 2 Registration

The CBEFF Part 2 Registration provides for the world-

wide unambiguous identification of:
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– Biometric Organizations and Biometric Patrons

– Biometric Data Block Formats (BDB formats)

– Patron formats (specific selections of meta-data,

with a bit-level encoding)

– Security Block formats

– Biometric products (devices and/or software

modules)
The identification is composed of three

components:

� Arcs of the International Object Identifier tree

that identify the register (implicit)

� A registered 16-bit identifier that identifies a

biometric organization (of which the biometric

patrons are a subset)

� An identification assigned by the biometric or-

ganization to a BDB format, a Patron Format, a

Security Block format, or a biometric product.

The CBEFF register is currently (2008) maintained by

the International Biometric Industry Association

(IBIA), and is available at URL http://www.ibia.org/

cbeffregistration.asp.

There are a large number of biometric organiza-

tions registered, a few products, but in 2008 only ISO/

IEC JTC 1 SC 37 has registered BDB formats, Patron

Formats, or Security Block formats.
CBEFF Part 3 Patron Formats

The CBEFF Part 3 Patron Formats specifies a range of

Patron Formats designed for use in the areas of differ-

ent application. The smallest is the minimal binary

encoding, where most elements take only a fixed value

(typically ‘‘NO VALUE AVAILABLE’’ if the element is

optional), and produce zero bits in the encoding. There

are other formats that produce XML encodings for the

data elements, and are capable of encoding the complete

range of abstract values of every element.

Some Patron Formats are defined in English with a

tabular format for the bit-patterns, so no tool support

is available for these.

Others are defined using the ▶Abstract Syntax

Notation One (ASN.1), the notation [6] which (pro-

vides a schema for both binary and XML encodings) is

defined using both XSD (XML Schema Definition [7])

and an equivalent ASN.1 schema for an XML encod-

ing, in addition to the English language specification.
Both the ASN.1 and XSD schemas are supported

by a range of tools on many platforms.

In 2008 there are 17 Patron Formats defined and

they are:

– Minimum bit-oriented: This takes only one octet

for the SBH if the BDB format owner is SC 37 and

the format type value is less than 64. It is default in

all fields to fixed values apart from the BDB format

owner and format type. The specification uses the

ASN.1 notation and the ASN.1 Unaligned Packed

Encoding Rules.

– Minimum byte-oriented: This takes four octets

and is specified with tables, diagrams, and English

language.

– Fixed-length fields, byte-oriented: This can handle

all data elements (with some length restrictions), but

optional ones that are absent (NO VALUE AVAIL-

ABLE) encode with a single ‘‘presence’’ bit of zero.

The specification uses tables and English language.

– Fixed-length fields, bit-oriented: This can handle

all data elements, of arbitrary length (so length

fields are frequently present), but optional ones

that are absent (NO VALUE AVAILABLE) encode

with a single ‘‘presence’’ bit of zero. The specifica-

tion uses ASN.1 and the ASN.1 Unaligned Packed

Encoding Rules.

– Full support, TLV format: This can handle all data

elements. Length fields are always present, and every

element is preceded by an identifying tag (or type)

field. It is based on the earlier use in smart-cards,

and uses an ASN.1 specification with the Type

Length Value (TLV) Basic ASN.1 Encoding Rules.

– This supports nested BIRs within BIRs: Specified

with tables and English, with supporting ASN.1.

– XML encoding: Specified with tables and English

language, with supporting ASN.1 (XML Encoding

Rules) and XSD specifications.

There is also a Patron Format defined in BioAPI,

largely for historical reasons.
CBEFF Part 4 Security Block (SB) Formats

CBEFF Part 4 Security Block (SB) Formats is in prog-

ress in 2008, so a detailed discussion is not appropriate.

At present there is only one Security Block format

being defined, that handles all necessary security

http://www.ibia.org/cbeffregistration.asp
http://www.ibia.org/cbeffregistration.asp
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parameters for either encryption or integrity, or both,

and allows the use of a wide range of security

algorithms.

It is likely that a more minimum SB format will

be defined for use with the seafarers’ identity card

(a standard being progressed by ISO/IEC JTC1 SC37),

and handles only integrity with fixed algorithms (See

Biometrics Security, Standardization.).
BioAPI

▶Biometrics API/Interfaces
Biometric Technical Interface, Standardization.

Figure 2 BioAPI architecture.

History and Motivation

Multiple application modules (perhaps from different

vendors) should be allowed to interact (serially or

simultaneously) with multiple modules supporting

various biometric devices. Standard interfaces are

needed to allow these modules to potentially be

provided by different vendors.

The concept of a ‘‘framework’’ module, with which

applications attach above and device-related software

attaches below, providing a general routing function

for commands and data transfer, is the main part of

the BioAPI architecture.

There are four groups of standards in the

BioAPI set.

The first is the base standard – BioAPI Part 1 [8]

(published in 2006, but with several amendments to

extend its functionality). This part defines the concept

of the ▶BioAPI framework module which interacts

above with applications, using a C-defined API, and

below with Biometric Service Providers (software and

hardware related to biometric devices) using a

C-defined Service Provider Interface (SPI), broadly

mirroring the functionality of the API. This is illu-

strated in Figure 2 – BioAPI architecture. It also has a

specification for Graphical User Interface to enable an

application to control the ‘‘screens’’ for use during a

capture operation.

The second group (currently only BioAPI Part 2 [9]

and Part 4 [10]) is a set of standards providing a lower-

level interface within a BSP to a so-called ‘‘function

provider module’’ that is distinct from the vendor of

the BSP module. This interface is designed to minimize

the requirements on a device vendor, and to enable the
provider of software for a BSP to use modules from

many different device vendors. Detailed interfaces are

not covered in this article.

Part 2 [9] was published in 2007 and provides an

interface to archive devices (databases). Part 4 [10]

is in progress in 2008, and provides an interface to

sensor (capture) devices. Similar interfaces for match-

ing algorithm modules and general processing mod-

ules are planned, but have not been started in 2008.

The third is a BioAPILite standard (BioAPI Part 3

[11]) that is intended to provide support for embed-

ded devices. This is not mature in 2008, and will not be

discussed further.

The fourth is a standard [12] specifying how to use

the BioAPI interfaces to support the so-called ‘‘ten-

print slap’’ – a roll of ten fingers, an image of four left

fingers, an image of four right fingers, and an image

of two thumbs – and the subsequent processing of

the returned BDB, possibly to extract parts of the

BDB to individual BDBs.

In fact, this standard is rather more general than just

supporting a ten-print slap, and recognizes the concept

of gathering data into a single BIR from a number of

different biometric devices, possibly of different modal-

ities. This introduces a new BIR concept of a complete

(complex) BIR with ‘‘holes’’ in it (place-holders) that

will be filled in whenever possible when passed to a BSP,

and can then be passed to other BSPs to complete it. The

interesting thing is that this development does not re-

quire any change to the basic BioAPI architecture or

function calls – these already allowed the transfer of a

BIR to a BSP (e.g., for image enhancement purposes),
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with return of a new BIR. It is in progress in 2008, and is

not discussed further, but is likely to become important.
B

BioAPI Part 1

The two interfaces (API and SPI) are very similar, as

the framework provides mainly routing and (when

augmented with BIP functionality – see Biometric

Interworking Protocol (BIP) below) communications

functionality to remote systems.

Indeed, there is an amendment to Part 1 that is

being developed which recognizes the use of a reduced

API/SPI to provide a direct interface between an appli-

cation and a BSP, with support for multiple BSPs, or

multiple applications being done entirely through the

(non-standardized) operating system. This is called

‘‘frameworkless BioAPI.’’

BioAPI generally assumes that the BSP is not state-

free, so there can be a request for a BDB to be captured,

and a ‘‘handle’’ returned pointing to it. It is stored in

memory controlled by the BSP, and later ‘‘exported’’

to the application through a subsequent call. Thus,

there are several memory management functions and

parameters.

The normal sequence of interaction between any

application module and (through the framework) a

BSP module is described below. Note that there can

be multiple such simultaneous interactions related to

one application and multiple BSPs or BSP instances, or

related to one BSP and multiple application modules

or instances. The normal sequence has some options

within it (controlled by the application), and there can

be a variety of error returns or signals that can disrupt

the sequence. There are a variety of parameters that can

be passed by the application to control the way the BSP

operates, but these are beyond the scope of this article.

The normal sequence is:

� Init: This introduces the application instance mod-

ule to the framework module, and establishes that

they both are using the same version of the inter-

face specification.

� Load BSP: This tells the framework that (at least one)

application instance wants to communicate with it.

� BSP attach: This initiates a dialogue with the BSP,

and establishes an error reporting mechanism.
Enroll for verification: This initiates a capture,

and returns a BDB, suitable for enrolment of the

subject; or
Verify: This initiates a capture, and returns a

BDB, suitable for verification against a previously

stored biometric reference or template.

� BSP close: This says that the application is no longer

interested in interactions with the BSP.

Of course, multiple calls between attach and close

are possible. There are also calls to the framework to

establish what BSPs are available, and their properties,

but this is too detailed for this essay.
Tool Support

Implementations of the framework module are avail-

able from a number of vendors.

Implementations of BSPs that support the stan-

dardized (SPI) interface are still emerging (2008),

as are application modules using the BioAPI API

interface.
Biometric Interworking Protocol (BIP)

History and Motivation

The need for an application to interact with remote

biometric devices (or with modules processing and

transforming biometric data) over a network, in a

fully standardised manner (providing vendor indepen-

dence of the communicating systems) in the standar-

dization process was recognized early.

BioAPI was seen as the appropriate base for this.

Essentially, the BIP specification extends the function-

ality of a BioAPI framework to allow it to route calls

from an application to a remote framework (and hence

a remote BSP) and to support the return of appropri-

ate results.

It also supports the provision of a remote Graphical

User Interface (screen), controlled by a remote appli-

cation, to perform a capture.

Fundamentally, it provides a mapping from the

BioAPI Part 1 C-functions and data structures into

protocol elements and ASN.1 data structures that are

then encoded with the ASN.1 unaligned Packed

Encoding Rules.

This means that a BIP-enabled framework can

communicate with another BIP-enabled framework

for communication between local applications and

remote BSPs (or vice versa).
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It is important to note that a computer system

can support BIP if it provides the appropriate ‘‘bits-

on-the-line’’ exchanges that would occur if it had

a BioAPI framework module. The BIP specification is

based on BioAPI, but is a fully-defined protocol that

creates no constraints on the internal structure of the

communicating systems. In terms of communication

‘‘bits-on-the-line’’, internal module structure is invisi-

ble and irrelevant. The concept of a BioAPI framework

is used in the specification of the messages, but that

does not need to form a part of the internal structure of

the communicating systems.
Supported Network Mappings

The BIP Standard is a fully defined protocol over TCP/

IP (the Internet) using a recommended port of 2376,

registered with the Internet Assigned Numbers Au-

thority (IANA).

It also specifies discovery and announcement

protocols based on both IPv4 and IPv6. It also speci-

fies its use over W3C SOAP/HTTP.
Tool Support

There are many tools supporting ASN.1 defined pro-

tocols that can be used, but there are some vendors

already advertizing full BIP support within a BioAPI

Framework.
Related Entries

▶Biometric API/Interfaces

▶Biometric Data Interchange Format, Standardization

▶Biometric Sample Quality, Standardization

▶Biometric System Design, Overview
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▶Biometrics Security, Standardization
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Biometric Technology Test
▶Performance Evaluation, Overview
Biometric Template
A biometric template is a digital representation of an

individual’s distinct characteristics, computed or

extracted from a biometric sample. It is biometric

templates that are actually compared in a biometric

recognition system. The forms of biometric templates

can vary between biometric modalities as well as ven-

dors. Not all biometric devices are template based. For

example, voice recognition is based on speaker models.

▶Biometrics, Overview

▶ Identification

▶On-Card Matching

▶Verification
Biometric Terminal
A terminal, which comprises of processing element (PC

or embedded system), biometrics sensor, card reader,

and optional network access; captures a presented
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biometric trait, for example, face or fingerprint; and is

able to encode the captured biometric data into a tem-

plate for identity verification is biometric terminal.

▶On-Card Matching
Biometric Transaction Time
▶Operational Times
Biometric Variability
Biometric variability refers to the differences in the

observed features from one instance of the biometric to

another. The differences can be random, or systematic

due to someunderlying factor that governs the variability.

▶ Individuality of Fingerprints: Models and Methods
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Introduction

There has been an inconsistency in the use of the terms

like ‘‘recognition,’’ ‘‘authentication,’’ ‘‘identification,’’

and ‘‘verification,’’ throughout the literature of bio-

metrics. Particularly, with the applications of auto-

mated human recognition technologies becoming
more creative, older uses of these terms has become

inadequate in describing new systems. In this article,

the author will explore some of the historical uses of

these terms and suggest some definitions consistent

with recent applications of the technologies.
Dictionary Definitions

The essay begins with common, natural language defi-

nitions of these four terms. The Oxford English Dic-

tionary [1] provides definitions for the terms discussed

in this article:

authenticate: prove or show to be authentic

authentic: of undisputed origin or veracity; genuine

recognition: the action or process of recognizing or

being recognized

recognize: identify as already known; know again

verification: process of verifying; the establishment by

empirical means of the validity of a proposition

verify: make sure or demonstrate that (something) is

true, accurate or justified.

identification: the action or process of identifying or

the fact of being identified

identify: establish the identity of.

identity: the fact of being who or what a person or

thing is
Historical Usages

Since the earliest literature of biometrics, a difference

in functionality of automated human recognition tech-

nologies has been discussed. In 1966, Li et al. [2] wrote:

" To simplify this study, the problem was confined to the

verification (or rejection) of an utterance as that of an

expected informant. This process is defined as speaker

verification (as opposed to speaker identification, which

is the selection of an actual speaker from a population)

(Italics in the original)

Verification and identification are defined here as

two, mutually exclusive applications for biometrics –

verification as the recognition of an expected person

and identification as the selection of a person out

of a population. The 1960s biometrics literature, how-

ever, was far from consistent in the use of these

terms [3–5].
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In 1969, IBM [6] listed ‘‘four principal differences

that distinguish a verification procedure from an iden-

tification procedure’’ as:

1. An alien class, for which a priori information is not

available, is considered by the system.

2. Additional information, the class label, is available

for the decision.

3. The class label that is entered can determine which

parameters are to be extracted from the pattern.

4. The decision involves only two states, acceptance or

rejection of the pattern.

In identification, all possible classes are presumed

known, and the decision amounts to the best match

of the pattern to a particular class.

The above quote uses the word ‘‘class’’ to mean a

‘‘person.’’ The IBM definitions attempt to be more

precise, but limit ‘‘identification’’ to the case where all

possible persons (‘‘classes’’) are known, though the more

common case in practice accepts that previously and

unknown persons can be encountered. Tosi [7] and

Tosi, et al. [8] differentiated identification into ‘‘closed

trials’’ (all persons known) and ‘‘open trials’’ (unknown

persons presumed to exist). Modern parlance calls these

as ‘‘open-set’’ and ‘‘closed-set’’ identification. In closed-

set identification, the question asked is ‘‘If any, which of

the known persons are consistent with the encountered

data?’’ and ‘‘None’’ is an appropriate response in open-

set identification, but not a possible response with a

closed-set. Closed-set identification is the easier task,

as the person represented by the data is guaranteed to

be among those known to the system.

Real-world applications are almost always open-

set [9], allowing for the possibility of encountering

someone who is not enrolled (an ‘‘impostor’’). Some

academic communities within the field of bio-

metrics, however, currently define identification solely

as ‘‘closed-set.’’ This community reports, as the out-

come of the identification task, an ordering of the

enrolled biometric data by similarity to the submitted

sample. A sample is considered to be ‘‘recognized’’ if it

is among the highest k members of the list, where k is

determined by the researcher [10–14].

US government standards in the 1970s [15] did

not differentiate between open- and closed-set identi-

fication, but differentiated between ‘‘‘absolute’ iden-

tification’’ and ‘‘verification of identification’’ – the
former what is now called as ‘‘identification’’ and the

latter as ‘‘verification.’’

In the 1980s, the International Biometrics Associa-

tion (IBA) attempted to create a standard set of defini-

tions for use in biometrics [16]. This vocabulary defined

verification saying, ‘‘Verification of identity is the opera-

tion of comparing a submitted biometric sample against

a specific claimed biometric reference template to deter-

mine whether it sufficiently matches that template.’’ The

IBA did not attempt a definition of ‘‘identification,’’ but

offers the definition of ‘‘recognition’’ as: ‘‘Recognition of

identity is the operation of comparing a submitted bio-

metric sample against the population of biometric refer-

ence templates to determine whether it belongs to the

population and which member of the population it is.’’

This definition seems consistent with what has been

called open-set identification in this essay.

The classical ‘‘verification’’ concept, as defined in

[2] quoted above, can be implemented with either a

centralized database of stored references for each en-

rolled user, or with a tamper-proof token, such as a

passport or card, that carries the reference. For centra-

lized systems, data subjects (the users of the system)

must point to their stored reference in some way –

either with a PIN, a card, or a unique name. This

pointer must refer to only the references of a single

enrolled user. Therefore, data subjects cannot be free to

choose their own identifiers, but each must be assigned

a different identifier.
The Impact of New Algorithms on
Terminology

By the mid-1990s, vendors had introduced the term

‘‘PIN-less verification’’ to denote access control sys-

tems that did not require data subjects to submit a

user identifier with their biometric sample. These

systems had the internal programming of an ‘‘identi-

fication system,’’ examining all enrolled references to

determine if the submitted sample was similar to any,

but had the external look and feel of a ‘‘verification’’

system. By the mid-1990s, all commercially-available

iris recognition access control systems were based on

the ‘‘PIN-less verification’’ concept, allowing users

physical and logical access without submission of a

user identifier. Iris systems modified to allow the input



Biometric Verification/Identification/Authentication/Recognition: The Terminology B 155

B

of a user PIN would still search the entire database for

a matching reference iris pattern, and then compare

the PIN stored with the matched pattern to the PIN

submitted to further validate the match.

Other approaches in the 1990s [17], based on the

concept from forensic fingerprinting of ‘‘binning’’ all

similar fingerprints together, allowed users to choose

their own identifying PIN or password (which would

denote the ‘‘bin’’) with the understanding that many

users might chose the same one. The system would

have to compare the submitted biometric samples

against the stored references of all users within the

‘‘bin’’ denoted by the submitted PIN. As users would

not know how many other references, if any, were

identified by the same PIN, such systems would again

have the look and feel of a ‘‘verification’’ system,

though performing an open-set ‘‘identification’’

function against a group of users. In the case if

there was only one user with a particular PIN,

the system would degenerate into ‘‘verification’’ as

defined in [2]. In other words, the system was

performing either ‘‘verification’’ or open-set ‘‘identifica-

tion’’ depending upon the number of users stored with

the PIN that was entered.
Box 1: Current International Definitions from ISO/IEC JT

biometric verification (biometric application)

application that shows true or false a claim about th

biometric sample(s) by making a comparison(s)

EXAMPLE: Establishing the truth of any of the claims “I a

an administrator”, “I am not enrolled in the database”, may

NOTE: A claim of enrolment in a database without de

verified by exhaustive search.

closed-set identification (biometric application)

application that ranks the biometric references in the en

a recognition biometric sample

NOTE 1 Closed-set identification always returns a non-e

NOTE 2 Closed-set identification is rarely used within p

open-set identification (biometric application)

application that determines a possibly empty candidate

biometric capture subject and searching the enrolment dat

NOTE Biometric references may be judged to be similar

authentication

NOTE 1 Use of this term as a synonym for “biometric ve

term biometric recognition is preferred.
By the end of the 1990s, it was clear that there were

no longer clear boundaries between ‘‘verification’’ and

‘‘identification,’’ the differences depending upon the

specifics of the algorithm and the stored data. Using

the classic definitions, many applications could not be

clearly determined as ‘‘verification’’ or ‘‘identification.’’
Clarifying Meanings

By the early 2000s, clarification of this confusion was

clearly needed so that an application could be de-

scribed independently of the details of the algorithms

and data structures used to instantiate it. A study by

the U.S. National Research Council (NRC) sought

to restore the usability of the terms ‘‘authentication’’

and ‘‘identification’’ [18] in discussion of general

computer-based methods for determining user cre-

dentials. This study returned to the dictionary defini-

tions above, defining ‘‘authentication’’ as ‘‘the process

of establishing confidence in the truth of some claim’’

and ‘‘identification’’ as ‘‘the process of using claimed or

observed attributes of an individual to infer who the

individual is.’’ The term ‘‘verification’’ was considered
C1

e similarity of biometric reference(s) and recognition

m enrolled as subject X”, “I am enrolled in the database as

be considered verification.

claring a specific biometric reference identifier may be

rolment database in order of decreasing similarity against

mpty candidate list

ractical systems, but is often used experimentally

list by collecting one or more biometric samples from a

abase for similar biometric references

on the basis of comparison score.

rification or biometric identification” is deprecated; the
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by the NRC committee as a term used primarily within

the biometrics community and synonymous with

‘‘authentication.’’

Since at least the 1990s [19], it had been noted that

biometric claims could be negative as well as positive –

for example, ‘‘I am not data subject X’’ or ‘‘I am not

enrolled in the biometric system.’’ Using the NRC

definitions, the term ‘‘authentication’’ could be used

to describe the process of establishing the truth of such

a negative claim and ‘‘identification’’ could be used to

describe the outcome of an access control system.

Applying these definitions leads to some clarity of

language, restoring the dictionary, natural-language

meanings of these terms. ‘‘Verification’’ and ‘‘authenti-

cation’’ can apply to positive or negative claims. A data

subject, or some other party, need not specify an iden-

tifier, such as a PIN, pointing to an enrolled biometric

reference. So, for example, biometrics can be used

without a user identifier to verify that I am enrolled

in the system or that I am not enrolled in the system.

Examples of the former are biometric systems used to

prevent issuance of multiple enrolment records to the

same user. Examples of the latter are often called

‘‘watchlists.’’ With a claimed user identifier, biometric

systems can verify that I am enrolled (known to the

system) as X, or not enrolled as X. A consequence of

this definition is that all biometric systems can be seen

as verifying some kind of a claim, whether positive or

negative, whether with or without a specified user

identifier. The details of either the algorithm or the

data structures need not be considered in applying

the term ‘‘verification.’’ ‘‘PIN-less verification’’ systems

are indeed ‘‘verification’’ systems.

Under the NRC definitions, ‘‘identification’’ is the

process of ‘‘infer(ring) who the person is,’’ meaning to

return an identifier (not necessarily a name) for that

person. This process can include a claim to an identifi-

er by the data subject or by someone else in reference to

the data subject (i.e., ‘‘She is enrolled as user X’’). By

these definitions, ‘‘identification’’ and ‘‘verification’’

are not mutually exclusive. A biometric system can

identify a person by verifying a claim to a known

identity. This usage is consistent with the historical

documents such as [4, 5].

At the time of writing this essay, the interna-

tional standards committee on biometrics, ISO/IEC

JTC1 SC37, has tentative definitions for the terms

considered in this article [20], shown in the box
below. The SC37 definitions are compatible with

those of the NRC, although SC37 prefers ‘‘biometric

verification’’ to ‘‘biometric authentication,’’ the latter

being depreciated in the vocabulary corpus. The SC37

definitions do not include ‘‘recognition,’’ deferring

to common dictionary definitions for the meaning of

that term.
Related Entries

▶Biometrics, Overview
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Biometric Vocabulary,
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Definition

The International Standards Organisation (ISO) Stan-

dard 1087-1 [1] defines vocabulary as a ‘‘terminological

dictionary which contains a list of designations and

definitions from one or more specific subject fields’’.

For the subject field of biometrics, while there are

several publications of biometric vocabularies, includ-

ing [2, 3], there is no single collection of biometric
terms and definitions considered by the industry to be

the definitive source. As a result, there are inconsisten-

cies across biometric literature which may negatively

impact knowledge representation and transfer. Efforts

are underway in ISO/International Electrotechnical

Commission (IEC) Joint Technical Committee (JTC)

1 SC 37, however, to harmonize the biometric termi-

nology that exists in the industry and develop a biomet-

ric vocabulary that will surely become the definitive

source.
Terminology Development in ISO

Three ISO standards [1, 4, 5] are currently in publica-

tion that provide guidance for terminology work useful

both inside and outside the framework of standardiza-

tion. ISO 1087-1 [1] consists of a set of terms and

definitions required for terminology development.

The following are of particular importance

Characteristics: Abstraction of a property of an object

or of a set of objects

Concept: Unit of knowledge created by a unique com-

bination of characteristics

Concept diagram: Graphic representation of a concept

system

Concept system: Set of concepts structured according to

the relations among them

Definition: Representation of a concept by a descriptive

statement which serves to differentiate it from

related concepts

Subject field: Field of special knowledge

Term: General designation of a general concept in a

specific subject field

With the vocabulary needed for terminology work is

provided in [1], ISO 704 [4] establishes a common

framework of thinking to be used, when developing a

terminology. It outlines links between objects, con-

cepts, and their representations, as well as general

principles in term and definition formulation.

To state simply, terminology development involves:

� Identifying concepts and understanding their

characteristics

� Grouping of related concepts into concept systems

� Representing concept systems through concept

diagrams

http://www7.nationalacademies.org/cstb/pub_authentication.html
http://www7.nationalacademies.org/cstb/pub_authentication.html
http://www.engr.sjsu.edu/biometrics/publications_fhwa.html
http://www.engr.sjsu.edu/biometrics/publications_fhwa.html
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� Defining concepts

� Attributing terms to each concept

It is important to understand the characteristics of

each related concept on a concept diagram to ensure

each is truly distinct and all concepts have been identi-

fied. Once this is accomplished, definition crafting

becomes a simple matter of wordsmithing using only

those characteristics deemed essential for the concept.

ISO 860 [5] serves to close a potential gap in

terminology development through concept and term

harmonization:

Concept harmonization: Activity for reducing or elim-

inatingminor differences between two or more con-

cepts that are already closely related to each other

Term harmonization: Activity relating to the designa-

tion of one concept in different languages by terms

that reflect the same or similar characteristics or

have the same or slightly different forms

Concept and term harmonization can resolve termi-

nology issues where concepts and terms have devel-

oped differently in individual languages or language

communities. This same can be said for emerging

subject fields where concepts are developing and

terms and definitions appearing in literature are, as

yet, inconsistent. ISO 860:1996 [5] specifies a method-

ology for international harmonization of concepts,

definitions, and terms.

The overall objective of applying the methodolo-

gies outlined in [4, 5] is to obtain a vocabulary in

which a single term corresponds to a single concept,

and conversely, a single concept corresponds to a single

term. Moreover, definitions should be precise and

non-circular, while terms should be concise and lin-

guistically correct – prerequisites for improving the

efficiency of communication in the subject field.
Harmonized Biometric Vocabulary

In 2002, the standards body ISO/IEC JTC 1 established

Subcommittee 37 for the purpose of developing

standards in the field of Biometrics. As is the case with

many of the JTC 1 Subcommittees, a working group,

WorkingGroup (WG) 1was establishedwithin Subcom-

mittee (SC) 37 to develop a common vocabulary for use

within the developing biometric standards projects.

WG 1 Harmonized Biometric Vocabulary has the fol-

lowing Terms of Reference:
1. Concepts, terms, and definitions should be docu-

mented to be used throughout SC 37 Interna-

tional Standards, interacting as needed, with

other SC 37 WGs.

2. Concepts, terms, and definitions should be articu-

lated based on appropriate ISO/IEC standards for

the development of ISO terminology.

3. Sources of terms and definitions should be identi-

fied for possible use in an SC 37 vocabulary (e.g.,

those drawn from existing standards, as well as

other sources).

4. Ambiguity in terms and definitions in SC 37 Stan-

dards can be minimized which arise from the dif-

ferences in cultures and languages.

5. The support and participation of experts to pro-

mote and progress the objectives and activities of

SC 37/WG 1 should be identified and enlisted.

6. A standard on biometric vocabulary should be

developed based on the concepts, terms, and defi-

nitions developed above to be proposed as a part of

the ISO 2382 multi-part standard.

7. It serves as a source of expertise in this field to other

WGs of SC 37. SC 37’s goals can be supported by

responding in a timely fashion to requests pertain-

ing to the area of expertise in biometric vocabulary

initiated by SC 37, its WGs or other organizations

such as JTC 1 SCs, ISO TCs and other SC 37 Liaison

organizations.

ISO 2382 [6] is a multi-part standard containing vocab-

ulary developed in various ISO/IEC JTC 1 Subcommit-

tees. SC 37 has reserved ISO 2382 Part 37 for publication

of the completed biometrics vocabulary from WG 1.

Since its inception, the members of WG 1 have

worked to harmonize and refine a biometrics vocabu-

lary that follows the ISO guidelines for termi-

nology work noted above. Biometrics is a relatively

new subject field and thus biometrics literature tends

to contain a variety of definitions for any single bio-

metric term, as well as a variety of terms for seemingly

the same concept. For example, consider the following:

Template/reference template [2]: Data, which represents

the biometric measurement of an enrollee, used by

a biometric system for comparison against subse-

quently submitted biometric samples.

Template [7]: A user’s stored reference measure based

on biometric feature(s) extracted from biometric

sample(s).

Template [8]: A shortened term for a biometric refer-

ence template.
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Reference template [8]: Also referred to as simply a

template, the data in a biometric security system

that represents the biometric measurement of a

specific person’s identity.

Template [3]: A mathematical representation of bio-

metric data.

" Note that biometric data is not defined in the FindBio-

metrics glossary, but biometric as an adjective is defined

as: Of or pertaining to technologies that utilize behavior-

al or physiological characteristics to determine or verify

identity.

While each of these definitions appears to refer to

the same concept, different characteristics are intro-

duced into the definitions and they are:

� Data in a biometric security system

� Data used by a biometric system

� Mathematical representation

� Represents the biometric measurement of a specific

person’s identity

� Used for comparison against subsequently submit-

ted biometric samples

� Stored

In addition, two different terms are presented reference

template and template for the single concept. Many

such examples permeate biometric literature:

Biometric feature [7]: A representation from a

biometric sample extracted by the extraction

system

Biometric data [2]: The information extracted from the

biometric sample and used either to build a refer-

ence template (template data) or to compare

against a previously created reference template

(comparison data)

Feature extraction [3]: The automated process of locat-

ing and encoding distinctive characteristics from a

biometric sample to generate a template

Although [FB] does not include the definition of

feature in the glossary, one might infer the follow-

ing from the above definition, Feature: distinctive

characteristics from a biometric sample

It is easy to see how such diversity in designations and

definitions for a single concept can compromise effec-

tive communication.

To resolve this, WG1 has collected terms and defi-

nitions from a variety of sources and continues to work

on harmonizing the concepts and terms according to
the guidelines in [5]. For example, WG1 has harmo-

nized the above as described subsequently.

Biometric Template
Characteristics
� Stored Biometric features

� Attributed to an individual at enrollment

� Type of biometric reference

� Comparison uses a function not dependent

on individual e.g., Hamming distance, Eu-

clidean distance, etc., although it’s para-

meters might be

� Directly compared to sample features

� Set of features that can be compared directly

to the input features to give a score
Definition

Set of stored biometric features comparable

directly to biometric features of a recognition of

biometric sample
NOTE 1 A biometric reference consisting of an

image, or other captured biometric sample,

in its original, enhanced or compressed

form, is not a biometric template.

NOTE 2 The biometric features are not consid-

ered to be a biometric template unless they

are stored for reference.
Biometric Feature
Characteristics
� Output of a completed biometric feature

extraction process

� Numbers or labels extracted from biometric

samples and used for comparison
Definition

Numbers or labels extracted from biometric

samples and used for comparison
NOTE 1 Biometric features are the output of a

completed biometric feature extraction

process.

NOTE 2 The use of this term should be consis-

tent with its use by the pattern recognition

and mathematics communities.

NOTE 3 A biometric feature set can also be

considered as a processed biometric sample.
The biometric vocabulary under development within

WG 1 is continually updated in Standing Document

2 [9]. Since the development process is an iterative

process, existing concepts will continue to be refined

as relationships among concepts are explored and new

concepts are introduced. ISO/IEC JTC1 SC 37
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Standing Document 2 [9] is broken into two parts, the

main body which includes terms and definitions for

concepts that have been harmonized, and a series of

concept diagrams included as annexes to demonstrate

the relations among concepts and to illustrate concepts

that are still to be developed.

Given that ISO/IEC JTC 1 SC37 is an international

organization, the members of WG 1 represent several

countries, including, Canada, France, Germany, Japan,

Singapore, Spain, South Africa, the Russian Federation,

and the United Kingdom. As a result, the translatability

of terms and definitions into various languages is con-

sidered throughout as the harmonization process. The

Russian Federation National Body has provided a first

draft Russian translation of the terms and definitions

of Standing Document 2. A German translation has

also been developed [10], and will be updated as the

Standing Document 2 evolves. As Standing Document

2 eventually becomes published to ISO 2382 Part 37, it

is the hope of WG1 to include at least Russian, French,

and German translations.
Related Entries

▶Biometric Data Interchange Format, Standardization

▶Biometric Sample Quality, Standardization

▶Biometric Technical Interface, Standardization

▶Biometrics Security, Standardization

▶Performance Testing Methodology Standardization
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Definition

Biometric systems, like all security systems, have vul-

nerabilities. This article provides a survey of the many

possibilities of attack against traditional biometric

systems. The vulnerabilities of nontraditional sys-

tems, such as those based on encoded biometrics are

surveyed in the chapter Security and Liveness: Over-

view. Here, biometric system security is defined by its

absence: a vulnerability in biometric security results

in incorrect recognition or failure to correctly recog-

nize individuals. This definition includes methods to

falsely accept an individual (spoofing) impact overall

system performance (denial of service), or to attack

another system via leaked data (identity theft). In

this chapter, each stage of biometrics processing is

analyzed and the potential vulnerabilities are discussed.

Techniques to structure the analysis of vulnerabilities,

such Attack Trees are described, and four application

scenarios and their vulnerabilites are considered.
Introduction

This chapter surveys the many types of security vul-

nerabilities in traditional biometric systems. For a

more general survey of security issues in biometric

systems, including those for novel and encrypted bio-

metric schemes, ▶ Security and Liveness, Overview.

Biometric system vulnerabilities are defined as avenues

of attack against a biometric system that involve an

active attacker. The resistance of a biometric system to

zero-effort attack is the system false accept rate (FAR),

and this value is generally considered to be the perfor-

mance of the biometric system. Since there are many

configurations for biometric systems and many possi-

ble ways to attack each, the topic of biometric system

vulnerabilities is necessarily very broad; this chapter

describes classes of biometric applications and reviews

the vulnerabilities of each.

Note that this chapter concentrates on system vul-

nerabilities, which are part of the biometric processing
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itself. Since biometric systems are implemented

on server computers, they are vulnerable to all crypto-

graphic, virus, and other attacks, which plague modern

computer systems [1]; These issues have been pointed

out, but not covered in detail.
Biometric Subsystems and
Vulnerabilities

To classify biometric security vulnerabilities, it is typi-

cal to study each subsystem and interconnection in

a system diagram (Fig. 1). Early work is presented

in [3], with later contributions coming from [4, 5, 6].

Each system module is considered in turn.
Biometric Vulnerabilities, Overview. Figure 1 Biometric Sys

in detail in this chapter. Each presented sample (b) is acquire

feature extraction (d) algorithms. If available, a sample quality

reacquire the sample. Biometric features are encoded into a t

card or in secure hardware. For biometric encryption systems

in the template. During enrollment, biometric samples are lin

verification or identification, samples are tested against enroll

decision (J) is made, either automatically, or by a human age
Identity Claim (A)

Identity claims are not biometric properties, but

form an essential part of most biometric security sys-

tems. Exceptions are possible: an example is verifying a

season ticket holder; the person’s identity doesn’t mat-

ter, as long as they have paid. Identity claims are

primarily based on links to government issued identity

documents, and are thus vulnerable to all forms of

fraud of such documents. This is a problem even

for highly secure documents, such as passports,

which are often issued on the basis of less secure

‘‘breeder documents’’ [7], such as birth certificates

issued by local government, hospital, or even religious

authorities.
tem Block Diagram (from [2]). Steps a – h are analyzed

d by a sensor (c) processed via segmentation (d) and

(e) assessment algorithm is used to indicate a need to

emplate, which is stored (h) in a database, on an identity

, a code or token is combined with the biometric features

ked to a claimed identity (a), and during subsequent

ed samples, using a matching algorithm (i) and an identity

nt reviewing biometric system outputs.
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Presentation (B)

An attack on the biometric sensor provides false bio-

metric sample into the system. Such attacks are designed

to either avoid detection (false negative) or masquerade

as another (false positive). The latter attack is typically

called spoofing. Clearly, avoiding detection is easier

than masquerading, since features simply need to be

changed enough to confuse the segmentation or feature

extraction module. Changing makeup, facial hair, and

glasses or abrading or wetting fingers is often successful;

although recent progress in biometric algorithms has

reduced the effectiveness of such techniques. Knowledge

of the details of algorithms canmake such attacks easier;

for example, rotating the head will confuse many iris

algorithms that do not expect image rotation of more

than a few degrees.

An attempt to gain unauthorized access using pre-

sentation of an artificial biometric, which copies that of

an authorized user is called a ‘‘spoof’’. The most well

known spoofs are for fingerprint; it is possible to spoof a

variety of fingerprint technologies through relatively

simple techniques using casts of a finger with molds

made of household materials [8, 9]. A morbid concern

is the use of dismembered fingers, which can be scanned

and verified against enrolled fingers. Other modalities

may be spoofed: face using pictures or high resolution

video, iris with contact lenses, and voice recordings for

voice biometrics [9]. Techniques to make spoofing

more difficult include liveness, multiple biometrics,

and use of biometrics in combination with a challenge

response, passwords, tokens, or smart cards. The goal

of liveness testing is to determine if the biometric being

captured is an actual measurement from a live person

who is present at the time of capture [10]. Typically,

liveness is a secondary measure after biometric authen-

tication, which must be needed to achieve a positive

response. Liveness may be implemented in hardware or

software. Hardware liveness tests require additional

sensors in conjunction with the biometric sensor, in-

creasing cost. Examples of this approach include ther-

mal sensing of finger temperature, ECG, impedance

of the skin, and pulse oximetry. Software liveness tests

rely of further processing of the biometric signal to

gather liveness information [11]. Examples include

quantifying saccade movements in the eye for iris

recognition, lip-reading, or perspiration in the finger-

print [12]. It is important to note that the liveness
measurement increases the difficulty of – but does

not prevent – fraudulent presentation. Furthermore,

liveness stage may have vulnerabilities, for example,

using a translucent spoof in combination with a live

finger to fool pulse oximetry.
Sensor (C)

Attacks on the biometric sensor include any technique

that subverts or replaces the sensor hardware. In some

cases subverting the sensor allows complete bypassing

of the biometric system. For example, in some biomet-

ric door locks, the sensor module includes the entire

biometric system including a Wiegand output or relay

output to activate the solenoid in a door lock. Sub-

verting such a system may be as simple as physically

bypassing the biometric system.

In many cases, an attack on the sensor would

take the form of a replay. The connection between

the biometric sensor and the biometric system is sub-

verted to allow input of arbitrary signals, and images

from legitimate users are input into the system.

To obtain the signals, several strategies may be

employed. Eavesdropping requires hiding the record-

ing instruments and wiring of the sensor. For

biometrics using contactless smart cards, such eaves-

dropping becomes more feasible (see [13]). Another

approach is to record signals from a sensor under the

control of the attacker.

Protection of the sensor typically requires crypto-

graphic techniques to prevent capture and relay of

signals and replacement of the sensor [1]. This imposes

a larger cost for sensors with integrated cryptographic

capability and for management of the security and key

infrastructure.
Segmentation (D)

Biometric segmentation extracts the image or signal of

interest from the background, and a failure to segment

means the system does not detect the presence of the

appropriate biometric feature. Segmentation attacks

may be used to escape surveillance or to generate a

denial of service (DoS) attack. For example, consider a

surveillance system in which the face detection algo-

rithm assumes faces have two eyes. By covering an eye,

a person is not detected in the biometric system.
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Another example would be where parts of a fingerprint

core are damaged to cause a particular algorithm to

mislocate the core. Since the damaged area is small, it

would not arouse the suspicion of an agent reviewing

the images.
Feature Extraction (E)

Attacks of the feature extraction module can be used

either to escape detection or to create impostors. The

first category is similar to those of Segmentation.

Knowledge of the feature extraction algorithms can

be used to design special features in presented biomet-

ric samples to cause incorrect features to be calculated.

Characterizing feature extraction algorithms: To im-

plement such an attack, it is necessary to discover the

characteristics of the feature extraction algorithm. Are

facial hair or glasses excluded (face recognition)? How

are the eyelid/eyelash regions detected and cropped (iris

recognition)? Most current high performing biometric

recognition algorithms are proprietary, but are often

based on published scientific literature, which may pro-

vide such information. Another approach is to obtain

copies of the biometric software and conduct offline

experiments. Biometric algorithms are likely susceptible

to reverse engineering techniques. It would appear pos-

sible to automatically conduct such reverse engineering,

but we are not aware of any published results.

Biometric ‘‘zoo’’: There is great variability between

individuals in terms of the accuracy and reliability of

their calculated biometric features. Doddington et al.

developed a taxonomy for different user classes [14].

Sheep are the dominant type, and biometric systems

perform well for them. Goats are difficult to recognize.

They adversely affect system performance, accounting

for a significant fraction of the FRR. Lambs are easy to

imitate – a randomly chosen individual is likely to be

identified as a lamb. They account for a significant

fraction of the FAR. Wolves are more likely to be

identified as other individuals, and account for a

large fraction of the FAR. The existence of lambs and

wolves represents a vulnerability to biometric systems.

If wolves can be identified, they may be recruited to

defeat systems; similarly, if lambs can be identified in

the legitimate user population, either through correla-

tion or via directly observable characteristics, they may

be targets of attacks.
Quality Control (F)

Evaluation of biometric sample quality is important to

ensure low biometric error rates. Most systems, espe-

cially during enrollment, verify the quality of input

images. Biometric quality assessment is an active area

of research, and current approaches are almost exclu-

sively algorithm specific. If the details of the quality

assessment module can be measured (either though

trial and error or through off-line analysis), it may be

possible to create specific image features, which force

classification in either category. Quality assessment

algorithms often look for high frequency noise content

in images as evidence of poor quality, while line struc-

tures in images indicate higher quality. Attacks on the

quality control algorithm are of two types: classifying a

good image as poor, and classifying a low quality image

as good. In the former case, the goal of the attack

would be to evade detection, since poor images will

not be used for matching. In the latter case, low quality

images will be enrolled. Such images may force internal

match thresholds to be lowered (either for that image,

or in some cases, globally). Such a scenario will create

‘‘lambs’’ in the database and increase system FAR.
Template Creation (G)

Biometric features are encoded into a template, a (pro-

prietary or standards-conforming) compact digital rep-

resentation of the essential features of the sample image.

One common claim is that, since template creation is a

one-way function, it is impossible or infeasible to regen-

erate the image from the templates [15]; however, it has

been shown that it is generally possible to regenerate

versions of biometric sample images from templates

[16]. These regenerated images may be used to mas-

querade at the sensor or to generate a spoofed biomet-

ric for presentation (▶Template security).

Interoperability: Government applications of bio-

metrics need to be concerned with interoperability.

Biometric samples enrolled on one system must be

usable on other vendor systems if a government is to

allow cross-jurisdictional use, and to avoid vendor

lock-in. However, recent work on interoperability has

revealed it to be difficult, even when all vendors con-

form to standards. Tests of the International Labor

Organization seafarer’s ID card [17] showed
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incompatibilities with the use of the minutiae type

‘‘other’’ and incompatible ways to quantize minutiae

angles. Such interoperability difficulties present bio-

metric system vulnerabilities, which could be used to

increase FRR or for a DoS attack.
Data Storage (H)

Enrolled biometric templates are stored for future ver-

ification or identification. Vulnerabilities of template

storage concern modifying the storage (adding, mod-

ifying or removing templates), copying template data

for secondary uses (identity theft or directly inputting

the template information at another stage of the sys-

tem to achieve authentication), or modifying the iden-

tity to which the biometric is assigned.

Storage may take many forms, including databases

(local or distributed), on ID documents (into a smart

card [13], or 2D barcode [17]), or on electronic devices

(a hardened token [18], laptop, mobile telephone,

or door access module). Template data may be in plain-

text, encrypted or digitally signed. In many government

applications, it may be necessary to provide public

information on the template format and encryption

used, to reassure citizens about the nature of the data

stored on their ID cards, but this may also increase the

possibility of identity theft. Vulnerabilities of template

storage are primarily those of the underlying computer

infrastructure, and are not dealt with in detail here.

Template transmission: The transmission medium

between the template storage and matcher is similarly

vulnerable to the template storage. In many cases,

attacks against template data transmission may be eas-

ier than against the template storage. This is especially

the case for passive eavesdropping and recording of

data in transit for wireless transmission (such as con-

tactless ID cards). Encrypted transmission is essential,

but may still be vulnerable to key discovery [13].
Matching (I)

A biometric matcher calculates a similarity score

related to the likelihood that two biometric samples

are from the same individual. Attacks against the

matcher are somewhat obscure, but may be possible

in certain cases. For biometric fusion systems, extreme
scores in one biometric modality may override the

inputs from other modalities. Biometric matchers,

which are based on Fisher discriminant strategies cal-

culate global thresholds based on the between class

covariance, which may be modified by enrolling spe-

cifically crafted biometric samples.
Decision (J)

Biometric decisions are often reviewed by a human

operator (such as for most government applications).

Such operators are well known to be susceptible to

fatigue and boredom. One of the goals of DoS attacks

can be to force operators to abandon a biometric

system, or to mistrust its output (by causing it to

produce a sufficiently large number of errors) [1].
Attack Trees

Complex systems are exposed to multiple possible

vulnerabilities, and the ability to exploit a given vul-

nerability is dependent on a chain of requirements.

Vulnerabilities vary in severity, and may be protected

against by various countermeasures, such as: supervi-

sion of enrollment or verification, liveness detection,

template anonymization, cryptographic storage and

transport, and traditional network security measures.

Countermeasures vary in maturity, cost, and cost-

effectiveness. To analyze such a complex scenario, the

factors may be organized into attack trees. This analysis

methodology was developed by Schneier [19] and for-

malized by Moore et al. [20]. In [19], the example

attack ‘‘Open Safe,’’ is analyzed to occur due to ‘‘Pick

Lock’’, ‘‘Learn Combo,’’ ‘‘Cut Open Safe,’’ or ‘‘Install

Improperly.’’ ‘‘Learn Combo’’ may, in turn, occur due

to ‘‘Eavesdrop’’, ‘‘Bribe,’’ or other reasons, which in

turn depend on further factors. The requirements for

each factor can be assessed (Eavesdropping requires a

technical skill, while bribing requires an amount of

money). Attack trees may be analyzed by assigning

each node with a feasibility, the requirement for special

equipment, or cost.

Attack tree techniques for biometric system security

have been developed by Cukic and Barlow [4]. Figure 2

shows a fraction of the attack tree [4] for image regen-

eration from templates [6].
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removed tree portions) to implement the template regeneration attack of [6]. AND/OR nodes indicate that all/one

of the sub-blocks are/is required.
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Application Profiles and
Vulnerabilities

This chapter reviews a large list of possible vulnerabil-

ities in biometric security systems. Such a large list can

perhaps give the impression that biometric systems are

extremely insecure. In this context, it is important to

clarify that many potential vulnerabilities are not a con-

cern in many biometric applications. For example, in a

particular application, if security is one of the primary

reasons for choosing a biometric (over, say, con-

venience), it is also important to look at the context of

the security mechanism it is replacing. One could

certainly argue that biometrically enabled passwords

(even with weaknesses discussed as below) have im-

proved security in this application over conventional

passports.

To clarify the security requirements of various bio-

metric implementations, four different biometric ap-

plication scenarios are considered: government ID

cards, physical access, computer and network access,

and digital content protection.
Government Identity Cards

Perhaps the most widely discussed applications for

biometrics are for government identity cards. For ex-

ample, the new ICAO machine readable passport stan-

dards require biometric data in passports. Passports

have an embedded contactless smart card, into which

face recognition (mandatory) and fingerprint or iris

(optional) biometric templates are stored encrypted in

a standardized format.
To allow data interchange, the encryption key is

based on information available in the machine read-

able zone. A recent report has demonstrated the ability

to contactlessly read the new UK passports [13]. This

raises the concern that biometric and biographical data

may be surrepitiously copied and used for identity

theft. Biometric enabled passports have been strongly

criticized by privacy advocates (e.g., [21]). Given the

privacy concerns associated with a large government

database, several authors have questioned whether the

additional security is worth it [7].

Government ID applications of biometrics are char-

acterized by the following requirements and concerns:

� Interoperability and standards compliance. Interop-

erability is difficult to achieve for complex systems

such as biometrics (e.g., [17]); poorly interoperable

systems give poor performance and are vulnerable

to attacks such as denial of service.

� Cryptographic compability. To allow interchange of

encrypted documents, public key cryptographic

systems are required, in which the public keys

are made available to receiving governments. Con-

sidering the wide distribution of keys, it must

be assumed that the public keys will be fairly easily

available to attackers.

� Large databases of vulnerable data. Identity docu-

ment data is typically stored in large centralized

databases; however, these become vulnerable, and

high value targets for attack. Several high profile

cases of compromise of government databases

have occurred.

� Secondary use of government IDs. Government

identity cards often have secondary uses; for
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example, driver’s licenses are used to prove name,

age, and even citizenship. This means that biomet-

ric documents designed for a narrow range of se-

curity concerns may be used in very different threat

environments, with inadvertent side effects.

� Typically supervised use. For most applications of

government biometric identity, the point of appli-

cation will be supervised (e.g., immigration con-

trol). This makes spoofing more difficult for these

applications.
Physical Access

Physical access systems for biometrics are typically for

government and industrial applications. In ‘‘time and

attendance systems’’ biometrics measure arrival and

departure times of staff. In physical access security

systems, secure spaces are controlled by biometric sen-

sors. These spaces may be an entire site, or restricted

parts of a worksite.

Physical access applications are characterized by

the following requirements and concerns:

� Concern about privacy. Staffs are often concerned

that biometric records will be controlled by the

employer and may be provided to police. It is

important to address this concern both technically,

and by clear communication with staff.

� Unsupervised sensors. Physical access sensors are

typically unsupervised. This means that there is a

potential vulnerability to spoofing and other

attacks at the presentation and sensor.

� Workarounds. It is well known that busy staff see

security as a burden to work around. Biometrics

has the advantage that staff often see it as more

convenient than keys or identity cards, encouraging

compliance. However, if the system is implemented

in a cumbersome way, there is an incentive to

work around burdensome infrastructure, by prop-

ping open doors, etc.
Computer and Network Access

Biometric system can facilitate secure access to com-

puter systems and networks; this is an important re-

quirement in government, health care, and banking

applications, as well as many others. Biometric sensors
have recently been provided with many laptop com-

puter systems. These applications, characterized by the

following requirements and concerns:

� Assurance levels. The biometric system security

needs to be matched to the security level (or assur-

ance level) of the overall system. An excellent re-

view of the security of biometric authentication

systems is [18]. Each assurance level from ‘‘pass-

words and PINs’’ to ‘‘Hard crypto token’’ is ana-

lyzed to determine whether (and which type of)

biometric devices are suitable.

� Network attacks. Biometric systems for network

access are vulnerable to many of the attacks,

which can be mounted across a computer network.

Examples are relay of issued credentials, and virus

and other security compromises of the desktop

computers (to which biometrics are often at-

tached). Security must, therefore, include comput-

er security and cryptographic protection of

biometric data and security tokens.

� Password caching. Most biometric software solu-

tions do not actually replace passwords, but simply

keep a cache of security keys. A valid biometric

sample will make the software search for the appro-

priate key to unlock the application. However, this

means that cracking the software will release

both the security keys, and the biometric template

of the user.
Digital Content Protection

Biometrics have been considered as a way to protect

copyright content, such as music and videos. In such a

scenario, the content is encrypted and bound to the

biometric of the purchaser [22]. It may be assumed

that biometrically locked digital documents will be

subject to attacks, especially since both the documents

and the software to access them will be widely

distributed [22]. These applications, characterized by

the following concerns:

� Incentive to crack systems. Digital content protec-

tion systems are under the control of an (often

hostile) user population, which creates and incen-

tive to crack the security systems. Additionally, any

such security breaches tend to be published on the

internet resulting in wide scale use and potential

poor publicity for the content providers.
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� Privacy and identity theft concerns. Locking of digi-

tal content with biometrics tends to create concerns

about privacy among users, since breaches of the

security can potentially compromise the biometric

security for large numbers of users.
Summary

This chapter provides a broad overview of vulnerabil-

ities in biometric systems. Vulnerabilities are defined in

terms of possible active attacks against biometric sys-

tems. A model of biometric processing [2] is consid-

ered in detail, and the potential vulnerabilities at each

stage of processing are considered: identity claim, pre-

sentation, sensor, segmentation, feature extraction, qual-

ity control, template creation, data storage, matching,

and decision. To understand the vulnerabilities of a large

biometric system, attack tree methods are explained.

Finally, four example scenarios are given for biometric

applications, the vulnerabilities are considered: govern-

ment identity cards, physical access, computer and net-

work access, and digital content protection. However, in

addition to the vulnerabilities specific to the biometric

technology, it is important to note that the vulnerabil-

ities of any networked computer security system contin-

ue to be a concern; specifically, such systems are

vulnerable to social engineering and all the security

issues which plague modern computer networks. Fi-

nally, biometric vulnerabilities must be compared to

those of the systems they are designed to replace. In

many cases, the biometric system, with the vulnerabil-

ities considered in this chapter, will still be dramatically

more secure than identity cards, passwords, or other

tokens.
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Synonyms

Biometric system; Biometric recognition
Definition

Biometrics is the science of establishing the identity of

a person based on the physical (e.g., fingerprints, face,

hand geometry, and iris) or behavioral (e.g., gait, sig-

nature, and keyboard dynamics) attributes associated

with an individual. A typical biometric system uses

appropriately designed sensors to capture the biomet-

ric trait of a person and compares this against the

information stored in a database to establish identity.

A biometric system can operate in two distinct modes:

in the verification mode, the system confirms or negates

a claimed identity, while in the identification mode, it

determines the identity of an individual.
Introduction

A wide variety of systems require reliable authentica-

tion schemes to confirm the identity of an individual
requesting their services. The purpose of such schemes

is to ensure that the rendered services are accessed

only by a legitimate user, and not anyone else. Exam-

ples of such applications include secure access to build-

ings, computer systems, laptops, cellular phones, and

ATMs. In the absence of robust authentication

schemes, these systems are vulnerable to the wiles of

an impostor.

Traditionally, passwords (knowledge-based securi-

ty) and ID cards (token-based security) have been used

to restrict access to systems. However, security can be

easily breached in these systems when a password

is divulged to an unauthorized user or an ID card is

stolen by an impostor. Further, simple passwords are

easy to guess (by an impostor) and complex passwords

may be hard to recall (by a legitimate user). The emer-

gence of biometrics has addressed the problems that

plague these traditional security methods. Biometrics

refers to the automatic identification (or verification)

of an individual (or a claimed identity) by using cer-

tain physical or behavioral traits associated with the

person. By using biometrics, it is possible to establish

an identity based on ‘‘who you are,’’ rather than by

‘‘what you possess’’ (e.g., an ID card) or ‘‘what you

remember’’ (e.g., a password). Current biometric sys-

tems make use of fingerprints, hand geometry, iris,

retina, face, hand vein, facial thermograms, signature,

voiceprint, etc. (Fig. 1) to establish a person’s identity

[1–5]. While biometric systems have their limitations

(e.g., additional cost, temporal changes in biometric

traits, etc.), they have an edge over traditional security

methods in that they cannot be easily stolen, shared,

or lost.

Biometric systems also introduce an aspect of

user convenience that may not be possible using tradi-

tional security techniques. For example, users main-

taining different passwords for different applications

may find it challenging to recollect the password asso-

ciated with a specific application. In some instances,

the user might even forget the password, requiring the

system administrator to intervene and reset the pass-

word for that user. Maintaining, recollecting, and

resetting passwords can, therefore, be a tedious and

expensive task. Biometrics, however, addresses this

problem effectively: a user can use the same biometric

trait (e.g., right index finger) or different biometric

traits (e.g., fingerprint, hand geometry, iris) for differ-

ent applications, with ‘‘password’’ recollection not

being an issue at all.
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Operation of a Biometric System

A typical biometric system operates by acquiring bio-

metric data from an individual, extracting a feature set

from the acquired data, and comparing this feature set

against the▶ template feature set stored in the database

(Fig. 2). In an identification scheme, where the goal is to

recognize the individual, this comparison is done against

templates corresponding to all the enrolled users (a one-

to-many matching); in a verification scheme, where the

goal is to verify a claimed identity, the comparison is

done against only those templates corresponding to the

claimed identity (a one-to-one matching). Thus, identi-

fication (‘‘Whose biometric data is this?’’) and verifica-

tion (‘‘Does this biometric data belong to Bob?’’) are two

different problems with different inherent complexities.

The templates are typically created at the time of enroll-

ment, and depending on the application, may or may

not require human personnel intervention.

Biometric systems are being increasingly deployed in

large scale civilian applications. The Schiphol Privium

scheme at the Amsterdam airport, for example, employs

iris scan cards to speed up the passport and visa control

procedures. Passengers enrolled in this scheme insert

their card at the gate and look into a camera; the camera

acquires the image of the traveler’s eye and processes it

to locate the iris, and compute the Iriscode; the
computed Iriscode is compared with the data residing

in the card to complete user verification. A similar

scheme is also being used to verify the identity of Schi-

phol airport employees working in high-security areas.

Thus, biometric systems can be used to enhance user

convenience while improving security.

A simple biometric system has four important

modules [6]: (1) Sensor module which acquires the

biometric data of an individual. An example would

be a fingerprint sensor that images the fingerprint

ridges of an user; (2) Feature extraction module in

which the acquired biometric data is processed to

extract a feature set that represents the data. For exam-

ple, the position and orientation of ridge bifurcations

and ridge endings (known as minutiae points) in a

fingerprint image are extracted in the feature extrac-

tion module of a fingerprint system; (3) Matching

module in which the extracted feature set is compared

against that of the template by generating a match

score. For example, in this module, the number of

matching minutiae points between the acquired and

template fingerprint images is determined, and a

matching score reported. (4) Decision-making module

in which the user’s claimed identity is either accepted

or rejected based on the matching score (verification).

Alternatively, the system may identify an user based on

the matching scores (identification).
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Quantifying Performance

Unlike password-based systems, where a perfect match

between two alphanumeric strings is necessary to vali-

date a user’s identity, a biometric system seldom

encounters two samples of a user’s biometric trait

that result in exactly the same feature set. This is due

to imperfect sensing conditions (e.g., noisy fingerprint

due to sensor malfunction), alterations in the user’s

biometric characteristic (e.g., respiratory ailments

impacting speaker recognition), changes in ambient

conditions (e.g., inconsistent ▶ illumination levels in

face recognition), and variations in the user’s interac-

tion with the sensor (e.g., occluded iris or partial

fingerprints). The variability observed in the biometric

feature set of an individual is referred to as intraclass

variation, and the variability between feature sets ori-

ginating from two different individuals is known as

interclass variation. A useful feature set exhibits small

intra-class variation and large interclass variation.

A similarity match score is known as a genuine score

or authentic score if it is the result of matching two

samples of the same biometric trait of a user. It is

known as an impostor score if it involves comparing

two biometric samples originating from different users.

To analyze the performance of a biometric system, the
probability distribution of genuine and impostormatch-

ing scores is examined. A genuine matching score is

obtained when two feature sets corresponding to the

same individual are compared, and an impostor

matching score is obtained when feature sets from

two different individuals are compared. In the case of

verification, when a matching score exceeds a certain

threshold, the two feature sets are declared to be from

the same individual; otherwise, they are assumed to be

from different individuals. Thus, there are two funda-

mental types of errors associated with a verification

system: (i) a false match, which occurs when an im-

postor matching score exceeds the threshold, and (ii) a

false nonmatch, which occurs when a genuine match-

ing score does not exceed the threshold. The error rates

of systems based on fingerprint and iris are usually

lower when compared to those based on voice, face,

and hand geometry. A Receiver Operating Characteris-

tic (ROC) curve plots the False Non-match Rate

(FNMR – the percentage of genuine scores that do

not exceed the threshold) against the False Match

Rate (FMR – the percentage of impostor scores that

exceed the threshold) at various thresholds. The

operating threshold employed by a system depends

on the nature of the application. In forensic applica-

tions, for example, a low FNMR is preferred, while in
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high security access facilities like nuclear labs, a low

FMR is desired (Fig. 3).

In the case of identification, the input feature set is

compared against all templates residing in the database

to determine the topmatch (i.e, the best match). The top

match can be determined by examining the match scores

pertaining to all the comparisons and reporting the

identity of the template corresponding to the largest

similarity score. The identification rate indicates the

proportion of times a previously enrolled individual

is successfully mapped to the correct identity in the

system. Here, assume that the question being asked is,

‘‘Does the top match correspond to the correct iden-

tity?’’ An alternate question could be, ‘‘Does any one of

the top k matches correspond to the correct identity?’’

(see [7]). The rank-k identification rate, Rk, indicates

the proportion of times the correct identity occurs in

the top k matches as determined by the match score.

Rank-k performance can be summarized using the

Cumulative Match Characteristic (CMC) that plots

Rk against k, for k ¼ 1, 2, . . . M with M being the

number of enrolled users.

Besides FMR and FNMR, other types of errors are

also possible in a biometric system. The Failure to

Enroll (FTE) error refers to the inability of a biometric

system to enroll an individual whose biometric trait
Biometrics, Overview. Figure 3 Evaluating the matching acc

mode. (a) Histograms of genuine and impostor matching sco

Reject) that are possible in a verification system. (b) A Receive

operating point (threshold) for different types of applications

FAR and FRR, respectively.
may not be of good ▶ quality (e.g., poor quality fin-

gerprint ridges). Similarly, a biometric system may be

unable to procure good quality biometric data from an

individual during authentication resulting in a Failure

to Acquire (FTA) error.

A biometric system is susceptible to various types of

attacks [8]. For example, an impostor may attempt to

present a fake finger or a face mask or even a recorded

voice sample to circumvent the system. The problem of

fake biometrics may be mitigated by employing

▶ challenge-response mechanisms or conducting live-

ness detection tests. Privacy concerns related to the use

of biometrics and protection of biometric templates

are the issues that are currently being studied [9–11].
Applications

Establishing the identity of a person with high confi-

dence is becoming critical in a number of applications

in our vastly interconnected society.Questions like ‘‘Is she

reallywho she claims to be?’’, ‘‘Is this person authorized to

use this facility?’’ or ‘‘Is he in the watchlist posted by the

government?’’ are routinely being posed in a variety of

scenarios ranging from issuing adriver’s license togaining

entry into a country. The need for reliable user
uracy of a biometric system operating in the verification

res and the two types of errors (False Accept and False

r Operating Characteristic (ROC) curve indicating the

. Note that FMR and FNMR are often used as synonyms for
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employing biometrics can be used in a variety of

applications which depend on reliable user authentication

mechanisms

Forensics Government Commercial

Corpse
identification

National ID card ATM

Criminal
investigation

Driver’s license; voter
registration

Access
control;
computer
login

Parenthood
determination

Welfare
disbursement

Mobile phone

Missing children Border crossing E-commerce;
Internet;
banking;
smart card
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authentication techniques has increased in the wake of

heightened concerns about security, and rapid advance-

ments in networking, communication, and mobility.

Thus, biometrics is being increasingly incorporated in

several different applications. These applications can be

categorized into three main groups (see Table 1):

1. Commercial applications such as computer network

login, electronic data security, e-commerce, Internet

access, ATM or credit card use, physical access con-

trol, mobile phone, PDA, medical records manage-

ment, distance learning, etc.

2. Government applications such as national ID card,

managing inmates in a correctional facility, driver’s

license, social security, welfare-disbursement, bor-

der control, passport control, etc.

3. Forensic applications such as corpse identification,

criminal investigation, parenthood determination, etc.
Summary

The increased demand for reliable and convenient

authentication schemes, availability of inexpensive

computing resources, development of cheap biometric

sensors, and advancements in signal processing have all

contributed to the rapid deployment of biometric sys-

tems in establishments ranging from grocery stores to

airports. The emergence of multibiometrics has further
enhanced the matching performance of biometric sys-

tems [12, 13]. It is only a matter of time before

biometrics integrates itself into the very fabric of soci-

ety and impacts the way we conduct our daily business.
Related Entries

▶Authentication

▶Biometric Applications, Overview

▶Enrollment

▶ Identification

▶ Soft Biometrics

▶Verification
References

1. Jain, A.K., Flynn, P., Ross, A. (eds).: Handbook of Biometrics.

Springer (2007)

2. Wayman, J.L., Jain, A.K., Maltoni, D., Maio, D. (eds.): Bio-

metric Systems: Technology, Design and Performance Evalua-

tion. Springer, New York (2005)

3. Bolle, R., Connell, J., Pankanti, S., Ratha, N., Senior, A.: Guide to

Biometrics. Springer, New York (2003)

4. Wechsler, H.: Reliable Face Recognition Methods: System De-

sign, Implementation and Evaluation. Springer (2006)

5. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of

Fingerprint Recognition. Springer, New York (2003)

6. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric

Recognition. IEEE Trans. Circuits Syst. Video Technol., Special

Issue on Image- and Video-Based Biometrics 14(1), 4–20 (2004)

7. Moon, H., Phillips, P.J.: Computational and Performance

Aspects of PCA-based Face Recognition Algorithms. Perception

30(5), 303–321 (2001)

8. Ratha, N.K., Connell, J.H., Bolle, R.M.: An analysis of minutiae

matching strength. In: Proceedings of Third International Con-

ference on Audio- and Video-Based Biometric Person Authenti-

cation (AVBPA), pp. 223–228. Halmstad, Sweden (2001)

9. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric Recognition:

Security and Privacy Concerns. IEEE Security Privacy Mag. 1(2),

33–42 (2003)

10. Rejman-Greene, M.: Privacy issues in the application of

biometrics: a european perspective. In: Wayman, J.L. Jain, A.K.

Maltoni, D. Maio (eds.) D. Biometric Systems: Technology,

Design and Performance Evaluation, pp. 335–359. Springer,

New York (2005)

11. Kenny, S., Borking, J.J.: The Value of Privacy Engineering.

J. Inform. Law Technol. (JILT) 7(1), (2002)

12. Jain, A.K., Ross, A.: Multibiometric Systems. Commun. ACM,

Special Issue on Multimodal Interfaces 47(1), 34–40 (2004)

13. Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multi-

biometrics. 1st ed. Springer, New York (2006)



Branch-and-Bound Search B 173
BIP
B

▶Biometric Technical Interface, Standardization
BIR
▶Common Biometric Exchange Formats Framework

Standardization
Blind Source Seperation
▶ Independent Component Analysis
Blood Vessel Wall
Blood vessel wall is the wall that forms the tubular

channel of blood flow. The walls of arteries and veins

consist of three layers, tunica intima, tunica media, and

tunica externa (adventitia). The most inner layer, tuni-

ca intima consists of a surface layer of endothelium

with a basement membrane. In the case of arteries,

there is an internal elastic membrane around it. The

tunica media is composed of smooth muscle and con-

nective tissue. In the case of arteries, there is an exter-

nal elastic membrane around it. The tunica externa is

the connective tissue forming the outmost layer. The

walls of capillaries consist of a single layer of endothe-

lial cells and a basement membrane.

The cells of vessel walls control the function of

blood vessels by receiving information not only

from outside the wall but also from the crosstalk
among them. For example, the smooth muscle of a

vessel wall contracts or relaxes as the reaction to

various agents. They include neurotransmitters,

paracrine factors, hormones, and nitric oxide. By

the constriction and the dilation, the inner diameter

of the blood vessel changes and the blood pressure is

controlled.

The inner surface of the vessel wall or the epithelial

layer serves as a smooth barrier. Its selective permeabil-

ity plays an important role in the balancing of fluid

between blood and tissue fluid. The epithelial cells of

the vessel wall also produce the various bioactive

substances.

▶Performance Evaluation, Overview
Brachycephalic
Brachycephalic is the head form characterized by

an anteroposteriorly short and mediolaterally wide

skull.

▶Anatomy of Face
Branch-and-Bound Search
A search strategy employed by optimization algorithms

in which the space of candidate solutions is navigated

in a systematic manner via a tree-like structure by

employing upper and lower bounds on the criterion

function being optimized. The search strategy is char-

acterized by three steps: (1) a branching step in which

the space of possible candidate solutions is recursively

partitioned, (2) a bounding step in which upper and

lower bounds are estimated for the criterion function

based on the candidate solutions within each partition,

and (3) a pruning step in which improbable solutions

are eliminated.

▶ Fusion, Feature-Level
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Breeder Documents
Breeder documents are documents accepted for estab-

lishing ground truth with respect to an individual’s

identity. Breeder documents are typically used to
obtain other identity documents or to establish/enroll

an identity to obtain some benefit, privilege, or enti-

tlement. One example of a breeder document is birth

certificate, which may then be used to establish identity

for the purpose of obtaining a driver’s license.

▶ Fraud Reduction, Applications
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Calibration
It refers to a software or hardware procedure to restore

the initial operational conditions of a sensor or a

device.

▶Biometric Sensor and Device, Overview

▶ Image Formation
Camera
Camera is the face imaging device delivering either

single image stills or video streams. It generally delivers

a standard analog signal and requires a digitization

device to produce digital images. Low-cost web cameras

provide a standard USB interface to deliver digitized

images in digital format. High-end cameras provide a

standard digital signal for high-resolution images.

▶ Face Device

▶ Image Formation
Camera Device
▶ Face Device
Camera Model
The camera model describes how a point in the 3D

space is projected on the 2D image plane. The projec-

tion that gives the 2D image coordinates of any point
# 2009 Springer Science+Business Media, LLC
on the 3D space is defined, by the camera model and a

few parameters (camera parameters) such, as the focal

length.

▶ Face Pose Analysis
Camera Point of View
Camera point of view is the effective location and

orientation of a camera that would result in the obser-

ved hand silhouette.

▶Hand Data Interchange Format, Standardization
Cancelable Biometrics

ANDY ADLER

Carleton University, Ottawa, ON, Canada
Synonym

Revocable biometrics
Definition

Cancelable biometrics are designed to allow an indi-

vidual to enroll and revoke a large number of different

biometric samples. Each biometric image is encoded

with a distortion scheme that varies for each applica-

tion. The concept was developed to address the privacy

and security concerns that biometric samples are

limited and must be used for multiple applications.

During enrollment, the input biometric image is sub-

jected to a known distortion controlled by a set of
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parameters. The distorted biometric sample can, in

some schemes, be processed with standard biometrics

algorithms, which are unaware that the features pre-

sented to them are distorted. During matching, the live

biometric sample must be distorted with the same

parameters, which must be securly stored. The cancel-

able nature of this scheme is provided by the distor-

tion, in that it is not the user’s ‘‘actual’’ biometric that

is stored, but simply one of an arbitrarily large number

of possible permutations. One concern with cancelable

biometrics is the secure management of the distortion

parameters.
Introduction

Cancelable biometrics describes a class of biometric

matching algorithms designed to address the security

and privacy concerns because of the limited number

of biometric samples. This limitation – humans have

only one face, two eyes and up to ten fingers – raises

several concerns (▶ Security and Liveness, Overview):

(1) the same biometric must be enrolled into multiple

applications, potentially allowing cross application

privacy and security vulnerabilities; for example, fin-

gerprint images given to enter an amusement park may

then be used to spoof a user to their bank; (2) a

compromised biometric sample is a permanent loss

to a user, unlike other security systems, where, for

example, new cards or passwords can be issued; and

(3) network protocols based on biometrics are poten-

tially vulnerable to replay attacks.

Cancelable biometrics algorithms address these

concerns by creating multiple varied independent bio-

metric samples by processing the input image (or tem-

plate features) with a parameterized distortion. The

concept was developed by Ratha et al. [1] and subse-

quently extended by many others (e.g., [2, 3, 4, 5, 6]).

During enrollment, the input biometric image is sub-

jected to a known distortion controlled by a set of

distortion parameters. The distorted biometric sample

can, in some schemes, be processed with standard

biometrics algorithms, which are unaware that the

features presented to them are distorted. During

matching, the live biometric sample must be distorted

in exactly the same way, otherwise it cannot match the

enrolled sample. This distortion must also satisfy the

constraint that multiple different distortion profiles
cannot match. Thus, the cancelable nature of this

scheme is provided by the distortion, in that it is not

the user’s ‘‘actual’’ biometric, which is stored, but

simply one of an arbitrarily large number of possible

permutations. Cancelable biometrics is similar in some

ways to biometric encryption (▶Biometric Encryp-

tion), but differs primarily in that the goal of a cancel-

able biometric scheme is a Match/Nonmatch decision,

while biometric encryption releases an encoded token

or cryptographic key.

Two classes of cancelable biometrics are defined by

Bolle et al. [2]: signal and feature domain distortions.

For signal domain distortion, the raw biometric

image is distorted. This image is subsequently pro-

cessed by a traditional biometric system, which may

be unaware of the distortions. Requirements for this

scheme are that the distortion be large enough to

create independent input images, but constrained

such that the biometric system is able to identify and

reliably register landmarks on the image. Examples are

given for face, iris, and voice. For feature domain dis-

tortion, the biometric image is first processed to extract

the template features, which are then distorted. This

scheme may still use a traditional biometric template

match algorithm. Feature distortion is recommended

for fingerprints, where calculated minutiae are scram-

bled. It is difficult to envisage a simple fingerprint

image distortion scheme, which destroys the original

minutiae while still preserving a fingerprint-like image.

It is emphasized that, much like a cryptographic hash

function, there is no need to invert cancelable distor-

tions, rather such distortions are designed to be one-

way functions in which comparison is performed in

the distorted space.

The first cancelable biometric algorithms for

face recognition were proposed by [7]. The distortion

takes place in the raw image space, since face recogni-

tion feature sets are not standardized. This places

tight constraints on the nature of the distortion, since

severely distorted faces will not be recognized and

properly encoded by the algorithms. A different ap-

proach is taken by Savvides et al. [5] in which the

cancelable distortion is tied to a face recognition algo-

rithm based on correlation filters. Enrolled and test

face images are distorted with a random kernel calcu-

lated from a key to generate an encrypted correlation

filter. Since the same convolution kernel is present for

both images, its effect is mathematically cancelled in

the correlation filter. This scheme is somewhat similar
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to the biometric encryption approach of Soutar et al.

[9]. Boult [3] proposes a scheme in which face recog-

nition feaures are encoded via scaling and rotation;

The resulting data are separated into a ‘‘general

wrapping’’ number, which is encrypted with a one-

way transform, and a fractional part, which is pre-

served undestorted. Comparison is based on robust

distance measures, which saturate at large distances.

The cancelable fingerprint templates of [8] use the

minutiae rather than the raw image, since this allows

both minutiae position and angle to be permuted

(increasing the degrees of freedom of the transforma-

tion), and since distortion will interfere with the fea-

ture extraction process. The distortion is modeled on

the electric field distribution for random charges.

Results show a small impact on biometric errors

(5% increase in FRR) over undistorted features. A

theoretical approach to cancelable biometrics uses

▶ shielding functions [4], to allow a verifier to check

the authenticity of a prover (user wanting to be ver-

ified) without learning any biometric information,

using proposed d-contracting and E-revealing func-

tions. The proposed system was based on simple

Gaussian noise models and not tested with an actual

biometric system. Unfortunately, it is unclear how

practical functions can be found that account for the

inherent biometric feature variability.

A ‘‘biohashing’’ approach has been proposed by

Teoh et al. [6] and applied to many different modalities

including fingerprint, face, and palm. This scheme

applies a wavelet Fourier-Mellen transform (a rotation

and scale invariant transform) to input images. Each

bit of the tempate is calculated based on the inner

product of the transformed image with a random

image generated from a code. The claimed performance

of this approach is 0% EER. Unfortunately, it has been

shown by Kong et al. [10] that this high performance is

actually due to the code being treated as a guaranteed

secure password. Without this assumption, biohashing

approaches show overall poor error rates.

In general, cancelable biometrics may be seen to

represent a promising approach to address biometric

security and privacy vulnerabilities. However, there

are several concerns about the security of such

schemes. First, there is very little work analyzing their

security, except for an analysis of biohashing [10].

Secondly, while distortion schemes should be ‘‘prefer-

ably non-invertible’’ [2], no detailed proposed scheme

has this property. In fact, it would appear to be trivial
to ‘‘undistort’’ the template given knowledge of the

distortion key in most cases. Third, cancelable

biometrics would appear to be difficult to implement

in the untrusted scenarios for which they are proposed:

if the user does not trust the owner of the biometric

sensor to keep the biometric private, how can they

enforce privacy on the distortion parameters used?

This last concern is perhaps the most serious: the

security of cancelable biometrics depends on secure

management of the distortion parameters, which

must be used for enrollment and made available at

matching. Furthermore, such keys may not be much

better protected than current passwords and PINs. In

summary, cancelable biometrics offer a possible solu-

tion to certain serious security and privacy concerns of

biometric technology; however, current schemes leave

a number of important issues unaddressed. Research is

very active in this subject, and may succeed in addres-

sing these concerns.
Related Entries

▶ Fingerprints Hashing

▶ Security and Liveness, Overview
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Canonical Face Model
Canonical face model is the model that is used to store

face images in databases. Once a facial image is ac-

quired, it is resized and transformed to match the size

and the orientation of the canonical face model, in

which it is then stored in a database and used for face

recognition tasks. For face recognition in documents,

the canonical face model proposed by the International

Civil Aviation Organization (ICAO) for the machine

readable travel documents is used by many passport

and immigration offices in many countries. This model

stores faces using 60 pixels between the eyes, which

ensures that feature-based face recognition techniques

can be applied on these images. It has been argued

however that this canonical face model may not be

suitable for face recognition in video, due to the fact

that face resolution in video is normally lower than

60 pixels between the eyes.

▶ Face Databases and Evaluation
CANPASS
▶ Iris Recognition at Airports and Border-Crossings

▶ Simplifying Passenger Travel Program
Capillary Blood Vessel
Capillary blood vessels are minute blood vessels,

5–10 mm in diameter, carrying blood from arterioles
to venules. Blood flows from the heart to arteries. The

arteries diverge into narrow arterioles, and then fur-

ther diverge into capillaries. The blood in the capil-

laries is collected into venules. The venules converge

into veins that carry the blood to the heart.

The capillaries are very thin and form a fine net-

work called a capillary bed. The capillary wall consists

only of a single layer of cells, the endothelium. This

layer is so thin that it acts as a semipermeable mem-

brane in the interchange of various molecules between

blood and tissue fluid. It supplies oxygen, water, and

lipids from the blood, and carries away the waste

product such as carbon dioxide and urea from the

tissue. Though each capillary is very thin, the capillaries

form vast networks. The surface area of the capillary bed

in the total body amounts to 6,000 m2. Various stimu-

lations from our living environment cause the change

in the amount of blood in the capillary bed. In

biometrics, this change should be taken into account

particularly in venous pattern authentication.

▶Performance Evaluation, Overview
Capture Volume
The volume in which an image-based biometric can be

successfully captured.

▶ Iris Device

▶ Iris on the Move
Casts
A three-dimensional plaster cast can be made of a

person’s foot, as another aid in barefoot morphology

comparison. The foot is placed in specially made foam,

used in podiatry and orthotics, in order to capture the

shape of the foot. Dental casting material can be

poured into the foam, and, upon setting, a solid

three-dimensional replica of the foot will be recovered.

▶ Forensic Barefoot Comparison
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CBEFF
C
Common Biometric Exchange Formats Framework.

▶Biometric Technical Interface, Standardization
CBEFF Biometric Data Block (BDB)
The BDB contains biometric data. The values of the

mandatory CBEFF data elements, BDB Format Owner,

and BDB Format Type encoded in the SBH identify the

format of the BDB. A typical BDB could contain data

conforming to one of the data interchange formats

specified in ISO/IEC 19794 or one of the ANSI INCITS

biometric data format standards (or a proprietary

format).

▶Common Biometric Exchange Formats Framework

Standardization
CBEFF Biometric Information
Records (BIRs)
BIRs are well-defined data structures that consist of

two or three parts: the standard biometric header

(SBH), the biometric data block (BDB), and the op-

tional security block (SB). CBEFF permits considerable

flexibility regarding BIR structures and BDB content,

but does so in a way that makes it easy for biometric

applications to evaluate their interest in processing a

particular BIR.

▶Common Biometric Exchange Formats Framework

Standardization
CBEFF Security Block (SB)
The Security Block (SB) is an optional third compo-

nent of Common Biometric Exchange Formats Frame-

work Biometric Information Records (BIR). The SB
may carry integrity data (e.g., digital signature or MAC

(message authentication code)) or might also carry

data associated with the encryption of the CBEFF

Biometric Data Block (BDB). The format owner/for-

mat type approach was adopted to support the security

block. This enables any public or private organization

that wants to provide security solutions for BDBs and

BIRs to identify and publish its security data formats in

a standard way. The SB format owner/format type

fields in the CBEFF Standard Biometric Header pro-

vide this SB identifier. CBEFF requires that if an integ-

rity mechanism is applied to the BIR, then that

mechanism must cover both the SBH and the BDB.

▶Common Biometric Exchange Formats Framework

Standardization
CBEFF Standard Biometric Header
(SBH)
The header of a BIR (Standard Biometric Header –

SBH) specifies metadata that describe specific charac-

teristics of the biometric data contained in the data

structures (e.g., biometric data format, modality, its

creation date). It can also convey information useful

to support security of the biometric data (e.g., security/

integrity options), and other user-required data

(e.g., user-defined payload, challenge-response data).

CBEFF standards explicitly require that the SBH not be

encrypted. This ensures that the header can always

be examined by an application with the minimum

necessary processing. CBEFF does, however, provide

definitions for a couple of optional data elements that

may be encrypted within the header.

▶Common Biometric Exchange Formats Framework

Standardization
CBEFF Wrapper
Synonym

BIR
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Definition

The meta-data that is associated with a Biometric

Data Block (BDB) to form a Biometric Information

Record (BIR). The meta-data elements are specified

in CBEFF Part 1, and the combination of these

(from minimal to all) with one or more BDBs, for

particular application areas, is specified in CBEFF

Part 3.

▶Biometric Technical Interface, Standardization
Central Retinal Artery and Vein
Main vascular trunks that supply (artery) and

collect (vein) blood to and from the retina. Enter-

ing and exiting the retina at the optic disc they bi-

furcate across the retina forming its blood vessel

network.

▶ Simultaneous Capture of Iris and Retina for

Recognition
Cepstrum Transform
Cepstrum transform consists of the inverse Fourier

transform of the logarithm of a signal in the fre-

quency domain. Cepstral analysis has been widely

used for separating signals from linear filtering. In

this sense, if the speech signal is viewed as an output

of a Linear Time-Invariant (LTI) system, where a

source signal has passed through a filter, cepstrum

transformation may be used to separate the source

from the filter. As a homomorphic transformation,

cepstrum presents a useful property, since the convo-

lution of two signals can be expressed as the addition

of their cepstra.

▶ Speaker Features
Chaff Points
Chaff points are additional fake minutiae used to hide

the genuine minutiae, so that too many combinations

exist for a brute force attack.

▶ Fingerprints Hashing
Challenge Response
An authentication mechanism in which the biometric

system poses a question (challenge) to an individual

and determines whether the latter provides a valid

answer (response). This response may be used to

validate the legitimacy of the biometric trait being

presented to the system.

▶Biometrics, Overview

▶Keystroke Recognition
Charge Coupled Device (CCD)
For image processing, CCD is a type of sensor that

utilizes motion of ‘‘buckets’’ of charge in response to

electric fields. This is an older and more highly devel-

oped technology than CMOS image sensors. CMOS

and CCD technologies are battling for dominance in

the marketplace.

▶ Face Device

▶ Iris Device
Chrominance
In color images and videos, the chrominance (or shortly

‘‘chroma’’, the Greek word for color) are the components

that contain the color information apart from the

luminance.

▶ Skin Detection
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Circular Hough Transform
C
The circular Hough transform detects circular features

within an image. The image transformed is generated

by computing gradients in the original image, and

summing gradient values into each point that is a

certain distance (the specified radius to search for)

away from it. A circular edge within the original

image will produce a peak value at the center of the

circle in the image transform.

▶ Segmentation of Off-Axis Iris Images
Circumstantial Identification
Identification of victims based on circumstantial evi-

dence, such as the victim’s clothing, jewelry, and pocket

contents.

▶Dental Biometrics
Classification
▶ Supervised Learning
Classifier Cascade
In face detection, a classifier cascade is a degenerate

decision tree where each node (decision stump) con-

sists of a binary classifier.

In a classifier cascade, each node is a boosted classi-

fier consisting of several weak classifiers. These boosted

classifiers are constructed so that the ones near the
root can be computed very efficiently at very high

detection rate with acceptable false positive rate. Typi-

cally, most patches in a test image can be classified

as faces/non-faces using simple classifiers near the

root, and relatively few difficult ones need to be ana-

lyzed by nodes with deeper depth. With this cascade

structure, the total computation of examining all

scanned image patches can be reduced significantly.

▶ Face Detection
Classifier Combination
▶Ensemble Learning

▶Multiple Classifier Systems
Classifier Fusion
It is the main strategy used to combine classifier out-

puts in a multiple classifier system. In classifier fusion,

each classifier contributes to the final decision for each

input pattern.

▶Multiple Classifier Systems
Classifier Selection
It is a strategy used to combine classifier outputs in a

multiple classifier system. In classifier selection, each

classifier is supposed to have a specific domain of

competence (e.g., a region in the feature space) and is

responsible for the classification of patterns in this

domain.

▶Multiple Classifier Systems
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▶ Iris Recognition at Airports and Border-Crossings

▶Registered Traveler
Client
A generic term for a person known by a biometric

system, which grants individual privileges to its clients.

▶Multiple Experts
Closed-Set Identification
Any subject presented to the biometric system for

recognition is known to be enrolled in the system;

thus, no rejection is needed in principle unless the

quality of the input biometric trait is too low to pro-

cess. It is the opposite of ‘‘Open-Set Identification.’’

▶Performance Evaluation, Overview
CMOS Sensor
CMOS sensor is Complementary Metal Oxide Semi-

conductor. It is a solid state imaging sensor character-

ized by an integrated circuit containing an array of

pixel sensors, each containing a photodetector and

connecting to an active transistor reset and readout

circuit.

▶ Face Device
Color Constancy
Color constancy is a feature of the human perception,

where the perceived color of objects remains relatively

constant under varying illumination conditions.

▶ Skin Detection
Commensurability
Commensurability is the property of being capable of

direct comparison; literally ‘‘of common measure.’’

The antithesis of commensurability is captured by the

expression: ‘‘comparing apples with oranges.’’ In

biometrics, even within a single modality, commensu-

rability issues arise, if biometric data takes the form of

lists of features varying in length. How should a short

list of features (e.g., minutiae extracted from one fin-

gerprint) be compared with a longer list of features

from another print? Should the excess (incommensu-

rable) features from the longer list be considered as

evidence of disagreement or simply as absence of evi-

dence in the shorter list? An important design feature

in iris recognition is that the IrisCode is always of fixed

length (2,048 bits of data and 2,048 masking bits for

the publicly deployed algorithm), regardless of how

much or how little of an iris is visible and available

for comparison with another iris. This commensura-

bility greatly simplifies the matching process, and

greatly accelerates its speed to about a million com-

plete iris comparisons per second per 3GHz CPU,

using simple Boolean string operators.

▶ Score Normalization Rules in Iris Recognition
Committee-Based Learning
▶Ensemble Learning
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Definition

Common Biometric Exchange Formats Framework

(CBEFF) provides a standardized set of definitions

and procedures that support the interchange of bio-

metric data in standard data structures called CBEFF

biometric information records (BIRs). BIRs are well-

defined data structures that consist of two or three

parts: the standard biometric header (SBH), the bio-

metric data block (BDB), and possibly the optional

security block (SB). CBEFF permits considerable flexi-

bility regarding BIR structures and BDB content, but

does so in a way that makes it easy for biometric

applications to evaluate their interest in processing a

particular BIR. CBEFF imposes no restrictions on the

contents of a BDB, which can conform to a standar-

dized biometric data interchange format or can be

completely proprietary. CBEFF standardizes a set of

SBH data element definitions and their abstract values.

A few of these data elements are mandatory in all SBHs

(such as identifying the BDB format) and the rest are

optional or conditional. Most of the data elements

support description of various attributes of the BDB

within the BIR. The optional SB provides a container

for integrity and/or encryption-related data that must

be available to validate or process the BIR and/or BDB

(such as integrity signatures and encryption algorithm

identity).
Introduction

At their conceptually simplest, standard CBEFF data

structures promote interoperability of biometric-based

application programs and systems by specifying a stan-

dardized wrapper for describing, at a high level, the

format and certain attributes of the content of a bio-

metric data record.

CBEFF data structures are called ‘‘Biometric Infor-

mation Records (BIRs)’’. The header of a BIR (Standard

Biometric Header – SBH) includes metadata that

describe specific characteristics of the biometric data

contained in the data structures (e.g., biometric data for-

mat, modality, and its creation date). The SBH can also

convey information useful to support security of the

biometric data (e.g., security/integrity options), and

other user-required data (e.g., user-defined payload,

challenge-response data). CBEFF standards explicitly

require that the SBH not be encrypted (exclusive of,

for example, channel encryption). This ensures that

the header can always be examined by an application

with the minimum necessary processing. CBEFF does,

however, provide definitions for a couple of optional

data elements that may be encrypted within the header.

The content of the Biometric Data Block (BDB) in a

CBEFF BIR can be biometric data conforming to a

biometric data interchange format standard or data

that meet the requirements of a proprietary format

(e.g., developed by vendors to support their own unique

implementation features/processing). The BDB may be

encrypted to protect the privacy of the data. Represen-

tative required abstract data elements defined in CBEFF

standards for the SBH are the BDB format owner and

type (which uniquely identify the format specification

of the BDB) and BDB encryption/integrity options. A

number of optional data elements are also specified

such as the BDB biometric type (implicit in the BDB

format), BDB creation date, and the validity period.

The optional third component of BIRs is the Secu-

rity Block (SB). The SB may carry integrity-related

data (e.g., digital signature or MAC (message authen-

tication code) or might also carry data associated with

the encryption of the BDB (e.g., key identification).

The format owner/format type approach (used to in-

dicate BDB format) was adopted to support the iden-

tification of the security block format. This enables any

public or private organization that wants to provide

security solutions for BDBs and BIRs to identify and
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publish its security data formats in a standard way. The

SB format owner/format type fields in the SBH provide

this SB identifier. CBEFF requires that if an integrity

mechanism is applied to the BIR, then that mechanism

must cover both the SBH and the BDB.

CBEFF requires a Biometric Registration Authority

(RA). This RA has the responsibility to assign unique

identifiers to biometric organizations. All biometric

objects defined by the CBEFF standards (BDBs, Secu-

rity Blocks, Products, Devices, Patron Formats) are

uniquely identified by their 32-bit identifiers. The

first 16 bits (the ‘‘owner’’ half of the field) are the

identifier of the organization (assigned by the RA)

that is responsible for the object. The second 16 bits

(the ‘‘type’’) are assigned by the organization itself,

which is responsible for maintaining whatever level of

uniqueness required for its objects. The RA has the

responsibility to publish the list of these identifiers

where appropriate. The RA also publishes, if the

owner desires, identifiers for objects that the owner

wants to make available to the biometric community

(for example, standards bodies have published the

identifiers for their standardized patron formats and

BDB formats; and some vendors have published the

identifiers for some of their products). The CBEFF

registry is located at http://www.ibia.org/cbeff/.

The format identifiers placed in the CBEFF SBH

enable biometric applications to examine the SBH for

the identifier values; if the application recognizes the

value, it can then decide whether to process the biomet-

ric data in the BDB, but if it doesn’t recognize the value,

then it knows that it has not been designed to handle the

particular form of data. At this time, the Registry can

only be accessed by browser through the IBIA website;

dynamic access from applications is not supported.

Every SBH is required to include the unique iden-

tification of its associated BDB format, expressed as the

combination of the BDB Format Owner’s identifier

(which is a value assigned by the registrar) with the

BDB Format Type identifier (which is a value assigned

by the Format Owner, which can optionally register

that value and provide access to the format specifica-

tion through the Registry). This is the case with the

two biometrics standards bodies, INCITS M1 (the

InterNational Committee for Information Technology

Standards – INCITS, Technical Committee M1 –

Biometrics) and ISO/IEC JTC 1/SC 37 (ISO/IEC Joint

Technical Committee 1 Subcommittee 37 – Biometrics),

each of which has its own biometric organization value,

and has registered several BDB format specifications
(which are open standards available to the public). Con-

versely, biometric vendors who have developed their

own proprietary data formats have, in some cases,

registered those formats to make them available as

widely as possible; but in other cases, have decided

not to register them and only make them available to

particular clients, partners, or customers.

CBEFF adds significant value in open and complex

biometric systems, especially in cases where the system

must cope with a wide variety of biometric data

records, some of which may even be encrypted. The

more easily decoded plain text of the CBEFF SBH is

intended to greatly simplify the logic of the top levels

of the system, which are responsible for routing

each record to the correct biometric processing com-

ponents. Equally important, where biometric data

records are exchanged between different systems, the

CBEFF SBH enables the interchange programs to do

their work without ever having to ‘‘open’’ any of the

records, since all the information they need to catego-

rize and direct each record to its correct destination is

in the plain text header. Some closed biometric systems

(with no requirements for data interchange and inter-

operability with any other system) may not substan-

tially benefit from the wrappers specified in CBEFF

standards, especially in the cases where only one, or a

very few, types of biometric data records (e.g., single

biometric modality) may exist and where these records

may be fairly quickly scanned to determine what bio-

metric components should be called for processing.
CBEFF Patrons and Patron Formats

A patron format specification defines in full detail the

structure of a particular BIR, including the actual

encodings of the abstract values of the SBH fields.

This includes the list of data elements that the format

supports, how to locate each data element in the SBH,

the values supported by each data element, and the

correct encodings for each value. CBEFF is neutral

regarding programming and encodings, leaving it

to the patron to specify them as necessary in order

to build successful patron format implementations.

A patron format specification declares the patron’s

identifier for a specific patron format (this require-

ment is optional in the American National Standard

INCITS 398 discussed in a later section). It should also

include descriptive information about the intended

use/environment of the format and any special

http://www.ibia.org/cbeff/
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considerations for its use. Examples of patron format

specifications are shown in Table 1.

In the CBEFF international standard (ISO/IEC

19785 addressed in a later section) CBEFF patrons

are distinguished by their status as having open review

and approval processes that ensure that their specifica-

tions follow the CBEFF standard’s rules; are internally

consistent; and will work in practice. As part of this

vetting process, CBEFF requires that a patron format

specification include a Patron Format Conformance

Statement following a standardized form.
CBEFF Standards – Early Work

The initial version of CBEFF was developed by a tech-

nical development team formed as a result of three

workshops sponsored by NISTand the Biometric Con-

sortium, which were held in 1999. This version was

published in January 2001 as NISTIR 6529 [1]. Further

CBEFF development was undertaken under the um-

brella of the Biometrics Interoperability, Performance,

and Assurance Working Group cosponsored by NIST

and the Biometric Consortium. In April 2004, an aug-

mented and revised version of CBEFF was published as

NISTIR 6529-A with a slightly modified title more

accurately reflecting the scope of the specification [2].

In the meantime, in December 2002, the United States

National Body, the American National Standards Insti-

tute, (ANSI) offered a draft version of NISTIR 6529-A

as a contribution to JTC1/SC 37 – Biometrics for

consideration as an international standard (JTC 1 is

the Joint Technical Committee 1 of ISO/IEC). A new

project for the development of an international ver-

sion of CBEFF was approved in March 2003. In the

U.S., NIST/BC offered the published version of

NISTIR 6529-A to INCITS as a candidate American

National Standards via fast track. The specification

was published as ANSI INCITS 398–2005. ANSI

INCITS 398–2005 contained the same text as NISTIR

6529-A.
CBEFF Standards – Recent and
Current Work

Recent versions of the CBEFF standards have been

developed by INCITS M1 and JTC1/SC 37, and the

resulting standards are generally compatible with each
other. In 2008 a revised version of ANSI INCITS 398–

2005 was published as ANSI INCITS 398–2008 [3].

INCITS M1 is also developing a conformance testing

methodology for CBEFF data structures specified in

ANSI INCITS 398–2008.

JTC 1/SC 37 is responsible for the multi-part

standard ISO/IEC 19785, Information technology —

Common Biometric Exchange Formats Framework.

Parts 1, 2 and 3 [4–6] are approved international

standards, and Part 4 is progressing through its devel-

opment stages. The sub-titles of the four parts are:

Part 1: Data element specification

Part 2: Procedures for the operation of the Biomet-

ric Registration Authority

Part 3: Patron Format Specifications

Part 4: Security block format specifications

Although ANSI INCITS 398 is a single part stan-

dard, its internal organization generally parallels that

of ISO/IEC 19785. Each of these parts is described

below.
ISO/IEC 19785 Part 1 (and the main clauses
of ANSI INCITS 398):

This part of CBEFF defines the requirements for spe-

cifying the parts and structures of a BIR, as well as

abstract data elements that are either mandatory in the

BIR header or may optionally be included therein.

Both standards define a BIR as having two required

and one optional part: the standard biometric header

(SBH), the biometric data block (BDB), and the op-

tional security block (SB).
ISO/IEC 19785 Part 2:

The International Biometric Industry Association

(IBIA) [7] has been performing the role of CBEFF

RA for the CBEFF identifiers since the first CBEFF

specification was published. ISO/IEC appointed IBIA

as the RA for the international version of the standard.

Part 2 defines in detail the RA responsibilities and

procedures to be implemented by a Biometric Regis-

tration Authority to ensure uniqueness of CBEFF iden-

tifiers (i.e., patrons, format/product/security block

owners, etc.). ANSI INCITS 398 does not replicate

the equivalent level of detail, but still requires that the

same registration authority be used to prevent ambi-

guity in identifying CBEFF objects.
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Patron format specifications published in ISO/IEC 19785 Part 3

Clause 7: Minimum simple bit-oriented patron
format

Encodes only mandatory abstract data elements from ISO/IEC
19785 Part 1. Specified in and uses ASN.1 PER-unaligned
encoding rules. Does not support a Security Block.

Clause 8: Minimum simple byte-oriented patron
format

Encodes only mandatory abstract data elements from ISO/IEC
19785 Part 1. Specified in 8 bit bytes, permitting any encoding
mechanism that produces the required bit strings. Does not
support a Security Block.

Clause 9: Fixed-length- fields, byte-oriented patron
format using presence bit-map

Encodes mandatory and fixed-length-optional (but not variable
length optional) abstract data elements. Encodes a bit map to
indicate presence/absence of each optional data element in
every instantiated SBH. Specified in 8 bit bytes, permitting any
encoding mechanism that produces the required bit strings.
Does not support a Security Block.

Clause 10: Fixed-length-fields, bit-oriented patron
format using presence bit-map

Encodes, in the minimum possible number of bits, mandatory
and fixed-length-optional (but not variable length optional)
abstract data elements. Encodes a bit map to indicate presence/
absence of each optional data element in every instantiated SBH.
Specified in and uses ASN.1 PER-unaligned encoding rules.
Supports a Security Block.

Clause 11: TLV-encoded patron format, for use with
smartcards or other tokens

Specifies structure and content of an SBH for use with smartcards
and similar technologies, taking advantage of their unique
capabilities. Both byte-oriented and ASN.1 encodings are
specified. Accounts for differences between on- and off-card
matching requirements. Relies on the card’s security
mechanisms rather than using the CBEFF Security Block and
encryption/integrity bits.

Clause 12: complex patron format Similar to Clause 9, but supports all optional abstract data
elements and supports multi-level BIRs. Byte-oriented
specification and encoding. Supports a Security Block.

Clause 13: XML patron format Supports all required and optional abstract data elements
defined in Part 1. Provides both XML and ASN.1 schemas.
Supports a Security Block.

Patron format specifications published in ANSI INCITS 398:2008

Annex A: Patron Format A Supports all abstract data elements defined in INCITS 398 clause
5, including a Security Block.

Annex B: Patron Format B Supports the 3 abstract data elements required by a top-level
structure in a multi-level BIR. In combination with Patron Format
A, it is possible to encode multi-level BIRs having any number of
levels.

Annex C: The BioAPI Biometric Identification Record
(BIR)

Publishes, for convenience, the patron format specification from
ANSI/INCITS 358–2002, Information Technology – The BioAPI
Specification, 13 February 2002.

Annex D: ICAO LDS (TLV-encoded – for use with
travel documents, smartcards, or other tokens)

Publishes, for convenience, the patron format specification
developed by ICAO for machine readable travel documents
(MRTDs). Note that the only similarity between this patron
format and ISO/IEC 19785 Part 3, Clause 11 is that both are
intended for smartcard environments but they are quite different
in their content and structure.
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Annex E: Patron Format PIV – NIST Personal Identity
Verification (PIV)

Publishes, for convenience, the patron format specification
required for applications conforming to the Personal Identity
Verification (PIV) standard for Federal Employees and
Contractors, Federal Information Processing Standard (FIPS) 201,
and the associated NIST Special Publication 800–76–1 (SP 800–
76–1), Biometric Data Specification for Personal Identity
Verification.

Annex F: Patron Format ITL – NIST/ITL Type 99 Data
Record

Publishes, for convenience, the patron format specification
required in the law enforcement environment for the exchange
of biometric data that is not supported by other logical records
specified in the ANSI/NIST-ITL 1–2007 standard ‘‘Data Format for
the Interchange of Fingerprint, Facial, & Other Biometric
Information’’.
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ISO/IEC 19785 Part 3:

Part 3 specifies several patron format specifications

that conform to the requirements of Part 1. ANSI

INCITS 398 also publishes several such specifications

in annexes internal to the standard itself rather than in

a separate part. There is no duplication of patron

formats between the two standards; Table 1 below

describes the patron formats included in each.

The BioAPI specification, ISO/IEC 19784–1 [8]

publishes an important CBEFF patron format, the

BioAPI BIR, in one of its annexes; this BioAPI BIR

specification conforms to the 19785 Part 1 require-

ments. A standard application profile under develop-

ment in JTC 1/SC 37 (Biometric Based Verification and

Identification of Seafarers) [9] also specifies a CBEFF

patron format (and security block format) for the

Seafarer’s ID (SID) document.
ISO/IEC 19785 Part 4:

This part of the standard is under development. Anal-

ogous to Part 3 and its specification of patron formats

developed by JTC 1/SC37, the Part 4 draft standard is

developing the specification for Security Block formats

that support encryption of a BDB and integrity of a

BIR. The application profile for Seafarers also specifies

a CBEFF Security Block. The INCITS standard does

not currently include any security block formats.

There are several minor differences between the

ISO/IEC multi-standard and the INCITS standard.

1. The ISO/IEC standard relies on the application’s

implicit knowledge of its ‘‘domain of use’’ for de-

termining the patron format specification and
thus being able to parse the header. The patron

formats specified by INCITS M1 include the patron

format identifier in the SBH. This is a required

feature for new formats that wish to conform

to this standard (the requirement does not apply to

other existing formats documented in the standard).

2. The ISO/IEC standard does not define the length or

structure of abstract data elements of the SBH, but

requires the patron format specification to provide

the means for such determinations, which can in

turn rely on encoding mechanisms (as in ASN.1

encoded records) or can specify other explicit

means (e.g., inclusion of a length field). The

INCITS standard explicitly defines abstract data

elements for the lengths of each major structure

in the SBH, but makes implementation of those

data elements in the patron format specification

conditional on whether some other means is pro-

vided (implicitly or explicitly) in the SBH. In prac-

tice, these requirements are equivalent.

3. The ISO/IEC standard defines five abstract data

elements describing the entire BIR that parallel

five elements that describe the BDB. This recog-

nizes, for example, that the BIR’s creation date may

differ from the BDB’s creation date if the BIR is

assembled from BDB’s retrieved from a database

that was built earlier.

In practice these differences are indeed minor

because both the ISO/IEC and INCITS standards de-

fine rules by which a patron format specification

can specify additional SBH fields beyond the CBEFF

abstract data elements. This provision ensures that

patron format specifications are not prevented from

addressing any special requirements they may have

that are not anticipated by the standards.
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CBEFF Flexibility and Adaptability

Structured as it is, with abstract data elements, a

corresponding set of abstract values, and rules for

their use defined in the base CBEFF standards (ANSI

INCITS 398 and ISO/IEC 19785 Part 1), along with

particular patron format specifications published as

annexes in ANSI INCITS 398 and as Part 3 of ISO/

IEC 19785, CBEFF supports – and demonstrates –

great flexibility in satisfying unique requirements for

data structures and contents. These standardized pa-

tron formats are useful in their own right, ranging

from support of minimum requirements (in only

8 bytes) to complex BIRs containing many BDBs,

each with its own SBH as part of a well defined struc-

ture. These formats also serve as examples of what the

CBEFF data elements and rules for their use support in

terms of the possible variations in patron formats.

Patrons may select a subset of the CBEFF data

elements and values for a format specification, as

long as they include those defined as mandatory by

the standard. They may also impose stricter require-

ments on their users, such as making CBEFF-optional

data elements mandatory in their new patron format

or further constraining the range of values allowed. If

the patron wants to support integrity and/or encryp-

tion in its environment then the specification must

identify the mechanisms to be used and support any

related data such as digital signatures or algorithm

identifiers. Data elements for which CBEFF defines

only a generic value can be restricted to very specific

data content; conversely, if a CBEFF-defined data ele-

ment ‘‘almost’’ satisfies a patron’s requirements but

would be better with more or different abstract values,

then the patron is free to define those values in the

patron format specification.

In addition to the standardized data elements and

abstract values, CBEFF permits patrons to specify ad-

ditional elements and values in support of unique or

unanticipated requirements. These can be structural in

nature to support decoding processes’ navigation with-

in the BIR, or they can be descriptive of attributes of

the BDB that cannot be described by any of the CBEFF-

defined elements. The CBEFF standard does require

the patron to completely and unambiguously specify

any such data element or value.

While the abstract level of CBEFF data elements

and values is useful for the conceptual understanding

of a CBEFF patron format, the careful specification of
encoding requirements and syntax is critical to the

successful implementation of interoperable biometric

applications, especially where interchange of CBEFF

BIRs between different biometrics-enabled systems is

involved.

Here again the CBEFF standards permit virtually

unlimited freedom for patrons to satisfy their unique

requirements by developing format specifications tai-

lored to their specific needs. The base CBEFF standards

say almost nothing regarding data encoding, but they

absolutely require any patron format specification to

include detailed, unambiguous and complete encoding

requirements for every aspect of the implemented

BIRs. The patron formats in Table 1 provide correct

examples of defining the encoding requirements of a

patron format. Some of these use the various encoding

rules of ASN.1; some define XML codes for the imple-

mentation; some are specified in a tabular format with

each byte and bit specified as to its location and ab-

stract meaning; and a couple use the tag-length-value

(TLV) encoding for BIRs that are to reside on smart

cards or other types of tokens.
Multiple BDBs in a BIR

Occasionally, a biometric system has a requirement to

include more than one BDB in a single BIR. A system

may need to keep one subject’s BDBs of different

modalities together or it may need to gather BDBs of

a group of subjects into a single BIR. A legacy of the

second version of CBEFF, NISTIR 6529A, is a set of

data elements and syntax that supports concatenation

and decoding of virtually any number of BDBs or

complete BIRs into or out of a multi-layered single

BIR. While this is quite workable for grouping a

small number of BIRs, this approach does not provide

support for finding and accessing a particular ‘‘simple’’

BIR within the collection.

ISO/IEC 19785 Part 3 (Clause 12) includes a patron

format which defines the data elements and syntax for

this structure. Neither of these approaches may be

optimal for all applications. The CBEFF standards’

multiple conceptual levels, from general abstractions

to specific encoding requirements of individual patron

formats, again provide the path to other solutions.

Because CBEFF gives patrons the authority to define

new abstract data elements, abstract values, data struc-

tures and the encodings to implement them, patrons
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can specify BIR structures that meet their requirements

for simplicity and efficiency. For example, direct access

to any BDB in a multi-BDB BIR could be supported by

a patron format that concatenates all the individual

BIRs and then maintains pointers to each SBH and

BDB in a top-level SBH that also contains suitable

metadata about each included BIR. Using this ap-

proach, an application can efficiently process the top-

level header to locate the single BIR it needs and then

access it directly via the related pointers.
BIR Transformations

Both the ISO/IEC and ANSI INCITS versions of

CBEFF recognize that there are situations where a

BDB that is embedded in a CBEFF wrapper will be

‘‘transformed’’ into a wrapper of a different patron

format (the BDB contents not being changed in any

way). In this case, it is important that data elements

describing attributes of the BDB content (such as BDB

format and BDB creation date) carry the same infor-

mation in the new BIR as in the old one, and CBEFF

specifies rules to be followed for each CBEFF-defined

data element. On the other hand, the information in

some data elements may legitimately be different in the

new BIR (such as BIR Creation Date and CBEFF

Level). CBEFF specifies transformation rules that sup-

port the logical intent of the data element.
Conformance Testing Methodology
Standards for CBEFF BIRs

INCITS Technical Committee M1 is developing a stan-

dard that addresses the requirements for testing con-

formance of instantiated BIRs to specific patron

formats published within ANSI INCITS 398–2008.

This draft standard specifies types of testing and test

objectives, test assertions for particular patron formats,

and test cases to implement the assertions. It is

expected that when approved, the standard will include

assertions and test cases for at least several of the ANSI

INCITS 398 annexes.
Related Entries

▶Biometric Technical Interface, Standardization

▶Data Interchange Standards
▶ International Standardization of Biometrics,

Overview
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Common feature approach is a heterogeneous match-

ing process in which the comparison is done between

the templates of features common in both enrollment

images and input probe images.

▶Heterogeneous Face Biometrics
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▶Palmprint Matching
Comparison Prints
These known exemplars of fingerprints are taken from

donors under controlled conditions. The most com-

mon method used for recording these prints is ink on

paper; however, this method is gradually being

replaced by live scan technology. For law enforcement

purposes, the prints of all 10 fingers are commonly

recorded. For other purposes such as border control

or passports, this may be limited to one or four fingers.

▶ Fingerprint Matching, Manual
Complementary Metal Oxide
Semiconductor (CMOS)
CMOS is a widely used architecture for integrated

circuits, particularly semiconductor memory circuits.

CMOS has been adapted for use in image sensors

and is a competitor to CCD image sensors. This is a

newer sensor technology; its compatibility with the

large scale integration techniques developed for semi-

conductor memory is a powerful advantage. CMOS

and CCD technologies are battling for dominance in

the marketplace.

▶ Iris Device
Compliance
▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of
Computational Iris Recognition
Systems
▶Wavefront Coded1 Iris Biometric Systems
Concept Drift
The target concept in a machine-learning task might

change over time in terms of distribution, description,

properties, etc. Often the changes are unpredictable,

which brings problems to learning systems without

self-adaptive mechanisms because the predictions

of such systems might become less accurate as the

time passes.

▶ Incremental Learning
Confidence Interval
A 100(1 � a)% confidence interval for some parame-

ter y is a range of values (L, U) such that P(y E(L, U)) =
1 � a, where L and U are random variables.

▶Test Sample and Size
Configural Processing
Configural processing is a specific mechanism that may

evolve over time in which features are considered in

relation or context with other features or areas. Con-

figural processing typically allows more information to

be extracted from each location or feature.

▶ Latent Fingerprint Experts
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Synonym

Setting
Definition

Configuration is to select appropriate parameters

and/or fusion rules for an individual user or globally

for all users of a system under a specific environmental

condition (including the environment, the device, the

received data, and the biometric algorithm).
Introduction

A typical biometric system can be divided into two

distinct stages [1]: the enrollment stage which includes

capture, feature extraction and template generation,

and the verification or identification stage which
Configuration Issues, System Design. Figure 1 A simplified
comprises capture, feature extraction, matching and

decision, as illustrated in Fig. 1. In the enrollment

stage, for each user, a biometric trait is captured and

processed to present it with a feature set. Then a

template is generated and labeled with the user’s iden-

tity. In the verification or identification stage the input

biometric trait is processed as above and the system

outputs the matching score or decision. Each compo-

nent of the system in the two stages is critical and may

be affected by the environmental condition. Care must

be taken in any specific application since different

kinds of applications focus on different requirements.

Due to the variety of biometric system application in

various environments and situations, configuration of

selecting appropriate parameters and/or fusion rules to

the biometric system is essential in order to satisfy

different requirements.

For the component of capture, each device will

have certain criteria to configure the capture process.

For example, in a fingerprint device, the quality of the

captured fingerprint image for enrollment should be

high enough to ensure the reliable characteristic fea-

tures (e.g., minutia) of the fingerprint. For face recog-

nition devices, the person is usually required to be in a

standard position directly facing the capture device.

Threshold levels are also used in template generation

process, where they determine the similarity required

to make samples to be able to generate repeatable
verification system.
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templates. All of these are unique considerations for

biometric system.

Another important component is the decision pro-

cess which mainly controls the security and accuracy.

Security and accuracy is mainly controlled by the deci-

sion process. For a single biometric verifier the only

parameter need to be determined is the threshold

which can be configurable by an administrator or it

may be fixed by the biometric system either for an

individual user or globally for all users. If the matching

score produced by the biometric system is larger than

the threshold then the user is accepted, otherwise the

user is rejected. However, the performance of the bio-

metric system may be affected by the scenario of the

application, environmental conditions, amount of user

population, and many other factors. For example, iris

recognition may depend on light levels, voice recogni-

tion may depend on ambient sound levels, and atmo-

spheric dust levels may affect fingerprint devices. On

the other hand, recognition based on any one of these

modalities may not be sufficiently robust or else may

not be acceptable to a particular user group or in a

special situation because of restricted degrees of free-

dom and unacceptable error rates. One way to improve

the performance is to install multiple sensors that

capture different biometric traits, and this approach

either focuses on a fixed set of traits or seeks greater

flexibility through the implementation of systems

which are more generically adaptable and reconfigur-

able. Configuration of selecting appropriate thresholds

and fusion rules for this type of system increases com-

plexity and raise questions, and is therefore regarded as

a major challenge.
Configuration in Capture Process

Due to the changes in the environmental conditions

(e.g., light level, dust, humidity, and cleanliness of the

biometric capture device), the biometric system may

capture biometric data of poor quality, which, especially

in the enrollment stage, is responsible for many of the

most matching errors in biometric systems so that it will

limit the accuracy of the biometric system. For example,

Tan et al. [2] pointed out, from the experiments on the

ORL face database that the performance of an eigen-

face-based face recognizer drops quickly when the en-

rolled templates become poorly representative. The
problem, however, may be alleviated by the control of

the quality of the biometric data. If the input biometric

data quality measurement is lower than a threshold

configured by the system or the administrator,

the device will reject the biometric data of poor

quality and the capture process may be repeated.

Quality level of the captured biometric data is expected

to be high during the enrollment stage, since it

forms the basis against which all further biometric

matchings are made. Therefore, the quality threshold

should be higher in the enrollment stage than

that in the verification or identification stage. Some

other criteria should also be considered. For example,

if the area of captured fingerprint is too small it will

impact false accept rate (FAR) and false reject

rate (FRR).

From the consideration of security, the biometric

system may be attacked by fake or artificial biometric

traits. This case exists especially in fingerprint captur-

ing. Fingerprint capture devices are deceived probably

by well-duplicated fake fingers [3]. Therefore, it is

necessary to detect fake biometric traits in order to

ensure that only live biometric traits are capable of

generating templates for enrollment and recognition.

The biometric system may be configured to select

approaches and parameters to ensure that the captured

sample comes from a live human being.

Single-modal biometric system has limitations in

terms of enrollment rates, and susceptibility to spoof-

ing. A recent report [4] by the National Institute of

Standards and Technology (NIST) to the United States

Congress concluded that approximately two percent

of the population does not have a legible fingerprint

and therefore cannot be enrolled into a finger-

print biometrics system. However, this problem can

be solved by employing multibiometrics in a layered

approach. Therefore it is essential for the bio-

metric system to provide an option to select a different

biometric trait or employ a combination of these bio-

metric traits to make the system adapt to different

scenarios.
Configuration in Template
Generation

As pointed out clearly by Uludag et al. [5], in real

operational scenarios, input biometric data can exhibit
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substantial variations compared to the templates col-

lected during the enrollment stage of users. In other

words, there may be a large intra-class variability, due

to changes in the environmental conditions (e.g., illu-

mination changes), aging of the biometric traits, varia-

tions of the interaction between the sensor and the

individual (e.g., poor finger placement and facial ex-

pression of a person’s face), all of which will limit

the performance of the biometric system. In order to

obtain good performance, configuration may be re-

quired to preserve distinct and repeatable biometric

features from the user. This process is critical from a

security evaluation point of view, since the level of

uniqueness inherent in a template will influence FAR

and FRR of the system. The first configuration parame-

ter is the number of the templates, since the system

accuracy can be improved by collecting multiple tem-

plates with different variation (e.g., different pose of a

person’s face) in the enrollment stage but the storage

requirement will be huge if the number of the template

becomes very big.

There are basically three possibilities of where to

store the template: on a token, local unit, or on a central

server. Each of these locations has its own advantages

and disadvantages: (1) To store the template on a por-

table token such as smart card does not need to traverse

the network. The user carries the template from loca-

tion to location. The compare process will be very fast

because only the template on the card needs to be

considered. One drawback with this storage is that

template on the smart card can be read by unauthorized

individuals and the template will be stolen. (2) Storing

on a central sever overcomes the problem of users

authenticating from multiple locations. The input

data will have to be transferred through the network.

Therefore it provides an opportunity for a third

party to intercept the data transfer and duplicate the

biometrics data. The input data may be compared with

every record data stored to identify the user. The speed

will be very slow as the number of users grow. (3) The

computation ability of local unit seems to be middle

ground between central sever and small card. And dis-

tributively storing the data prevent a focal point of

attack formalicious hackers. However, with this storage

the security may be lacking because the template

could be found on the hard drive.

On the other hand, performance of biometric rec-

ognition systems may degrade quickly when the time
interval between the input biometric trait and the ref-

erence template is long because biometric features can

change over time. The biometric system may be con-

figured to update the reference template by re-enroll or

during the matching operations, improve the refer-

ence template by merging and averaging minutiae of

multiple biometric traits.
Configuration in Decision Process

Configuration in decision process for a biometric system

can be classified coarsely into two categories in terms of

biometric traits adopted by the system: single-modal

biometric configuration and multi-modal biometric

configuration. Both of these two classes of configuration

are mainly to set the thresholds for each biometric device

and/or the fusion rules algorithm among the sensors.

The ability to estimate verifier error rates is very impor-

tant for such configuration. Without knowledge of how

well the system works under current configuration para-

meters, there is no way of knowing whether parameters

should be changed and which parameter should be

adjusted. Estimating verifier error rates provides feed-

back to remedy this situation.
Error Rate Estimation

There are mainly six important error rates [6] used to

measure a biometric system: failure to acquire rate, failure

to enroll rate, false match rate (FMR), false non-match

rate (FNMR), false accept rate (FAR), and false reject rate

(FRR). FAR and FRR are two of the most important

indications of error rates of a biometric system. FAR is

the expected proportion of transactions that a transaction

will be erroneously accepted by the biometric system

when it should have been rejected. FRR is the expected

proportion of transactions that a transaction will be

erroneously rejected when it should have been accepted.

From a security aspect, FAR has much more rele-

vance than FRR. However, FRR can be considered as a

measure of inconvenience but also a measure of avail-

ability, and needs to be kept within acceptable limits

for the intended application. So, knowledge of FAR

and FRR can be used to select appropriate configura-

tion parameters. FRR is generally straightforward to

determine, while FAR is often difficult to analyze in
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operational system. FRR at the chosen decision thresh-

old can be estimated by asking authentic users to

report when they are rejected. This assumes that each

time when an authentic user is rejected, he or she will

report only once. Another way to estimate FRR is to

represent transaction of authentic users to the system

and record the probabilities of failure (or matching

scores). The simplest way to estimate FAR and FRR

simultaneously is to use stored transactions. Each

transaction is compared with the other transaction of

the same user and the probability of failure (or match-

ing score) is record. All of the records form the genuine

distribution. Similarly, the impostor distribution can

be computed by comparing each transaction with

transactions of other people using the stored transac-

tions and recording the probabilities of failure (or

matching scores). Then the obtained probability den-

sity (or matching score) curve can be used to estimate

FRR and FAR at all threshold settings. All of these

estimations should be done under the concrete envi-

ronment, since biometric traits and performance of the

system may be affected by their physical environmental

condition. For example, a device to read iris patterns

relies obviously on the ambient lighting conditions.

This means that the physical environment needs to be

defined as part of the biometric system’s configuration,

and also that tests should be conduct under the same

or similar environmental condition.

Because of the expense of collecting large databases,

performance of the devices or algorithms is usually

measured on relative small databases. Wayman et al.

[7] specifies four methods to evaluate FAR and FRR

for large-scale identification system: (1) extrapolation

from experiences; (2) identification as a succession of N

verification; (3) extrapolation with extreme value; (4)

extrapolation when the distance can bemodeled. In fact,

different environmental conditions such as illumination

and humidity can also result in variation of FAR and

FRR. Beattie et al. [8] proposed a structured approach

based on expectation-maximization (EM) algorithm

for estimating error rates.
Single-Modal Biometric Configuration

In theory, matching scores of authentic users should

always be higher than that of impostors. If this would

be true, a single threshold that separates the two groups

of scores could be used to differentiate between
authentic users and impostors. Due to several reasons,

this assumption isn’t true for real-world biometric

systems. In some cases, impostor patterns generate

scores that are higher than the scores of some authentic

patterns. For that reason, it is a fact that there is a

threshold that needs to be determined to control the

security and convenience of the biometric system. If the

threshold is too high, the verifier will mostly reject

decision regardless of whether the claimant is genuine

or an impostor, the system is very secure but inconve-

nient. On the other hand, if the threshold is too low, it is

convenient but insecure. Choosing a suitable threshold

for a particular environment can be completed by ana-

lyzing the error rates on the training database captured

in the same environment. The matching scores pro-

duced by the biometric system under the training data-

base give a distribution for authentic users and another

for impostors. When a threshold is set, FAR and FRR

are simultaneously fixed, as illustrated in Fig. 2.

FAR and FRR are dependant on the adjustable

threshold. If the value of threshold is increased,

the proportion FAR will increase, while FRR will de-

crease. Otherwise, FAR will decrease and FRR will

increase. This relationship between the two error rates

is characterized by a receiver operating characteristic

(ROC) curve in which FAR is plotted against FRR by

varying the threshold, as shown in Fig. 3. Trade-off

between FAR and FRR is often achieved by selecting

an appropriate threshold so that the two rates can

satisfy both the prescribed security and convenience.

The biometric system (e.g., physical access control)

may be distributed over multiple locations where the

environmental conditions may differ from each other.

For this type of system, each biometric verifier must be

configured with an appropriate threshold according to

the performance under the environmental condition.

In order to increase the reliability of single trait, the

combination of different biometric matchers can be

performed at the score level.

Combination of multiple matching algorithm is

performed typically at the score level, and different

fusion techniques (e.g., average, product, sum, max

etc) have been applied successfully [7, 8]. The aim of

multiple biometrics combined at the score level is to

produce new scores whose distributions for genuine and

impostor users exhibit a higher degree of separation

than those produced by individual matchers. Thus, by

varying the decision threshold, a better trade-off be-

tween FAR and FRR can be attained.
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Multi-Modal Biometric Configuration

In order to make the overlap of the distribution graphs

of FAR and FRR in multi-modal biometric system, as

little as possible, scores fusion rules can be adopted

according to the confidentiality capture environment
and recognition success rate of individual matchers.

For this kind of multimodal biometric system not only

the thresholds, but also the fusion rules need to deter-

mined. Knowledge of the characteristics of each bio-

metric trait and sensor will be helpful to design an

effective system. For example, from the experiment of
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Ross et al. [9], the fingerprint and face biometrics

generated a relatively small enroll failure rate, while

the performance of the voice is much more stable than

the other two modalities once a satisfactory enrollment

has been achieved.

The most commonly adopted approach in multi-

modal biometric system is to use the same fusion rule

and the same decision threshold for all users [9], the

main idea of this system is to treat all matching scores

from genuine users as one single class while all match-

ing scores from imposter users as the other one. Ross

et al. [9] combine the matching scores of three traits

(face, fingerprint, and hand geometry) to enhance the

performance of a biometric system. Experiments indi-

cate that weighted sum rule outperforms other three

techniques (sum rule, decision tree, and linear discrim-

inate analysis) in terms of ROC curves. However, they

do not mention how to configure the threshold. M. C.

FairHurst [10] described an approach that used genetic

algorithm (GA) to select appropriate parameters in-

cluding weights and threshold to evolve efficient con-

figuration using the Total Error Rate (FAR + FRR) of

the overall system as an evaluation criterion.

Relatively, another new approach is using multiple

fusion rules (each individual user correspond to a fusion

rule or/and multiple decision thresholds (each indi-

vidual user correspond to a threshold). Anil K. Jain

[11] proposed a user-specific multimodal biometric

system in which the common threshold is computed

using the cumulative histogram of impostor matching

score corresponding to each user and the user-specific

weights associated with each biometric are selected

by minimizing the total verification error. Toh et al.

[12] improves this method using multivariate polyno-

mial fusion model for each user. In other words, the

system configures a personalized decision hyperplane

(including thresholds) for each user.
Summary

Configuration plays an important role in the biometric

system. A threshold in the decision process controls

the trade-off between the security and the convenience.

A multi-modal biometric system can utilize the pre-

dominance of each biometric trait and allow a more

reliable biometric system. Accurate error estimation

information would be useful to configure appropriate

thresholds and/or fusion rules which will make the
system more effective. Appropriate configuration will

make the biometric system more robust, adaptive, and

effective.
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Conformance Testing
Conformance testing is the process of capturing the

technical description of a specification and measuring

whether an implementation faithfully implements the

specification by achieving conformance to the techni-

cal description of the specification. Conformance is

defined generally as the fulfillment by a product, pro-

cess, or service of all relevant specified requirements.

▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of
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Synonyms

Conformity; Compliance
Definition

The development of standardized methods and proce-

dures for ▶ conformance testing of products or sys-

tems that claim to satisfy the requirements of one or

more of the standardized biometric data interchange

formats.
Concepts in Conformance Testing

A national or international standard consists of a set

of requirements and frequently a set of recommenda-

tions. The requirements specified in the standard are

traditionally classified in three categories: mandatory

requirements to be observed in all cases, optional

requirements to be observed if so chosen by an imple-

menter, and conditional requirements to be observed

under specific conditions. A product, process, or system

that fully satisfies the requirements of the standard is

described as being conformant to that standard. Con-

formance testing is the method that is used to determine

if the product, process, or system satisfies the require-

ments. The precise nature of these requirements differs

substantially from one standard to another, but in all

cases, there are certain important concepts.

The product, process, or system being tested is

known as an ▶ implementation under test or IUT. It

does not need to satisfy every requirement and recom-

mendation of a standard, only those that that are de-

fined as mandatory. In certain cases, the mandatory

requirements may be different for different applications

or purposes. In the case of conformance testing for

biometric data interchange format standards, for exam-

ple, an IUTmay be designed to produce biometric data

interchange records or to use biometric data inter-

change records or both. In each case, the requirements

that are tested for conformance would be different.

No conformance test can be complete or perfect.

Ultimately, it is only possible to prove that an imple-

mentation under test is nonconformant. The goal of

conformance testing is therefore to capture enough of

the requirements of the base standard and test them

under enough conditions, that any IUT that passes the

conformance test is likely to be conformant. Frequently,

there are inherent problems with the underlying stan-

dards that only become apparent during conformance

testing. For instance some areas may be undefined

(so that the specification of these areas is left to each

vendor) or ill-defined (so that there is a contradiction

between parts of the base standard or an easy misinter-

pretation caused by the wording of the base standard).

The latter problem may be resolved by an amendment

to or revision of the standard, but the former problem

may be difficult to resolve.

Conformance testing does not guarantee interoper-

ability; it can only provide a higher level of confidence

that interoperability can be achieved. Although the
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ultimate goal of standards is to allow different products

and systems to work together, even two products that

are conformant to the same standard may have difficul-

ty working together. This is because it is usually impos-

sible for a standard to specify every aspect of the

operation of a product or system. On the other hand,

unless systems are conformant to a well written stan-

dard, then it is very unlikely that they will be interoper-

able. Thus conformance testing is a critical element in

assuring interoperability, even if it is not the only one.
Motivation for the Development of
Conformance Testing Methodology
Standards

As increasing numbers of biometric standards have

been developed in recent years, more and more pro-

ducts have become available that claim to be confor-

mant to the standards. This is particularly true in the

area of standardized biometric data interchange for-

mats which are standard methods of encoding biomet-

ric data for various technologies, including 2D face, 3D

face, finger image, finger pattern, finger minutiae, iris

image, vein pattern, signature/sign, hand geometry,

etc. Theoretically, those products that support the rel-

evant standard for a given technology should be able to

work together, so that an end user of biometrics can

mix products from a variety of vendors or support

interoperability among different systems.

Although vendors provide products and systems in

good faith believing that they conform to a standard, if

there is no corresponding conformance testing meth-

odology standard, then there is no clear method for

them to be able to verify this. Similarly, end users of

biometric products cannot know with confidence if the

products and systems they are using actually conform

to the standards unless a formal conformance testing

methodology standard exists and can be used to per-

form conformance testing on those products and sys-

tems in a reliable and repeatable manner.
Elements Required in Conformance
Testing Methodology Standards for Data
Interchange Formats

In order to formally describe conformance testing for

data interchange formats, it is necessary to identify a

language to define the context of conformance
testing and conformance claims. Therefore a number

of specialized terms have been developed. Many of them

relate to the fact that there are lots of different types of

testing that can be defined for different levels and types

of conformance. In the standardization process that has

taken place in the US at INCITS M1 – Biometrics and

internationally at ISO/IEC JTC 1/SC 37 – Biometrics,

the following key elements have been defined.

Test Assertion – The specification for testing a

conformance requirement in an IUT in the forms

defined in a conformance testing methodology stan-

dard. Test assertions are short specific statements that

encapsulate a single requirement for a particular stan-

dard. A harmonized assertion description language has

been developed for data interchange format confor-

mance testing so that the assertions can be expressed

in a simple form, regardless of the specific data inter-

change format being addressed.

Level 1 Testing – A set of test methods within the

conformance testing methodology that validates field by

field and byte by byte conformance against the specifi-

cation of the ▶Biometric Data Interchange Record as

specified in the base standard, both in terms of fields

included and the ranges of the values in those fields.

Level 2 Testing – A set of test methods within the

conformance testing methodology that tests the inter-

nal consistency of the Biometric Data Interchange Re-

cord (BDIR) under test, relating values from one part

or field of the BDIR to values from other parts or fields

of the BDIR.

Level 3 Testing – A set of test methods within the

conformance testing methodology that tests that a

Biometric Data Interchange Record produced by an

IUT is a faithful reproduction of the input biometric

data that was provided to the IUT.

Type A – Produce Conformant BDIR (Type A or

PCB) – A conformance claim by an IUT that it is a

conformant BDIR, or can create conformant BDIRs

from an appropriate input data.

Type B – Use Conformant BDIR (Type B or UCB) –

A conformance claim by an IUT that it can read con-

formant BDIRs, interpret them correctly, and perform

its desired function upon them.
Issues Related to Testing Levels

It is obvious from the carefully defined terminology

listed above that there are issues that have led the
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standardization bodies to separate the different levels

and types of testing. The main consideration is the

need for a balance between the importance of deliver-

ing conformance testing methodology standards

that are meaningful and that can be used to support

testing and the desire to thoroughly test all aspects of

each data interchange format standard.

The first issue is the fact that data interchange

format standards are mostly focused on the structure

and content of the BDIR. This means that the test

assertions for Level 1 testing can be simply developed

by analyzing the explicit requirements of the stan-

dard. Test assertions for Level 2 testing may require

consideration of the implicit requirements of the

standard, but they can still be defined quite specifi-

cally. Some experts prefer to state that Level 1 testing

supports the syntactic requirements of the standard

and Level 2 testing supports the semantic require-

ments of the standard. Unfortunately, some semantic

requirements can only be addressed through Level 3

testing, and because of the inherently uncertain na-

ture of biometric data, it is very difficult to establish a

standardized method of determining whether a BDIR

is or is not a faithful reproduction of the input bio-

metric data used to produce it. Human biometric

characteristics vary with every presentation to a bio-

metric system and there is debate among experts on

exactly how to define the relationship between the

BDIR and the input characteristic, especially when it

comes to acceptable levels of accuracy in the repre-

sentation. For this reason, Level 3 testing is still an

area of research and has not been included in the

conformance testing standards that are currently pub-

lished or under development.

The second issue relates to the fact that the BDIR

itself is the focus of the biometric data interchange

format standards. It is therefore easy to test claims of

Type A conformance, since the output BDIRs can be

tested at least for Level 1 and Level 2 conformance. An

IUT that claims Type B conformance, however, needs to

interpret the BDIRs correctly and perform its appropri-

ate function upon them. Since this function may be to

use them for biometric matching, to display them for

human examination, to convert them to another format

or potentially a whole host of other things, it is very

difficult to determine how best to test such claims of

conformance. One option is to force IUTs to also sup-

port specific functions of usage that would only be used

in Type B conformance testing, but so far this idea has
not been popular among biometric vendors or standar-

dization experts. It remains to be seen how Type B

conformance testing will be addressed in the future.
Conformance Testing
Standardization – Current State

The need for standardized and commonly accepted

conformance testing methodologies for Biometric data

interchange formats has been recognized by the Nation-

al and International Standards Bodies on Biometrics. In

February 2005, INCITSM1 initiated the development of

a multi-part American National Standard on confor-

mance testing methodology for Biometric Data Inter-

change Formats. This project is based on an extensive

analysis of the data format requirements specified in the

base data interchange format standards, and is

structured to take advantage of the commonalities

found in the testable requirements as well as in the

conformance test methods and procedures. The result-

ing structure of this multi-part standard is as follows:

1. Part 1: Generalized Conformance Testing

Methodology

2. Part N: Modality-specific Testing Methodology

(e.g., Part 2: Conformance Testing Methodology

for Finger Minutiae Data Interchange Format)

The Generalized Conformance Testing Methodology

contains the elements of the testing methodology that

are common to all the data interchange formats (i.e.,

those elements that are modality independent). These

elements include definitions of terms, descriptions of

levels and types of testing, general requirements of test

reports, specification of the assertion definition lan-

guage, general test procedures, etc.

Each individual Part contains elements of the test-

ing methodology specific to its respective modality.

These elements include specific definitions of terms,

specifications of test assertions, test criteria, modality-

specific elements of test reports, test procedures, etc.

At the time of preparation of this paper, the Part 1

of this multi-part standard has been published as

INCITS 423.1, and other parts are in various stages of

development ranging from publication stage to Public

Review stage. It is expected that most of the Parts of

this standard will be publicly available in 2008.

While the development of the INCITS 423

was underway, Working Group 3 of ISO/IEC JTC 1/SC
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37 initiated the development of a similar multi-part

international standard in 2006. This ISO/IEC Project

29109, named ‘‘Conformance Testing Methodology for

Biometric Data Interchange Formats defined in ISO/IEC

19794’’ is similarly structured, and also consists of Part 1:

Generalized Conformance Testing Methodology, and

multiple modality-specific Parts, each dedicated to one

modality. At the time of preparation of this paper, Part 1

is being circulated to the National Bodies of JTC 1/SC 37

for a Committee Draft (CD) ballot, Parts 2 (Finger Min-

utiae), 4 (Finger Image), 5 (Face Image), 6 (Iris Image),

and 10 (Hand Geometry) are in the Working Draft

(WD) stage, and a number of other Parts are expected

to be presented at the July 2008 SC 37 meeting.
Conformance Testing Activities

Approval and publishing of the conformance testing

methodology standards alone does not ensure con-

formance of the Biometric products to the base stan-

dards. It is imperative that the published testing

standards are adopted by the Biometric community,

including technology vendors, system integrators,

and end-users, and implemented in the form of con-

formance testing tools, processes, and programs.

Some of these efforts are already underway, although

at the time of publication of this paper there are very

few large-scale conformance testing and conformity

assessment/certification programs for Biometric data

interchange formats.

The fact that a number of Biometric industry ven-

dors claim conformance of their products to national

and international data interchange format standards

suggests that at least some first-party conformance

testing (vendor self-testing) is taking place. It is not

known whether the standardized conformance testing

methods and procedures are used for this testing.

There are indications that governments are interest-

ed in establishing second- or third-party conformance

testing programs. For example, the United States

Department of Defense described their Biometric Con-

formity Assessment Initiative in [1] that includes the

standards-based conformance testing and reporting of

Biometric products, although it is not known when this

program will be fully implemented.

Two large scale conformance testing programs

have been established ahead of the publication of the
necessary standards, and the methods used in these

programs have influenced the development of the

standards. In the US, the certification for biometric

algorithms to be approved for use with personal

identity verification (PIV) associated with Homeland

Security Presidential Directive 12 (HSPD-12) requires

that they be tested in a program called MINEX. This

testing ensures that biometric templates produced

by the template generation algorithms are confor-

mant to a profiled version of INCITS 378:2004 –

Finger Minutiae Format defined specifically for PIV

[2]. Similarly, template generation algorithms that

are part of biometric products to be used with the

Seafarers’ Identity Documents programme associated

with the International Labour Organization Con-

vention No. 185 [3] must be tested by a third party

laboratory and found to be conformant to a profiled

version of ISO/IEC 19794-2:2005 – Finger Minutiae

Data.
Current and Anticipated Needs

It is reasonably well understood that the major needs in

implementations of the Biometric systems can be de-

scribed as interoperability of the systems on all levels

and ability to interchange the Biometric data. These

needs can be fulfilled, to a significant extent, by stan-

dardization of all aspects of Biometric technology, in-

cluding Biometric formats for data interchange. Such

standardization requires the following:

1. Robust base standards must exist and be commonly

accepted

2. Biometric technology must be implemented in

conformance with the base standards

3. End-users must be able to verify conformance of

the implementation to the standards

The last element by itself can be further decomposed in

to the following:

1. Standardized conformance testing methodologies

must exist and be commonly accepted

2. Conformance testing tools implementing the stan-

dardized methodologies must exist

3. Laboratories performing the conformance testing

must exist and be able to produce standardized test

results
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4. A process of certification of test results by an inde-

pendent authority must exist

As shown above, development of the conformance

testing methodology standards is only the first neces-

sary step in establishing the conformance testing

programs that would be able to reliably test Bio-

metric products and provide reasonably conclusive

determination of conformance (or nonconformance)

of the products to the base standards. While pub-

lishing of the conformance testing methodology stan-

dards, currently under development, and expeditious

development of conformance testing tools that im-

plement these standards is recognized as an immedi-

ate need, establishing of such full-scale conformity

assessment programs in the near future should be

anticipated.
Gaps in Standards Development

The development of the conformance testing method-

ology standards in national and international stan-

dards development bodies is progressing quite

rapidly, and it is not unreasonable to expect comple-

tion of majority of these development projects within

the next 24 months. There are, however, certain gaps in

the existing projects that will need to be addressed at

some point in the future, for the testing methodologies

to remain useful. These gaps can be divided into three

categories:

1. Completeness of the standard. Currently, the con-

formance testing methodology standards don’t

provide (and probably will never provide) full,

absolute coverage of all requirements of the base

standards. For example, Type B and Level 3 testing

are currently out of scope of the existing Parts

of the conformance testing methodology stan-

dards. The motivation behind this is based on

practical reasons, and on the fact that certain

requirements can not be tested in a reasonable

manner; nonetheless the conformance testing cov-

erage is not 100% conclusive. It is expected that

additional test cases/assertions will be developed as

the conformance testing methodologies mature,

but it is unlikely that the desirable full coverage

will ever be reached.
2. Coverage of modalities. Currently, even if most

of the existing modalities’ conformance testing stan-

dardization is planned, many of the Parts have not

been initiated even as preliminary drafts. For some

relatively new modalities, such as DNA or Voice, it is

not even clear how conformance testing should

be performed. It is fully expected that eventually

conformance testing methodologies will be devel-

oped for all modalities, but at the present time this

is a significant gap.

3. The testing methodologies are almost always ‘‘behind’’

the base standards. The base standards, however

robust and mature, are always undergoing changes,

amendments and revisions. These changes, some-

times significant, may not be immediately be

reflected in the corresponding conformance testing

standard, and the time gap between the base stan-

dard change and the conformance testing method-

ology standard corresponding change may be

significant – from several months to several years.
Summary

The increased need for interoperability of Biometric

systems, especially their ability to interchange and

share biometric data records has driven the demand

for standardization of nearly every aspect of the Bio-

metric technology. One of the primary elements of this

standardization effort has been development of the

Biometric Data Interchange Format Standards and

corresponding conformance testing methodologies

that ensure fulfillment by the biometric implementa-

tions of the requirements specified in the base

standards.
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Conformity
▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of
Contact Microphones
Contact microphones are special microphones that

transduce not sound, but vibrations in solid bodies into

electrical signals. These can be used, for instance, to

capture speech directly from the throat’s surface, which

is an interesting possibility in very noisy environments.

▶Voice Device
Contact-Based
It refers to a device for which it is needed to touch the

sensing area to image of the ridge-valley pattern.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Contactless
Manner of biometric recognition in which it is not

necessary for the person to touch the sensor. Some

people are reluctant to touch a publicly used device

for various reasons, and some contact-type sensors

tend to become dirty through use. There are high

expectations that the contactless-type authentication

method can be used in public situations and will
prove valuable in places that require a high level of

hygiene such as hospitals.

▶Palm Vein
Contextual Biases
Contextual biases are external influences on a percep-

tual decision due to outside factors such as details

from a case.

▶ Latent Fingerprint Experts
Continuous Classification
▶ Fingerprint Indexing
Contour Detection
Contour detection is the coarse edge detection tech-

nique that extracts the outer boundary of an object,

without extracting inner edges.

▶Hand Geometry
Contrast
In general terms, contrast is a measure of the difference

between two objects, concepts, or other entities. In

photography, optics, and image acquisition contrast

usually refers to the difference in hue, saturation, or

intensity between two portions of an image.

▶ Iris Device

▶Photography for Face Image Data
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Convenience Sample
C
A convenience sample is a sample that uses individuals

or sample units that are readily available rather than

those that are selected to be representative or selected

via a probabilistic mechanism.

▶Test Sample and Size
Convergence Feature Extraction
Convergence provides a more general description of

channels and wells than force field feature extraction.

It takes the form of a mathematical function in

which wells and channels are revealed to be peaks

and ridges, respectively, in the function value. This

function maps the force field F(r) to a scalar field C(r),

taking the force as input, and returning the additive

inverse of the divergence of the force direction, and is

defined by,

CðrÞ ¼ �div fðrÞ ¼ � lim

DA ! 0

Þ
fðrÞ � dl
DA

¼ �r � fðrÞ ¼ � @fx
@x

þ @fy

@y

� �
ð1Þ

where fðrÞ ¼ FðrÞ
FðrÞj j is the force direction, DA is incre-

mental area, and dl is its boundary outward normal.

This function is real valued and takes negative values as

well as positive ones, where negative values correspond

to force direction divergence. Note that the function is

non-linear because it is based on force direction and

therefore must be calculated in the given order.

▶Physical Analogies for Ear Recognition
Copula
A copula is a multivariate joint distribution that is

defined on the n-dimensional unit cube [0; 1]n such
that every marginal distribution is uniform on the

interval [0; 1]. A copula can be used to capture the

dependencies or associations that exist between vari-

ables in a multivariate distribution. In the context of

score-level fusion, a copula may be used to describe the

correlation between multiple matchers.

▶ Fusion, Score-Level
Core
The topmost point on the innermost recurving ridge

of a fingerprint. Generally, the core is placed upon

or within the innermost recurve of a loop as described

in the Standards document ISO/IEC 19794-2: Bio-

metric Data Interchange Formats – Part 2: Finger

Minutiae Data.

▶ Fingerprint Templates
Correct Index Power
The ratio of correctly retrieved fingerprints over the

size of the database.

▶ Fingerprint Indexing
Correct Reject Power
The ratio of correctly rejected reference fingerprints

over the number of query images not having a

corresponding fingerprint in the database.

▶ Fingerprint Indexing
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Correlation
The degree of relationship between two variables as

expressed using a single measure. The Pearson correla-

tion coefficient is an example of one such measure. In

the context of multibiometrics, the correlation be-

tween the genuine (or impostor) match scores of two

biometric matchers can have a bearing on the perfor-

mance of the fusion scheme used to combine them.

▶Multibiometrics
Correlation Map
Correlation map is a two dimensional array of correla-

tion values in the range [�1, +1]. These correlation

values are obtained by computing the normalized local

correlation between two curvature feature maps. Each

pixel in the correlation map represents local

correlation between the corresponding pixels in the

curvature maps being matched.

▶Palmprint Features
Correspondence
▶Human Detection and Tracking
Cost Function
Tracking is an estimation process that computes the

position of a target based on optimization of a criterion

that relates the observations with the estimates. The

criterion is represented mathematically using the cost

function.

▶ Face Tracking
Countermeasures
Liveness Check is a validation that the biometric char-

acteristic is the true characteristic of the presenting

individual by the measurement of expected live fea-

tures such as pulse, temperature, humidity, movement

etc. as appropriate to the biometric characteristic.

Artifact detection is the detection of an artifact that

has been presented by measurement of specific prop-

erty of known artifacts (e.g., silicone rubber or gelatine

finger; photograph of face etc. depending on the bio-

metric characteristic). A point to be noted here is that

the liveness check and artifact detection are comple-

mentary approaches to countering the use of artifacts.

Biometric data encryption is a cryptographic tech-

nique used to safeguard the confidentiality of biomet-

ric data.

Biometric data signing is also a cryptographic tech-

nique used to safeguard the integrity of biometric data.

Cryptographic timestamps/session keys are crypto-

graphic techniques used to counter capture/replay attacks.

Supervised operation is a powerful countermeasure

against a range of threats that can occur when a subject

is interacting with a biometric system during enrol-

ment and verification operations. It can be an effective

countermeasure to the use of artifacts, mimicry, and

physical attacks.

Security audit is a useful post-event analysis of

security log to check e.g., suspicious events, integrity

of system configuration, procedural compromises etc.

Performance audit is an offline check that the sys-

tem performs to a level that safeguards security, e.g.,

cross checking enrolment references against each other

to ensure that adequate separation between references

exists and there are no apparent cases of multiple

enrolments by a single individual.

▶Biometric Security, Standardization
Counter Sign
1. A second sign to provide the proofs of approval

and/or receipt as on a previously signed document

such as a contract or a money order.
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2. Another sign, word, or signal used for replying the

sign from an anonymous or a hidden person.
▶ Signature Matching
C

Covariate
A covariate is a secondary variable or factor that can

affect the relationship between the dependent variable

and other independent variables of primary interest.

For instance, in biometrics view-point or illumination

is a secondary variable that can impact the relationship

between recognition ability, the dependent variable,

and identity, the independent variable. Covariate

needs to be controlled or monitored in a biometric

experiment.

▶Evaluation of Gait Recognition
Covariate Studies
In multivariate statistical analysis the aim is to study

the independence and interdependence of two or more

random variables. In such a study, there could be other

confounding factors that affect the statistical analysis

of the variables of interest. The study of these con-

founding variables and design of appropriate theoreti-

cal and experimental set-ups in order to eliminate the

effect of these confounding random variables is called

covariate analysis.

For instance, in designing statistical methods for face

recognition, the statistical relationship between the iden-

tity variable and the face images obtained has to be

studied. The face images obtained are also dependent

on various confounding factors such as illumination,

pose, expression, and age of the subject, and the camera

internal parameters. These confounding variables are

considered covariates for the problem of image/video-

based face recognition. Similarly, in the case of gait-based

person identification fromvideos, it would be interesting

to learn the statistical relationship between the subject’s
identity and the videos. In this case, there are several

environmental confounding variables such as the cloth-

ing of the subject, the shoe-type of the subject, the surface

of walking, the camera view and the presence of other

occluding objects enter a briefcase etc.

Twomajor approaches are available deal with to the

effect of covariates – enumeration and marginaliza-

tion. Enumeration refers to techniques where one

learns the statistical relationship between the random

variables of interest for every possible realization of the

confounding variable. This approach works well for

settings such as the presence/absence of a briefcase,

where there are very few distinct values that the con-

founding random variable can take. In marginalization

a joint probability density function of the relevant and

the confounding random variables is first developed

and then marginalized (integrated) over the confound-

ing random variables in order to make an inference.

▶Gait Biometrics, Overview
Craniofacial Reconstruction
▶ Skull, Forensic Evidence of
Craniofacial Superimposition
▶ Skull, Forensic Evidence of
Credential Hardening
The process of increasing the trust associated with

typical credential sets such as user names and pass-

words is credential hardening. This increased trust is

often achieved through a biometric augment as in

keystroke recognition. This is sometimes also referred

to as password hardening.

▶Keystroke Recognition
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Credentialing System
Credentialing System uses a physical credential, such as

a smartcard, as a means to authenticate the identity of

a credential holder for purposes of authorization. It

includes the registration process as well as the

subsequent operational use of the credential. Registra-

tion may include enrollment, identity proofing, back-

ground checking, card production, and issuance.

Possible uses are many, but generally include physical

and logical access control as well as benefits eligibility/

redemption and other privilege or entitlement claims.

▶Registered Traveler
Credit Check
▶Background Checks
Crew Designs
▶Test Sample and Size
Criminal History Check
▶Background Checks
Criminal Law Enforcement
▶ Law Enforcement
Criminal Record Search
▶Background Checks
Cross-Modality Face Biometrics
▶Heterogeneous Face Biometrics
Cross-Validation
A popular approach to estimating how well the result

learned from a given training data set is going to

generalize on unseen new data. It partitions the train-

ing data set into k subsets with equal size, and then uses

the union of k¡1 subsets for training and the remaining

subset for performance evaluation. The final estimate

is obtained by averaging after every subset has been

used for evaluation once. A popular setting of k is 10

and in this case it is called as 10-fold cross-validation;

another popular setting of k is the number of training

examples and in this case it is called as LOO (i.e.,

Leave-One-Out) test.

▶Ensemble Learning
Cryptography
The science of transforming messages or data into in-

comprehensible formats for the purposes of confidenti-

ality, integrity, authentication, or non-repudiation of

origin. Cryptographic systems have classically involved

two parties, a sender and a receiver whom wish to

communicate a message secretly, although modern

uses include secure data storage as well as digital signa-

tures. Despite the intended use, cryptographic systems,

sometimes referred to as cryptosystems involve two

main blocks: encryption and decryption. Encryption is

the process of encoding data into an unreadable format
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(sometimes referred to as ciphertext) through the use of

a cryptographic key. Decryption is the process of decod-

ing encrypted data (ciphertext) back into a comprehen-

sible format through the use of a cryptographic key and

a complementary algorithm tied to encryption. Crypto-

graphic algorithms can be symmetric, requiring the

communication of a single secret key between sender

and receiver or they can be asymmetric relying on pub-

lic-private key pairs that do not explicitly require the

transmission between sender and receiver.

▶ Iris Digital Watermarking
Curse of Dimensionality
The demand for a large number of samples grows

exponentially with the dimensionality of the data (fea-

ture) space, and so is the difficulty to find global

optima for the parameter space, i.e., to describe the

data space. This phenomenon is known as the ‘‘Curse

of Dimensionality.’’ The fundamental reason for this

limitation is that high-dimensional functions have

the potential to be much more complicated than low-

dimensional ones, and that those complications are

harder to discern. A simple but effective way to allevi-

ate this problem is to reduce the number of dimensions

of the data by eliminating some coordinates that seem

irrelevant or extract and select salient and discrimina-

tory features for data representation.

▶Biometric Algorithms

▶ Fusion, Feature-Level

▶Multibiometrics
Curse of Misalignment
▶ Face Misalignment Problem
Cursive
In a fully cursive handwriting style, the writer is inclined

to connect all adjacent letters in a smooth way. What

makes it more complex is that different people may have

different habits to connect even the same character pair.

For example, some people like to connect the t-bar with

other letters, while others may connect the t-stem

to neighboring characters. Real-world handwriting is

often in a mixture of cursive and handprint styles.

▶ Signature Sample Synthesis
Custody Suite
Custody suites are areas of police stations in which

suspects arrested in connection with particular circum-

stances are held and questioned in the furtherance of

the enquiries by the police.

▶ Footwear Recognition
Cut Finger Problem
▶Anti-Spoofing

▶ Fingerprint Fake Detection

▶ Liveness Detection
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Dactyloscopist: Fingerprint
Examiner
▶ Fingerprint, Forensic Evidence of
Data Hiding
Data hiding techniques can be used to insert additional

information, namely the watermark, into a digital ob-

ject. The watermark can be used for a variety of appli-

cations ranging from copy protection, to data

authentication, fingerprinting, broadcast monitoring,

multimedia indexing, content based retrieval applica-

tions, medical imaging applications, etc. Within the

framework of biometrics, robust data hiding techni-

ques can be used to embed codes or timestamps into

the template, in such a way that after the expiration

date the template is useless. Another perspective is to

hide the biometric template in a digital object to make

it invisible when either transmitted or stored.

▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of

▶ Iris Template Protection
Data Interchange Format
▶Common Biometric Exchange Formats Framework

Standardization
# 2009 Springer Science+Business Media, LLC
Data Protection
▶Privacy Issues
Database Filtering
Filtering refers to limiting the number of entries in a

database to be searched, based on characteristics of the

interacting user. For example, if the user can be identi-

fied as a middle-aged male, the search can be restricted

only to the subjects with this profile enrolled in the

database. This greatly improves the speed or the search

efficiency of the biometric system. Filtering reduces the

probability of obtaining a wrong match, but this is

offset by the fact that the errors in filtering also reduce

the probability of obtaining a correct match. Hence, in

general, filtering drastically reduces the time required

for identification but can degrade the recognition

accuracy.

▶ Soft Biometrics
Daubert Standard
The Daubert standard is a legal precedent set in 1993

by the Supreme Court of the United States regarding

the admissibility of expert witnesses’ testimony during
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federal legal proceedings (the citation is Daubert v.

Merrell Dow Pharmaceuticals, 509 U.S. 579).

▶Gait, Forensic Evidence of
Daugman Algorithm
▶ Iris Encoding and Recognition using Gabor

Wavelets
Dead Finger Detection
▶ Fingerprint Fake Detection
Decision
Decision is the output result of a biometric system

given a biometric sample. For a verification task, the

decision is ‘‘reject or accept’’ of the claimed identity,

while for identification task it is the identity of the

presented subject or rejecting him or her as one of

the enrolled subject.

▶Performance Evaluation, Overview
Decision Criterion Adjustment
▶ Score Normalization Rules in Iris Recognition
Deformable Models

THOMAS ALBRECHT, MARCEL LÜTHI, THOMAS VETTER

Computer Science Department, University of Basel,

Switzerland
Synonyms

Statistical Models; PCA (Principal Component Analysis);

Active (Contour, Shape, Appearance) Models; Morph-

able Models
Definition

The term Deformable Model describes a group of

computer algorithms and techniques widely used in

computer vision today. They all share the common

characteristic that they model the variability of a cer-

tain class of objects. In biometrics this could be the

class of all faces, hands, or eyes, etc. Today, different

representations of the object classes are commonly

used. Earlier algorithms modeled shape variations

only. The shape, represented as curve or surface, is

deformed to match a specific example in the object

class. Later, the representations were extended to

model texture variations in the object classes as well

as imaging factors such as perspective projection and

illumination effects. For biometrics, deformable mod-

els are used for image analysis such as face recognition,

image segmentation, or classification. The image anal-

ysis is performed by fitting the deformable model to a

novel image, thereby parametrizing the novel image in

terms of the known model.
Introduction

Deformable models denote a class of methods that

provide an abstract model of an object class [1] by

modeling separately the variability in shape, texture,

or imaging conditions of the objects in the class. In its

most basic form, deformable models represent the

shape of objects as a flexible 2D curve or a 3D surface

that can be deformed to match a particular instance of

that object class. The deformation a model can under-

go is not arbtitrary, but should satisfy some problem-

specific constraints. These constraints reflect the prior
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knowledge about the object class to be modeled.

The key considerations are the way curves or surfaces

are represented and the different form of prior knowl-

edge to be incorporated. The different ways of repre-

senting the curves range from parametrized curves in

2D images, as in the first successful method introduced

as Snakes in 1988 [2], to 3D surface meshes in one of

the most sophisticated approaches, the 3D Morphable

Model (3DMM) [3], introduced in 1999. In the case

of Snakes, the requirement on the deformation is that

the final deformed curve should be smooth. In the

3DMM, statistical information about the object class

(e.g., such as the class of all faces) is used as prior

knowledge. In other words, the constraint states that

the deformed surface should with high probability

belong to a valid instance of the object class that is

modeled. The required probability distributions are

usually derived from a set of representative examples

of the class.

All algorithms for matching a deformation model

to a given data set are defined as an energy minimiza-

tion problem. Some measure of how well the deformed

model matches the data has to be minimized. We call

this the external energy that pushes the model to match

the data set as good as possible. At the same time the

internal energy, representing the prior knowledge,

has to be kept as low as possible. The internal energy

models the object’s resistance to be pushed by the

external force into directions not coherent with the

prior knowledge. The optimal solution constitutes

an equilibrium of internal and external forces. For

instance, in the case of Snakes, this means that a

contour is pushed to an image feature by the external

force while the contour itself exhibits resistance to be

deformed into a non-smooth curve. In the case of

the 3DMM, the internal forces become strong when

the object is deformed such that it does not belong

to the modeled object class.

This concept can be expressed in a formal frame-

work. In each of the algorithms, a model M has to be

deformed in order to best match a data set D. The

optimally matched model M� is sought as the mini-

mum of the energy functional E, which is comprised of

the external and internal energies Eext and Eint:

E½M� ¼ Eext½M;D� þ E int½M� ð1Þ

M� ¼ argmin
M

E½M�: ð2Þ
Snakes

Kaas et al. introduced Snakes, also known as the Active

Contour Model in their landmark paper [2]. Here, the

deformable model M is a parametrized curve and

the goal is to segment objects in an image D by fitting

the curve to object boundaries in the image.

The external energy Eext½M;D� measures how well the

snake matches the boundaries in the image. It is

expressed in form of a feature image, for instance,

an edge image. If an edge image I with low values on

the edges of the image is used, the external energy is

given as:

Eext½M;D� ¼ Eext½v; I � ¼
Z 1

0

IðvðsÞÞ ds; ð3Þ

where v : [0,1] !IR2 is a suitable parametrization

of the curve M and I :IR2 !IR is the edge image of

the input image D. If a point v(s) of the curve lies on

a boundary, the value of the edge image I(v(s)) at this

point is low. Therefore, the external energy is mini-

mized if the curve comes to lie completely on a bound-

ary of an image.

The internal energy ensures that the curve always

remains a smooth curve. For the classical snakes for-

mulation, it is defined as the spline bending energy of

the curve:

Eint½M� ¼ E int½v� ¼ ðaðsÞjv0ðsÞj2 þ bðsÞjv00ðsÞj2Þ=2;
ð4Þ

where a and b control the weight of the first and

second derivative terms.

By finding a minimum of the combined functional

E½M�, the aim is to find a smooth curve M, which

matches the edges of the image and thereby segments

the objects present in the image.

The Snake methodology is the foundation for

a large number of methods based on the same

framework. There are three main lines of

development:

� Flexible representation of curves and surfaces

� Incorporation of problem specific prior know-

ledge from examples of the same object class

� Use of texture to complement the shape

information
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Level Set Representation for Curves
and Surfaces

The idea of snakes was to represent the curve M as a

parametric curve. While such a representation is simple,

it is topologically rigid, i.e., it cannot represent objects

that are comprised of a variable number of independent

parts. Caselles et al. [4] proposed to represent the curve

M as a level set, i.e., the contour is represented as the

zero level set of an auxiliary function f:

M ¼ ff ¼ 0g: ð5Þ
A typical choice for f is the distance function to the

model M.

This representation offers more topological flexi-

bility, because contours represented by level sets can

break apart or join without the need of reparametri-

zation. Additionally, the level set formulation allows

a treatment of surfaces and images in any dimension,

without the need of reformulating the methods or algo-

rithms. The idea of representing a surface by a level-set

has led to a powerful framework for image segmenta-

tion, which is referred to as level-set segmentation.
Example Based Shape Priors

Before the introduction of Active Shape Models [5],

the internal energy or prior knowledge of the Deform-

able Model has been very generic. Independent of the

object class under consideration, the only prior knowl-

edge imposed was a smoothness constraint on the

deformed model. Active Shape Models or ‘‘Smart

Snakes’’ and the 3DMM [3] incorporate more specific

prior knowledge about the object class by learning the

typical shapes of the class.

The main idea of these methods is to assume that

all shapes in the object class are distributed according

to a multivariate normal distribution. Let a representa-

tive training set of shapes M1; . . . ;Mm, all belonging

to the same object class be given. Each shape Mi is

represented by a vector xi containing the coordinates of

a set of points. For 2D points (xj, yj), such a vector x

takes the form x ¼ ðx1; y1; . . . ; xn; ynÞ: For the result-
ing example vectors x1, . . .,xm, we can estimate the

mean x and covariance matrix S. Thus, the shapes

are assumed to be distributed according to the multi-

variate normal distribution Nðx;SÞ. To conveniently

handle this normal distribution, its main modes of
variation, which are the eigenvectors of S, are cal-

culated via ▶Principal Components Analysis (PCA)

[6]. The corresponding eigenvalues measure the ob-

served variance in the direction of an eigenvector.

Only the first k most significant eigenvectors v1,. . .,vk
corresponding to the largest eigenvalues are used, and

each shape is modeled as:

x ¼ x þ
Xk
i¼1

aivi; ð6Þ

with ai 2 IR. In this way, the prior knowledge about the

object class, represented by the estimated normal dis-

tributionNðx;SÞ, is used to define the internal energy.
Indeed, looking at Equation (6), we see that the shape

can only be deformed by the principal modes of varia-

tion of the training examples.

Furthermore, the coefficients ai are usually con-

strained, such that deformations in the direction of vi
are not much larger than those observed in the training

data. For the Active Shape Model, this is achieved by

introducing a threshold Dmax on the mean squares of

the coefficients ai, scaled by the corresponding stan-

dard deviation si of the training data. The internal

force of the Active Shape Model is given by:

Eint½M� ¼ E int½a1; . . . ; ak�

¼ 0 if
Pk

i¼1ðaisiÞ
2 � Dmax

1 else:

( ð7Þ

In contrast, the 3DMM [3] does not strictly constrain

the size of these coefficients. Rather, the assumed mul-

tivariate normal distributions Nðx;SÞ is used to

model the internal energy of a deformed model M as

the probability of observing this model in the normally

distributed object class:

Eint½M� ¼ Eint½a� ¼ � ln PðaÞ

¼ � ln e�
1
2

Xk
i¼1

ðai=siÞ2

¼ 1

2

Xk
i¼1

ðai=siÞ2: ð8Þ
Correspondence and Registration

All deformable models using prior knowledge in form

of statistical information presented here assume the
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example data sets to be in correspondence. All objects

are labeled by the same number of points and

corresponding points always label the same part of

the object. For instance in a shape model of a hand, a

given point could always label the tip of the index

finger in all the examples. Without this correspon-

dence assumption, the resulting statistics would not

capture the variability of features of the object but

only the deviations of the coordinates of the sampled

points. The task of bringing a set of examples of the

same object class into correspondence is known as the

Registration Problem and constitutes another large

group of algorithms in computer vision.
Incorporating Texture Information

One limitation of the classical Snake model is that the

information of the data set D is only evaluated at

contour points of the modelM. In level-set▶ segmen-

tation, new external energy terms have been intro-

duced in [7, 8]. Instead of measuring the goodness of

fit only by the values of the curve M on a feature

image, in these new approaches the distance between

the original image and an approximation defined by

the segmentation is calculated. Typical approximations

are images with constant or smoothly varying values

on the segments. This amounts to incorporating the

prior knowledge that the appearance or texture of the

shape outlined by the deformable model is constant or

smooth.

By incorporating more specific prior knowledge

about the object class under consideration, the appear-

ance or texture can be modeled much more precisely.

This can be done in a similar fashion to the shape

modeling described in the previous section. The ap-

pearance or texture T of a model M is represented by

a vector T. All such vectors belonging to a specific

object class are assumed to be normally distributed.

For instance, it is assumed that the texture images of all

faces can be modeled by a multivariate normal distri-

bution. Similar to the shapes, these texture vectors

need to be in correspondence in order to permit a

meaningful statistical analysis.

Given m example textures T1, . . .,Tm, which are in

correspondence, their mean T , covariance matrix ST,

main modes of variation t1, . . .,tk, and eigenvalues ri
can be calculated. Thus, the multivariate normal
distribution NðT ;ST Þ can be used to model all tex-

tures of the object class, which are then represented as:

T ¼ T þ
Xk
i¼1

bit i: ð9Þ

A constraint on the coefficients bi analogous to Equa-

tion (7) or (8) is used to ensure that the model texture

stays in the range of the example textures. In this

way, not only the outline or shape of an object from

the object class but also its appearance or texture can

be modeled. The Active Appearance Models [1, 9, 10]

and the 3D Morphable Model [3] both use a combined

model of shape and texture to model a specific object

class. A complete object is modeled as a shape given

by Equation (6) with texture given by Equation (9).

The model’s shape and texture are deformed by choos-

ing the shape and texture coefficients a¼(a1,. . .,ak)
and b¼(b1, . . .,bk). The external energy of the model is

defined by the distance between the input data set D
and the modeled object (S,T), measured with a dis-

tance measure which not only takes the difference in

shape but also that in texture into account. The inter-

nal energy is given by Equation (7) or (8) and the

analogous equation for the bi.
2D versus 3D Representation

While the mathematical formalism describing all pre-

viously introduced models is independent of the di-

mensionality of the data, historically the Active

Contour, Shape, and Appearance Models were only

used on 2D images, whereas the 3DMM was the first

model to model an object class in 3D. The main differ-

ence between 2D and 3D modeling is in the expressive

power and the difficulty of building the deformable

models. Deformable models, when incorporating prior

knowledge on the objects class, are derived from a set

of examples of this class. In the 2D case these examples

are usually registered images showing different

instances of the class. Similarly, 3D models require

registered 3D examples. As an additional difficulty,

3D examples can only be obtained with a complex

scanning technology, e.g., CT, MRI, laser, or structured

light scanners. Additionally, when applied to images

the 3D models require a detailed model for the imag-

ing process such as the simulation of occlusions, per-

spective, or the effects of variable illumination.



Deformable Models. Figure 1 Tracking a face with the active appearance model. Image from [10].
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While building 3D models might be difficult, 3D

models naturally offer a better separation of object

specific parameters from parameters such as pose and

illumination that originate in the specific imaging

parameters. For 2D models these parameters are often

extremely difficult to separate. For instance, with a 2D

model, 3D pose changes can only be modeled by shape

parameters. Similarly, 3D illumination effects are mod-

eled by texture variations.
Deformable Models. Figure 2 3D level set segmentation

with shape prior of a vertebrae. Image from [12].

(� 2000 IEEE).
Applications

Deformable Models have found a wide range of appli-

cations in many fields of computer science. For

biometrics, the most obvious and well-researched

applications are certainly face tracking ([10], Fig. 1)

and face recognition, [11]. For face recognition, the

fact is exploited that an individual face is represented

by its shape and texture coefficients. Faces can be

compared for recognition or verification by comparing

these coefficients.

Another important area in which Deformable

Models have found application is in medical image

analysis, most importantly medical image segmenta-

tion, ([12], Fig. 2).
Recent Developments

While the level-set methods allow for greater topologi-

cal flexibility, the Active Appearance Model and

the 3DMM in turn provide an internal energy term

representing prior knowledge about the object class.

It is natural to combine the advantages of all these

methods by using the level-set representation and its

resulting external energy term together with the inter-

nal energy term incorporating statistical prior knowl-

edge. In [12], Leventon et al. propose such a method
that relies on the level-set representation of snakes

introduced by Caselles et al. [4]. The internal energy

is given by statistical prior knowledge computed di-

rectly from a set of level-set functions (distance func-

tions) representing the curves using a standard PCA

approach.
Summary

Deformable models provide a versatile and flexible

framework for representing a certain class of objects

by specifying a model of the object together with

its variations. The variations are obtained by deform-

ing the model in accordance to problem specific

constraints the deformation has to fulfill. These
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constraints represent the prior knowledge about the

object and can range from simple smoothness assump-

tion on the deformed object to the requirement

that the resulting object still belongs to the same object

class. The analysis of novel objects is done by fitting

the deformable model to characteristics of a new

object. The fitting ranges from simple approaches of

matching the object’s boundary in an image, to opti-

mally matching the object’s full texture. Because of

their flexibility, deformable models are used for many

applications in biometrics and the related fields of

computer vision and medical image analysis. Among

others, the most successful use of these models are

in automatic segmentation and image analysis and

synthesis [3].
Related Entries

▶Active (Contour, Shape, Appearance) Models

▶ Face Alignment

▶ Face Recognition, Overview

▶ Image Pattern Recognition
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Deformation
Since expressions are common in faces, robust face

tracking methods should be able to perform well

inspite of large facial expressions. Also, many face

trackers are able to estimate the expression.

▶ Face Tracking
Delta
The point on a ridge at or nearest to the point of

divergence of two type lines, and located at or directly

in front of the point of divergence.

▶ Fingerprint Templates
Demisyllables
A demisyllable brackets exactly one syllable-to-syllable

transition. Demisyllable boundaries are positioned

during the stationary portion of the vowel where

there is minimal coarticulation. For general American

English, a minimum of 2,500 demisyllables are

necessary.

▶Voice Sample Synthesis

http://doi.acm.org/10.1145/ 311535.311556
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Synonyms

Dental identification; Forensic Identification Based on

Dental Radiographs; Tooth Biometrics
Definition

Dental biometrics uses information about dental

structures to automatically identify human remains.

The methodology is mainly applied to the identifi-

cation of victims of massive disasters. The process of

dental identification consists in measuring dental fea-

tures, labeling individual teeth with tooth indices, and

the matching of dental features. Dental radiographs are

the major source for obtaining dental features. Com-

monly used dental features are based on tooth mor-

phology (shape) and appearance (gray level).
Motivation

The significance of automatic dental identification

became evident after recent disasters, such as the 9/11

terrorist attack in the United States in 2001 and the

Asian tsunami in 2004. The victims’ bodies were seriously

damaged and decomposed due to fire, water, and other

environmental factors. As a result, in many cases, com-

mon biometric traits, e.g., fingerprints and faces, were not

available. Therefore dental features may be the only clue

for identification. After the 9/11 attack, about 20% of the

973 victims identified in the first year were identified
Dental Biometrics. Table 1 A comparison of evidence types

Identification approach

Accuracy

Time for identification

Antemortem record availability

Robustness to decomposition

Instrument requirement
using dental biometrics [1]. About 75% of the 2004

Asian tsunami victims in Thailand were identified

using dental records [2]. Table 1 gives a comparison

between dental biometrics and other victim identifica-

tion approaches, i.e., ▶ circumstantial identification,

external identification, internal identification, and

▶ genetic identification [3]. The number of victims

to be identified based on dental biometrics is often

very large in disaster scenarios, but the traditional

manual identification based on forensic odontology

is time consuming. For example, the number of Asian

tsunami victims identified during the first 9 months

was only 2,200 (out of an estimated total of 190,000

victims) [2]. The low efficiency of manual methods for

dental identificationmakes it imperative to develop auto-

matic methods for matching dental records [4, 5].
Dental Information

Dental information includes the number of teeth, tooth

orientation, and shape of dental restorations, etc.

This information is recorded in dental codes, which

are symbolic strings, describing types and positions of

dental restorations, presence or absence of each tooth,

and number of cusps in teeth, etc. Adams concluded

from his analysis [7] that when adequate antemortem

(AM) dental codes are available for comparison with

postmortem (PM) dental codes, the inherent variability

of the human dentition could accurately establish iden-

tity with a high degree of confidence. Dental codes are

entered by forensic odontologists after carefully

reading dental radiographs. Dental radiographs, also

called dental X-rays, are X-ray images of dentition.

Compared to dental codes, dental radiographs contain

richer information for identification, and, therefore,

are the most commonly used source of information

for dental identification.
used in victim identification [6]

Physical

Circumstantial External Internal Dental Genetic

Med. High Low High High

Short Short Long Short Long

High Med. Low Med. High

Med. Low Low High Med.

Low Med. High Med. High



Dental Biometrics. Figure 1 Three types of dental radiographs. (a) A bitewing radiograph; (b) a periapical radiograph;

(c) a panoramic radiograph.
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There are three common types of dental radio-

graphs: periapical, bitewing, and panoramic. Periapical

X-rays (Fig. 1a) show the entire tooth, including

the crown, root, and the bone surrounding the root.

Bitewing X-rays (Fig. 1b) show both upper and lower

rows of teeth. Panoramic X-rays (Fig. 1c) give a broad

overview of the entire dentition (the development of

teeth and their arrangement in the mouth), providing

information not only about the teeth, but also about

upper and lower jawbones, sinuses, and other tissues

in head and neck. Digital radiographs will be used for

victim identification in future due to their advantages

in speed, storage, and image quality.
Dental Biometrics. Figure 2 Block diagram of automatic

dental identification system.
Antemortem Dental Records

Forensic identification of humans based on dental in-

formation requires the availability of antemortem den-

tal records. The discovery and collection of antemortem

records is ordinarily the responsibility of investigative

agencies. Antemortem dental radiographs are usually

available from dental clinics, oral surgeons, orthodon-

tists, hospitals, military service, insurance carriers, and

the FBI National Crime Information Center (NCIC).
Automatic Dental Identification
System

Figure 2 shows the system diagram of an automatic

dental identification system [6]. The system consists

of three steps: extraction of features, registration of

dentition to a dental atlas, and matching dental fea-

tures. The first step involves image quality evaluation,

segmentation of radiographs, and extraction of dental
information from each tooth. The second step labels

teeth in dental radiographs so that only the cor-

responding teeth are matched in the matching stage.

Dental features extracted from PM and AM images are

matched in the third step. For many victims that need

to be identified, several AM and PMdental radiographs

are available. Therefore, there can be more than one

pair of corresponding teeth. In such cases, thematching

step also fuses matching scores for all pairs of cor-

responding teeth to generate an overall matching

score between the AM and PM images. Figure 3

shows the process of matching a pair of AM and PM

dental radiographs.
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Feature Extraction

The first step in processing dental radiographs is to

segment dental radiographs into regions, each contain-

ing only one tooth. Segmentation of dental radiographs
Dental Biometrics. Figure 3 Matching a pair of PM and

AM images.

Dental Biometrics. Figure 4 Some examples of correct segm
uses Fast Marching algorithm [8] or integral projection

[9, 10]. Figure 4 shows examples of successful radio-

graph segmentation by the Fast Marching algorithm.

Due to the degradation of X-ray films over time as well

as image capture in field environments, AM and PM

radiographs are often of poor quality, leading to seg-

mentation errors. To prevent propagation of errors in

segmentation, an image quality evaluation module is

introduced [6]. If the estimated image quality is poor,

an alert is triggered to get human experts involved dur-

ing segmentation.

Dental features are extracted from each tooth. The

most commonly used features are the contours of teeth

and the contours of dental work. Active shape models

are used to extract eigen-shapes from aligned training

tooth contours [6]. Figure 5 shows the five most prin-

cipal deformation modes of teeth, which, respectively,

represent scaling, rotation, variations in tooth width,

variations in tooth orientation, and variations in

shapes of tooth root and crown. Figure 6 shows some

extracted contours. Anisotropic diffusion is used to

enhance radiograph images and segment regions of

dental work (including crowns, fillings, and root canal

treatment, etc.) [9]. Thresholding is used to extract the

boundaries of dental work (Fig. 7).
Atlas Registration

The second step is to register individual teeth segmented

in radiographs to a ▶ human dental atlas (Fig. 8). This

allows for labeling the teeth with tooth indices. Nomir

and Abdel-Mottaleb [11] proposed to form a symbolic

string by concatenating classification results of the

teeth and match the string against known patterns of
entation.



Dental Biometrics. Figure 5 First five modes of the shape model of teeth. The middle shape in each image is the mean

shape, while the other four shapes are, from left to right, mean shape plus four eigenvectors multiplied by �2, �1, 1,

and 2 times the square root of the corresponding eigenvalues.

Dental Biometrics. Figure 6 Tooth shapes extracted using Active Shape Models.
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tooth arrangement to find out tooth indices. To handle

classification errors and missing teeth, Chen and Jain

[12] proposed a hybrid model composed of Support

Vector Machines (SVMs) and a Hidden Markov Model

(HMM) (Fig. 9). The HMM serves as an underlying

representation of the dental atlas, with HMM states

representing teeth and distances between neighboring

teeth. The SVMs classify the teeth into three classes

based on their contours. Tooth indices, as well as

Missing teeth, can be detected by registering the ob-

served tooth shapes and the distances between adjacent

teeth to the hybrid model. Furthermore, instead of

simply assigning a class label to each tooth, the hybrid

model assigns a probability of correct detection to

possible indices of each tooth. The tooth indices with

the highest probabilities are used in the matching

stage. Figure 10 shows some examples of tooth index

estimation.
Matching

For matching the corresponding teeth from PM and

AM radiographs, the tooth contours are registered

using scaling and a rigid transformation, and corres-

ponding contour points are located for calculating the

distance between the contours [9]. If dental work is

present in both the teeth, the regions of dental work are

also matched to calculate the distance between dental

work. The matching distance between tooth contours

and between dental work contours are fused to generate

the distance between the two teeth [9]. Given thematch-

ing distances between individual pairs of teeth, the

matching distance between two dental radiographs is

computed as the average distance of all the corresponding

teeth in them. The distance between the query and a

record in the database is calculated based on the dis-

tance between all the available dental radiographs in the



Dental Biometrics. Figure 7 Extracted dental work contours with and without image enhancement. (a), (b) and (c)

Without enhancement. (d), (e) and (f) After enhancement.

Dental Biometrics. Figure 8 Dental Atlas of a complete set of adult teeth containing indices and classification labels of

the teeth.
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Dental Biometrics. Figure 9 SVM/HMM model for the upper row of 16 teeth. The circles represent teeth, and the

number inside each circle is the tooth index. The squares represent missing teeth, and the number inside each square is

the number of missing teeth.

Dental Biometrics. Figure 10 Examples of successful registration of the dental atlas to (a) a bitewing image, (b) a

periapical image, and (c) an image with a missing tooth. In (c), teeth numbered as 12, 14, and 15 are correctly registered.

The missing tooth (number 13) is detected.
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query and the database record. The distance between

the query and all the database record is used to find the

closest match for a given query, and according to

the rank, an ordered list of candidate identities is

generated.
Performance Evaluation

To the authors’ knowledge, no public domain data-

bases are available to evaluate the performance of au-

tomatic dental matching. Hong and Jain [6] conducted

experiments on a dental X-ray database consisting of

29 PM subjects and 133 AM subjects [6]. There are

360 PM tooth sequences (810 teeth) and 1,064 AM

tooth sequences (3,271 teeth) in total. Figure 11 shows

the Cumulative Match Characteristics (CMC) curve

based on this database. The accuracy for top-1 retrieval
is 19/29 (66%), the accuracy for top-4 retrievals is

23/29 (79%), and the accuracy for top-13 retrievals

is 26/29 (90%). Most of the errors in retrieval

are attributed to change in the appearance of dentition

due to loss of teeth, matching different types of teeth,

and poor quality of AM and PM images.
Other Approaches

Other matching approaches have been attempted for

human identification based on dental radiographs.

Hofer and Marana [13] used edit distance to match

dental codes extracted from dental works in radiographs.

Nikaido et al. [14] proposed to use image registration

approach. Nomir and Abdel-Mottaleb [15] compared

Fourier descriptors of tooth contours and other features

based on gray level information of teeth in images.



Dental Biometrics. Figure 11 Cumulative matching characteristics (CMC) curves for subject retrieval in a database of

133 subjects [6].
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Summary

Massive human disasters make it imperative to research

automatic dental identification methods to identify

anonymous human remains. Dental radiographs contain

valuable clues that often is the only source of informa-

tion to identify victims. An overview of automatic iden-

tification methods based on dental radiographs was

given in this entry. The accuracy and efficiency of current

approaches need to be further improved. A large data-

base of AM and PM radiographs needs to be collected

and made available to researchers to evaluate perfor-

mance of the automatic systems under development.
Related Entries

▶ Feature Extraction

▶ Forensic Applications, Overview

▶Hidden Markov Models

▶ Support Vector Machine
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Dental Identification
▶Dental Biometrics
Deployment
The engineering of technological ideas and devices to

become useful by-product in real-industry environ-

ments for operators and users.

▶Biometric Applications, Overview
Depth of Field (DOF)
Depth of Field (DOF) is the distance in front of and

beyond the subject that appears to be in focus. It

depends on the camera lens.

▶ Face Device

▶ Iris on the Move™
Dermis
Dermis is the inner layer of the skin. It varies in

thickness according to the location of skin. It is
0.3 nm on eyelid while 3.0 on back. It is composed of

three types of tissues which are present throughout the

layers named as: (1) collagen, (2) elastic tissue, and (3)

reticular fibers. The two layers of the dermis are the

papillary and reticular layers. The upper, papillary

layer, which is the outer layer, contains a thin arrange-

ment of collagen fibers. The lower, reticular layer is

thicker and made of thick collagen fibers that are

arranged parallel to the surface of the skin.

▶Anatomy of Hand
DET Curves
Detection Error Tradeoff curves are ROC (receiver

operating characteristic) type curves showing the

range of operating points of systems performing detec-

tion tasks as a threshold is varied to alter the miss

and false alarm rates and plotted using a normal devi-

ate scale for each axis. DET curves have the property

that if the underlying score distributions for the

two types of trials are normal, the curve becomes a

straight line. They have been widely used to present the

performance characteristics of speaker recognition

systems.

▶ Speaker Databases and Evaluation
Detector – Extractor
Traditionally, the term detector has been used to refer

to the tool that extracts the features from the image,

e.g., a corner, blob, or edge detector. However, this only

makes sense if it is a priori clears what the corners,

blobs, or edges in the image are, so one can speak of

‘‘false detections’’ or ‘‘missed detections.’’ This only

holds in the usage scenario where features are seman-

tically meaningful, otherwise extractor would probably

be more appropriate. The term detector is however

more widely used.

▶ Local Image Features
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Diffraction Limit
In optics, a fundamental limit on the resolution that

can be obtained with an imaging system. The limit

depends on the wavelength of the light used, the size

of the aperture of the optical system and the distance

between the optical system and object being imaged.

▶ Iris on the Move
Diffuse Reflection
Diffuse reflection is the reflection of light from a rough

surface. When a bunch of parallel light reach the rough

surface, the reflected light will be spread in all direc-

tions. It is the complement to specular reflection.

▶ Skin Spectroscopy
Digital Watermarking
▶ Iris Digital Watermarking
Digitizer
▶Digitizing Tablet
Digitizing Tablet

SONIA GARCIA-SALICETTI, NESMA HOUMANI

TELECOM SudParis, Evry, France
Synonyms

Digitizer; Graphic tablet; Touch tablet; Tablet
Definition

A digitizing tablet is a sensitive input device that con-

verts a hand-drawn trajectory into a digital on-line

form, which is a sequence. This hand-drawn trajectory

may be a signature input, handwriting, or hand-drawn

graphics. A digitizing tablet usually consists of an elec-

tronic tablet and a pen or a stylus. When the electronic

tablet communicates with the pen, it is said to be

‘‘Active’’ and in this case the pen contains an electronic

circuit; otherwise the tablet is said to be ‘‘Passive.’’ In

some cases, the digitizer only consists of an electronic

(Active) pen, used on either standard or special paper.

Active ▶ digitizing tablets sample the pen trajectory at

regular time intervals (around 10 ms), generating a

time stamp and associated time functions; passive

digitizing tablets require dedicated acquisition soft-

ware to retrieve the sequence of time stamps and asso-

ciated time functions. When digitizing human pen

input, the resulting output may have different forms

according to the type of digitizer used. Active digitizing

tablets capture a sequence of time functions, including

pen position, pen pressure, and pen inclination, while

passive digitizing tablets, with acquisition software,

only allow a time stamp and the position of the stylus

on the tablet to be captured. In the special case of

electronic pens, the digitizer may capture some of the

previously mentioned time functions plus some

others, such as pen acceleration.
Introduction

Digitizing tablets available nowadays can be based on

electromagnetic technology (Active digitizing tablets),

touch screen technology (Passive digitizing tablets),

hybrid technology combining both (respectively called

‘‘Active mode’’ and ‘‘Passive mode’’), or, finally, in the

case of digitizers consisting only of an electronic pen

(no tablet, just an Active Pen and a sheet of standard

or special paper) on a variety of principles (mechani-

cal, optical). Each kind of digitizing tablet has been

discussed here.
Active Digitizing Tablet:
Electromagnetic Technology

This is the technology of choice in biometric applica-

tions related to online signature verification and writer
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authentication by online handwriting, because it is the

technology with the highest resolution and accuracy at

the acquisition step.

In this case, the digitizing tablet is based on ▶ elec-

tromagnetic resonance technology [1] and it contains

electronics external to the touched surface. An active

digitizing tablet consists of a sensitive acquisition sur-

face incorporating a large number of overlapping loop

coils arranged horizontally and vertically, and a special

pen containing an inductor-capacitor circuit (LC cir-

cuit). Electromagnetic resonance then allows informa-

tion exchange between the tablet and the pen in the

following way: the tablet generates a magnetic field,

which is received by the LC circuit in the pen, and then

the pen’s resonant circuit makes use of this energy to

return an electromagnetic signal to the tablet [1]. Here,

the horizontal and vertical wires of the tablet operate as

both transmitters and receivers of magnetic signals.

This exchange of information allows the tablet to de-

tect the position, pressure, and inclination of the pen.

Using electromagnetic resonance technology in

particular allows the pen position to be sensed without

the pen even having to touch the tablet (ability to

hover) and also the user’s hand may rest on the flat

acquisition surface without affecting the acquisition

process (the capture of the time functions of position,

pressure, and inclination of the pen).

Active digitizing tablets are of two types: one

in which the tablet powers the pen, thus avoiding the

use of batteries in the pen (as in the case of well-known

digitizing tablets on the market, for example, Wacom

digitizers [1]) and the other in which the pen requires

batteries (as in the case of other vendors, such as

AceCad or Aiptek).

The ▶ sampling frequency of Active digitizing

tablets may be tuned for acquisition. For example, in

Wacom Intuos2 A6 USB tablet, the sampling frequency

of the hand-drawn signal can reach 200 Hz and is

frequently set around 100 Hz.
Passive Digitizing Tablets:
Touch-Screen Technology

In this case, all the electronics are inside the digitizing

tablet, based on touch-screen technology, and are acti-

vated by a non-sensitive stylus. Passive digitizing tablets

are integrated into other multifunction devices like PCs

(such as a Tablet PC), or handheld devices, such as
Personal Digital Assistants (PDAs) or Smartphones.

Specific acquisition software is required in these digiti-

zers in order to retrieve the sequence of time stamps

and associated time functions corresponding to the

hand-drawn trajectory on the Touch Screen. Passive

digitizing tablets allow fewer time functions (only a

time stamp and the associated pen position on the

Touch Screen), than Active digitizing tablets to be cap-

tured. Also, spatial resolution is variable in these digitiz-

ing tablets and is less precise than that obtained in

Active digitizing tablets.

There exist several types of touch-screen technology

(resistive, capacitive, infrared, Surface Acoustic Wave,

and Near Field Imaging) but the two mostly used for

online signature capture and more generally for online

handwriting recognition, that is, resistive and Pen-

Touch Capacitive technology, are discussed here.
Resistive Passive Digitizing Tablets

The most widely used Passive digitizing tablets today

are based on resistive technology [2]. This technology

can be summarized by the fact that a touch on the

screen generates a tension (a voltage) at a localized

point that is at the position of touch [2]. In a Resistive

Touch Sensor, there are two upper thin metallic con-

ductive layers separated by a thin space (often filled

with tiny spacer dots) in between two resistive layers

(Fig. 1). The Resistive Sensor is mounted above a

▶ liquid crystal display (LCD) to sense pressure. Pres-

sure from using either a stylus or a finger bends the

upper conductive layer, which is flexible, producing an

electrical contact between the two conductive layers

received by the LCD. A controller locates the pen by

measuring the tension between the point of contact

and the edges or corners of the touch screen. Resistive

Sensors cannot distinguish pens from fingers and do

not have the hover ability of Active digitizing tablets

(cannot detect proximity of the pen or finger without

actual pressure).
Pen-Touch Capacitive Passive Digitizing
Tablets

This technology can be summarized by the fact that

a touch with a tethered stylus (special stylus with a

conductive tip) reduces electrical charges on the
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screen [2]. A layer that stores electrical charges is

placed on the glass panel of the monitor. When the

stylus touches the screen, some of these charges are

transferred to the stylus and thus, the charge on the

capacitive layer decreases. This decrease is measured in

circuits located at each corner of the glass panel, and

the information relayed by the computer to the touch

screen driver software to determine the coordinates of

the touch.

This technology has three modes: the screen can be

set to respond to finger input only, pen input only, or

both. The pen stylus is used in particular for signature

capture and offers online handwriting recognition

facilities. One popular touch screen using this technol-

ogy is ClearTek II produced by 3M Touch Systems [3],

sometimes integrated in monitors (LCDSA121-PEN-

S-OF [4]); other examples of this technology are

Apple PDAs, such as iPhone and iPod (in particular,

Songtak Technology CoLtd [5] designed a special

stylus with a conductive tip for iPhone and iPod).
Hybrid Digitizing Tablets: Active Mode
and Passive Mode

Some digitizing tablets are hybrid as they can operate

in both Active and Passive modes. There are cases in

which such digitizing tablets combine capacitive and

electromagnetic technologies, such as the ClearPad and

Spiral sensors of Synaptics [6] (one of the leaders in

capacitive touch-sensing technology) and others in

which resistive and electromagnetic technologies are

combined, such as the Tablet-PC Sahara slate PC

i440D [7]. These hybrid digitizing tablets can distin-

guish pen input from finger input since, when there is a

magnetic field, what produces the touch is an Active
Pen. Microsoft’s Tablet PCs belong to this category of

hybrid digitizing tablets.
Digitizing Tablets with Active Pen Only

In this case, the digitizing tablet is completely mobile,

since it consists of a sensitive pen, which is like a normal

ballpoint pen in shape as well as grip. Such devices

even use ink for writing but, by means of different

principles, a sequence of data from the hand-drawn

signal is stored in the memory of the device.

There are different categories of Active Pens,

according to the underlying principles allowing the

acquisition of a sequence of data from a hand-drawn

signal. The first category is based on a ▶ piezoelectric

element that transforms a mechanical force into an

electrical signal (voltage); this category is represented

for instance by the ‘‘Marking Device’’ [8]. Another

category is based on ▶ strain gauges that transform

their deformation (strain) into a change in an electrical

signal, usually a resistive circuit; this category is repre-

sented by the SmartPen [9]. The third category is based

on optical sensors [10–15].

In the Electronic pen [8], the Marking Device

includes a pressure sensor and two acceleration sen-

sors. The pressure sensor is coupled to the tip of the

pen. The acceleration sensors adjacent to the pen tip

sense acceleration of the tip in two directions. These

sensors are based on piezoelectric transducers; for

example, the pressure sensor has at least one pair of

electrodes coupled to a piezoelectric element that is

compressed as a result of the pressure exerted on the

tip. The piezoelectric transducer then conveys the

resulting compression into an electrical signal. From

the sequence of pressure values, pen acceleration and
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Digitizing Tablet. Figure 3 Principle of the optical force

sensor.
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temporal information related to the sampling of the

acceleration sensors, the Marking Device extracts other

features, such as speed, position, and angular informa-

tion about the acceleration vector [8].

In the second category, a mechanical force is trans-

formed into an electrical signal, by the use of strain

gauges. An example of this technology is the SmartPen

[9], made by the LCI Computer Group. The pen con-

tains micro-electromechanical sensors, one sensing

both force (pressure) and acceleration, the other sens-

ing tilt, and a radio transmitter to send the informa-

tion to a computer. The LCI-SmartPen serves to

authenticate the signer of a document through the

dynamics of the signature. While the signer writes,

micro-sensors measure the inclination and pressure of

the pen and the acceleration of the pen tip in

three directions by means of a ring-shaped deformable

aluminium structure provided with strain gauges.

The information is processed and then transmitted

to a computer. The position of the pen and the pen tip

velocity are calculated through measurements obtained

from the force/acceleration sensor and the tilt sensor.

In the third category, optical principles are used to

acquire a data sequence from the hand-drawn signal.

The first type of Active Pen in this category relies

on a digital camera integrated in the pen and special

paper; this is the Anoto Active Pen (of Anoto AB

Company) [10, 11]. When writing with the Active

Pen on Anoto paper, which contains a special pattern

of numerous black dots, digital snapshots are taken

automatically by an integrated digital camera (more

than 50 pictures per second), and the dots of the

written pattern are illuminated by infrared light,

making them visible to the digital camera. In this

way, a sequence of information (timing, coordinates,

etc.) is captured from the hand-drawn signal. With the

very same principle, it is found that the Sony Ericsson

Chatpen [11] and the Logitech io pen [12] also require

the Anoto special paper.

The second type of Active Pen in this category relies

on ▶ diodes; an example is the V-Pen using an Optical

Translation Measurement sensor (OTM sensor), in-

cluding a laser diode, detectors, and optics integrated

into a small transistor-style package [13]. The laser

diode shines laser beams on to the writing surface

and the OTM sensor analyzes how movements of the

pen affect the reflected wavelengths [13]. The relative

motion in three dimensions is measured based on the
Doppler Effect – the change in frequency and wave-

length of a wave as perceived by an observer moving

relative to the source of the waves. The V-Pen performs

signature recognition by combining the dynamic char-

acteristics of the signing action to the signature shape.

Other Active Pens in this category have appeared as

research prototypes [14, 15]. The first measures pen

pressure (force) in three dimensions by Optical prin-

ciples [14]. The pressure sensor uses a flexible element

in combination with an optical displacement sensor

based on ▶ light emitting diodes (LED) and photo-

diodes. The pressure on the pen tip is applied to a

flexible structure that deforms. A plate, placed between

the infrared LED and the photodiode, moves together

with the deformed structure (Fig. 2). Its movement

changes the amount of incoming light on the photodi-

ode and, therefore, the electrical current of the Photo-

diode (that corresponds to a pressure value). In a

new device [15], pen inclination is measured by

means of a laser diode used as a light source. The

laser beam is reflected by a mirror mounted on the

end of the ink rod. The reflected beam is guided to a
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Quadrant Photodiode (QPD) via a cube beam splitter

(Fig. 3). When writing, the mirror attached to the ink

rod is tilted in X and Y directions and the path of the

reflected beam changes. Consequently, the optical spot

on the photodiode moves, causing variations in the

output currents of the QPD cells. The sampling fre-

quency of the output voltages is set at 200 Hz and the

resulting sequence of voltages is interpreted as pen

inclination information.
Related Entries
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▶Biometric Sensor and Device, Overview

▶ Feature Extraction
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Dimensionality Reduction
The process of reducing the number of features used by

a classifier in order to decrease measurement cost,

increase classification accuracy, and mitigate the pro-

blems associatedwith the curse-of-dimensionality. Fea-

ture selection or feature extraction techniques is used to

deduce an optimal (or, from a practical standpoint,

sub-optimal) set of features from a pool of available

features. Common examples include sequential for-

ward selection (SFS), sequential backward selection

(SBS), sequential forward floating search (SFFS), etc.

▶ Fingerprint Sample Synthesis

▶ Fusion, Feature-Level
Diode
Diode is an electronic component that allows the pas-

sage of current in only one direction. A light emitting

diode (LED) is an electronic semiconductor diode that

emits a single wavelength of light when electric current

passes through it. A photodiode is a semiconductor

diode that allows current to flow when it absorbs

photons (light).

▶Digitizing Tablet
Diphones
A diphone brackets exactly one phoneme-to-phoneme

transition. Diphone boundaries are usually positioned
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near the midpoint of the most stationary (non-

changing) region of two consecutive phonemes.

Theoretically, a phoneme inventory of 50 could give

rise to up to 2,500 diphones, but not all diphones exist

in a given language. For general American English, a

minimum of about 1,500 diphones are necessary.

▶Voice Sample Synthesis
Disclosure Check
▶Background Checks
Discriminative Classifier
A discriminative classifier is a classification algorithm

than learns a borer; one side it labels one class, the

other side it labels another. The border is chosen to

minimize error rate, or some correlated measure, ef-

fectively discriminating between the classes.

▶ Fusion, Quality-Based
Dissimilarity
▶Palmprint Matching
Distortion
Variances in the ridges and features of a fingerprint caused

by deposition pressure or movement are distortion.

▶Universal Latent Workstation
Distributed Computing
Distributed computing refers to the paradigm of not

having a central computing node in a sensor network.

Distributed computing uses parallel computations

over a multiple processing units, connected by a com-

munications network. Distributed computing allevi-

ates the need for having an extremely powerful

central computing node in a network, sacrificing per-

formance to obtain robustness to partial failure of the

network both in terms of individual node failures as

well as failure on the communication links.

▶ Surveillance
Distributed Detection
▶ Fusion, Decision-Level
Distributed Inference Making
▶ Fusion, Decision-Level
DNA Analysis
▶ Forensic DNA Evidence
DNA Fingerprinting/DNA Profiling
DNA fingerprinting is a term coined by Sir Alec Jeffreys

describing the multi-locus probes results obtained in
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1985 (i.e., bar code type output). The analogy with

fingerprint should be avoided, and the term DNA

profiling suggested by Evett & Buckleton preferred.

Indeed, the term profile indicates that this type of

analysis does not allow characterizing a person’s

DNA, but only given parts called markers. An explicit

mention of the markers and the technique used should

always accompany a given DNA profile.

▶ Forensic DNA Evidence
DNA Profiling
▶ Forensic DNA Evidence
DNA Typing
▶ Forensic DNA Evidence
Dolicocephalic
Dolicocephalic is the head form characterized by an

anteroposteriorly long and mediolaterally narrow

skull.

▶Anatomy of Face
Double Angle Representation
It refers to doubling the angles of the gradients making

them fit to represent ridge directions continuously.

▶ Fingerprint Features
Double Dipping
Double dipping refers to the unethical act of seeking

compensation, benefits, or privileges from one or more

sources, given only a single legitimate entitlement. In

the context of biometrics, double dipping usually occurs

when an individual seeks such unauthorized advantage

and/or gain by assuming multiple nominal identities.

▶ Fraud Reduction, Applications
Drive-up
▶ Iris on the Move™
Duplicate Detection
▶ Fraud Reduction, Applications
Dynamic Programming Comparison
Method
Method of mathematical programming developed by

Richard Bellman (Dynamic Programming, Princeton

University Press, 1957).

It is useful in obtaining the optimal strategy when

the objective function to be maximized is monotonic

and recursively defined depending on a variable. In the

dynamic programming comparison method for signa-

ture recognition, dynamic programming is applied to

obtain the best warping function of the location vari-

able of the template against the location variable of the

questionable image, using the similarity between the

questionable image and the template as the objective

function.

▶ Signature Recognition
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Dynamic Time Warping (DTW)
D

The DTW is a method used in text-dependent Speaker

Recognition. In this context, the training or testing

data are composed by a sequence of acoustic vectors

and the temporal order of the vectors is important. In

order to compute likelihood or a distance between two

of such sequences, two functions are needed, a frame to

frame distance function and a frame mapping func-

tion, able to align the individual acoustic frames of

both sequences. This time alignment function is man-

datory as two occurrences of the same linguistic mes-

sages, pronounced or not by the same speaker, present

different time characteristics, like the global pronunci-

ation speed. If there is a training template Tr with NTR

frames and a test utterance TE consisting in a sequence

of NTE
frames, the DTW is able to find the time

mapping function w(n) between TR and TE. In the
figure 1, the tying function w(n) is illustrated by the

tying of the TR frame at time x with the TE frame at

time y. Thus, the system can evaluate a distance D()

between TR and TE, defined by the following formula:

D TRTE ¼ 1

NTR

XNTR

k¼1

d vTR
n ; vTE

w nð Þ
� � !

;

where, vTR
n is a acoustic vector (cepstral vector) of the

training message TR at time n, vTR

w nð Þthe time-aligned

acoustic vector of the test message TE and d() is the

frame to frame distance. The distance estimated in

Eq. 11 (thanks to DTW algorithm) is used to make

the decision of accepting or rejecting the claimed

identity.

▶ Signature Matching

▶ Speaker Matching
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Introduction

Biometrics identification methods have proved to be

very efficient, more natural and easy for users than

traditionalmethods of human identification. Biometrics

methods truly identify humans, not keys and cards they

posses or passwords they should remember. The future

of biometrics leads to systems based on image analysis as

the data acquisition is very simple and requires only

cameras, scanners or sensors. More importantly, such

methods could be ▶ passive, which means that the

subject does not have to take active part in the whole

process or, in fact, would not even know that the pro-

cess of identification takes place. There are many pos-

sible data sources for human identification systems,

but the physiological biometrics has many advantages

over methods based on human behavior. The most

interesting human anatomical parts for passive, physi-

ological biometrics systems are face and ear.

There are many advantages of using the ear as a

source of data for human identification. Firstly, the

ear has a very rich structure of characteristic ear parts.

The location of these characteristic elements, their direc-

tion, angles, size and relation within the ear are distinc-

tive and unique for humans, and therefore, may be used

as a modality for human identification [1, 2].

Ear is one of the most stable human anatomical

feature. It does not change considerably during human
# 2009 Springer Science+Business Media, LLC
life while face changes more significantly with age than

any other part of human body [1, 2]. Face can also

change due to cosmetics, facial hair and hair styling.

Secondly, human faces change due to emotions and ex-

press different states of mind like sadness, happiness, fear

or surprise. In contrast, ear features are fixed and un-

changeable by emotions. The ear is not symmetrical – the

left and right ears are not the same. Due to forensics

and medical studies, from the age of 4 ears grow

proportionally, which is the problem of scaling

in computer vision systems [1].

Furthermore, the ear is a human sensor, therefore

it is usually visible to enable good hearing. In the

process of acquisition, in contrast to face identification

systems, ear images cannot be disturbed by glasses,

beard or make-up. However, occlusion by hair or earr-

ings is possible.

It is also important that ear biometrics is highly

accepted biometrics by users in possible access control

applications and government security such as visa/pass-

port programs. According to users, ear biometrics is less

stressful than fingerprinting. Moreover, users admitted

that they would feel less comfortable while taking part in

face images enrolment (people tend to care how they

look on photographs) [3]. Furthermore, in ear bio-

metrics systems there is no need to touch any devices

and therefore there are no problems with hygiene.

It is worth mentioning that ear images are more

secure than face images, mainly because it is very

difficult to associate ear image with a given person

(in fact, most of users are not able to recognize their

own ear image). Therefore, ear image databases do not

have to be as much secured as face databases, since the

risk of attacks is much lower.

On the other hand, ear biometrics is not a natural

way of identifying humans. In real life we do not look

at people ears to recognize them. Our identification

decision is rather based on faces, voice or gait. The

reason is that people lack in vocabulary to describe

ears. The main task of ear biometrics is to define

such vocabulary – in context of the computer vision
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systems, such vocabulary is called ‘‘features.’’ In ear

biometrics computer vision systems, the main task is

to extract such features, that will describe human ears

in a distinctive way.

Even though ear biometrics have not been imple-

mented commercially so far, there are already many

methods of feature extraction from ear images devel-

oped. In this paper our goal is to overview these app-

roaches and methods. The summary of the research

groups with the proposed approaches and methods is

given in the Table 1.
2D Ear Biometrics

In this section various approaches to 2D ear biometrics

are presented. Firstly, methods based on geometrical

parameters are overviewed. Then the global approach

to feature extraction from 2D ear images is surveyed.
Geometrical Approach to Feature
Extraction

The first to explore the possibility of using ear as a

biometric in a computer vision system were Burge and

Burger [4, 5]. They presented the geometrical method
Ear Biometrics. Table 1 Feature extraction approaches

for ear biometrics

Research group Proposed methodology

Burge and Burger 2D – Voronoi Diagrams

Choraś 2D – Geometrical Methods

Hurley et al. 2D – Force Field
Transformation

Victor et al. 2D – PCA

Lu et al. 2D – ASM

Moreno et al. 2D – Compression Networks

Sana et al. 2D – Haar Wavelets

Yuan and Mu 2D – ASM

Arbab-Zavar 2D – SIFT, model

Chen and Bhanu 3D – ICP and shape
descriptors

Yan and Bowyer 3D – ICP, edge-based and
PCA

Cadavid and Abdel-
Mottaleb

3D – SFM, SFS
based on building neighborhood graphs and Voronoi

diagrams of the detected edges.

Additionally, Burge and Burger pointed out that

▶ thermal imaging may solve the problem of ear

occlusion (mainly by hair). They proposed to use

segmentation algorithm based on color and texture

of ear thermogram (ear thermal image).

Choraś developed several methods of geometrical

feature extraction from ear images [6–8]. The pro-

posed ‘‘Geometrical Parameters Methods’’ had been

motivated by actual procedures used in the police

and forensic evidence search applications. In reality,

procedures of handling ear evidence (earprints and/or

ear photographs) are based on geometrical features

such as size, width, height and earlobe topology [1].

Choraś developed and tested the following meth-

ods in order to extract distinctive geometrical features

from human ear 2D images:

� Concentric circles based method – CCM

� Contour tracing method – CTM

� Angle-based contour representation method – ABM

� Triangle ratio method – GPM�TRM

� Shape ratio method – GPM�SRM

Moreover, in Choraś work the contour detection algo-

rithm and the method of ear contour image processing

in order to select the most meaningful contours have

been developed. Ear pre-classification method based

on the longest contour orientation have also been

proposed.

Choraś’ methods were tested in laboratory-

conditions. His ear image database was created in the

controlled environment. The most effective methods

were GPM and CTM. The Receiver Operating Charac-

teristic curves for each of the geometrical method are

presented in Fig. 1.

Yuan and Tian presented ear contour detection

algorithm based on local approach [9]. Edge Tracking

is applied to three regions in which contours were

extracted in order to obtain clear, connected and

non-disturbed contour, which may be further used in

the recognition step.
Global Approach to Feature Extraction

Hereby, the global approaches to feature extraction

from 2D ear images are presented. Principal Com-

ponent Analysis, Force Field Transformations and
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methods (from left to right) [8].
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Wavelets have been applied to ear biometrics human

identification. Recently, the idea of recognition based

on ear models gained some popularity and attention.

Victor et al. used Principal Component Analysis

(PCA) in the experiment comparing ear and face

properties in order to successfully identify humans in

various conditions [10, 11].

In case of faces, the authors perform recognition on

the basis of eigen faces. In case of ear biometrics, the

authors used a set of eigenears. Their work proved

that ear images are a very suitable source of data for

identification and their results for ear images were

not significantly different from those achieved for face

images.

The proposed methodology, however, was not

fully automated, since the reference (so called

landmarkpoints) had to be manually inserted into

images. In case of ear images these landmark points

are manually marked in the Triangular Fossa and in the

point known as Antitragus.

The sample ear image with the marked landmark

points and the corresponding eigenear vector are

shown in Fig. 2.
Hurley et al. introduced a method based on energy

features of the 2D image [12, 13]. They proposed to

perform force field transformation (step 1) in order to

find energy lines, channels and wells (step 2).

Moreno et al. presented another approach to ear

image feature extraction [14]. Their work was based on

macrofeatures extracted by compression networks.

Several neural networks methods and classifiers based

on 2D intensity images were presented:

� Compression Networks,

� Borda Combination,

� Bayesian,

� Weighted Bayesian Combination.

The best results of 93% were achieved by the Compres-

sion Network ear identification method.

Sana et al. developed a new approach to ear

biometrics based on Haar wavelets [15]. After ear detec-

tion step, Haar Wavelet Transformation is applied and

wavelet coefficients are computed. They performed their

experiments on two ear datasets (from Indian Institute of

Technology Kanpur and from Saugor University) and

report accuracy of about 96% on both databases.
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Lu et al. used Active Shape Models (ASM) to model

the shape and local appearances of the ear in a statistical

form [16]. Then Eigenears have been also used in a final

classification step. They used both left and right ear

images and showed that their fusion outperforms results

achieved for single ears separately. They achieved 95.1%

recognition rate for double ears. Their results for left,

right and combined ears are presented in Fig. 3.
Ear Biometrics. Figure 2 Ear image with the manually marke

used in the PCA-based ear recognition [10].

Ear Biometrics. Figure 3 Cumulative Matching Score Curve

et al. [16].
Yuan and Mu also explored the advantages of im-

proved Active Shape Models (ASM) to the task of ear

recognition [17]. They applied their algorithm to

the rotation-invariance experiment. The interesting

contribution of their work is the comparison of right

and left rotation of the same ears. They found out that

right head rotation of 20 degree is acceptable for rec-

ognition. For left head rotation, the acceptable angle is
d landmark points (Triangular Fossa and Antitragus)

for left, right and combined ears achieved by Lu
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10 degree. Ear recognition results for different degrees

of head rotations are presented in Fig. 4.

Arbab-Zavar et al. proposed to use Scale Invariant

Feature Transform (SIFT) to extract the ear salient

points and to create human ear model later used in

recognition (Fig. 5) [18].
Their ear model is constructed using a stochastic

method. In their experiments they proved that using

ear model outperforms PCAmethod in case of occlud-

ed ears. The results of ear recognition for occluded ears

(40% from top, and 40% from left) in comparison to

PCA are given in Fig. 6.



Ear Biometrics. Figure 5 Detected ear SIFT

keypoints [18].
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3D Ear Recognition

Recently, the possibility of human identification on the

basis of 3D images have been extensively researched.

Various approaches towards multimodal 2D+3D ear

biometrics as well as 3D ear biometrics, mainly based

on ICP (Iterative Closest Point), have been recently

developed and published [19–21, 23].

Chen and Bhanu proposed 3D ear recognition

based on local shape descriptor as well as two-step

ICP algorithm [19]. Additionally, they developed the

algorithm to detect ear regions from 3D range images.

They collected their own ear image database (UCR

database) consisting of 902 images from 302 subjects.

Their results of ear detection, matching and identifica-

tion are close to 100% recognition rate [20].

Yan and Bowyer developed three approaches to

3D ear recognition problem: edge-based, ICP and

3D�PCA. Moreover they tested various approaches

(for example 2Dþ3D) in multimodal biometric

scenario [22].

They designed fully automated ear recognition sys-

tem and achieved satisfactory results of 97.6% Rank-1

recognition [23]. The ear recognition performance re-

sults drawn as Receiver Operating Characteristic Curve
and Cumulative Matching Score Curve are presented

in Fig. 7 [23].

In their research they did not exclude partially oc-

cluded ears or ears with earrings. They performed

experiments on the largest ear database collected so far.

UND ear database is now becoming a standard ear

database for ear recognition experiments. It is available

for free at: www.nd.edu%/7Ecvrl/UNDBiometrics-

Database.html.

Cadavid and Abdel-Mottaleb built 3D ear models

from captured video frames. Then they used ‘‘structure

from motion’’ (SFM) and ‘‘shape from shading’’ (SFS)

techniques to extract 3D ear characteristics [24]. They

were first to explore the 3D ear biometrics based on

video sequences, not on images acquired by 3D range

scanners.
Conclusion

Human ear is a perfect source of data for passive

person identification in many applications. In a grow-

ing need for security in various public places, ear

biometrics seems to be a good solution, since ears are

visible and their images can be easily taken, even with-

out the examined person’s knowledge.

The article presented an overview of various

approaches and solutions to a problem of feature extrac-

tion from ear images. The summary of the research

groups with the proposed approaches and methods is

given in the Table 1.

It is noticeable that even though all of the proposed

techniques are developed to solve the same image

processing task, many totally different methodologies

and algorithms have been developed.

Such situation proves that ear biometrics has lately

gained much interest and popularity in computer sci-

ence community. It also may be the indication that ear

biometrics will become one of a standard means of

human identification in unimodal or hybrid biometrics

systems.

Ear biometrics can also be used to enhance effec-

tiveness of other well-known biometrics, by its imple-

mentation in multimodal systems. Since most of the

methods have some drawbacks, the idea of building

multimodal (hybrid) biometrics systems is gaining lot

of attention [25]. Due to its advantages, ear biometrics

seems to be a good choice to support well known

methods like voice, hand, palm or face identification.

http://www.nd.edu/7Ecvrl/UNDBiometricsDatabase.html
http://www.nd.edu/7Ecvrl/UNDBiometricsDatabase.html
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Summary

In this paper the holistic overview of ear recognition

methods for biometrics applications is presented. 2D

and 3D image processing algorithms applied to ear

feature extraction are surveyed. Even though ear

biometrics have not been implemented commercially

so far, as pointed out by Hurley et al. ear biometrics is

no longer in its infancy and has shown encouraging

progress [26]. In this work strong motivation for using
the ear as a biometrics is given, and afterwards, the

geometrical approach to 2D ear biometrics, the global

approach to 2D ear biometrics and 3D ear biometrics

methods are presented, respectively.
Related Entries

▶Ear Biometrics, 3D

▶Physical Analogies for Ear Recognition



Ear Biometrics. Figure 7 Yan and Bowyer’s 3D ear recognition results: Receiver Operating Characteristic Curve and

Cumulative Matching Score Curve, respectively [ 23].
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Ear Biometrics, 3D. Figure 1 The external ear and its

anatomical parts.
Definition

The human ear is a new class of relatively stable

biometrics. After decades of research of anthropomet-

ric measurements of ear photographs of thousands of

people, it has been found that no two ears are alike, even

in the cases of identical and fraternal twins, triplets, and

quadruplets [1]. It is also found that the structure

of the ear does not change radically over time. Ear

biometric has played a significant role in forensic sci-

ence and its use by law enforcement agencies for many

years [1] but most of this work has been on analyzing

the ▶ earprints manually. Recent work on ear

biometrics focuses on developing automated techni-

ques for ear recognition [2]. Ear biometrics can be

based on a 2D gray scale or color image, 3D range

image, or a combination of 2D and 3D images. Typi-

cally, an ear biometric system consists of ear detection

and ear recognition modules.
Introduction

Rich in features, the human ear is a stable structure

that does not change much in shape with the age

and with facial expressions (see Fig. 1). Ear can be

easily captured from a distance without a fully cooper-

ative subject although it can sometimes be hidden

by hair, muffler, scarf, and earrings. Researchers have

developed several biometric techniques using the 2D

intensity images of human ears [3–8].

Burge and Burger [3, 4] developed a computer

vision system to recognize ears in the intensity images.

Their algorithm consisted of four components: edge

extraction, curve extraction, construction of a graph

model from the Voronoi diagram of the edge segments,
and graph matching. Hurley et al. [5] applied a

force field transform to the entire ear image and

extracted wells and channels. The wells and channels

form the basis of an ear’s signature. To evaluate dif-

ferences among ears, they used a measure of the

average normalized distance of the well positions,

together with the accumulated direction to the posi-

tion of each well point from a chosen reference point.

Later, Hurley et al. [6] measured convergence to

achieve greater potency in recognition. Chang et al.

[8] used principal component analysis for ear and

face images and performed experiments with face,

ear, and face plus ear. Their results showed that

multi-modal recognition using both face and ear

achieved a much better performance than the individ-

ual biometrics.

The performance of these 2D techniques is greatly

affected by the pose variation and imaging conditions.

However, ear can be imaged in 3D using a range sensor

which provides a registered color and range image.

Figure 2 shows an example of a range image and the

registered color image acquired by a Minolta Vivid

300 camera. A range image is relatively insensitive to

illuminations and contains surface shape information

related to the anatomical structure, which makes it

possible to develop a robust 3D ear biometrics. Exam-

ples of ear recognition using 3D data are [9–13]. The

performance of 3D approaches for ear recognition is

significantly higher than the 2D approaches. In the

following, the chapter focuses on 3D approaches for

ear detection and recognition.



Ear Biometrics, 3D. Figure 2 Range image and color image captured by a Minolta Vivid 300 camera. In images (a) and

(b), the range image of one ear is displayed as the shaded mesh from two viewpoints (the units of x, y and z are in

millimeters). Image (c) shows the color image of the ear.
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Datasets

There are currently two datasets for 3D ear per-

formance evaluation: The University of California at

Riverside dataset (the UCR dataset) and the University

of Notre Dame public dataset (the UND dataset). In

the UCR dataset there is no time lapse between the

gallery and probe for the same subject, while there is a

time lapse of a few weeks (on the average) in the UND

dataset.

UCR Dataset: The data [10] are captured by a

Minolta Vivid 300 camera. This camera uses the light-

stripe method to emit a horizontal stripe light to the

object and the reflected light is then converted by trian-

gulation into distance information. The camera outputs

a range image and its registered color image in less than

1 s. The range image contains 200 � 200 grid points

and each grid point has a 3D coordinate (x,y,z) and a

set of color (r,g,b) values. During the acquisition, 155

subjects sit on a chair about 0.55–0.75 m from the

camera in an indoor office environment. The first
shot is taken when a subject’s left-side face is approxi-

mately parallel to the image plane; two shots are taken

when the subject is asked to rotate his or her head to

the left and to the right side within�35∘ with respect

to his or her torso. During this process, there can be

some face tilt as well, which is not measured. A total of

six images per subject are recorded. A total of 902 shots

are used for the experiments since some shots are not

properly recorded. Every person has at least four shots.

The average number of points on the side face scans

is 23,205. There are there different poses in the collected

data: frontal, left, and right. Among the total 155 sub-

jects, there are 17 females. Among the 155 subjects,

6 subjects have earrings and 12 subjects have their

ears partially occluded by hair (with less than 10%

occlusion).

UND Dataset: The data [13] are acquired with a

Minolta Vivid 910 camera. The camera outputs a

480 � 640 range image and its registered color image

of the same size. During acquisition, the subject sits

approximately 1.5 m away from the sensor with the left
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side of the face toward the camera. In Collection F,

there are 302 subjects with 302 time-lapse gallery-pro.

Collection G contains 415 subjects of which 302 sub-

jects are from Collection F. The most important part of

Collection G is that it has 24 subjects with images taken

at four different viewpoints.
E
Ear Detection

Human ear detection is the first task of a human ear

recognition system and its performance significantly

affects the overall quality of the system. Automated

techniques for locating human ears in side face range

images are: (i) template matching based detection, (ii)

ear shape model based detection, and (iii) fusion of

color and range images and global-to-local registration

based detection. The first two approaches use range

images only, and the third approach fuses the color and

range images.

The template matching based approach has two

stages: offline model template building and online ear

detection. The ear can be thought of as a rigid object

with much concave and convex areas. The averaged

histogram of ▶ shape index (a quantitative measure of

the shape of a surface) represents the ear model tem-

plate. During the online detection, first the step edges are

computated and thresholded since there is a sharp step

edge around the ear boundary, and then image dilation

and connected-component analysis is performed to find

the potential regions containing an ear. Next, for every

potential region, the regions are grown and the dissimi-

larity between each region’s histogram of shape indexes

and the model template is computed. Finally, among all

of the regions, we choose the one with the minimum

dissimilarity as the detected region that contains ear.

For the ear shape model based approach, the ear

shape model is represented by a set of discrete 3D verti-

ces corresponding to ear helix and anti-helix parts. Since

the two curves formed by the ear helix and anti-helix

parts are similar for different people, we do not take into

account the small deformation of two curves between

different persons, which greatly simplifies the ear shape

model. Given side face range images, first the step edges

are extracted; then the edge segments are dilated,

thinned, and grouped into different clusters which are

the potential regions containing an ear. For each cluster,

the ear shape model is registered with the edges. The
region with the minimum mean registration error is

declared as the detected ear region; the ear helix and

anti-helix parts are identified in this process.

In the above two approaches, there are some edge

segments caused by non-skin pixels, which result in

the false detection. Since a range sensor provides a

registered 3D range image and a 2D color image (see

Fig. 2), it is possible to achieve a better detection

performance by fusion of the color and range images.

This approach consists of two-steps for locating the ear

helix and the anti-helix parts.

In the first step a skin color classifier is used to

isolate the side face in an image by modeling the skin

color and non-skin color distributions as a mixture of

Gaussians. The edges from the 2D color image are

combined with the step edges from the range image

to locate regions-of-interest (ROIs) that may contain

an ear. In the second step, to locate an ear accurately,

the reference 3D ear shape model, which is represented

by a set of discrete 3D vertices on the ear helix and the

anti-helix parts, is adapted to individual ear images by

following a global-to-local registration procedure in-

stead of training an active shape model built from a

large set of ears to learn the shape variation. In this

procedure after the initial global registration local de-

formation process is carried out where it is necessary to

preserve the structure of the reference ear shape model

since neighboring points cannot move independently

under the deformation due to physical constraints. The

bending energy of thin plate spline, a quantitative

measure for non-rigid deformations, is incorporated

into the optimization formulation as a regularization

term to preserve the topology of the ear shape model

under the shape deformation. The optimization pro-

cedure drives the initial global registration toward the

ear helix and the anti-helix parts, which results in

the one-to-one correspondence of the ear helix and

the anti-helix between the reference ear shape model

and the input image. Figure 3 shows various examples

in which the detected ear helix and the anti-helix parts

are shown by the dots superimposed on the 2D color

images and the detected ear is bounded by the rectan-

gular box. We observe that the ears and their helix and

anti-helix parts are correctly detected. This approach

provides very high detection accuracy. A comparison

of the three approaches shows that the first approach

runs the fastest and it is simple, effective, and easy to

implement. The second approach locates an ear more



Ear Biometrics, 3D. Figure 3 Results of ear localization on the UCR dataset. The helix and the anti-helix parts are marked

by the bright dots and the detected ear is bounded by a rectangular box.
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accurately than the first approach since the shape

model is used. The third approach performs the best

on both the UCR and the UND datasets and it runs

slightly slower than the other approaches.
Ear Recognition

The approach for ear detection is followed to build a

database of ears that belong to different people. For ear

recognition, two representations are used: the ear
helix/ antihelix representation obtained from the detec-

tion algorithm and a new ▶ local surface patch repre-

sentation computed at feature points to estimate the

initial rigid transformation between a gallery-probe

pair. For the ear helix/antihelix representation, the

correspondence of ear helix and antihelix parts (avail-

able from the ear detection algorithm) between a

gallery-probe ear pair is established and it is used to

compute the initial rigid transformation. For the local

surface patch (LSP) representation, a local surface de-

scriptor (see Fig. 4) is characterized by a centroid, a



Ear Biometrics, 3D. Figure 4 Illustration of a local surface patch (LSP). (a) Feature point P is marked by the asterisk and

its neighbors N are marked by the interconnected dots. (b) LSP representation includes a 2D histogram, a surface

type and centroid coordinates. (c) The 2D histogram is shown as a gray image in which the brighter areas correspond

to bins with the high frequency of occurrence.
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local surface type, and a 2D histogram. The 2D histo-

gram and surface type are used for comparison of

LSPs and the centroid is used for computing the

rigid transformation. The patch encodes the geo-

metric information of a local surface. The local surface

descriptors are computed for the feature points, which

are defined as either the local minimum or the local

maximum of shape indexes. By comparing the local

surface patches for a gallery and a probe image, the

potential corresponding local surface patches are

established and then filtered by geometric constraints.

Based on the filtered correspondences, the initial rigid

transformation is estimated. Once this transformation

is obtained using either of the two representations, it is

then applied to randomly selected control points of the

hypothesized gallery ear in the database. A modified

iterative closest point (ICP) (▶ ICP algorithm) algo-

rithm is run to improve the transformation, which

brings a gallery ear and a probe ear into the best

alignment, for every gallery probe pair. The root

mean square (RMS) registration error is used as the

matching error criterion. The subject in the gallery

with the minimum RMS error is declared as the recog-

nized person in the probe.

The experiments are performed on the the UCR

data set and the UND data.

Examples of correctly recognized gallery-probe ear

pairs using the helix/anti-helix representation is shown

in Fig. 5. Similarly, examples of correctly recognized
gallery-probe ear pairs using local surface patch repre-

sentati on are shown in Fig . 6. From Figs. 5 and 6, we

observe that each gallery ear is well aligned with the

corresponding probe ear.

The recognition results are shown in Table 1. In order

to evaluate the proposed surface matching schemes, we

perform experiments under two scenarios: (1) One

frontal ear of a subject is in the gallery set and another

frontal ear of the same subject is in the probe set and

(2) Two frontal ears of a subject are in the gallery set

and the rest of the ear images of the same subject are in

the probe set. These two scenarios are denoted as ES1

and ES2, respectively. ES1 is used for testing the per-

formance of the system to recognize ears with the

same pose; ES2 is used for testing the performance of

the system to recognize ears with pose variations.

A comparison of the LSP representation with

the spin image representation for identification and

verification is given in [10]. This comparison showed

that the LSP representation achieved a slightly better

performance than the spin image representation.

For the identification, usually a biometrics system

conducts a one-to-many comparison to establish an indi-

vidual’s identity. This process is computationally expen-

sive, especially for a large database. There is a need

to develop a general framework for rapid recognition of

3D ears. An approach that combines the feature embed-

ding and support vector machine (SVM) rank learning

techniques is described in [2]. It provides a sublinear



Ear Biometrics, 3D. Figure 5 Two examples of correctly recognized gallery-probe pairs using the ear helix/anti-helix

representation. (a) Examples of probe ears with the corresponding gallery ears before alignment. (b) Examples of probe

ears with the correctly recognized gallery ears after alignment. The gallery ear represented by the mesh is overlaid on the

textured 3D probe ear. The units of x, y and z are millimeters (mm).
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time complexity on the number of models without

making any assumptions about the feature distribu-

tions. The experimental results on the UCR dataset

(155 subjects with 902 ear images) and the UND data-

set (302 subjects with 604 ear images) containing 3D

ear objects demonstrated the performance and effec-

tiveness of the approach. The average processing time

per query are 72 and 192 s, respectively, on the two

datasets with the reduction by a factor of 6 compared

with the sequential matching without feature embed-

ding. With this speed-up, the recognition perfor-

mances on the two datasets degraded 5.8% and 2.4%,

respectively. The performance of this algorithm is scal-

able with the database size without sacrificing much

accuracy.

The prediction of the performance of a biometric

system is also an important consideration in the

real world applications. Match and non-match dis-

tances obtained from matching 3D ears are used to
estimate their distributions. By modeling cumula-

tive match characteristic (CMC) curve as a binomial

distribution, the ear recognition performance can be

predicted on a larger gallery [2]. The performance

prediction model in [2] showed the scalability of

the proposed ear biometrics system with increased

database size.
Summary

Ear recognition, especially in 3D, is a relatively new

area in biometrics research.The experimental results

on the two large datasets show that ear biometrics

has the potential to be used in the real-world applica-

tions to identify/authenticate humans by their ears.

Ear biometrics can be used in both the low and

high security applications and in combination with

other biometrics such as face. With the decreasing



Ear Biometrics, 3D. Table 1 Recognition results on UCR and UND datasets using helix/anti-helix and LSP representation

Dataset Helix/anti-helix representation LSP representation

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5 Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

UCR ES1(155,155) 96.77% 98.06% 98.71% 98.71% 98.71% 94.84% 96.77% 96.77% 96.77% 96.77%

UCR ES2(310,592) 94.43% 96.96% 97.80% 98.31% 98.31% 94.43% 96.96% 97.30% 97.64% 97.80%

UND(302,302) 96.03% 96.69% 97.35% 97.68% 98.01% 96.36% 98.01% 98.34% 98.34% 98.34%

Ear Biometrics, 3D. Figure 6 Two examples of the correctly recognized gallery-probe pairs using the LSP representation.

The ears have earrings. Images in column (a) show color images of ears. Images in column (b) and (c) show the probe ear

with the corresponding gallery ear before the alignment and after the alignment, respectively. The gallery ears

represented by the mesh are overlaid on the textured 3D probe ears. The units of x, y and z are in millimeters (mm).
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cost and size of a 3D scanner and the increased perfor-

mance, we believe that 3D ear biometrics will be highly

useful in many real-world applications in the future.

It is possible to use the infrared images of ears to

overcome the problem of occlusion of the ear by

hair. Recent work in acoustics allows one to (a) deter-

mine the impulse response of an ear [14] and (b) make

use of otoacoustic emissions [15] as a biometric. Thus,

it is possible to combine shape-based ear recognition

with the acoustic recognition of ear to develop an

extremely fool-proof system for recognizing a live

individual.
Related Entries

▶ Face Recognition

▶ Face Recognition, Overview
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Ear Recognition
▶Ear Biometrics
Earmark(s)
Earmark(s) are the ear impression(s) recovered typi-

cally from the crime scene.

▶Earprints, Forensic Evidence of
Earprints
Earprints are the control impressions taken from the

ears of known potential donors.

▶Earprints, Forensic Evidence of
Earprints, Forensic Evidence of

CHRISTOPHE CHAMPOD

Institut de Police Scientifique, Ecole des

Sciences Criminelles, Université de Lausanne,

Switzerland
Synonyms

Earprints; Earmark(s); Identification; ACE-V
Definition

Forensic evidence of earprint is the field of forensic

science devoted to the collection and comparison of

▶ earmark(s) (generally left in association to a crime

scene) with earprints obtained from ears of individuals

of interest under controlled condition. Anthropomet-

ric studies and empirical evidence have shown that the

forms left by an ear are very discriminating and allow

bringing evidence of reasonable strength regarding the

identity of sources.

Current research aims at bringing structured data

relevant to the forensic examination process and move

from a field dominated by subjectively informed expe-

rience and anecdotal evidence to a field where trans-

parent data allows an assessment of the case.
Introduction

The use of earmarks in forensic science is a conse-

quence of the recovery of such marks during crime

scene investigation. Earmarks are left on surfaces

where one applies his or her ear to listen. The deposi-

tion mechanism is similar to the mechanism whereby
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fingermarks are deposited on surfaces when touched

with bare hands. Secretions originating mainly from

sebaceous glands cover the ear. When the ear is put

in contact with a surface it leaves a mark (often not

readily visible), a form corresponding to the shape

of the external organ applied. Such marks are often

detected in conjunction with the search for latent

fingermarks using the same detection techniques.

The surface systematically searched for earmarks are

the points of access (doors or windows) and their

recovery translates a typical modus operandi for

the perpetration of the offence. Marks are generally

detected by applying a powdering technique on the

surface. Then themark is described, located and photo-

graphed, and preserved on an adhesive or gelatine lifter.

An example of a recovered mark is shown in Fig. 1

with indications of the typical nomenclature used

to describe the features of the ear (the figure shows

directly the mark, whereas these anatomical descrip-

tions refer to the ear itself).
Earprints, Forensic Evidence of. Figure 1 Earmark recovered

designated with arrows.
A useful model that helps scientists focus on their

role is called the ‘Investigator/Evaluator’ dichotomy. In

reality, scientists operate in both investigator and eva-

luator modes in many of the cases. Providing opinion

in these two different modes requires different mind-

sets. An understanding of these differences is essential

in the context of earprints analysis.

In Investigator mode, indeed it is the scientist’s role

to form a reasonable hypothesis from the observations.

While attending a crime scene and recovering ear-

marks, the police may put forward the following inves-

tigative questions:

� How many people were involved?

� What potential set of actions may have given rise to

this (these) mark(s)?

� What is the range of height of the person at the

source of that (these) mark(s)?

� Using reference collections or databases, could you

suggest a name to the investigation?
from a windowpane. Anatomical features are
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The scientist will form and communicate what may

explain the observations based on his knowledge, ex-

perience or through the use of databases. Generally,

scientists operate in thismode before a suspect is arrested

and charged with an offence. Opinions provide direc-

tions and options to the investigation and it is accepted

that some directions offered may be misleading. The

problem arises when this data is not further scrutinized

and used as evaluative evidence in court. In evaluator

mode, the role of the scientist is to form a view on the

weight of evidence to be assigned to the scientific

findings. This is the primary role of the scientist

in what may be called post-charge cases; i.e., cases in

which a suspect has been arrested and charged. In this

role, the concept of weight of evidence associated with

the findings should be approached more carefully.

The focus here will be on this evaluative use of ear-

print evidence as a means to guide to the establishment

of the identity of the donor of the recovered earmark(s).
Current Practice of Earmark to Earprints
Comparison

The protocol used by practitioners to compare

earmark(s) and earprints corresponds to the ▶ACE-V

process used in other identification fields (e.g., finger-

prints) [1]. It can be summarized through the follow-

ing steps:

1. The earmarks and the earprints are evaluated

to assess which parts or features are visible and

constitute pressure points. A specialized terminol-

ogy is used to designate the anatomical parts of
Earprints, Forensic Evidence of. Figure 2 Earprints taken fro
the ear that came into contact with the substrate

(Fig. 1). Pressure points correspond to the cartilagi-

nous parts of the ear that came into contact with the

surface. The pressure on these parts is generally

higher than that on the soft tissues, hence producing

signs of stronger pressures on the mark as well. Also,

because cartilaginous parts are less malleable than

the soft tissues (such as the lobule), these pressure

points tend to be more limited within source

variability.

2. Because the ear is a flexible three-dimensional object,

consisting of a cartilage and a covering skin, pressure

of application and rotation of the head cause differ-

ences between the successive prints from the same

individual. Hence, an examination of a series of

known earprints from one donor, taken under vari-

ous conditions, allows the creation of an empirical

model of the expected variations caused by pressure

and distortion (Fig. 2). This analysis will set the

tolerances that will be applied during the comparison

process either to retain a potential donor as a ‘‘match’’

or to exclude him or her as being the contributor.

3. The earmark is compared with the earprints using

overlays. The examiners look at the agreement in

pressure points and measurements. The more sta-

ble features being: the crus of the helix; the tragus;

and the anti-tragus. They act as anchoring points

for the overlay.

4. Differences in the comparison process are evalua-

ted by the examiners in the light of the toleran-

ces defined by the known effect of pressure and

distortion. A decision is made as to whether any

difference is significant (hence leading to an exclu-

sion) or can be accounted for (hence leading to a
m a given individual with three degrees of pressures.
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earprint using the superimposition technique.
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‘‘match’’). The assessment of potential differences

between marks and prints is left to the examiner’s

judgement.

5. From the quality and extensiveness of the overlay, a

judgement is made as to whether the earmark and

the earprints share a common origin.

6. The demonstration of the association is provided

either by transparency overlays and using montages

made of cut out photographs (mark and print) or

using video overlays (Fig. 3).

The identification process is described mainly as

a matching process – an assessment of the adequacy

of superimposition between the mark and the prints –

but the crucial question of the value to be given to

a match is left to the examiner’s judgement. In other

words, when a match is declared, the assessment of the

rarity of the shared features taking into account the

tolerances relies on the examiner’s experience.
Critical Analysis

Earmark to earprints comparison relies at the moment

more on individual experience and judgement than on

a structured body of research undertaken following

strict scientific guidelines. The recognition process is

highly subjective that exploits the extraordinary power

of the human eye-brain combination.
Compared to established identification fields, such

as fingerprints or handwriting comparison, the body

of literature pertaining to earmarks identification is

rather limited. About 60 papers have been published,

a limited number in recent peer-reviewed journals.

Scientific research has been mainly devoted to the

study of the variability of ear morphology based on

the examination of photographs of ear. The relevance

of this body of knowledge to cases involving ear

impressions found for example on window panes is

rather limited.

Most published studies on earprints have been

carried out on photographs of ears and not on the

earprints or earmarks [1, 2]. The limitations of such

studies are obvious there is an attempt to apply these

data to the assessment of earmark to earprint compar-

isons for the following reasons:

� Numerous morphological features of the ear are not

discernible (or cannot be classified) on earmarks.

� It is not feasible to carry out many measurements

on earmarks.

� The within-source variability of features and mea-

surements has not been fully investigated (variabil-

ity, observed on marks of the same person, caused

by the process of leaving and recovering marks).

� The same applies to the assessment between-

persons variability (how marks from different

donors can be distinguished). It is expected that
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the distinguishability of earmarks from different

persons will be much lower than what is observed

on photographs of the ear.

There is no vast empirical study exploring the

chance of finding indistinguishable marks left by dif-

ferent individual ears. The field of earmark identifica-

tion is at its infancy and would benefit from a

structured program of research.
Admissibility in Court

Within the European community, there is no specific

admissibility rule regarding scientific evidence (in con-

trast to the Frye/Daubert standard in the United States

of America [3]). The principle of the judges’ free eval-

uation of the evidence prevails. Hence, it is not

surprising to see limited debate in the European juris-

prudence regarding the admissibility of the ear-

print evidence. The current casuistic in Switzerland

(known historically for the use of earprints in criminal

investigations [4, 5]) gives a contrasted view between

the cases where earprint has been used in court for

identification (Geneva) and where the prosecution

refrained from using the evidence because of its limi-

ted contribution to address the issue of identity of

sources (Ticino). Earprint evidence has also been

used and accepted in the courtrooms of Belgium and

the Netherlands.

In the United Kindgom, two cases involving

earmarks have reached the Court of Appeal. The

Court of Appeal in R. v. Dallagher [6] allowed the

admission of earprint evidence but received additional

information that emerged more clearly since the

first trial that shed some new light on the strength of

the evidence. Had that evidence been available to the

defence at trial, it might have reasonably affected

the decision of the jury to convict and hence the

conviction was quashed and a new trial was ordered

[7]. The Court however ruled that earprint evidence

was held admissible, leaving the duty of highlighting its

limits to the adversarial system itself through a proper

voir dire or at trial. That decision was confirmed in

R. v. Mark J. Kempster [8].

In the American case State vs. Kunze [9] the Court

heard some twenty experts in identification evidence

and came to the conclusion that earmark identification
was not a field that has gained general acceptance

among peers. The Court ruled that earmark evidence

cannot be accepted as scientific evidence under the Frye

test. The re-investigation of this case led to the dis-

covery of close neighbours (close agreement between

earmarks originating from different sources) among

the potential donors in that case [10].
Recent Research Initiatives

Early efforts towards systematic classification or mat-

ching of earprints focused on an extraction of shape

features in the anthelix area and a concept of a database

based on 800 earprints from different individuals.

The field of earprint identification has been

recently researched through an important initiative

under funding of the European Community PF6 pro-

gramme FearID (http://artform.hud.ac.uk/projects/

fearid/fearid.htm?PHPSESSID = 9c4fd025eec23ee102

62d9e226ff73d0).

They showed encouraging discriminative power,

but without fully addressing the issue of within

donor variation. Meijerman et al. showed the extent

of changes on earprints features in terms of size and

position [11]. The main source of intra-individual

variation in earprints is the variation in pressure that

is applied by the ear to the surface during listening.

Studies in applied force while listening showed that

intra-individual variation in applied force is com-

paratively small compared with the inter-individual

variation [12, 13].

Semi-automatic acquisition of earprint features

was also undertaken within the FearID research

programme. The definition of the feature vector relied

on the annotation of earprint images by skilled opera-

tors. Between-operator variations were causing a large

detrimental effect on the efficiency of the system [14].

The efficiency of the developed recognition system has

been tested [15]. The features are extracted from a

‘‘polyline’’ superimposed on the earprint by an opera-

tor. The matching is obtained using Vector Template

Machine (described in http://forensic.to/fearid/

VTMfinal.doc). For print to print comparisons, it

was shown that for 90% of all query searches the best

hit is in the top 0.1% of the list. The results become less

favorable (equal error rate of 9%) for mark to print

comparisons.

http://artform.hud.ac.uk/projects/fearid/fearid.htm?PHPSESSID=9c4fd025eec23ee10262d9e226ff73d0
http://artform.hud.ac.uk/projects/fearid/fearid.htm?PHPSESSID=9c4fd025eec23ee10262d9e226ff73d0
http://artform.hud.ac.uk/projects/fearid/fearid.htm?PHPSESSID=9c4fd025eec23ee10262d9e226ff73d0
http://forensic.to/fearid/VTMfinal.doc
http://forensic.to/fearid/VTMfinal.doc
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In addition to the described semi-automated app-

roaches, fully automatic methods have been initially

tested on a limited sample of 36 right earprints from

six pairs of identical twins [16] using Keypoint Match-

ing algorithms.

Some landmark research in ear biometrics [17–21]

is also expected to have a drastic impact on the forensic

research in earmarks in the years to come.

E

Related Entries

▶Ear Biometrics, 3D

▶Physical Analogies for Ear Recognition
References

1. van der Lugt, C.: Earprint Identification. Elsevier Bedrijfsinfor-

matie, Gravenhage (2001)

2. Iannarelli, A.V.: Ear Identification. Paramont Publishing

Company, Fremont, CA (1989)

3. Berger, M.A.: The Supreme Court’s Trilogy on the Admissibi-

lity of Expert Testimony. In: Federal Judicial Center (ed.)

ReferenceManual on Scientific Evidence. Federal Judicial Center,

Washington, 9–38 (2000)

4. Hirschi, F.: Identifizierung von Ohrenabdrüken. Kriminalistik.
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e-Authentication, Remote Access
(Partial)
▶Remote Authentication
Eigenface
Eigenface is a digitized set of face templates. The

images are at the same pixel resolution and taken

under standardized lighting levels and scaled to align

the eyes and mouth. Any human face can be consid-

ered to be a combination of these standardized face

templates. Storage capacity can be greatly improved as

faces can be recorded as a list of values pertaining to
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the percentage value that each eigenface contributes

towards the target face.

▶ Face, Forensic Evidence of

▶ Face Sample Quality
Elastically Adaptive Deformable
Model
Deformable models are 2D or 3D models that offer a

data-driven recovery process in which forces deform

the model until it fits the data. Global deformation

parameters represent the salient shape features of nat-

ural parts, and local deformation parameters capture

shape details. Instead of having the user determine

the deformation parameters, in an elastically adaptive

deformable model the elastic parameter values of

the deformable models are determined automatically.

In particular, the elastic parameters decrease when the

model does not fit the data, and increase when

the model is close to the data.

▶ Face Recognition, 3D-Based
Electromagnetic Radiation
Another term for light; fluctuations of electric and

magnetic fields in space.

▶ Face Recognition, Thermal
Electromagnetic Resonance
Electromagnetic resonance is a phenomenon produced

by simultaneously applying steady magnetic field and

electromagnetic radiation (usually radio waves) to a

sample of electrons and then adjusting both the
strength of the magnetic field and the frequency of

the radiation to produce absorption of the radiation.

The resonance refers to the enhancement of the ab-

sorption that occurs when the correct combination of

field and frequency is obtained.

▶Digitizing Tablet
Electromagnetic Spectrum
The universe contains a vast (infinite) range of electro-

magnetic waves commonly referred to as the electro-

magnetic spectrum. At the low frequency end of the

spectrum there are radio waves with wavelengths

measured inmetres or even kilometres. As the frequency

increases and the wavelength decreases (frequency

f = c/l where c = speed of light (3 � 108 m s�1) and

l is the wavelength in metres) the electromagnetic

waves are referred to as microwaves, infrared, visible

light, ultraviolet, X-rays, and finally Gamma rays. At

the high frequency end of the spectrum Gamma

rays have a wavelength l of the order 1 � 10�12 m.

Visible light is only a very small range of the electro-

magnetic spectrum with wavelength from about

400 to 700 � 10�9 m.

▶ Face Recognition, Thermal

▶Hand Veins
Embedded Processor
▶Embedded Systems
Embedded Software
▶Embedded Systems
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Synonyms

Embedded processor; Embedded software
Definition

Embedded systems [1, 2] are computer systems

that are embedded in various parts of equipment to

control them. There is also another definition: embed-

ded systems are integrated systems that are combined

with equipment. Examples of equipment to which

embedded technologies are applied include electrical

household appliances and electrical equipment, PC pe-

ripheral equipment, office automation equipment,

communications equipment, network facilities, medi-

cal equipment, and robots. Embedded systems are

rapidly spreading wide to include social life, but there

are some problems. The greatest challenge is to keep or

improve the quality of design and reliability as the
Embedded Systems. Figure 1 Potential ploblems & measure
systems get large and complex. Biometric authentica-

tion functions have been already embedded in smart

cards and cellular phones. Embedded authentication

functions are applied to the driving system and per-

sonal comfort equipment at home; system security and

usability are other important aspects to be studied.
Profile of Embedded System

Those devices that are traditionally controlled by

hardware-like logic have advanced significantly with the

use of super micro computers and their control software

since the 1980s. As a result, any complicated embedded

system can be created, even in a small space and at low

cost, : every device, such as home appliances, mobile

phones, vehicles, industrial robots, is being popularized

as an ‘‘embedded system’’. Biometric products are also

considered ‘‘embedded systems’’ and will be embedded in

a variety of devices such as vehicles, mobile phones, etc. in

the near future. In addition, because of advanced IT

technology, it is becoming easy to include communi-

cation functions; ‘‘embedded systems’’ are evolving as

one of the infrastructural devices in ubiquitous networks,

allowing us to utilize networks anytime and anywhere.

Add-on systems are defined as hardware systems in

which certain software is installed, upon procurement

from its manufacturer. In biometric authentication,
s.
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Embedded Systems. Figure 3 Vulnerabilities in

Biometric Systems.
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the software is referred to as the authentication

software, and enables us to characterize biometric

data, and cross-check biometric data between and the

driver, which controls the sensor for biometric authen-

tication. As the devices integrated with such software

are commonly employed in biometric authentication

products, most often, biometric authentication is done

by add-on systems.

The product/system for biometric authentication

can generally be classified into the following four cate-

gories, depending on how the biometric information

sensor and the software that can serve authentication

and/or the biometric data memory, which stores indi-

vidual biometric data, are integrated with the entity

(i.e., the system) that implements their original objec-

tives upon procurement.
All-in-One

All the three – the biometric information sensor, the

biometric authentication software, and the biometric

data memory – are integrated with the entity (i.e., the

system). The stand-alone laptop type computer with

finger print authentication sensor, a door security de-

vice, and a car with finger print authentication are in

the family of such biometric authentication products.

The mobile telephone with finger print authentication,

which is popular in Japan, is also an all-in-one biomet-

ric authentication product.
Biometric-Information-Data-Separation
Method

The biometric information sensor and the biometric

authentication software are integrated with the entity,
but the biometric data memory is located separately.

The biometric memory may be a handheld type of

memory medium such as a smartcard and/or the

server in a server–client system. The method of using a

smartcard as a biometric data memory is referred to as

STOC (store on card) authentication method.
Authentication-Sequestration Method

In this method, only the biometric authentication sen-

sor is integrated with the entity (i.e., the system),

but the biometric authentication software and the

biometric data memory are located separately. That

is, the biometric data fed by the biometric authenti-

cation sensor is transferred to a different system/

device where biometric data are registered and cross-

checked. As for the different system/device, a smart-

card and/or the server, and part of a server–client

system are included. As the smartcard itself is a device,

the authentication software and/or individual data

memory with the authentication method is exclusively

referred to as MOC (match on card) authentication

method.
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Authentication-Unit

The biometric authentication sensor, biometric authen-

tication software, and biometric data memory form a
Embedded Systems. Table 1 Biometric-specific Vulnerabiliti

Name of Vulnerability

Familiarity/Proficiency Certain familiarity/proficien

Acceptability Some users are still relucta

FAR (False Accept Rate) Accidental occurrence of F

FRR (False Reject Rate) Accidental occurrence of F

Unavailability There are some users who c
biometric data cannot be o

User Status Data granularity will vary d

Entering Environment (Minutia
Angle, etc.)

Data granularity will vary de
etc.

Wolf FAR occurs with high prob

Lamb FAR occurs with high prob

Goat FRR occurs with high prob

Authentication Parameter Inadequate matching perfo
parameter

Falsified-biometric Information Physically generation of fal

Publication Anyone else can acquire us

Assumption Assumable biometric inform

Extent Number of attempts availa

Similarity There are some users whos

Embedded Systems. Table 2 Vulnerabilities Common to Ge

Name of
Vulnerability

Registration Vulnerability upon registration

Singularity Available to attack against anyone el
simply used

Alternative Means There always need certain means alt
people who cannot be authenticated
obtainable from

Presence Biometric information is presentable

Motivation Verifiable/identifiable data entry is ne

Sensor Exposure Sensor which collecting biometric da

Data Leakage Leakage of biometric data stored in b

Side-channel Leakage of the information relevant

Data Alteration Alteration availability for those data

Configuration
Management

Upon differed conformity in element
matching performance required are

Deactivation Authentication is getting unavailable
unit. It may be configured after providing the SIer and

third party (ies) biometric authentication mechanism.

This can provide vendors and SIer with the most simple

and manageable biometric authentication.
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sified biometric information

er’s biometric information

ation from templates/matching results

ble to biometric information/user/authentication

e biometric information is nearly identical to others

neral IT Systems

Definitions

se’s IDs without any tools when biometric information is

ernable for biometric authentication as there are some
by or there are those whose biometric data cannot be

to third party/people if the owner grants

cessary by the user of biometric system

ta is disclosed to outside

iometric system to outside

to biometric system to outside

stored in biometric system

s which configuring system, normal operation and
getting disabled

temporarily when some parameters are satisfied
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Difference Between Embedded System
and General System

What if we do not conduct certain security measures

on the general computer systems connected to a net-

work? They will be infected with virus within a

short period of time and/or they will be easily attacked

by malicious persons. To avoid that, it is necessary

to conduct certain security measures, utilizing anti-

virus software, firewall, etc., and in case of some vul-

nerability in software, we can maintain security by

downloading and applying security patches in general

systems. However, in an ‘‘embedded system’’, it is

harder to address the said measures because of the
Embedded Systems. Table 3 Lifecycle of Embedded System

Name of Vulnerabi

Biometric System-Specific
Vulnerabilities

Familiarity/Proficiency

Acceptability

FAR (False Acceptance R

FRR (False Resistance Ra

Unavailability

User Status

Entering Environment (M
Angle, etc.)

Wolf

Lamb

Goat

Authentication Paramete

Falsified-Biometric Inform

Publication

Assumption

Extent

Similarity

Vulnerabilities Common to
General IT Systems

Registration

Singularity

Alternative Means

Presence

Motivation

Sensor Exposure

Data Leakage

Side-channel

Data Alteration

Configuration Managem

Deactivation
constraints in utilizing their resources. In addition,

there are the ‘‘embedded system’’-specific issues such

as side-channel attack and ▶ reverse engineering.

It is expected that along with advancement, such

security issues looming up in the world of computer

systems will be a great threat to the ‘‘embedded system’’

in the years to come. There are only some accidents

relevant to the ‘‘embedded system’’ that have been

reported and it is not likely that they will happenfre-

quently hereafter. It is ideal to construct the lifecycle of

the ‘‘embedded system’’ in four different phases:

planning, development, operation, and discarding, to

implement sufficient security measures by both devel-

opers and users (Fig. 1).
s and their Vulnerabilities
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Instances of Embedded System
in IC Card

In this section, the essay introduces the IC card as one

of the instances of specific embedded systems. Gener-

ally, it can be assumed that the ‘‘manufacturer’’, ‘‘issu-

er,’’ and ‘‘holder’’ will be involved in the lifecycle

of the IC card from its planning to discarding phases

(Fig. 2).

There exist different threats in each phase of the

lifecycle:
– Planning Phase:
 The leakage of Information
relevant to design document
– Development Phase:
 Fraudulent issuance of
public key certificate
– Operational Phase:
 Compromise in cryptography
protocol for long service
– Discard Phase:
 The deprivation of private
information stored in
the card
To avoid these problems, it is necessary to adopt

certain security measures such as encryption of the

design document, periodic logical verification, and

regulation of prior/post disposal, etc. for the respec-

tive holders’ further security. For effective security,

all the measures have to be employed to work

synergically.
Instances in Biometrics

Figure 3 shows the vulnerabilities of a biometric

authentication system [3, 4], and the vulnerabilities

[5] are explained in Tables 1 and 2. Vulnerabilities

can be classified into two types: those biometric-

specific and those common to general information

systems. However, in the latter case, only those that

may cause a threat when combined with the biometric-

specific vulnerability(ies) are listed. Table 3 shows

the vulnerabilities in biometric systems in the respec-

tive phases: Planning, Development, Operational, and

Discard.
Related Entries

▶Biometrics, Overview
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Embedding Space
Embedding space is the space in which the data

is embedded after dimensionality reduction. Its di-

mensionality is typically lower that than of the ambient

space.

▶Manifold Learning
Empirical Analysis
Empirical analysis in the context of biometric sample

synthesis deals with the creation of parametric or

mathematical models, which mimic natural statistical

factors such as the density of distinguishing features

such as bifurcations in fingerprints, or the shapes of

ears. In such cases, many models describing these bio-

metric patterns are derived from the observational

analysis of real patterns instead of on physical laws

governing their creation or growth.

▶Biometric Sample Synthesis
Empirical Statistical Models
Empirical statistical models attempt to recreate real

world distributions based on the empirical analysis of
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a population of real samples. In biometric sample

synthesis an example of an empirical statistical model

is the frequencies of loops and whorls on various

fingers.

▶Biometric Sample Synthesis
Encoded Finger Data
▶ Finger Data Interchange Format, Standardization
Encoder
Encoder is a software that extracts the features from a

fingerprint image.

▶Universal Latent Workstation
Encoding of Hand Geometry
Information
▶Hand Data Interchange Format, Standardization
Encryption, Biometric
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Synonyms

Biometric cryptosystem; Biometric key generation;

Biometric locking; Fuzzy extractor; Secure sketch
Definition

Biometric Encryption (BE) is a group of emerging

technologies that securely bind a digital key to a bio-

metric or generate a digital key from the biometric, so

that no biometric image or template is stored. What is

stored is the BE template otherwise known as a ‘‘bio-

metrically encrypted key’’ or ‘‘helper data.’’ As a result,

neither the digital key nor the biometric can be re-

trieved from the stored BE template. BE conceptually

differs from other systems that encrypt biometric

images or templates using conventional encryption,

or store a cryptographic key and release it upon suc-

cessful biometric authentication. With BE, the digital

key is recreated only if the correct biometric sample is

presented on verification. The output of BE verifica-

tion is either a digital key or a failure message. This

‘‘encryption/decryption’’ process is fuzzy because of

the natural variability of biometric samples. Currently,

any viable BE system requires that biometric-dependent

helper data be stored.
Introduction

Biometric technologies may add a new level of authen-

tication and identification to applications, but are not,

however, without their risks and challenges. There are

important technological challenges such as accuracy,

reliability, data security, user acceptance, cost, and

interoperability, as well as challenges associated with

ensuring effective privacy protections. Some common

security vulnerabilities of biometric systems include:

Spoofing; replay attacks; substitution attacks; tam-

pering; masquerade attacks (creating a digital ‘‘arti-

fact’’ image from a fingerprint template so that this

artifact, if submitted to the system, will produce a

match); Trojan horse attacks; and overriding Yes/No

response (which is an inherent flaw of existing biomet-

ric systems).

In addition to the security threats that undermine

the reliability of biometric systems, there are a number

of specific privacy concerns with these technologies:

– function creep (i.e., unauthorized secondary uses

of biometric data)

– expanded surveillance, tracking, profiling, and po-

tential discrimination (biometric data can be

matched against samples collected and stored else-

where and used tomake decisions about individuals)
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– data misuse (data breach, identity theft, and

fraud)

– negative personal impacts of false matches,

non-matches, system errors, and failures (the conse-

quences of system anomalies, especially in large-

scale systems, often fall disproportionately on indi-

viduals, normally in the form of inconveniences,

costs, and stigma)

– insufficient oversight, accountability, and openness

in biometric data systems

– potential for collection and use of biometric data

without knowledge, consent, or personal control

These types of risks threaten user confidence, which

leads to a lack of acceptance and trust in biometric

systems.

Biometric Encryption (BE) technologies can help

to overcome the prevailing ‘‘zero-sum’’ mentality

involved in traditional biometrics, namely, that adding

privacy to authentication and information systems

weakens security. With BE, it is possible to enhance

both privacy and security in a positive-sum model.
What is Biometric Encryption (BE)?

The concept of Biometric Encryption (BE) was first

introduced in the mid-90s by G. Tomko et al. [1]. For

more information on BE and related technologies, see

the review papers in [2–4].

Biometric Encryption is a process that securely

binds a digital key to a biometric or generates a key

from the biometric. In essence, the key is ‘‘encrypted’’

with the biometric, and the resulting biometrically

encrypted key, also called BE template or helper data,

is stored. The digital key can be ‘‘decrypted’’ on verifi-

cation if a correct biometric sample is presented. This

‘‘encryption/decryption’’ process is fuzzy by nature,

because the biometric sample is different each time,

unlike an encryption key in conventional cryptogra-

phy. A major technological challenge is to have the

same digital key recreated despite the natural varia-

tions in the input biometrics.

After the digital key is recreated on verification, it

can be used as the basis for any physical or logical

application. The most obvious use is in a conventional

cryptosystem where the key serves as a password and

may generate, for example, a pair of Public and Pri-

vate keys. It should be noted that BE itself is not a
cryptographic algorithm. The role of BE is to replace

or augment vulnerable password-based schemes with

more secure and more convenient biometrically man-

aged keys.

BE should not be mistaken for other systems that

encrypt biometric images or templates using conven-

tional encryption, or store a cryptographic key in a

trusted token/device and subsequently release it upon

successful biometric verification (i.e., after receiving

Yes response). However, BE is related to another family

of privacy-enhancing technologies called ▶Cancelable

Biometrics (CB) (N. Ratha et al. in [3]; see also the

Encyclopedia article on ‘‘Cancellable Biometrics’’). CB

applies a transform (preferably, noninvertible) to a bio-

metric image or template and matches the CB templates

in the transformed domain. This transform is usually

kept secret. Unlike BE, the CB system does not bind or

generate a key. CB remains inherently vulnerable to

overriding Yes/No response and to a substitution attack.

There are two BE approaches: key binding, when an

arbitrary key (e.g., randomly generated) is securely

bound to the biometric, and key generation, when a

key is derived from the biometric. Both approaches

usually store biometric dependent helper data. Some

BE schemes (e.g., Fuzzy Commitment [5], Fuzzy Vault

[6]) can equally work in both key generation and key

binding mode; the key generation is also called ‘‘secure

sketch’’ or ‘‘fuzzy extractor’’ as defined in [7]. Secure

sketch implies that the enrolled biometric template will

be recovered on verification when a fresh biometric

sample is applied to the helper data (i.e., the enrolled

template itself or a string derived from it, e.g., by

hashing the template, serves as a digital key). Note,

however, that this ‘‘key’’ is not something inherent or

absolute for this particular biometric; it will change

upon each re-enrolment. The size of the key space for

the secure sketch is defined by the intraclass variations

of the biometric as opposed to the key binding

approach.

In the key binding mode, as illustrated in Fig. 1, the

digital key is randomly generated on enrollment so

that neither the user nor anybody else knows it. The

key itself is completely independent of biometrics, and

therefore, can always be changed or updated. After a

biometric sample is acquired, the BE algorithm securely

and consistently binds the key to the biometric to

create a biometrically encrypted key. The BE template

provides privacy protection and can be stored either

in a database or locally (smart card, token, laptop, cell
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(a) Enrollment; (b) Verification.
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phone, etc.). At the end of the enrollment, both the key

and the biometric are discarded.

On verification, the user presents his or her fresh

biometric sample, which, when applied to the legiti-

mate BE template, will let the BE algorithm recreate the

same key. At the end of verification, the biometric

sample is discarded once again. The BE algorithm is

designed to account for acceptable variations in the

input biometric. On the other hand, an impostor
whose biometric sample is different enough will not

be able to recreate the key.

Many BE schemes also store a hashed value of the

key (not shown in Fig. 1) so that a correct key is

released from the BE system only if the hashed value

obtained on verification is exactly the same. Also, good

practice would be not to release the key, but rather,

another hashed version of it for any application. This

hashed version can in turn serve as a cryptographic
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key. With this architecture, an attacker would not be

able to obtain the original key outside the BE system.

Likewise, the biometric image/template should not be

sent to a server; the BE verification should be done

locally in most scenarios.

An important part of most BE algorithms is an

Error Correcting Code (ECC). ECCs are used in com-

munications, for data storage, and in other systems

where errors can occur. Biometric Encryption is a

new area for the application of ECC. For example,

a binary block ECC, which is denoted (n, k, d), encodes

k bits with n > k bits by adding some redundancy.

Those n-bit strings are called codewords; there are 2k of

them in total, where k is the key length. The minimum

distance (usually a Hamming distance is implied)

between the codewords is d. If, at a later stage (in

case of BE, on verification), the errors occur, the ECC

is guaranteed to correct up to (d-1)/2 bit errors among

n bits. Ideally, the legitimate users will have a number

of errors within the ECC bound so that the ECC will

decode the original codeword, and hence, the digital

key. On the other hand, the impostors will produce an

uncorrectable number of errors, in which case the ECC

(and the BE algorithm as a whole) will declare a failure.

In practice, BE, like any biometric system, has both

false rejection and false acceptance rates (FRR and

FAR). Note that BE does not use any matching score;

instead, the FRR/FAR tradeoff may be achieved in

some cases by varying the parameters of the BE

scheme. Some ECCs may work in a soft decoding

mode, that is, the decoder always outputs the nearest

codeword, even if it is beyond the ECC bound. This

allows achieving better error-correcting capabilities.

To improve the security of a BE system, an optional

‘‘transform-in-the-middle’’ (shown in the dashed square

in Fig. 1) may be applied. Preferably, the transform

should be non-invertible and kept secret. One of the

ways would be employing a randomization technique,

such as Biohashing [8] or ‘‘salting’’ in more general

terms [2]. The transform can be controlled with the

user’s password or can be separated from the rest of the

helper data by storing it on a token or a server.
Advantages and Possible
Applications of BE

BE technologies can enhance both privacy and security

in the following ways:
– There is no retention of biometric image or con-

ventional biometric template, and they cannot be

recreated from the stored helper data.

– They are capable of multiple identifiers: a large

number of BE templates for the same biometric

can be created for different applications.

– The BE templates from different applications can-

not be linked.

– The BE template can be revoked or canceled.

– They can be easily integrated into conventional

cryptosystems, as the passwords are replaced with

longer digital keys, which do not have to be

memorized.

– They provide improved authentication and per-

sonal data security through a stronger binding of

user biometric and system identifier.

– The BE systems are inherently protected from sub-

stitution attack, tampering, Trojan horse attack,

overriding Yes/No response, and less susceptible

to masquerade attack.

– They are suitable for large-scale applications,

as the databases will store only untraceable, yet

sufficient, information to verify the individual’s

claim.

These features embody standard fair information prin-

ciples, providing user control, data minimization, and

data security.

As such, BE technologies put biometric data firmly

under the exclusive control of the individual, in a way

that benefits the individual and minimizes the risk of

function creep and identity theft. They provide a foun-

dation for building greater public confidence, accep-

tance, and use, and enable greater compliance with

privacy and data protection laws.

Possible applications and uses of Biometric En-

cryption include

� Biometric ticketing (Fig. 2) for events

� Biometric boarding cards for travel

� Drug prescriptions

� Three-way check of travel documents

� Identification, credit, and loyalty card systems

� Anonymous databases (Fig. 3), that is, anonymous

(untraceable) labeling of sensitive records (medical,

financial)

� Consumer biometric payment systems

� Remote authentication via challenge-response

scheme

� Access control (physical and logical)



Encryption, Biometric. Figure 2 Biometric ticketing. A BE template is stored on a ticket as a 2D bar code, and a database

stores the hashed value of a key, Hash(key), for each enrolled user. The key and the ticket are used only for this

particular application. On a verification terminal: (i) The user presents his ticket to the system which reads in the BE

template from the bar code; (ii) The live biometric sample is taken; (iii) The system applies the biometric to the BE

template to retrieve the key; (iv) Hash(key’) is sent to the database where it is compared to the stored version, Hash(key).

Encryption, Biometric. Figure 3 Anonymous database controlled by Biometric Encryption. The database contains

anonymous encrypted records, e.g., medical files. The cryptographic keys and the links to the entries, which may be users’

names or pseudonyms, are controlled by BE. After the user enters his pseudonym, the associated BE template (helper

data) is retrieved and applied to the user’s biometric. If BE successfully recovers the user’s digital key, it will recreate the

pointer to the anonymous record and the encryption key to decrypt the record.
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� Personal encryption products (i.e., encrypting files,

drives, e-mails, etc.)

� Local or remote authentication of users to access

files held by government and other various

organizations
BE Technologies

The following are core BE schemes. The more detailed,

up-to-date overviews of BE technologies are presented

in [2, 4].
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Mytec1

This is the first BE scheme [1]. It was developed using

optical processing, but can also be implemented digi-

tally. The key is linked to a predefined pattern, s(x),

which is a sum of several delta-functions. Using s(x)

and a fingerprint, f(x), one can create a filter, H(u) ¼
S(u)/F(u), in Fourier domain (S(u) and F(u) are the

Fourier transforms of s(x) and f(x)). It is difficult to

obtain either S(u) or F(u) from the stored filter H(u).

On verification, if a correct fingerprint, F’(u) � F(u),

is applied to the filter, it will reconstruct a correct

output pattern, s’(x) � s(x) so that the key will be

regenerated from the locations of the output correla-

tion peaks. Unfortunately, this scheme turned out to

be impractical in terms of providing sufficient accu-

racy and security.
Mytec2

This is the first practical BE scheme [9]. UnlikeMytec1,

it retains phase-only parts of S(u) and F(u) in the filter,

H(u). The phase of S(u) is randomly generated, but not

stored anywhere. As a result, the output pattern, c(x), is

also random. The key, normally 128 bit long, is linked

to c(x) via a lookup table and ECC. The filter, H(u), the

lookup table, and the hashed key are stored in the

helper data. The system is error tolerant and translation

invariant. The published version [9] used a simple

repetition ECC, which makes the system vulnerable

to several attacks, such as Hill Climbing [10].

However, a closer examination of the Mytec2

scheme shows that if the randomness of H(u) and

c(x) is preserved on each step of the algorithm, the

scheme is a variant of so-called ‘‘permutation-based

fuzzy extractor’’ as defined in [7]. Therefore, if a proper

ECC (preferably, single block) is used instead of the

repetition ECC, the system will be as secure as those

types of fuzzy extractors.

(Note that Mytec1 and Mytec2 schemes were

originally called ‘‘Biometric Encryption’’, which was a

trademark of Toronto-based Mytec Technologies Inc.,

now Bioscrypt, a fully-owned subsidiary of L1 Identity

Solutions Inc. The trademark was abandoned in 2005.)
ECC Check Bits

This scheme, which was originally called ‘‘private tem-

plate,’’ is a secure sketch (i.e., a key generation) [11].
A biometric template itself serves as a cryptographic

key. To account for the template variations between

different biometric samples, an (n, k, d) error correct-

ing code is used. A number of (n-k) bits, called check

bits, are appended to the template to map the k-bit

template to an n-bit codeword. The check bits are

stored into the helper data along with the hashed

value of the template. The scheme is impractical,

since it is required that n < 2k from the security

perspective. Such ECC would not be powerful enough

to correct a realistic number of errors for most

biometrics, including iris scan.
Biometrically Hardened Passwords

This technique was developed for keystroke dynamics

or voice recognition [12]. A password that the user

types or says is fused with a key (via a secret sharing

scheme) extracted from a biometric component, thus

hardening the password with the biometrics. The tech-

nique was made adaptive by updating a ‘‘history file’’

(which is, in fact, helper data) upon each successful

authentication. However, the types of biometrics used

did not allow for achieving good accuracy numbers.
Fuzzy Commitment

This is conceptually the simplest, yet the most studied,

BE scheme [5] A. Juels in [3]. A biometric template

must be in the form of an ordered bit string of a fixed

length. A key is mapped to an (n, k, d) ECC codeword

of the same length, n, as the biometric template. The

codeword and the template are XOR-ed, and the

resulting n-bit string is stored into helper data along

with the hashed value of the key. On verification, a

fresh biometric template is XOR-ed with the stored

string, and the result is decoded by the ECC. If the

codeword obtained coincides with the enrolled one

(this is checked by comparing the hashed values), the

k-bit key is released. If not, a failure is declared.

In a ‘‘secure sketch’’ (i.e., key generation) mode [7],

the enrolled template is recovered from the helper data

on verification, if a correct (yet different) biometric

sample is presented.

The scheme seems to be one of the best for the

biometrics where the proper alignment of images is

possible, such as iris scan [13, 14] and face recognition

(T. Kevenaar in [3]). For iris, the reported results are
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FRR ¼ 0.47% at FAR < 10–5 for a 140-bit key mapped

to 2048-bit codeword [13], and FRR = 5.6% at

FAR < 10–5 (42-bit key) [14] for a poorer quality, yet

more realistic, iris database.
ECC Syndrome

In this spinoff of the Fuzzy Commitment scheme, a

so-called ECC syndrome of (n-k) size is stored in

the helper data [7, 2]. On verification, the enrolled

template is recovered (i.e., the scheme works in the

secure sketch mode).
Quantization using Correction Vector

This method, which was also called ‘‘shielding func-

tions’’, is applied to continuously distributed and

aligned biometric features (J.-P. Linnartz et al. in [3]).

For each feature, a residual is calculated, which is

the distance to the center of the nearest even-odd or

odd-even interval, depending on the parity of the key

bit. The correction vector comprising all the residuals

is stored into the helper data. On verification, a noisy

feature is added to the residual and is decoded as 1 or 0,

if the resulting interval is odd-even or vice versa.

The scheme can work with or without (if a noise

level is low) a subsequent ECC. In general, storing a

correction vector could make the scheme vulnerable

to score-based attacks.
Fuzzy Vault

This is, probably, the only BE scheme that is fully

suitable for unordered data with arbitrary dimension-

ality, such as fingerprint minutiae [6, 15]. A secret

message (i.e. a key) is represented as coefficients of a

polynomial in a Galois field, for example, GF(216). In

the most advanced version [15], the 16-bit x-coordi-

nate value of the polynomial comprises the minutia

locations and the angle, and the corresponding y-coor-

dinates are computed as the values of the polynomial

on each x. Both x and y numbers are stored alongside

with chaff points that are added to hide real minutiae.

On verification, a number of minutiae may coincide

with some of the genuine stored points. If this number

is sufficient, the full polynomial can be reconstructed
using an ECC (e.g., Reed-Solomon ECC) or Lagrange

interpolation. The polynomial reconstruction means

that the secret has been successfully decrypted. The

scheme works both in the key binding and the key

generation (secure sketch) mode. The version of [15]

also stores fingerprint alignment information. The best

results for fingerprints show FRR ¼ 6% � 17% at

FAR = 0.02%.

The more secure version of Fuzzy Vault [7] stores

high degree polynomial instead of real minutiae or

chaff points. However, there are difficulties in the

practical implementation of this version.

Unlike other BE schemes, the fuzzy vault actually

stores real minutiae, even though they are buried inside

the chaff points. This could become a source of poten-

tial vulnerabilities [2, 4]. The system security can be

improved by applying a secret minutiae permutation

controlled by a user’s password [2]. This ‘‘transform-

in-the-middle’’ approach is applicable to most BE

schemes.
Biohashing (with key binding)

An ordered biometric feature set is transformed into a

new space of a lower dimension by generating a ran-

dom set of orthogonal vectors and obtaining an inner

product between each vector and the biometric feature

set [8]. The result (called ‘‘Biohash’’) is binarized to

produce a bit string. The random feature vectors are

generated from a random seed that is kept secret, for

example, by storing it in a token. The key is bound

to the Biohash via Shamir secret sharing with linear

interpolation, or by using a standard Fuzzy Com-

mitment scheme. Very good FRR/FAR numbers [8]

were obtained, however, in an unrealistic ‘‘non-stolen

token’’ scenario. Biohashing is referred more often as a

CB scheme where Biohashes are matched directly, that

is, without the key binding.
Graph-based Coding

In this generalization of the ECC syndrome scheme,

Low Density Parity Check (LDPC) ECCs are used

in a graphical representation [16]. LDPC codes,

which are the state-of-the-art channel ECCs (n, k, d),

can be designed with large numbers of n and k, and can

handle high error rates. This makes them suitable for
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BE applications. The scheme can be applied to both

ordered (e.g., iris) and unordered (e.g., fingerprint

minutiae) feature sets. For the latter, a factor graph

models the minutiae variability as a movement, an

erasure, or an insertion (i.e., spurious generation) of

minutiae. The scheme uses a Belief Propagation decod-

ing algorithm and shows promising results.
E

Attacks on BE

Despite the fact that many BE schemes have a formal

proof of security, they may be vulnerable to low level

attacks, such as when an attacker has access to helper

data, is familiar with the BE algorithm, and can run the

attack offline. By cracking a BE system, the attacker can

pursue one or more of the following:

– Obtain the key bound to the biometrics

– Obtain the exact biometric template used on

enrollment

– Obtain an approximate version of the template

that, nonetheless, would defeat the system (mas-

querade template)

– Create a masquerade image of the biometrics

– Link BE templates generated from the same

biometrics but stored in different databases

The known attacks on BE, as described in [4], are listed

in the following paragraphs. Note that CB may also be

vulnerable to most of the attacks.

False Acceptance attack. This is one of the ‘‘brute

force’’ attacks. Offline, the attacker runs an impostor

database of about FAR�1 biometric images or templates

against the helper data to obtain a false acceptance.

The database can be either real or computer-generated,

such as SFinGe. The image that has generated the

false acceptance will serve as a masquerade image.

Reversing the hash. This is another ‘‘brute force’’

attack. If a hashed key is stored into the helper data, the

attacker may try to cryptographically reverse the hash.

This attack should always be made more computation-

ally expensive for an attacker than other attacks.

Hill Climbing attack [10]. Based on the knowledge

of the algorithm, the attacker derives an intermediate

matching score during the verification process, even

though the BE algorithm does not use any score. By

making small changes in the input impostor’s image or

template, the attacker retains the change, if the score

increases, or rejects it, if not. After a number of
iterations, the attacker may be able to retrieve a key

and create a masquerade image/template.

The BE schemes that divide helper data into

short chunks of ECC (e.g., a repetition ECC), and the

schemes with a correction vector may be especially

vulnerable to this and to the Nearest Impostors attack.

Nearest Impostors attack [4]. This is another score-

based attack. The attacker derives a partial matching

score for each ECC chunk (if any) of the helper data

and a global intermediate score (like in the Hill Climbing

attack). By running a small impostor database

against the helper data, the attacker identifies several

‘‘nearest impostors’’, that is, the attempts with the

highest global score, or alternatively, with the highest

partial score for a given chunk. By applying a voting

technique to the nearest impostors, the attacker

retrieves the key bits associated with the chunk.

If successful, the attack yields the entire key or at least

reduces the search space for the key.

Using statistics of ECC output [4]. A small impostor

database (with various distortions, rotations, and shifts

applied) is run against the ECC chunks of the helper

data. The number of appearances of each possible out-

put codeword for all impostor attempts is counted to

create a histogram. The codeword corresponding to the

histogram maximum is declared a winner.

Using an information leak from helper data. This

group of attacks may directly exploit

� Nonrandomness of the helper data [4] (e.g., if

clusters in the helper data are identified, the attacker

may interconnect the same parity bits)

� Alignment information and minutiae angles in the

Fuzzy Vault

� A method for generating the chaff points [17]

� Nonuniformity of the output bits distribution in

quantization schemes, etc.

Re-usability attack (X. Boyen in [3]). If the same

biometric is re-used for different applications and/

or keys, the attacker may combine several versions of

the helper data to retrieve both the biometric and all

the keys. Fuzzy Vault is especially vulnerable to this

attack.

Among all BE schemes, it seems that one of the

most secure would be a Fuzzy Commitment (or other

related fuzzy extractors, such as ECC syndrome)

scheme with a single block (n, k, d) ECC, where n

and k are large (e.g., n > � 1000, k > � 100). From

the security perspective, the amount of any additional
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side information that is stored (e.g., alignment data)

should be kept to a minimum.

The resilience to some of the attacks may be im-

proved by employing the ‘‘transform-in-the-middle’’

approach, especially if the transform is controlled by

a password/token.
Current State of BE

Many different approaches have been developed for

BE, but currently few systems have been deployed or

implemented into products. Until now, little work has

been done to analyze the security of BE systems.

The authors’ consider the following technologies as

the state of the art of BE:

� Philips (the Netherlands) priv-ID™ for the

face recognition (2D and 3D) and fingerprints

(T. Kevenaar in [3])

� Hao et al for iris [13]

� Nandakumar et al (fuzzy vault for fingerprints) [15]

� Draper et al. of Mitsubishi Electric Research

Laboratories (U.S.) for iris and fingerprints [16]

� Bringer et al of Sagem Sécurité (France) for iris [14]

� Genkey (Norway) BioCryptic1 for fingerprints

(unfortunately, not much information about the

technology is available)

The Philips priv-ID™ technology is ready for deploy-

ment. It is part of the EU 3D Face project and of the

3-year EU TURBINE project [18]. The latter has been

given significant funding and aims at piloting a finger-

print-based BE technology at an airport in Greece.

The Genkey BioCryptic1 technology has been

deployed for a Rickshaw project in New Delhi

(India). Both Philips and Genkey systems can fit the

helper data into a 2D bar code.
BE Challenges

Technologically, BE is much more challenging than

conventional biometrics, since most BE schemes work

in a ‘‘blind’’ mode (the enrolled image or template are

not seen on verification). As BE advances to the next

phase of creating and testing a prototype, the following

issues need to be addressed:

Biometric modalities that satisfy the requirements of

high entropy, low variability, possibility of alignment,

and public acceptance should be chosen. At present,
the most promising biometric for BE is iris followed

by fingerprints and face.

The image acquisition process (the requirements are

tougher for BE than for conventional biometrics)

must be improved.

BE must be made resilient against attacks.

The overall accuracy and security of BE algorithms

must be improved. Advances in the algorithm de-

velopment in conventional biometrics and in ECCs

should be applied to BE.

Multimodal approaches should be exploited.

BE applications should be developed.
Summary

Biometric Encryption is a fruitful area for research and

is becoming sufficiently mature for prototype develop-

ment and the consideration of applications.

BE technologies exemplify the fundamental privacy

and data protection principles that are endorsed

around the world, such as data minimization, user

empowerment, and security.

Although introducing biometrics into information

systems may result in considerable benefits, it can also

introduce many new security and privacy vulnerabil-

ities, risks, and concerns. Novel Biometric Encryption

techniques can overcome many of those risks and

vulnerabilities, resulting in a win-win, positive-sum

model that presents distinct advantages to both secu-

rity and privacy.
Related Entries

▶Biometric Security, Overview

▶Biometric Vulnerabilities

▶Cancelable Biometrics

▶ SFinGe

▶Template Security
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Enhancement
▶Biometric Algorithms
Enrollment
Enrollment is the procedure in a biometric system, in

which a subject, i.e., an enrollee, presents one or more

biometric data samples to the system, and the system

then generates from the data biometric templates for

future use of biometric matching.

▶Biometrics, Overview
Enrollment Time
The time needed to enroll a subject into a biometric

system. Enrollment means the process of collecting

biometric samples from a subject as well as the

subsequent feature extraction to create that person’s

reference templates representing his identity and finally

storing them into the database. Only enrolled subjects

can be recognized by the system.

▶Performance Evaluation, Overview
Enrollment Transaction Duration
IBG defines the term Enrollment Transaction Duration

as the median time duration required for enrollment

process of the system. This includes the time for the

test subject to align himself or herself with the acquisi-

tion device, all biometric sample presentations, the

intervals between the first and the second instance

enrolment, and the template generation processing

time.

▶ Finger Vein Reader
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Synonyms

Committee-based learning; Multiple classifier systems;

Classifier combination
Definition

Ensemble learning is a machine learning paradigm

where multiple learners are trained to solve the same

problem. In contrast to ordinary machine learning

approaches which try to learn one hypothesis from

training data, ensemble methods try to construct a set

of hypotheses and combine them to use.
Introduction

An ensemble contains a number of learners which

are usually called base learners. The ▶ generalization

ability of an ensemble is usually much stronger than

that of base learners. Actually, ensemble learning is

appealing because that it is able to boost weak learners

which are slightly better than random guess to strong

learners which can make very accurate predictions.

So, ‘‘base learners’’ are also referred as ‘‘weak learners’’.

It is noteworthy, however, that although most theo-

retical analyses work on weak learners, base learners

used in practice are not necessarily weak since using

not-so-weak base learners often results in better

performance.

Base learners are usually generated from training

data by a base learning algorithm which can be decision

tree, neural network or other kinds of machine

learning algorithms. Most ensemble methods use a

single base learning algorithm to produce homogeneous

base learners, but there are also some methods which

use multiple learning algorithms to produce heteroge-

neous learners. In the latter case there is no single base

learning algorithm and thus, some people prefer call-

ing the learners individual learners or component lear-

ners to ‘‘base learners’’, while the names ‘‘individual

learners’’ and ‘‘component learners’’ can also be used

for homogeneous base learners.
It is difficult to trace the starting point of the

history of ensemble methods since the basic idea of

deploying multiple models has been in use for a long

time, yet it is clear that the hot wave of research on

ensemble learning since the 1990s owes much to two

works. The first is an applied research conducted by

Hansen and Salamon [1] at the end of 1980s, where

they found that predictions made by the combination

of a set of classifiers are often more accurate than

predictions made by the best single classifier. The sec-

ond is a theoretical research conducted in 1989, where

Schapire [2] proved that weak learners can be boosted

to strong learners, and the proof resulted in Boosting,

one of the most influential ensemble methods.
Constructing Ensembles

Typically, an ensemble is constructed in two steps.

First, a number of base learners are produced, which

can be generated in a parallel style or in a sequential

style where the generation of a base learner has influ-

ence on the generation of subsequent learners. Then,

the base learners are combined to use, where among

the most popular combination schemes are majority

voting for classification and weighted averaging for

regression.

Generally, to get a good ensemble, the base learners

should be as more accurate as possible, and as more

diverse as possible. This has been formally shown

by Krogh and Vedelsby [3], and emphasized by

many other people. There are many effective proces-

ses for estimating the accuracy of learners, such as

▶ cross-validation, hold-out test, etc. However, there

is no rigorous definition on what is intuitively per-

ceived as diversity. Although a number of diversity

measures have been designed, Kuncheva and Whitaker

[4] disclosed that the usefulness of existing diversity

measures in constructing ensembles is suspectable. In

practice, the diversity of the base learners can be intro-

duced from different channels, such as subsampling

the training examples, manipulating the attributes,

manipulating the outputs, injecting randomness into

learning algorithms, or even using multiple mechan-

isms simultaneously. The employment of different base

learner generation processes and/or different combina-

tion schemes leads to different ensemble methods.

There are many effective ensemble methods. The

following will briefly introduce three representative

methods, Boosting [2, 5], Bagging [6] and Stacking
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[7]. Here, binary classification is considered for

simplicity. That is, let X and Y denote the insta-

nce space and the set of class labels, respectively,

assuming Y ¼ f�1;þ1g. A training data set

D ¼ fðx1; y1Þ; ðx2; y2Þ; � � � ; ðxm; ymÞg is given, where

xi 2 X and yi 2 Y (i¼1, . . . ,m).

Boosting is in fact a family of algorithms since there

are many variants. Here, the most famous algorithm,

AdaBoost [5], is considered as an example. First, it

assigns equal weights to all the training examples.

Denote the distribution of the weights at the t-th

learning round as Dt. From the training data set and

Dt the algorithm generates a base learner ht : X ! Y
by calling the base learning algorithm. Then, it uses

the training examples to test ht, and the weights of the

incorrectly classified examples will be increased. Thus,

an updated weight distribution Dtþ1 is obtained. From

the training data set and Dtþ1 AdaBoost generates

another base learner by calling the base learning

algorithm again. Such a process is repeated for T

times, each of which is called a round, and the final

learner is derived by weighted majority voting of the T

base learners, where the weights of the learners are

determined during the training process. In practice,

the base learning algorithm may be a learning algo-

rithm which can use weighted training examples di-

rectly; otherwise the weights can be exploited by

sampling the training examples according to the

weight distribution Dt. The pseudo-code of AdaBoost

is shown in Fig.1.

Bagging [6] trains a number of base learners each

from a different bootstrap sample by calling a base

learning algorithm. A bootstrap sample is obtained
Ensemble Learning. Figure 1 The AdaBoost algorithm.
by subsampling the training data set with replacement,

where the size of a sample is as the same as that of the

training data set. Thus, for a bootstrap sample, some

training examples may appear but some may not,

where the probability that an example appears at least

once is about 0.632. After obtaining the base learners,

Bagging combines them by majority voting and the

most-voted class is predicted. The pseudo-code of

Bagging is shown in Fig.2. It is worth mentioning

that a variant of Bagging, Random Forests [8], has

been deemed as one of the most powerful ensemble

methods up to date.

In a typical implementation of Stacking [7], a

number of first-level individual learners are genera-

ted from the training data set by employing different

learning algorithms. Those individual learners are then

combined by a second-level learner which is called as

meta-learner. The pseudo-code of Stacking is shown

in Fig.3. It is evident that Stacking has close relation

with information fusion methods.

Generally speaking, there is no ensemble method

which outperforms other ensemble methods consis-

tently. Empirical studies on popular ensemble methods

can be found in many papers such as [9, 10, 11].

Previously, it was thought that using more base

learners will lead to a better performance, yet

Zhou et al. [12] proved the ‘‘many could be better

than all’’ theorem which indicates that this may not

be the fact. It was shown that after generating a

set of base learners, selecting some base learners

instead of using all of them to compose an ensemble

is a better choice. Such ensembles are called selective

ensembles.
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Ensemble Learning. Figure 3 The Stacking algorithm.
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It is worth mentioning that in addition to classifi-

cation and regression, ensemble methods have also

been designed for clustering [13] and other kinds of

machine learning tasks.
Why Ensembles are Superior to Singles

To understand that why the generalization ability of

an ensemble is usually much stronger than that of a

single learner, Dietterich [14] gave three reasons by

viewing the nature of machine learning as searching a

hypothesis space for the most accurate hypothesis. The

first reason is that, the training data might not provide

sufficient information for choosing a single best learner.

For example, there may be many learners perform

equally well on the training data set. Thus, combining

these learners may be a better choice. The second

reason is that, the search processes of the learning

algorithms might be imperfect. For example, even if
there exists a unique best hypothesis, it might be diffi-

cult to achieve since running the algorithms result in

sub-optimal hypotheses. Thus, ensembles can com-

pensate for such imperfect search processes. The third

reason is that, the hypothesis space being searched

might not contain the true target function, while

ensembles can give some good approximation. For

example, it is well-known that the classification

boundaries of decision trees are linear segments paral-

lel to coordinate axes. If the target classification

boundary is a smooth diagonal line, using a single

decision tree cannot lead to a good result yet a good

approximation can be achieved by combining a set of

decision trees. Note that those are intuitive instead of

rigorous theoretical explanations.

There are many theoretical studies on famous en-

semble methods such as Boosting and Bagging, yet

it is far from a clear understanding of the underlying

mechanism of these methods. For example, empiri-

cal observations show that Boosting often does not
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suffer from ▶ overfitting even after a large number of

rounds, and sometimes it is even able to reduce the

generalization error after the training error has already

reached zero. Although many researchers have studied

this phenomenon, theoretical explanations are still in

arguing.

The▶ bias-variance decomposition is often used in

studying the performance of ensemble methods [9, 12].

It is known that Bagging can significantly reduce the

variance, and therefore it is better to be applied to

learners suffered from large variance, e.g., unstable lear-

ners such as decision trees or neural networks. Boosting

can significantly reduce the bias in addition to reducing

the variance, and therefore, on weak learners such as

decision stumps, Boosting is usually more effective.
Applications

Ensemble learning has already been used in diverse

applications such as optical character recognition,

text categorization, face recognition, computer-aided

medical diagnosis, gene expression analysis, etc. Actu-

ally, ensemble learning can be used wherever machine

learning techniques can be used.
Summary

Ensemble learning is a powerful machine learning para-

digm which has exhibited apparent advantages in many

applications. By using multiple learners, the generali-

zation ability of an ensemble can be much better than

that of a single learner. A serious deficiency of current

ensemble methods is the lack of comprehensibility, i.e.,

the knowledge learned by ensembles is not understand-

able to the user. Improving the comprehensibility of

ensembles [15] is an important yet largely understu-

died direction. Another important issue is that cur-

rently no diversity measures is satisfying [4] although

it is known that diversity plays an important role in

ensembles. If those issues can be addressed well, en-

semble learning will be able to contribute more to

more applications.
Related Entries

▶AdaBoost

▶Classifier Design
▶Multiple Experts

▶Machine-Learning

▶Multiple Classifier Systems

▶Probability Distribution
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Entropy, Biometric
Biometric entropy describes the inherent variability in

biometric samples in the population. It can also be

understood as the information content of biometric

samples is related to many questions in biometric
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technology. For example, one of the most common

biometric questions is that of uniqueness (e.g., ‘‘are

fingerprints unique?’’). Such a measure is important

for the performance of biometric system, as a measure

of the strength of biometric cryptosystems and for

privacy measures. It also is relevant for applications

such as biometric fusion, where one would like to

quantify the biometric information in each system

individually, and the potential gain from fusing the

systems. Many approaches have been taken to measure

biometric entropy, like Wayman (2004) introduced a

statistical approach to measure the separability of

Gaussian feature distributions using a ‘‘cotton ball

model’’. Daugman (2003) developed ‘‘discrimination

entropy’’ to measure the information content of iris

images. This value has the advantage that it is calculated

directly from the match score distributions, but how it

relates to traditional measures of entropy is not clear.

Golfarelli et al. (1997) showed that the most commonly

used feature representations of hand geometry and face

biometrics have a limited number of distinguishable

patterns, as measured by a theoretical estimate of the

equal error rate. Penev et al. (2000) determined the

dimensionality of the PCA subspace necessary to char-

acterize the identity information in faces. Adler et al.

(2005) defined biometric entropy as the ‘‘decrease in

uncertainty about the identity of a person due to a set

of biometric measurements,’’ and expressed in terms of

the relative entropy D(pkq) between the population

(inter-class) feature distribution q and the individual

(intra-class) distribution p. Biometric entropy still

does not have a well accepted definition. Additionally,

all proposed schemes measure the information content

of a feature representation, and not that of the biomet-

ric sample itself.

▶ Security and Liveness, Overview
ePassport
ePassport = e-Passport or IC Passport. Biometrically

enabled passports that meet the requirements of a

facial biometric, which can be captured from a submit-

ted photograph.

▶Photography for Face Image Data
Epidermis
Epidermis is the uppermost layer of the skin. Its thick-

ness varies depending upon the location of the skin.

Generally it is found to be 0.5 nm on the eyelids

(thinnest) and 1.5 nm at palm and sole (thickest). It

consists of five layers named:

1. Stratum germinatum

2. Stratum granulosum

3. Stratum spinosum

4. Stratum licidum

5. Stratum corneum

▶Anatomy of Hand

▶ Skin Spectroscopy
Ergonomic Design for Biometric
Systems

ERIC P. KUKULA, STEPHEN J. ELLIOTT

Purdue University, West Lafayette, IN, USA
Synonyms

Human-Biometric Sensor Interaction (HBSI);

Human-Computer Interaction (HCI); Human Fac-

tors; Usability
Definition

Biometric ergonomic design is the area of research that

examines how humans interact and use biometric sen-

sors, devices, interfaces, and systems. The purpose is

to understand the physical and cognitive human-

biometric sensor interaction to improve the system

design and overall performance of a biometric system.
Introduction

Biometric▶ ergonomic design is an emerging interdis-

ciplinary research area in biometrics that focuses on

the ▶ interaction between the user and the biometric
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system to better understand issues and errors, users

knowingly or unknowingly generate when attempting

to use a biometric system. This research area attempts

to understand what tasks, movements, and behaviors

users execute when encountering different biometric

modalities. This area presents a challenge for the

biometrics community – while the algorithms are con-

tinually improving, there are still individuals who can-

not successfully interact with the biometric sensor(s).

It is essential that designers continue examining bio-

metric devices, process, or systems to ensure they

accomodate the focal point of any biometric systems,

the human. Adapting devices, processess or systems to

the human can increase usability by minimizing errors

during presentation and acquistion of the biometric

characteristics to the sensor through better design,

instruction, or system feedback.

Traditional approaches to evaluate the perfor-

mance of a biometric system have been system-level,

meaning that evaluators and designers are more inter-

ested in system reported error rates, some of which

include: the Failure to Enroll (FTE) rate, Failure to

Acquire (FTA) rate, False Accept Rate (FAR), and False

Reject Rate (FRR). Traditional performance evalua-

tions have worked well to evaluate emerging technol-

ogies, new biometric modalities, and algorithm

revisions, which are typically associated with technolo-

gy performance evaluations. Moreover, since biometrics

entered the commercial marketplace, most research

has been dedicated to the development in three areas:

(1) improving performance, (2) increasing through-

put, and (3) decreasing the size of the sensor or hard-

ware device. Limited research has focused on

ergonomic design and usability issues, which relate

to how users interact and use biometric devices. No

standard activities have focused on ergonomic design

or usability issues with biometrics, although standard

testing and evaluation protocols do exist, specifically –

ISO 19795-1: Technology Testing [1], ISO 19795-2:

Scenario Testing [2], and ISO TR19795-3: Modality-

Specific Testing [3].

While early research has been concerned with the

design, development, and testing of biometric systems

and algorithms, recent research has attributed human

physical, behavioral, and social factors to affect the

performance of the overall biometric system. More-

over, these factors are of utmost importance when

conducting scenario and operational performance eva-

luations, as they are the last line of defense between the
laboratory and the commercial marketplace to under-

stand how a biometric system performs in a particular

environment or with a specific set of users. Therefore

as the community continues to learn more about the

different biometric modalities and systems, as well as

how users interact with them, performance from

both the system and user perspectives must be fully

understood to make further improvements to the

biometric sensor, algorithm, and design of future user

interfaces.
Biometric Properties and Ergonomic
Implications

Biometric modalities are classified as physiological,

behavioral, or a combination of the two. In addition,

they are classified according to five desirable proper-

ties, outlined by Clarke [4], and amended by numerous

others. Desirable properties of biometric characteris-

tics are that they offer: (1) universality – available in all

people, (2) invariant – features extracted are non-

changing, (3) high intra-class variability – features

extracted are distinct for each user; (4) acceptability –

characteristic of suitability for use by everyone, and (5)

extractability – a sensor can extract the features pre-

sented in a repeatable manner. Although commonly

described in the literature as the ideal characteristics of

the biometric, each must overcome challenges. Herein

lies one of the challenges associated with large-scale

deployment of biometrics and the purpose behind

research in this area – the majority of biometrics are

challenged to satisfy all these five categories.

To better understand the importance of ergonom-

ics in biometrics, the authors pose the question: what

affects biometric system performance? Generalizing

the issues that can be linked to many performance

failures into three divisions, bins for users (physical,

behavioral, and social factors), the environment, and

matching algorithms emerge. While it is important to

understand each group when designing a biometric

system, the inter-relationship between the groups also

impacts biometric performance, which is illustrated in

Fig. 1. First, the user-environment relationship impacts

performance. For example, climatic or work condi-

tions may require individuals to wear personal protec-

tive equipment (PPE), which not only limits biometric

modalities that can be deployed, but may also occlude

the biometric characteristics from being successfully
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relationship with ergonomics.
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acquired in the first place, such as the case in safety

glasses for iris recognition. In addition, atmospheric

conditions such as temperature and humidity can

impact the skin, affecting the acquisition for some

modalities. Second is the environment and inter-

relationship of algorithm. Examples of this include

ambient noise for voice recognition and illumination

or busy backgrounds for face recognition. Third is the

relationship between users and algorithms. First, phys-

iological factors such as skin moisture, elasticity, age,

and color can affect performance of algorithms. Sec-

ondly, behavioral factors such as finger preference can

impact performance. For example, individuals of Asian

descent prefer to use the little finger for fingerprint

recognition, but it is documented in the literature

[5, 6] that the little finger is the worst performing

finger. Lastly, social preferences or factors such as hair

length or the wearing of head coverings can impact

face and iris recognition due to the occlusion of neces-

sary features. While the literature has investigated

some of the aforementioned items, more research

is needed in these areas. However, there is also an

interaction between the three clusters as indicated in

the research conducted by the Kukula, et al. [7, 8], but

it has not been thoroughly investigated.

It is well documented in the literature that image

quality affects the biometric matching algorithm. Yao

et al. [9] stated that ‘‘in a deployed system, the poor

acquisition of samples perhaps constitutes the single

most important reason for high false reject/accept

rates’’ and further discussed that there are two solu-

tions for reducing poor images. First, one can model

and weight all adverse situations for the feature extrac-
tion and matching system. Second, ‘‘one can try to
dynamically and interactively obtain a desirable input

sample.’’ Improving the ergonomic design of biometric

systems is one method to dynamically ‘‘modify’’ the

input sample through improved usability of biometric

devices, processes, and systems.
Common Design Concerns

Biometric systems are heavily dependent on the sensor

to acquire the sample, segment it, and extract features

from samples for the matcher to determine the correct

response. By observing how users interact with bio-

metric sensors, several design issues are apparent but

could be resolved by integrating knowledge of indus-

trial design, ergonomics and ▶ human factors, and

▶ usability. Rubin [10] discusses five reasons why pro-

ducts and systems are difficult to use. The main prob-

lem is that the emphasis and focus has been on the

machine/system and not on the end user during devel-

opment. Common design misconceptions are:

� Humans are flexible and will adjust to a product or

device

� Engineers work well with technology but not with

people

� Engineers are hired to solve technology problems

and not people skills

� Designers create products for users like themselves

in terms of both usage and level of knowledge [10]

The following factors are true within the context

of biometric system design. Humans will adapt to

the sensor and/or system. Many times, biometric sys-
tems or sensors are not tested on sufficiently large
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numbers of the general populations, namely due to the

cost of doing so. Moreover, the biometric community

may test the algorithms exhaustively off-line, using

pre-collected images, but lapse on collecting images

with a new sensor to examine how the user interacts

with the system or device.

According to Smith [11], some members of the

Human-Computer Interaction (HCI) community be-

lieve that interfaces of security systems do not reflect

good thinking in terms of creating a system that is

easy to use, while maintaining an acceptable level of

security (p. 75). Moreover, according to Adams and

Sasse [12], security systems are one of the last areas

to embrace user-centered design and training as essen-

tial. This is also true for biometrics as Coventry et al.

[13] stated the Human-Computer Interaction (HCI)

community has had limited involvement in the design

or evaluation of biometric systems.
Human-Biometric Sensor Interaction

(HBSI)

The authors have been researching this area for over

four years. Results of this research have produced

a new conceptual model, which is shown in Fig. 3.

This model combines literature and models from

biometrics, ergonomics, and usability (Fig. 2). The

conceptual model that examines biometric system er-

gonomic design is called the Human-Biometric Sensor

Interaction, or HBSI. The three fields of biometrics,

ergonomics, and usability are arranged within the

model to show the relationship of the human, biomet-

ric sensor, and the biometric system. Each of the rela-

tionships poses a different set of design or research

questions, which will now be discussed.
Human-Biometric Sensor

Sensor-Biometric System
The human and sensor components of the HBSI model

are similar to Tayyari and Smith’s [14] human-

machine interaction model. Much like the traditional

model, the human and biometric sensor components

look to achieve the optimal relationship between

humans and a biometric sensor in a particular envi-

ronment. The Human-Biometric sensor relationship

parallels the presentation silo of the general biometric

model, and is often overlooked during the design of
the biometric system. Applying an ergonomic
approach during the design of the biometric sensor

we can fit the sensors to the majority of users, as

opposed to forcing users to interact with difficult and

uncomfortable biometric sensors. Applying ergonomic

approaches such as ▶ user-centered design, biometric

sensors, interfaces, and systems can be designed based

on the user’s physical and mental states to allow the

users to complete the task that the biometric system is

asking for, most efficiently.
The human and biometric system components of

the HBSI model are arranged to accommodate the way

that biometric sensors, software, and implementations

are presented to users. Not only a biometric sensormust

be designed so that a user can interact with it in a

repeatable fashion, but also the sensor(s), software,

and the way the entire ‘‘system’’ is packaged must be

usable. Usability according to ISO 9241-11 [15] is seg-

mented into three factors: effectiveness, efficiency, and

satisfaction. Each of the three metrics is distinctively

different and important to understand. System

designers must take into consideration the goals of

the system. Every biometric system will be designed

for a different purpose, thus a balance must be attained

between effectiveness, efficiency, and satisfaction. First,

biometric systems must be effective, meaning users are

able to interact, use, and complete the desired tasks

without too much effort, which can also cause

throughput issues if people get ‘‘lost’’ in the system

and require administrator intervention, which also

comes with a cost. Second, biometric systems must

be efficient, meaning users must be able to accomplish

the tasks easily and in a timely manner. Again, if users

require intervention, the cost of staffing becomes bur-

densome. Third, users must like, or be satisfied, with

the biometric system, or will discontinue use and find

alternative methods to accomplish the task.
As mentioned in the previous two sections, users must

be able to interact with a biometric sensor or device

in a consistent manner over time; however, users must

also find the entire biometric system usable. To enable
this, the third relationship of the HBSI conceptual
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and general usability model (c) [15].
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model emerges, i.e., the sensor-biometric system

measured by image quality. Image quality is the im-

portant link between these two components because

the image or sample acquired by the biometric sensor

must contain the characteristics or features needed by
the biometric system to enroll or match a user in the
biometric system. So not only does the human-sensor

relationship needs to be functional and the human-

biometric system needs to be usable, but also the

sensor-biometric system needs to be efficient. This

occurs only if the sensor captures and passes usable
features onto the biometric system.
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Human-Biometric Sensor Interaction or HBSI model.
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The Human-Biometric Sensor
Interaction

The combination of components and relationships in

the model form the Human-Biometric Sensor Interac-

tion. Each component that is in the HBSI model has

been shown to impact results in previous experiments
from the respective field from which it was adapted

from. Since the conceptual model is derived from dif-

vant work and models in the fields of ergonomics,
ferent fields, each component usability, ergonomics,

and biometrics produces a unique output. Thus, the

final determination of the results is dependent upon the

goals, objectives, and criteria the researcher, designer,

or engineer is seeking, which is in-line with the ergo-

nomics, usability, and design literature.. As work in the

area of biometric system ergonomic design is limited,

the HBSI model provides the biometrics community

more insight and considerations needed for designing

biometric systems and their corresponding devices, as

well as metrics to evaluate the components outside

traditional biometric testing and evaluation.

Literature

Seminal research and publication in the area of usabil-

ity and accessibility, which was concerned with bio-

metric system ergonomic design, were pioneered by

the User Research Group at National Cash Register

(NCR). Some of their research findings that would

impact biometric system design can be seen in the

results of one experiment, which revealed that success-
ful verification was not affected by the type of
instruction and feedback received. Furthermore, the

results also revealed some users have problems that

cannot be solved through instruction, training, or

feedback. A possible explanation could be the biomet-

ric system ergonomic design and placement of the

sensor and the human-biometric sensor interaction.

Please refer to a book chapter written by Coventry

[16] for more information and relevant citations of

work conducted by the User Research Group at NCR.

Two other groups that have been actively research-

ing and publishing in this area are the NIST Biometrics

and Usability Group [17] and Purdue University’s

Biometric Standards, Performance, & Assurance Labo-

ratory [18]. Please refer to the respective references

for the latest research, publications, and presentations

in the area of biometric system ergonomic design. At

the time of writing, research in this area has investi-

gated ten print fingerprint capture scanner height and

angle, hand geometry device height, ▶ habituation,

applied finger force on a fingerprint sensor, and usabil-

ity of small-area and swipe-based fingerprint sensors,

image quality evaluations, instruction and feedback

mechanisms, as well as health and safety perceptions

of biometric devices. Lastly, the United Kingdom

Home Office Identity and Passport Service has also

published reports based on their biometric trials and

implementations which discuss biometric usability

and ergonomic design [19]. Maple and Norrington

[20] reported one particular trial of the United

Kingdom’s Passport Service Trial Program and its

usability and found issues with each of the three eval-

uated biometric systems: fingerprint, face, and iris

recognition systems.

Summary

This entry discussed the effect human interaction has

on biometric system performance to outline the im-

pact biometric system ergonomic design can have on

the overall performance of a biometric system.

The entry has outlined the origins of the Human-

Biometric Sensor Interaction model; including rele-
user-centered design, usability, and HCI. In addi-

tion, this entry has discussed how the fields that

form the HBSI model not only relate to biometrics,

but can be integrated into the design of biometric

devices and systems to create more usable devices
and systems, with the goal of lowering acquisition,
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enrollment, and matching failures. However, further

understanding in the area of biometric system ergo-

nomic design and its impact on biometrics is needed

to meet this goal.

The authors are not alone in their thoughts

and opinions that continued research is needed in

the area of biometric system ergonomic design. As

Smith [11] stated that some members of the HCI

community believe that interfaces of security systems

do not reflect good thinking in terms of creating a

system that is easy to use, while maintaining an accept-

able level of security. Moreover Adams and Sasse dis-

cussed the fact that security systems are one of the last

areas to embrace user-centered design and training

as essential [12]. Lastly, Maple and Norrington [20],

noted three observations that align with the objective

for continued investigation in biometric system ergo-

nomic design:

� People have different cognitive abilities,

� People have different physical characteristics and

interact differently with equipment, and

� People have different sensory abilities and will per-

ceive biometric sensors and systems differently.

As the biometrics community continues to develop

biometric systems and deployments become more per-

vasive, the evaluation of the biometric system and the

respective human-biometric sensor interaction will

continue to gain traction.

Related Entries

▶Accessibility

▶Attempt

▶ Failure to Acquire (FTA)

▶ Failure to Enroll (FTE)

▶Usuability
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Ergonomics
E

Ergonomics is a derivative of the Greek words ‘‘ergon,’’

or work, and ‘‘nomos,’’ meaning laws. While the term

work has been traditionally associated with occupation,

a broader sense of the term can be applied to any

unplanned activity requiring skill or effort. In 2000,

the International Ergonomics Association (IEA) de-

fined ergonomics or human factors as: ‘‘The scientific

discipline concerned with the understanding of inter-

actions among humans and other elements of a system,

and the profession that applies theory, principles, data

and methods to design in order to optimize human

well-being and overall system performance.’’ In design,

ergonomics attempts to achieve an optimal relation-

ship between humans and machines in a particular

environment. The goal of ergonomics, according to

Tayyari and Smith, is to ‘‘fit (adapt) work to indivi-

duals, as opposed to fitting individuals to the work.’’

▶Ergonomic Design for Biometric System
Error Probability Non-Accumulation
▶ Score Normalization Rules in Iris Recognition
Evaluation of Gait Recognition
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Synonyms

Gait recognition
Definition

Gait recognition refers to automated vision methods

that use video of human gait to recognize or to identify
a person. Evaluation of gait recognition refers to the

benchmarking of progress in the design of gait recog-

nition algorithms on standard, common, datasets.
Introduction

Design of biometric algorithms and evaluation of

performance goes hand in hand. It is important to

constantly evaluate and analyze progress being at vari-

ous levels of biometrics design. This evaluation can

be of three types: at algorithm-level, at scenario-level,

and at operational-level, roughly corresponding to the

maturity of the biometric. Given the young nature

of gait as a biometric source, relative to the mature

biometrics such as fingerprints, current evaluations are

necessarily at algorithm-level. The motivation behind

algorithm-level evaluations is to explore possibilities,

to understand limitations, and to push algorithmic re-

search towards hard problems. Some of the relevant

questions are

1. Is progress being made in gait recognition of

humans?

2. To what extent does gait offer potential as an iden-

tifying biometric?

3. What factors affect gait recognition and to what

extent?

4. What are the critical vision components affecting

gait recognition from video?

5. What are the strengths and weaknesses of different

gait recognition algorithms?

An overview of the current evaluation of gait as a

potential biometric is discussed here, with particular

emphasis on the progress with respect to the HumanID

gait challenge problem that has become the de-facto

benchmark. A synthesis of gait recognition perfor-

mances reported on this dataset and other major

ones is provided here, along with some suggestions

for future evaluations.
A Panoramic View of Performance

To take stock of the progress made in gait recognition,

consider a summary of the identification rates reported

in the recent literature on different kinds of publicly

available experimental protocols and datasets (>25

persons) such as the CMU-Mobo dataset [1] (indoor,
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25 subjects), the UMD dataset [2] (outdoor, 55 sub-

jects), the Southampton Large dataset [3] (indoor and

outdoor, 115 subjects), the CASIA Gait Dataset [4]

(indoor, 124 subjects), and the HumanID Gait Chal-

lenge dataset [5] (outdoor, 122 subjects). Figure 1 lists

the average identification rates for matching across

different conditions, i.e., the ▶ probe and the gallery

differed with respect to the indicated ▶ covariate. Of

course, the caveat is that the conclusions are conditioned

on the kinds of variations of each covariate observed in

the respective datasets. Hence, a definitive conclusion

is hard to make. However, this kind of summary has

some conclusive weight since, it encompasses the find-

ings of multiple research groups. It should provide

some directions for focusing future research. The

data shows that outdoor gait recognition, recognition

across walking surface-type change, and recognition

across months are all hard problems. Clothing, foot-

wear, carrying condition, and walking speed does not

seem to be hard covariates to overcome. As expected,

performance also drops with dataset size, which sug-

gests that it is imperative to demonstrate the efficacy of

an idea on as large a dataset as possible.

A deeper look at the performances reported

on commonly available datasets, in particular the
Evaluation of Gait Recognition. Figure 1 Summary (average

for different conditions. The average of the reported rates are

points are average of reported rates on datasets collected ind

points are for matching gait templates across different condit

gait sequences where the hands of the subjects were free to se

‘‘time’’ condition refers to matching gait templates collected

condition refers to number of subjects used in the experimen
HumanID gait challenge problem, will form the basis

for more definitive conclusions about the progress that

is being made.
The HumanID Gait Challenge Problem

The development of gait biometrics is following a path

that is somewhat different from other biometrics, for

which serious evaluation benchmarks appeared after

years of algorithmic development. It was more than

20 years for face recognition, whereas evaluation

framework for gait recognition appeared in less than

10 years after the first publication of vision algorithms

for gait recognition. Bulk of the research in gait recog-

nition was spurred by the DARPA HumanID at a

distance program. The HumanID gait challenge prob-

lem was formulated in this program to facilitate objec-

tive, quantitative measurement of gait research

progress on a large dataset [5]. As of end of 2007, this

dataset has been distributed to more than 40 research

groups. Many gait recognition research papers report

performance on this dataset.

This challenge problem does not just consist of a

dataset, but also provides a well-defined experimental
) of gait identification rates as reported in the literature

listed for different conditions. The first two performance

oors and outdoors, respectively. The next six performance

ions. For example, ‘‘carrying condition’’ refers to matching

quences where the subjects were carrying a briefcase. The

at different times with the time-gap as noted. The size

ts.
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framework for others to follow, along with an estab-

lished benchmark.
E

The Dataset

The data was collected outdoors. For each person in

the data set, there are combination of as many as five

conditions or covariates. The conditions are: (1) two

camera angles (L and R), (2) two shoe types (A and B),

(3) two surfaces (grass and concrete), (4) with and

without carrying a briefcase (B or NB), and (5) two

different dates 6 months apart, May and November.

The covariates were chosen based on consultation with

gait recognition researchers in the Human ID program.

These are, of course, not the only variables that

can impact gait, but were logistically feasible and likely

to impact gait the most. Attempt was made to acquire a

person’s gait in all possible combinations, and there are

up to 32 sequences for some persons. Hence, the full

dataset can be partitioned into 32 subsets, one for each

combination of the five covariates. The partitioning of

the data is visualized in Fig. 2. Each cell refers to an

unique combination of view, shoe type, and surface

covariates. The smaller arrangement of cells represent

the data from repeat subjects. Comparisons between

these subsets are used to set up challenge experiments;

more on this later. The full data set consists of 1,870
Evaluation of Gait Recognition. Figure 2 Partitioning of the

covariates, which are coded as follows: C – concrete surface, G

BF–carryingabriefcase,NB–nobriefcase,M–datacollectedinM

subjects in November. The shaded cells are used to design th
sequences from 122 individuals. This dataset is unique

in the number of covariates exercised. It is the only

data set to include walking on a grass surface. Figure 3

shows some sample frames from this dataset.

In addition to the raw data sequence, there is an

ancillary information associated with the data. First, for

each sequence, there is meta-data information about the

subject’s age, sex, reported height, self reported weight,

foot dominance, and shoe information.

Second, for a subset of this dataset, manually created

▶ silhouettes (see Fig. 4) are available. These manual

silhouettes should not be used to test any recogni-

tion algorithm, but they could be used to build models

or to study segmentation errors. More details about

the process of creating these manual silhouettes

and the quality checks performed can be found in

[6]; here are some salient aspects. Seventy one subjects

from one of the two collection periods (May collection)

were chosen for manual silhouette specification. The

sequences corresponding to these subjects were chosen

from the (1) gallery set (sequences taken on grass, with

shoe type A, right camera view), (2) probe B (on grass,

with shoe type B, right camera view), (3) probe D (on

concrete, with shoe type A, right camera view), (4) probe

H (on grass, with shoe A, right camera view, carry-

ing briefcase), and probe K (on grass, elapsed time).

The silhouette in each frame over one walking cycle,

of approximately 30–40 image frames was manually
HumanID gait challenge dataset in terms of its

– grass surface, A – first shoe type, B – second shoe type,

ay,N1 – new subjects in November data, and N2 – repeat

e challenge experiments.



Evaluation of Gait Recognition. Figure 3 Frames from (a) the left camera for concrete surface, (b) the right camera for

concrete surface, (c) the left camera for grass surface, (d) the right camera for grass surface.

Evaluation of Gait Recognition. Figure 4 Top row shows the color images, cropped around the person, for one

sequence. The bottom row shows the corresponding part-level, manually specified silhouettes.
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specified. This cycle was chosen to begin at the right heel

strike phase of the walking cycle through to the next

right heel strike. Whenever possible, this gait cycle was

selected from the same 3D location in each sequence. In

addition to marking a pixel as being from the back-

ground or subject, more detailed specifications in

terms of body parts were marked. The head, torso, left

arm, right arm, left upper leg, left lower leg, right upper

leg, and right lower leg were explicitly labeled using

different colors.
The Challenge Experiments

Along with the dataset, the gait challenge problem

includes a definition of 12 challenge experiments (A–L),

spanning different levels of difficulty. This provides a

common benchmark to compare performance with

other algorithms. The experiments are designed to

investigate the effect on performance of five factors,

i.e., change in viewing angle, change in shoe type,

change in walking surfaces (concrete and grass),
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carrying or not carrying a briefcase, and temporal

differences. The gallery set is common for all the

experiments and corresponds to the dark colored cell

in Fig. 2. The gallery consists of sequences with the

following covariates: Grass, Shoe Type A, Right Cam-

era, No Briefcase, and collected in May along with

those from the new subjects from November. This set

was selected as the gallery because it was one of the

largest for a given set of covariates. The experiments

differ in terms of the probe sets, which are denoted by

the lightly shaded cells. The structure of the 12 probe

sets is listed in Table 1. The signatures are the video

sequences of gait. The last two experiments study the

impact of elapsed time. The elapsed time covariate

implicitly includes a change of shoe and clothing

because the subjects were not required to wear the

same clothes or shoes in both data collections. Because

of the implicit change of shoe, it can be safely assumed

that a different set of shoes were used in the May and

November data collections. This is noted in Table 1 by

A/B for shoe type in experiments K and L. The key

experiments are those that involve controlled change in

just one covariate and are marked with an asterisk in
Evaluation of Gait Recognition. Table 1 The gallery and pro

Probe

Exp.
(surface, shoe, view, carry, elapsed
time) (C/G, A/B, L/R, NB/BF, time)

Aa (G, A, L, NB, M + N1)

Ba (G, B, R, NB, M + N1)

C (G, B, L, NB, M + N1)

Da (C, A, R, NB, M + N1)

E (C, B, R, NB, M + N1)

F (C, A, L, NB, M + N1)

G (C, B, L, NB, M + N1)

Ha (G, A, R, BF, M + N1)

I (G, B, R, BF, M + N1)

J (G, A, L, BF, M + N1)

Ka (G, A/B, R, NB, N2)

L (C, A/B, R, NB, N2)

The gallery for all of the experiments is (G, A, R, NB, M +N1) and cons
aKeyexperiments
bView
cShoe
dSurface
eCarry
fElapsed time
gClothing
the table. The results from the 12 experiments provide

an ordering of difficulty of the experiments.
Baseline Gait Algorithm

The third aspect of the gait challenge problem is a

simple but effective ▶ baseline algorithm to provide

performance benchmarks for the experiments. Ideally,

this should be a combination of ‘‘standard’’ vision mod-

ules that accomplishes the task. Drawing from the suc-

cess of template based recognition strategies in

computer vision, a four-part algorithm that relies on

silhouette template matching was designed. The first

part semi-automatically defines bounding boxes around

the moving person in each frame of a sequence. The

second part extracts silhouettes from the bounding

boxes using expectation maximization based on Maha-

lanobis distance between foreground and background

color model at each pixel. Each silhouette is scaled to a

height of 128 pixels and centered (automatically) in

each frame along the horizontal direction so that the

centerline of the torso is at the middle of the frame.
be set specifications for each of gait challenge experiments

Number of subjects Difference

122 Vb

54 Sc

54 S+V

121 Fd

60 F+S

121 F+V

60 F+S+V

120 Be

60 S+B

120 V+B

33 Tf+S+Cg

33 F+T+S+C

ists of 122 individuals
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The third part computes the gait period from the sil-

houettes. The gait period is used to partition the

sequences for spatial-temporal correlation. The fourth

part performs spatial-temporal correlation to compute

the similarity between two gait sequences.

Let SP ¼ fSPð1Þ; � � � ; SPðMÞg and SG ¼ fSGð1Þ;
� � � ; SGðNÞg, be the probe and the gallery silhouette

sequences, respectively. First, the probe (input) se-

quence is partitioned into subsequences, each roughly

over one gait period, NGait. Gait periodicity is esti-

mated based on periodic variation of the count the

number of foreground pixels in the lower part of the

silhouette in each frame over time. This number will

reach a maximum when the two legs are farthest apart

(full stride stance) and drop to a minimum when the

legs overlap (heels together stance).

Second, each of these probe subsequences, SPk ¼
fSPðkÞ; � � � ; SPðk þ NGaitÞg, is cross correlated with the
given gallery sequence, SG.

CorrðSPk; SGÞðlÞ ¼
XNGait

j¼1

S SPðk þ jÞ; SGðl þ jÞð Þ; ð1Þ

where, the similarity between two image frames,

S(SP(i), SG(j)), is defined to be the Tanimoto similarity

between the silhouettes, i.e., the ratio of the number of

common pixels to the number of pixels in their union.

The overall similarity measure is chosen to be the

median value of the maximum correlation of the gal-

lery sequence with each of these probe subsequences.

The strategy for breaking up the probe sequence into

subsequences allows the algorithm to overcome seg-

mentation errors in some contiguous sets of frames

due to some background subtraction artifact or due to

localized motion in the background.

SimðSP;SGÞ ¼Mediank max
l

CorrðSPk;SGÞðlÞ
� �

: ð2Þ

The baseline algorithm is parameter free. The algo-

rithm, although straightforward, performs quite well

on some of the experiments and is quite competitive

with the first generation of gait recognition algorithms.
Performance on the Gait Challenge
Problem

The results reported for the Gait Challenge problem

are of two types, ones that report results on the

first version of the dataset that was released with 71
subjects and the second set of results are those reported

for the full dataset with 122 subjects. The smaller

dataset allows just the first eight experiments listed in

Table 1, but with reduced gallery set sizes. Figure 5a

tracks the baseline performance and the best perfor-

mance reported in the literature. As of middle of 2007,

there were 18 papers that reported results on the smal-

ler version of the problem. In 2002, when the Gait

Challenge Problem was released, the performance of

the baseline algorithmwas better than the best reported

performance. By 2004, while the baseline algorithm

performance improved as the algorithm was fine-

tuned, the performance of the best performance im-

proved significantly and continued to improve through

2006. This trend is also seen in the results reported in

six papers on the full dataset, summarized in Fig. 5b.

As is evident, the gait challenge problem has al-

ready spurred the development of gait recognition

algorithms with improving performance. What is partic-

ularly interesting to notice is that the performance

on hard experiments such those across surface (experi-

ment D) and elapsed time (experiment K) has improved.

Of course, there is still room for further improvement.

Another interesting aspect is that the improvement of

performance from 2004 to 2006 was not due to

‘‘continued engineering’’ of existing approaches, but

involved the redesign of the recognition approaches.

For instance, the greatest gains came from approaches

that analyzed the silhouette shapes rather than the dy-

namics [2, 7]. Dynamics is important, but by itself is

not sufficient.

Performance of a large number of algorithmic

approaches have been explored. A review of the per-

formances reported in these works reveals* [8] that

1. All most all of these approaches are based on

silhouettes.

2. There is no one method that performs the best on

all experiments.

3. Performances that involve matching against view-

point and shoe variations, but on the same walking

surface, has plateaued out.

4. Matching against walking surface variation remains

a challenge.

5. Good performances (>80%) has been reported for

matching with and without carrying objects.

6. Matching across 6 months time difference has low

performance, but the number of subjects involved

in this experiment (33 subjects) is too low to derive

meaningful conclusions.



Evaluation of Gait Recognition. Figure 5 Improvement in gait recognition algorithms over time with respect to the

baseline performance. (a) Results on the first release of the gait dataset with 71 subjects in the gallery for the first eight

experiments listed in Table 1 are tracked here. (b) Results on the full dataset with 122 subjects for the key experiments

listed in Table 1. From 2004 to 2006, the best reported performances are better on all the experiments.
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Other Large Datasets

There are currently two other datasets that are as large as

the HumanID gait challenge dataset in terms of number

of subjects. First is the CASIA Indoor Gait Database [4].
The gallery set includes 124 subjects with normal walk-

ing, no coat and no carry bag. Different probes can be

defined in terms of changes in (1) viewpoint, (2) cloth-

ing change (coat vs. no-coat), and (3) carrying a bag

and not carrying a bag. Not many algorithms have
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reported performance on this dataset yet. But, the

performance reported for the gait energy image ap-

proach in [9], seems to corroborate the findings from

the HumanID Problem for matching across carrying

conditions: a performance of upto 80% is reported for

the CASIA dataset.

The other large dataset is the SOTON HID Gait

Database [10] with 115 subjects are collected mostly

indoor and some under outdoor conditions. The in-

door SOTON dataset was collected to examine the

premise that gait is unique so the background is

controlled so as to allow easy segmentation. The

same subjects were also filmed walking outdoors

to determine whether gait biometrics could be per-

ceived with complex backgrounds. Performances in

the range of 72–85% have been reported for matching

across sessions using a variety of approaches. This

dataset also affords the matching across time issue. It

has been shown that a time-dependent predictive

model [11] results in 92% recognition, but only for

ten subjects.

It is worth noting that face recognition on

these data sets would be poor, indeed given the low-

resolution and the uncontrolled lighting.
Future Evaluations

It is to be expected that each gait research group

would collect their own data set to develop ideas.

This is an important process. For instance, one new

dataset is the CASIA infrared night gait dataset [12].

It consists of gait data from 153 subjects are collected

outdoors, at night, with and without carrying condi-

tion, and at two different speeds. This dataset nicely

complements existing datasets that are collected dur-

ing the day. Given the data-driven nature of bio-

metrics research, the key to future progress are such

data sets, collected to explore issues not considered or

raised by existing ones. For instance, as of today there

is need for the better understanding of the variation

of gait due to surface conditions and across elapsed

time. Also, currently there is no dataset to explore the

matching across time issue for a large number of

subjects.

Ideally, the new datasets should consist of gait data

from around 1,000 subjects, an order of magnitude

larger than current large datasets. It is important to

increase the number of subjects so, that it is possible to
empirically study the scaling of performance with

number of subjects. Some guidance about the requi-

red sizes can be found in [13, 14], where statistical

reasoning is employed to relate the number of subjects

with target error confidences. The data collection

should include gait data repeated at regular time inter-

vals of weeks, spanning about a year. The dataset

should be collected in outdoor conditions, preferably

collected at a distance of 300 m to reflect real

world conditions. The dataset should come with a set

of well defined experiments in terms of gallery

and probe sets. These experiments will influence the

types of algorithms. For the experiments to be effective

at influencing the direction of gait research the design

of the experiments needs to solve the three bears prob-

lem; the experiments must be neither too hard nor

too easy, but just right. If performance on the experi-

ments is easily saturated, then the gait recognition

community will not be challenged. If experiments are

too hard, then it will not be possible to make progress

on gait recognition. Ideally, the set of experiments

should vary in difficulty, characterize where the gait

recognition problem is solvable, and explore the fac-

tors that affect performance. A set of experiments

cannot meet this ideal unless the appropriate set

of data is collected. It is important to view biometrics

research as a data-driven algorithm development

process rather than algorithm-driven data collection

process.
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Expected Performance or Utility of
Fingerprint Image in an Automated
Comparison Environment
▶ Fingerprint Image Quality
Expression
Face recognition processing usually requires a neutral

facial expression (no smiling, mouth closed) and with

the subject looking straight at the camera.

▶Photography for Face Image Data
Extended Enterprise
Beyond the physical boundaries or ‘‘four walls’’ of an

organization is extended enterprise.

▶Remote Authentication
External Identification
Identification of a victim based on external evidence,

such as the victim’s gender, height, build, face, and

fingerprints.

▶Dental Biometrics
External Operation Time
▶Operational Times
Extra-Class
Extra-class refers to instances of different subjects.

Ideally, the extracted features should be very different

for instances of different subjects.

▶ Local Image Filters



290E Eye Centers
Eye Centers
In face recognition, eye center is defined as the geomet-

ric centroid of the close region formed by the upper and

lower eyelids when the eye is opened. In practice, the

midpoint of the left and right eye corners is often used

instead. Because of the changing of gaze, pupil or origin

of the iris circle is not necessarily the eye center.

▶ Face Misalignment Problem
Eye Tracking
The process of measuring either the motion of the eye

relative to the head or the point of gaze, i.e. where

someone is looking. Applications include medical and

cognitive studies, computer interfaces, and marketing

research.

▶ Segmentation of Off-Axis Iris Images
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Face Acquisition
▶ Face Device
Face Aging
Face aging is to predict the future appearance of

human face by learning the aging patterns, child

growth, and adult aging are two type of aging.

▶And-Or Graph Model for Faces
Face Alignment

LEON GU, TAKEO KANADE

Carnegie Mellon University, Pittsburgh, PA, USA
Synonyms

Face registration; Face matching
Definition

Face alignment is a computer vision technology for

identifying the geometric structure of human faces in

digital images. Given the location and size of a face,

it automatically determines the shape of the face com-

ponents such as eyes and nose. A face alignment pro-

gram typically operates by iteratively adjusting a
# 2009 Springer Science+Business Media, LLC
▶ deformable models, which encodes the prior knowl-

edge of face shape or appearance, to take into account

the low-level image evidences and find the face that is

present in the image.
Introduction

The ability of understanding and interpreting facial

structures is important for many image analysis tasks.

Suppose that, if we want to identify a person from a

surveillance camera, a natural approach would be run-

ning the face image of the person through a database

of known faces, examining the differences and identi-

fying the best match. However, simply subtracting one

image from another would not yield the desirable

differences (as shown in Fig. 1), unless two faces are

properly aligned. The goal of face alignment is to

establish correspondence among different faces, so

that the subsequent image analysis tasks can be per-

formed on a common basis.

The main challenge in face alignment arises from

pervasive ambiguities in low-level image features. Con-

sider the examples shown in Fig. 2. While the main

face structures are present in the ▶ feature maps, the

contours of face components are frequently disrupted

by gaps or corrupted by spurious fragments. Strong

gradient responses could be due to reflectance, occlu-

sion, fine facial texture, or background clutter. In con-

trast, the boundaries of face components such as nose

and eyebrow are often obscure and incomplete. Look-

ing for face components separately is difficult and

often yields noisy results.

Rather than searching individual face components

and expecting the face structure to emerge from the

results, a better strategy is imposing the structure explic-

itly from the beginning. A majority of work in the field

are developed based on this strategy. Deformable tem-

plate [1], for example, is an elastic model which resem-

bles face structure by assemblies of flexible curves. A set



Face Alignment. Figure 2 The major difficulty in face alignment is low-level image ambiguities. Face topologies

could be significantly corrupted in the gradient feature maps (second row), due to various factors such as reflectance,

occlusion, fine facial texture, and background clutter.

Face Alignment. Figure 1 To compare two face images, by directly adding them or subtracting one from another

does not produce the desired result. Face alignment enables to establish correspondences between different images,

so that the subsequent tasks can be performed on a common basis.
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of model parameters control shape details such as

the locations of various facial subparts and the angles

of hinges which join them. The model is imposed

upon and aligned to an image by varying the para-

meters. This strategy is powerful for resolving low-level

image ambiguities. Inspired by this work, many varia-

tions of deformable face models emerged, including

[2–9]. The common scheme in these work is first to

construct a generic face model, then modify it to

match the facial features found in a particular image.

In this procedure, encoding prior knowledge of human

faces, collecting image evidences of facial features,

and fusing the observations with priors are the three

key problems. Our treatment will follow the method

proposed by Gu and Takeo [8, 9], which addresses the

above problems in a coherent hierarchical Bayes

framework.
Constructing Face Priors

This article concerns with the prior knowledge of

a particular kind, namely shape priors. Suppose that,

a face consists of a set of landmark points, which are

typically placed along the boundaries of face compo-

nents, i.e., S ¼ (x1, y1, . . ., xn, yn). It can be viewed as a

random vector, and its distribution, commonly called

shape prior, describes the plausible spatial configu-

rations of the landmark set. A principled way to con-

struct the prior is by learning the distribution from

training samples.

Face appears in different scales and orientations.

First we need to transform all training face images into

a common coordinate frame. One popular approach is

general procrustes analysis [10]. It consists of two

recursive steps: computing the mean shape, and
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aligning each training shape with the mean by a rigid

transformation. These two steps are repeated until the

differences between the mean and the training shapes

are minimized.

Next, we construct shape prior from the aligned

training samples. The spatial arrangement of facial

landmarks, although deformable, has to satisfy certain

constrains. For example, it is often reasonable to as-

sume that face shape is normally distributed, therefore,

to learn the distribution we simply compute the mean

and the covariance of the training shapes. More specif-

ically, since the intrinsic variability of face structure

is independent to its representation, e.g., the number

of landmarks, we can parameterize face shape in a low-

dimensional subspace [6, 8], such as

S ¼ Fb þ mþ E: ð1Þ
The columns of F denote the major ‘‘modes’’ of shape

deformations, and the elements of b controls the mag-

nitude of deformation on the corresponding mode.

This model has a nice generative interpretation: the

shape vector S is generated by first adding a sequence

of deformations {Fibi} into the mean shape m, then
permuting the resultant shape by an Gaussian noise

E � Nð0; s2Þ. From a geometric perspective, the
Face Alignment. Figure 3 Face alignment results from Gu a
matrix F span a low-dimensional subspace which is

centered at m, the deformation coefficient b is the

projection of S in the subspace, and E denotes the

deviation of S from the subspace. If assuming the ele-

ments of b to be independently normal, i.e.,

b � Nð0;SÞ and S is diagonal, the distribution

over the shape S is a constrained Gaussian,

S � Nðm;FSFt þ s2IÞ. The model parameters m, F,
S, and s can be learned from training data. This model

is also known as probabilistic principal component

analysis [11] in the field of machine learning.
Detecting Facial Features

Stronggradientresponse isnot theonlyway tocharacterize

facial features. Some feature points may correspond to

a weaker secondary edge in local context instead of the

strongest; other points such as eye corners may have rich

image structure that is more informative than gradient

magnitude. Facial feature modeling can be made

more effective by constructing detectors specific to each

individual feature. One simple detector [2], for example,

is a normal distribution built on the local gradient

structures of each point. The distribution is learned
nd Kanade [9].
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from training face images, and applied to evaluate the

target image. Concatenating the best candidate position

(ui,vi) of each feature point, we obtain an ‘‘observation’’

Q ¼ (u1,v1, . . .,un,vn) of the face shape that is likely to

be present in the image. The observation is related with

the aligned shape S by a rigid transformation

Q ¼ T ðS; yÞ þ �; ð2Þ
where y ¼{t, s, r} denotes the transformation parameters

(translation, scale, and rotation), and � is an additive

observation noise. The conditional p(Q jS) remains to

be normal if the transformation T is linear, e.g., rigid or

affine. More sophisticated detectors have been developed

to produce better observations, however, after decades

of research people have learned that individual feature

detectors are effective only up to a point and cannot be

expected to retrieve the entire face structure.
Fusing Prior with Image Observations

Combining the deformation model (1) with the trans-

formation model (2) a hierarchical Bayes model is

established that simulates how a random observation

Q is generated from the deformation magnitude b and

the transformation parameters y. In this framework,

the face alignment task is to modify shape priors to

take into account the image evidences, arriving at the

target face shape in images. EM algorithm is typically

used for inferring the posterior b and y, and analytic

solutions exist for both E and M steps when the trans-

formation is linear. This framework has been extended

to model three-dimensional transformations for align-

ing multi-view faces [8], and nonlinear shape defor-

mations for dealing with face images with exaggerated

facial expressions [9]. Figure 3 shows a few alignment

results from [9].
Summary

Significant progresses have been made in face alignment

in recent years. The hierarchical Bayes formulation intro-

duced in this article provides a systematic way to resolve

low-level image ambiguities and exploit prior knowledge.

Face alignment has a wide range of applications includ-

ing face recognition, expression analysis, facial anima-

tion, lip reading, and human–computer interaction.
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Synonyms

Face recognition performance evaluation
Definition

Face Databases are imagery data that are used for testing

▶ face processing algorithms. In the contents of bio-

metrics, face databases are collected and used to evaluate

the performance of face recognition biometric systems.

Face recognition evaluation is the procedure that is

used to access the recognition quality of a face recog-

nition system. It involves testing the system on a set of

face databases and/or in a specific setup for the pur-

pose of obtaining measurable statistics that can be used

to compare systems to one another.
Introduction: Factors Affecting Face
Recognition Performance

While for humans recognizing a face in a photograph or

in video is natural and easy, computerized face recogni-

tion is very challenging. In fact, automated recognition

of faces is known to be more difficult than recogni-

tion of other imagery data such as iris, vein, or finger-

print images due to the fact that the human face is a

non-rigid 3D object which can be observed at different
angles and which may also be partially occluded. Spe-

cifically, face recognition systems have to be evaluated

with respect to the following factors [1]:

1. Face image resolution – face images can be cap-

tured at different resolutions: face images scanned

from documents may have very high resolution,

while face captured with a video camera will mostly

be of very low resolution,

2. Facial image quality – face images can be blurred

due to motion, out of focus, and of low con-

trast due to insufficient camera exposure or aper-

ture, especially when captured in uncontrolled

environment,

3. Head orientation – unless a person is forced to face

the camera and look straight into it, will unlikely be

seen under the same orientation on the captured

image,

4. Facial expression – unless a person is quiet and

motionless, the human face constantly exhibits a

variety of facial expressions

5. Lighting conditions – depending on the location of

the source of light with respect to the camera and

the captured face, facial image will seen with differ-

ent illumination pattern overlaid on top of the

image of the face,

6. Occlusion – image of the face may be occluded by

hair, eye-glasses and clothes such scarf or

handkerchief,

7. Aging and facial surgery – compared to fingerprint

or iris, person faces changes much more rapidly

with time, it can also be changed as a result of

make-up or surgery.

There are over thirty publicly available face databases.

In addition, there are Face Recognition Vendor Test

(FRVT) databases that are used for independent

evaluation of Face Recognition Biometric Systems

(FRBS). Table 1 summarizes the features of the most

frequently used still image facial databases, as pertain-

ing to the performance factors listed above. More

details about each database can be found at [2–4]

and below are presented some of them. For the list of

some video-based facial databases, see [5].
Public Databases

One of the first and most used databases is AT&T

(formerly ‘‘Olivetti ORL’’) database [6] that contains
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ten different images of each of 40 distinct subjects. For

some subjects, the images were taken at different times,

varying the lighting, facial expressions (open/closed eyes,

smiling/not smiling) and facial details (glasses/no glasses).

All the images were taken against a dark homogeneous

background with the subjects in an upright, frontal posi-

tion (with tolerance for some side movement).

The other most frequently used dataset is developed

for FERET program [7]. The images were collected in a

semi-controlled environment. To maintain a degree of

consistency throughout the database, the same physi-

cal setup was used in each photography session. A

duplicate set is a second set of images of a person

already in the database and was usually taken on a

different day. For some individuals, over 2 years had

elapsed between their first and last sittings, with some

subjects being photographed multiple times.

The Yale Face Database [8] contains images of

different facial expression and configuration: center-

light, w/glasses, happy, left-light, w/no glasses, normal,

right-light, sad, sleepy, surprised, and wink. The Yale

Face Database B provides single light source images of

10 subjects each seen under 576 viewing conditions

(9 poses x 64 illumination conditions). For every sub-

ject in a particular pose, an image with ambient (back-

ground) illumination was also captured.

The BANCA multi-modal database was collected as

part of the European BANCA project, which aimed

at developing and implementing a secure system with

enhanced identification, authentication, and access con-

trol schemes for applications over the Internet [9]. The

database was designed to test multimodal identity ver-

ification with various acquisition devices (high and low

quality cameras and microphones) and under several

scenarios (controlled, degraded, and adverse).

To investigate the time dependence in face recogni-

tion, a large database is collected at the University of

Notre Dame [10]. In addition to the studio recordings,

two images with unstructured lighting are obtained.

University of Texas presents a collection of a large

database of static digital images and video clips of faces

[11]. Data were collected in four different categories:

still facial mug shots, dynamic facial mug shots, dy-

namic facial speech and dynamic facial expression. For

the still facial mug shots, nine views of the subject,

ranging from left to right profile in equal-degree

steps were recorded. The sequence length is cropped

to be 10 s.

The AR Face Database [12] is one of the largest

datasets showing faces with different facial expressions,
illumination conditions, and occlusions (sun glasses

and scarf).

XM2VTS Multimodal Face Database provides five

shots for each person [13]. These shots were taken at one

week intervals or when drastic face changes occurred

in the meantime. During each shot, people have been

asked to count from ‘‘0’’ to ‘‘9’’ in their native language

(most of the people are French speaking), rotate the head

from 0 to�90 degrees, again to 0, then to +90 and back

to 0 degrees. Also, they have been asked to rotate the

head once again without glasses if they wear any.

CMU PIE Database is one of the largest datasets

contains images of 68 people, each under 13 different

poses, 43 different illumination conditions, and with

four different expressions [14].

The Korean Face Database (KFDB) contains facial

imagery of a large number of Korean subjects collected

under carefully controlled conditions [15] . Similar to

the CMU PIE database, this database has images with

varying pose, illumination, and facial expressions were

recorded. In total, 52 images were obtained per subject.

The database also contains extensive ground truth

information. The location of 26 feature points (if visi-

ble) is available for each face image.

CAS-PEAL Face Database is another large-scale

Chinese face database with different sources of varia-

tions, especially Pose, Expression, Accessories, and

Lighting [16].
FRVT Databases

Face Recognition Vendor Tests (FRVT) provide inde-

pendent government evaluations of commercially

available and prototype face recognition technologies

[4]. These evaluations are designed to provide

U.S. Government and law enforcement agencies with

information to assist them in determining where and

how facial recognition technology can best be

deployed. In addition, FRVT results serve to identify

future research directions for the face recognition com-

munity. FRVT 2006 follows five previous face recogni-

tion technology evaluations – three FERETevaluations

(1994, 1995 and 1996) and FRVT 2000 and 2002.

FRVT provides two new datasets that can be used

for the purpose: high computational intensity test

(HCInt) data set andMediumComputational Intensity

test (MCInt) data set. HCInt has 121,589 operational

well-posed (i.e. frontal to within 10 degrees) images of

37,437 people, with at least three images of each person.
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The images are provided from the U.S. Department of

State.s Mexican non-immigrant visa archive. The

images are of good quality and are gathered in a consis-

tent manner, collected at U.S. consular offices using

standard issue digital imaging apparatus whose specifi-

cation remained fixed over the collection period.

The MCInt data set is composed of a heterogeneous

set of still images and video sequences of subjects in a

variety of poses, activities and illumination conditions.

The data are collected from several sources, captured

indoors and outdoors, and include lose-range video

clips and static images (with over hundred individuals),

high quality still images, Exploration Video Sequences

(where faces move through the nine facial poses used for

the still images) and Facial Speech Videos (where two

video clips were taken of individuals speaking, first in a

neutral way, then in an animated way).
Face Evaluation

For an evaluation to be accepted by the biometric

community, the performance results have to published

along with the evaluation protocol. An evaluation pro-

tocol describes how the experiments are run and

how the data are collected. It should be written in

sufficient detail so that users, developers, and vendors

can repeat the evaluation.

The main attributes of the evaluation protocol are

described below.
Image Domain and Face Processing Tasks

There are two image domains where Face Recognition

Biometric Systems (FRBS) are applied:

1. Face recognition in documents (FRiD), in particular,

face recognition from Machine Readable Travel

Documents (MRTD).

2. Face recognition in video (FRiV), also referred to as

Face in Crowd problem, an example of which is face

recognition from surveillance video and TV.

These two image domains are very different [17]. The

systems that perform well in one domain may not

perform well in the other [18].

FRiD deals with facial data that are of high spacial

resolution, but that are very limited or absent in

▶ temporal domain – FRiD face images would nor-

mally have intra-ocular distance (IOD) of at least 60
pixels, which is the distance defined by the ▶ canonical

face model established by International Civil Aviation

Organization (ICAO) for MRTD. There will however

be not more than one or very few images available of

the same person captured over a period of time.

In contrast, FRiV deals with facial images that are

available in abundance in temporal domain but which

are of much lower spatial resolution. The IOD of facial

images in video is often lower than 60 pixels, due to

the fact that face normally occupies less than one eighth

of a video image, which itself is relatively small (352 �
240 for analog video or 720 � 480 for digital video)

compared to a scanned document image. In fact, IOD of

faces detected in video is often just slightly higher than or

equal to 10 pixels, which is the minimal IOD that per-

mits automatic detection of faces in images [19].

While for FRiD facial images are often extracted

beforehand and face recognition problem is considered

in isolation from other face processing problems, FRiV

requires that a system be capable of performing several

other facial processing tasks prior to face recognition,

such as face detection, face tracking, eye localization, best

facial image selection or reconstruction, which may also

be coupled with facial image accumulation and video

snapshot resolution enhancement [20]. Evaluation of

FRBS for FRiD is normally performed by testing a sys-

tem on static facial images datasets described above.

To evaluate FRBS for FRiV however, it is much more

common to see the system testing performed as a pilot

project on a real-life video monitoring surveillance task

[21], although some effort to evaluate their perfor-

mance using prerecorded datasets and motion pictures

has been also suggested and performed [5].
Use of Color

Color information does not affect the face recognition

performance [22], which is why many countries still

allow black-n-white face pictures in passport docu-

ments. Color however plays an important role in face

detection and tracking as well as in eye localization.

Therefore, for testing recognition from video, color

video streams should be used.
Scenario Taxonomy

The following scenario taxonomy is established to cat-

egorize the performance of biometric systems [23]:



Face Databases and Evaluation. Figure 1 Face databases, categorized by the factors affecting the performance of face

recognition systems: such as number of probes, face image resolution, head orientation, face expression, changed in

lighting, image quality degradation, occlusion, and aging.

298F Face Databases and Evaluation



Face Databases and Evaluation F 299
cooperative vs. non-cooperative, overt vs. covert, habi-

tuated vs. non-habituated, attended vs. non-attended,

public vs. private, standard vs. non-standard. When

performing evaluation of FRBS, these categories have

to be indicated.
F

Dataset Type and Recognition Task

Two types of datasets are possible for recognition

problems:

1. Closed dataset, where each query face is present in

the database, as in a watch list in the case of nega-

tive enrollment, or as in a list of computer users or

ATM clients, in the case of positive enrollment,

2. Open dataset, where query faces may not be (or

very likely are not) in the database, as in the case of

surveillance video monitoring.

FRBS can be used for one three face recognition tasks:

1. Face verification, also referred to as authentifica-

tion or 1 to 1 recognition, or positive verification,

as verifying ATM clients,

2. Face identification, also referred to as or 1 to N

(negative identification – as detecting suspects from

a watch list), where a query face is compared against

all faces in a database and the best match (or the best

k matches) are selected to identify a person.

3. Face classification, also referred to as categoriza-

tion, where a person is recognized as belonging to

one of the limited number of classes, such as de-

scribing the person’s gender (male, female), race

(caucasian, asian etc), and various medical or ge-

netic conditions (Down’s Syndrome etc).

While the result of the verification and identification

task are used as hard biometrics, the results from

classification can be used as soft biometrics, similar to

person’s height or weight.
Performance Measures

The performance is evaluated against two main errors

a system can exhibit:

1. False accept (FA) also known as false match (FM),

false positive (FP) or type I error.

2. False reject (FR) also known as false non-match

(FNM) or false negative (FN) or type 2 error.
By applying a FRBS on a significantly large data set of

facial images, the total number of FA and FR are

measured and used to compute one or several of the

following cumulative measurements and figures of

merit (FOM). For verification systems,

1. FA rate (FAR) with fixed FR rate.

2. FR rate (FRR), or true acceptance rate (TAR = 1 –

FRR), also known as true positive (or hit) rate, at

fixed FA rate.

3. Detection Error Trade-off (DET) curve, which is

the graph of FAR vs FRR, which is obtained by

varying the system parameters such as match

threshold.

4. Receiver Operator Characteristic (ROC) curve,

which is similar to DET curve, but plots TAR

against FAR.

5. Equal error rate (EER), which the FAR measured

when it equals FRR.

For identification tasks,

1. Identification rate, or rank-1 identification, which

is number of times when the correct identity is

chosen as the most likely candidate.

2. Rank-k identification rate (Rk), which is number of

times the the correct identity is in the top k most

likely candidates.

3. Cumulative Match Characteristic (CMC), which

plots the rank-k identification rate against k.

The rates are counted as percentages to the number of

faces in a databases. DET and ROC curves are often

plotted using logarithmic axes to better differentiate

the systems that shows similar performance.
Similarity Metrics, Normalization, and
Data Fusion

Different types of metrics can be used to compare

▶ feature vectors of different faces to one another.

The recognition results can also be normalized. Proper

covariance-weighted metrics and normalization should

be used when comparing the performance results

obtained on different datasets.

When temporal data are available, as when recog-

nizing a person from a video sequence, the recognition

results are often integrated over time in a procedure

known as evidence accumulation or data fusion. The

details of this should be known.
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Face Databases and Evaluation. Figure 2 Examples of performance evaluation conducted on face databases:

(a) identification performance of several appearance-based recognition algorithms measured using CMC curves on

FERET database (from [25]), (b–e) verification and identification performance of commercial face recognition biometrics

systems on FRVT datasets (from [24, 26], using CMC curves (b), ROC curve (c), DET curve (d) and fixed-FAR FRR

distrubutions (e)).
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Example Protocols

Feret protocol [7] is an example of the close set

face identification, where a full distance matrix that

measures the similarity between each query image and

each database image is computed. FRVT2002 [24]

addresses both open set verification problem and

close-set identification problem and uses CMC and

ROC to compare the results. BANCA protocol [9],

which is designed for multi-modal databases, is an

example of the open set verification protocol.

XM2VTS Lausanne protocol [13] is an example of a

close set verification, where anyone not in the database

is considered an imposter.
Evaluation Results

Face Databases have been used over the years to com-

pare and improve the existing face recognition techni-

ques. Some of the obtained evaluation results are

shown in Fig. 2. Figure 2a shows face identification

results from [25] for popular appearance-based face-

recognition techniques: Principal Component Analysis

(PCA), Independent Component Analysis (ICA), and

Linear Discriminant Analysis (LDA), obtained on

FERET database using CMC curves.

Figures 2b–e show performance evaluation of com-

mercial FRBSs that participated in the FRVT2002 and

FRVT2006 tests taken from [24, 26]
Future Work

Considerable advances have been made recently in the

area of automated face recognition. FRBSs are now able

to recognize faces in documents with the performance

that matches or exceeds the human recognition perfor-

mance. In large part, this has become possible due to

the help of many researchers that have collected and

maintained face databases. At the same time, despite

the intensive use of these databases, no FRBS has been

developed so far that can recognize faces from video

with performance close to that of humans.

Automated recognition of faces from video is con-

siderably worse than face recognition from documents,

whereas for humans it is known to be the opposite. This

status-quo situation serves as an indication that new

evaluation datasets and benchmarks are needed for
testing video-based face recognition systems. Knowing

how easily available have become recently amounts of

various video data (including news casts, televised

shows, motion pictures, etc), it is foreseen that instead

of using video-based data-bases, which are very costly

and time consuming to create, the research community

will soon adopt face evaluation benchmarks and pro-

tocols based on public domain video recordings [5].

The importance of improving the performance of

video-based face recognition should not be underesti-

mated, taking into account that of all hard biometric

modalities, video-based face recognition is the most

collectable and acceptable [27].
Related Entries

▶ Face Detection

▶ Face Recognition

▶ Identification

▶Verification
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Synonym

Face Localization
Definition

Face detection is concerned with finding whether there

are any faces in a given image (usually in gray scale)

and, if present, return the image location and content

of each face. This is the first step of any fully automatic

system that analyzes the information contained in faces

(e.g., identity, gender, expression, age, race, and pose).

While earlier work dealt mainly with upright frontal

faces, several systems have been developed that are able

to detect faces fairly accurately with in-plane or out-of-

plane rotations in real time. Although a face detection

module is typically designed to deal with single images,

its performance can be further improved if video

stream is available.
Introduction

The advances of computing technology has facilitated

the development of real-time vision modules that inter-

act with humans in recent years. Examples abound,

particularly in biometrics and human computer inter-

action as the information contained in faces needs to be

analyzed for systems to react accordingly. For biometric

systems that use faces as nonintrusive input modules,
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it is imperative to locate faces in a scene before any

recognition algorithm can be applied. An intelligent

vision-based user interface should be able to tell the

attention focus of the user (i.e., where the user is looking

at) in order to respond accordingly. To detect facial

features accurately for applications such as digital cos-

metics, faces need to be located and registered first to

facilitate further processing. It is evident that face detec-

tion plays an important and critical role for the success

of any face processing systems.

The face detection problem is challenging as it

needs to account for all possible appearance variation

caused by change in illumination, facial features,

occlusions, etc. In addition, it has to detect faces that

appear at different scale, pose, with in-plane rotations.

In spite of all these difficulties, tremendous progress

has been made in the last decade and many systems

have shown impressive real-time performance. The

recent advances of these algorithms have also made

significant contributions in detecting other objects

such as humans/pedestrians, and cars.
Operation of a Face Detection System

Most detection systems carry out the task by extracting

certain properties (e.g., local features or holistic inten-

sity patterns) of a set of training images acquired at a

fixed pose (e.g., upright frontal pose) in an off-line

setting. To reduce the effects of illumination change,

these images are processed with histogram equalization

[1, 2] or standardization (i.e., zero mean unit variance)

[3]. Based on the extracted properties, these systems

typically scan through the entire image at every possi-

ble location and scale in order to locate faces. The

extracted properties can be either manually coded

(with human knowledge) or learned from a set of

data as adopted in the recent systems that have demon-

strated impressive results [1, 2, 3, 4, 5]. In order to

detect faces at different scale, the detection process is

usually repeated to a pyramid of images whose resolu-

tion are reduced by a certain factor (e.g., 1.2) from the

original one [1, 2]. Such procedures may be expedited

when other visual cues can be accurately incorporated

(e.g., color and motion) as pre-processing steps to

reduce the search space [5]. As faces are often detected

across scale, the raw detected faces are usually further

processed to combine overlapped results and remove

false positives with heuristics (e.g., faces typically do
not overlap in images) [2] or further processing (e.g.,

edge detection and intensity variance).

Numerous representations have been proposed for

face detection, including pixel-based [1, 2, 5], parts-

based [4, 6, 7], local edge features [8], Haar wavelets

[4, 9], and ▶Haar-like features [3, 10]. While earlier

holistic representation schemes are able to detect faces

[1, 2, 5], the recent systems with Haar-like features

[3, 11, 12] have demonstrated impressive empirical

results in detecting faces under occlusion. A large and

representative training set of face images is essential for

the success of learning-based face detectors. From the

set of collected data, more positive examples can be

synthetically generated by perturbing, mirroring, ro-

tating, and scaling the original face images [1, 2].

On the other hand, it is relatively easier to collect

negative examples by randomly sampling images with-

out face images [1, 2].

As face detection can be mainly formulated as a

pattern recognition problem, numerous algorithms

have been proposed to learn their generic templates

(e.g., eigenface and statistical distribution) or dis-

criminant classifiers (e.g., neural networks, Fisher

linear discriminant, sparse network of Winnows, de-

cision tree, Bayes classifiers, support vector machines,

and ▶AdaBoost). Typically, a good face detection

system needs to be trained with several iterations.

One common method to further improve the system

is to bootstrap a trained face detector with test sets,

and retrain the system with the false positive as well as

negatives [2]. This process is repeated several times to

further improve the performance of a face detector.

A survey on these topics can be found in [5], and

the most recent advances are discussed in the next

section.
Recent Advances

The AdaBoost-based face detector by Viola and Jones

[3] demonstrated that faces can be fairly reliably

detected in real-time (i.e., more than 15 frames per

second on 320 � 240 images with desktop computers)

under partial occlusion. While Haar wavelets were

used in [9] for representing faces and pedestrians,

they proposed the use of Haar-like features which

can be computed efficiently with integral image [3].

Figure 1 shows four types of Haar-like features that are

used to encode the horizontal, vertical, and diagonal



Face Detection. Figure 1 Four types of Haar-like features. These features appear at different position and scale. The

Haar-like features are computed as the difference of dark and light regions. They can be considered as features that

collect local edge information at different orientation and scale. The set of Haar-like features is large, and only a small

amount of them are learned from positive and negative examples for face detection.
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intensity information of face images at different posi-

tion and scale.

Given a sample image of 24 � 24 pixels, the ex-

haustive set of parameterized Haar-like features

(at different position and scale) is very large (about

160,000). Contrary to most of the prior algorithms

that use one single strong classifier (e.g., neural net-

works and support vector machines), they used an

ensemble of weak classifiers where each one is con-

structed by thresholding of one Haar-like feature. The

weak classifiers are selected and weighted using the

AdaBoost algorithm [13]. It is worth to note that

boosting algorithms can also be derived from the per-

spective of function approximation with gradient de-

scent and applications for regression [14]. As there are

large number of weak classifiers, they presented a

method to rank these classifiers into several cascades

using a set of optimization criteria. Within each stage,

an ensemble of several weak classifiers is trained using

the AdaBoost algorithm. The motivation behind the

cascade of classifier is that simple classifiers at early

stage can filter out most negative examples efficiently,

and stronger classifiers at later stage are only necessary

to deal with instances that look like faces. The final

detector, a 38 layer cascade of classifiers with 6,060

Haar-like features, demonstrated impressive real-time

performance with fairly high detection and low false

positive rates. Several extensions to detect faces in

multiple views with in-plane ration have since been

proposed [11, 12, 15]. An implementation of the Ada-

Boost-based face detector [3] can be found in the Intel

OpenCV library.
Despite the excellent run-time performance of

boosted cascade classifier [3], the training time of

such a system is rather lengthy. In addition, the ▶ clas-

sifier cascade is an example of degenerate decision tree

with an unbalanced data set (i.e., a small set of positive

examples and a huge set of negative ones). Numerous

algorithms have been proposed to address these issues

and extended to detect faces in multiple views. To

handle the asymmetry between the positive and nega-

tive data sets, Viola and Jones proposed the asymmet-

ric AdaBoost algorithm [16] which keeps most of the

weights on the positive examples. In [3], the AdaBoost

algorithm is used to select a specified number of weak

classifiers with lowest error rates for each cascade and

the process is repeated until a set of optimization

criteria (i.e., the number of stages, the number of

features of each stage, and the detection/false positive

rates) is satisfied. As each weak classifier is made of one

single Haar-like feature, the process within each stage

can be considered as a feature selection problem. In-

stead of repeating the feature selection process at each

stage, Wu et al. [17] presented a greedy algorithm for

determining the set of features for all stages first before

training the cascade classifier. With the greedy feature

selection algorithm used as a pre-computing proce-

dure, they reported that the training time of the classi-

fier cascade with AdaBoost is reduced by 50–100 times.

For learning in each stage (or node) within the classifier

cascade, they also exploited the asymmetry between

positive and negative data using a linear classifier with

the assumption that they can bemodeledwith Gaussian

distributions [17]. The merits and drawbacks of the
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proposed linear asymmetric classifier as well as the

classic Fisher linear discriminant were also examined

in their work. Recently, Pham and Cham proposed an

online algorithm that learns asymmetric boosted clas-

sifiers [18] with significant gain in training time.

In [19], an algorithm that aims to automatically

determine the number of classifiers and stages for

constructing a boosted ensemble was proposed.

While a greedy optimization algorithm was employed

in [3], Brubaker et al. proposed an algorithm for de-

termining the number of weak classifiers and training

each node classifier of a cascade by selecting operat-

ing points within a receiver operator characteristic

(ROC) curve [20]. The solved optimization problem

using linear programs that maximize the detection

rates while satisfying the constraints of false positive

rates [19].

Although the original four types of Haar-like fea-

tures are sufficient to encode upright frontal face

images, other types of features are essential to represent

more complex patterns (e.g., faces in different pose)

[10, 11, 12, 15]. Most systems take a divide-and-

conquer strategy and a face detector is constructed

for a fixed pose, thereby covering a wide range of angles

(e.g., yaw and pitch angles). A test image is either

sent to all detectors for evaluation, or to a decision

module with a coarse pose estimator for selecting the

appropriate trees for further processing. The ensuing

problems are how the types of features are constructed,

and how the most important ones from a large feature

space are selected. More generalized Haar-like features

are defined in [10, 11] in which the rectangular image
Face Detection. Figure 2 Detection results depend heavily on
regions are not necessarily adjacent, and furthermore

the number of such rectangular blocks is randomly

varied [10]. Several greedy algorithms have been pro-

posed to select features efficiently by exploiting the

statistics of features before training boosted cascade

classifiers [17].

There are also other fast face detection methods that

demonstrate promising results, including the compo-

nent-based face detector using Naive Bayes classifiers

[4], the face detectors using support vector machines

[7, 21, 22], the Anti-face method [23] which consists of

a series of detectors trained with positive images only,

and the energy-based method [24] that simultaneously

detects faces and estimates their pose in real time.
Quantifying Performance

There are numerous metrics to gauge the performance

of face detection systems, ranging from detection

frame rate, false positive/negative rate, number of classi-

fier, number of feature, number of training image, train-

ing time, accuracy, and memory requirements. In

addition, the reported performance also depends on the

definition of a ‘‘correct’’ detection result [2, 5]. Figure 2

shows the effects of detection results versus different

criteria, and more discussions can be found in [2, 5].

The most commonly adopted method is to plot the

▶ROC curve using the de facto standard MIT + CMU

data set [2] which contains frontal face images. Anoth-

er data set from CMU contains images with faces that

vary in pose from frontal to side view [4]. Note that
the adopted criteria. Suppose all the sub-images in (b) are
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although the face detection methods nowadays have

impressive real-time performance, there is still much

room for improvement in terms of accuracy. The

detected faces returned by state-of-the-art algorithms

are often a few pixels (around 5) off the ‘‘accurate’’

locations, which is significant as face images are usually

standardized to 21 � 21 pixels. While such results are

the trade-offs between speed, robustness, and accuracy,

they inevitably degrade the performance of any bio-

metric applications using the contents of detected

faces. Several post-processing algorithms have been

proposed to better locate faces and extract facial fea-

tures (when the image resolution of the detected faces

is sufficiently high) [25].
Applications

As face detection is the first step of any face processing

system, it finds numerous applications in face recogni-

tion, face tracking, facial expression recognition, facial

feature extraction, gender classification, clustering, atten-

tive user interfaces, digital cosmetics, biometric systems,

to name a few. In addition, most of the face detection

algorithms can be extended to recognize other objects

such as cars, humans, pedestrians, and signs, etc. [5].
Summary

Recent advances in face detection have created a lot of

exciting and reasonably robust applications. As most of

the developed algorithms can also be applied to other

problem domains, it has broader impact than detecting

faces in images alone. Future research will focus on

improvement of detection precision (in terms of loca-

tion), online training of such detectors, and novel

applications.
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Synonyms

Face acquisition; Face camera; Video camera; Visual

sensor
Definition

A face device is a system to acquire a set of digital data

samples representing a human face. As the human face

is a complex 3D object, the data can be in several

forms: a 2D image where the gray levels of the ▶ pixels

represent the projected reflectance of the face surface

under visible illumination; a 2D image where the gray

levels of the pixels represent the projected reflectance

of the face surface illuminated with an active source;

a 2D thermal image representing the heat emitted by

the face surface; 3D samples of the surface structure.

Face devices can be distinguished on the basis of

the data dimension if it is active or passive. Face

devices can be passive, i.e., based on the passive reflec-

tance of ambient light by the body, or active, i.e.,

associated with an energy emitter and a sensor to
capture the energy reflected by the face. The data

captured can be either in 2D or 3D form.

A face device can be based on different technolo-

gies, depending upon the data to be captured and the

signal to be obtained. The most applied face devices

include a video ▶ camera to capture 2D images of the

face and a digitizer to sample and quantize the analog

signal generated by the camera. Different face devices

deliver different signals to be digitized into 2D or 3D

data. The data captured can be stored under different

file formats for subsequent processing.
Introduction

Current face biometric systems are based on the acqui-

sition and processing of image data, representing a

human face. A face acquisition device is typically

a video camera capable of acquiring single images or

video streams of data, representing a face. As the face is

a 3D object, the acquired data can represent either the

2D projection of the face reflectance on the image

plane or a set of 3D samples of the face structure,

possibly with the associated reflectance. In the former

case, a conventional video camera can be used to

acquire images of face. In the latter case, a more com-

plex 3D acquisition device must be applied.
2D Face Devices

A conventional camera acquires the image data as a

reflectance of the imaged scene. The face points are

recorded as the geometrical projection of the 3D points

on the face surface onto the 2D image plane (Fig. 1).

Several video cameras exist that are capable of

capturing either single images or video streams from

the viewed scene. The most critical parts of the camera

are the acquisition sensor and the lenses.

Charge-coupled device (CCD) and complementary

metal oxide semiconductor (CMOS) image sensors

are two different technologies for capturing images

digitally; current commercial camera adopt either of

these. Both types of sensors convert light into electric

charge and process it into electronic signals. In a

▶CCD sensor, charge of every pixel is transferred

through a very limited number of output nodes



Face Device. Figure 1 Geometry of the pin hole camera model. (Top) 3D sketch of the projection of point P in space on

the image pixel Q. (Bottom) 2D projection of the Y–Z plane.
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(often just one) to be converted to voltage, buffered,

and sent off-chip as an analog signal. All the pixel can

be devoted to capture light, and the output’s unifor-

mity (a key factor in image quality) is high. In a

▶CMOS sensor, each pixel has its own charge-to-

voltage conversion, and the sensor often includes

amplifiers, noise-correction, and digitization circuits,

so that the chip outputs digital bits. These other func-

tions increase the design complexity and reduce the

area available for light capture. With each pixel doing

its own conversion, the uniformity is low. But the chip

can be built to require less off-chip circuitry for basic

operation.

The CMOS pixel solves the speed and scalability

issues of the CCD sensor. They consume far less power

than a CCD, have less image lag, and can be fabricated
on much cheaper and more available manufacturing

lines. Unlike CCDs, CMOS sensors can combine both

the image sensor and the image processing functions

within the same integrated circuit. CMOS imagers still

suffer from higher ▶fixed-pattern noise than CCDs,

but active pixel sensors are catching up with respect to

noise, dynamic range, and responsivity. CMOS sensors

have become the technology of choice for many con-

sumer applications, most significantly, the burgeoning

cell phone camera market [1].

The technology of the sensor and the capturing

device determines several properties of the captured

signal such as the following:

1. Image resolution. This is related to both the active

elements on the imager sensor and the sampling
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device used to digitize the signal. Even though solid

state sensors are used in digital cameras, they pro-

duce an analog video signal. As a consequence, the

captured image resolution strongly depends on

the sampling frequency of the digitization device.

Other factors affecting the image resolution are the

file standard format adopted for the image storage

and the image processing application required to

postprocess the face images.

2. Responsivity. The amount of signal the sensor

delivers per unit of input optical energy. CMOS

imagers are marginally superior to CCDs, in gen-

eral, because gain elements are easier to be place on

a CMOS image sensor. This affects the illumina-

tion level required to capture a face image with a

sufficient contrast level.

3. Dynamic range. The ratio of a pixel’s saturation

level to its signal threshold. CCD sensors are

much better than CMOS in this regard. Some

CMOS sensors deliver 8 bit per pixel intensities,

corresponding to 128 real level variations. As

a consequence, the information content in the

image features is half than what is expected. A

higher dynamic range implies a higher image con-

trast even at low illumination levels and the possi-

bility to grab finer details. A gray level quantization

of 8 bit per pixel is generally sufficient for capturing

good quality face images. The sensor dynamic range

can be crucial when acquiring color images. In this

case, the color quantization may influence the in-

formation content in the face image itself, especially

if a low bit rate (with less than 8 bit per color

channel) is used for color coding.

4. Sensitivity to noise (signal to noise ratio – SNR).

The three primary broad components of noise in a

CCD imaging system are photon noise (results

from the inherent statistical variation in the arriv-

al rate of photons incident on the CCD), dark

noise (arises from statistical variation in the num-

ber of electrons thermally generated within the

silicon structure of the CCD), and read noise (a

combination of system noise components inher-

ent to the process of converting CCD charge car-

riers into a voltage signal for quantification, and

the subsequent processing including the analog-

to-digital (A/D) conversion). A further useful

classification distinguishes noise sources on the

basis of whether they are temporal or spatial.

CCDs still enjoy significant noise advantages
over CMOS imagers because of quieter sensor

substrates (less on-chip circuitry), inherent toler-

ance to bus capacitance variations, and common

output amplifiers with transistor geometries that

can be easily adapted for minimal noise.

5. Uniformity. The consistency of response for differ-

ent pixels under identical illumination conditions.

Spatial wafer processing variations, particulate

defects, and amplifier variations create nonuni-

formities in light responses. It is important to

make a distinction between uniformity under illu-

mination and uniformity at or near dark. CMOS

imagers were traditionally much worse than CCDs

under both regimes. New on-chip amplifiers have

made the illuminated uniformity of some CMOS

imagers closer to that of CCDs, sustainable as

geometries shrink. This is a significant issue in

high-speed applications, where limited signal

levels mean that dark nonuniformities contribute

significantly to overall image degradation.

6. Shuttering. The ability to start and stop exposure

arbitrarily. It is a standard feature of virtually all

consumer and most industrial CCDs, especially

interline transfer devices, and it is particularly

important in machine vision applications. CCDs

can deliver superior electronic shuttering, with

little fill-factor compromise, even in small-pixel

image sensors. Implementing uniform electronic

shuttering in CMOS imagers requires a number

of transistors in each pixel. In line-scan CMOS

imagers, electronic shuttering does not compro-

mise fill factor, because shutter transistors can be

placed adjacent to the active area of each pixel.

In area-scan (matrix) imagers, uniform electronic

shuttering comes at the expense of fill factor,

because the opaque shutter transistors must be

placed in what would otherwise be an optically

sensitive area of each pixel. A uniform synchro-

nous shutter, sometimes called a nonrolling shut-

ter, exposes all pixels of the array at the same time.

Object motion stops with no distortion, but this

approach reduces the pixel area because it requires

extra transistors in each pixel. Users must choose

between low fill factor and small pixels on a small,

less-expensive image sensor, or large pixels with

much higher fill factor on a larger, more costly

image sensor.

7. Sampling speed. This is an area in which CMOS

arguably delivers better performances over CCDs,
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because all camera functions can be placed on the

image sensor. With one die, signal and power

trace distances can be shorter, with less induc-

tance, capacitance, and propagation delays. To

date, CMOS imagers have established only modest

advantages in this regard, largely because of early

focus on consumer applications that do not de-

mand notably high speeds compared with the

CCD’s industrial, scientific, and medical applica-

tions. Both the sampling and shuttering speed are

important when capturing video streams of faces.

In this case, it is important to ensure the image

stability and minimize the motion smear induced

by either the motion of the camera or the face.

This requires to tune the camera sampling fre-

quency to the motion speed induced in the

image sequence. If the face is very close to the

camera, small motions can induce large and fast

displacements on the image, thus producing mo-

tion smear. At a larger distance (above 50 cm), a

standard sampling frequency of 50 or 60Hz is

generally sufficient. In many low-cost devices,

the sampling frequency depends on the time re-

quired to transmit the signal from the device to

the frame buffer. Therefore, only low resolution

images can be captured at high sampling frequen-

cies. On the other hand, if a high, nonstandard

sampling frequency is required to capture stable

images with fast motions, the reduced exposure

time requires a higher sensitivity of the sensor to

preserve a high SNR.

8. Windowing. One unique capability of CMOS tech-

nology is the ability to read out a portion of the

image sensor. This allows elevated frame or line

rates for small regions of interest. This is an enabling

capability for CMOS imagers in some applications,

such as high-temporal-precision face tracking in

the subregion of an image. CCDs generally have

limited abilities in windowing.

9. Antiblooming. The ability to gracefully drain loca-

lized overexposure without compromising with

the rest of the image in the sensor. CMOS generally

has natural blooming immunity. CCDs, on the

other hand, require specific engineering to achieve

this capability; many CCDs that have been devel-

oped for consumer applications do, but those de-

veloped for scientific applications generally do not.

10. Biasing and noise. CMOS imagers have a clear

edge in this regard. They generally operate with a
single bias voltage and clock level. Nonstandard

biases are generated on-chip with charge pump

circuitry isolated from the user unless there is

some noise leakage. CCDs typically require a few

higher-voltage biases, but clocking has been sim-

plified in modern devices that operate with low-

voltage clocks.

The camera optics determines the general image

deformation, the depth of the field, and the amount

of blurring in the image. The lenses must be chosen

carefully according to the acquisition scenario. The

▶ focal length must be set to provide a sufficient

▶ depth of field (DOF) to always keep the subject’s

face in focus. If the range of distances is very large, a

motorized lens can be used to dynamically keep the

face in focus. Otherwise, a shorter focal length lens,

with a larger depth of field, can be used at the expenses

of an increase in the image distortion.

A 2D camera can be modeled with several para-

meters [2], including the following:

1. The (X, Y, Z) position of the center of the camera

lens

2. The focal length

3. The orientation of the sensor’s plane

4. The aperture or ▶field of view (Xf, Yf )

5. The physical x and y dimensions of each pixel on

the sensor

6. The normal to the focal plane

7. The lenses properties

Many parameters can be neglected in the pin hole

camera model. This is a simplified model where the

physical parameters are reduced to five virtual para-

meters, namely the following:

1. The focal length F

2. The pixel width and height dx, dy
3. The x and y coordinates of the optical center (xc, yc)

Assuming the pin hole camera model, the (x, y) pro-

jection on the image plane of a 3D point (X, Y, Z) can

be represented as (refer to Fig. 1)

x ¼ Fx
X
Z
;

y ¼ Fy
Y
Z
;

ð1Þ

where Fx and Fy represent the two values of the

focal length, which take into account the image aspect

ratio.



Face Device. Figure 2 Sample image acquired with a

near-infrared camera.
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The pin hole model cannot take into account sev-

eral effects of the misalignment of the sensor with the

lenses, not the lens aberration or the image deforma-

tion due to the focal length. However, when high

accuracy is required or when low-end cameras are

used, additional effects have to be taken into account.

The failure of the optical system to bring all light rays

received from a point object to a single image point or to

a prescribed geometric position should then be taken

into account. These deviations are called aberrations.

Many types of aberrations exist (e.g., astigmatism, chro-

matic aberrations, spherical aberrations, coma aberra-

tions, curvature of field aberration, and distortion

aberration). It is outside the scope of this work to discuss

them all. The interested reader is referred to the work of

Willson [3] and to the photogrammetry literature [4].

Many of these effects are negligible under normal

acquisition circumstances. Radial distortion, however,

can have a noticeable effect for shorter focal lengths.

Radial distortion is a linear displacement of image po-

ints radially to or from the center of the image, caused

by the fact that objects at different angular distance

from the lens axis undergo different magnifications.

It is possible to cancel most of this effect by ▶ Face

Warping the image.
Active 2D Face Devices

Within the general class of 2D face devices, active devices

rely on the possibility to use an active source of energy to

radiate the subject’s face. Among them, the most com-

monly used are the near infrared cameras. These cameras

have normal optics but the sensor (either CMOS or

CCD) is sensitive to a wavelength spectrum between 0.7

and 1.1 mm. To perform image acquisition, the subject’s

face to be captured must be illuminated by an infrared

illuminator. Given the sensitivity response curve of the

near infrared sensor, the pixel intensities are almost ex-

clusively due to the reflection of the infrared light on the

face skin. An example is presented in Fig. 2. As a conse-

quence, a remarkable advantage of this face acquisition

device is the relative insensitivity to changes in envi-

ronmental illumination.
3D Face Devices

Another category of face device are those aimed at

acquiring the 3D shape information of the face. There
are several technologies applied to produce 3D cameras

for face acquisition. They can be broadly grouped in

the following categories:

1. Stereo triangulation cameras. A pair of stereo

cameras is used for determining the depth to

points on the face, for example, from the center

point of the line between their focal points.

To solve the depth measurement problem using

stereo cameras, it is necessary to first find

corresponding points in the two images. Solving

the correspondence problem is one of the main

problem when using this type of technique. As a

consequence, range imaging based on stereo tri-

angulation can usually produce reliable depth

estimates only for a subset of all points visible

in both cameras. The advantage of this tech-

nique is that the measurement is more or less

passive; it does not require special arrangements

in terms of scene illumination.

2. Light stripe triangulation. Illuminating the face

with a light stripe creates a reflected line as seen

from the light source. From any point out of the

plane of the stripe, the line will typically appear as a

curve, the exact shape of which depends both on

the distance between the observer and the light

source and on the distance between the light source
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gray levels are inversely proportional to the distance of

the face surface from the camera [5].
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and the reflected points. By observing the reflected

sheet of light using a camera (often a high resolution

camera) and knowing the positions and orienta-

tions of both camera and light source, it is possible

to determine the distance between the reflected

points and the light source or camera. By moving

either the light source (and normally also the cam-

era) or the scene in front of the camera, a sequence

of depth profiles of the scene can be generated.

These can be represented as a 2D range image.

The most common cameras are based on the pro-

jection of an invisible and unharmful laser light

stripe. The light stripes projected along the face

surface are captured by a conventional camera.

The distortion in the light stripes induced by the

face shape is computed to infer the 3D structure of

the surface.

3. Time-of-flight laser scanner. The time-of-flight 3D

laser scanner is an active scanner that uses laser

light to probe the subject. At the heart of this type

of scanner is a time-of-flight laser range finder. The

laser range finder finds the distance of a surface

by timing the round-trip time of a pulse of light.

A laser is used to emit a pulse of light and the

amount of time before the reflected light is seen

by a detector. Since the speed of light c is known,

the round-trip time determines the travel distance

of the light, which is twice the distance between the

scanner and the surface.

Inspite of the camera and sensor technology, the pro-

duced image is either a depth map, a collection of 3D

points in space, or a set of 3D features representing the

3D structure of the acquired face. A sample depth map

of a face is shown in Fig. 3. The most frequently used

representations for the acquired 3D data can be listed

as follows:

1. Point cloud. A large number of 3D points that are

sampled from the surface of the face are stored.

2. 3D mesh. Triangulation is used to produce a mesh

from the point cloud. This is a more compact

representation. Range images – One or more 2D

range images can be stored, especially if the range

data are taken from a single perspective.

3. Feature sets. There are different features that one

can derive and store for each face. Typical features

are landmark locations (nose tip, eyes, corners of

the mouth, etc.), surface normals, curvatures, pro-

file features, shape indices, depth and/or colour
histograms, edges, and subspace projection coeffi-

cients (PCA and LDA are frequently used).

The point cloud representation is the most primitive 3D

information provided by a 3D camera. The 3D-RMA is

an example of a database of 3D face models represented

by clouds of points [6]. For long time, it has been the

only publicly available database, even if its quality is

rather low. Meshes are obtained by triangulation.

These are more structured and easier to deal with.

Data in the form of meshes are more available today,

but in most cases the mesh databases are proprietary.

Usually, more than one representation is used in a

single algorithm. Texture information, if available, is

generally stored for each 3D point or triangle. A sam-

ple 3D face image with the associated reflectance

map is shown in Fig. 4.
Summary

A face device is a system to acquire a set of digital data

samples representing a human face. As the human face

is a complex 3D object, the data can be in several

forms, from a 2D image to a complex 3D representa-

tion. The principal component of a face device is a

digital camera, which acquires images either for a

direct 2D representation or to build a 3D representa-

tion of the face shape. Different cameras offer variable

performances, in terms of quality of the signal,



Face Device. Figure 4 Sample 3D face image and projected 2D intensity values from the face recognition grand

challenge (FRGC) [5] database.
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sensitivity to different light spectral components, and

capturing speed. The proper imaging device must be

carefully chosen for the application scenario. The

ambient illumination level, the required level of detail,

the effects of noise, and the motion speed of the objects

in the scene must all be carefully considered.
Related Entries

▶Acquisition

▶Authentication

▶Enrollment

▶ Identification

▶Verification
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Biometric data interchange standards are needed to

allow the recipient of a data record to successfully

process data from an arbitrary producer. This defines

biometric interoperability and the connotation of the

phrase ‘‘successfully process’’ is that the sample, in this

case, a facial image record, can be accurately identified

or verified. This can be achieved only if the data record

is both syntactically and semantically conformant to a

documentary standard.
F

Introduction

Facial image standards are perhaps the oldest docu-

mented biometric data standards. Predating even the

fingerprint, the facial image has been mandated for

identity documents since at least the World War I

when several European governments saw the need for

a facial photograph to serve as the core element in

the cross-border identity verification application. Of

course the data record was simply an analog paper

printed photograph - the advent of fully automatic

face recognition algorithms and the need for digital

images was at least 70 years distant [1, 2]. However the

intention remains the same: to support (human or

machine) verification of an individual via a high qual-

ity standardized image.
Roles

The use of face imagery for recognition is ubiquitous

in applications where a human does the recognition.

This rests on three factors: The ability of humans to

recognize faces; the almost universal availability of the

face In some cultures the face is covered or painted,

and in such cases modalities such as iris or hand

geometry are dominant.; and the availability of cam-

eras and printers. The result is that face images, printed

on passports, drivers’ licenses, credit cards, and other

tokens, have been the primary biometric element for

human verification for many years.

Nowadays with the advent and maturation of tech-

nologies for automated face recognition, the use of the

face for verification [3] is but one component of a

larger marketplace in which commercial systems have

been both piloted and fully deployed for identification

applications such as watch-list surveillance [4] and

duplicate detection (e.g., for drivers licenses, or visas).

In addition the law enforcement community has for
years taken mugshot images and, while these are often

only used for human identification, they are being used

operationally [5].

The common theme among all is that recognition

accuracy is critically sensitive function of the quality of

the image, where quality here refers to the photometric

and geometric properties of the image. The former

include contrast, exposure, and uniformity of lighting;

the latter refers to the size of the image and the angular

orientation of the face to the viewing direction. The

effect of non-idealities in these areas has been quanti-

fied extensively and there is an enormous literature

documenting research in how to improve the robust-

ness and invariance of the algorithms to variations in

these quantities. In parallel, there has been a concerted

effort by groups of vendors, users, governmental orga-

nizations, and academics to develop standards that

establish a baseline for the acquisition and quality of

the captured images.

It is no coincidence that the largest marketplace for

face recognition technologies today is in those applica-

tions where the quality is most highly controlled,

namely passports and visas, where the photographers

and the subjects who pay them, are positively moti-

vated to provide good conformant images.

In a more general sense, formal face images stan-

dards also serve to do what many other data format

standards do: they define a parseable record that allows

syntactic interoperability. This creates a foundation for

a marketplace of off-the-shelf products, and is a neces-

sary condition to achieve supplier independence, and

to avoid vendor lock-in. It is perhaps surprising that in

a world where many raster image formats are open and

standardized [6–8] it remains common for images to

be retained in a fully proprietary (i.e., unpublished)

format. Such practice may be acceptable within an

application, but is a serious impediment once cross-

organizational interchange of data is required. This is

the essence of interoperability which allows modular

integration of products without compromising archi-

tectural scope, and it facilitates the upgrade process

and thereby mitigates against obsolescence.

The business implications of these benefits are

many. A good standard, well implemented, may create

entirely new markets (e.g., e-Passports include face

image records). On the other hand, robust standards

tend to lead to competition and reduced profit mar-

gins. This process, commoditization, is an inhibitory

factor for many technology companies that balance the
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promise of new or expanded marketplaces against re-

duced barriers to entry for competitors. The decision is

determined by the amount of intellectual property that

a standard allows suppliers to hide behind its imple-

mentation. From the user perspective, standards may

serve to enhance competition and performance. For

example, face image standards (primarily ISO/IEC

19794-5 [9]), which are currently being mandated in

a number of large government and international pro-

grams, specify image formats without requiring partic-

ular equipment or matching algorithms.

This is the motivation for formal published con-

sensus standards.

Standards do not in and of themselves assure inter-

operability. Specifically, when a standard is not fully

prescriptive, or it allows for optional content, then

two implementations that are both exactly conformant

to the standard may still not interoperate. This situa-

tion may be averted by applying further constraints on

the application of the standard. This is done by means

of ‘‘application profile’’ standards which formally call

out the needed base standards and refine their optional

content and interpretation.
History of Face Standardization

The current face standards descend from standardiza-

tion efforts that began in the mid 1990s. These were

driven in large part by the needs of the United States’

Federal Bureau of Investigation who sought to estab-

lish uniform standards for State and local law enforce-

ment authorities submitting images to them.
Face Image Data Interchange Formats, Standardization. Ta

Date Title

04/1997 Addendum To ANSI/NIST-CSL 1-1993 (adding Mu

09/1997 NIST Best Practice Recommendation for the Capt

06/2000 AAMVA National Standard for the Driver License/

09/2000 ANSI/NIST-ITL 1-2000 - Data Format for the Interc
Information - Type 10

05/2004 INCITS 385:2004 - Face Recognition Format for D

06/2005 ISO/IEC 19794-5:2005 - Face Image Data

04/2007 ANSI/NIST-ITL 1-2007 - Data Format for the Interch
Type 10

06/2007 ISO/IEC 19794-5/Amd 1 - Conditions for Taking P

2009 (Est) ISO/IEC 19794-5/Amd 2 - Three Dimensional Face
Referring to Table 1, the first standard, approved in

April 1997, established the syntax of a record denoted

‘‘Type 10.’’ The image data it required was either in raw

grayscale format or, if compressed, in the then draft

JPEG/JFIF standard [6]. Concurrently NIST estab-

lished procedures for the geometric and photometric

properties of images and published its recommenda-

tions in September 1997. These were extended and

modified, and incorporated, in 2000, into both the

American Association of Motor Vehicle Administra-

tors standard for drivers licenses, and the revision of

the FBI’s original biometric data specifications.

These standards formed the basis for the sub-

sequent development of the national INCITS 385:2004

standard in 2004, which in turn begat the full ISO/IEC

19794-5 International Standard in 2005. (At the time

of writing the standard is under amendment to regu-

late the acquisition process, and to establish a contain-

er for three dimensional data.) A substantially revised

standard which would include these changes (and

others) is likely to be completed late in the decade.
The ISO/IEC 19794-5 Face Image
Standard

The ISO/IEC 19794-5:2005 standard is the fifth part of

a multipart biometric data interchange format stan-

dard. The standard is organized by modality, and other

parts cover fingerprint images, irises, and hand geom-

etry among many others. The Part 5 standard is the

most widely implemented, most actively developed,

and most modern face standard. Its content drove the
ble 1 The evolution of contemporary face image standards

of Standard

gshots, scars, marks and tattoos)

ure of Mugshots

Identification Card

hange of Fingerprint, Facial, & Scar Mark & Tattoo

ata Interchange

ange of Fingerprint, Facial, & Other Biometric Information -

hotographs for Face Image Data

Image Data Interchange Format
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revision of the Type 10 record of the ANSI/NIST ITL

1-2007 described in section. While the ISO standard is

under revision, with publication due late in the decade,

the existing 2005 standard has been called out for some

major identity management applications. The fore-

most of these is the e-Passport, which the International

Civil Aviation Organization formalized in its ICAO

9303 standard. This points to ISO/IEC 19794-5 as the

mandatory globally interoperable data element for

ISO/IEC 14443 contactless chip passports.

The face standard defines a binary record structure

for the storage of one or more face images. It estab-

lishes requirements on the syntax and semantic con-

tent of the structure. These requirements are stated in

terms of the following four categories.

� Format: These requirements detail the syntactic

arrangement of the data elements in the record.

� Scene: These requirements regulate variables such a

pose, expression, shadows on the face, the wearing

of eye glasses.

� Photographic: These requirements concern correct

exposure of the subject, distortion, focus, and

depth of field.
Face Image Data Interchange Formats, Standardization. Fi

standard.
� Digital: The requirements include specifications for

dynamic range, color space, pixel aspect ratio, and

video interlacing.

The standard imposes these requirements incre-

mentally: Fig. 1 shows that the useful frontal image

types inherit from parent types and add require-

ments. This object oriented design allows for future

specialized types to be added, including 3D frontal

types. In addition the standard establishes two geomet-

ric position specifications for the face. These are shown

in Fig. 2. The tighter specification, for known as the

token Frontal, requires detection of the eye coordinates

and of fine transformation of the image.

The record includes fields for expression, eye-color,

hair color, and gender. It optionally allows the inclu-

sion of ISO/IEC 14496-2 MPEG 4 feature points. The

standard includes various quality related requirements.

For example the pose angle is required to be � 5deg,

and there must be at least 7 bits of greylevel informa-

tion on the face. Conformance to these requirements

will elevate face recognition performance. Once an

image is acquired a test of its conformance to the

standard’s specifications requires some non-trivial
gure 1 Inherited types of the ISO/IEC 19794-5 face image
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image analyses. A number of software products have

been developed to ‘‘box-check’’ ISO conformance and

to prepare the standardized record.
The ANSI/NIST ITL 1-2007 Type
10 Record

Since its initial development in the early 1990s, the so-

called ANSI-NIST standard has been very widely imple-

mented and used within and between the law enforce-

ment communities of the United States and the many

other countries. Its primary use is the transmission of

fingerprint data from the State and Local authorities to

central automated fingerprint identification systems,

primarily those operated by the Federal Bureau of Inves-

tigation. The ANSI/NIST standard includes defined

Types for the major biometric modalities. The standard

is multimodal in that it allows a user to define a trans-

action that would require, for example, fingerprint data

as Type 14, a facial mugshot as Type 10, and the man-

datory header and metadata records Type 1 and 2.

These are linked with a common numeric identifier.

Of concern here, since its development in 1997, is

the Type 10 record. It supports storage not just of face

images, but also those of scars, marks, and tattoos,

with the particular type of content being recorded in

the ‘‘image type’’ field of the header.
Unlike the ISO standard’s fixed binary structure, the

Type 10 has a tag-value structure in which a three letter

code begins a field. The mandatory fields are: Record

length, image designation code (identifier linking, say,

Type 14 finger + Type 10 face records), image type (face

or otherwise), the source agency (e.g., local police de-

partment), the capture date, the width, height and scan-

ning resolution, the compression algorithm, color space,

and the subject acquisition profile. This latter field

encodes, essentially, the conformance of the image to

particular capture specifications. These are either estab-

lished elsewhere [9–12] or introduced in the standard.

The optional fields are: pose category (frontal, pro-

file, other), actual pose angles, whether the subject was

wearing headwear or eyewear, the camera type, a quali-

ty value and it’s source, the eye and hair color, facial

expression, eye and nostril locations and MPEG 4 fea-

ture points, and whether the capture was attended or

automatic. The last field contains the image data itself,

which is either an uncompressed raw greyscale or color

image, or a JPEG, JPEG 2000 or PNG encoded image.
Amendment 1 to ISO/IEC
19794-5:2005

The 2007 amendment is an informative Annex to the

base 2005 face standard. It is written to provide expert
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guidance for the photography of faces particularly by

owners and operators of studios, photo stores or other

organizations producing or requiring either printed

photographs or digital images that would conform. It

is intended to assist in the production of images that

are conformant to the frontal type requirements of the

base standard.

The standard regulates the subject, lighting, and

camera placement for three kinds of face acquisition

environments listed here in the order of increasing

space constraints and non-ideality: a photo studio

(e.g., for a passport), a registration desk (e.g., for a

driving license), and a photo-booth. For each of these

the standard addresses camera-subject positioning (in

terms of distance, height, focus, and depth of field),

exposure (in terms of F-stops and shutter speed), and

illumination (in terms of number, type and placement

of lights). The document also provides guidance on

printing and scanning of paper photographs.
Amendment 2 to ISO/IEC
19794-5:2005

A second amendment is currently under preparation.

This is aimed at standardizing a container and speci-

fications for images that include three dimensional

shape information of the human head. An initial

effort within the United States, INCITS 385:2004

Amendment 1, allowed a 2D face image to be accom-

panied by a z-axis range map (e.g., from a structured

light sensor). This shape information was recorded

as the intensity values in a greyscale PNG image. The

ISO standardization process has recently sought to

allowmore complete 3D information including the abil-

ity to encode concavities and folded structures (e.g.,

hook nose).

The standards are also likely to allow the storage

of 3D information computed from 2D information

such as morphable models [13] and active appearance

models [14].
Resolution Requirements

The image sizes mentioned in ISO/IEC 19794-5:2005

are very much less than those attainable with contem-

porary consumer grade digital cameras. The reasons

for this are two. First, the face recognition algorithms
of the early part of the decade were designed to operate

with an interocular eye distance of between 40 and

maybe 120 pixels. Second, the standard aims to be

application independent, i.e., to only establish a mini-

mum resolution to support automated face recogni-

tion. While more modern implementations are capable

of exploiting high resolution imagery, the images may

be too large for operational use (e.g., on an e-Passport

chip, where size is typically much lesser than 50KB).

Nevertheless, the 2007 revision of the ANSI/NIST ITL

1-2007 standard reflected the utility of high resolution

imagery by incorporating a laddered scale that culmi-

nates in an image with a width such that 1700 or more

pixels lie on the faces of 99% of U.S. male subjects. This

specification supports forensic analysis of the face. It is

termed Level 51 and is the highest level of the Type 10

record’s Subject Acquisition Profile stack.

Note that a separate profile standard or require-

ments document could normatively specify minimum

or maximum resolutions for a particular application.

For example, the PIV specification[11] requires that

imaging of a 20cm target at 1.5 metres produces

240 pixels, corresponding to about 90 pixels between

the eyes.

Note that no standard currently exists for the certi-

fication of face recognition imaging systems. Such a

standard might reasonably establish true resolution spe-

cifications in terms of line pairs per millimeter and as a

full modulation transfer function profile. This would

regulate the entire imaging system including the effects,

say, of video compression.
Standards Development
Organizations

Standards are developed by a multitude of standards

development organizations (SDOs) operating in a

great variety of technical disciplines. SDO’s exist with-

in companies and governments, and underneath trade

associations and international body umbrellas. Inter-

national standards promise to regulate larger mar-

ketplaces and the development process involves

more diverse and thorough review and so consensus

is more difficult to achieve. With stakes often high,

development processes are conducted according to

definitive sets of rules. These are intended to achieve

consensus standards that are legally defensible, imple-

mentable, and effective.
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The following list gives an overview of the relevant

SDOs. Note that the published standards are usually

copyrighted documents and available only by purchase.

� ISO JTC 1 SC 37: Although face image standardiza-

tion is underwaywithin a number of SDOs, by

far the most work is conducted inthe main

international forum, SubCommittee 37 (SC 37)

Biometrics. This body was established in mid 2002

as the newest of seventeenactive subcommittees

under Joint Technical Committee 1 (JTC 1)and its

parent the International Organization for Standar-

dization(ISO)ISO maintains a catalog of its stan-

dards development effortsat http://www.iso.org/

iso/en/CatalogueListPage.CatalogueList. Although

its focus is development of standards in support of

genericidentity management and security applica-

tions, its establishment wassubstantially motivated

by a need for improved international bordercross-

ing mechanisms.
Within the six working groups of SC 37, the

body responsible for facial image standardization is

Working Group 3. The group, which develops bio-

metric data interchange format standards, is the

largest WG in SC 37 and is developing the stan-

dards with the highest profile adoption in the mar-

ketplace. Its ISO/IEC 19794-5:2005 face image data

standard has been specified by the International

Civil Aviation Organization (ICAO) as the manda-

tory biometric in the electronic Passports now

being issued in many developed nations.

� M1: M1 is the United States Technical Advisory

Group (TAG) to SC 37. It was established in June

2002 and is responsible for formulating U.S. posi-

tions in SC 37 where it holds the U.S. vote. Staff

from its member organizations represent these

positions in SC 37. It is notable because it is also

a standards development organization in its own

right. Particularly it developed and published the

INCITS 385INCITS, which stands for International

Committee for Information Technology Standards,

is the SDO arm of the Information Technology

Industry Council based in Washington DC. face

image standard in 2004. This document is substan-

tially similar to the ISO/IEC 19794-5 standard be-

cause the early drafts of the former were contributed

toward the development of the latter.

� ANSI/NIST: The U.S. National Institute of Stan-

dards and Technology (NIST) is also a SDO.
It developed the ANSI/NIST standards for law

enforcement under the canvass process defined by

ANSI. (see sec.).
Summary

Data interchange standards have been developed to

facilitate universal seamless exchange of facial infor-

mation. In all cases, these wrap an underlying standar-

dized encoded image (often ISO/IEC 10918 JPEG) with

a header that includes subject-specific information

and details of the acquisition. The standards support

accurate face recognition by constraining the cameras,

environment, and the geometric and photometric

properties of the image.
Related Entries

▶ Face Recognition

▶ Interoperability
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Face Image Quality Assessment
Software
Face image quality assessment software provides mul-

tiple measurements of face image quality and deter-

mines automatically whether submitted face images

are of adequate quality for a particular application.

▶Photography for Face Image Data
Face Image Synthesis
▶ Face Sample Synthesis
Face Localization
▶ Face Detection
Face Matching
▶ Face Alignment
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Synonyms

Curse of misalignment; Face alignment error;

Localization inaccuracy
Definition

The face misalignment problem, or curse of misalign-

ment, means abrupt degradation of recognition perfor-

mance due to possible inaccuracy in automatic

localization of ▶ facial landmarks (such as the ▶ eye

centers) in the face recognition process. Because these

landmarks are generally used for aligning faces, inac-

curate landmark positions imply incorrect semantic

alignment between the faces or features, which can

further result in matching or classification errors.

Since perfect alignment is often very difficult, face

recognition should be misalignment-robust, i.e., it

should work well even if the landmarks are inaccura-

tely located. To achieve this, there are three possible

solutions: misalignment-invariant features, misalign-

ment modeling, and alignment retuning.
Introduction

In face recognition, before extracting features from a

face image, it must be aligned properly with either the

reference faces or a pre-defined general face model,

with the help of some landmarks. For instance, the

eye centers are generally used as control points to align

all the facial images, i.e., all the faces are geometrically

normalized by fixing the eye centers. Intuitively, the goal

of alignment is to build the semantic correspondence

among different face samples. Accurate alignment is

evidently very important since the similarity (or dis-

tance) measurements generally assume the same seman-

tics for the same feature index. However, in case of

inaccurate landmark localization, this semantic align-

ment is broken, i.e., the component of face features

extracted from the same subject with the same feature

http://csrc.nist.gov/publications/PubsSPs.html
http://webstore.ansi.org
http://webstore.ansi.org
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index might imply different semantics. For instance, as

shown in Fig. 1, if the eyes are inaccurately localized

when testing, say confused with the eyebrows, it will

result in ridiculous matching eyes with eyebrows, pos-

sibly also matching nose with mouth, which will evi-

dently lead to an incorrect classification. The above-

mentioned misalignment is actually equivalent to affine

transformation, i.e., translation, scaling, and rotation.

To demonstrate how much misalignment can de-

grade the face recognition systems [1], experiments

were conducted on the FERET face database to evalu-

ate the performance variance of Fisherfaces method [2]

against the degree of misalignment. The results are

shown in Fig . 2a–c , how the ra nk-1 recognition rates

change with the misalignment degree in translation,

rotation, and scale respectively. It is clear that the
Face Misalignment Problem. Figure 1 Example of misalignm

image is the blending of the two misaligned images, from whi

effective matching of two biometric traits.

Face Misalignment Problem. Figure 2 The rank-1 recognitio

translation, rotation and scale [1].
rank-1 recognition rate of the Fisherfaces method

degrades abruptly with the increase in the misalign-

ment. For example, 10% decrease is observed for mis-

alignment due to a pixel translation, while 20% for

misalignment of 4.2� of rotation, and almost 30%

for 0.07 scale changing. Such abrupt degradation of

the performance is hardly acceptable for a practical

face recognition system in which misalignment of one

or two pixels is almost unavoidable. Therefore, it is a

problem that needs more attention.

For face recognition, aligning faces only according

to the eye centers imply much more than simple affine

transformation in case other variations are presented

such as pose and expression. As shown in Fig. 3, the eye

centers are aligned perfectly, but other features are not

aligned correctly due to the 3D rotation of the head.
ent caused by incorrect facial landmarks. The rightmost

ch one can imagine howmuch misalignment can affect the

n rates of Fisherfaces against the degree of misalignment in
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blending of the two misaligned images, from which one can see much misalignment in nose, mouth, and chin area,

though the eye centers have been aligned correctly.
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Possible Solutions

Since misalignment problem results from inaccurate

(even incorrect) alignment, it is a natural idea to

improve the accuracy of alignment. For instance, one

can localize the eye centers more accurately or locate

more landmarks (e.g., as in active shape models or

active appearance models). However, to the experiences

of previous work on face alignment, accurate align-

ment is indeed a great challenge. So, one might not

expect perfect alignment and has to present efficient

solutions for misalignment problem. Possible solutions

can be divided into three categories: invariant features,

misalignment-robust classifier, and alignment retuning.

Misalignment-invariant feature based methods ex-

pect to extract from the misaligned face images ‘‘good’’

representations robust to the misalignment, i.e., features

change little or they even do not vary with misalign-

ment. Some filters, such as Fourier transform,can be

used for this purpose, since Fourier transform is shift

and rotation invariant. Gabor wavelet is also a good

choice due to its locality, which has been discussed in

[3]. Recently, histogram-based object representation

like, histogram of Local Binary Patterns (LBP) [4] or

Local Gabor Binary Patterns (LGBP) [5] are also in-

variant to translation and rotation, so they can be

adopted as misalignment-robust features. In addition,

misalignment-invariant features can also be extracted

by discriminant analysis, in which misalignment is

treated as within-class variation [1].

The second category of the solution tries to design

misalignment-robust classifier. In [6], the authors

propose to augment the gallery by perturbation and

modeled the augmented gallery by Gaussian

Mixture Models (GMM). In [7], the authors propose

a misalignment-robust subspace learning method for

face recognition, which can infer both the well-aligned

face component and the misalignment parameters.
Since the problem results from incorrect align-

ment, the third method naturally retunes the ali-

gnment further. Note that, these methods should be

clearly different from the preceding alignment algo-

rithms in that the retuning should make use of the

feedback information from the matching or classi-

fication procedure.
Related Entries

▶ Face alignment

▶ Face descriptors

▶ Face localization

▶ Feature extraction
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Synonyms

Face pose estimation; Face pose recognition; Head

pose analysis
Definition

Face pose analysis is the process of determining the

location and the orientation of a face (▶Yaw/Pitch/

Roll) with respect to the camera/sensor’s coordination

system, and the subsequent facial analysis based on

that information. A typical face pose analysis system

determines the head pose by analyzing the information

that is contained in the facial area (typically deter-

mined by a face detection system) using models of

face geometry (i.e., models of the relative location of

facial landmarks such as the nose tip and the eye

corners) and/or models of face appearance (i.e., mod-

els of the intensity/color variation across a face image).
Introduction

A wide variety of systems requires the reliable analysis

of facial information based on the analysis of images or
image sequences. The purpose of such systems is to

analyze and interpret the information that is conveyed

in the facial images, such as identity information or facial

expression. Examples of applications are face recognition

for security/surveillance (e.g., access control in buildings

or airports), multimedia indexing and retrieval (e.g.,

searching for family photos based on who appears

in them), and facial expression analysis [1] (e.g., for

deception detection or for emotion recognition).

Traditionally, facial analysis assumed that the

images were obtained in controlled conditions or

were manually processed (e.g., cropped, resized, and

rotated) such that the faces appear at the same orien-

tation and size (e.g., the case in passport photos).

However, for a large number of applications, such as

face recognition in open spaces (e.g., an airport, or a

tube station), it is practically impossible to introduce

such controlled conditions or manually process the

data in real time. In other applications, such as facial

analysis for multimedia indexing and retrieval,

imposing restrictions on the head pose is undesirable.

Further, for applications such as in human–computer

interaction the facial pose is by itself a primary source

of information, and therefore, it does not make sense

to restrict it. An example is a system for communica-

tion with a computer based on head gestures (such as

nodding), or gaze.

Facial pose analysis addresses the needs of such

applications by automatically recovering the head

pose and by allowing the extraction of features that

are tailored for the further analysis of facial images

under the specific pose. As the size of the facial image

is assumed to be normalized (i.e., cropped and resized)

by the face detection module, head pose estimation

typically reduces to the estimation of the three angles

that specify the rotation of the head around its three

axes. Of these, a distinction should be made between

the estimation of in-plane rotations [i.e., head tilting

(assuming a camera facing the subject)] and out-of-

plane rotations caused by gestures such as head

nodding or left–right head turning (assuming a camera

facing the subject) (Fig. 1). The estimation of out-of-

plane rotations is arguably more difficult as it involves

3D geometric transformations, and many works in face

pose analysis are focused on this problem alone.

The estimation of the head pose allows the extrac-

tion of features that are tailored for further analysis of

facial images under the specific pose. For this reason,

facial pose analysis precedes (or overlaps with) many



Face Pose Analysis. Figure 1 Examples of a images from a face pose database with out-of-plane rotations, that is yaw

(horizontal axis) and pitch (vertical axis).
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other facial analysis modules such as face recognition

and facial expression analysis. Further, face pose esti-

mation requires that the facial area is reasonably well

localized/detected, and therefore a face detector usually

precedes it. Clearly, this require face detectors that are

capable of detecting faces at various poses (e.g., [2]).

As pose-specific analysis can make more robust the

face localization, some face detectors and face trackers

[3] (i.e., modules that localize a face in the subsequent

frames of a video) perform an internal coarse or a

more precise pose estimation [4].
Face Pose Estimation

The core of face pose analysis is the estimation of the

face/head pose from a 2D image that depicts it. This is

an instance of the more general problem of estimating

the 3D rotations and translations of an (potentially

deformable) object from 2D images. The developed

methods can be classified into two broad categories.

Appearance-based methods (e.g., [5]) that rely on
models of how faces appear from different viewpoints

(i.e., at different poses) and geometry-based methods

that rely on the localization of facial landmarks (such

as eyes and nose) on the image and 3D models of the

face geometry. While appearance-based methods con-

sider the information on the whole of the facial image

at once (i.e., they are global methods), geometry-based

methods estimate the head pose from the information

on the 2D location of parts of the face.

A typical appearance-based method transforms the

facial image into a feature set that represents the image

in question in a way that it allows an easy determina-

tion of the face pose, i.e., it transforms the images from

a general pixel/intensity-based representation to a

pose-based representation (often called view-based

representation [6]). This transformation [7, 8, 9] is

typically learned from (large) databases that contain

facial images of individuals at different poses. Such a

transformation aims to provide a representation (i.e., a

feature set) in which it is easy to distinguish between

variations in the appearance due to factors other

than the facial pose (e.g., identity and illumination)
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and variations due to each of the pose parameters

(i.e., the three rotation angles). Once a face region is

transformed in this way, it is easier to disregard the

variations due to other sources and recover the face

pose. The variability in the feature sets extracted from

images that depict faces at the same pose is called intra-

class variation while the variability in the feature sets of

images that depict faces at different poses is called

inter-class variation. A useful transform is the one

that leads to feature sets that exhibit small intra-class

variation and large inter-class variation.

Once the transform is learned and each facial image

is transformed to a feature set, a classifier that classifies

each facepose representation to a facial pose is learned

[5]. Learning a transformation and a classification

scheme allows the determination of the pose of a face

depicted in a previously unseen (i.e., new) image. For

the new image, first the face region is detected by a face

detector; then, a feature set is extracted (using the

learned transform), and subsequently the head pose

is determined (using the learned classifier). All classi-

fiers require the existence of a database that is used for

training and which contains a set of face images for

each of which the true face pose is known. In one of the

simplest classifiers the pose of the face in a new image

is classified to be the pose of its nearest neighbor in the

database. The term nearest neighbor, we refer to the

image in the database whose representation (obtained

with the learned transform) is most similar to the

representation (obtained with the learned transform)

of the image in question.

A typical geometry-based method relies on a 3D

model of the face and on establishing of correspondences

between the points in the 3D facemodel and the points in

a 2D image that depicts the face. The estimation is based

on the fact that if the pose of the face, that is the location
Face Pose Analysis. Figure 2 Examples of 3D face models.
and rotations in the 3D space of the 3D face model, were

known, and the ▶ camera model and camera para-

meters were given, then the location of any point of

the 3Dmodel (e.g., a facial landmark such as the left eye

corner) on the 2D image could be calculated. Inversely,

once the locations of facial landmarks on the 2D image

are detected, the 3D facial pose can be estimated.

A 3D face model approximates the 3D shape of the

face at a certain level of accuracy. Commonly used 3D

face models (see Fig. 2) range from simple shapes such

as half-a-cylinder [3, 10] or a plane [11, 12], to elabo-

rate 3D meshes [4] that can be either generic or per-

son-specific. As the face model is an approximation of

the true face shape and the facial landmarks are typi-

cally not perfectly detected on the 2D image (e.g., due

to occlusions and illumination changes), the projec-

tion of the 3D facial points on the 2D image does not

coincide perfectly with the detected landmarks. For

this reason, the estimation of the face pose is usually

posed as an optimization problem in which the dis-

crepancy between the expected 2D locations of the

facial landmarks (as predicted by the face and the

camera models) and the locations of the detected land-

marks is minimized with respect to the pose para-

meters. In other words, during optimization we seek

the pose parameters that minimize the error. As a pose

transform is a rigid transform, the estimation of the

pose parameters should rely only on stable facial points

(such as the nose tip or the eye corners), that is, points

whose location does not change with the facial expres-

sions (such as the corner of the mouth).

Associated with the 3D geometrical model is the

appearance information, that is information on how

an area around a landmark is expected to appear on

a 2D image. Such information is often provided in

the form of a texture map (e.g., Fig. 3). Typically,



Face Pose Analysis. Figure 3 Texture map projected on a

cylindrical face model under different poses.
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correspondences are established between the facial land-

marks on the texture map and points on the 2D facial

image using similarity measures on the appearance of

small patches around them. As the reliability of the

correspondences declines for small patches, geometry-

based methods typically work with images of higher

resolution than appearance-based methods.

It is often the case that other sources of information

can be used in order to perform pose analysis. Often,

the face pose needs to be estimated not in a single

image but in an image sequence (i.e., face pose tracking

[4]). If the frame rate is high enough, then the face

pose changes sightly and smoothly from frame to

frame. This prior knowledge can be incorporated in

pose estimation algorithms by using various filtering

techniques, with the effect that the estimated poses

vary also smoothly from fame to frame. Another

sources of information that is commonly used is

depth information, which is obtained either from a

stereoscopic camera, or from range sensors [13]. In

the first case, the facial landmarks need to be localized

in both the images of a stereoscopic pair [14], and

from this their location in 3D space is determined. In

the second case, facial landmarks need to be localized

on the range data itself. In both cases, depth informa-

tion provides an additional constraint on the location

and pose of the 3D model of the face. Finally, infrared

imaging technologies, for single or multiple sensors

can also be used.
Performance Evaluation

The main challenge in face pose analysis is the fact that

facial images in the same pose appear differently due
to a number of factors. The most important of these

factors are identity (differences in the facial character-

istics between different individuals), illumination (i.e.,

the ambient light), occlusions (due to facial hair or

other objects such as hands or glasses), and facial

expressions (e.g., frowning or smiling). Such variations

in appearance lead to variations in the feature set that

are extracted by appearance-based methods and make

difficult the correct classification. Similarly, variations

in appearance make the establishment of correspon-

dences between the texture map and the image patches

in geometry-based methods difficult.

The evaluation of the performance of the face pose

estimation methods is done on a collection of images

that depicts faces whose poses are known, that is on an

annotated face pose database. The term annotated

refers to the fact that each image in the database is

stored together with the corresponding ‘‘correct’’ pose

(often called ‘‘ground truth’’). The ground truth infor-

mation about the pose is usually extracted during the

recording of the image. An accurate method for doing

so is to use additional sensors, for example, attach a

magnetic sensor on the top of the head of the person,

which delivers accurate pose information. Another

method, which is however less accurate, is to ask the

individuals to look at a certain location while the

image is recorded. A third method is to manually

annotate a number of stable facial landmarks (i.e.,

points whose location do not change with facial

expressions) and use geometry-based methods to esti-

mate the pose.

The set of images (and the corresponding poses)

contained in an annotated database used for evaluation

is called the test set. Appearance, based methods also

require the existence of an annotated database that is

used for learning the transform (that given an image

extracts a feature set that represents it) and the classi-

fier (that given a feature set determines the face

pose). The set of images (and the corresponding

poses) are contained in such a database is called the

training set.

During the evaluation, the pose of each image

contained in the test set is estimated and the difference

with the ground truth pose (i.e., the error) is calculated.

Usually, the average value of the error and its variance

from the average value are reported. Useful estimators

are the ones that have zero mean error (unbiased) and

small variance (i.e., small spread around the average

value).
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Applications

Faces that are captured by cameras or other sensors in

uncontrolled environments are rarely in upright posi-

tion, facing the camera/sensor from a fixed distance.

Images captured by surveillance cameras, in commercial

films, in family photos or homemade videos, and even

images captured from web cameras attached to a laptop

rarely depict faces in the same pose. Therefore, face pose

analysis is an integral part of all applications that require

face analysis in uncontrolled environments. Imposing

restrictions on the recording conditions is very often

unnatural, impractical, or infeasible. In addition, head

pose estimation has by itself a number of applications,

for example in human–computer interaction.

The applications of face pose analysis can be

divided into three main categories:

1. Security applications in uncontrolled environments.

In applications, such as surveillance in open spaces

(e.g., airports or tube stations), the question, ‘‘is

this individual in the list of suspects?’’ or ‘‘in which

other tube stations has this individual been today?’’

often arise and require working with facial images

in arbitrary poses. Further, applications such as

access control for computer login, give an extra

degree of easiness if it can allow (smaller or larger)

pose variations.

2. Multimedia indexing and retrieval. A very large por-

tion of produced visual material, such as images in

the web, films, homemade videos, and photos, depict

faces. Organizing such a material according to who is

depicted allows semantic access to it, that is, allows

queries such as ‘‘find photos of me with my sister’’.

3. Human computer interaction and behavioral analy-

sis. Face/head pose can be used for communication

with a computer (e.g., by head nodding or as an

essential step toward gaze tracking), especially in

case that disabilities prohibit the use of other pri-

marymodalities such as speech. Further, the face pose

and its dynamics contain information on the emo-

tional and affective state of individuals, and therefore

can be used for automatic behavioral analysis.
Summary

Recent technological advances in image (sequence)

acquisition, storage and transmission, such as the de-

velopment of cheap cameras and hard disks, as well as
the availability of computing resources have contribu-

ted to the integration of imaging technology in our

everyday lives. As face analysis moves from controlled

environments to environments in which the viewpoint

cannot be controlled, or applications in which the face

orientation naturally changes, head pose analysis

becomes an essential part of the developed systems.
Related Entries

▶ Face Alignment

▶ Face Expression Recognition

▶ Face Localization

▶ Face Tracking

▶ Feature Extraction
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Face Pose Estimation
▶ Face Pose Analysis
Face Pose Recognition
▶ Face Pose Analysis
Face Processing
Face processing is a term introduced at the first inter-

national workshop on face processing in video

(FPiV’04) to describe image processing tasks related

to extraction and manipulation of information about

human faces. The most common of these tasks are face

segmentation, face detection, face tracking, face mod-

eling, eye localization, face reconstruction, face quality

and resolution improvement, best face shot selection,

face classification, facial expression recognition, face

memorization, and face identification.

▶ Face Databases and Evaluation
Face Recognition
▶ Liveness Assurance in Face Authentication

▶ Forensic Evidence of Face
Face Recognition From Image
Sequences
▶ Face Recognition, Video-based
Face Recognition in Near-Infrared
Spectrum
▶ Face Recognition, Near-infrared
Face Recognition Performance
Evaluation
▶ Face Databases and Evaluation
Face Recognition Using Local
Features
▶ Face Recognition, Component-Based
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Definition

Face recognition is the procedure of recognizing an

individual from their facial attributes or features and

belongs to the class of biometrics recognition methods.

3D face recognition is a method of face recognition that
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exploits the 3D geometric information of the human

face. It employs data from 3D sensors that capture

information about the shape of a face. Recognition

is based on matching metadata extracted from the 3D

shapes of faces. In an identification scenario, the match-

ing is one-to-many, in the sense that a probe is

matched against all of the gallery data to find the

best match above some threshold. In an authentication

scenario, the matching is one-to-one, in the sense that

the probe is matched against the gallery entry for a

claimed identity, and the claimed identity is taken to be

authenticated if the quality of match exceeds some

threshold. 3D face recognition has the potential to

achieve better accuracy than its 2D counterpart by

utilizing features that are not sensitive in lighting con-

ditions, head orientation, differing facial expressions,

and make-up.
Introduction

In recent years, among the many biometric modalities,

the face has received the most interest. Not only is face

recognition one of the most widely accepted modal-

ities, but advances in processing power have allowed

the development of more complex algorithms while

still providing a rapid response to queries. Face recog-

nition requires no contact with the subject, thus being

more easily accepted by the public compared to other

biometrics such as fingerprints.

Face recognition has been traditionally performed

using 2D (visible spectrum) images, while hybrid

approaches have used infrared images and 3D geome-

try. Infrared face recognition has not been widely

adopted due to the high cost of infrared cameras nec-

essary to acquire data. In contrast, the cost of 3D

scanners has dropped significantly, so it has become

feasible to deploy them in the field, and therefore, the

interest in developing algorithms that use 3D data has

increased.

The main reason for using information from 3D

data as a biometric is that the data acquired by 3D

acquisition devices are invariant to pose and light-

ing conditions, these being the major challenges with

which face recognition algorithms must cope. More-

over, image-based face recognition algorithms aremore

susceptible to impostors. Indeed, an impostor may use

a printout of an image of a subject allowed to enter a

facility in order to break in. To avoid this, the face

recognition algorithm must be coupled with liveness
test algorithms. Attempting such an attack on a system

based on 3D data would be much more difficult, since

the attackers would need to obtain an accurate 3D

model (sculpture) of the person whom they would

like to impersonate.

The challenges of a 3D face recognition system are

the following:

� Accuracy gain: A significant gain in accuracy with

respect to 2D face recognition systems must justify

the introduction of 3D recognition systems.

� Efficiency: 3D capture devices generate substantially

more information than 2D cameras. Using this

large volume of information is expensive in terms

of computation time and storage requirements.

Therefore, the algorithms developed need to be

efficient both in time and space, by using the

appropriate metadata.

� Automation: The system must be completely auto-

mated. It is therefore not acceptable to assume user

intervention, such as for the location of key land-

marks in a 3D facial scan.

� Capture devices: 3D capture devices were mostly

developed for medical and other low-volume appli-

cations and suffer from a number of drawbacks,

including artifacts, small depth of field, long acqui-

sition time, multiple types of output, and high price.

A deployable 3D face recognition system must be

able to process several persons a minute, if it is to

be used in high-traffic areas.

� Testing databases: There are few large databases of

3D faces which are widely accepted for objectively

testing the performance of 3D face recognition

systems. More such databases are needed to ensure

proper testing of the system.

� Robustness: The system must perform robustly and

reliably under a variety of conditions (e.g., lighting,

pose variation, facial feature variation).
An Integrated 3D Face Recognition
System

The authors have developed a fully automatic system

[1] which is capable of using 3D data as input, along

with a facial model, to output metadata information.

The metadata are then used for recognition. The facial

model has been constructed only once, and it can

handle objects belonging to the same class (i.e., faces).

Once the data are acquired, themodel is fitted to the data
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and used to generate a geometry image and a normal

map, which are transformed into the wavelet domain.

Only a small number of the wavelet coefficients are

stored as metadata and used for comparison.

Our recognition procedure can be divided into two

distinct phases: enrollment and recognition.

Enrollment: Raw data acquired by the 3D scanner

are converted to metadata and stored in a database

(gallery). The following steps describe the conversion

from raw data to metadata (Fig. 1):

1. Acquisition : The sensor acquires raw data which

are converted into a polygonal representation.

A preprocessing step takes place to alleviate

scanner-specific issues.

2. Alignment : The data are aligned into a unified coor-

dinate system using amulti-stage alignmentmethod.

3. Deformable model fitting : The ▶ annotated face

model (AFM) is fitted to the data.

4. Metadata generation: Geometry and normal map

images are derived from the fitted model and wave-

let analysis is applied to extract a reduced set of the

most significant coefficients.

Recognition: Metadata extracted from a face probe

(using the same steps as for enrollment) are directly

compared with metadata retrieved from the database

gallery using a distance metric.
Face Recognition, 3D-Based. Figure 1 Enrollment phase of
Data Acquisition and Preprocessing

In general, the current generation of scanners outputs

either a range image or 3D polygonal data. The pur-

pose of preprocessing the data is the elimination of

any sensor-specific issues and the unification of data

from different sources into a common format (Fig. 2).

The preprocessing consists of the following filters that

operate on both the native representations and on

1-neighbors, and are applied in the given order:

� Median cut : This filter removes spikes from data

acquired by using laser scanners.

� Hole filling : Eliminates holes produced by laser

scanners in certain areas such as eyes and eye brows.

� Smoothing : A smoothing filter is applied to remove

white noise.

� Subsampling : The deformable model fitting effec-

tively resamples the data, making the method less

sensitive to data resolution without losing perfor-

mance in the recognition phase. Subsampling fur-

ther reduces the noise in the geometry.
Annotated Face Model

Our approach introduces an AFM, which is con-

structed only once and is used in the alignment, fitting,
the proposed integrated 3D face recognition system.



Face Recognition, 3D-Based. Figure 3 AFM:

(a) Annotated facial areas and (b) texture used to

demonstrate parameterization.

Face Recognition, 3D-Based. Figure 2 Sensor-dependent preprocessing. Laser range scanner: (a) input depth

image, (b) raw polygonal data (200,000 triangles), and (c) processed data (16K). Stereo camera: (d) raw data (34,000

triangles).
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and metadata generation [1]. The model is anthropo-

metrically correct according to Farkas’ work [2], and

is annotated into different facial areas (e.g., mouth,

nose, eyes) (Fig. 3). Applying a continuous global UV

parameterization on the model, all vertices of the

model from R3 to R2 and vice versa have been mapped.

Therefore, the model is defined both as polygonal data

in R3 and as a geometry image in R2 [1, 3].

A ▶ geometry image is a regular sampling of the

model represented as a 2D image with three channels,

each channel corresponding to the x, y, and z coordi-

nates of the 3D object. Since local neighborhoods on

the mesh are preserved (i.e., neighboring vertices are

preserved even in the geometry image), an approxi-

mated version of the original mesh can be recon-

structed from the geometry image. The number of

channels in the geometry image can be greater than

three, as apart from geometric information, texture

and annotation can also be encoded.
Alignment

Our work on face recognition has indicated that

alignment (pose correction) is a key part of any

geometric approach. So, before fitting, align each

preprocessed dataset with the AFM. The alignment

stage computes a rigid transform, combining rota-

tion and translation, which brings the data as close

as possible to the model and is robust and accu-

rate even when relatively large deformations (facial

expressions) occur in the input data. Our align-

ment algorithm is a multi-stage algorithm which

propagates the alignment variables from one stage

to the next [1]. The first algorithm is more resilient to

local minima, while the next two algorithms provide

greater alignment accuracy:

� Spin images: The purpose of the first step is to

establish a plausible initial correspondence between

the model and the data. This step can be omitted if

the arbitrary rotations and translations in the data-

bases are not expected. A spin image is a represen-

tation of the geometric neighborhood around a

specific point [4]. To register two shapes, the cor-

respondences between the individual spin images

must be found. These correspondences are grouped

into geometrically consistent groups and the trans-

formations they yield are verified by checking if

they rotate the data by an acute angle (based on

the assumption that a given face does not have an

upside down pose or an opposite orientation from

the camera). This check is essential due to the bilat-

eral symmetry property of the human face.

� Iterative closest point (ICP): The main step of our

alignment process uses the ICP algorithm [5]

extended in a number of ways. The ICP algorithm
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solves the registration problem by minimizing the

distance between the two sets of points. The anno-

tated model is exploited by assigning different

weights to different face regions. Additionally, pairs

containing points on surface boundaries are rejected.

This ensures that no residual error is introduced into

ICPs metric by the non-overlapping parts of two

surfaces. Finally, if the resulting transformation is

not satisfactory, the option of running the trimmed

ICP algorithm [6] is available.

� Simulated annealing on z-buffers: This is a refine-

ment step that ensures that the model and the data

are well aligned. The idea is to refine alignment by

minimizing the differences between the z-buffers of

the model and data. A global optimization tech-

nique has been employed, known as enhanced

simulated annealing (ESA) [7], to minimize the

z-buffer difference [8]. The higher accuracy of this

step can be attributed to the fact that the z-buffers

effectively resample the data which results in inde-

pendence from the data’s triangulation.
Deformable Model Fitting

The purpose of fitting the model to the data is to cap-

ture the geometric information of the desired object.

In order to fit the AFM to the raw data, a subdivision-

based deformable model framework [1] is used. When

the deformation concludes, the AFM acquires the

shape of the raw data. This establishes a dense corre-

spondence between the AFMs surface and the raw

data’s vertices. Additionally, since the deformation

has not violated the properties of the original AFM,

the deformed AFM can be converted to a geometry

image. The extracted geometry image encodes the geo-

metric information of the raw data (Fig. 4). Note that
Face Recognition, 3D-Based. Figure 4 Full face model after f

model geometry, (c) corresponding geometry image, and (d)
the deformable model framework discards data not

belonging to the face and successfully handles artifacts

without any special preprocessing.

The fitting framework is an implementation of the

▶ elastically adaptive deformable models [9] using sub-

division surfaces [10]. The Loop subdivision scheme

[11] has been selected since it produces a limit surface

with C2 continuity, while only 1-neighborhood area

information is needed for each vertex. The AFM is

used as the subdivision surface’s control mesh, thus

determining the degrees of freedom, while the limit

surface is used to solve the following equation:

Mq

d2q

dt2
þ Dq

dq

dt
þ Kqq ¼ fq;

where q is the control points vector, Mq is the mass

matrix, Dq is the damping matrix, Kq is the stiffness

matrix, and fq are the external forces. The external

forces drive the deformation. The stiffness matrix

defines the resistance against the deformation, while

the mass and damping matrices control the velocity

and the acceleration of the vertices. This equation is

solved based on the finite element method (FEM)

approximation. During this process the AFM gradually

acquires the shape of the raw data.
Metadata Generation

The deformed model that is the output of the fitting

process is converted to a geometry image, as depicted

in Fig. 4(c). The geometry image regularly samples the

deformed model’s surface and encodes this informa-

tion on a 2D grid. The grid resolution is correlated

with the resolution of the AFMs subdivision surface.

From the geometry image, a normal map image

(Fig. 4(d)) is also constructed. The normal map
itting: (a) Fitted model overlayed on the face data, (b) fitted

corresponding normal map.
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contains the 3D normal vectors to the surface as its

pixel values [1].

The three channels (components X, Y, and Z) of the

normal map and geometry image have been treated as

separate images. Each component is analyzed using a

wavelet transform and the coefficients are stored as

metadata. Two different transforms have been used,

the Haar and Pyramid transforms, thus obtaining two

sets of coefficients. The Pyramid transform is a more

computationally intensive transform, and therefore,

we may choose not to use it if the system needs to

be tuned for speed. The Haar transform is applied

on both the normal map and the geometry image,

while the Pyramid transform is applied only on the

geometry image.

� Haar wavelets : The choice of Haar wavelets was

based on their properties. The transform is concep-

tually simple and computationally efficient. The

Haar wavelet transform is performed by applying

a low-pass filter and a high-pass filter on a one-

dimensional input, and then repeating the process

on the two resulting outputs. Since we are working

with images, there will be four outputs for each

level of the Haar wavelet (Low–Low, Low–High,

High–High, High–Low). A level 4 decomposition is

computed, meaning that the filters are applied four

times, which yields 256 (16 � 16) wavelet packets

(Fig. 5). Each packet contains a different amount of

energy from the initial image. It is possible to

ignore most of the packets without losing signi-

ficant information and store the same subset of

the most significant coefficients as metadata. This

allows an efficient direct comparison of coefficients

of two images without the need for reconstruction.

� Pyramid transform: The second transform decom-

poses the images using the complex version of the
Face Recognition, 3D-Based. Figure 5 Haar wavelet analysis

(c) second level, (d) third level. Note that the real numbers w

visualization purposes.
steerable pyramid transform [12], a linear, multi-

scaled, multi-orientation image decomposition

algorithm. The resultant representation is trans-

lation-invariant and rotation-invariant. This fea-

ture is desirable to address possible positional

and rotational displacements caused by facial exp-

ressions. To maintain reasonable image resolution

and computational complexity, our algorithm

applies a 3-scale, 10-orientation complex steerable

pyramid transform to decompose each channel

of the geometry image. Only the low-pass orienta-

tion subbands at the farthest scale are stored as

metadata. This enables us to compare the subband

coefficients of two images directly without the

overhead of reconstruction.
Distance Metrics

In the recognition phase, the comparison between two

subjects (gallery and probe) is performed using the

metadata information. The coefficients of the geome-

try image are kept as metadata, and the normal map of

each dataset. Additionally, there may be two coefficient

types for each: the Haar coefficients and, optionally,

the Pyramid coefficients. To compare the metadata,

there is a need to define a distance metric for each

type of coefficient:

� Haar metric : In the case of Haar wavelets, the

metric used is weighted L1 on each component

independently. The total distance is the sum of

the distances computed on all components.

� Pyramid metric : A modified version of the complex

version of the structural similarity index (CW-SSIM)

[13] is used. CW-SSIM iteratively measures the

similarity indices between two sliding windows
for the normal map image: (a) zero level, (b) first level,

ere mapped to a gamma corrected grey-scale for
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placed in the same positions on the two images, and

uses the weighted sum as a final similarity score.

� Fusion: When both types of coefficients are used,

the distances given by the Haar and the Pyramid

metrics are fused. A weighted sum of the two dis-

tances is used as a fusing score.
F

3D Face Recognition Hardware
Prototype System

A field-deployable prototype system has been built and

is operational at the University of Houston. It consists

of a 3dMDTM 3D camera (1-pod configuration) which

is connected to a laptop. The color camera of the pod

captures a continuous video stream which is used to

detect whether a person is facing the 3D camera. When

the subject is facing the camera and remains relatively

still for more than 2 s, the system triggers the 3D

camera and the geometry data of the individual’s

face are captured. Each of the cameras has a resolution

of 1.2 megapixels. The entire capture process takes

less than 2 ms, and it produces a mesh with less than

0.5 mm RMS error (as quoted by the manufacturer).

The system can either enroll the subject into the

database or perform a scenario-specific task. In an

identification scenario, the system will display the clos-

est five datasets to the operator. In a verification sce-

nario, the system will determine whether the subject is

who he/she claims to be, based on a preset distance

threshold.

The system’s field-deployable characteristics are:

� Automation: All methods utilized are fully auto-

mated, requiring no interaction with a user. The

system is capable of detecting when a subject is

within range by using a face detector implementa-

tion, and initiating the enrollment or authentica-

tion procedures automatically.

� Space efficiency : The raw 3D data produced by most

scanners are of several MB. After the enrollment

phase, the system needs to keep only the metadata.

� Time efficiency : The enrollment phase is the most

time consuming, as the time delay to convert the

raw scanner data to the final metadata is 15 s. In the

authentication phase of an identification or verifi-

cation scenario, only the stored metadata are uti-

lized. The system can compare the metadata of

enrolled subjects at a rate of 1,000/s on a typical

modern PC (3.0 GHz P4, 1 GB RAM).
Performance Evaluation

Databases

The results on 3D face recognition are reported using

two databases. The first is the well known FRGC v2

database and the second is a collection of 3D faces

acquired at the University of Houston (UH). To dem-

onstrate the sensor-invariant nature of the proposed

system, the UH database is combined with FRGC v2.

The FRGC v2 database [14, 15] contains 4,007 3D

scans of 466 persons. The data were acquired using a

Minolta 910 laser scanner that produces range images

with a resolution of 640�480. The scans were acquired

in a controlled environment and contain various facial

expressions (e.g., happiness or surprise). The subjects

are 57% male and 43% female, with the following age

distribution: 65% 18–22 years old, 18% 23–27 and

17% 28 years or over. The database contains annota-

tion information, such as gender and type of facial

expression.

The UH database contains 884 3D facial datasets

acquired using our 3dMDTM system (with 1-pod and

2-pod setups) over a period of one year. The data

acquisition protocol was the following:

For each subject:

� Remove any accessories (e.g., glasses).

� Acquire a dataset with neutral expression.

� Acquire several datasets while the subject reads

loudly a predefined text (thus assuming facial

expressions).

� Put on the accessories and acquire a dataset with

neutral expression.

The UH database is more challenging compared to the

FRGC v2 as the subjects were encouraged to assume

various extreme facial expressions and in some cases

accessories were present. The resulting extended data-

base contains a total of 4,891 datasets, 82% acquired

using a laser scanner, 18% acquired using an optical

camera, and, to the best of our knowledge, is the largest

3D facial database reported.
Performance Metrics

Two different scenarios have been employed for the

experiments: identification and verification. In an iden-

tification scenario, divide the database into probe and

gallery sets so that each subject in the probe set has
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exactly one match in the gallery set. To achieve this, use

the first dataset of every individual as gallery and the

rest as probes. The performance is measured using a

cumulative match characteristic (CMC) curve and the

rank-one recognition rate is reported.

In the verification scenario, measure the verifica-

tion rate at 0.001 false accept rate (FAR). The verification

rate is defined as the fraction of datasets that are posi-

tive (e.g., claiming to be who they really are), and are

classified as positive. The FAR is defined as the fraction

of datasets that are negative (e.g., pretending to be

somebody else), but are classified as positive. The results

are plotted using a receiver operating characteristic

(ROC) curve which plots verification rate as a function

of FAR. The FRGC v2 database defines three possible

selections of datasets (referred to as ROC I, ROC II, and

ROC III). In ROC I, all the data are within semesters,

in ROC II, they are within one year, while in ROC III, the

samples are between semesters. These experiments are of

increasing difficulty.

Experiment 1: Wavelet Transforms

The purpose of this experiment is to evaluate the

performance of the two wavelet transforms, and to

provide a reference score on the FRGC v2 database.

Using a fusion of the two transforms, our system

yielded a verification rate of 97.3% (for ROC I at

0.001 FAR), while separately for the Haar transform a

rate of 97.1% and for the Pyramid transform a rate

of 95.2% were achieved (Table 1).

Even though the Pyramid transform is computa-

tionally more expensive, it is outperformed by the

simpler Haar wavelet transform. This can be attributed

to the fact that in the current implementation, the

Pyramid transform utilizes only the geometry images

and not the normal map images. The fusion of the two

transforms offers more descriptive power, yielding

higher scores, especially in the more difficult experi-

ments of ROC II and ROC III, as depicted in Table 1.
Face Recognition, 3D-Based. Table 1 Verification rates of

our system at 0.001 far using different transforms on the

Frgc V2 database

ROC I ROC II ROC III

Fusion 97.3% 97.2% 97.0%

Haar 97.1% 96.8% 96.7%

Pyramid 95.2% 94.7% 94.1%
To the best of our knowledge, this is the highest per-

formance reported on the FRGC v2 database for the

3D modality.

Experiment 2: Facial Expressions

Facial expressions have traditionally decreased the

performance of face recognition systems. In this exper-

iment, the authors evaluate the impact of facial expres-

sions on the performance of the system. All datasets

in FRGC v2 are annotated, and one of the categories

recorded is the facial expression. The authors chose to

divide the database into two distinct sets: the first set

contains non-neutral facial expressions only, while the

second set contains datasets that were annotated as

having a neutral facial expression.

The performance of the two subsets is compared to

the performance on the entire set at 0.001 FAR in

Table 2. The average decrease of 1.56% in verification

between the full database and the subset containing

only facial expressions is very modest when compared

to most other systems, given the fact that this subset

contains the most challenging datasets from the entire

database and is fully automatic. The small decrease

in performance can be attributed to the use of the

deformable model framework and the AFM.

Experiment 3: Multiple Sensors

The purpose of this experiment is to evaluate the

performance of our system using data from multiple

sensors. Verification experiments depend heavily on

the pairs of datasets chosen for evaluation. In the

absence of any standard way of designing such experi-

ments, opt for an identification experiment, which is

considered to be more representative and more easily

duplicated.

This identification experiment was conducted on

different databases: FRGC v2 database, with 466 gallery

and 3,541 probes (laser scanner), UH database with
Face Recognition, 3D-Based. Table 2 Performance of our

system at 0.001 far on the full FRGC V2 database, on a

subset containing only non-neutral facial expressions and

on a subset containing only neutral expressions

ROC I ROC II ROC III

Full Database 97.3% 97.2% 97.0%

Non-neutral 95.6% 95.6% 95.6%

Neutral Expressions 99.0% 98.7% 98.5%
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v2 database with 466 gallery and 3,541 probes (laser scanner), UH database with 240 gallery and 644 probes (optical

scanner) and FRGC v2+UH database with 706 gallery and 4,185 probes (both scanners).
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240 gallery and 644 probes (optical scanner) and FRGC

v2+UH database with 706 gallery and 4,185 probes

(both scanners). On the FRGC v2 dataset, the rank-

one identification rate was 97.0%, while for the UH set,

the system achieved 93.8%. Fig. 6 depicts the full CMC

curve. The combined experiment yielded a rank-one

recognition rate of 96.5%, which represents a drop in

performance of only 0.5% when compared to the orig-

inal FRGC v2 experiment, demonstrating the system’s

robustness when data from multiple sensors are

included in the same database.
Conclusion

The authors presented algorithmic solutions to the

majority of the challenges faced by field-deployable

3D facial recognition systems. By utilizing an anno-

tated deformable model, the 3D geometry information

is mapped onto a 2D regular grid, thus combining the

descriptiveness of 3D data with the computational

efficiency of 2D data. A multi-stage fully automatic

alignment algorithm and the advanced wavelet analysis

resulted in robust state-of-the-art performance on the

publicly available FRGC v2 database. Our multiple-

sensor database pushed the evaluation envelope one

step further, showing that both accuracy and robust-

ness can be achieved when data from different sensors
are present, through sensor-oriented preprocessing.

Proof of concept is provided by our prototype system

which combines competitive accuracy with storage

and time efficiency.
Related Entries

▶Anatomy of Face

▶Deformable Models

▶ Face Localization

▶ Face Pose Analysis

▶ Face Recognition: Component-based

▶ Face Recognition: Shape vs Appearance
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Synonyms

Face recognition using local features; Part-based face

recognition
Definition

A major problem in face recognition is to design algo-

rithms that are invariant to those image changes typically
observed when capturing faces in real environments.

A large group of important image variations can be

addressed using a component-based approach, where

each face is first analyzed by parts and then the results

are combined to provide a global solution. The image

variations that are generally tackled with this approach

are those due to occlusion, expression, and pose [1].

It has been argued that these changes have a lesser

effect on local regions than to the whole of face image.

Differences exist on how to formulate the component-

based approach. Some of the algorithms use local infor-

mation and combine these using a global decision

maker. Some extract the important local parts to repre-

sent the face distributions, while others learn the distri-

bution of the components generated by the variations.

A summary of these techniques is given in this essay.
Introduction

Component-based face recognition algorithms include

those that use some local information of the face to do

recognition of the whole. These algorithms are very

popular, since the local information is generally more

robust to many of the typically seen parameter varia-

tions of the face. This is especially true if one does

recognition based on the texture (i.e., pixel informa-

tion) of the face.

One of these parameters is the location of the

fiducial points in the face. These fiducial points are

necessary to align all faces with respect to one another.

However, it is not usually possible to obtain the exact

location of these points automatically. This generates

imprecise localizations which will further decrease

the performance of the recognition algorithms [1].

Component-based algorithms can also be made more

robust to these errors of localization. This is because

some of the local features may be localized more pre-

cisely than the other ones and, hence, lead to better

recognition rates.

A similar advantage is also seen in expression and

pose changes. In this case, some local components of

the face may have less expression changes (such as the

nose region when a person smiles) or maybe less

affected by pose changes (such as the eye region that

is in the opposite side of the head).

Moreover, brightness changes are known to be

handled better when the face is represented by compo-

nents. It is because the face is a nonconcave structure,

resulting in different lightings across it. For example,
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the right and left side of a facemay be lighted with totally

different lighting conditions and, hence, may lead to

different pixel levels. Trying to handle these changes

using a global approach may fail due to the possible

lighting changes. Simple intensity normalization pro-

cesses can be used to eliminate part of the lighting differ-

ences when using a component-based approach [2].

Another advantage of using component-based algo-

rithms is the stability for the possible occlusions over the

faces. Even when half of the face is occluded, as for

example with a scarf or large eyeglass, a component-

based algorithm can still employ the information of the

other half of the face image to do recognition.

Figure 1 shows some of the advantages of the local

approach representation just described. Although,

there is an extreme lighting change and occlusion of
Face Recognition, Component-Based. Figure 1 Although th

and occlusions, the corresponding right eye regions in (c) an
the face, the local right eye regions are very similar in

both images and shall lead to a successful classification.

Because of these advantages component-based face

recognition algorithms are preferred approaches in

many real settings. In the following sections some of

the most used algorithms defined thus far have been

investigated. A discussion as well as the pros and cons

of each technique, have also been provided.
Component-Based Face Recognition

Component-Based Graphs

Building a system that is not skewed by localization errors

seems close to impossible. This is due to the many
e faces shown in (a) and (b) have extreme lighting changes

d (d) are very similar.



Face Recognition, Component-Based. Figure 2 A Face

Bunch Graph (FBG) is shown, which represents all possible

variations across faces. Each jet is represented by a stack

of discs. In the matching process, the best fitting bunch of

jets (shown in gray) is selected from a bunch of jets

attached to a single node. � IEEE 1997.
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additional variables that define the face image. These

include pose, expression lighting, etc. Researchers have

found a solution to this problem. In this solution, algo-

rithms have been developed that consider the range of the

localization errors over the given image. One solution, as

defined in the section to follow, is to learn the set of

textural changes due to localization errors. A robust alter-

native is to handle this set by designing an algorithm that

depends on the local information. This is done in [3]

with the Dynamic Link Architecture (DLA) and in [4]

with the Elastic Bunch Graph Matching (EBGM). Both

of these algorithms use the local information by divid-

ing each image into a set of patches.While DLA extracts

these patches by dividing the image with a grid struc-

ture, EBGMuses the regions around the fiducial points.

Both DLA and EBGM extract features from the

patches by filtering them with complex Gabor jets and

using the magnitude of their outputs. The rationale

behind the use of these features is grounded in the

fact that ▶Gabor jets are known to be less affected by

lighting changes. In addition, EBGM uses the phase of

the filtered patch to locate the nodes more accurately

and to differentiate the patches that have the same

magnitude.

One major difference between these two approaches

is seen in the graph representation of the components. In

DLA the spatial information between the patches

is defined using a graph with nodes representing the

grid parts of a face in the image plane. A proper match-

ing algorithm between the images were proposed using

the spatial information (hidden in edges of the graph)

and the local information (hidden in vertices of the

graph). In EBGM the face bunch graph (FBG) is defined

over the fiducial points such that each node represents

the Gabor jet outputs for several variations of a fiducial

point, i.e., the node related with eyes may include an eye

bunch that is closed, open, left–right pupil, and so on.

Figure 2 shows an example of FBG. Here each node

corresponds to a fiducial point where the set of discs are

the Gabor jets related with the corresponding region.

Bunch of set of discs represents the variability in the

faces around that region. Matching is done using an

elastic bunch graph matching algorithm which consid-

ers the size change of the FBG and location change of

the nodes to optimize the graph similarity. Once the

graph is obtained the recognition is done by calculating

the similarity between the test image and the training

image graphs. The match is found across all possible

variations of Gabor jets. In Fig. 2 a possible match is
shown by gray marking. This component-based strategy

has proven to yield good results for frontal face recogni-

tion and reasonable results under pose variations.
Modeling Components

As mentioned above, some of the important problems

to deal with in face recognition are imprecise localiza-

tion, ▶ partial occlusion, and expression variation.

Another important problem is given by the tradition-

ally small number of training samples per class, since

one usually has access to just a few images per subject.

In [1] these problems are handled by means of a

probabilistic approach.

▶ Imprecise localizations arise from not knowing

the exact position of the fiducial points located in the

face. Not only automatically detected, but also hand-

marked feature locations include imprecise localizations.
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face images according to the localization error of the localization algorithm. After division of each face image into K local

areas, the localization error is estimated (for each of these local areas) using a mixture of Gaussians. � IVC 2006.
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Although the additional noise may be small in the image

plane, the corresponding images in the Euclidean space

may deviate from their classes considerably. To handle

this problem, [1] proposes to model the localization

error by synthetically generating images that may be

observed under a given error. Then, these images are

modeled by means of a mixture of Gaussian distribu-

tion. With this approach one extends on the original set

of images to a larger one that most appropriately repre-

sents image variations. Figure 3 shows this for a face

image division into six local parts. All possible images

of a local region, which are generated by localization

error, are modeled using a mixture of Gaussians.

Another major problem is partial occlusions. This

is handled by dividing the face into a set of indepen-

dent regions. This allows us to avoid using nonface

areas that may distract the recognition process in a

global approach. The component-based approach

described above has shown to be superior to global

techniques and voting strategies in [5] using a large set

of images extracted from the AR database [6].

Expression changes are eliminated in a similar

manner. In this case, a weighting scheme is used to

give less importance to the regions that have expression

changes and, hence, have a less contribution to the

final classification. The effect that expression changes

have in different local areas is learned from a training

set. The learned weights are then applied to the inde-

pendent test face images. This approach is further
extended in [7], where the weights are not learned

but set inverse proportional to the difference in expres-

sion between the training and testing local regions.

More recently, this approach defined in this section

has been extended to handle the problem of pose varia-

tions and to work with video sequences rather than

simple stills [7]. Pose variations are again handled

using Gaussian mixture models representing these var-

iations. This algorithm has been shown to perform bet-

ter than global approaches and voting strategies as well.

Another recent extension of this approach is given

in [8], where the authors take advantage of the struc-

ture of the local areas by modeling it as a graph. This

can be seen as a combination of the methods defined in

the preceding section.
Extracting Sparse Components

Generally speaking, in the approaches defined above,

there are infinitely many possible ways to divide a face

image into a set of components. The question is what is

the optimal division? The answer to this question will

depend on the optimality criterion choose. When the

separation is defined for a face recognition algorithm,

the components are usually selected to include local

regions that keep most of the main characteristics

across the faces. This includes dividing the face into

regions separating eyes, nose, and mouth or dividing
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the face into equal local patches. On the other hand, if

our goal is to represent (instead of discriminate) the

faces sparsely using a component-based representation,

one needs an algorithm that consider this alternate

criterion. Such sparse representation of faces is re-

quired in many practical cases, since the complexity

of representing several kinds of faces can simply be

done by finding invariant component-based represen-

tations. An algorithm defined for this purpose is the

nonnegative matrix factorization (NMF) [9].

In this approach, the parts of an object are learned

automatically by the algorithm. The algorithm inputs

the data (graylevel pixel values in the case of images) in

matrix form, V, with each column representing an

image. The goal is to factorize this matrix into basis

vectors, W, and coefficients, H, such that none of the

elements are negative, V ¼ WH. To achive this, an

Expectation Maximization (EM) like algorithm is pro-

posed. Because of the nonnegativity constraints, the

basis vectors become highly sparse leading to an effi-

cient representation of the data matrix.

A major advantage of this algorithm is that it is able

to extract the parts of the objects automatically accord-

ing to their significance in the representation of the

data. Since these parts are usually less variant under

pose, illumination, and occlusions, one can design

part-based recognition algorithms that are based on

NMF features. An extension of this framework is given

in [10].
Variety in Features

Some of the component-based algorithms defined in

the literature, differ in the features that they use to

represent the local regions. One of them is proposed

in [11] where the authors extract Fourier Bessel coeffi-

cients of the local regions.

Three local regions around the eyes (left eye, be-

tween eyes, right eye) are cropped after automatically

locating the face and eyes. The illumination changes

across each local part are removed by means of an

image normalization. If this corresponds to a region

that has constant luminance, it is eliminated. This

means that the occluded regions are eliminated. To

extract the features, the local image patches are

transformed to the polar frequency domain using the

Fourier-Bessel Transform (FBT). This feature represen-

tation is used since the noise is eliminated using a
subset of 372 FB coefficients. Using these coefficients

the dissimilarities between each image with all the other

images in the training set is calculated. Then, pseudo

Fisher Linear Discriminant method (LDA) is used to

classify the images [12]. The test results on FERET

dataset [13] show that the proposed algorithm outper-

forms local approaches such as local polar Fourier

Transform (PFT, which uses the Fourier transform

instead of Fourier-Bessel), EBGM and global algo-

rithms such as Principal Component Analysis (PCA),

LDA, and global PFT. The results indicated that the

proposed algorithm is sensitive to age and illumination

changes more than expression changes.

The proposed algorithm is also tested with respect

to its robustness to artificial occlusions, which is a

drawback. Results on real occlusions are still needed.

For this purpose 50% of the face was synthetically

occluded with the graylevel information of those pixels

equated to zero. In this experiment, the performance of

local FBTwas quite robust.

The authors further tested the significance of the

localization error generated by their fully automatic

system. They showed that the global approach is more

affected by these errors than the local ones. And the

local FBT performance was affected by up to 20% in

the tests including age, expression, and illumination.

This shows the importance of the localization errors in

face recognition.

Other than changing the representation domain

(pixel to polar frequency) of a local region, some algo-

rithms use geometric features to represent the face

components. One of these algorithms, which was al-

ready mentioned above, is the Face-ARG matching

algorithm [8]. This algorithm uses the local informa-

tion by extracting an Attributed Relational Graph

(ARG). This graph is defined for each face image

using a connected set of lines outlining the facial fea-

tures. An important feature of the algorithm is that it

uses only a single image for training, i.e., to extract the

ARG. The testing is done using a partial match over the

graph which was able to handle local changes and

partial occlusions. The only disadvantage of the algo-

rithm is the complexity of the matching. This is

because the matching defined over the graph should

also handle subset matching to deal with occlusions.

The algorithm was able to obtain better recognition

results on AR dataset [6] over most of the well-known

algorithms such as nearest neighbor classification,

PCA, and NMF.
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Combined Face Detection and
Identification

Not only face recognition but also face detection can be

addressed using a component-based approach. In [14],

the authors propose one such combined framework.

They used a layered framework where the first layer is a

component-based face detection module. This module

consists of component classifiers specially trained for

detecting facial components. Each detector outputs

the most probable score and the x, y location of the

corresponding component. A detection combination

classifier receiving this data makes the final decision

regarding the existence of a face in the image. If a face

is detected, the obtained part-based regions are classified

for identification in the second layer of the algorithm.

Similar to the face detectionmodule, the scores obtained

from each part-based identification module are merged

using a combination identity classifier, providing the

final decision.

The training procedure in the face detection layer

works as follows: First, 14 points on the face are

selected as the center of the interest points. Then,

starting from a rectangular region of predetermined

size around each point, the interest region is increased

until a minimum cross-validation error is obtained.

On an independent testing set the trained face detector

is able to outperform a detector that is exclusively

based on global features.

Once the size of the rectangular local region is

determined in the detection layer, a linear Support

Vector Machine (SVM) is trained for identification

purposes. In this training procedure, 7040 synthetic

face images are generated from a 3D model con-

structed for each individual using only three images,

i.e., a frontal, a 45o rotated to the right, and a side face.

Testing is held using 200 images from a total of 10

people. Images are recorded in different days and with

different cameras. The proposed algorithm is com-

pared to global face identification systems such as

PCA, LDA, and a SVM with polynomial kernel. The

authors further tested their combination face identifier

using linear SVM with respect to possible combination

such as majority vote, maximum product and maxi-

mum sum. All these combination scenarios perform

better than the global methods with the linear SVM-

based identifier combination. Specifically the linear

SVM based on part-based region identification per-

formed 89.25%, whereas the PCA, LDA and SVM
based on global features obtained 61, 52, and 63%,

respectively.
3D Face Recognition

The importance of part-based approaches in face rec-

ognition is also clear in algorithms defined to do rec-

ognition from 3D ▶ range scans [15]. In this paper,

authors extend the part-based comparisons in 2D

images to 3D range scans. The main idea in the paper

is that the nose region is usually stable when the sub-

jects have expression changes. Hence three different

possible local regions are extracted from the 3D struc-

ture. Figure 4 shows these regions which correspond to

a circular region centered around the nos e, Fig . 4 (b), a

region exclusively dedicated to the nose (i.e., including

the cur vatu res around the nose region) , Fig . 4(c), and a

larger, ellipsoidal region including the nose and its

contextual in formation, Fig . 4(d). The experimental

results obtained over expression variant faces show that

using the 3D structure of the nose outperforms the use of

the whole face. Several combination schemes are pro-

posed to improve the results obtained by the local parts.

Above all, the combination of the match scores obtained

from the nose and ellipsoidal nose region performs the

best for nonneutral expressions. This shows that the

stability of the selected parts (in this case the nose region)

can provide a moderate to large improvement in the

performance in face recognition systems.
Object Detection

The part-based detection algorithms are also used in

object detection in [16]. This approach depends on

four major stages. In the first stage, the authors build

a vocabulary of the parts to represent the images. This

is done by applying the Forstner interest operator

which detects intersection of lines and centers of circu-

lar patterns. Then, small image patches around the

interest points are extracted. These image patches are

clustered together to obtain a more compact set of

image patches which is the part vocabulary. Second,

each image is represented by a set of binary features

stating whether the parts in the vocabulary are in the

current image. The image representation also includes

the spatial location of the parts in the image. This is

done by calculating the relative distance and angular

displacement between the parts and representing these



Face Recognition, Component-Based. Figure 4 This figure shows three different nose regions extracted from the

range scan shown in (a). (b) corresponds to surface around the nose region, (c) is the region exclusively including

the nose, and (d) is the surface of the ellipsoidal region around nose. � IEEE 2006.
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in 5 and 4 bin histograms, respectively. In the third

stage, the authors propose to learn a classifier by means

of the sparse network of winnows learning architecture

[17]. Since the feature representation is usually sparse

this learning procedure is preferred. In the final stage, a

classifier activation map is build to detect the objects in

the test images. This is simply obtained by sliding the

learned classifier with a window over the image and

assign 0 whenever a negative activation occurs, and

assigning the actual activation value otherwise. Once

all the possible candidates have been identified over the

whole image, neighborhood suppression is employed

to eliminate false positives.

An extension to handle scale changes across the

images is held using an image pyramid. At the end, the

authors show the superiority of part-based approach

with several tests over single scale or varying scale images.
SIFT Features

SIFT features are also applied to template matching

problems because of the representational power of the
component-based algorithms. In template matching

the goal is to retrieve an object from a set of images.

This problem needs to deal with local appearance

variations, partial occlusions, and scale changes.

To be robust to these variations a part-based approach

can be used [18]. Due to the variety of images that a

single object can generate, the training set that we need

to learn is usually large. The complexity of the algo-

rithms not only increase with the number of samples in

the training set but also with the slow template match-

ing algorithms, such as calculating the sum of square

distance (SSD) or the normalized cross-correlation

(NCC) between images [12]. To eliminate this compu-

tational complexity [18] proposed to use rectangular

filters that are usually employed for fast image filtering

in integral image representations. Furthermore, the

complexity of the training set is reduced by means

of a part-based representation instead of global

templates.

In this approach each image is divided into a set of

patches, where each of them is filtered with a set of

rectangle filters. This process usually leads to a smaller

number of feature representation. A subset of these
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features are then selected using a saliency threshold

specified by the user. This is done such that the features

that are closer to zero are eliminated, since these are

mostly related to patches that have constant pixel and

thus carry little classification information. Furthermore,

a weighted approach is used to decrease the significance

of the patches that have more appearance changes across

the images, i.e., the mouth region in the face. To handle

partial occlusions the most similar parts are used during

the matching process. The variable scale of the images is

given by the property of the rectangular filters. They have

shown that this method can robustly and accurately

classify faces very fast under partial occlusions, variable

expression, and different scales.

Similar problems to those observed in template

matching are also seen in image retrieval applications.

Therefore, most of the algorithms defined for image

retrieval extract local features from the images [19]. Of

late, one of the most popular techniques used in this

process are the Shift Invariant Feature Transform (SIFT)

features. In this algorithm, each image is represented by

the set of directional gradient vectors on local regions.

Using a similar idea, [20] proposed PCA-SIFT which

is shown to be a compact, fast, and accurate representa-

tion for faces. The key idea is to use PCA to describe the

gradient information located around the keypoints se-

lected by SIFT. Using PCA, the authors show that a small

number of basis images (20) are enough to represent

these gradient based images. The Receiver Operating

Characteristic (ROC) curves would be inappropriate to

analyze this algorithm, since this corresponds to a detec-

tion problem with a large number of false positives

rather than to a classification one. Thus, recall versus

1-precision curves which compared correctpositives ∕
numberofpositives (recall) with falsepositives ∕number

ofmatches (1- precision) (normalized measurement)

are employed. Using these analysis, the authors show

that PCA-SIFT performs better than SIFT in several

different scenarios such as, added noise, rotation and

scale changes, projective warp, and reduced brightness.

The conclusion from this algorithm is that SIFT features

may include noise in the description of the local infor-

mation, whereas using PCA on the local graylevel elim-

inates these, facilitating the final classification of faces.
A Comparison of Different Approaches

A recent comparative study for the local matching

approach in face recognition is presented in [21].
In this review, methods are categorized according to

alignment/partitioning algorithms, local feature repre-

sentations, and classification combinations. Align-

ment/partitioning algorithms are also divided within

themselves into three subclasses. The first of them uses

the local components defining a face, such as eyes,

nose, and mouth. It is argued that these features may

not be appropriate when one wants to consider the

relationship between components. Another set of algo-

rithms uses ▶ Face Warping in order to obtain shape-

free graylevel information. Instead of removing the

shape, the third set of algorithms eliminate the affine

transformation between the images and then employs

a part-based representation.

The authors discuss several local feature repre-

sentation types. These include the Eigenfeatures,

Gabor features, and local binary pattern features.

Eigenfeatures use the pixel level information and elim-

inate the noise and represent the images using an

orthonormal bases. Gabor features are extracted

using a set of Gabor jets over the parts and represent

each component according to the output obtained

with filtering. Local binary patterns are obtained by

calculating the binary patterns around an interest

point for a given radius.

Furthermore, the algorithms are cataloged accord-

ing to the classification method and the combination

of the local cues. Local features are either simply con-

catenated into a global feature or combined with

weights. An alternative method is to use a weighted

combination of the classifiers defined by the local

parts. While in other cases, the sum rule or Borda

count (i.e., the classifier that has the largest votes)

may be used to combine the classification decisions.

The experiments are carried out with the FERET

and the AR face databases and show that LBP per-

forms the best when the images are used with no

illumination change, while the Gabor jets are better

when lighting is considered. Another experiment is

conducted to learn the best components for face rec-

ognition, revealing that the nose region generally out-

performs the others. This may be due to the fact that

the nose region is the most stable part under changing

expression.

The authors also consider the difference between

local region approaches (i.e., regions around the fidu-

cial points) and the use of local components (i.e.,

components that are the parts of the face image

divided equally, similar to a grid structure). They con-

clude that the local region approach may perform
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better since the shape information is also used implic-

itly in the process.

Another question is whether or not to use other

regions of the face, such as the cheeks and the forehead.

In [21], it is shown that although the use of such

regions may degrade the performance of the global

approaches such as eigenfeatures, and their use in

local methods, as in LBP and Gabor jet, generally

improves the final recognition rate.

Based on these experiments and observations, [21]

defines a new component-based approach that uses

Gabor jets to extract features from local regions at

several scales and frequency values. They combine the

classification results (where the similarity is obtained

by normalized inner products) with the Borda count.

This approach was able to outperform the others in a

test using the FERET database.
Summary

In this chapter, the authors have reviewed some of most

known and recent works on component-based face

recognition. All of the algorithms summarized above

are defined to handle one or more of the problems of

face recognition, as for example, imprecise localization,

pose, illumination, expression, and occlusion.

To do that some algorithms such as DLA and

EBGM are defined to be invariant to localization of

the faces. Alternatively, we can model the image varia-

tions or use a sparse representation. NMF tries to

extract a sparse local representation for the compo-

nents of the dataset. Some approaches such as FBTand

Face-ARG use different features to represent the local

regions. The expression varying 3D scans showed that

using the nose as the local component improves the

recognition from 3D data. While another algorithm

defined to do recognition from a single image learns

all possible image changes when possible and uses

weights to determine which regions are most robust

to variations elsewhere. These changes can be modeled

using Gaussian distributions, e.g., a mixture of Gaus-

sians representing the variations when the face is

imprecisely localized or when an expression varies the

brightness of the pixels in a patch. A similar approach is

also defined for face recognition from video where the

pose changes are also considered. Some other algo-

rithms use the local information both for face detection

and identification, whereas alternatives are defined
for generic object detection. Finally, the authors have

summarized the results of a recent comparison.

All these algorithms have one common thread:

considering the images as a combined set of compo-

nents. This is mainly because of the stability of the local

components over possible image variations. The use

of component-based algorithms is to date one of the

most used approaches in classification and identifica-

tion of 2D and 3D faces.
Related Entries
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Synonyms

Features vs. Templates; Shape vs. Texture
Definition

In 2D face recognition, images are often represented

either by their geometric structure, or by encoding
their intensity values. A geometric representation is

obtained by transforming the image into geometric

primitives such as points and curves. This is done,

for example, by locating distinctive features such as

eyes, mouth, nose, and chin, and measuring their rela-

tive position, width, and possibly other parameters.

Appearance-based representation is based on record-

ing various statistics of the pixels’ values within the

face image. Examples include: recording the intensities

of the image as 2D arrays called templates and com-

puting histograms of edge detectors’ outputs.
Introduction

Face identification systems are challenged by varia-

tions in head pose, camera viewpoint, image resolu-

tion, illumination, and facial expression, as well as by

longer-term changes to the hair, skin, and head’s

structure. The geometric approach, which transforms

a face image into simple geometric primitives, holds

the promise of being invariant to illumination and

almost invariant to time-induced changes. Using

well-understood ▶Multiple View Geometry techni-

ques, it can also be made practically invariant to

minor pose differences, camera viewpoint changes,

and image resolution. In addition, the geometric ap-

proach has the advantage that a geometric match is

easy to interpret.

Inspite of their intuitive and seemingly precise na-

ture, geometric face recognition techniques have been

largely replaced by appearance-based techniques. In

these techniques, image representations, which are di-

rectly computed from the pixel-intensities are com-

pared to estimate similarities between images, or fed

into ▶ classifiers that determine the identity of the

person in the image.

Even though the appearance-based techniques are

cleverly designed and engineered, they lack the rigor-

ous nature of the geometric approach. When an ap-

pearance-based classifier determines a false identify or

wrongly detects a match between two persons, it is

often hard to understand why this happens. Never-

theless, in 1993 Brunelli and Poggio [1] have shown

that a generic appearance-based method outperforms

a simple geometric-based method on the same data-

set, and contradicting evidence to their finding has

been scarce.
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Figure 1 Some of the geometrical features used in [1],

including eyebrow thickness and vertical position at the

eye center position, nose position and width, the mouth’s

vertical position and width, height of lips, eleven radii

describing the chin’s shape, width of face at nose height,

and its width halfway between the nose and the eyes.

Other features which are not shown include a

description of the left eyebrow’s shape. Figure adapted

from Fig. 6 of [1].
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Shape-based methods

The pioneering work of Kanade [2], which was among

the first modern approaches for automatic identifica-

tion of face images, used the geometric approach. His

system, similarly to following contributions, starts by

identifying the locations of dominant facial features

such as the eyes’ corners, the nostrils’ center, and the

mouth’s extremities. This detection step is the most

challenging step, and the detected features are selected

to be both discriminative and easily detectable. Other

desired properties include invariance to lighting con-

ditions and to facial expression.

The second step consists of defining a vector of

measurements that are used as a face signature. Kanade

[2] uses 16 such measurements, which include ratios of

distances (e.g., the ratio of the distance between the

eyes and the width of the face), various facial angles,

the chin’s curvature and more. Brunelli and Poggio [1]

use a different set of 35 features, which include eye-

brow thickness, shape and position, nose and mouth

position, facial width at several heights and the shape

of the chin (Fig. 1).

The third step consists of comparing two faces,

or more generally, learning a classifier that can iden-

tify the various face classes. Kanade uses a simple

Euclidean distance to compare two signatures. The

later work [1] employs principle component analysis

(PCA) of various dimensionality. Peak performance is

obtained with the maximal dimensionality, where the

distance between signatures becomes their Euclidean

distance.

An improvement to this basic three-step face rec-

ognition scheme can be obtained by taking advantage

of the increase in accuracy of facial feature detec-

tion algorithms (e.g., [3]) by designing or learning

more discriminative signatures, and by introducing

modern machine-learning techniques to learn distance

functions between signatures or to train better classi-

fiers. To our knowledge, little work has been done to

demonstrate any of these improvements.

An alternative framework [4] for extracting geo-

metric primitives from face images is to ignore the

high-level structure of faces (i.e., as composed of

identifiable eyes, nose, etc.) and instead of transform-

ing the image into line drawings containing many line

segments. First, edge detectors are applied to detect

edge pixels, followed by a morphological thinning
operator. Then, a line fitting process [5] is used to

break continuous edge curves into several short line

segments. The set of obtained segments (each repre-

sented by its endpoints) constitutes the signature of the

face image.

In order to compare two such signatures, a distance

measure between two sets of line segments is required.

In [4] an elaborate such measure is proposed which

considers the fact that two similar line segments can

differ in length, may be tilted or be parallel, and that

some matching line segments may be missing.
Appearance-based methods

Even though the terms shape and geometry are often

used synonymously, we should not be misled to
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assume that appearance-based methods do not encode

the face’s shape. Indeed, the location of the facial

features and their shape contribute much to the varia-

tion in appearance between persons. The other identi-

ty-based source of appearance variation between

persons is the facial texture, which includes elements

that are typically not encoded by the geometry-based

methods such as skin tone, facial hair, freckles, scars,

and wrinkles.

Most appearance-based techniques share similar

stages or components, which are sometimes intertwined:
Normalization
 During this initial stage, images
may be scaled such that the area
of the detected face is
approximately constant. In addition,
faces can be warped to a fixed
reference image, see Fig. 2(b).
A cropping mask is sometimes
applied to remove the image
boundary region, which typically
includes hair and background
elements. Furthermore, histogram
equalization or other means of
reducing the effects of illumination
may be applied.;
Signature
generation
The normalized face image is being
processed according to the specific
algorithm at hand and a signature is
created. For example, a local texture
descriptor may be computed at each
pixel, and the histogram of this
descriptor can be used as a
signature.;
Learning or
Classification
A classifier is trained to
distinguish between the various
persons in the database, or a
distance function is learned to
estimate the likelihood of two
signatures belonging to the same
person. These are used to classify
the new images not used
during training.
The most basic signatures are based on templates

derived directly from the image. Variationsmay include

using image derivatives instead of image intensities,

or otherwise normalizing the intensities to reduce the

effect of illumination. Another class of variations con-

sists of using several templates (components) out of

each face image [1, 6], and combining the matching

score of each component in the final score.
Much work has been put into defining discrimina-

tive face signatures based on local texture descriptors.

Local binary patterns (LBP) have shown to be extremely

effective for face recognition [7]. The most simple form

of LBP is created at a particular pixel location by

threshholding the 3 \mathop{�} 3 neighborhood sur-

rounding the pixel with the central pixel’s intensity

value, and treating the subsequent pattern of 8 bits as

a binary number (Fig. 3). A histogram of these binary

numbers in a predefined region is then used to encode

the appearance of that region. Typically, a distinction is

made between uniform binary patterns, which are

those binary patterns that have at most 2 transition

from 0 to 1, and the rest of the patterns. For example,

1000111 is a uniform binary pattern while 1001010 is

not. The frequency of all uniform LBPs is estimated,

while all nonuniform LBPs, which are typically around

10% of patterns in an image, are treated as equivalent

and given only one histogram bin. LBP representation

for a given face image is generated by dividing the image

into a grid of windows and computing histograms of

the LBPs within each window. The concatenation of all

these histograms constitutes the signature of the image.

A large body of literature exists on the proper way

of learning classifiers and distances for face recogni-

tion. The PCA-based ‘‘eigenfaces’’ method [8] and the

LDA based ‘‘fisherfaces’’ method [9] have been the first

in a constant stream of work. It is the author’s experi-

ence that for modern descriptors such as LBP, All-Pairs

Support Vector Machine [10] performs well in the task

of biometric identification.

Recently, some effort has been devoted to the estima-

tion of visual similarities between two unseen images,

and such methods have been applied to determine

whether two images belong to the same person. One

method [11] that has shown good results for uncon-

trolled imaging conditions uses Randomized Decision

Trees [12] and Support Vector Machines. In the first

image of the pair, image patches (fragments of the

image) are selected at random locations. For each

patch the most similar patch in the second image is

searched at a nearby image location. A decision tree is

trained to distinguish between pairs arising from

matching images and those arising from nonmatching

images. Given a pair of unseen images, a Support Vec-

torMachine classifier is used to determine if they match

by aggregating the Decision Tree output of many image

patches.
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(b) The congealing method [18] is used to align the image to a semi-frontal view. (c) Facial feature points located by

the system of [19]. The detected feature points can be used to create a geometric signature or to align the image

as a preprocessing step to an appearance-based approach.

350F Face Recognition, Geometric vs. Appearance-Based
Hybrid methods

Some face recognition methods combine appearance

and geometry. In [13], the authors employ a face

tracking method called Active Appearance Model to

locate a set of feature points in and around the face.

An example of similar features captured by a sub-

sequent system, can be seen in Fig. 2(c). The located

feature points are used to create three signatures that

are combined during the recognition process. The first

signature encodes the locations of the detected feature

points; The second signature encodes the gray values of

the image after it is ▶warped such that the feature

points are mapped to the mean location of those
points in the training datasets. The third signature

encodes the local appearance around the detected fea-

ture points.

The Elastic Bunch GraphMatching system [14] uses

local Gabor-wavelet based detectors that are connected

through a simple spring model to locate facial features

in a new image. The detected fiducial points are used

to position a finer grid of points on the face image,

and the response of various Gabor wavelets on the

grid points is recorded to describe their local appear-

ance. The matching score between two facial grids

takes into account both the locations of the grid points

and their appearance. This method performs well (for

its time), however, the matching process is slow.
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Figure 3 The LBP image-texture descriptor is computed

locally at each pixel location. It considers a small

neighborhood of a pixel, and thresholds all values by the

central pixel’s value. The bits which represent the

comparison results are then transformed into a binary

number. The histogram of these numbers (the vector

containing the frequency of each binary number in the

image) is used as a signature describing the texture of the

image.
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A much faster hybrid method [15] uses coupled

Gaussian mixture models to locate eyes, nose tip, and

mouth in images of varying pose. Five SIFTappearance

descriptors [16] are computed in regions around the

detected features and in between the eyes.
Summary

Appearance-based methods currently dominant the

general field of object recognition, where more classical

methods based on analysis of relative positions of

corners and other feature points have been mostly

abandoned. Furthermore, there is evidence that the

same image descriptors can be used for both object

recognition and face identification [7, 15, 17]. It is

therefore not surprising that the leading face recogni-

tion methods are also appearance based.

However, human faces differ from most objects

studied in object recognition in that they have a well

defined structure. It is possible that the major
disadvantage of geometric face recognition is the lack

of robust facial feature detectors. The advent of new

detection techniques may reignite the interest in those

methods.
Related Entries

▶ Face Recognition, Component-based

▶ Face Recognition, Overview
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Synonyms

Near-infrared image based face recognition; Face rec-

ognition in near-infrared spectrum
Definition

Near-infrared (NIR) based face recognition, as op-

posed to the conventional visible light (VIS) based, is

an effective approach n overcoming the impact of

illumination changes on face recognition. It uses a

special purpose imaging capture hardware, in which

active NIR lights mounted around the camera lens

illuminate the face from near frontal direction and an

NIR camera captures front-lighted NIR face images.

This is similar to a camera flash but the imaging is

done in the invisible NIR spectrum. With such NIR

face images, problems caused by uncertainties in un-

controllable environmental ▶ illumination are mini-

mized, and difficulties in building the face matching

engine is much alleviated. The NIR approach
usually achieves significantly higher performance

than the VIS approach.
Introduction

Face recognition should be performed based on intrin-

sic factors of the face, related to the 3D shape and

albedo of the facial surface. In contrast, extrinsic

factors, including eyeglasses, hairstyle, expression,

posture, and lighting should be minimized because

they make distributions of face data highly complex.

Among the aforementioned extrinsic factors, pro-

blems with uncontrolled environmental (ambient) il-

lumination is the important issue [1]. Illumination

direction is the most critical of all [2]. From the end-

user point of view, a biometric system should adapt to

the environment. However, face recognition systems

based on face images captured in visible light (VIS)

spectrum are compromised of changes in environ-

mental illumination, even for cooperative user appli-

cations with frontal faces captured indoor. Numerous

publications exist for modeling and normalizing

face illumination conditions. They are found to im-

prove recognition performance, but have not led to

a face recognition method which is illumination

independent.

3D face recognition provides a solution to the illu-

mination problem. Disadvantages of it include increased

cost, lesser speed, and specular reflections. It is reported

that the 3D methods do not necessarily produce better

recognition results than the 2D methods [3].

Imaging and vision beyond the visible spectrum

has recently received much attention in the computer

vision community (e.g., [4]). Radiation spectrum

ranges are shown in Fig. 1. Instead of ultraviolet radia-

tion which is harmful to the human body, thermal-

infrared and near infrared (NIR) imagery are employed

for face recognition applications. Such ‘‘invisible’’ spec-

trum imaging technologies are effective in dealing with

uncontrolled illumination. This is because they work

in different bands, from the conventional VIS imaging

to many visual effects, as encountered in conven-

tional illumination changes can be eliminated. Disad-

vantages of the FIR approach include instability due

to environmental temperature, emotional and health

conditions, and poor eye localization accuracy [5].

The use of active near infrared (NIR) imaging brings
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a new dimension for face detection and recognition

[6, 7, 8, 9, 10, 11].

The key part in the NIR face recognition approach

is a special purpose image capture hardware system

[10, 11]. It uses active NIR illuminators, for example,

▶ light-emitting diodes (LEDs), mounted around the

camera lens to illuminate the face from near front

direction and then capture front-lighted NIR face

images. This is similar to a camera flash but as the

NIR lighting works in invisible NIR spectrum it is non-

intrusive to human eyes.

An NIR face image with frontal illumination is

subject mainly to an approximately monotonic trans-

form in the gray tone, and problems caused by uncer-

tain environmental illumination are minimized.

Therefore, the face detection and matching algorithms

need to cope with this degree of illumination changes

mainly. This is much less difficult than the problems

with conventional VIS face images.

The NIR approach usually achieves significant

higher performance than the VIS approach [11]. The

use of NIR techniques leads to highly accurate and fast

face recognition systems for cooperative face recogni-

tion applications, indoors [10, 11] and outdoors [12].

The use of NIR face images for biometrics is now being

evaluated by NIST [13].

A limitation, however, is that both enrollment and

the query face images should be of the NIR type, which

similar to the requirement for 3D face recognition.

Methods for matching the NIR query and VIS target

images that are required for photo IDs, are being

developed [14].
NIR Imaging Hardware

The goal of making this special-purpose hardware is to

overcome the problem arising from uncontrolled envi-

ronmental light so as to produce face images of a good
illumination condition for face recognition. ‘‘A

good illumination condition’’ means that the lighting

is from the frontal direction and the image has suitable

pixel intensities.

This could be achieved by the following methods:

(1) Active NIR light can be mounted (e.g., 850nm

LEDs) around the camera lens to provide strong fron-

tal lighting enough to override environmental light,

and set a low camera exposure to produce a clear

frontal-lighted face image. (2) a ▶ long-pass optical

filter can be used to further minimize the remaining

environmental lighting by cutting off visible light of

wavelength shorter than 750nm. Fig. 2 illustrates an

example of the hardware device, and resulting face

images. The face in the images are illuminated by NIR

LED light from the front and a lamp aside, in addition

to other environmental light.

In outdoor environments, the sunlight contains

much stronger NIR component than NIR LEDs. The

hardware must be further designed to minimize influ-

ence of the sunlight to maintain the effect of the active

NIR illumination. It could be enhanced by using a

strong active NIR pulse illuminator and NIR camera,

co-working in a synchronized manner [12].
Illumination Invariant Face
Representation

According to the ▶ Lambertian law, an image I(x, y)

under a point light source is formed according to the

following equation

Iðx; yÞ ¼ rðx; yÞnðx; yÞs ð1Þ

where r(x, y) is the albedo of the facial surface material

at the point (x, y), n¼(nx, ny, nz) is the surface normal

(a unit row vector) in the 3D space, and s¼(sx, sy, sz) is



Face Recognition, Near-Infrared. Figure 2 An experimental active NIR imaging device (with an additional color

camera), and NIR versus color images captured under different environmental lightings. While unfavorable lighting

changes are obvious in the color images, they are almost unseen in the NIR images.

Face Recognition, Near-Infrared. Figure 3 LBP code for 3x3 window.

354F Face Recognition, Near-Infrared
the lighting direction (a column vector, with magni-

tude). Here, albedo r(x, y) reflects the photometric

properties of facial skin and hairs, and n(x, y) is the

geometric shape of the face.

The LEDs mounted around the camera lens are

approximately co-axial to the camera direction, and

thus provide the best possible straight frontal lighting.

In this case, the image can be approximated by

Iðx; yÞ ¼ krðx; yÞnzðx; yÞ ð2Þ
where nz(x, y) is the depth information (2.5 map) that

can be acquired by a range imaging system, and k can

be modeled as being monotonic to the distance be-

tween the face and the active light.

The degree of freedom due to the monotonic trans-

form of k may be compensated by applying some

operator, such as local binary pattern (LBP), on the

NIR image to produce a genuine illumination invari-

ant face representation [11]. The basic form of the

LBP operator is illustrated in Fig. 3. The binary bits

describing a local 3 x 3 subwindow are generated by

thresholding the 8 pixels in the surrounding locations
by the gray value of its center; the feature vector is

formed by concatenating the thresholded binary bits

anti-clockwise. The LBP code does not change with any

monotonic transform of the image. Therefore, applying

an LBP operator to an active NIR image generates

illumination invariant features for faces. A highly accu-

rate face recognition system can then be built.
Summary

The NIR approach uses an active NIR imaging hardware

to acquire front-illuminated face images, to overcome

the problem of illumination variation that every face

recognition system has to deal with. NIR face images

have good properties and render extraction of illumina-

tion invariant face features for building accurate face

recognition systems. The use of NIR face images for

face biometrics is now being evaluated by NIST [13].

A limitation of the NIR approach, however, is that

both enrollment and the query face images should be

of the NIR type. Methods for matching the NIR query
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and VIS target images that are required for photo IDs

are yet to be developed.
Related Entries

▶ Face Recognition Overview

▶Hyperspectral and Multispectral Biometrics

▶ Local Binary Pattern (LBP)
F
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Synonyms

Face Biometric; Face Identification; Face Verification
Definition

Face recognition is the science which involves the un-

derstanding of how the faces are recognized by

biological systems and how this can be emulated by

computer systems. Biological systems employ different

types of visual sensors (i.e., eyes), which have been

designed by nature to suit a certain environment

where the agent lives. Similarly, computer systems

employ different visual devices to capture and process

faces as best indicated by each particular application.

These sensors can be video cameras (e.g., a camcorder),

infrared cameras, or among others, 3D scans. The essay

reviews some of the most advanced computational

approaches for face recognition defined till date.
Introduction

Many types of biometrics exist for identifying a person

or verifying that a given individual is what he or she

claims to be. Some of the biometrics result in quite

reliable recognition and verification, but most are

either intrusive to the individual or expensive (e.g.,

DNA or iris). Furthermore, many of the biometrics

have raised reasonable questions about an individual’s

rights and personal freedom [1]. The systems that are

typically considered less intrusive by people, are those

based on the recognition of faces.

We are so used to seeing and recognizing faces that

most people think computers should have such a ca-

pacity too. Computer face recognition allows devices

to recognize and interact with users, allowing them to

go beyond the boring and slow use of the keyboard and

mouse. The face carries so much information that

http://www.frvt.org
http://www.frvt.org
http://face.nist.gov/mbgc
http://face.nist.gov/mbgc
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people find it difficult to interact on the phone for

long, forcing companies to include cameras and even

video on cell phones – even if the most recorded se-

quence is perhaps a simple ‘‘Hi.’’ Yet, people feel that the

smile associated with a simple greeting is essential to

start a good conversation or for carrying the real and

intended thought of the messenger. The face also pro-

vides the identity of the speaker, avoiding the awkward-

ness of trying to identify someone by voice alone. This

effect is now clearer than ever, with video chats becoming

increasingly popular as high speed Internet becom-

ing available at low costs to the general public.

It is thus not surprising that people still remain

open to the possibility of having face recognition

systems at home, work, or other places like at the

ATM. One concern with this technology is to make

sure that the biometrics of the individuals cannot be

stolen. Imagine a scenario where a hacker steals infor-

mation from a database of faces and then employs this

to hack other computer, systems or institutions with

a stolen identity. A password or an ID card can be

changed, but a face cannot be. To address these con-

cerns, researchers in face recognition are developing

mechanisms to encrypt personal biometrics. One

classical solution is to define a mapping function

which maps a face image into a single instance (e.g.,

feature vector). The trick is to use a function whose

inverse mapping is not unique (i.e., the inverse

mapping results in multiple solutions) unless you

know the encryption key [2]. In face recognition, we

may even be able to eliminate the need for the encryp-

tion key. This can be achieved by defining a recogni-

tion algorithm in the encrypted space. This is possible

because of the uniqueness of direct mapping. This

means we can perform face recognition even when

the understanding the information stored in our own

database is not possible (i.e., in the sense, the image do

not have meaning for the human visual system any

longer). This could mean that general databases of

faces could be shared by several institutions, because

these cannot abuse its contents. Also, if the database of

face images is stolen, unauthorized users would not

be able to make sense of its data. These security proto-

cols generally make face recognition systems more

acceptable by the general population.

Perhaps the most important disadvantage of face

recognition is that it cannot provide as accurate an

identification as other biometrics, and definitely not

as accurate as DNA or iris. Nonetheless, in a large
number of applications such a secure analysis is not

needed. One of the most classical examples is in

human–computer interaction – the cell phone example

given above being but one example of its poten-

tial uses. Another typical example application is wher-

ever individuals need to gain access to restricted areas

within a company. This is of particular use where the

employees are known a priori. One well-known case is

in airports, where not all personnel have access to the

runway or planes. A related application is for costumer

verification, for example for airline tickets, where the

manual picture to face check is known to be flawed.

In the 2008 summer Olympics, the organizer gave the

opportunity to attendees of the inaugural ceremony to

attach a picture of their face to their tickets. At the

ceremony, the holders of these tickets were asked to

look at a camera and a computer compared the face of

the ticket holder with that of the buyer. A mismatch

prompts the organizers to request additional informa-

tion to demonstrate that the identity of the ticket

holder and buyer is the same.

What makes all these applications and many

others possible is the tremendous advances that have

been accomplished in the past years in the area of

computer algorithms for automatic face recogni-

tion. Current systems are able to recognize faces

under a large number of variations; sometimes over-

passing human performance. However, to accomplish

this, many problems need to be addressed. The most

relevant are detailed further.
Problems a Face Recognition System
Needs to Address

In real life, faces appear under a variety of conditions.

The most common ones include the following:

� Pose: Faces move in 3D space. When captured by a

2D camera, a large variety of 2D images corres-

ponding to the same face can be obtained. Alterna-

tively, one can use 3D scans, but these generally

require the cooperation of the subject and are more

expensive.

� Illumination: Different ambient lighting results in

very distinct texture patterns of the face. One illu-

mination will emphasize one type of face texture,

while a different lighting will accentuate another.

The shape of the face is also affected, because
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different illumination angles will cause completely

distinct cast shadows.

� Expression: Faces are a fundamental means by

which we express emotions as well as other cues

related to human communication. This is achieved

by employing a large collection of the face muscles

underlying the skin. With different movements

come different expressions, each of which results

in a distinct facial appearance.

� Occlusions: In most applications, partial occlusions

are a common occurrence. These may be caused

by clothing, glasses (including sunglasses), self-

occlusions (such as a hand), clutter, etc. This

means that when pictures of faces are taken, not

all the information is always available. In fact, when

2D images are used, only a portion of the face is

visible. The 3/4 view provides the most informa-

tion, but even this orientation misses information

because the face is not symmetric.

� Imprecisely localized faces: A less known problem of

dealing with faces is that it cannot be precisely

located or cannot be robustly delineated from an

image or a video sequence. One reason is that it is

generally impossible to determine where a face or

facial feature starts and ends. To see this, an image

of a face can be uploaded on favorite image soft-

ware. Next, the inner corner of the left eye is

zoomed in until the pixels become large squares.

It can be seen at the pixel level that it is almost

impossible to determine where the inner corner of

left eye is. This problem makes the process of face

detection difficult – even when we try to perform

segmentation by hand.

Any successful algorithm for face recognition has to

address some or all of these problems [3–6]. The great

advances in recent years should be looked up with

gratitude for there are algorithms now to partially

solve each and every one of them. However, this may

require tuning the approach to each application. There

is a whole spectrum of techniques available to practi-

tioners. The methodologies defined over the years vary

considerably, from shape- to appearance-based recog-

nition. The algorithms that are predominantly based

on the shape of the face require extraction of the

outline of the facial components, which has only

been partially resolved recently [7, 8]. The appear-

ance-based approach simplifies some of these require-

ments. In this alternative approach, one uses the
brightness of the pixels defining the face as features

for representing and recognizing images [9, 10]. None-

theless, the correct definition of the approach still

requires that the faces be warped to a ‘‘standard’’

shape, which involves the detection of some of the

major facial components (e.g., eye centers) [3]. These

approaches are summarized below.
Different Approaches to Face
Recognition

The first step in understanding ‘‘Face Recognition’’ and

designing systems that can do automatic recognition

will undoubtedly be that of describing the face (see

Anatomy of Face). The face is an articulate object

capable of amazing transformations. While the under-

lying bone structure defines who we are – our identity

and part of our heritage – the muscles overlaying it

shape our personality. Muscles are also fundamental

for the recognition of emotions and other communi-

cative cues, although recent results [11, 12] demon-

strate that other factors are also in the play and ought

to be considered.

After the face anatomy has been studied, under-

standing how to acquire and design automatic systems

for face recognition is needed, including a review of

‘‘Face Sample Quality’’. Sometimes it is taken for

granted that the quality of the images we capture is

the optimal for computational analysis, which is gen-

erally not the case.

After the basic components of the face and face

recognition systems have been introduced, the process-

es of acquisition to recognition using algorithmical

components are discussed. The first step is to determine

the location of the face or faces in the image or video

sequence (see Face Detection). Following this is the

aspect of ‘‘Face Tracking,’’ which is about how to track

the motion of the face within a video sequence without

the need to detect in each individual frame. Face detec-

tion and face tracking approaches are important be-

cause they either outperform the rest or because their

mathematical formulation makes them appropriate in a

large number of face recognition applications.

However, the processes of face detection and track-

ing do not generally suffice. If the problems of face

recognition are to be appropriately addressed, faces are

to be aligned before recognition – although this pro-

cess can also be combined with that of identification
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(▶ Face Alignment) and derive computer algorithms

for aligning and warping faces ▶ Face Warping by

means of previously devised models of faces (▶De-

formable Models).

The next aspect in face recognition is ‘‘Face Varia-

tions,’’ including problems of illumination, pose, and

expression. As illumination influences the acquisition

of face images and their subsequent recognition, it is

important to know how to do recognition under vary-

ing illumination. Pose variations include approaches

on how to model faces seen from different points of

view. Expression variations refer to how we can design

algorithms for the recognition of emotions and other

facial expressions. Of particular note are the applica-

tions in human–computer interaction.

After all the different types of features that can be

used to represent, model, and recognize faces have been

introduced, the actual problem of classification is dis-

cussed, which includes recognition from shape and

appearance, local and global components, video, 3D

range data, near and thermal infrared, and sketch.

Each of these methods has advantages and disadvan-

tages that make them appropriate in some scenarios but

not in others and form an important part of how face

recognition is performed. A combination of approaches

is under study [13] and more of them might be seen as

technology improves and costs decrease.

Face recognition algorithms cannot be tested in the

absence of well-defined databases, which are very im-

portant while deriving face recognition systems and we

need to understand how different algorithms and sys-

tems compare with each other.

Finally, there is a need to understand progress in

skin color modeling and skin texture. These are related

topics to those described above and each of them can

benefit from one another.
Summary

The essay discusses what the face is, how it varies, and

how it can be modeled and recognized using com-

puter algorithms: the face and its variations; algo-

rithms for detection, tracking, and modeling; major

approaches for recognition; and databases, evaluation

protocols and alternative mechanisms of modeling

and recognition have been discussed elsewhere in

the encyclopedia.
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Synonym

Face Recognition, Thermal Infrared
Definition

The human face emits thermal radiation which can be

sensed by imaging sensors (i.e., thermal cameras) that

are sensitive in the thermal infrared (IR) band of the

▶ electromagnetic (EM) spectrum. Temperature varia-

tions on the surface of the face produce a heat pattern,

called a ▶ thermogram, which can be visualized as a

2D image (i.e., thermal image). Due to the presence of

highly distinctive and permanent physiological char-

acteristics under the facial skin, thermograms contain

important information which can be exploited for

face recognition.
Face Recognition, Thermal. Figure 1 The

electromagnetic (EM) spectrum.
Introduction

Considerable progress has been made in face recogni-

tion over the last decade [1], however, face recognition

technology is not accurate or robust enough to be

deployed in uncontrolled environments, for example,
protecting high value assets (e.g. perimeter of govern-

ment buildings) from asymmetric (i.e., terrorist)

threats. Human facial signatures vary significantly

across races in the visible band. This variability, cou-

pled with dynamic lighting conditions, presents a for-

midable problem. For instance, face recognition under

very low lighting is almost impossible using visible

imagery. Reducing light variability through the use of

an artificial illuminator is rather awkward in the visible

band because it may be distracting to the eyes of

the people in the scene and reveals the existence of the

surveillance system.

Thermal IR imagery offers a promising alternative to

visible imagery for handling variations in face appear-

ance due to illumination changes [2], facial expres-

sion [3, 4], and face pose [4] more successfully. In

particular, thermal IR imagery is nearly invariant to

changes in ambient illumination [2, 3], and provides a

capability for the identification under all lighting con-

ditions including total darkness [4]. Therefore, while

face recognition systems in the visible spectrum opt

for pure algorithmic solutions into inherent phe-

nomenology problems, systems employing thermal IR

imagery have the potential to offer simpler and more

robust solutions, improving performance in un-

controlled environments and deliberate attempts to

obscure identity [5].
Thermal IR Spectrum

Imaging sensors sensitive in the visible spectrum respond

to▶ electromagnetic radiation in the range (0.4–0.7 m),
while sensors sensitive in the IR spectrum respond to

electromagnetic radiation in the range 0.7–14.0 m
(see Fig. 1). In general, the IR spectrum can be divided

into two primary bands: the reflected IR and the
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thermal IR bands. The reflected IR band (0.7–2.4 m)
corresponds to reflected solar radiation and contains

no information about the thermal properties of

objects. It can be divided into two subbands: the

near-ir (NIR) (0.7–0.9 m) and the short-wave infrared

(SWIR) (0.9–2.4 m) bands.
The thermal IR band (2.4–14.0 m) corresponds to

thermal radiation emitted from objects. Temperature

variations on the surface of an object produce a heat

pattern, called thermogram, which can be visualized as

a 2D image (i.e., thermal image). The amount of emit-

ted radiation depends both on the temperature and the

emissivity of the objects [6]. The thermal IR band can

be divided into two subbands: the mid-wave infrared

(MWIR) with range 3.0–5.0 m and long-wave infra-

red (LWIR) with range 8.0–14.0 m. It should be men-

tioned that there are strong atmospheric absorption

bands at 2.4–3.0 m and at 5.0–8.0 m.
Due to the presence of highly distinctive and per-

manent physiological patterns under the facial skin

(i.e., vein and tissue structure) [7], thermograms con-

tain important information that can be exploited for face

recognition. The human face emits thermal radiation

both in the MWIR and LWIR bands of the thermal IR

spectrum. However, thermal emissions of the skin are

much higher in the LWIR band than in the MWIR

band. As a result, face images have a much lower

within-class variation in the LWIR spectrum. To ana-

lyze a thermal image, ▶ radiometric calibration is re-

quired. This is a process which achieves a direct

relation between the value at a pixel of the thermal

image and the absolute amount of thermal emission

from the corresponding physical scene element. The

goal is to standardize thermal IR images, independent-

ly of environmental conditions, cameras, and passage

of time [3].
Recognition in the Thermal IR

Face recognition in the visible spectrum exploits the

reflectance characteristics of the human face. As a

result, changes in ambient illumination might degrade

recognition performance. Face recognition in the ther-

mal IR spectrum exploits physiological characteristics

of the face by considering the thermal energy emitted

from the face rather than the light reflected. Therefore,

face recognition in the thermal infrared (IR) spectrum

is nearly invariant to changes in ambient illumination.
Moreover, it is less sensitive to scattering and absorp-

tion by smoke or dust while the tasks of face detection

and localization can be simplified considerably due to

the fact that background clutter is typically not visible.

Early overviews of face identification in the thermal IR

spectrum can be found in [8–10]. A recent review on

face recognition methods, both in the visible and ther-

mal IR bands, can be found in [11] while a general

review on multispectral face recognition methods, with

emphasis on thermal IR, can be found in [12].

The effectiveness of visible versus IR spectrum

was compared in an early study using several recogni-

tion algorithms in [13]. Using a database of subjects

without eyeglasses, varying facial expression, and

allowing minor lighting changes, it was found that

there are no significant performance differences

between visible and IR recognition across all the algo-

rithms tested. In later studies [3, 14, 15], several popu-

lar appearance-based face recognition methodologies

were tested under various lighting conditions and

facial expressions. Results from these studies indicate

superior performance for thermal IR-based recogni-

tion comapred with that for visible-based recognition.

These findings were confirmed in an operational scenar-

io where images were captured both indoors and out-

doors [16].

The effect of lighting, facial expression, and passage

of time between the gallery and probe images were

examined in [17]. Although IR-based recognition out-

performed visible-based recognition assuming lighting

and facial expression changes, it was found that IR-based

recognition degrades when there is substantial passage of

time between the gallery and probe images. In a related

study [18], however, it was reported that both thermal

IR and visible imagery degrade similarly with time pas-

sage. Improvements using fusion were reported in

[16, 17]. Recognition using thermal IR was also shown

to be less sensitive to changes in 3D head pose and facial

expression in [4]. In [19], a statistical hypothesis prun-

ing methodology was introduced for face recognition in

thermal IR. First, each thermal IR face image was decom-

posed into spectral features using Gabor filters. Then,

it was represented by a few parameters by modeling

the marginal density of the Gabor filter coefficients

using Bessel functions. Recognition was performed in

the space of parameters of the Bessel functions.

Methodologically, the majority of the thermal IR face

recognition methods reported in the earlier sections do

not differ significantly from face recognition methods in
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the visible band (i.e., appearance-based and feature-

based). An exception is the method presented in [7]

which explicitly exploits physiological information

using the bioheat information present in thermal images.

In particular, this method extracts the superficial blood

vessel network which contains contour shapes quite

characteristic of each individual. Matching is based on

the branching points of the skeletonized vascular net-

work. Using physiological features has the potential to

improve thermal IR-based recognition by making recog-

nition more robust to changes over time.
Limitations of Thermal IR

Despite its advantages, thermal IR has several draw-

backs. First, it is sensitive to temperature changes in

the surrounding environment. Currents of cold or

warm air could influence the performance of systems

using IR imagery. Second, it is sensitive to variations in

the heat patterns of the face. Factors that could contribute

to these variations include facial expressions (e.g. open

mouth), physical conditions (e.g. lack of sleep, physical

exercise), and psychological conditions (e.g. fear, stress,

excitement). Third, thermal IR is opaque to glass. Glass

blocks a large portion of thermal energy resulting in a loss

of information near the eye region as shown on Fig. 2.

Finally, radiometric calibration is required every time

the environmental conditions change (e.g., moving the

camera at a different location), a different camera is

used (e.g., even if it is the same model), or data collec-

tions take place at different time intervals.
Fusion of Visible with Thermal IR
Imagery

The benefits of fusing visible with thermal IR imagery

have been documented in a number of studies includ-

ing [3, 17, 20–23]. The idea is to combine the strengths

of each spectral band to build more accurate and robust

face recognition systems. For example, increased body

temperature changes the thermal characteristics of

the face, while there are not significant differences in

the visible spectrum. Also, while eyeglasses completely

occlude the eyes in the thermal IR spectrum, the prob-

lem is considerably less severe in the visible spectrum

although visible imagery can suffer from highlights on

the glasses under certain illumination conditions.
A summary of the fusion strategy reported in [21–23]

for improving face recognition performance in the

presence of eyeglasses is as follows.

Objects made of glass act as a temperature screen,

completely hiding the parts located behind them. In

the case of subjects wearing eyeglasses, this poses some

major difficulties since the eyes would be occluded

completely due to the fact that eyeglasses block thermal

energy (i.e., see Fig.2). Experimental results, reported

in [21–23], illustrate that face recognition performance

in the thermal IR degrades seriously when eyeglasses

are present in the probe image but not in the gallery

image and vice versa. To address this limitation, fusion

of thermal IR with visible imagery was employed in

[21–23]. Two different fusion strategies were investi-

gated: pixel-based fusion in the wavelet domain, and

feature-based fusion in the eigenspace domain. In both

cases, fusion was carried out using Genetic Algorithms

(GAs) [24].

The Equinox database [25] was used for experi-

mentation. The database contains frontal faces

under the following scenarios: (1) three different light

directions – frontal and lateral (right and left); (2) three

facial expression – ‘‘frown,’’ ‘‘surprise’’ and ‘‘smile’’; (3)

vocals pronunciation expressions – subjects were asked

to pronounce several vocals fromwhich three represen-

tative frames were chosen; and (4) presence of glasses –

for subjects wearing glasses, all of these scenarios were

repeated with and without glasses. For testing, the data

were divided as follows: EG (expression frames with

glasses, all illuminations), EnG (expression frames

without glasses, all illuminations), EFG (expression

frames with glasses, frontal illumination), ELG (expres-

sion frames with glasses, lateral illumination), EFnG

(expression frames without glasses, frontal illumina-

tion), ELnG (expression frames without glasses, lateral

illumination). The inclusion relations among these sets

are as follows:

EG ¼ ELG [ EFG;

EnG ¼ ELnG [ EFnG and EG \ EnG ¼ ; ð1Þ

Recognition performance was measured by find-

ing the percentage of the images in the test set, for

which the top match is an image of the same person

from the gallery. Figures 3 and 4 show the results

obtained. Among the two fusion strategies tested,

fusion in the wavelet domain yielded the best results.

Nevertheless, fusion outperformed each modality

alone in both cases.



Face Recognition, Thermal. Figure 2 (a, b) Visible images; (c, d) thermal IR images. It should be observed that since

thermal IR is opaque to glass, the presence of eyeglasses blocks the eyes completely.
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Milestones

Despite its advantages, face recognition in the thermal

IR spectrum has received relatively little attention

compared to visible spectrum, mostly because of the

following reasons:

� Higher cost of thermal sensors

� Lower image resolution

� Higher image noise

� Lack of widely available data sets
Advances in IR imaging technology and the availabil-

ity of publicly available datasets, however, have facili-

tated experimentation with thermal imagery in the

context of face recognition. While the difference in

cost between visible and thermal imaging equipment

is still large, the gap is closing rapidly as new uncooled

microbolometer technologies enter the market. Com-

panies, such as FLIR Systems (http://www.flir.com),

offer a large variety of thermal cameras for different

budgets. The issue of image noise can be addressed

http://www.flir.com


F
a
ce

R
e
co

g
n
it
io
n
,
T
h
e
rm

a
l.

F
ig
u
re

3
Ey
e
g
la
ss
e
s
re
su
lt
s
in

th
e
w
av
e
le
t
d
o
m
ai
n
:(
a
)
sa
m
e
ill
u
m
in
at
io
n
co
n
d
it
io
n
s
–
e
ye
g
la
ss
e
s
ar
e
n
o
t
p
re
se
n
t
b
o
th

in
th
e
g
al
le
ry

an
d

p
ro
b
e
se
ts
;(
b
)
e
ye
g
la
ss
e
s
ar
e
p
re
se
n
t
b
o
th

in
th
e
g
al
le
ry

an
d
p
ro
b
e
se
ts
–
ill
u
m
in
at
io
n
co
n
d
it
io
n
s
ar
e
d
if
fe
re
n
t;
(c
)
e
ye
g
la
ss
e
s
ar
e
n
o
t
p
re
se
n
t
b
o
th

in
th
e
g
al
le
ry

an
d
p
ro
b
e

se
ts

–
ill
u
m
in
at
io
n
co
n
d
it
io
n
s
ar
e
d
if
fe
re
n
t;
(d
)
si
m
ila
r
to

(c
)
e
xc
e
p
t
th
at

th
e
g
al
le
ry

an
d
p
ro
b
e
se
ts

co
n
ta
in

m
u
lt
ip
le

ill
u
m
in
at
io
n
s.

Face Recognition, Thermal F 363

F



Face Recognition, Thermal. Figure 4 Eyeglasses results in the eigenspace domain: (a) same illumination conditions –

eyeglasses are not present both in the gallery andprobe sets; (b) eyeglasses are present both in the gallery and probe sets –

illumination conditions are different; (c) eyeglasses are not present both in the gallery and probe sets – illumination

conditions are different; (d) similar to (c) except that the gallery and probe sets contain multiple illuminations.
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using powerful radiometric calibration procedures

while the issue of image resolution can be addressed

using super-resolution techniques or fusing infrared

with visible imagery. For example, Equinox Corporation

(http://www.equinoxsensors.com) has made available

a system for real-time fusion of thermal IR with visible

imagery with image co-registration correction.

In terms of data, things are rather limited com-

pared to the plethora of face databases available in

the visible spectrum [26, 27]. The most extensive IR

facial database, that is publicly available, is the Equinox

database [25]. This database was created by Equinox

Corporation under DARPA’s HumanID program.
It includes coregistered visible/LWIR/MWIR/SWIR im-

ages and it is representative of unconstrained frontal

imagery of people’s faces in an indoor environment.

Another, publicly available database, is the Notre

Dame IR face database [28], which includes data cap-

tured at different sessions over time. Obviously, addi-

tional datasets are required to spark more research in

this area, in particular, data depicting scenarios widely

different from the imaging conditions during data

acquisition (e.g., outdoor imagery). Introducing ap-

pearance variability due to various factors (e.g., meta-

bolic activity) would be extremely useful in testing the

robustness of thermal IR for face recognition.

http://www.equinoxsensors.com
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Summary

While face recognition in the visible band performs

satisfactorily under controlled conditions, thermal IR

face recognition offers more advantages when there is

no control over illumination or for detecting disguised

faces. The passive nature of thermal IR systems lowers

their complexity and improves their reliability. With

dropping prices and technological advances, thermal

IR is becoming more affordable and practical than

before. Although thermal IR has many advantages, it

suffers from several drawbacks including that it is

sensitive to temperature changes and opaque to glass.

A promising approach to deal with these issues is

fusing visible with thermal IR imagery.
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Synonyms

Face recognition from image sequences; Video-

based face recognition
Definition

Video-based face recognition is the technique of estab-

lishing the identity of one or multiple persons present

in a video, based on their facial characteristics. Given

the input face video, a typical video-based face recog-

nition approach combines the temporal characteristics

of facial motion with appearance changes for recogni-

tion. This often involves ▶ temporal characterization

of faces for recognition, building 3D model or a super-

resolution image of the face, or simply learning the

appearance variations from the multiple video frames.

The ability to generalize across pose, illumination,

expression, etc. depends on the choice of combination.

Video-based face recognition is particularly useful in

surveillance scenarios in which it may not be possible

to capture a single good frame as required by most still

image based methods.
Introduction

Face recognition is one of the most successful applica-

tions in the vast amount of research on image analysis

and understanding [1]. The fact that face recognition

can be performed at a distance without subject’s coop-

eration or knowledge makes it particularly attractive as

compared to more reliable biometrics like fingerprints

and iris or retinal scans. Traditionally face recognition

has been limited to still images. Though great leaps

have been made in recognizing faces from still images,

more needs to be done to achieve the goal of recogniz-

ing faces in uncontrolled scenarios. Still image based

approaches often struggle to truly generalize across

variations in pose, expression, illumination, etc., lead-

ing to a not so satisfactory performance on real images.
The advent of inexpensive cameras and increased pro-

cessing power has made it possible to capture and store

videos in real time. Videos have the advantage of

providing more information in the form of multiple

frames making it relatively easier to generalize across

variations that have been difficult with still images.

Moreover, video makes it easier to track (or segment)

faces which can then be fed into a recognition system.

Importantly, psychological evidence indicates that

dynamic information contributes to face recognition

especially under nonoptimal viewing conditions [2].

These reasons form the basis of the recent interest in

using videos for recognizing faces [3–5]. Though video

provides extra information, the video feeds are almost

always uncontrolled making it challenging to track and

hence recognize faces.
Operation of a Video-based Face
Recognition System

A typical Video-based Face Recognition (VFR) system

operates by acquiring video feeds from one or multiple

cameras, tracking and segmenting faces from the

input feed(s), extracting representations to characterize

the identity of the face(s) in the video, and then com-

paring them with the enrolled representations of sub-

jects in the database. This constitutes the test phase of

the system. During the enrollment (or training) phase,

a similar sequence of steps is followed using one or

multiple video feeds per identity and the corresponding

composite representations are stored in the database.

VFR approaches differ in the representation that is

used to characterize the moving faces. An ideal VFR

system performs these operations automatically with-

out any human intervention. Though potentially a

VFR system can operate in either verification mode

(one-to-one matching) or identification mode (one-

to-many), the real application of such a system lies

in identifying subjects using surveillance cameras

(say on an airport) without their knowledge. There-

fore, a typical VFR system will often operate in what

is known as watch list mode [6]. The watch

list problem is a generalization of both identifica-

tion and verification problems in which the system

only attempts the identification of individuals on

the watch list. The performance in this mode is

measured using both identification rate and false

alarm rate.



Face Recognition, Video-Based F 367

F

Challenges for Video-based Face
Recognition Systems

Effective utilization/fusion of the information (both

spatial and temporal) present in a video to achieve

better generalization (for each subject) and discrimi-

nability (across different subjects) for improved iden-

tification is one of the biggest challenges faced by a

VFR system. The fusion schemes can range from sim-

ple selection of good frames (which are then used for

recognition in a still-image based recognition frame-

work) to estimation of the full 3D structure of a face

which can then be used to generalize across pose,

illumination, etc. The choice may depend primarily

on the operational requirements of the system. For

example, in a surveillance setting, the resolution of

the faces may be too small for reliable shape estima-

tion. The choice also limits the recognition capability

of the system. A simple good frame selection scheme

will not have the capability to generalize appearance

across pose variations and thus requires the test video

to have some pose overlap with the gallery videos.

Effective modeling of subject-specific facial character-

istics from video data can only be achieved if the

changes in facial appearance during the course of

the video are appropriately attributed to different fac-

tors like pose changes, lighting, expression variations,

etc. Unlike still image based scenarios, these variations

are inherent in a VFR setting and must be accounted

for to reap the benefits of extra information provided
Face Recognition, Video-Based. Table 1 A snapshot of a fe

Algorithm Short desc

Probabilistic recognition of human
faces from video [7]

Simultaneous tracki
recognition using a
space model and se
importance samplin

Video-based face recognition using
probabilistic appearance
manifolds [9]

Face modeled using
low-dimensional ap
manifold, approxim
piecewise linear sub

Face verification through tracking
facial features [10]

Tracks facial feature
grid with Gabor attr
algorithm

Video-based face recognition using
adaptive hidden markov models [11]

Statistics of training
temporal dynamics
HMM

A system identification approach for
video-based face recognition [12]

Face modeled as a l
system using ARMA
by the video data. In addition, due to the nature of the

input data, VFR is often addressed in conjunction with

tracking problem which is a challenging problem by

itself. In fact, more often than not, tracking accuracy

depends on the knowledge of reliable appearance

model (depends on the identity provided by the recog-

nition module) while recognition result is dependent

on the localization accuracy of the face region in input

video.
Examples of Video-based Face
Recognition Algorithms

Given the potential advantages video provides for the

task of face recognition, relatively little work has been

done to recognize faces in videos. The challenges in

modeling moving faces along with the unavailability of

large standard datasets have hindered the progress of

research on VFR algorithms. Table 1 gives a snapshot

of a few existing VFR algorithms. As clear from the

table, all the approaches have been tested on a very

small sized (often private) datasets. The following dis-

cussion describes them in detail.

1. Simultaneous Tracking and Recognition of Faces:

Traditional tracking-then-recognition approaches

resolve uncertainties in tracking and recognition

sequentially and separately, which often involves dif-

ficult choices (like criteria to select good frames and
w existing video-based face recognition algorithms

ription Experimental evaluation

ng-and-
time series state
quential
g

Private: 12 subjects, NIST:
30 subjects, MoBo [8]: 25 subjects

a
pearance
ated by
spaces

Honda-UCSD dataset:
20 subjects (52 videos)

s defined on a
ibutes using SIS

Li dataset: 19 subjects
(2 sequences each)

videos, and their
learnt by an

Private: 12 subjects,
Mobo [8]: 25 subjects

inear dynamical
model

Honda-UCSD dataset [9]: 30 subjects,
Li dataset [10]: 19 subjects
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estimation of registration parameters). Zhou et al.

[7] avoid these issues while resolving uncertainties

in tracking and recognition simultaneously in a

unified probabilistic framework. The temporal in-

formation present in the video is fused using a

time-series state-space model to characterize the

evolving kinematics and identity. The three basic

components of the model are as follows.

� A motion equation governing the kinematic

behavior of the tracking motion vector. In its

most general form, the motion equation can be

written as

yt ¼ gðyt�1; utÞ; t � 1; ð1Þ

where ut is the noise that determines the transi-

tion probability p(yt jyt�1). The function g(. , .)

characterizes the evolving motion. It can either

be a function learned offline or given a priori.

Choice of yt is application dependent.
� An identity equation governing the temporal

evolution of the identity variable.

nt ¼ nt�1; t � 1; ð2Þ
� An observation equation establishing the link

between the motion vector and the identity

variable.

tytfztg ¼ Int þ nt ; t � 1; ð3Þ

where nt is the observation noise that deter-

mines the observation likelihood p(ztjnt,yt)
and tytfztg transforms the observation zt to

the chosen feature space.

Under the assumption of statistical independence

between all noise variables and prior knowledge of

the distributions p(y0 jz0) and p(n0 jz0), (1) and (2)

can be combined as follows.

pðxt jxt�1Þ ¼ pðnt jnt�1Þpðyt jyt�1Þ; ð4Þ
where xt ¼ (yt,nt). Given a video sequence, the goal

is to estimate the posterior probability p(ntjz0:t).
The posterior probability is calculated using

Sequential Importance Sampling (SIS) [13]. Using

the SIS technique, the joint probability distribution

of the motion vector and the identity variable is

estimated at each time instant and then propagated

to the next time instant as governed by the motion

and identity equations. The marginal distribution

of the identity variable is estimated to provide the

desired identity result. Fig. 1 shows the performance
of the approach on a NIST dataset consisting of 30

persons gallery.

2. Probabilistic Appearance Manifolds for VFR: Similar

to [7], Lee et al. [9] propose a VFR algorithm that

performs modeling, tracking and recognition in one

integrated framework. This is accomplished using a

probabilistic appearance manifold based representa-

tion that is utilized simultaneously by both tracking

and recognition modules. The recognition module

uses tracker’s output (the location of the face in the

current frame) to update the current internal appear-

ance model that is in turn used by the tracker.
Each face is characterized using a collection of

linear subspaces in the image space which is con-

structed by clustering the exemplars from the input

face videos. Each cluster often contains face images

with similar poses and is represented using a PCA

subspace. The collection of linear subspaces is fur-

ther characterized using a transition matrix that

captures the probabilities of moving from one

pose subspace to another between two consecutive

frames. The transition matrix is used to combine

facial appearance with temporal coherency of pose

variations to perform recognition. The approach

has been tested on 52 video sequences of 20 differ-

ent subjects.
3. 2D Feature Graph based Approach: Li and Chellappa

[10] propose a 2D feature-graph based approach

for VFR in which the intensity model is replaced

by a feature-graph using Gabor transform. The

feature-graph approach is more robust to the

variations in illumination and pose but possibly

requires slightly higher-resolution videos. The track-

ing problem is formulated as a Bayesian inference

problem for which Markov Chain Monte Carlo

(MCMC) techniques are employed to obtain an em-

pirical solution. A reparameterization is used to facil-

itate empirical estimation and to allow verification to

be addressed simultaneously along with tracking. The

facial features to be tracked are defined on a grid with

Gabor attributes (Fig. 2). The motion of facial fea-

ture points is modeled as a global two-dimensional

affine transformation (to account for head motion)

plus a local deformation to account for the residual

due to expression changes and modeling errors.

The global motion is estimated by importance

sampling while the residual motion is handled by

incorporating local deformation into the likelihood

measurement.
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dataset; Top right: Recognition performance under different models; Bottom: Gallery set.
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The temporal evolution of the jet positions is

modeled as a dynamic system, where tracking is

solved by analyzing this system, which in general,

is non-Gaussian and nonlinear. Note that tracking is

solved by analyzing the dynamic system governing

the evolution of the changes in affine parameters.

This reparameterization originates from a simple

Taylor expansion. However, its novelty comes from

the fact that one can choose different initial states for

different purposes. If the initial state corresponds to

a feature set from the first frame of a sequence, then

the reparameterization is suitable for pure tracking.

However, if the initial state represents some template

from a candidate list, then the reparameterization

is naturally good for tracking-for-verification. When

a template and the sequence belong to the same

person, tracking results should reflect a coherent

motion induced by the same underlying shape.

On the other hand, a more random motion pattern

will often be observed when the template and the

sequence belong to different persons. Thus, with
different templates, such a tracker allows verification

to be addressed simultaneously with tracking. The

motion coherence in a shape is evaluated by calcu-

lating the posterior probabilities from the estimated

densities on a region centered on the mean shape.

Fig. 2 shows the tracking and verification results

using this approach.
4. Hidden Markov Models for VFR: Li and Chen [11]

propose adaptive Hidden Markov Models (HMM)

to recognize faces in videos. During training, a sepa-

rate HMM is learnt for each subject in the gallery to

characterize appearance statistics and temporal dy-

namics of the facialmotion. Recognition is performed

by analyzing the test video by HMMs corresponding

to subjects in the gallery. During the recognition

process, test video sequences are used to update the

gallery models in an unsupervised fashion based on

the recognition result. The approach has been tested

on two datasets with 21 and 24 subjects respectively.

5. 3DModel based Approach: As opposed to most VFR

approaches which model face as a 2D object, the



Face Recognition, Video-Based. Figure 2 2D feature-based approach [10]. Top: Tracking result; Bottom left:

Posterior probabilities for the true (solid) and an impostor (dashed) hypothesis; Bottom right: Matching scores for the

true (solid) and impostor hypothesis.
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algorithm proposed in [14] estimates the 3D con-

figuration of the head in each frame of the video.

The 3D configuration consists of three translation

parameters and three orientation parameters which

correspond to the yaw, roll and pitch of the face.

The approach combines the structural advantages

of geometric modeling with the statistical benefits

of a particle-filter based inference. The face is mod-

eled as the curved surface of a cylinder which is free

to translate and rotate in an unprescribed manner.

The geometric modeling takes care of pose changes

and self-occlusions while the statistical modeling

handles unexpected occlusions and illumination

variations during the course of the video. The re-

covered 3D facial pose information can be used to

perform pose normalization which makes it very

useful for the tasks of face modeling, face recogni-

tion, expression analysis, etc.
The estimation of 3Dpose of a face in each frame of a

video is posed as a dynamic state estimation prob-

lem. Particle filtering is used for estimating the un-

known dynamic state of a system from a collection of
noisy observations. Such an approach involves two

components: 1) a state transition model to govern

the motion of the face, and 2) an observation model

to map the input video frames to the state (3D

configuration). Figure 3 shows the tracking results

for a few video frame. The estimated pose is shown

in the form of a overlaid cylindrical grid. The

accuracy in recovering 3D facial pose information

makes it viable to perform VFR without any need

for pose overlap between the gallery and test video.

Recognition experiments are performed on videos

with nonoverlapping poses. For each face, a texture

mapped cylindrical representation is built using the

recovered facial pose information, which is used for

matching. The approach has been tested on a small

dataset consisting of 10 subjects.
6. Shape-Illumination Manifold for VFR: In [15],

Arandjelovic and Cipolla propose a generic shape-

illumination manifold based approach to recognize

faces in videos. Assuming the intensity of each

pixel in an image to be a linear function of

the corresponding albedo, the difference in two
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frames in the third column.
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logarithm-transformed images of the same subject

in the same pose, depends only on 3D shape of

the face and the illumination conditions in the

input images. As the pose of the subject varies,

the difference-of-log vectors describe manifold

called as shape-illumination manifold in the corre-

sponding vector space. Assuming shape variations

across faces of different subjects to be small, a

generic shape-illumination manifold (gSIM) can

be learnt from a training corpus.
Given a test video for recognition, it is first re-

illuminated in the illumination condition of each

gallery video. Re-illumination involves a genetic al-

gorithm (GA) based pose matching across the two

face videos. For re-illumination, each frame of the

test video is recreated using a weighted linear combi-

nation of K nearest neighbor frames of the gallery

video as discovered by the pose matching module.

This is followed by generation of difference-of-log

vectors between each corresponding frame of the

original and re-illuminated test videos. If the gal-

lery and test video belong to the same subject, the

difference-of-log vectors depend only on shape and

illumination conditions. On the other hand, if the
two videos come from different subjects, the vec-

tors also depend on the differences in albedo maps

of the two subjects. Finally, the similarity score is

obtained by computing the likelihood of these pos-

tulated shape-illumination manifold samples

under the learnt gSIM. The approach provides

near perfect recognition rates on three different

datasets consisting of 100, 60 and 11 subjects

respectively.
7. System Identification Approach: Aggarwal et al. [12]

pose VFR as a dynamical system identification

problem. A moving face is modeled as a linear dyna-

mical system whose appearance changes with pose.

Each frame of the video is assumed to be the output

of the dynamical system particular to the subject.

Autoregressive and Moving Average (ARMA) model

is used to represent such a system as follows

xðt þ 1Þ ¼ AxðtÞ þ nðtÞ
yðtÞ ¼ CxðtÞ þ oðtÞ ð5Þ

Here y(t) is the noisy observation of input I(t) at

time t, such that y(t) ¼ I(t)þo(t). I(t) is the

appearance of face at time t and x(t) is the hidden

state that characterizes the pose, expression, etc. of
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the face at time t. A and C are the system matrices

characterizing the system, and n(t) is an IID reali-

zation from some unknown density q(.). Given a

sequence of video frames, Aggarwal et al. [12] use a

closed-form solution to estimate A and C. The

similarity between a gallery and a probe video is

measured using metrics based on subspace angles

obtained from the estimated system matrices. The

metrics used include Martin, gap, and Frobenius

distance, all of which give similar recognition perfor-

mance. The approach does well on the two datasets

tested in [12]. Over 90% recognition rate is achieved

(15/16 for the Li dataset [10] and 27/30 for the

UCSD/Honda dataset [9]). The performance is

quite promising given the extent of the pose and

expression variations in the video sequences.
Summary and Discussion

There is little doubt that presence of multiple video

frames allows for better generalization of person-specific

facial characteristics over what can be achieved from a

single image. In addition, VFR provides operational

advantages over traditional still image based face recog-

nition systems. Most existing VFR approaches have only

been tested on independently captured very small data-

sets. Large standard datasets are required for better eval-

uation and comparison of various approaches.
Related Entries

▶ Face Recognition Overview

▶ Face Recognition Systems

▶ Face Tracking
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Synonyms

Face sample standardization; Face sample utility
Definition

Face is a human biometric attribute that can be used to

establish the identity of a person. A face-based biomet-

ric system operates by capturing probe face samples

and comparing them against gallery face templates.

The intrinsic characteristic of captured face samples

determine their effectiveness for face authentication.

Face sample quality is a measurement of these intrinsic

characteristics. Face sample quality has significant

impact on the performance of a face-based biometric

system. Recognizing face samples of poor quality is a

challenging problem. A number of factors can contrib-

ute toward degradation in face sample quality. They

include, but not limited to, illumination variation,

pose variation, facial expression change, face

occlusion, low resolution, and high sensing noise.
Face Sample Quality. Figure 1. Face samples of illumination
Introduction

A typical face-based biometric system operates by

capturing face data (images or videos), and comparing

the obtained face data against face templates of differ-

ent individuals in a gallery set. While face templates in

the gallery set are normally captured under constrained

imaging conditions (e.g., from frontal view, at a short

distance from the camera, and under consistent illumi-

nation), it is unrealistic to assume controlled acquisi-

tion of probe face data. Face data captured under

uncontrollable environment usually contains many

kinds of defects caused by poor illumination, improper

face positioning, and imperfect camera sensors [1].

For instance, when face data is captured in a natural

outdoor environment, inconsistent illumination is

typically cast on human faces resulting in uneven,

extremely strong or weak lightings. Face rotation can

also cause significant appearance variations, and at the

extreme, face can be self occluded (Fig. 1). When dis-

tances between human faces and cameras increase,

captured face data will be at low resolution, in low

contrast, and likely to contain high imaging noise. In

some instances people may wear sunglasses, have vary-

ing facial expression, and be with heavy makeup. All

of these factors contribute toward potential degrada-

tion in the quality of captured face samples, resulting

in disparities to those of face templates stored in the

gallery set.

Face sample quality has significant impact on

the performance of face-based biometric systems.
and pose variations from AR and UMIST databases.
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Assessing the quality of face samples before applying

them in any biometric system may help improve the

authentication accuracy. For example, an intruder may

wear sunglasses intending to disguise himself, quality

assessment of intruder’s face samples can give an alert

to such a situation. Quantitative measures on the

quality of face samples can also be integrated into

biometric systems to increase or decrease relevant

thresholds. In a people enrollment stage, such quanti-

tative measures of quality also help procure gallery face

templates of good quality. Many approaches assess face

sample quality using general image properties includ-

ing contrast, sharpness, and illumination intensity [2].

However, these properties cannot properly measure

face sample degradation caused by inconsistent illumi-

nation, face rotation, or large face-camera distance.

There are a few recent works assessing face sample

quality by considering such kinds of degradation. For

example in [1], facial-symmetry-based methods are

used to measure facial asymmetries caused by non-

frontal lighting and improper facial pose.

When only poor quality face data can be acquired

at the authentication stage, face recognition becomes

significantly more challenging because of: (1) Illumi-

nation variation to which the performance of most

existing face recognition algorithms and systems is

highly sensitive. It has been shown both experimentally

[3] and theoretically [4] that face image differences

resulting from illumination variation are more signi-

ficant than either inherent face differences between

different individuals, or those from varying face poses

[5]. State of the art approaches addressing this prob-

lem include heuristic methods, reflectance-model

methods, and 3D-model-based methods [6]. Although

performance improvement is achieved, none of these

methods are truly illumination invariant. (2) Pose

variation which causes face recognition accuracy to

decrease significantly, especially when large pose varia-

tions between gallery and probe faces are present. The

difficulties would further increase if only an unknown

single pose is available for each probe face. In such a

situation, an extra independent training set, different

from the galley set and containing multiple face images

of different individuals under varying poses, will be

helpful. Three-dimensional face model or statistical

relational learning between different poses can be

employed to generate virtual face poses. By generating

virtual poses, one can either normalize probe faces of

varying poses to a predefined pose, e.g., frontal, or
expand the gallery to cover large pose variations.

(3) Low resolution face data will be acquired when

face-camera distances increase, which is rather typical

in surveillance imagery. The performance of existing

face recognition systems decreases significantly when

the resolution of captured face data is reduced below a

certain level. This is because the missing high-resolu-

tion details in facial appearances and image features

make facial analysis and recognition ineffective,

either by human operators or by automated systems.

It is therefore useful to generate high-resolution

face images from low-resolution ones. This tech-

nique is known as face hallucination [7] or face

▶ super-resolution.
Assessment of Face Sample Quality

The performance of face authentication depends

heavily on face sample quality. Thus the significance

of face sample quality assessment and standardization

grows as more practical face-based biometric systems

are required. Quality assessment of probe face samples

can either reject or accept a probe to improve later

face verification or identification accuracy. Quantita-

tive assessment of face sample quality can also be used

to assign weights in a biometric fusion scheme.

ISO/IEC WD 29794-1 [8] considers that biometric

sample quality can be defined by character (inherent

features), fidelity (accuracy of features), or utility (pre-

dicted biometrics performance). Many efforts have

been made on biometric sample quality assessment

for fingerprint, iris, or face data. Most of those on

face data are based on general image properties includ-

ing contrast, sharpness, and illumination intensity [2].

However, the face sample degradation that severely

affects face authentication accuracy is from uncontrol-

lable imaging conditions that cause illumination varia-

tions, head pose changes, and/or very low-resolution

facial appearances. There are a few attempts made on

assessing face sample quality caused by these kinds of

degradation.

In [9], two different strategies for face sample qual-

ity assessment are considered: one is for illumination

variation and pose change, another is for facial expres-

sion change. In the first strategy, specific measures are

defined to correlate with levels of different types of face

sample degradation. A polynomial function is then

utilized based on each measure for predicting the
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performance of a▶ Eigenface technique on a given face

sample. Quality goodness is assessed by selecting a

suitable threshold. Since the measurement of facial

expression intensity is difficult, in the second strategy,

a given face sample is classified into good or poor

quality based on its coarse similarity to neutral facial

expression. Then the training procedure for each class

is achieved by dividing the training set into two sub-

sets, based on whether the samples are recognizable by

the Eigenface technique. Then these two subsets are

described by Gaussian mixture models (GMMs). In [1],

facial-symmetry-based quality scores are used to assess

facial asymmetries caused by non-frontal lighting and

improper facial pose. In particular, local binary pattern

(LBP) histogram features are applied to measure the

lighting and pose asymmetries. Moreover, the inter-eye

distance is also used to estimate the quality score for

whether a face is at a proper distance from the camera.
Recognizing Face Samples of
Poor Quality

In general, face recognition under varying illumination

is difficult. Although existing efforts to address this

challenge have not led to a fully satisfactory solution

for illumination invariant face recognition, some

performance improvements have been achieved. They

can be broadly categorized into: heuristic methods, re-

flectance-model methods, and 3D-model-based meth-

ods [6]. A typical heuristic method applies subspace

learning, e.g., principal component analysis (PCA),

using training face samples. By discarding a few most

significant, e.g., the first three, principal components,

variations due to lighting can be reduced. Reflectance-

model methods employ a Lambertian reflectance

model with a varying albedo field, under the assump-

tion of no attached and cast shadows. The main disad-

vantage of this approach is the lackof generalization from

known objects to unknown objects [10]. For 3D-face

model-based approaches, more stringent assumptions

are often made and it is also computationally less reli-

able. For example in [11], it is assumed that the 3D face

geometry lies in a linear space spanned by the 3D geom-

etry of training faces and it uses a constant albedo field.

Moreover, 3D model-based methods require complex

fitting algorithms and high-resolution face images.

There are also attempts to address the problem

of face recognition across varying facial poses.
In real-world applications, one may have multiple

face samples of varying poses in training and gallery

sets (since they can be acquired offline), while each

captured probe face can only be at an unknown single

pose. Three-dimensional model-based methods [12]

or statistical learning-based methods can be used to

generate virtual face poses [13], by which either probe

faces can be normalized to a predefined pose, e.g. frontal

view, or gallery faces can be expanded to cover large pose

variations. For example in [12], a 3D morphable model

is used. The specific 3D face is recovered by simulta-

neously optimizing the shape, texture, and mapping

parameters through an analysis-by-synthesis strategy.

The disadvantage of 3D model-based methods is slow

speed for real-world applications. Learning-basedmeth-

ods try to learn the relations between different facial

poses and how to estimate a virtual pose in 2D domain,

e.g., the view-based active appearance model (AAM)

[14]. This method depends heavily on the accuracy of

face alignment, which unfortunately introduces anoth-

er open problem in practice.

When the resolution of captured face data falls

below a certain level, existing face recognition systems

will be significantly affected. Face super-resolut-

ion techniques have been proposed to address this

challenge. Reconstruction-based approaches require

multiple, accurately aligned low-resolution face sam-

ples to obtain a high-resolution face image. Their

magnification factors of image resolution are however

limited [7]. Alternatively, learning-based face super-

resolution approaches model high-resolution training

faces and learn face-specific prior knowledge from

them. They use the learned model prior to constrain

the super-resolution process. A super-resolution factor

as high as 4 � 4 can be achieved [7]. The face super-

resolution process can also be integrated with face

recognition. For example in [15], face image super-

resolution is transferred from pixel domain to a lower

dimensional eigenface space. Then the obtained high-

resolution face features can be directly used in face

recognition. Simultaneous face super-resolution and

recognition in ▶ tensor space have also been intro-

duced [16]. Given one low-resolution face input of

single modality, the proposed method can integrate

and realize the tasks of face super-resolution and rec-

ognition across different facial modalities including

varying facial expression, pose, or illumination.

This has been further generalized to unify automatic

alignment with super-resolution [17].
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Summary

Many face-based biometric systems have been dep-

loyed in applications ranging from national border

control to building door access, which normally solve

the sample quality problem at the initial face acquisi-

tion stage. Given ongoing progress on standardization

of face sample quality and technical advancement in

authenticating face samples of poor quality, the avail-

ability of more reliable and convenient face authenti-

cation systems is only a matter of time.
Related Entries
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Synonyms

Face image synthesis; Rendering; Image formation

process
Definition

Face Sample Synthesis denotes the process of generat-

ing the image of a human face by a computer program.

The input of this process is a set of parameters that
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describes (1) the position from which the face is vie-

wed, (2) the illumination environment around the face,

(3) the identity of the person, and (4) the expression of

the person. Other parameters may also be used such as

the age of the person, parameters describing the make-

up, etc. The output is an image of a human face.
F

Introduction

Face Sample Synthesis denotes the process of generating

the image of a human face by a computer program.

Optimally, this image should be realistic and virtually

indistinguishable from a photography of a live scene.

Additionally, the computer program should be gener-

ic: able to synthesize the face of any individual, viewed

from any pose and illuminated by any arbitrarily

complex environment. The objective of this article is

to review the techniques used to reach this goal. It may

also be desirable to generate faces with different

expressions, different attributes such as makeup style

or facial hair. One might also want to render image

sequences with realistic facial motion. However, it is

outside the scope of this article to address the methods

enabling such synthesizes.

A photograph of a face is a projection onto an

image plane of a 3D object. The intensity of a pixel

of this photograph directly depends on the amount of

light that is reflected from the object point imaged at

the pixel location. Thus, this article first reviews 3D

to 2D projections (the finite projective camera model)

and illumination modeling (the Lambertian and

Phong light reflection models usually used in face

recognition systems). Then, the basics of identity mod-

eling are summarized. At the end of the article, the

reader will have an overview of the process required

to synthesize a face image from any individual, viewed

from any angle, and illuminated from any direction.

Research on computer-based face recognition dates

back from the 1970s. In those times, most popular

methods (e.g., [1]) were based on distances and angles

between landmark points (such as eyes and mouth

corners, nostril, chin top, etc.). Then, in the beginning

of the 1990s, the appearance-based methods came in

and quickly attracted most of the attention [2]. Con-

trasting with the former landmark points methods,

these techniques use the entire face area for recogni-

tion. They are based on a prior generative model capa-

ble of synthesizing a face image given a small number
of parameters. Analysis is performed by estimating the

parameters, denoted by ŷ, which synthesize a face

image that is as similar as possible to the input

image. Hence, these methods are called Analysis by

Synthesis. This is usually done using a sum of square

error functions:

ŷ¼ argminy

X
i

kI i;input � I i;modelðyÞk2; ð1Þ

where the index i represent pixel i and the sum runs

over all pixels of the face area. The formation of the

model image, Imodel(y), is the topic of this article.

Initially, the models used a 2D representation of the

face structure [2], however, in order to account for

pose and illumination variation, it is accepted that

3D models provide more accurate results [3, 4].

Hence, this article reviews the process of generating a

face image from a 3D model.

Four ingredients are necessary to synthesize a face

from a 3D representation [5]: The face surface of the

individual to be imaged must be sampled across a

series of points resulting in a list of 3D vertices.

Obtaining a surface from a list of vertices is achieved

by a triangle list that connects triplets of vertices. The

triangle list defines the topology of the face. It is used,

among other things, to compute surface normals and

the visibility of a surface points using (for instance) a

‘‘Z-buffer’’ visibility test.

The third constituent is the color of the face. It can

be represented by an RGB color for a dense set of

surface points. These surface points are called ‘‘texels.’’

If the texels are the same points as the vertices, then the

color model is called ‘‘per vertex color.’’ Alternatively, a

much denser texel sampling can be used and the texels

are arranged in a ‘‘texture map.’’ In order to synthesize

unconstrained illumination images, the texels must be

free of any illumination effect and code the ‘‘albedo’’ of

a point. The albedo is defined as the diffuse color

reflected by a surface point. Finally, the last ingredient

is a reflection model that relates the camera direction

and the intensity of light reflected by a surface point, to

the intensity, the direction, and the wavelength of light

reaching the point.
Finite Projective Camera Model

This section briefly describes how a 3D object is

imaged on a 2D image.
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In Computer Vision and Computer Graphics,

a finite projective camera model is usually chosen.

This camera follows a central projection of points in

space onto a plane. For now, lets assume that the

camera is at the origin of an Euclidean coordinate

system and that it is pointing down the Z-axis.

In that system, a 3D point, xc¼(Xc ,Y c ,Zc)
t is projected

onto a 2D point, u, in the image frame according to

the following equation, in which the focal length,

denoted by f, is the distance between the camera

center and the principal point: u¼(fXc ∕Zc ,f Y c ∕Zc).
This equation assumes that the origin of the image

plane coordinate system is at the principal point.

In general, it might not be and, denoting the coordi-

nates of the principal point by (px ,py), the mapping

becomes:

u ¼ ðf Xc=Zc þ px ; f Y c=Zc þ pyÞ: ð2Þ
In a face image synthesis, the point xc is one vertex
of the 3D shape of a face in camera coordinate frame. It

is easier to represent the ensemble of vertices of the face

in an object coordinate frame. The origin of this frame is

attached to the object, a typical choice is to locate it at

the center of mass of the face. The 3D coordinate of the

camera center in the object frame is denoted by c.

Additionally, the object coordinate frame is gener-

ally not aligned with the camera coordinate frame, i.e.,

the face is not always frontal. The rotation between the

face and the camera is denoted by the 3� 3 matrix R. It

can be represented by a product of rotations along the

coordinate axes of the object frame:
Ra ¼
1 0 0

0 cosðaÞ sinðaÞ
0 � sinðaÞ cosðaÞ

0
BB@

1
CCA;

Rb ¼
cosðbÞ 0 sinðbÞ

0 1 0

� sinðbÞ 0 cosðbÞ

0
BB@

1
CCA;

Rg ¼
cosðgÞ sinðgÞ 0

� sinðgÞ cosðgÞ 0

0 0 1

0
BB@

1
CCA; R ¼ RaRbRg:

ð3Þ
The relation between the object and camera frames is

then: xc ¼ R(x � c). It is often convenient not tomake

the camera center explicit and to introduce t¼�Rc. In

this case, the relation is simply:

xc ¼ Rx þ t: ð4Þ
As a result, projecting a point x in object coordinate

frame onto the image plane is summarized by the

following expression, in which Ri denotes the row

number i of the matrix R.

ux ¼ f R1xþtx
R3xþtz

þ px

uy ¼ f
R2xþty
R3xþtz

þ py

(
ð5Þ

Estimating the parameters of a finite projective

camera model requires then the estimation of nine

parameters: f, a, b, g, tx , ty, tz , px , py. Note that in

this explanation some subtle parameters that have only

a minor effect on the synthesis and on the analysis by

synthesis results are neglected: Some CCD cameras

do not have square pixels (two additional parameters)

and the skew parameter that is zero for most normal

cameras [6].
Lighting Model

The previous section showedwhere, in the image, to draw

a surface point from its 3D coordinates.Now the question

is:What pixel value to draw on this point? The pixel value

is the intensity of the light reflected by the surface point,

which is computed using a lighting model. Much of the

realism of a rendering depends on the▶ lighting model.
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This model, in turn, depends on three factors: The

number and type of light sources, the reflectance func-

tion, and the method used to compute surface normals.

Light modeling is still undergoing considerable research

efforts in the computer graphics community (the main

challenge being to make photo-realistic rendering algo-

rithms computationally efficient). In this article, the

fundamental notions are only briefly introduced.

If light is emitted from direction �l with intensity l,

then the quantity of light received by an infinitesimally

small surface patch around surface point x is h�nx,�li l,
where �nx, is the normal of the surface patch at the point

x and h	, 	i is the scalar product (if it is positive and null
otherwise). If the surface point projects onto pixel i of

the image, yields

I i;model ¼ rxð�v;�lÞ 	 h�nx ;�li 	 l 	 Sx;�l ; ð6Þ
where rx(	) denotes the reflectance function at point x

and �v, the viewing direction (defined as the direction

from the point to the camera center). Sx;�l denotes the

cast shadow binary variable: If there is another object

or if some part of the face is between point x and the

point at infinity in direction �l, then the light is sha-

dowed at the point, and Sx;�l is zero, otherwise it is

equal to one. Cast shadows are usually computed by

a shadow map [7].
Light Source

The simplest and most computationally efficient is to

use one directed light source at infinity and one ambient

light source. The light reflected by a surface point from

an ambient light source does not depend on the local

surface around the point, it only depends on the albedo

of the point. In real world, however, a perfectly ambient

light never exists and it rarely happens that a point is

illuminated only by a single light source. Indeed, light

emanating from a light source might bounce off a wall,

for instance, and then reach the object point. Hence, in

real world, light comes from all directions. An environ-

ment map [8] is usually used to model this effect.

It codes the intensity of light reaching an object for a

dense sampling of directions. It is acquired by photo-

graphing a mirrored sphere [9]. Due to the additive

nature of light, rendering with several light sources

(as is the case for environment maps) is performed

by summing (or integrating) over the light sources:
I i;model ¼
X
j

rxð�v;�ljÞ 	 h�nx ;�lji 	 lj 	 Sx;�lj : ð7Þ

The following image is an environment map ac-
quired at the Uffizi Gallery in Florence, Italy. Each pixel

of this photograph is attached to a direction and rep-

resent a light source. This environment map is used to

illuminate Panel d of Fig.1.
Reflectance Function

In (6), the four-dimensional reflectance function

rx(�v,�l) is called the Bidirectional Reflectance Distribu-

tion Function (BRDF). It also depends on the wave-

length of the incoming light (usually represented by its

RGB color). The BRDF describes the properties of the

material at point x.

The simplest model of reflectance function is cer-

tainly the Lambertian model for which the function

is equal to a constant (the albedo at point x). This

means that incident light is scattered equally in all

directions, which only happens for perfectly diffuse

objects (totally matte, without shininess). For human

face, this is the case only when the skin is covered by a

very fine layer of powder. An example of rendering

with a Lambertian reflectance is displayed on Fig.1a.

Specular reflection takes place when light is reflected

at a point without absorption by the material. For per-

fectly specular material, such as mirrors, light is reflected

in only one direction (the reflectance function is a Dirac

function): when the viewing angle is equal to the angle
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of incidence . Generally, in Computer Graphics, the re-

flectance used is a combination of diffuse and specular

reflectance. The most well-known model is the Phong

model:
I
phong
i;model ¼ ðc 	 h�nx ;�li þ K 	 h�v; ri�nÞ 	 l 	 Sx;�l

where c is the albedo at point x, �r is the reflection

direction (depending on the normal and the lighting

direction, as shown on the sketch), K is the fraction

of energy specularly reflected, and n is an index that

controls the ‘‘tightness’’ of the specular highlight (note

that there is one such equation for each color channel).

In this equation, the first summand inside the brackets

is the diffuse (i.e. Lambertian) part and the second
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one is the specular part. Modeling the specular high-

light is important for human skin, as it often has a

thin layer of oil or sweat above the pigmented cells.

Figure 1 a–d show examples of face rendering w ith a

Phong model.

The Pong model assumes smooth surfaces, but, in

reality, surfaces are imperfect and exhibit microgeome-

try. There exist more complex BRDF models that rep-

resent the surface as composed of micro-facets that can

shadow and mask each other. Another effect is the

off-specular highlight: When the angle of incidence is

grazing (near 90∘), some materials (such as human

skin) reflect much more light than is absorbed, causing

the color of the point to approach that of the light. This

is accounted for by the Fresnel term that is the ratio

between reflected and absorbed light. Some of the more

complex BRDF model that accounts for these two

effects are Blinn [10], Cook-Torrance [11], Torrance-

Sparrow [12], and more recently Lafortune [13].

Note that this is not the end of the story, yet. The

BRDF assumes that the outgoing light at one point

results only from the incoming light at the same point.

This is in fact an approximation as it neglects the

scattering of light within the material. This phenome-

non is modeled by the bidirectional surface scattering

reflectance distribution function (BSSRDF) [14] of

which the BRDF is a special case. Human skin does

show some important subsurface scattering effects and

to reach photo-realism these effects should not be

neglected. This is for instance apparent when the ear

is illuminated from the back. It then looks translucent

which results from the subsurface scattering.
Normals

Human skin is not a smooth surface. Pores and

wrinkles induce very small scale variations of the surface.

Representing these variations with 3D vertices would

require a very fine sampling of the head resulting in an

overly large number of vertices making the rotation or

visibility test computationally inefficient. The concept of

‘‘normal mapping’’ was developed precisely for this rea-

son. Instead of computing a normal from the shape (by

interpolating the normals of the triangles corners in

which a pixel is projected from), the normals are com-

puted from a dense normalmap (for which interpolation

is carried similarly to the texture map). A normal map is

generally acquired by photometric stereo [15]: Several
photographs of the face of a subject are taken with

different light directions. The subject and the camera

must be perfectly still during this acquisition process (a

pixel must be the projection of exactly the same point

on the subject face for all photographs). Each photo-

graph yields one measurement of the BRDF of a sur-

face point. Using several measurements a BRDF model

can be fitted, thereby recovering the normal of the

point. Often, for its simplicity, a Lambertian model is

used, in which case, the operator must choose the light

direction such as to minimize specular reflections.

Figure 1 shows different types of rendering from

the most simple (left) to more complex and realistic

(right).
Identity Modeling

So far, an overview of the face image synthesis process

from a 3D model of the face of an individual is pre-

sented. This 3Dmodel can be acquired by a 3D scanner

or can be manually crafted with a modeling software.

These processes can be tedious and expensive. There-

fore, it is desirable to be able to generate the 3D shape

and texture (i.e., albedo) from any individual. This can

be done by defining a vector space of shapes and of

textures and probability distributions in these spaces.

This is accomplished by learning typical face variations

from an example set of 3D faces. The vector space is

defined by densely registering the examples with a

reference face, thereby defining a label for each vertex.

Once the vector spaces are defined, linear combination

of the example shapes and textures are made to gene-

rate the shape and texture of new (i.e., out of the

example set) individuals. The coefficients of these lin-

ear combinations are the parameters of the identity

model. One individual is coded by a specific value for

each parameter. However, some variations are more

typical than others and probability distributions in

the vector space must be used in order to ensure the

plausibility of a novel individual. If the probability

distributions of the human faces in the vector spaces

are assumed Gaussian, then the most efficient coding is

yielded by a Principal Component Analysis [16] of the

examples. These principles are used by the 3D Morph-

able Model [3], the state of the art identity generic

human face model.

Denoting by X the 3 � N matrix with the 3D

position of N vertices (hence the position of a vertex
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x in the ‘‘Finite Projective Camera Model’’ section is

a column of the matrix X) and by C the 3 � N matrix

with the RGB albedo of N vertices, a novel 3D face is

yielded by the following equations:

X ¼
XM
i

aiXi; C ¼
XM
i

biCi; ð8Þ

where Xi and Ci are the M shape and texture principal

components and ai and bi the shape and texture

parameters.
Conclusion

In conclusion, the set of parameters y of an analysis by

synthesis method (1) is composed of nine parameters

for the projection. For illumination, using a Phong

reflectance model with one light source and with nor-

mals computed from the shape, seven parameters must

be estimated: three parameters for the intensity of the

colored light, two parameters for its direction along

with the specular coefficient K and the Phong expo-

nent n. Additionally, 2M parameters must be recovered

for the 3D shape and the texture.

Using a normal map model (generic for all indivi-

duals) and an environment map for analysis by syn-

thesis has never been attempted. Indeed, it would

result in a tremendously complicated problem for the

following reasons: It is unclear how to model normal

maps that would generalize for any individual. A simple

linear combination as is used for the shape and texture

cannot be used for normals because a normal vector is a

unit length vector and the sum or the mean of two unit

length vectors does not result in a unit length vector.

Moreover, defining correspondences for pores and wrin-

kles (which would be required to make a vector space

and avoid blur results) is for the moment unsolved. As

for the light sources, estimating the direction and inten-

sity of a single light source from a single facial image is

already an ill-posed problem (there is not enough infor-

mation in one image to completely constraint the solu-

tion), let alone with a large number of light sources as is

the case when using an environment map.
Summary

The motivation of face sample synthesis is not only

to generate face images from a small number of
parameters but also to analyze them using an analysis

by synthesis approach. In this article, the two main

sources of face image variations (pose and illumina-

tion) are accounted for by a finite projective camera

model. Illumination modeling is more complicated

and requires the operator to choose the type of illumi-

nation sources, the type of reflectance function, and

the manner to generate normals (either from the shape

or acquired by a photometric stereo method). Finally,

identity variations can be obtained by a linear combi-

nation of examples.
Related Entries

▶Deformable Models

▶ Face Pose Analysis
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Face Sample Utility
▶ Face Sample Quality
Face Sketching
A face sketching is a parsimonious yet expressive rep-

resentation of face. It depicts concise sketches of face

that captures the most essential perceptual informa-

tion with a number of strokes.

▶And-Or Graph Model for Faces
Face Tracking
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Synonym

Facial motion estimation
Definition

In many face recognition systems, the input is a video

sequence consisting of one or more faces. It is necessary
to track each face over this video sequence so as to

extract the information that will be processed by the

recognition system. Tracking is also necessary for 3D

model-based recognition systems, where the 3D model

is estimated from the input video. Face tracking can be

divided along different lines depending upon the meth-

od used, e.g., head tracking, feature tracking, image-

based tracking, model-based tracking. The output of

the face tracker can be the 2D position of the face in

each image of the video (2D tracking), the 3D pose of the

face (3D tracking), or the location of features on the face.

Some trackers are also able to output other parameters

related to lighting or expression. The major challenges

encountered by face tracking systems are robustness to

pose changes, lighting variations, and facial deforma-

tions due to changes of expression, occlusions of the

face to be tracked and clutter in the scene that makes

it difficult to distinguish the face from the other objects.
Introduction

Tracking, which is essentially ▶motion estimation, is

an integral part of most face processing systems. If the

input to a face recognition system is a video sequence, as

obtained from a surveillance camera, tracking is needed

to obtain correspondence between the observed faces

in the different frames and to align the faces. It is so

integral to video-based face recognition systems that

some existing methods integrate tracking and recogni-

tion [1]. It is also a necessary step for building 3D face

models. In fact, tracking and 3D modeling are often

treated as two parts of one single problem [2–4].

There are different ways to classify face tracking

algorithms [5]. One such classification is based on

whether the entire face is tracked as a single entity

(sometimes referred to as head tracking) or whether

individual facial features are tracked. Sometimes a com-

bination of both is used. Another method of classifica-

tion is based on whether the tracking is in the 2D image

space or in 3D pose space. For the former, the output

(overall head location or facial feature location) is a

region in the 2D image and does not contain informa-

tion about the change in the 3D orientation of the head.

Such methods are usually not very robust to changes

of pose, but are easier to handle computationally. Alter-

natively, 3D tracking methods, which work by fitting a

3D model to each image of the video, can provide

estimates of the 3D pose of the face. However, they are
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usually more computationally intensive. Besides, many

advanced face tracking methods are able to handle chal-

lenging situations like facial▶ deformations, changes of

lighting, and partial occlusions.

A broad overview of the basic mathematical frame-

workof face trackingmethodswill be given first, followed

by a review of the current state-of-the-art and technical

challenges. Next, a few application scenarios will be con-

sidered, like surveillance, face recognition, and facemod-

eling, including discussion of the importance of face

tracking in each of them. Then some examples of face

tracking in challenging situations will be shown, before

conclusion.
Basic Mathematical Framework

An overview of the basic mathematical framework that

explains the process in which most trackers work is

provided here. Let p 2 ℜp denote a parameter vector,

which is the desired output of the tracker. It could a 2D

location of the face in the image, the 3D pose of the

face, or a more complex set of quantities that also

include lighting and deformation parameters. Define

a synthesis function f : ℜ2 � ℜp !ℜ2 that can take

an image pixel v 2 ℜ2 at time (t�1) and transform it

to f (v, p) at time t. For a 2D tracker, this function f

could be a transformation between two images at two

consecutive time instants. For a 3D model-based trac-

ker, this can be considered as a rendering function of

the object at pose p in the camera frame to the pixel

coordinates v in the image plane. Given an input image

I(v), align the synthesized image with it so as to obtain

p̂¼ argmin
p

g f ðv; pÞ � IðvÞð Þ; ð1Þ

where p̂ denotes the estimated parameter vector for

this input image I(v).

The essence of this approach is the well-known

Lucas–Kanade tracking, an efficient and accurate im-

plementation of which has been proposed using the

inverse compositional approach [6]. Depending on

the choice of v and p, the method is applicable to the

overall face image, a collection of discrete features, or a

3D face model. The ▶ cost function g is often imple-

mented as an L2 norm, i.e., the sum of the squares of

the errors over the entire region of interest. However,

other distance metrics may be used. Thus a face tracker

is often implemented as a least-squares▶ optimization

problem.
Let us consider the problem of estimating the

change, △pt ≜ mt, in the parameter vector between

two consecutive frames, It(v) and It�1(v) as

m̂t ¼ argmin
m

X
v

f ðv; p̂t�1 þmÞ � I tðvÞð Þ2; ð2Þ

and

p̂t ¼ p̂t�1 þm̂t : ð3Þ
The optimization of the above equation can be

achieved by assuming a current estimate of m as

known and iteratively solve for increments △m such

that

X
v

f ðv; p̂t�1 þmþ4mÞ � I tðvÞÞ2
� ð4Þ

is minimized.
Performance Analysis

While the basic idea of the face tracking algorithms is

simple, the challenge comes in being able to perform

the optimization efficiently and accurately. The func-

tion, f, will be nonlinear, in general. This is because f

will include camera projection, the 3D pose of the

object, the effect of lighting, the surface reflectance,

nonrigid deformations, and other factors. For exam-

ple, in [7], the authors derived a bilinear form for this

function under the assumption of small motion. It

could be significantly more complex in general. This

complexity makes it difficult to obtain a global opti-

mum for the optimization function, unless a good

starting point is available. This initialization is often

obtained through a face detection module working on

the first frame of the video sequence. For 3D model-

based tracking algorithms, it also requires registration

of the 3D model to the detected face in the first frame.

The need for a good initialization for stable face

tracking is only one of the problems. All trackers suffer

from the problem of drift of the estimates and face

tracking is no exception. Besides, the synthesis func-

tion f may be difficult to define precisely in many

instances. Examples include partial occlusion of the

face, deformations due to expression changes, and

variations of lighting including cast shadows. Special

care needs to be taken to handle these situations, since

direct optimization of the cost function (2) would give

an incorrect result.
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Computational speed is another important issue in

the design of tracking algorithms. Local optimization

methods like gradient descent, Gauss–Newton, and

Levenberg–Marquardt [8] can give a good result if the

starting point is close to the desired solution. However,

the process is often slow because it requires recompu-

tation of derivatives at each iteration. Recently, an

efficient and accurate method of performing the opti-

mization has been proposed by using an inverse

compositional approach, which does not require re-

computation of the gradients at each step [6]. In this

approach, the transformation between two frames is

represented by a ▶ Face Warping function, which is

updated by first inverting the incremental warp and

then composing it with the current estimate. Our

independent experimental evaluation has shown that

on real-life facial video sequences, the inverse compo-

sitional approach leads to a speed-up by at least one

order of magnitude, and often more, leading to almost

real-time performance in most practical situations.
Challenges in Face Tracking

As mentioned earlier, the main challenges that face

tracking methods have to overcome are (1) variations

of pose and lighting, (2) facial deformations, (3) oc-

clusion and clutter, and (4) facial resolution. These are

the areas where future research in face tracking should

concentrate. Some of the methods proposed to address

these problems will be reviewed briefly below.

1. Robustness to pose and illumination variations. Pose

and ▶ illumination variations often lead to loss of

track. One of the well-known methods for dealing

with illumination variations was presented in [9],

where the authors proposed using a parameterized

function to describe the movement of the image

points, taking into account illumination variation
Face Tracking. Figure 1 Tracked points on a face through c

projections of a 3D face mesh model.
by modifying the brightness constancy constraint

of optical flow. Illumination invariant 3D tracking

was considered within the active appearance model

(AAM) framework in [10], but the method requires

training images to build the model and the result

depends on the quality and variety of such data. 3D

model based motion estimation algorithms are the

usually robust to pose variations, but often lack

robustness to illumination. In [7], the authors pro-

posed a model-based face tracking method that was

robust to both pose and lighting changes. This was

achieved through an analytically derived model for

describing the appearance of a face in terms of its

pose, the incident lighting, shape, and surface re-

flectance. Figure 1 shows an example.

2. Tracking through facial deformations. Tracking faces

through changes of expressions, i.e., through facial

deformations, is another challenging problem. An

example of face tracking through changes of ex-

pression and pose is shown in Fig. 2. A survey of

work on facial expression analysis can be found in

[12]. The problem is closely related to modeling of

facial expressions, which has applications beyond

tracking, notably in computer animation. A well-

known work in this area is [13], which has been

used by many researchers for tracking, recognition,

and reconstruction. In contrast to this model-based

approach, the authors in [14] proposed a data-

driven approach for tracking and recognition of

non-rigid facial motion. More recently, the 3D

morphable model [15] has been quite popular in

synthesizing different facial expressions, which

implies that it can also be used for tracking by

posing the problem as estimation of the synthesis

parameters (coefficients of a set of basis functions

representing the morphable model).

3. Occlusion and clutter. As with most tracking pro-

blems, occlusion and clutter affect the performance
hanges of pose and illumination. These points are



Face Tracking. Figure 2 An example of face tracking under changes of pose and expressions. The estimated pose is

shown on the top of the frames. The pose is represented as an unit vector for the rotation axis, and the rotation angle in

degrees, where the reference is taken to be the frontal face.

Face Tracking. Figure 3 Tracked points on a face through changes of scale and illumination.
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of most face trackers. One of the robust tracking

approaches in this scenario is the use of particle

filters [16], which can recover from a loss of track

given a high enough number of particles and obser-

vations. However, in practice, occlusion and clutter

remain serious impediments in the design of highly

robust face tracking systems.

4. Facial resolution. Low resolution will hamper per-

formance of any tracking algorithm, with face

tracking being no exception. In fact, [5] identified

low resolution to be one of the main impediments

in video-based face recognition. Figure 3 shows an
example of tracking through scale changes and

illumination. Super-resolution approaches can be

used to overcome these problems to some extent.

However, super-resolution of faces is a challenging

problem by itself because of detailed facial features

that need to be modeled accurately. Recently, [17]

proposed a method for face super-resolution using

AAMs. Super-resolution requires registration of

multiple images, followed by interpolation. Usual-

ly, these two stages are treated separately, i.e., regis-

tration is obtained through a tracking procedure

followed by super-resolution. In a recent paper
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[18], the authors proposed feeding back the super-

resolved texture in the nth frame for tracking the

(nþ 1)th frame. This improves the tracking, which,

in turn, improves the super-resolution output.

This could be an interesting area of future work

taking into consideration issues of stability and

convergence.
F

Some Applications of Face Tracking

Some applications where face tracking is an important

tool have been highlighted below:

1. Video surveillance. Since faces are often the most

easily recognizable signature of identity and intent

from a distance, video surveillance systems often

focus on the face [5]. This requires tracking the face

over multiple frames.

2. Biometrics. Video-based face recognition systems

require alignment of the faces before they can

be compared. This alignment compensates for

changes of pose. Face tracking, especially 3D

pose estimation, is therefore an important com-

ponent of such applications. Also, integration of

identity over the entire video sequence requires

tracking the face [1].

3. Face modeling. Reconstruction of the 3D model of a

face from a video sequence using structure from

motion requires tracking. This is because the depth

estimates are related nonlinearly to the 3D motion

of the object. This is a difficult nonlinear estimation

problem and many papers can be found that focus

primarily on this, some examples being [2–4].

4. Video communications and multimedia systems.

Face tracking is also important for applications like

video communications. Motion estimates remove

the interframe redundancy in video compression

schemes likeMPEGandH.26x. Inmultimediasystems

like sports videos, face tracking can be used in

conjunctionwith recognition or reconstructionmod-

ules,or for focusingonaregionof interest in the image.
Summary

Face tracking is an important criterion for a number

of applications, like video surveillance, biometrics,

video communications, and so on. A number of meth-

ods have been proposed that work reasonably well under
moderate changes of pose, lighting and scale. The output

of these methods vary from head location in the image

frame to tracked facial features to 3D pose estimation.

The main challenge that future research should address

is robustness to changing environmental conditions,

facial expressions, occlusions, clutter, and resolution.
Related Entries

▶ Face Alignment

▶ Face Recognition
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Synonym

Facial changes
Definition

Face variation refers to the way in which the appearance

of the face changes due to changes in viewing conditions

such as illumination or pose, or due to changes in

properties of the face, such as its expression or age.
Introduction

Face recognition is a fundamental problem in bio-

metrics. One of the chief sources of difficulty in face

recognition is the large number of variations that can

affect the appearance of faces. These include changes in

lighting, pose, facial expression, makeup, hair, glasses,

facial hair, occlusion by objects that block part of the

face from view, aging, and weight gain or loss. Many

studies suggest that these variations can significantly

reduce the performance of recognition algorithms.

Some face recognition systems aimed at cooperative

subjects deal with this problem by attempting to

control these sources of variation. This may be appro-

priate for some applications. In these cases, pose can
be controlled by requiring a subject to look into the

camera, which is kept at a fixed height. Indoors, con-

trolled lighting can be employed. And subjects may be

requested to keep a neutral facial expression, and avoid

variation in occluding objects, such as eye glasses or

scarves. Working under such controlled conditions,

face recognition systems have achieved high levels of

accuracy [1].

However, in many cases large variations in appear-

ance cannot be controlled. Onemay wish to recognize a

person based on photographs taken some time before,

as when one verifies that a person matches a passport

photograph. In this case, changes in appearance due to

aging, changes in weight, or variations in hair style will

be inevitable. In many applications involving security

or interactions between a computer or robot and a

person, at least a few days may pass between the time

a face is first learned and then later recognized. Even

over short time periods there may be variation in a face

due to changes in makeup, or in how recently a subject

has shaved. Finally, in many applications, even lighting,

pose or facial expression cannot be controlled, either

because a subject is uncooperative or because one

wishes to have the flexibility to recognize people as

they move naturally through an environment, changing

their position relative to the camera and lights.

There has been relatively less work on face recogni-

tion in the presence of these variations than for recogni-

tion under controlled conditions. Of these variations,

lighting and pose variation have received the most at-

tention. Many other sources of variation have been the

subject of only a few research efforts. For example, to the

authors’ knowledge, there has been no work explicitly

aimed at accounting for variations due toweight change.

Furthermore, most research has been limited to the case

in which conditions are controlled when subjects are

enrolled into a gallery of known faces, so that, for

example, all gallery images are taken in the same pose

or lighting. Then, research focuses on matching a probe

face viewed under different conditions to the correct

entry in the gallery. Face recognition becomes much

more difficult when the gallery is imaged under heter-

ogenous conditions. For example, there may be a ten-

dency to match a face viewed with side lighting to the

gallery face of a different person viewed with the same

lighting when the gallery face of the correct person is

acquired under very different lighting conditions [2].

However, there are many applications, such as the

organization of personal photos, in which it may not
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be possible to acquire a gallery of images taken under

controlled conditions.
F

Illumination

Changes in lighting can produce significant variation

in the appearance of a face. These changes occur due to

an actual variation in lighting, such as the difference

between indoor and outdoor illumination, but they

also occur when a person moves relative to even a

fixed set of lights. Therefore, illumination changes

must be accounted for in a wide range of recognition

scenarios. Adini et al. [2] has shown that using com-

mon measures of image similarity, there is greater

similarity between two images of different people

taken under the same lighting conditions than between

two images of the same person taken under quite

different lighting conditions. As a consequence, in

spite of a number of research efforts, existing recogni-

tion algorithms show much poorer performance in the

presence of lighting variations than when used with

controlled lighting [1].

A number of approaches have been taken in order

to mitigate the effects of lighting change. Three com-

mon strategies include the following. First, one

can apply image representations that are generically

insensitive to lighting variation. Second, one can

train a recognition system using sets of images that

provide examples of the effects of lighting variation on

images of faces. Third, one can use knowledge of the

three-dimensional shape of faces either to predict the

effect that changes in lighting might have on their

appearance in images, or as a representation that is

unaffected by lighting. These approaches are summar-

ized briefly here; the reader can find more details in [3,

4, 5], and [6].

Determining the intrinsic properties of a scene

independent of lighting conditions is a classic problem

in computer vision that has been studied for decades.

Multiplicative and additive effects of lighting can be

removed by normalizing the mean and variance of

the image intensities. ▶Histogram equalization has

been applied to remove lighting effects that produce a

monotonic change in image intensities. Finally, some

representations of images have been shown to be less

sensitive to lighting variations, including the direction

of image gradients, vectors containing the output

of Gabor filters [7], or representations that attribute
low frequency components of the image to lighting,

and remove these effects. These and other, related

techniques, have been shown to produce substantial

improvements in recognition performance compared

to methods that compare raw pixel intensities.

In a second approach, a training set of images is

used to learn the effects of lighting variation on the

appearance of faces. The training set may contain

images of many individuals who are different from

those the system will later try to recognize. These

images show the variation in appearance of each per-

son in the training set as the lighting varies. Methods

such as ▶ Linear Discriminant Analysis may be used to

then find representations of faces that best capture the

information that varies between individuals, while dis-

carding information that varies due to light, but not

due to identity [8]. There is also a good deal of evi-

dence that the set of images that a face produces under

a wide range of lighting conditions occupy a low-

dimensional linear subspace in the space of all possible

images. This implies that when the gallery contains

multiple images of each subject, taken under different

lighting conditions, a linear subspace spanned by these

images can be used to represent the subject.

A third set of methods makes use of knowledge

of the 3D structure and surface reflectance properties

of faces to predict and compensate for the effects of

lighting [5]. This can involve obtaining a model of

each face to be recognized. Acquisition systems that

can capture the 3D structure of a face, along with the

varying surface properties of eyebrows, lips, and skin

exist. This makes the process of enrollment into the

biometric system more complex, though. An alterna-

tive is to use general knowledge obtained from 3D

scans of a training set of individuals other than the

person to be recognized. In the latter case, a generic

face model may be fit to a gallery image, producing a

model specific to that person. A model of a person’s

face can be used to solve for the lighting that best

matches that model to the probe image. Recognition

can then be performed by comparing the probe image

to a rendering of the model, produced by computer

graphics. Other approaches may use the model to build

representations of a face’s appearance under diverse

lighting conditions, and compare these to the probe

image. Finally, if one obtains a 3D model as a probe,

this can be directly compared to a 3D model acquired

at enrollment.
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Researchers have collected a number of data sets that

contain images of the same individual under varying

illumination, in order to measure the effect of lighting

on recognition algorithms. Due to the difficulty of build-

ing such data sets, they are usually acquired with either a

relatively small number of individuals or a small number

of lighting conditions. For example, Carnegie Mellon

University’s Pose, Expression, and Illumination (PIE)

data set contains images of 68 different people illumi-

nated in turn by 21 different flash bulbs in known posi-

tions, while a variety of data sets contain images of more

than a thousand individuals taken with just a few

lighting conditions [9]. It is not clear how many

lighting conditions are needed in a data set to thor-

oughly test recognition algorithms. The actual varia-

bility of lighting is very great, because even with lights

distant from a face, the lighting intensity is a 2D

function of direction. This means that it is difficult to

record or simulate the lighting present in realistic

conditions, and that it is also difficult to systematically

explore the space of possible lighting conditions.
Pose

Face recognition with pose variation refers to recogniz-

ing faces when the cameras used to take gallery
Face Variation. Figure 1 The same person photographed in

camera causes significant changes in appearance.
and probe images have different angles relative to the

subject (e.g., Fig. 1). For example, there is a pose

variation when subjects are described using a gallery

of images taken with subjects facing the camera and

when one uses a probe image of a subject seen in

profile, but not when the probe image is simply taken

from a different distance than the gallery images.

When there is a pose variation, one may see different

parts of the face in the gallery and probe images; for

example, in a profile view, one side of the face may be

unobserved. Moreover, the apparent size of different

parts of the face may vary with pose. In profile, the

cheek takes up a larger part of the image than it does

when the face is viewed frontally, while the forehead

may be more foreshortened. A number of experiments

suggest that when one uses recognition algorithms that

do not explicitly account for pose, performance dete-

riorates a great deal with significant pose variations.

Pose variations create a correspondence problem

that does not occur with a number of other types of

variations. It is common for general recognition algo-

rithms to align faces by detecting and aligning a few

features, such as the center of the eyes. When two

images of a face are taken from frontal views, aligning

the eyes tends to align all the other features of the face

(although this is not quite true for some variations

described below, such as changes in expression).
two different positions. Moving relative to the lighting and
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Many systems rely on this alignment by then compar-

ing corresponding image pixels. However, when there

is a pose variation, finding corresponding image pixels

is much more difficult. Aligning the eyes in a frontal

and a profile view will not align other parts of the face,

such as the nose. Face recognition systems that can

handle pose variation, then, must generally find some

method of solving this correspondence problem.

This section discusses three approaches to this

problem. The first involves representing multiple

views of the face, so that a simple alignment with one

of these views will match the probe. The second uses

2D image matching methods to find corresponding

pixels. The third uses 3D representations to assist in

solving for correspondence. These approaches are dis-

cussed further in [4, 5] and [6].

Many face recognition algorithms that are not

designed to handle pose variation are still robust to

small rotations of the head, of up to 15–30� [4]. This
suggests that if the gallery contains images of each

subject, taken at poses sampled by 30�, one of these

gallery images will provide a good match to a probe.

Such galleries have been constructed either by acquir-

ing multiple images per subject, by constructing a 3D

model of the subject and using it to generate appropri-

ate views, using computer graphics, or by using train-

ing data to infer the changes of appearance in a face as

viewpoint changes. These approaches may have the

disadvantage of making enrollment into the gallery

more complex, and may still degrade recognition per-

formance to some degree when probes are taken at an

angle between sampled directions.

Methods taking the second approach use some

mechanism to find good correspondences between in-

dividual locations in the probe and gallery images. For

example, [7] locates distinct features, such as the cor-

ner of the eyes, and builds descriptors of these loca-

tions using vectors containing the output of Gabor

filters. Then corresponding features are matched be-

tween two images, allowing for changes in the rela-

tive position of features due to a pose change. Other

work has matched individual pixels in images using

▶ optical flow [10] or stereo matching algorithms.

These are matching methods developed for general

computer vision problems in which a scene is viewed

from different locations. These approaches may be

supplemented by building a statistical model that

captures the way a feature’s appearance can vary with

pose [4].
Finally, 3D face information may be used to account

for pose. One way to do this is to acquire a 3D

description of each subject when he or she is enrolled

in the gallery. A small set of features can then be used

to align this model with a 2D probe image. The 3D

and 2D data must then be compared, which can be

done, for example, by solving for the lighting that

best matches them. Alternately, a system can obtain

3D information from the probe, and compare 3D

representations directly. These approaches, though,

depend on more complex sensing for enrollment,

and possibly for recognition. An alternative approach

(see [5]) builds a generic, 3D morphable model that

can morph between the shapes of a set of training

faces. This model can then be applied to any subject.

By fitting the model to a probe image, the 3D structure

of the probe face can be estimated. This can then be

used to render the probe in a canonical pose, or it can

be compared to similar 3D reconstructions of the

gallery faces.

While progress has been made in handling pose

variations, significant challenges remain. In particular,

there are many applications in which one expects the

gallery to contain a single image of the subject, and the

probe to consist of a new image, taken in a new pose.

For this problem, current methods have substantially

worse performance than when pose is fixed between

the probe and gallery. In addition, many methods for

handling pose variation require substantially more

computation than other methods, and can be very

slow. This is partly because the process of finding a

correspondence between the probe and gallery requires

expensive optimization processes.
Expression and Occlusion

Changes in expression can also have a considerable

effect on the appearance of a face that can have a

major impact on recognition performance (see [11]

for a fuller discussion). These can be divided into two

sorts of effects. When one smiles, frowns, or purses

one’s lips, there is a change in shape, as the lips move

and the cheeks alter their position. But expression

can also cause facial features to appear or disappear.

For example, smiling may reveal our teeth, blinking

or winking may block an eye from view, frowning may

cause new wrinkles to appear in the forehead. For this

reason, it is convenient to class together changes in
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expression with other occlusions, as when sunglasses

or a scarf block part of the face from view.

Less work has been done on the problem of expres-

sion variation than on lighting or pose. One approach

is to use recognition algorithms that can ignore or de-

emphasize portions of the face that might be affected

by expression change or occlusion. This can be done

if training data is available that provides examples of

these variations. Then, for example, Linear Discrimi-

nant Analysis can learn a linear projection that has the

effect of placing less weight on portions of the face that

are likely to change [8]. Or, one can divide the face

into regions and learn weights that indicate the value of

each region in identification. Regions of occlusion in a

probe face can also be identified as regions that are not

sufficiently similar to a space of face regions, and these

can be discarded before matching the probe to the

gallery [11]. In principal, changes in shape due

to facial expression can be accounted for by using

methods such as optical flow to find a correspondence

between images of faces with different expressions [10].
Face Variation. Figure 2 Two sets of photos showing chang

at 10 year intervals. Right: photos taken at age 6, 16, and 23.

to the effects of aging, weight gain, glasses, and changing ha
However, such an approach must be able to distinguish

between changes in shape caused by expression, and

differences in shape between the faces of different peo-

ple. Also, correspondences cannot be found when ex-

pression change causes features to appear or disappear.

Because of their difficulty, many of the issues raised by

changing expression have not been studied extensively.
Sources of Variation that Occur
Over Time

Other sources of facial variation have received much

less attention. These include changes in glasses, hair

style, makeup, weight, or the effects of aging (See

Fig. 2). While pose, expression and lighting can change

from one moment to the next, these additional factors

tend not to change very frequently. However, any sys-

tem that wishes to recognize people after a period of a

few months or a few years will have to account for

these sources of variation.
es in appearance over time. Left: passport photos taken

There is a considerable change in appearance due

ir and facial expression.
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One reason that there may have been less effort

directed at these variations is the difficulty of obtaining

valid experimental data. For example, it would be

daunting to collect images of large numbers of subjects

before and after significant changes in weight. It is also

much more challenging to collect face images over a

period of many years than to collect images from

different viewpoints, or with changes in lighting. The

government does collect photos of individuals over

long periods of time, for passports or drivers licenses,

for example, but privacy concerns prevent widespread

use of this data. As individuals post large collections of

personal photos on the internet there is a growing

opportunity to build innovative new data sets of face

images, although by their nature, many of the ima-

ging conditions in these photos are uncontrolled

and unknown.

The complex set of factors that affect facial appear-

ance over time are discussed in [12]. In children, there

is significant change in face shape as they grow up. In

adults, there is less change in shape due to aging, and

more change in the appearance of skin due to exposure

to sunlight and the appearance of wrinkles [12] and

subsequent work describe experiments with a number

of recognition algorithms, including two commercial

systems, on data sets containing passport photos of

nearly 2,000 individuals, with a time lag between

photos ranging from 1–10 years. In a verification task

that asks whether two photos come from the same or

different people, performance is far below the levels

achieved using photos taken under controlled condi-

tions with little time lag [1]. It appears that there is

a sharp increase in the difficulty of recognition when

1 year passes between images, and that, at least for

adults, further passage of time, up to 10 years, creates

only small additional increases in difficulty. It is not

clear how much of these problems are due to aging,

and how much can be attributed to other changes in,

for example, weight or hair style that tend to occur

over time, or even to other factors such as artifacts

caused by the scanning of passport photos.

In addition to aging, a number of other sources of

variation have been mentioned in the literature, but

have not received much study. For example, a number

of researchers have noted that the presence or absence

of makeup on a face can affect the difficulty of recog-

nizing it, but there is little systematic work in this

area. Similarly, it is clear that significant changes in

weight can affect facial appearance, but there has been
little if any work in this area. Variations in hair style or

grooming can also have a considerable affect on ap-

pearance; partially for this reason most approaches to

face recognition focus on the inner part of the face, and

attempt to ignore the outer head and hair. However,

since the outer head and hair seem to be important in

human face recognition, it seems that understanding

hair appearance and its variations could be of potential

value in face recognition systems.
Conclusions

In summary, while most work on face recognition has

focused on settings in which there is little variation in a

face or in the viewing conditions, there is also a grow-

ing amount of work that addresses face variations.

In many cases, each source of variation has been

addressed with methods specific to that type of varia-

tion. For example, lighting variation has been attacked

using lighting insensitive image representations, while

pose methods often focus on the correspondence prob-

lem. Two exceptions are first, model-based methods,

such as those using morphable models, that extract a

3D model from an image, and then use computer

graphics to normalize its appearance and remove

face variations, and second, pattern recognition and

learning methods, such as Linear Discriminant Ana-

lysis, that can potentially characterize any specific

variation, provided there is appropriate training data.

Many face variations can cause significant degrada-

tion in performance in standard recognition methods.

While interesting progress has been made in develop-

ing recognition methods that account for these varia-

tions, these methods generally still have performance

that is substantially less than that can be achieved when

variations are controlled.

While many challenges remain, this article has

mentioned three in particular. First, there has been

little research aimed at developing methods suitable

for handling multiple simultaneous facial changes. For

example, it is not clear whether many of the methods

developed to handle lighting changes will be suitable

when there is also pose variation. Second, most work

has focused on situations in which the gallery images

are taken under uniform conditions. Surely, for exam-

ple, recognition will be more difficult when the gallery

contains a single image of each person taken with

different poses. Third, variations that occur over time
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have not been well explored, and the relative impor-

tance of different effects, such as aging, weight change,

or changing hair or makeup is not clear.
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Synonyms

Face Identification; Face Recognition; Face Recon-

struction; Facial Mapping
Definition

Using the face as a biometric feature requires an image

or representation of the face, which is then subjected to

manual or computerized analysis. This relies on an

examination of the individual features (such as the

eyes, nose, ears etc) or of the image as a whole (areas
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of light and dark, texture, and color). Notably, face

biometrics does not require active participation and

can operate in a covert manner and may also be

deployed from a distance. The major factors affecting

the reliability and accuracy of face biometrics are illu-

mination, pose, and expression.

Three main areas where the biometrics of the face

is used are verification, identification, and reconstruc-

tion. First, the technique of comparing photographs

of an offender with images of a suspect is occasionally

termed ▶ facial mapping. Exculpatory evidence can be

obtained if marked differences are apparent from ex-

pert analysis that cannot be explained. In contrast,

similarity cannot indicate identity unless the presence

of unique identifiers can be established. Second, com-

puterized recognition and identification can provide

a faster and more accurate method to search for a

target in a database. This method may also be deployed

in real time and generate a name or identifiable

record when the target is present. Third, the process

of skull reconstruction can provide a facial likeness,

using either manual or computerized techniques,

which is generally used for historical cases requiring

identification.
Introduction

Face biometrics is regarded as less intrusive than other

methods such as fingerprint analysis, iris scans,

or palm morphologies, which generally require co-

operation from the subject and an awareness of the

procedure being undertaken. The face can be easily

captured from a wide variety of low-cost sources,

including public area CCTV, photographs, etc. The

face also differs from the collectable forms of trail

evidence left at the crime scene. Since the face is an

intrinsic part of the owner, it cannot leave a physical

trail other than a visual recording. Therefore, it may be

seen as an exception to Locard’s Exchange Principle in

some instances.

Three main areas where the biometrics of the face is

used are verification, identification, and reconstruc-

tion. Any of these methods may be susceptible to errors

arising from the subjective nature of the interpretation

of the face, whether by a person or by a machine.

The ability of the face to move in three dimensions

is also aggravated by internal movements of the eyes,

lips, and cheek areas due to expressions such as
smiling, frowning, blinking etc. Recognition from an

image is also subject to the inherent limitations

involved in general image processing such as resolution

and lighting levels.

Evidence from facial biometrics is frequently seen

as a corroborative tool to support other methods of

identification. Its value as a single method of identifi-

cation is lower than some other forms of biometric

identifiers (notably fingerprints and DNA), and there-

fore, it is more often used in historical cases or those

lacking in other forms of evidence.
Expert Image Analysis

Manual analysis of facial biometric features (often

termed facial mapping) is primarily a feature of crime

investigation. A variety of methods can be employed

individually or in combination to compare a crime

scene image of an offender with an image of the sus-

pect. The face must be of a similar three-dimensional

alignment as the head can move in a number of direc-

tions. Experts in this field have been providing reports

to provide identification evidence, principally in crim-

inal cases, since 1997 [1].

This category of facial biometrics employs a process

of ▶ one-to-one matching – a verification process of

checking allegations or suspicions, whereby other

forms of evidence must be present to suggest the

involvement of a specific individual. A one-to-one

facial mapping technique provides additional scientific

evidence to support the existing case. The use of

this matching technique lends support to the judicial

decision-makers who must be persuaded beyond rea-

sonable doubt.
Facial Mapping Techniques

Although there are limited publications regarding facial

image comparisons, many methodologies employed

for image comparisons are drawn from peer-reviewed

and accepted practices within other disciplines. Exam-

ples of video superimposition, morphological classifi-

cations, three-dimensional analysis, and geometric

analysis are given in the literature and relate directly

to forensic image comparisons for the purposes of

identification [2–5].
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The definition of ‘‘facial mapping’’ from the ACPO

manual issued by the Working Group for Facial Iden-

tification is as follows:

1. Facial Identification by image comparison –

concerned with the identity of an individual from

scaled and aligned photographic images or by

demonstrating morphologically comparable fea-

tures, within a legal context.

2. To make a visual study of moving and/or still facial

images in a variety of formats (video, digital,

photographs etc) obtained from the scene of a

crime or other source and make a scientific com-

parison with a suspect’s facial image.

3. To present and demonstrate the significance of any

area/point of similarity and difference, the presence

or absence of a feature and any probability factor as

well as the likelihood of repetition so as to formulate

an opinion of similarity from these comparisons.

4. Similarities of features and facial proportion do not

necessarily prove the identity, although differences

may prove nonidentity. However, as the number of

similarities increases, the number of people who

share that particular combination of features/pro-

portions decreases, thereby adding weight (to

whatever degree) to the assumption that the per-

sons in question are the same [6].

From this wide definition, it is clear that there is no

single procedure or methodology required for compar-

ing images. The ACPO document lists a number of

methodologies that may be used to compare images.

The document indicates that this list [6] is by no

means exhaustive:

1. Drawn or electronically produced indicators/grids.

2. Transposed outlines (produced by hand or by

computer).

3. Split or composite images (one or any portion of an

image is overlaid on the second image to check/

confirm correlation).

4. Video overlays/Wipes on a frame-by-frame basis.

5. Facial proportions/spatial distribution of features.

In general, these may be categorized into scaling and

alignment methods to assess relative facial landmarks

(size, shape, and position of facial features) and mor-

phological comparisons. In practice, one or a combina-

tion of these methods is used, dependent on the imagery

available. Additionally, ▶ photogrammetry has been

employed using two images taken at different vantage

points to create three-dimensional representations.
Appeal Court Cases

In reviewing the circumstances in which identification

evidence based on CCTVor photographic imagery was

admissible, the Court of Appeal for England and Wales

identified four possible routes to achieve a valid iden-

tification. The fourth route was identified as being

" ‘‘a suitably qualified expert with facial mapping skills

[who] can give opinion evidence of identification

based on a comparison between images from the

scene, (whether expertly enhanced or not) and a rea-

sonably contemporary photograph of the defendant,

provided the images and the photograph are available

for the jury (Stockwell 97 Cr App R 260, Clarke [1995]

2 Cr App R 425 and Hookway [1999] Crim LR 750)’’ [7].

This response indicates that the admissibility of

expert image analysis per se has remained unaltered

since its first introduction as evidence of identification;

and that the test of whether the court, in each instance,

requires assistance in interpreting images through an

expert witness is to be applied. In applying this test, the

first route to achieving a valid identification as stated

by the Vice President Rose, LJ declares that

" ‘‘where the photographic image is sufficiently clear,

the jury can compare it with the defendant sitting in

the dock (Dodson & Williams)’’ [7].

Under these circumstances, an expert opinion is

clearly not required irrespective of whether the witness

is indeed an expert. This scenario is significant as it can

be distinguished from cases where an opinion is not

admitted as evidence due to the lack of skill or knowl-

edge claimed by the purported expert.

The Attorney General’s Reference does, however,

raise the question of what constitutes ‘‘suitable quali-

fications’’, which are not listed by the ACPO guidance,

and presents investigators with a perennial problem. It

could be seen that the Court of Appeal had the ideal

opportunity to examine in greater detail the issues of

admissibility, reliability, or indeed, sufficiency of image

analysis as evidence of identification. Their reluctance

to do so illustrates that there may not be a clear or

singular answer to these issues.

In the UK case R v Gray criticisms were made by

Mitting, J regarding the absence of statistical databases

or any such means to determine a mathematical

formula [8]. This did not develop any rule (as sug-

gested in R v Gardner) that an expert cannot go further

than saying ‘‘there are the following similarities’’,
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leaving the ultimate decision to the jury, as opposed to

the expert witness actually giving a view as to a degree

of probability of the images being the same. The deci-

sion in Gardner does not doubt the admissibility of

forensic image comparisons [9]. The appeal was based

upon the inequality of arms as the defense team did

not have access to the expert’s laboratory material,

upon which they could cross examine.

Mardia developed a database of facial statistics to

determine whether, like fingerprints, there could be a

certain number of matches on a face that would deter-

mine uniqueness. This study allows for a prevalence

assessment of various facial feature classifications and

angles of the face, although within a limited sample

population of 358 Caucasian males [5]. Although this

is not a nationally recognized database, it fulfills some

criteria of objectivity within a measurement of unique-

ness, as a sample size of only 50 achieved the same

prevalence rates in a Home Office study by Wilcox [10].
Computer Analysis

As discussed earlier, an expert is able to make facial

comparisons, using photographic evidence. The errors

associated with human judgment may, on occasion,

reduce the reliability of the expert and their evidence.

Computerized facial recognition may eliminate the

possible errors associated with both inter- and intrao-

perator variables. Many studies into computerized rec-

ognition have tried to adapt the psychological models

of human recognition to work toward a fully compu-

terized system of facial recognition.

▶Principal Component Analysis is based on feature

identification: a face is identified and stored, the image

is then analyzed on the digital composition and the

principal components or areas of light and dark are

noted [11]. For example, thicker lips will possess a

greater surface area and will vary in brightness and

contrast between individuals. Areas of light and dark

along the edge of the face also serve to identify face

shape and relative size. A unique set of data for each

individual face is created, which may then be used as a

template or ▶ eigenface to enable the system to recog-

nize the same face, or more correctly, the same set of

data in the future.

An alternative model of ▶Graph Matching [12]

relies on the configurational identification of a face.

This relates to the examination of the measurable dis-

tances between features and the relative ratios of height
and width rather than the examination of the features

themselves. The eyes can be identified automatically

and the locations of the other features can be added if

required by the software. A unique algorithm is created

from the key points on the face; this algorithm is

unique as a fingerprint or DNA profile. This second

model is more similar to the task of facial mapping

performed by experts, described earlier. However, with

either method, there is still sufficient information to

recognize and identify faces. The speed by which a

result is obtained would favor an automatic computer-

ized process, although it may be argued that a more

thorough and reliable comparison can be made by

using human input to locate the facial features.

Computerized techniques can assist ▶ one-to-many

identification by searching through archive databanks

of facial images. One-to-many matching for criminal

justice purposes requires an extensive database of facial

images collected either from police custody records or

created from noncriminal records such as the face

image held by the Passport Office or the Driver and

Vehicle Licensing Authority (DVLA). A fully compre-

hensive national database of all adult facial images

obtained from noncriminal records would not be in

accordance with the protection offered under the leg-

islation governing the use of data.
Reliability of Computerized Identification

The in-house testing of facial recognition systems by

software companies can be extremely subjective, with

varying aims and test data, depending on the actual use

and requirements of the tasks that the algorithms were

developed to perform. Accuracy and reliability can

only be assessed by comparing a product with standar-

dized references or samples and further analysis by

independent bodies. The FERET Verification Testing

Protocol for Face Recognition Algorithms was devised

to provide an accurate and independent assessment of

the reliability and accuracy of the existing facial recog-

nition systems [13]. It also served to promote research

in facial biometrics in academic and public/private

sector industry, sponsored by the United States

Department of Defense Counter-drug Technology

Development Program. A Target set of ‘‘known indivi-

duals’’ and a Query set of ‘‘unknown faces’’ were pre-

sented to participating software developers. Two

versions of testing were administered: the first assessed

automatic facial location, and the second version
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provided eye coordinates to assess the recognition per-

formance of manual input systems. Enrollment and

test data were collected according to strict guidelines

to enable a fair comparison to be made. A scoring

procedure was devised based on Receiver Operating

Characteristic (ROC) graphs originally devised for

SONAR false recognition rates [14].

A significant increase in performance was seen for

the general field of facial biometric comparison and

for each individual algorithm-based system [14].

Strengths and weaknesses of each algorithm were high-

lighted to facilitate further research to promote and

improve the use of facial biometrics. It was evident

from the FERET tests that further research was still

required if facial biometrics were to compete with

other forms of biometric identification such as finger-

prints, even though progress had been made in these

areas over a given period. A major fault of face recog-

nition algorithms appeared to be sensitivity to varia-

tions in illumination, caused by the change in sunlight

intensities throughout the day.
Automatic Recognition in Practice

By combining automatic recognition technology

and criminal databases of known offenders, computer

systems to alarm law enforcement agencies as to the

real-time presence of a known criminal have been

developed. The first CCTV and facial recognition sys-

tem in the United Kingdom was instigated by the

Metropolitan Police in Newham, East London [15].

In spite of the pressure from many civil liberties

groups, the Mandrake system examined every passing

face and alerted the police when an individual is recog-

nized from the hit-list database. Despite analyzing every

single face in a crowd, informationwas only stored when

a match was made, and data from inconclusive analyses

were discarded. The system relied wholly on a graph

matching system, analyzing the area around the eyes

and the nose, which was converted into an algorithm

without any manual intervention. This means of crime

prevention has inherent limitations, as unwarranted sur-

veillance in anticipation of any crime occurring by

chance is not permitted under Sections 28 and 29 of

the Regulation of Investigatory Powers Act 2000. How-

ever, the selection of faces to be recognized and the

specific locations of the CCTV camerasmay permit facial

recognition systems to be used for crime prevention.
By placing a surveillance system in a unique area and

attaching a database specific to known criminals who

would operate in that area, a reasonable successful hit

rate can be achieved without infringing on the general

privacy of the public. From the example put forward by

NewhamCouncil, other locationsmay be highlighted as

target areas for particular types of offenders. Airports

are prime examples of sites that are frequented by a

variety of individuals involved in crimes ranging from

terrorism to drug trafficking and illegal immigration.

Security cameras are a regular feature of many public

spaces and their presence has become ubiquitous be-

cause of their intrusive abilities to detect, recognize, and

identify individuals without requiring an active partici-

pation or the knowledge of the subject.

The use of facial biometrics as a token for civilian

verification of identity (for example, secure access,

banking etc) is not so well employed. The benefits of

not forgetting (as with passwords), not being lost

(cards and keys), and being noninvasive (fingerprints

etc) are often outweighed by higher false rejection rates

when compared with other biometric systems.
Skull Reconstruction

In the absence of biological evidence such as DNA or

identifiable personal artifacts, the naming of skeleta-

lized or badly deformed remains may require the

reconstruction of the face from the skull in order to

identify the deceased.

Historically, the principle of relating the skeletal

structure to the overlying soft tissue has been applied

to all forms of reconstruction: 2-D drawings, 3-D clay

sculpting, or computerized modeling. The skull clearly

provides a vast amount of information on how the

final face should appear. The sex, age, and racial origins

can be determined, although any error will have signif-

icant repercussions throughout the whole procedure

and will ultimately distort the reconstruction, possibly

hindering the processes of recognition and identifica-

tion by people familiar with the deceased. The rela-

tionship between hard and soft tissues of the face and

facial tissue depth measurement provide the founda-

tions for accurate reconstructions [16]. Some factors

cannot be accounted for, such as the nutritional state

of the individual.

Whilemeasuring the facial tissue depth, the number,

and position of anthropometric landmarks are
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subjective. Although published texts provide authora-

tive views, inter- and intraresearcher variation will per-

sist in locating these points. Data from early cadaveric

studies were subject to error due to shrinkage, bloating,

and the effects of gravitywhen lying supine.Gravity, along

with high radiation doses, persists to be a problem with

modern advances in MRI and CT scans. Ultrasound is

presented as the most reliable method, experiments

providing comparative data from several ethnic groups

[17, 18].

The Manchester Method relies on the knowledge of

the gross anatomy of the face to recreate the muscle

fibers and glands on a plaster cast copy of the skull [16]

Unsurprisingly, this bottom-up process of rebuilding

the face differs from the standard textbook descrip-

tions of dissecting the facial musculature in a top-

down fashion. Each muscle is created and attached,

using published data and experience to recreate the

underlying structures that will ultimately reflect the

final skin surface with the minimum possibility of

subjective interference.

In forensic cases, the addition of hairstyles, facial

hair, blemishes, wrinkles, scars, or identifiable marks

should not be added unless evidence suggests other-

wise. Interestingly, details such as the hairline, forehead

creases, eyelid patterns, nasolabial folds, and cheek

shapes are some of the many features that can be deter-

mined, to some degree, from the skull and the previous

muscle attachments. Creating a realistic and believable

face is a difficult task balanced with the distraction of

wrong information such as hair or eye color. Additional

information may be superimposed using a computer

software to generate a number of alternatives.

The accuracy of forensic facial reconstructions is

the singularly most important factor in obtaining an

identity for the deceased. Qualitative studies compar-

ing the likeness with a photograph of the deceased have

shown remarkable results. Blind testing using a variety

of techniques has reported rates of 50, 65, and 75 per

cent [16]. Quantitatively, very positive results have

been obtained by conducting ‘‘identity parade’’ style

face pools, using volunteers to assess the likeness

against a number of targets [19]. The process of iden-

tifying unfamiliar faces is poorer than the ability to

identify familiar faces, suggesting that these results are

lower than what would be expected from family or

friends of the reconstructed person.

Computerized face reconstruction, using three

dimensional scanning of the skull has been reported
as more reproducible than clay modeling, although

subjectivity still remains in placing the pegs on the

digitized skull [4, 20]. The benefit of a digital recon-

struction is the flexibility of the final product, which

may be aged or temporarily altered with greater ease

than a more permanent clay final product.
Summary

The procedures involved in forensic face identifica-

tion vary in both method and purpose according to

whether the face is represented as a two-dimensional

image or a three-dimensional skull. Evidence from all

the three areas of expert or computer image analysis

and skull reconstructions can be useful in obtaining an

identification. The reliability and accuracy of each

method may be prone to errors and the value of such

evidence must be weighed in conjunction with other

forms of identification or evaluated with some degree

of caution if presented alone.
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Synonyms

Facial Expression Analysis; Facial Action Coding
Definition

Facial expression recognition is a process performed by

humans or computers, which consists of:

1. Locating faces in the scene (e.g., in an image; this

step is also referred to as face detection),

2. Extracting facial features from the detected face

region (e.g., detecting the shape of facial compo-

nents or describing the texture of the skin in a facial

area; this step is referred to as facial feature

extraction),

3. Analyzing the motion of facial features and/or

the changes in the appearance of facial features

and classifying this information into some facial-

expression-interpretative categories such as facial

muscle activations like smile or frown, emotion (af-

fect) categories like happiness or anger, attitude cate-

gories like (dis)liking or ambivalence, etc. (this step

is also referred to as facial expression interpretation).
Introduction

A widely accepted prediction is that computing

will move to the background, weaving itself into the

fabric of our everyday living and projecting the human

user into the foreground. To realize this goal, next-

generation computing (a.k.a. pervasive computing,
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ambient intelligence, and ▶ human computing) will

need to develop human-centered ▶ user interfaces

that respond readily to naturally occurring, multi-

modal, human communication [1]. These interfaces

will need the capacity to perceive and understand

intentions and emotions as communicated by social

and affective signals. Motivated by this vision of the

future, automated analysis of nonverbal behavior, and

especially of facial behavior, has attracted increas-

ing attention in computer vision, pattern recogni-

tion, and human-computer interaction [2–5]. To wit,

facial expression is one of the most cogent, naturally

preeminent means for human beings to communi-

cate emotions, to clarify and stress what is said, to

signal comprehension, disagreement, and intentions,

in brief, to regulate interactions with the environment

and other persons in the vicinity [6, 7]. Automatic

analysis of facial expressions forms, therefore, the

essence of numerous next-generation-computing tools

including ▶ affective computing technologies (proac-

tive and affective user interfaces), learner-adaptive

tutoring systems, patient-profiled personal wellness

technologies, etc.
Facial Expression Recognition. Figure 1 Outline of an autom

expression recognition (for details of this system, see [4]).
The Process of Automatic Facial
Expression Recognition

The problem of machine recognition of human facial

expression includes three subproblem areas (Fig. 1):

(1) finding faces in the scene, (2) extracting facial

features from the detected face region, (3) analyzing

the motion of facial features and/or the changes in the

appearance of facial features, and classifying this infor-

mation into some facial-expression-interpretative cate-

gories (e.g., emotions, facial muscle actions, etc.).

The problem of finding faces can be viewed as

a segmentation problem (in machine vision) or as a

detection problem (in pattern recognition). It refers to

identification of all regions in the scene that contain a

human face. The problem of finding faces (face localiza-

tion, face detection) should be solved regardless of clut-

ter, occlusions, and variations in head pose and lighting

conditions. The presence of non-rigid movements due

to facial expression and a high degree of variability

in facial size, color and texture make this problem

even more difficult. Numerous techniques have been

developed for face detection in still images [8, 9],
ated, geometric-features-based system for facial
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appearance of the Corrugator muscle contraction (coded

as in the FACS system, [14]).
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(see ▶ Face Localization). However, most of them can

detect only upright faces in frontal or near-frontal view.

Arguably the most commonly employed face detector

in automatic facial expression analysis is the real-time

face detector proposed by Viola and Jones [10].

The problem of feature extraction can be viewed as a

dimensionality reduction problem (in machine vision

and pattern recognition). It refers to transforming the

input data into a reduced representation set of features

which encode the relevant information from the input

data. The problem of facial feature extraction from

input images may be divided into at least three dimen-

sions [2, 4]: (1) Are the features holistic (spanning the

whole face) or analytic (spanning subparts of the face)?;

(2) Is temporal information used?; (3) Are the features

view- or volume based (2-D/3-D)?. Given this glossary,

most of the proposed approaches to facial expression

recognition are directed toward static, analytic, 2-D

facial feature extraction [3, 4]. The usually extracted

facial features are either geometric features such as the

shapes of the facial components (eyes, mouth, etc.) and

the locations of facial fiducial points (corners of the

eyes, mouth, etc.), or appearance features representing

the texture of the facial skin in specific facial areas

including wrinkles, bulges, and furrows. Appearance-

based features include learned image filters from

Independent Component Analysis (ICA), Principal

Component Analysis (PCA), Local Feature Analysis

(LFA), Gabor filters, integral image filters (also known

as box-filters and Haar-like filters), features based on

edge-oriented histograms, etc, (see▶ Skin Texture, and

▶ Feature Extraction). Several efforts have also been

reported which use both geometric and appearance

features (e.g., [3]). These approaches to automatic

facial expression analysis are referred to as hybrid

methods. Although it has been reported that methods

based on geometric features are often outperformed by

those based on appearance features using, e.g., Gabor

wavelets or eigenfaces, recent studies show that in some

cases geometric features can outperform the appear-

ance-based ones [4, 11]. Yet, it seems that using both

geometric and appearance features might be the best

choice in the case of certain facial expressions [11].

Contractions of facial muscles, which produce

facial expressions, induce movements of the facial

skin and changes in the location and/or appearance of

facial features (e.g., contraction of the Corrugator mus-

cle induces a frown and causes the eyebrows to move

towards each other, usually producing wrinkles between
the eyebrows; Fig. 2). Such changes can be detected

by analyzing optical flow, facial-point- or facial-

component-contour-tracking results, or by using an

ensemble of classifiers trained to make decisions

about the presence of certain changes (e.g., whether

the nasolabial furrow is deepened or not) based on

the passed appearance features. The optical flow ap-

proach to describing face motion has the advantage of

not requiring a facial feature extraction stage of proces-

sing. Dense flow information is available throughout

the entire facial area, regardless of the existence of

facial components, even in the areas of smooth texture

such as the cheeks and the forehead. Because optical

flow is the visible result of movement and is expressed

in terms of velocity, it can be used to represent directly

the facial expressions. Many researchers adopted this

approach [2, 3]. Until recently, standard optical flow

techniques were, arguably, most commonly used for

tracking facial characteristic points and contours as

well [4]. In order to address the limitations inherent

in optical flow techniques such as the accumulation of

error and the sensitivity to noise, occlusion, clutter,

and changes in illumination, recent efforts in automatic

facial expression recognition use sequential state esti-

mation techniques (such as Kalman filter and Particle

filter) to track facial feature points in image sequences

(e.g., [4, 11]).

Eventually, dense flow information, tracked move-

ments of facial characteristic points, tracked changes

in contours of facial components, and/or extracted
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appearance features are translated into a description of

the displayed facial expression. This description (facial

expression interpretation) is usually given either in

terms of shown affective states (emotions) or in

terms of activated facial muscles underlying the dis-

played facial expression. This stems directly from two

major approaches to facial expression measurement in

psychological research [12]: message and sign judg-

ment. The aim of message judgment is to infer what

underlies a displayed facial expression, such as affect

or personality, while the aim of sign judgment is to

describe the ‘‘surface’’ of the shown behavior, such as

facial movement or facial component shape. Thus, a

brow frown can be judged as ‘‘anger’’ in a message-

judgment and as a facial movement that lowers and

pulls the eyebrows closer together in a sign-judgment

approach. While message judgment is all about inter-

pretation, sign judgment attempts to be objective,

leaving inference about the conveyed message to higher

order decision making. Most commonly used facial
Facial Expression Recognition. Figure 3 Prototypic facial ex

disgust, happiness, sadness, anger, fear, and surprise.
expression descriptors in message judgment app-

roaches are the six basic emotions (fear, sadness, hap-

piness, anger, disgust, surprise; see Fig. 3) proposed by

Ekman and discrete emotion theorists [13], who sug-

gest that these emotions are universally displayed and

recognized from facial expressions. Most commonly

used facial action descriptors in sign judgment appro-

aches are the Action Units (AUs) defined in the Facial

Action Coding System (FACS; [14]). Most facial expres-

sions analyzers developed, so far, target human facial

affect analysis and attempt to recognize a small set of

prototypic emotional facial expressions like happiness

and anger [2, 5]. However, several promising prototype

systems were reported that can recognize deliberately

produced AUs in face images and even few attempts

towards recognition of spontaneously displayed AUs

have been recently reported as well [3–5]. While the

older methods employ simple approaches including

expert rules and machine learning methods such as

neural networks to classify the relevant information
pressions of six basic emotions (left-to-right from top row):
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from the input data into some facial-expression-

interpretative categories, the more recent (and often

more advanced) methods employ probabilistic, statis-

tical, and ensemble learning techniques, which seem to

be particularly suitable for automatic facial expression

recognition from face image sequences [3, 5].
Evaluating Performance of an
Automated System for Facial Expression
Recognition

The two crucial aspects of evaluating performance of a

designed automatic facial expression recognizer are the

utilized training/test dataset and the adopted evalua-

tion strategy.

Having enough labeled data of the target human

facial behavior is a prerequisite in designing robust

automatic facial expression recognizers. Explorations

of this issue showed that, given accurate 3-D alignment

of the face (see ▶ Face Alignment), at least 50 training

examples are needed for moderate performance (in the

80% accuracy range) of a machine-learning approach

to recognition of a specific facial expression [4].

Recordings of spontaneous facial behavior are difficult

to collect because they are difficult to elicit, short lived,

and filled with subtle context-based changes. In addi-

tion, manual labeling of spontaneous facial behavior

for ground truth is very time consuming, error prone,

and expensive. Due to these difficulties, most of the

existing studies on automatic facial expression recogni-

tion are based on the ‘‘artificial’’material of deliberately

displayed facial behavior, elicited by asking the subjects

to perform a series of facial expressions in front of a

camera. Most commonly used, publicly available,

annotated datasets of posed facial expressions include

the Cohn-Kanade facial expression database, JAFFE

database, and MMI facial expression database [4, 15].

Yet, increasing evidence suggests that deliberate

(posed) behavior differs in appearance and timing

from that which occurs in daily life. For example,

posed smiles have larger amplitude, more brief dura-

tion, and faster onset and offset velocity than many

types of naturally occurring smiles. It is not surprising,

therefore, that approaches that have been trained on

deliberate and often exaggerated behaviors usually fail

to generalize to the complexity of expressive behavior

found in real-world settings. To address the general lack

of a reference set of (audio and/or) visual recordings of

human spontaneous behavior, several efforts aimed at
development of such datasets have been recently

reported. Most commonly used, publicly available,

annotated datasets of spontaneous human behavior

recordings include SAL dataset, UT Dallas database,

and MMI-Part2 database [4, 5].

In pattern recognition and machine learning, a

common evaluation strategy is to consider correct

classification rate (classification accuracy) or its com-

plement error rate. However, this assumes that the

natural distribution (prior probabilities) of each class

are known and balanced. In an imbalanced setting,

where the prior probability of the positive class is

significantly less than the negative class (the ratio of

these being defined as the skew), accuracy is inade-

quate as a performance measure since it becomes

biased towards the majority class. That is, as the skew

increases, accuracy tends towards majority class per-

formance, effectively ignoring the recognition capabil-

ity with respect to the minority class. This is a very

common (if not the default) situation in facial expres-

sion recognition setting, where the prior probability of

each target class (a certain facial expression) is signifi-

cantly less than the negative class (all other facial

expressions). Thus, when evaluating performance of

an automatic facial expression recognizer, other per-

formance measures such as precision (this indicates the

probability of correctly detecting a positive test sample

and it is independent of class priors), recall (this indi-

cates the fraction of the positives detected that are

actually correct and, as it combines results from both

positive and negative samples, it is class prior depen-

dent), F1-measure (this is calculated as 2*recall*preci-

sion/(recall + precision)), and ROC (this is calculated as

P(x|positive)/P(x|negative), where P(x|C) denotes the

conditional probability that a data entry has the class

label C, and where a ROC curve plots the classification

results from the most positive to the most negative

classification) are more appropriate. However, as a

confusion matrix shows all of the information about

a classifier’s performance, it should be used whenever

possible for presenting the performance of the evalu-

ated facial expression recognizer.
Applications

The potential benefits from efforts to automate the

analysis of facial expressions are varied and numerous

and span fields as diverse as cognitive sciences, medi-

cine, communication, education, and security [16].
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When it comes to computer science and computing

technologies, facial expressions provide a way to com-

municate basic information about needs and demands

to the machine. Where the user is looking (i.e., gaze

tracking) can be effectively used to free computer

users from the classic keyboard and mouse. Also,

certain facial signals (e.g., a wink) can be associated

with certain commands (e.g., a mouse click) offering

an alternative to traditional keyboard and mouse

commands. The human capability to ‘‘hear’’ in noisy

environments by means of lip reading is the basis for

bimodal (audiovisual) speech processing (see Lip-

Movement Recognition), which can lead to the reali-

zation of robust speech-driven user interfaces. To make

a believable talking head (avatar) representing a real

person, recognizing the person’s facial signals and

making the avatar respond to those using synthesized

speech and facial expressions is important. Combin-

ing facial expression spotting with facial expression

interpretation in terms of labels like ‘‘did not under-

stand’’, ‘‘disagree’’, ‘‘inattentive’’, and ‘‘approves’’ could

be employed as a tool for monitoring human reactions

during videoconferences, web-based lectures, and

automated tutoring sessions. The focus of the relative-

ly, recently initiated research area of affective computing

lies on sensing, detecting and interpreting human af-

fective states (such as pleased, irritated, confused, etc.)

and devising appropriate means for handling this af-

fective information in order to enhance current ▶HCI

designs. The tacit assumption is that in many situa-

tions human-machine interaction could be improved

by the introduction of machines that can adapt to their

users and how they feel. As facial expressions are our

direct, naturally preeminent means of communicating

emotions, machine analysis of facial expressions forms

an indispensable part of affective HCI designs.

Monitoring and interpreting facial expressions can

also provide important information to lawyers, police,

security, and intelligence agents regarding person’s

identity (research in psychology suggests that facial

expression recognition is much easier in familiar per-

sons because it seems that people display the same,

‘‘typical’’ patterns of facial behaviour in the same situa-

tions), deception (relevant studies in psychology sug-

gest that visual features of facial expression function as

cues to deception), and attitude (research in psycholo-

gy indicates that social signals including accord and

mirroring – mimicry of facial expressions, postures,

etc., of one’s interaction partner – are typical, usually

unconscious gestures of wanting to get along with and
be liked by the interaction partner). Automated facial

reaction monitoring could form a valuable tool in

law enforcement, as now only informal interpretations

are typically used. Systems that can recognize friendly

faces or, more importantly, recognize unfriendly or

aggressive faces and inform the appropriate authorities

represent another application of facial measurement

technology.
Concluding Remark

Faces are tangible projector panels of the mechanisms

which govern our emotional and social behaviors.

The automation of the entire process of facial expres-

sion recognition is, therefore, a highly intriguing prob-

lem, the solution to which would be enormously

beneficial for fields as diverse as medicine, law, com-

munication, education, and computing. Although the

research in the field has seen a lot of progress in the

past few years, several issues remain unresolved. Argu-

ably the most important unattended aspect of the

problem is how the grammar of facial behavior can

be learned (in a human-centered, context-profiled

manner) and how this information can be properly

represented and used to handle ambiguities in the

observation data. This aspect of machine analysis of

facial expressions forms the main focus of the current

and future research in the field.
Related Entries

▶ Face Alignment

▶ Face Localization

▶ Feature Extraction

▶ Lip Movement Recognition

▶ Skin Texture
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Facial Landmarks
A number of pixels in a face image clearly corresponds

to some extract physiological semantics, such as the eye

corners, eye centers, mouth corners, nose tips, etc.

These feature points are called facial landmarks. They

are generally used to align different face images for

accurate matching.

▶ Face Misalignment Problem
Facial Mapping
Facialmapping is a frequently used term to describe one-

to-one matching of crime scene and suspect images

undertaken by an expert. A number of differentmethods

may be used in combination to compare two images to

support the comparison. Also, a number of comparisons

may bemade of the face from different angles if multiple

images are available from each source.

▶ Face, Forensic Evidence of
Facial Motion Estimation
▶ Face Tracking
Facial Photograph
▶Photography for Face Image Data
Factor Analysis
▶ Session Effects on Speaker Modeling
Failure to Acquire Rate
Both the acquiring conditions and the flaw of biomet-

ric itself may cause failure to acquire a biometric trait.

The percentage of this failure is defined as ‘‘Failure to

Acquire Rate.’’ For instance, very low quality face

image may cause the failure of face detection and

subsequent feature extraction.

▶Evaluation of Biometric Quality Measures

▶Performance Evaluation, Overview
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Failure-to-Enrol Rate
Failure-to-enrol rate is defined as the proportion of

enrollment transactions in which zero instances were

enrolled. Enrollment in one or more instances is con-

sidered to be successful in the case, the systems accept

multiple biometric samples per person.

▶ Finger Vein Reader
 F
Fake Finger Detection
▶Anti-spoofing

▶ Fingerprint Fake Detection
False Match Rate
The probability that a biometric system will indicate

that two biometric templates match although they are

not derived from the same individual and should not

match.

▶ Fingerprint Image Quality

▶ Iris on the Move
False Negative Rate
False Negative Rate means that how many percentages

of the authentic test samples are incorrectly classified

as the imposter class. Take the example of the com-

puter account login system, False Negative Rate means

how many percentages of legal users are recognized as

illegal users. As one can see immediately, False Positive

Rate and False Negative Rate are two metrics that

counter each other. For any given biometrics modality

with given matching algorithm, requirement of low

False Positive Rate would unavoidably bring high

False Negative Rate, and vice versa. Performance
comparison between different algorithms is usually

done by comparing False Negative Rate at a fixed

False Positive Rate.

▶Biometric System Design, Overview

▶ Iris Recognition, Overview
False Non-Match Rate
False non-match rate is the proportion of genuine

comparisons that result in false non-match. False

non-match is the decision of non-match when com-

paring biometric samples that are from same biometric

source (i.e., genuine comparison).

▶Biometric System Design, Overview

▶ Fingerprint Image Quality

▶ Iris on the Move
False Positive Rate
False Positive Rate means how many percentage of the

imposter test samples are incorrectly classified as the

authentic class. For example, in a computer account

login system, False Positive Rate is what percentage of

the illegal users recognized as legal users. In applica-

tions, which require high security, False Positive Rate is

always required to be as small as possible.

▶Biometric System Design, Overview

▶ Iris Recognition, Overview
Feathering
Feathering is a feature which occurs on the outsole as a

result of an abrasive wear and has some resemblance to

the ridge characteristics and bifurcations of fingerprint

patterns. It is the result of frictional abrasive forces

applied to the outsole surface such as when scuffing
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or dragging the shoe. This feature is also known as a

Schallamach pattern.

▶ Footwear Recognition
Feature Detection
Finding significant features in images such as land-

marks, edges, or curves. For example, a facial feature

detector aims to find the positions of the center of an

eye, the corners of a mouth, or the top of a nose in a

face image. In the case of an iris image, features may

mean the edges inside an iris or the boundaries around

the iris.

▶ Iris Segmentation Using Active Contours
Feature Extraction
▶Biometric Algorithms
Feature Fusion
Producing a merged feature vector from a set of feature

vectors representing different aspects of biometric

data. The data can originate from different sensors,

and also from different properties of a signal that

originate from the same sensor.

▶ Fusion, Feature-Level

▶Multiple Experts
Feature Map
The image produced from a target image to en-

hance the signals of a particular type, such as edges,
ridges, or valleys is referred as a ‘‘feature map.’’

Face alignment programs typically rely on statistics

computed from such features to distinguish facial

features from other regions of the image. More

sophisticated feature maps can be constructed

to capture complicated local image structures and

enhance the stability.

▶ Face Alignment
Feature Selection
Feature selection techniques are aimed towards finding

an optimal feature set for a specific purpose, such as

the optimization of a biometric system verification

performance. In general, feature selection algorithms

try to avoid the evaluation of all the possible feature

combinations when searching for an optimal feature

vector, since these grow exponentially as the number of

feature increases.

▶ Signature Features
Feature Vector
Feature vector is a multidimensional vector that is

obtained from a face by using feature extraction and

image processing techniques to be used and that is

used to memorize and recognize the face.

▶ Face Databases and Evaluation
Features
Biometric features are the information extracted from

biometric samples which can be used for comparison

with a biometric reference. For example, characteristic

measures extracted from a face photograph such as eye

distance or nose size etc. The aim of the extraction of

biometric features from a biometric sample is to
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remove superfluous information which does not con-

tribute to biometric recognition. This enables a fast

comparison and an improved biometric performance,

and may have privacy advantages.

▶Biometric Algorithms

▶Vascular Image Data Format, Standardization
F

Features vs. Templates
▶ Face Recognition, Geometric vs. Appearance-Based
Fidelity
The degree of similarity between a biometric sample

and its source. Fidelity of a sample is comprised of

individual components of fidelity attributed to each

step through which it is processed (e.g., compression).

▶Biometric Sample Quality

▶National Institute for Standards and Technology
Field of View (FOV)
Field of view (FOV) is the angular portion of visible

space which is comprised into the image region. The

FOV of the human eye is around 150�. The camera

FOV depends both on the size of the camera sensor

and the geometry of the lens. The camera focal length

determines the field of view falling within the sensor

area, thus determining also the magnification factor of

the image. A shorter camera focal length produces a

wider FOV, while a longer focal length produces a

smaller FOV.

▶ Face Device
Finger Data Interchange Format,
Standardization
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Synonyms

Encoded finger data; Fingerprint data interchange

format
Definition

Set of ISO Standards that define common formats to

encode information related to finger-based biometrics.

Those formats are defined to allow interoperability

among different vendors worldwide, and have been

developed by the international community taking

part in ISO/IEC JTC1/SC37 standardization subcom-

mittee. Those documents define not only the way

a fingerprint image has to be encoded, but also the

way a feature vector composed of ▶minutiae points

has to be stored and/or transmitted. Furthermore,

formats for the ▶ spectral data of the finger, as well

as its skeletal data are defined.
Introduction

Standardization is essential for the wide-spread adop-

tion of technologies in open mass applications. Finger-

print recognition is not only the most prominent

biometric measure, but also the biometric trait with

the largest databases and the best long-term experi-

ence. Fingerprints are used in applications such as

physical access control and digital signature creation

but also national ID card schemes and other govern-

mental projects. The need for standardization is con-

spicuous in every single area where it is not applied.

The SC37 Subcommittee from ISO/IEC JTC1 deals

with the standardization of biometrics. Among the

many aspects of its work, SC37’s Working Group 3 is

devoted to defining Interchange Data Formats for

a variety of biometric modalities. To accomplish this,
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a multipart standard is under development, covering

several biometric modalities. Such multipart standard

is known as ISO/IEC 19794. There are four parts in this

standard which cover finger-based biometrics, or what

can be better understood as fingerprint biometrics.

1. Part 2 of the Standard series, deals with the way a

minutiae-based feature vector or template has to

be coded

2. Part 3 standardizes the way to code information

referring to the spectral information of the

fingerprint

3. Part 4 determines the coding of a fingerprint raw

image and

4. Part 8 establishes a way to code a fingerprint by its

skeleton

Figure 1 shows the basic architecture of a typical

fingerprint verification system. A finger is presented to

a sensor and a raw image acquired. Image processing

techniques enhance the image quality before a feature

vector of characteristic features can be extracted. The

features are compared with a previously recorded ref-

erence data set to determine the similarity between the

two sets before the user presenting the finger is authen-

ticated. The reference data is stored in a database or on

a portable data carrier.
Finger Data Interchange Format, Standardization. Figure 1

Finger Data Interchange Format, Standardization. Figure 2

from [1].
The following subsections explain the basic char-

acteristics of each type of finger-based standard. The

image standard (Part 4) is presented first as it is the

first step in the fingerprint comparison process as

shown in the architecture above. This is followed by

the other finger based standards, each of which deals

with samples already processed.
Finger Images

As already mentioned, the way a fingerprint image is

to be coded is defined in ISO/IEC 19794-4 Inter-

national Standard [1], whose title is ‘‘Information

technology - Biometric data interchange formats -

Part 4: Finger image data.’’ The way the finger is scanned

is out of the scope of the standard, but after image

acquisition, the image shall represent a finger in upright

position, i.e., vertical and with the tip of the finger in the

upper part of the image. The way to code such an image

is represented in Fig. 2, where the top line is the first to

be stored and/or transmitted. This is in contradiction

to mathematical graphing practice but in conjunction

with typical digital image processing. For those images

that require two or more bytes per pixel intensity, the

most significant byte is stored/transmitted first, and

bytes follow most significant bit coding.
Typical Biometric Verification System.

Coding structure of a fingerprint image. Image taken
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This International Standard also includes a set of

constraints for image acquisition. It determines the

pixel aspect ratio, which shall be between 0.99 and

1.01 (horizontal/vertical sizes), as well as several

image acquisition levels, as stated in Table 1.

After the requirements for the image to be stored

or transmitted have been specified, this International

Standard details the structure of the data record refer-

ring to a finger image. Following CBEFF specifications

[2] (see entry ‘‘Common Biometric Exchange Frame-

work Formats’’), a record referring to a finger image

has the following structure (for details refer to the

last version of this International Standard [1]):

� A single fixed-length (32-byte) general record

header containing information about the overall

record, with the following fields:
Fin

Tab

Extr

Se
lev

10

20

30

31

35

40

41
– Format identifier (4 bytes with the hexadecimal

value 0x46495200) and version number (coded

in another 4 bytes)

– Record length (in bytes) including all finger

images within that record (coded in 6 bytes)

– Capture device ID (2 bytes) and Image acquisi-

tion level (2 bytes)

– Number of fingers (1 byte), Scale units used

(1 byte), and Scan resolution used (2 bytes

for horizontal and another 2 for vertical

resolution)

– Image resolution, coded the same way as the

scan resolution, and whose value shall be less

or equal to scan resolution

– Pixel depth (1 byte) and Image compression

algorithm used (coded in 1 byte)

– 2 bytes reserved for future use
ger Data Interchange Format, Standardization.

le 1 Image acquisition levels for finger biometrics.

act from Table 1 in [1 ]

tting
el

Scan resolution
(dpi)

Pixel depth
(bits)

Gray
levels

125 1 2

250 3 5

500 8 80

500 8 200

750 8 100

1,000 8 120

1,000 8 200
� A single finger record for each finger, view, multi-

finger image, or palm consisting of:
– A fixed-length (14-byte) finger header con-

taining information pertaining tothe data for

a single or multi-finger image, which gives

information about:
� Length of the finger data block (4 bytes)

� Finger/palm position (1 byte)

� Count of views (1 byte) and View number

(1 byte)

� Finger/palm image quality (1 byte) and Im-

pression type (1 byte)

� Number of pixels per horizontal line (2

bytes) and Number of horizontal lines

(2 bytes)

� 1 byte reserved for future use
– Compressed or uncompressed image data view

for a single, multi-finger, or palm image, which

has to be smaller than 43x108 bytes.
The raw finger format is used, for example, in data-

bases containing standard fingerprints. Law enforce-

ment agencies are typical applicants of the standard.

The largest fingerprint image databases are maintained

by the FBI in the United States and are encoded with

a national counterpart of this standard.
Fingerprint Minutiae

While Part 4 of the 19794 Series of Standards is dedi-

cated to raw biometric sample data, Part 2 refers to the

format in which a minutiae-based feature vector or

template has to be coded. Therefore ISO/IEC 19794-2

‘‘Information Technology - Biometric data interchange

Formats - Part 2: Finger minutiae data’’ [3] deals

with processed biometric data, ready to be sent to a

comparison block to obtain a matching score.

Finger minutiae are local point patterns present in

a fingerprint image. The comparison of these charac-

teristic features is sufficient to positively identify a

person. Sir Francis Galton first defined the features of

a fingerprint [4].

In order to reach interoperability, this International

Standard defines not only the record format, but also

the rules for fingerprint minutiae extraction. Regarding

record formats, due to the application of fingerprint

biometrics to systems based on smart cards, compact

record formats are also defined to cope with memory

and transmission speed limitations of such devices.
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Fingerprint scientists have defined more than 150

different types of minutiae [5]. Within this Standard,

minutiae types are simplified to the following: (1) ridge

ending, (2) ridge bifurcation, and (3) other. The location

of each minutiae is determined by its horizontal and

vertical position within the image. To determine such

location a coordinate system is to be defined. Figure 3

shows how such coordinate system is chosen. Granular-

ity to be taken to determine location is of one hun-

dredth of a millimetre for the normal format, while just

one tenth of a millimetre for card compact formats.

Figure 4 shows the different ways to consider

the location of a minutiae. (1) represents a Ridge

Ending, encoded as a Valley Skeleton Bifurcation

Point, (2) shows how to locate a Ridge Bifurcation,

encoded as a Ridge Skeleton Bifurcation Point, Finally

(3) illustrates how to locate a Ridge Ending encoded as

a Ridge Skeleton Endpoint. How to determine the

encoding of ridge ending actually used in a specific
Finger Data Interchange Format, Standardization. Figure 4

Finger Data Interchange Format, Standardization.

Figure 3 Coordinate System for Minutiae Location. Image

taken from [3].
dataset is a subject currently under revision in the stan-

dard. The other types of minutia have to be coded

consistent with the Standards (see details in [3]).

To define the minutiae direction, its angle has to be

determined. This Standards specifies that the angle is

obtained, increasing counter-clockwise rotation start-

ing from the horizontal axis to the right of the loca-

tion of the minutiae point. The angle is encoded in

a unsigned single byte, so the granularity is 1.40625∘

per bit (360 ∕256). Figure 4 also illustrates how the

angle is determined.

Additional information that may be included in

a minutiae-based record are cores, deltas, and ridge

crossings to neighboring minutiae.

With all these definitions, the two major format

types defined by this International Standard are:

(1) record format, and (2) card format. The structure

of the record format is summarized in the following

paragraphs and for additional details refer to the

standard [3].

� A fixed-length (24-byte) record header containing

information about the overallrecord, including

the number of fingers represented and the overall

record length in bytes:
Illu
– Format identifier (4 bytes with the hexadecimal

value 0x464D5200) and Version number (coded

in another 4 bytes)

– Record length (in bytes) including all finger

images within that record (coded in 4 bytes)

– Capture device ID (2 bytes)

– Size of the image in pixels (2 bytes for X dimen-

sion, and 2 bytes for Y dimension)

– Image resolution in pixels per centimetre

(2 bytes for X and 2 bytes for Y)

– Number of finger views included in the record

– 1 byte reserved for future use
stration of location of minutia. Image taken from [3].
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� A Single Finger record for each finger/view, con-

sisting of:
– A fixed-length (4-byte) header containing in-

formation about the data for asingle finger,

including the number of minutiae:
� Finger position (1 byte)

� View number (4 bits) and Impression type

(4 bits, to make a 1 byte in total)

� Finger quality (1 byte)

� Number of minutia (1 byte)

F
– A series of fixed-length(6-byte) minutia

descriptions:
� Minutia type (2 bits) and X location in

pixels (14 bits)

� 2 bits reserved and Y location in pixels

(14 bits)

� Minutiae angle (1 byte)

� Quality of minutiae (1 byte)
– One or more ‘‘extended’’ data areas for each

finger/view, containing optional or vendor-

specific information. It starts always with 2 bytes

which determine the length of Extended Data

Block. If this is 0x0000, no Extended Data is

included. If it has a nonnull value, then it

is followed by vendor-specific data which could

include information about ridge count, cores

and deltas, or cell information.
Regarding the card formats, the current version of

the standard allows 2 sub-formats: (1) normal format

(also referred as 5-byte minutiae), and (2) compact

format (also known as 3-byte minutiae). The way mi-

nutia are coded in each format is described below.

� Card normal format (like the record format, but

removing quality information):
– Minutia type (2 bits) and X location in pixels

(14 bits)

– 2 bits reserved and Y location in pixels (14 bits)

– Minutiae angle (1 byte)
� Card compact format:
– X coordinate (8 bits) considering a unit of

10�1mm

– Y coordinate (8 bits) considering a unit of

10�1mm

– Minutia type (2 bits) using the same coding as

with the card normal format

– Angle (6 bits) having a granularity of 360 ∕64
Another important aspect related to card formats is

that as they are intended to be used with devices with
limited memory and processing power, the number of

minutia may be restricted, and in such case, truncation

is needed. Additionally in Match-on-Card systems, to

reduce algorithm complexity, minutia may need to be

sorted in a certain way. And finally, the way data is

exchanged differs from the traditional CBEFF format.

This International Standard covers all such cases. The

reader is suggested to refer to the last version of the

Standard [3] for further details.

The minutia standard is used e.g., by the ILO (In-

ternational Labour Organization) in its seafearers

identity card and in several national ID card imple-

mentations including Thailand and Spain [6].
Spectral Data of a Fingerprint

Part 3 of the 19794 series of standards deals with a

format suitable to process fingerprints when using

morphological approaches. But as seen in additional

Fingerprint entries in this Encyclopedia, there are

other approaches to perform biometric identification

using fingerprints. Some of those approaches relate to

the spectral information of the fingerprint. Algorithms

using spectral data look at the global structure of a

finger image rather than certain local point patterns.

In such cases, 19794-2 is of no use and the only possi-

bility would be to use the whole image as stated in

19794-4, which has the inconvenience of requiring

the storage and/or transmission of a large amount of

data. This could be inconvenient if not blocking for

some applications.

In order to provide a new data format that could

increase interoperability among spectral based solu-

tions, reducing the amount of data to be used,

19794-3 has been developed under the title of ‘‘Infor-

mation technology - Biometric data interchange

formats - Part 3: Finger pattern spectral data’’ [7]. In

fact, this International Standard deals with three major

approaches in spectral based biometrics (wavelet based

approaches are not supported by this standard).

1. Quantized co-sinusoidal triplets

2. Discrete Fourier transform

3. Gabor filters

After declaring the basic requirements for the origi-

nal image in order to be considered for these algorithms

(same coordinate system as in 19794-2, 255 levels of

grey with 0 representing black and 255 being white, and
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dark colours corresponding to ridges while light pixels

corresponding to valleys), and describing all the above

mentioned technologies, the Standards focuses on the

record structure (for details refer to [7]), which is:

� A variable-length record header containing infor-

mation about the overall record, including:
– Format identifier (4 bytes with the hexadecimal

value 0x46535000) and Version number (coded

in another 4 bytes)

– Record length (in bytes) including all fingers

within that record (coded in 4 bytes)

– Number of finger records included (1 byte)

– Image resolution in pixels per centimetre (2 bytes

for X direction and 2 bytes for Ydirection)

– Number of cells (2 bytes for X direction and

2 bytes for Y direction)

– Number of pixels in cells (2 bytes for X direc-

tion and 2 bytes for Y direction)

– Number of pixels between cells centres (2 bytes

for X direction and 2 bytes for Y direction)

– SCSM (Spectral component selection method -

1 byte), which can be 0, 1, or 2. Depending on

the value of this field the following fields could

refer to type of window, standard deviation,

number of frequencies, frequencies, number of

orientations and spectral components per cell,

and bit-depths (propagation angle, wavelength,

phase, and/or magnitude)

– Bit-depth of quality score (1 byte)

– Cell quality group granularity (1 byte)

– 2 bytes reserved for future use
� A single finger record for each finger, consisting of:
– A fixed-length (6-byte) header containing in-

formation about the data for asingle finger:
Finger location (1 byte)

Impression type (1 byte)

Number of views in single finger record (1 byte)

Finger pattern quality (1 byte)

Length of finger pattern spectral data block

(2 bytes)
– A finger pattern spectral data block:
View number (1 byte)

Finger pattern spectral data

Cell quality data
– An extended data block containing vendor-

specific data, composed of block length

(2 bytes), area type code (2 bytes), area length,

and area.
As in 19794-2, this International Standard also

defines the Data Objects to be included for a card

format, with the reduction in granularity recom-

mended (for further details see [7]).

Some of the leading fingerprint verification algo-

rithms rely on spectral data or a combination of spec-

tral data and minutiae. This standard could enhance

the interoperability and performance of large scale

identification systems such as criminal or civil Auto-

matic Fingerprint Identification Systems (AFIS).
Skeletal Data of a Fingerprint

Finally 19794-8 titled ‘‘Information technology -

Biometric data interchange formats - Part 8: Finger pat-

tern skeletal data’’ [8] deals with the format for represent-

ing fingerprint images by a skeleton with ridges

represented by a sequence of lines. Skeletonization is a

standard procedure in image processing and generates a

single pixel wide skeleton of a binary image.Moreover the

start and endpoints of the skeleton ridge lines are includ-

ed as real or virtual minutiae, and the line from start to

endpoint is encoded by successive direction changes.

For minutiae location and coding, much of the

19794-2 card format is used, but here the position of

a ridge bifurcation minutiae shall be defined as the

point of forking of the skeleton of the ridge. In other

words, the point where three or more ridges intersect

is the location of the minutia. No valley representation

is accepted under this International Standard. Another

difference with 19794-2 card formats, is that in this

Standard no other-type minutiae is considered (if a

minutiae has more than three arms, like a trifurcation,

it is considered a bifurcation), and that along this

standard codes for ‘‘virtual minutiae’’ are used.

Skeleton lines are coded as polygons. Every line

starts with a minutiae, and it is followed by a chain

of direction changes (coded with the granularity stated

in the record header), until it reaches the final minu-

tiae. Several rules are defined in the standard (see [8]

for further reference).

All that information is coded in a record with the

following structure (limiting values as well as recom-

mended values can be found in [8]):

� A fixed-length (24-byte) record header containing:
– Format identifier (4 bytes with the hexadecimal

value 0x46534B00) and Version number (coded

in another 4 bytes)
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– Record length (in bytes) including all finger

images within that record (coded in 4 bytes)

– Capture device ID (2 bytes)

– Number of finger views in record (1 byte)

– Resolution of finger pattern in pixels per centi-

metre (1 byte)

– Bit depth of direction code start and stop point

coordinates (1 byte)

– Bit depth of direction code start and stop direc-

tion (1 byte)

– Bit depth of direction in direction code (1 byte)

– Step size of direction code (1 byte)

– Relative perpendicular step size (1 byte)

– Number of directions on 180∘ (1 byte)

– 2 bytes reserved for future use
� A single finger record for each finger/view, consis-

ting of:
– A fixed-length (10 bytes) header:
� View number (1 byte)

� Finger position (1 byte)

� Impression type (1 byte)

� Finger quality (1 byte)

� Skeleton image size in pixels (2 bytes for

X-direction, 2 bytes for Y-direction)

� Length of finger pattern skeletal data block

(2 bytes)
– The variable length fingerprint pattern skeletal

description:
� Length of finger pattern skeletal data

(2 bytes)

� Finger pattern skeletal data

� Length of skeleton line neighbourhood

index data (2 bytes)

� Skeleton line neighbourhood index data
– An extended data block containing the ex-

tended data block length and zero or more

extended data areas for each finger/view, defin-

ing length (2 bytes), area type code (2 bytes),

area length (2 bytes), and data.
This International Standard also defines two card

formats, a normal one and a compact one. As with

other parts, this means more limiting constraints to

code data tighter and the definition of the Data Objects

needed (for details refer to [8]).

The skeleton format is used in scientific research

[9] and by vendors, implementing Match-on-Card.
Further Steps

The fingerprint parts of ISO 19794 were published as

International Standards in 2005 and 2006. All the parts

are currently under revision. A major task in the revi-

sion process is to address some defects and include a

common header format for all the parts. Some refer-

ences and vocabulary are needed to be updated to

harmonize the relation of these standards within the

ISO standardization landscape. The finger minutia

standard ISO 19794-2 is probably the most prominent

format in this series and is most frequently used by

industry, government, and science. Interoperability

tests have shown that the current standard allows

some room for interpretation. This will be compen-

sated by an amendment to describe the location, ori-

entation, and type in more detail. Another aspect in

the current revision of the standard is to reduce the

number of format types from currently ten to a maxi-

mum of two. Experts from all continents and various

backgrounds meet on a regular basis to lay down the

future of the standards. The delegates take care of

current requirements in terms of technology and

applications.
Summary

To provide interoperability in storing and transmitting

finger-related biometric information, four standards

are already developed to define the formats needed

for raw images, minutia-based feature vectors, spectral

information, and skeletal representation of a finger-

print. Beyond that, other standards deal with confor-

mance and quality control, as well as interfaces or

performance evaluation and reporting (see related

entries below for further information).
Related Entries

▶Biometric Data Interchange Format

▶Common Biometric Exchange Framework Formats

▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of

▶ Fingerprint Recognition

▶ International Standardization of Biometrics



416F Finger Geometry, 3D
References

1. ISO/IEC: 19794-4:2005 - information technology - biometric

data interchange formats - part 4: Finger image data (2005)

2. ISO/IEC: 19785-1:2005 - information technology - common

biometric exchange formats framework - part 1: Data element

specification (2005)

3. ISO/IEC: 19794-2:2005 - information technology - biometric

data interchange formats - part 2: Finger minutiae data (2005)

4. Galton, F.: Finger Prints. Macmillan, London (Reprint: Da Capo,

New York, 1965) (1892)

5. Moenssens, A.: Fingerprint Techniques. Chilton Book Company,

London (1971)

6. Spanish-Homeland-Ministry: Spanish national electronic

identity card information portal (in spanish). http://www.dnie

lectronico.es/ (2007)

7. ISO/IEC: 19794-3:2006 - information technology - biometric

data interchange formats - part 3: Finger pattern spectral data

(2006)

8. ISO/IEC: 19794-8:2006 - information technology - biometric data

interchange formats - part 8: Finger pattern skeletal data (2006)

9. Robert Mueller, U.M.: Decision level fusion in standardized

fingerprint match-on-card. In: 1-4244-0342-1/06, ICARCV

2006, Hanoi, Vietnam (2006)
Finger Geometry, 3D

SOTIRIS MALASSIOTIS

Informatics and Telematics Institute, Center for

Research and Technology Hellas, Thessaloniki, Greece
Synonym

3D hand biometrics
Definition

Biometrics based on 3D finger geometry exploit discrim-

inatory information provided by the 3D structure of the

hand, and more specifically the fingers, as captured by

a 3D sensor. The advantages of current 3D finger

biometrics over traditional 2D hand geometry authenti-

cation techniques are improved accuracy, the ability to

work in contact free mode, and the ability to combine

with 3D face recognition using the same sensor.
Introduction

The motivation behind 3D finger geometry biometrics

is the same as with 3D face recognition. The 3D geom-

etry of the hand as captured by a 3D sensor offers

additional discriminatory information while being in-

variant to variations such as illumination or pigment

of the skin, compared with an image captured with a

plain 2D camera. The current accuracy and resolution

of 3D sensors are not adequate for capturing fine

details on the surface of the fingers such as skin wrin-

kles over the knuckles, but is sufficient to measure,

local curvature, finger circumference, or finger length.

Another motivation comes from a limitation of

current hand geometry recognition systems, that is

obtrusiveness. The user is required to put his/her

hand on a special platter with knobs or pegs that

constrain the placement of the hand on the platter.

This step greatly facilitates the process of feature ex-

traction by guaranteeing a uniform background and

hand posture. Thus it guarantees very good perfor-

mance. However, several users would find touching of

the platter unhygienic, while others would face diffi-

culty correctly placing their hands (for example chil-

dren or older people with arthritis problems). Since 3D

data can facilitate the detection of the hand and fin-

gers, even in a cluttered scene, the above constraint

may be raised and the biometric system becomes more

user friendly.

Since the placement of the hand is not a constraint,

one may then combine 3D finger geometry with 3D

face using the same 3D sensor. The user either places

his/her hand on the side of the face or in front of the

face. In the first case, face and hand biometric features

are extracted in parallel, while in the second case se-

quentially and the scores obtained are finally com-

bined. This combination has demonstrated very high

accuracy even under difficult conditions.
State-of-the-Art

3D hand geometry biometrics is a very recent research

topic and therefore, only a few results are currently

available.

The first to investigate 3D geometry of the fingers

as a biometric modality were Woodard and Flynn [1].

http://www.dnielectronico.es/
http://www.dnielectronico.es/
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They used a 3D laser scanner to capture range images

and associated color images of the back of the hand. The

users were instructed to place their palm flat against a

wall with uniform color and remove any rings. For each

subject out of 132, four images were captured in two

recording sessions one week apart. An additional session

was also performed a few months later with 86 of the

original subjects and 89 new subjects.

The authors used the color images to perform

segmentation of the hand from the background.

A combination of skin-color detection and edge detec-

tion was used. The resulting hand segmentation is used

to extract the hand silhouette from which the bound-

aries of index, middle, and ring fingers are detected.

Then for each detected finger a mask is constructed

and an associated normalized (with respect to pose)

range image is created.

For each valid pixel of the finger mask in the output

image, a ▶ surface curvature estimate is computed

with the corresponding range data. The principal cur-

vatures are estimated first by locally fitting a bicubic

Monge patch on the range data to deal with the noise

in the data. However, the number of pixels in the

neighborhood of each point that are used to fit the

patch has to be carefully selected, otherwise fine detail

on the surface may be lost. The principal curvatures are

subsequently used to compute a shape index, which is

a single measure of curvature.

The similarity between two finger surfaces may be

computed by estimating the normalized correlation

coefficient among the associated shape index images.

The average of the similarity scores obtained by the

three fingers demonstrated the best results when used

for classification.

Recognition experiments demonstrated an 95%

accuracy, falling to 85% in the case that probe and

gallery images are recorded more than one week apart.

This performance was similar with that reported by a

2D face recognition experiment. The authors managed

to cope with this decline in performance due to time

lapse by matching multiple probe images with multiple

gallery images of the same subject. Similarly, the equal

error rate obtained in verification experiments, is about

9% when a single probe image is matched against a

single gallery image and falls to 5.5% when multiple

probe and gallery images are matched.

The above results validated the assumption that 3D

finger geometry offers discriminatory information and

may provide an alternative to 2D hand geometry
recognition. However it remains unclear how such an

approach will fair against a 2D hand geometry based

system, given the high cost of 3D sensor.

‘‘The main advantage of a biometric system based

on 3D finger geometry is its ability to work in an

unobtrusive (contact-free) manner [2].’’ They propose

a biometric authentication scenario where the user

freely places his hand in front of his face with the

back of the hand visible from the 3D sensor. Although

the palm should be open with the fingers extended,

small finger bending and moderate rotation of the

hand plane with respect to the camera are allowed as

well as wearing of rings.

The acquisition of range images and quasi-

synchronous color images are achieved using a real-

time 3D sensor, which is based on the structured light

approach. Thus, data are more noisy and contain more

artifacts compared with those obtained with high-end

laser scanners. Using this setup, the authors acquired

several images of 73 subjects in two recording sessions.

For each subject, images depicting several variations in

the geometry of the hand were captured. These includ-

ed, bending of the fingers, rotation of the hand, and

presence or absence of rings (see fig. 1).

The proposed algorithm starts by segmenting the

hand from the face and torso using thresholding and

subsequently from the arm using an iterative clustering

technique. Then, the approximate center of the palm

and the orientation of the hand is detected from the

hand segmentation mask. These are used to locate the

fingers. Homocentric circular arcs are drawn around the

center of the palm with increasing radius excluding the

lower part of the circle that corresponds to the wrist.

Intersection of these arcs with the hand mask gives raise

to candidates of finger segments, which are then clus-

tered to form finger bounding polygons. This approach

avoids using the hand silhouette, which is usually noisy

and may contain discontinuities, e.g., in the presence of

rings. The initial polygon delineating each finger is

refined by exploiting the associated color image edges.

Then, for each finger two signature functions are

defined, parameterized by the 3D distance from the

finger tip computed along the ridge of each finger and

measuring cross-sectional features. Computing fea-

tures along cross-sections offers quasi- invariance to

bending. The first function corresponds to the width of

the finger in 3D, while the second corresponds to the

mean curvature of the curve that is defined by the 3D

points corresponding to the cross-section at the specific
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image in the hand geometry acquisition setup of [2].
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point. Twelve samples are uniformly computed from

each signature function and each finger giving rise to

96 measurements (the thumb was excluded) that are

used for classification. Matching between hand geom-

etry of probe and gallery images is estimated as the L1
distance between the associated measurement vectors.

Experimental results are similar with those re-

ported in [1]. Rank-1 identification rates range from
86 to 98% depending on using a single or multiple

probe images of the same subject respectively. Cor-

responding equal error rates are 5.8 and 3.5%. The

benefit of the approach in [2] is that the algorithm can

withstand moderate variations in hand geometry thus

allowing for contact free operation.

Malassiotis et. al [2] conclude that given the cur-

rent results biometric systems that exploit 3D hand

geometry would be more suitable in low security appli-

cations such as personalization of services and atten-

dance control where user-friendliness is prioritized

over accuracy. However, there is another possible ap-

plication in systems combining several biometrics. In

particular, the combination of 3D face modality with

3D finger geometry was shown to offer both high

accuracy and also be relatively unobtrusive.

Woodard et al. [3] compared the recognition per-

formance of 3D face, 3D ear, and 3D finger surface as

well as their combination. The original 93% obtained

using 3D face geometry was improved to 97% when

this was combined with the other two modalities.

Tsalakanidou et al. [4] also combined 2Dþ3D face

recognition with 3D finger geometry recognition, in

the presence of several variations in shape and appear-

ance of the face and hand. According to their applica-

tion scenario, the 3D sensor grabs first images of the

user’s face and then the user is asked to place his hand

in front of his face and another set of images is acquired.

The scores obtained using facial and hand features re-

spectively are normalized and fused to provide a single

score on which identification/verification is based. An

Equal Error Rate equal to 0.82% and a rank-1 identifi-

cation rate equal to 100% was reported for a test-set

comprised of 17,285 pairs of face and hand images of

50 subjects depicting significant variations.

The above results validate our original claim that

3D face geometry + 3D finger geometry may provide

both high accuracy and user acceptance while sharing

the same sensor for data acquisition.
Challenges and Prospects

Biometric authentication/identification using 3D fin-

ger geometry is a very recent addition in the compen-

dium of 3D biometrics. Although the potential of this

technique has been already demonstrated, several re-

search challenges have to be addressed before commer-

cial applications using this modality emerge.
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Performance of techniques based on 3D finger ge-

ometry depends muchmore on the quality of range data

than 3D face recognition. Although, some of the fine

detail on the finger surface may be captured using high-

end (and therefore very expensive) 3D scanners, this is

not the case with low-cost systems. Such detail (e.g. the

wrinkles of the skin) may be alternatively detected if

associated brightness images are used. In this case, 3D

information may be used to facilitate the localization of

the finger and knuckles and 2D images may be subse-

quently used to extract the skin folding patterns. Also,

both studies in the literature do not use the thumb

finger, which however, seems to exhibit larger variability

from subject to subject than the rest of the fingers.

Further research is also needed to address the pro-

blem of the variability in the shape and appearance

depicted on the hand images. Future techniques

should be able to deal with significant finger bending,

partial finger occlusion, and rotation of the hand with

respect to the camera and also be generic enough to

cope with different hand sizes and deformed finger due

to accident or aging.

In summary, 3D finger biometrics retain the bene-

fits of traditional 2D hand geometry biometrics espe-

cially with respect to privacy preservation, while

demonstrating similar or better performance. In addi-

tion, 3D finger biometrics may be applied with less

strict constraints on the placement of the hand and the

environment, which makes them suitable for a larger

range of low to medium security applications.

Since correlation of finger geometry features with

other discriminative features of the human body is

known to be very low, 3D finger geometry may be

efficiently combined with other biometrics in a multi-

modal system. In this case, this technology may be

applied to high security scenarios.
Related Entries

▶ 3D-Based Face Recognition

▶Hand Geometry
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Finger Pattern Spectral Data
Set of spectral components derived from a fingerprint

image that may be processed (e.g., by cropping and/or

down-sampling).

▶ Finger Data Interchange Format, Standardization
Finger Vein
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Owari-asahi City, Aichi, Japan
Definition

Finger veins are hidden under the skin where red blood

cells are flowing. In biometrics, the term vein does not

entirely correspond to the terminology of medical sci-

ence. Its network patterns are used for authenticating

the identity of a person, in which the approximately

0.3–1.0 mm thick vein is visible by ▶ near infrared

rays. In this definition, the term finger includes not

only index, middle, ring, and little fingers, but also the

thumb.
Introduction

Blood vessels are not exposed and their network pat-

terns are normally impossible to see without the

range of visible light wavelength. The approximately

0.3–1.0 mm vein which constitutes the network pat-

terns are visualized by near infrared rays. Figure 1

shows a visualized finger vein pattern image. It is well

known that hemoglobin absorbs near infrared rays

more than other substances that comprise the human



Finger Vein. Figure 1 Extracted finger vein image.

420F Finger Vein
body. Since most of the hemoglobin of human body

exists in red blood cells that are flowing inside blood

vessels, the blood vessel network patterns can be seen

as a dark area by infrared imaging systems. Vascular

network patterns inside finger of an individual are

visualized by utilizing this optical characteristic of he-

moglobin. Therefore the network patterns can be used

as a biometric modality by appropriate imaging tech-

nologies. As the diameters of arteries are as small as

approximately 1/3 of those of targeted veins in finger,

it is reasonable to assume that most of the visualized

blood vessels are veins. This is why many of vascular

biometric technologies are known as ‘‘vein’’ biometrics,

though arteries and veins are equally visualized by

infrared light and normally treated in the samemanner.

Kono et al. developed a near-infrared finger vein

reader prototype and demonstrated its effectiveness in

2000 [1], and further evaluated the performance of the

proposed biometric modality by using sample data

collected from 678 subjects and reported very positive

results in 2002 [2].

There are two major approaches to visualize vascu-

lar patterns for biometric use, namely the light pene-

tration method and the light reflection method. The

light penetration method utilizes the infrared light

transmitted through the target object, while the light

reflection method makes use of the light reflected by

the target. The light reflection method is not usually

the first choice unless it is necessary because it is

difficult to handle the reflected images that may con-

tain saturated (over-exposed) areas or texture on the

skin surface. The contrast of the images captured by

penetrating light is generally higher than that captured

by reflected light. The high contrast images result in

high accuracy of authentication because more infor-

mation to distinguish the network patterns can be
extracted from the high signal to noise ratio image.

However, the light reflection method is only a choice in

case of imaging thick target objects such as palm vein

or the back-of-the-hand vein in which near infrared

rays are not transmitted through the body. Fingers are

only parts of a human body which can be easily pre-

sented to an authentication device, and from which

clear pattern images can be captured by using ‘‘light

penetration method.’’ Therefore, finger vein biometrics

is recognized as one of the most reliable and stable

biometric modalities.

Although finger vein biometrics is one of the latest

biometric technologies, its high usability as the basis

for personal authentication has been recognized from a

medical point of view; and it has already established

both technical and statistical feasibility. In the follow-

ing sections, medical opinions describe how the finger

vein conforms to three desirable properties for

biometrics. The uniqueness of Finger Vein was also

evaluated in statistical approach.
Medical Opinions Concerning
Finger Vein Authentication
Technology

In 2006, Central Research Laboratory, Hitachi, Ltd.

(Tokyo, Japan) [3] and Hitachi-Omron Terminal Solu-

tions, Corp. (Tokyo, Japan) [4] held a series of four

Finger Vein Authentication Workshops, which was

attended by representative Japanese researchers. The

participants are experts from cardiovascular physiolo-

gy, plastic and reconstructive surgery, vascular systems

biology, molecular oncology, molecular mechanism in

blood vessel formation and angiogenesis, morphologi-

cal analysis of blood vessels, dermatology, and molec-

ular and vascular medicine.

Through these workshops, the researchers were

able to examine the imaging of finger vein authen-

tication system of Hitachi-Omron and to gain an

understanding of the authentication algorithms. The

workshops were an opportunity to obtain from

researchers several improvement medical opinions

concerning finger vein authentication technology that

are set forth below.

a) Universality
Veins and arteries are essential for circulating

oxygen and nutrients to the finger tissues, and it is
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a fact known to medical science that the approxi-

mately 0.3–1.0 mm thick vein in the skin surface

layer that is targeted for the authentication basically

exists in all people.
b) Uniqueness
F

In ontogenesis, the patterning of the vascular

network undergoes change from its initial state,

and the arteriovenous network is formed subject

to the effects of low oxygen and blood flow. This

process takes place under genetic constraints, but is

not deterministic; it includes many probabilistic

elements. Thus, there will be large individual dif-

ferences in the pattern of the vein that is used for

authentication, and its utility as the basis for per-

sonal authentication will be high.
c) Permanence
The basic pattern of the blood vessels is formed

during the fetal stage. Subsequently, due to tight

interactions between the endothelial cells and the

surrounding cells composing the blood vessels,

the approximately 0.3–1.0 mm thick blood vessel

that is targeted by the authentication maintains a

relatively stable vascular structure. In addition, the

blood vessel targeted by the authentication is as-

sured of a permanent flow of blood, and in healthy

adults it is extremely unlikely to be lost with aging.

There exists a possibility that some blood vessels

may become blocked or lost with aging in excep-

tional cases. Angiogenesis, whereby a blood vessel

is formed anew, takes place as a result of disorders

such as inflammation or tumors, but will very

rarely occur with the targeted finger vein in a

healthy body.
d) Racial/ethnic differences
No large racial or ethnic variations are known in

the patterns relevant for personal identification.
ger Vein. Figure 2 Histograms of mismatch rates compu

er and 255,530 pairs of unrelated index finger.
Uniqueness in Statistical Approach

In 2007, Yanagawa et al. demonstrated the diversity

of human finger vein patterns by conducting statisti-

cal analysis based on sample data collected from

506 subjects. They also proved the feasibility(reliabil-

ity) of using finger vein patterns for personal identi-

fication by evaluating false acceptance rates (FAR)

and false rejection rates (FRR) based on mathematical

models [5].

a) Diversity of finger vein patterns
ted
Finger vein authentication uses MisMatch Rate

(MMR) to decide whether vein patterns are identi-

cal or not. MMR is defined as

MMR ¼ total number ofmismatched pairs

total number of pixels classified into

vein in the two finger patterns

Figure 2 shows histograms of the MMR com-

puted from 1,012 (= 506 person � 2) pairs of

identical right index fingers and 255,530 (= 506 �
505) pairs of unrelated right index fingers. The

figure shows that two histograms are separated,

indicating the significant difference of vein patterns

of the right index finger between individuals. The

histograms of MMR derived from the pairs of

unrelated right index fingers are almost overlapped

with other pair combinations; a right index finger

and a right middle finger of an identical person, a

right index finger and a left index finger of an

identical person. These observations indicate that

two fingers are identical if and only if they are the

same finger in the same hand of the same person,

and all the other cases can be treated simply as

unrelated.
(MMR) from 1,012 pairs of identical right index
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b) Reliability estimation of personal identification by

mathematical models
Fin

fing

Fin

fing
The validity of our personal identification is

evaluated by two probabilities inherent to the de-

vice, the FRR and the FAR. The FRR and the FAR

were estimated by mathematical models fitting to

the MMR data. Figure 3 shows the histograms of

MMR computed from identical right index fingers

(empirical 1,012 pairs) and fitted beta-binominal

distribution, demonstrating the fitting is fairly

good. Figure 4 shows the histogram from

2,540,120 unrelated pairs (empirical). The histo-

gram and the normal distribution N(0.4859,

0.03082) shows pretty good correspondence.

Table 1 shows the estimated FRR and FAR from

the beta-binominal distribution and the normal

distribution respectively for selected values of the

cut-off points. For example, the FRR is 3.16E-6 and

the FAR is 1.31E-12 at the cut-off point of 0.270

on the table while the FRR is 1.0E-4 and the FAR

is 1.0E-6 in the official accuracy specification of
ger Vein. Figure 4 Histograms of mismatch rates (MMR) com

er (empirical) and normal distribution with mean = 0.4859 an

ger Vein. Figure 3 Histograms of mismatch rates (MMR) com

er (empirical) and Beta-Binomial distribution with m = 400, a
actual authentication products. Accordingly, finger

vein pattern itself has potential to achieve quite

high accuracy.
Summary

Today, finger vein biometrics is recognized as one of

the most reliable and secure biometric modalities and

is applied to a variety of security systems. As described

here, it has already established both of statistical feasi-

bility and its high usability as the basis for personal

authentication is recognized from the point of view of

the medical opinions. The FRR derived from the math-

ematical models fitted to the empirical histograms is

1.31E-12, while the official FAR of the current finger

vein authentication products is 1.0E-6. Accordingly,

finger vein pattern itself has the potential to achieve

quite high accuracy. Unlike conventional biometric

features such as finger print, vascular network patterns

cannot be observed without using specially designed
puted from 2,540,120 unrelated pairs of right index

d s.d. = 0.0308.

puted from 1,012 pairs of identical right index

= 8.49 and b = 94.19.
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Cut-off point FRR FAR 95% c.i. Of FAR

0.270 3.16E-06 1.31E-12 6.32E-13 2.56E-12

0.275 2.03E-06 4.10E-12 2.07E-12 7.80 E-12

0.280 1.30E-06 1.25E-11 6.41E-12 2.45 E-11

2.285 8.23E-07 3.73E-11 2.00E-11 6.96 E-11

2.290 5.20E-07 1.08E-10 5.82E-11 1.94 E-10

2.295 3.27E-07 3.07E-10 1.74E-10 5.49 E-10

0.300 2.04E-07 8.47E-10 4.84 E10 1.46 E-09

0.305 1.27E-07 2.28E-09 1.35E-10 3.85 E-09

3.310 7.86 E-08 5.97E-09 3.69E-11 9.81 E-09

Finger Vein. Figure 5 ATM equipped with a finger vein reader (Courtesy of Hitachi-Omron Terminal Solutions, Corp.).
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equipment, and thus it is extremely difficult to steal or

duplicate the biometric information. Finger vein

biometrics which has such reliable and secure features

is especially suitable to public applications, e.g., bank-

ing systems, medical systems, and passport controls.

Its banking applications (Fig. 5) remain one of the

largest and the most successful set of applications for

this state-of-the-art biometric modality; and it is

anticipated that more than a quarter of ATMs in

Japan will be equipped with finger vein readers by the

end of 2008.
Related Entries

▶ Finger Vein Feature Extraction

▶ Finger Vein Imaging

▶ Finger Vein reader

▶Hand Veins
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Synonym

Finger vein feature segmentation
Definition

Finger vein biometric algorithm is a series of software

processes to authenticate a person by using biometric

features extracted from his or her finger vein patterns.

The algorithm is typically comprised of two major

processes, namely, a finger vein feature extraction

part and a matching algorithm part.
Introduction

Finger vein feature extraction, along with finger vein

imaging technology, is a core technology in finger

vein authentication. By applying this process, a simple

▶ raw finger vein image is converted into meaningful

biometric data that can be used to identify a person.

The finger vein feature extraction is executed in both

the enrollment process and the authentication process

of a finger vein biometric system. In the enrollment

process, the extracted biometric data is used to create

template data together with the associated personal

information such as username or identification num-

bers. In the authentication process, the finger vein

feature extraction is applied to each frame of the

scanned image prior to the matching process with the

pre-registered template data.

The selection of the biometric features is dependent

on the extraction algorithm, and therefore, the features
extracted by one algorithm can be very different from

those extracted by another, even for an identical finger.

This means that a template produced by one finger

vein system may not be compatible with another.

There are multiple manufacturers who have commer-

cialized finger vein authentication systems; however,

the compatibility of finger vein templates is not guar-

anteed in many cases.
Requirements for the Finger Vein
Biometric Algorithm

Unlike other biometrics such as finger print, finger vein

patterns do not leave any trace and can only be observed

by using a purpose-made imaging device. This makes it

extremely difficult to steal or duplicate the biometric

features, which comprises one of the many reasons to

use this biometric modality. On the other hand, from

technical point of view finger vein biometrics requires

some special image processing technology that enables

the system to extract clear and stable biometric features.

Since the quality of raw images of intra-body structure is

generally very poor, a sophisticated illumination control

and image processing technology is required. In other

words, quite of lot of technical know-how is necessary

to extract high quality biometric features from such

low quality images that have a large individual variation.

Considering the variety of the know-how, it is quite

reasonable to assume that there are many implementa-

tions of finger vein biometric algorithms. The compati-

bility of the biometric information (i.e., templates)

is, however, largely dependent on the biometric algo-

rithm and, therefore, it is very important to design the

algorithm so that the template can be widely applicable

to a variety of applications.
Finger Vein Feature Extraction

As described in the previous section, the details of the

finger vein feature extraction are not publicly available

due to its secure nature as of the time of writing.

However, there are a few technical papers reported by

the leading manufacturer, Hitachi, Ltd. (Tokyo, Japan)

[1]. One of the earliest finger vein feature extraction

algorithms developed by the Central Research Labora-

tory (CRL) of Hitachi, Ltd. is briefly introduced in the

below section [2].
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The finger vein feature extraction process is as

follows.

Step 1: Set a starting point.

An initial point is set at random within the area

inside the finger.

Step 2: Set a group of candidate pixels for the next

point.

A group of candidate pixels are selected from the

neighborhood of the initial point by using a weighted

randomnumber. Considering the blood vessel paths, the

weighting coefficients are configured by experiment so

that horizontally connected pixels are more likely to be

selected than vertically or diagonally connected pixels.

Step 3: Find the darkest path

All candidate pixels selected in Step 2 are tested to

find the darkest direction. Each candidate point is

evaluated by analyzing the intensity difference between

the brightest pixel and the darkest pixel along the

intensity profile orthogonally crossing to the vector

made by the current pixel and the candidate pixel.

Step 4: Update the score

If the selected candidate pixel in Step3 has never

visited during the current pass, the score of the candi-

date point is increased and the current point is moved

to the candidate pixel. If the selected candidate pixel

has ever visited or no pixel was selected in Step 3, Step 6

can be used directly.

Step 5: Go back to Step 2

Step 6: Repeat Step 1–4 for 3,000 times.

After repeating this process for 3,000 times, a map

of the scores is created. As the above-mentioned algo-

rithm traces the bottom of the intensity profile, or in

other words, the darkest part within the area of the

finger vein network, highly-scored pixels tend to be

found in the middle of the blood vessels. Figure 1

shows the score map created by this algorithm. The

score is normalized by the factor of 255 so that the map

can be interpreted as an 8-bit greyscale image.
Finger Vein Biometric Algorithm. Figure 1 Visualised finger
CRL introduced another finger vein feature extrac-

tion algorithm in 2002 [3], which is very different from

the above algorithm.
Matching Algorithm

The matching algorithm for finger vein biometrics can

also be implemented in many ways. A matching algo-

rithm evaluated by Yanagawa et al. [4] is briefly

described below as an example.

Yanagawa et al. published one of the very few tech-

nical papers in 2007 that describe a method to evaluate

the similarity between the two finger vein patterns, in

which they proved the feasibility of using finger vein

patterns as biometric features from a statistical point of

view. The similarity index they used for the statistical

evaluation is as follows.

Pixels that consist of an extracted vein pattern are

classified into three categories, namely, VEIN, AMBIG-

UOUS, and BACKGROUND. A pair of finger vein

patterns to be evaluated is overlapped and compared

pixel-by-pixel. If a pixel belongs to VEIN in the first

pattern corresponds to a pixel belongs to BACK-

GROUND in the second pattern, the pair of pixels is

regarded to be mismatched.

The mismatch rate (MMR) is defined as:

MMR ¼
The total number of mismatched pairs

The total number of pixels classified into

VEIN in the two finger vein patterns

It is noted that MMR is not a symmetric index. Since

pixels belonging to AMBIGUOUS and BACKGROUND

in the first pattern are excluded from the calculation,

the number of mismatched pairs varies depending

on which pattern is regarded as the first pattern. Sup-

pose a pair of finger vein patterns, R and L, have
vein network (left) and its segmented pattern (right).



Finger Vein Biometric Algorithm. Figure 2 Histograms of mismatch rates computed based on the right index figures.

Finger Vein Biometric Algorithm. Figure 3 Histograms

of mismatch rates computed based on the right index

fingers and middle fingers of identical person (dark) and

those of unrelated individuals (bright).
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three corresponding pixels that are classified into

AMBIGUOUS, VEIN, BACKGROUND and AMBIG-

UOUS, VEIN, VEIN, respectively, then there are no

mismatched pairs when R is selected as the first image,

while one mismatched pair is counted when L is select

as the first image.

In order to evaluate the feasibility of using finger

vein as a biometric feature, Yanagawa et al. collected

finger vein patterns from 506 subjects (405 males and

101 females). They obtained multiple instances of

index and middle finger vein pattern from each subject

and compared them with the MMR value distributions

of identical and non-identical vein pattern pairs.

Figure 2 shows the histogram of the MMR values

calculated from the 1,012 pairs of identical right index

fingers (i.e., 506 subjects � 2) and 255,530 unrelated

pairs of right index fingers (i.e., 506 � 505). The figure

shows that peaks of the two histograms are clearly

separated, which indicates the significant inter-subject

difference of finger vein patterns.

Figure 3 shows the histograms of MMR computed

from 255,530 pairs of right middle fingers and right

index fingers from identical person (dark bars) and

255,530 pairs of unrelated right index fingers (bright

bars). The figure shows that two histograms are almost

overlapped, indicating that the intra-subject differ-

ences of finger vein pattern are not significantly larger

than inter-subject differences.

Table 1 shows the performance of MMR-based

finger vein biometrics in terms of FAR and FRR.

Yanagawa et al. estimated the FAR and the FRR based

on the fitted normal distribution and the fitted beta-

binominal distribution, respectively. They successfully

demonstrated the supreme characteristics of biometrics

by illustrating the two indices over several cut-off points
(threshold values) together with 95% confidence inter-

vals of the FAR. The figures in Table 1 are particularly

better than the publicly announced FAR and FRR values

of commercial products; at the cut-off point of 0.270 for

instance, the statistical analysis indicates that the esti-

mated FAR and FRR are as low as 1.31E-12 and 3.16E-6,

respectively. These figures are far lower than the claimed

FAR (1.0E-6) and FRR (1.0E-4) of commercial pro-

ducts, which implies that the biometric feature as such

has a very preferable characteristic that can potentially

achieve even higher accuracy.

These results strongly support the feasibility of

finger vein biometrics and imply that indices such as

MMR can effectively distinguish genuine patterns from

others by applying an appropriate threshold value. The

index described here is, however, quoted solely for the

purpose of explanation, and therefore, it does not

really represent the actual finger vein matching algo-

rithm employed by commercial products.
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Cut-off point FRR FAR 95% c.i. of FAR

0.270 3.16E-06 1.31E-12 6.32E-13 2.56E-12

0.275 2.03E-06 4.10E-12 2.07E-12 7.80E-12

0.280 1.30E-06 1.25E-11 6.41E-12 2.45E-11

0.285 8.23E-07 3.73E-11 2.00E-11 6.96E-11

0.290 5.20E-07 1.08E-10 5.82E-11 1.94E-10

0.295 3.27E-07 3.07E-10 1.74E-10 5.49E-10

0.300 2.04E-07 8.47E-10 4.84E-10 1.46E-09

0.305 1.27E-07 2.28E-09 1.35E-09 3.85E-09

0.310 7.86E-08 5.97E-09 3.69E-09 9.81E-09
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Standardization Issue

Since there are many ways of implementation for finger

vein biometric algorithm as described above, it is very

important to standardize the basic framework of the bio-

metric system in order to expand and guarantee the com-

patibility. There are many ongoing projects and activities

aiming to standardize various biometric modalities. One

of themost comprehensive andwidely-recognized groups

is the Sub Committee 37 (SC37) of the Joint Technical

Committee for Information Technology (JTC1) [5]. JTC1

is a joint project established by the International Organi-

zation for Standardization (ISO) [6] and the Interna-

tional Engineering Consortium (IEC) [7]. SC37 is

dedicated to the standardization of biometrics since

2002 and is one of the 18 active Sub Committees of the

joint project. SC37 members are all national bodies, and

there are 25 participating countries and 7 observing

countries as of October 2007. SC37 has already released

20 official standards including a standard for biometric

vascular image data published in 2007 [8].
Summary

Although finger vein biometrics is one of the latest

biometric modalities, its feature extraction algorithm

has been continuously improved since the beginning of

its fundamental research in early 1990s. The feature

extraction algorithm described in this document is

based on one of a very few academic papers reporting

the core part of the finger vein biometrics; how-

ever, it is quite possible that the feature extraction

methods employed by commercially available products

today have already been modified or totally renewed.

This continuous improvements and updates of the
algorithm are, in many cases, beneficial or even prefer-

able from a security point of view. Finger vein

biometrics is with no doubt one of the most accurate

biometric modalities available today. With its high

usability and user-acceptability, it is highly anticipated

that this new biometric technology will establish a de

facto standard of the next generation access control

system in various application fields.
Related Entries

▶ Finger Vein

▶ Finger Vein Imaging

▶ Finger Vein Reader
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Definition

A technology to visualize and capture an individual’s

finger vein network patterns.
Introduction

Blood vessels are not exposed out of the human body

and its network patterns are normally impossible to see

without the range of visible light wavelength (Retinal

blood vessels are the only exception, which can be seen

in visible light. However, it is necessary to use specially

designed devices such as ophthalmoscopy or retinal

scanner to observe the blood vessels on retina.). In

order to visualize blood vessel patterns that are hidden

under the skin, it is necessary to use appropriate imag-

ing technologies. It is well known that hemoglobin

absorbs ▶ near infrared rays more than other sub-

stances that comprise human body. Since most of the

hemoglobin in human body exists in red blood cells

that are flowing inside blood vessels, the blood vessel

network patterns can be seen as dark area by infrared

imaging systems. Finger vein pattern imaging is a

technology that utilizes this optical characteristic of
hemoglobin, by which vascular network patterns inside

the finger of an individual are visualized. The raw

images taken by using infrared lights can further be

improved by appropriate illumination control and

image processing techniques such as contrast enhance-

ment so that biometric information can be extracted.

Although the same sort of technology is widely used in

medical fields (which are sometimes referred to as opti-

cal coherence tomography or OCT), the scope of this

document is limited to its biometric applications only.

Infrared lights projected in a human body can easily

be diffused and the contrast of blood vessels and the

background is rapidly deteriorated as the infrared light

penetrates deeper into the part of the body. This is

sometimes compared to a swizzle stick put in a glass

of milk. The swizzle stick can be seen from outside when

it is close to the interior surface of the glass, however, it

becomes gradually invisible when it is moved towards

the middle of the glass due to the light diffusion. There-

fore, it is believed that the vascular network patterns

visualized by infrared illumination exist in the area that

is close to the skin. Considering the resolution of the

cameras commonly used for finger vein biometrics and

the fact that the diameters of arteries are as small as

approximately 1/3 of those of veins in finger, it is rea-

sonable to assume that most of the visualized blood

vessels are veins. This is why many of vascular biometric

technologies are known as ‘‘vein’’ biometrics, though

arteries and veins are equally visualized by infrared

light and normally treated in the same manner.
Light Source

The most commonly used light source for blood vessel

pattern imaging is infrared light emitting diodes (IR-

LEDs). The IR-LED is not a newly developed product;

they are being widely used for household appliances

such as TV remote controllers for a long time, which

proves the safety for human beings and livestock. In

the actual implementation, there are many forms of

the light source arrangements depending on the target.

Finger vein imaging systems typically require small

and oblong field of view, and therefore linear arrays

of IR-LEDs are usually preferred. On the other hand,

grid or circular light source arrangements are more

appropriate for the systems that require larger field of

view. Many of palm vein and back-of-hand biometric

systems employ this type of light source configuration.
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Illumination Control

Finger vein patterns are distinct from other biometric

features as they are inside human body and unnotice-

able. This is, of course, one of the major advantages of

the biometric modality, however, it is also a big chal-

lenge to capture a clear finger vein image. Since the

finger vein network has a three-dimensional structure,

some parts are close to the skin surface and others are

not. This makes it very difficult to obtain high and

homogeneous image contrast throughout the region of

interest. Furthermore, the thickness of finger has a

large individual variation, which results in a variety

of distances between the finger and the LED arrays.

Therefore, it is almost obvious that there is no single

perfect illumination setting that accommodates all

these variations and this is why the illumination con-

trol technology is considered to be one of the key

factors of the finger vein biometrics.

At the time of authentication process, it is virtually

impossible to obtain an image that is pixel-wise iden-

tical to the enrolled pattern due to the differences

caused by the change in environment or the position-

ing of the sample. If only one sample image is to be

matched to the template per attempt, it is likely to have

very high false rejection rate (FRR). In order to cope

with this difficulty, most of vein biometric systems

continuously capture the presented sample with sev-

eral illumination configurations. Each of the captured

vein patterns is matched to the template one by one in

real time, and the system continues this loop until the

presented sample is either accepted or rejected. There-

fore, it is very important to design the illumination

control algorithm to produce optimized images as

quickly as possible so that genuine attempt can be

processed in a short time. The details of the illumina-

tion control algorithms are, however, confidential in

most cases, and not published by any vendors at the

time of writing.
Finger Vein Pattern Imaging. Figure 1 Finger vein

imaging systems(prototype) (Courtesy of Hitachi, Ltd.).
The Imaging Methods

There are two major approaches to visualize vascular

patterns for biometric use, the light penetration meth-

od and the light reflection method. The light penetra-

tion method utilizes the infrared light transmitted

through the target object, while the light reflection

method makes use of the light reflected by the target.
The light reflection method is not usually a first choice

unless it is necessary (e.g., retinal blood vessel patterns)

because it is difficult to handle the reflected images that

may contain saturated (over-exposed) areas or texture

on the skin surface. The contrast of the images cap-

tured by penetrating light is generally higher than that

by reflected light; and therefore, most commercially

available finger vein biometric systems employ the

light penetration method.

We will focus on the finger vein imaging technolo-

gies based on the light penetration method in this essay.

There are three major implementations of the fin-

ger vein imaging system. In the following part of this

essay, the three finger vein imaging systems are briefly

reviewed in chronological order along with some

examples of its commercial products and applications.
Top-lighting Systems

Finger vein readers whose infrared light source is

placed on the other side of the camera with respect to

the finger are called top-lighting systems. Hitachi Cen-

tral Research Laboratory (Tokyo, Japan) [1] started the

research and development of finger vein biometrics in

mid-1990’s [2] and evaluated the technology by using a

prototype of this lighting system (Fig. 1). As illustrated

in Fig. 2, infrared rays are projected from the opposite

side of the infrared camera with respect to the sample

finger, which visualize the finger vein patterns on the

camera side.



Finger Vein Pattern Imaging. Figure 2 Top-lighting

system (Courtesy of Hitachi, Ltd.).

Finger Vein Pattern Imaging. Figure 3

SecuaVeinAttestor1 (Courtesy of Hitachi Information

& Control Solutions, Ltd.).
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The top-lighting imaging method has the following

features.

� Robust against environmental illumination.
The light source housing protects the camera

from unwanted ambient lights that deteriorate

the image quality. This structure makes the top-

lighting system the most robust imaging system in

terms of environmental changes.

� Stable illumination.
Finger Vein Pattern Imaging. Figure 4 Hitachi

PC-KCA100 (Courtesy of Hitachi, Ltd.).
Since the top-lighting system has only one light

source placed right behind the finger, the contrast

attenuation of the captured image is isotropic and

no special image processing is required as long as the

region of interest has enough signal-to-noise ratio.

Since this is the earliest and the most straightforward

implementation of finger vein imaging system, many

commercial models today employ this approach for

both logical and physical access control applications.

One of the earliest commercial finger vein products is a

physical access control system developed by Hitachi

Engineering Co., Ltd. (Its biometrics division was reor-

ganized into Hitachi Information and Control Solu-

tions, Ltd. in 2006 [3].) in 2002. Their product,

SecuaVeinAttestor1 employed the top-lighting system

and demonstrated very stable performance. This prod-

uct was further improved in terms of robustness in the

following year and achieved even higher accuracy com-

parable to iris recognition (Fig. 3). Figure 4 shows

a logical access control unit PC-KCA100 jointly devel-

oped by Hitachi, Ltd. (Tokyo, Japan) [4] and Hitachi

Software Engineering, Co., Ltd. (Tokyo, Japan) [5] in

2006. This product has an application programming
interface (API) that was developed based upon

▶BioAPI., which enables the biometric device to easily

communicate with many types of systems. Another

interesting example of top-lighting system was demon-

strated by Hitachi, Ltd. in 2007. It introduced a unique

automobile ignition key device (prototype) in Tokyo

Motor show 2007, which allows pre-enrolled drivers

to start the engine by presenting their fingers on

the finger vein reader embedded on the steering

wheel [6].
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Side-lighting Systems

Side-lighting systems typically have a pair of infrared

LED arrays embedded on the both sides of the pre-

sented finger. The infrared rays emitted by the light

source propagate inside the finger and some of them

reach to the infrared camera placed beneath the finger

as illustrated in Fig. 5. Figure 6 shows an example of

the side-lighting system.

This imaging method has the following features.

� Medium-sized enclosure

� User-friendly design; low psychological barrier
Finger Vein Pattern Imaging. Figure 6 Infrared LED

array (Courtesy of Hitachi-Omron Terminal Solutions,

Corp.) Infrared LEDs are colored in this picture for

visualization.

Finger Vein Pattern Imaging. Figure 5 Side-lighting

system (Courtesy of Hitachi-Omron Terminal

Solutions, Corp.).
Unlike the top-lighting systems, the presented

finger is always within the field of view of the user,

which considerably reduces psychological difficul-

ties of the user while scanning.

� High maintainability

It is easy to clean up the camera surface because no

housing covers the optical unit.

Although the side-lighting systems require very ad-

vanced image processing and illumination control tech-

nologies, it is one of the most popular implementations

that is employed by many commercial models. One of

the most widely used applications of this lighting system

is automated teller machines (ATMs). Hitachi-Omron

Terminal Solutions, Corp. (Tokyo, Japan) [7] is the only

supplier of finger vein authentication systems for

banking transactions as of 2007, who has shipped

approximately 40,000 ATMs equipped with finger

vein biometrics (Fig. 7) and enrollment units (Fig. 8)

in Japan since 2005. Hitachi-Omron has also devel-

oped a unique key management system with finger

vein authentication in 2006 (Fig. 9). Hitachi Software

Engineering, Co., Ltd. developed a compact logical

access control unit called Johmon J200 in 2004,

which employs the side-lighting system.
Bottom-lighting Systems

Bottom-lighting systems have been developed as an

answer to the growing demand for mobile applica-

tions. Typically, the bottom-lighting systems have a
Finger Vein Pattern Imaging. Figure 7 ATM equipped

with a finger vein reader (Courtesy of Hitachi-Omron

Terminal Solutions, Corp.).



Finger Vein Pattern Imaging. Figure 8 Hitachi-Omron’s

UBReader (Courtesy of Hitachi-Omron Terminal

Solutions, Corp.).

Finger Vein Pattern Imaging. Figure 9 Key management

system with a finger vein reader (Courtesy of

Hitachi-Omron Terminal Solutions, Corp.) Metal enclosure

is removed for demonstration purpose.

Finger Vein Pattern Imaging. Figure 10 Bottom-lighting

system (Courtesy of Hitachi, Ltd.).
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pair of infrared LED arrays and an infrared camera

embedded on the same surface as shown in Fig. 10.

Although the configuration of the components is

similar to the imaging systems using reflection light

such as palm vein readers, the finger has to be touched

to the LED arrays while scanning. The infrared rays

projected into both the tip and the root of the pre-

sented finger propagate inside the finger and visualize
the vascular patterns in the same manner as the side-

lighting systems. This imaging method has the follow-

ing features.

� Cost effective

� Very small in volume
Since both the light source and the camera are

embedded on the same surface, it does not require

any three-dimensional structure. This enables the

imaging system flexibly embedded to many devices

including portable devices such as laptop compu-

ters or mobile phones. The volume of Hitachi’s

prototype unit developed in 2005 [8] is as small

as 19 ml (39 mm (depth) � 34 mm (width) � 15

mm (height)), and further miniaturization is

expected in the near future.

� User-friendly design; minimum psychological

barrier
Since the bottom-lighting systems can be em-

bedded to existing hardware without changing the

original appearance of the hardware significantly,

user’s acceptability is the best among the three

systems described here. The exterior of the scan-

ning unit is quite similar to the widely used finger

print scanners and thus psychological barrier of the

user is very low.

� High maintainability
Cleaning the bottom-lighting imaging system is

as easy as wiping a flat surface. In addition, it is not

necessary to clean the system as frequent as other

two systems because it has no holes or ditches in

which dust can accumulate.

Hitachi, Ltd. released the first laptop PC equipped

with an embedded finger vein authentication module

in 2005 by using this imaging technology (Fig. 11).



Finger Vein Pattern Imaging. Figure 11

Bottom-lighting system (Hitachi Laptop PC Se210)

(Courtesy of Hitachi, Ltd.).
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Summary

As described in this essay, finger vein imaging systems

available today can be categorized into three groups:

the top-lighting systems, the bottom-lighting systems

and the side-lighting systems. Because each system has

its unique features, it is very important to choose a

suitable imaging system depending on the application.

In general, the reproducibility of imaging systems is, to

some extent, subject to environmental changes such as

ambient lightings or the conditions of subject, and

of course, none of the three imaging systems over-

viewed here are free from these constraints. In other

words, these changes can be regarded as external

(uncontrollable) parameters and imaging systems

that are robust against these parameters are generally

preferred. The performance of a biometric system can

be improved by suppressing the influence of these

uncontrollable parameters as little as possible; and it

is particularly important to select an appropriate imag-

ing system depending on the application by taking

the variety and the range of these parameters into

consideration.
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Synonyms

Finger vein scanner; Finger vein imaging device;

Finger vein authentication device
Definition

A finger vein reader is a biometric device that com-

prises at least one optical imaging unit designed to

capture finger vein patterns of an individual and a

digital signal processor that digitizes the captured fin-

ger vein patterns to be utilized as biometric features.
Introduction

Unlike conventional biometric features such as finger

print, vascular network patterns cannot be observed

without using specially designed equipment and

thus, it is extremely difficult to steal or duplicate the

biometric information. The possibility of biometric
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identification based on human finger vein patterns cap-

tured by transmitting light was indicated by Shimizu in

1992 [1]. However, it was not until Kono et al. devel-

oped a near-infrared finger vein reader prototype and

demonstrated its effectiveness in 2000 that the concept

became reality [2]. Kono et al. further evaluated the

performance of the proposed biometric modality by

using sample data collected from 678 subjects and

reported very positive results in 2002 [3]. In 2007,

Yanagawa et al. demonstrated the diversity of human

finger vein patterns by conducting statistical analysis

based on sample data collected from 506 subjects. They

also proved the feasibility of using finger vein patterns

for personal identification by evaluating false accep-

tance rates (FAR) and false rejection rates (FRR) [4].

Today, finger vein biometrics is recognized as one of

the most reliable and secure biometric modalities and

is applied to a variety of security systems.
Features of Finger Vein Modality

The advantages of finger vein biometrics are summar-

ized as below:

1. Accuracy
Finger vein biometrics is one of the most accu-

rate biometric modalities available today. A finger

vein authentication device called UBReader has

been certified as level 3 in the accuracy scale by

the US-based International Biometric Group

[5, 6]. No other biometric device has been rated at

the highest possible level, level 4. The details of the

evaluation results are reported in the Comparative

Biometric Testing (CBT) round 6 Public Report [7].
2. Usability
Finger vein biometrics can be implemented in

many forms according to the demands and require-

ments of the application. This flexibility makes it

possible to design the hardware optimized to a spe-

cific use. For example, Hitachi-Omron’s UBReader,

which was primarily designed for banking applica-

tion, demonstrated very high usability in terms of

indices such as ▶ Failure-to-Enroll Rate (FTE) or

▶Enrollment Transaction Duration in the CBTand

achieved level 3 in the usability scale of the testing.
3. Compactness/Flexibility
Since the target imaging area of a finger vein

reader is generally smaller than for other vascular
pattern biometric devices (e.g., palm vein or the

back-of-the-hand vein systems), finger vein readers

can be installed into a variety of devices flexibly.

One of the most compact finger vein readers was not

more than 19ml in volume, which made possible for

laptop PCs to embed the device without changing

their appearances. The short focus depth (i.e., the

distance between the camera and the target) makes it

easy to align the finger and, therefore, no hand-

guide or handle bars, which are sometimes necessary

for other hand vascular devices, are needed.
4. Small templates
The size of finger vein template is typically

some hundreds of bytes per finger. This means

that finger vein biometric database can be very cost-

effective because it does not require a large storage

system, comparedwith other biometrics. This feature

is also preferable for systems which store templates

on a server and transmit them upon request over a

network. Small template size makes a big difference

especially when a high-speed network is not available

or the data traffic is very high.
5. Excellent image quality
Since the raw image is the very first input from

which most biometric information is extracted, the

image quality is largely responsible for the overall

performance of the biometric system. All finger vein

readers, commercially available today, utilize near

infrared rays that are projected through the pre-

sented finger. The images captured by using this

method (known as the ‘‘light penetration method’’)

have very high contrast and little noise because most

of ridges and wrinkles on the skin are not imaged.
6. More back-up samples
Unlike most biometric systems, finger vein

biometrics allows more than two templates per

person. Even in the case when one of the enrolled

fingers gets injured and cannot be presented to the

biometric system, it is possible to operate the sys-

tem using other fingers.
The Hardware

Finger vein readers can be classified into three different

groups, depending on the device used, and execution

of the enrollment and authentication processes.

The finger vein readers in the first category do not

have an authentication algorithm on the readers which
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is known as ‘‘match-on-PC’’ readers. Instead, the au-

thentication algorithm is implemented as a computer

software and distributed together with the finger vein

reader. The software is installed to the host PC before-

hand, where the enrollment and authentication pro-

cesses are executed. Since the match-on-PC finger vein

readers do not need a powerful processor, the cost of

the hardware is relatively low compared with the other

two kinds of finger vein readers. Due to the low power

consumption, most of the match-on-PC devices can be

driven by the 5 volts power supplied through the uni-

versal serial bus (USB) interface, which contributes to

the compactness and the portability of the device. Since

the turn-around time of the authentication process is

dependent on the host PC’s CPU power and the com-

munication speed of the interface, the throughput of the

entire system may vary. Although the match-on-PC

readers are widely used for the purpose of logical access

control (e.g., PC log-in), they are increasingly coming

into use for physical access control applications.

The second category is called ‘‘match-on-device’’

finger vein readers. The match-on-device reader is

equipped with a CPU that executes both enrollment

and authentication processes inside the reader itself.

The authentication algorithm is implemented in firm-

ware and is typically encrypted when stored on a non-

volatile static memory. One of the biggest advantages of

this system is that all algorithms and data required for

biometric authentication are enclosed in a ▶ tamper-

proof casing and completely separated from the out-

side world. Since all biometric data and algorithms can

be stored inside of the finger vein reader, the risk of

hacking is minimal. Another advantage of this system

is that the match-on-device finger vein readers do not

require high-performance host PCs. In most cases, a

low-performance CPU is enough to communicate and

control the match-on-device finger vein reader, which

makes it possible to integrate cost-effective systems.

The data communications between the host PC and

the finger vein reader are limited because no biometric

data is needed to transfer and therefore no high-speed

interface/network is required. The unit price of these

readers tends to be higher than the match-on-PC read-

ers; however, the match-on-device readers can be used

for a wide range of applications as they are suitable

for both high-security systems and low-cost systems.

Typical applications of the match-on-device readers

include banking systems and physical access control

systems.
The third category is known as ▶match-on-card

finger vein readers. The authentication algorithm is

implemented as smart card application software and

securely stored onto a smart card together with bio-

metric templates. Upon the host PC’s request, the

match-on-card finger vein reader extracts the biomet-

ric feature of the presented finger and sends an authen-

tication command to the smart card together with the

features. The smart card then executes the authentica-

tion algorithm on its own CPU embedded inside and

evaluates the features transmitted by the finger vein

reader. After the smart card determines whether the

presented finger matches with the pre-enrolled tem-

plate, it transmits a response back to the host PC

through the reader. One of the benefits of using the

match-on-card system is its high security feature. Both

the authentication algorithm and the template data are

securely stored on a smart card that is inaccessible

without taking validation procedures using Secure Ap-

plication Module (SAM). Since these data is never

transmitted outside the card, the risk of template du-

plication is extremely low. From a viewpoint of system

administration, the risk management cost of the

match-on-card system can be dramatically suppressed

because the system does not need to provide protec-

tion for the template data (the card holders are respon-

sible for their own templates, instead). Though the

authentication processing time is slightly longer than

other two kinds of readers (this is because the smart

card CPUs are slower than the embedded CPUs or

PCs), it does not make much difference especially for

its primary usage, verification. For these reasons,

match-on-card finger vein systems are currently the

most popular biometric banking solution in Japan.
Security Features

Some finger vein readers have a security measure called

▶ liveness detection. It is very important for biometric

systems in general to ensure that the enrolled biometric

patterns are genuine. If a biometric device accepts any

artifact mistakenly and enroll it as a genuine template,

that can be used just like a normal key that can be used

by anyone; if this happens, the security level of the

biometric system becomes no higher than convention-

al keys and locks. In the actual applications, enrollment

procedures typically require an administrator to be

present (who will never allow users to enroll artifacts);
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however, it is still beneficial to have this security measure

because it is also used in the authentication procedure in

order to ensure that the presented sample is from a live

body. Liveness detection can be implemented by either

hardware or software (or both) and there are many

different methods to realize the functionality. The details

of the method employed by finger vein readers are,

however, not publicly available at the time of writing

due to the secure nature of the functionality.

Another security feature that some finger vein read-

ers have is the tamper-proof structure. This structure

enables the system to identify that it has been tampered

with, and in some cases, to disable itself when unautho-

rized person try to dismantle or reverse-engineer the

system. This security measure is especially important

when the biometric system is to be used by open public,

for instance, ATMs. Just like liveness detection, the

details of the tamper-proof structure are highly confi-

dential and no finger vein manufacturer discloses the

mechanism for security reasons.
Applications

� Banking transactions
Banking applications are currently the most

popular application of finger vein biometrics. The

first finger vein biometric ATM system was devel-

oped and introduced by Hitachi-Omron Terminal

Solutions, Corp. in 2005. The biometric ATM was

equipped with an open-scanning finger vein reader,

as shown in Fig. 1, and adopted by one of the largest

banks in Japan, Sumitomo Mitsui Banking Corpo-

ration (SMBC, Tokyo, Japan) [8] and later, was

widely adopted by more than 60 financial institu-

tions in Japan including Japan Post Bank Co., Ltd.

[9, 10, 11]. According to a recent survey more than

80% of Japanese financial institutions that adopted

biometric banking systems employ finger vein

biometrics [12]. It is expected that more than

40,000 ATMs in Japan will be equipped with finger

vein readers by the end of 2008, which will make up

approximately 25% of ATMs of the country.

In typical finger vein banking systems, each

account holder who wishes to have his or her bio-

metric data enrolled visits a branch of the bank in

person and enrolls two fingers at the teller counter

after prescribed personal identification procedure.

The templates are then stored in a smart card issued
by the bank, on which the matching process is

executed during the authentication process (i.e.,

‘‘match-on-card’’ technology). Since the matching

process is executed against the two templates stored

on the smart card, users can present either of the

two enrolled fingers. Many of the finger vein ATM

networks are connected to each other and the

account holders can use their biometric bankcards

at any ATM that belongs to the participating finan-

cial institutions.

� Door access control
Door access control is another popular applica-

tion of the finger vein biometrics. The first com-

mercial application of the finger vein biometrics

was a door access control system called SecuaVei-

nAttestor1 developed by Hitachi Engineering Co.,

Ltd. in 2002. (Please note that Hitachi Engineering

Co., Ltd. reorganized its biometrics division into

Hitachi Information and Control Solutions [13],

Ltd. in 2006.) The door access control system is

equipped with a ten-key pad, with which users type

his or her ID number so that it can execute one-to-

one matching (verification). It can also be used

with proximity cards, which allow users to unlock

the door without typing their ID numbers. In

addition, a biometric door access control system

has been developed that works with electric locks

[14, 15]. A prototype automobile entry system

using finger vein biometrics was demonstrated

in the Tokyo Motor Show in 2005, which enables

pre-registered users unlock the door just by holding

the door handle (Fig. 2).
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� Logical access control
Logical access control is also a popular and

widely used application. Since host computers

(PCs) are normally equipped with a CPU powerful

enough to execute the matching process in real

time, many finger vein readers for this application

employ the match-on-PC architecture. Hitachi,

Ltd. and Hitachi Software Engineering (Tokyo,

Japan) [16] jointly developed a very compact finger

vein reader for PC called PC-KCA100 in 2006. This

match-on-PC finger vein reader has an application

programming interface (API) based on the widely

recognized international standard BioAPI 2.0,

which enables it to easily communicate with many

types of systems. The power consumption of PC-

KCA100 is so small (less than 2.5 watts) that it can

be driven by the power supplied by the USB inter-

face only.

� Other applications
Amano Corporation (Kanagawa, Japan) [17]

developed the first ‘‘time and attendance’’ termi-

nal equipped with a finger vein reader called

AGX250AV in 2007. This innovative terminal can

store up to 1000 finger vein templates and authen-

ticate the users without using an ID card. In addi-

tion to the convenience, AGX250AV eliminates

inappropriate attendance records by impostors

(this is known as ‘‘buddy punching’’), which dra-

matically increases the reliability of the time in-

formation system. Alpha Locker System Co., Ltd.

(Kanagawa, Japan) [18] developed the first finger

vein biometric locker FB-BM in 2007. The biomet-

ric locker, which is aimed for public use, has some

tens of doors that can be accessible by presenting a

finger. FB-BM is capable of identifying a pre-

enrolled finger by using one-to-many matching

algorithm and does not require the users to specify

which door to open before presenting their fingers.
Summary

Although finger vein biometrics is one of the latest

biometric technologies, it has already established both

technical and statistical feasibility. Finger vein readers

have been successfully applied to a growing array of

applications such as time and attendance or physical

access control systems. Its banking applications remain

one of the largest and the most successful set of appli-

cations for this state-of-the-art biometric modality;

and it is anticipated that more than a quarter of

ATMs in Japan will be equipped with finger vein read-

ers by the end of 2008. Some financial institutions who

adopted other hand vascular biometrics started to

modify their systems to accept finger vein biometric

data, or even replace their systems with finger vein

readers. This trend is expected to continue as the

number of finger vein readers increase, and it is very

likely for the biometric technology to set a new stan-

dard in security applications in the very near future.

Related Entries

▶ Finger Vein

▶ Finger Vein Feature Extraction

▶ Finger Vein Imaging
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Synonyms

Fingerprint indexing; Fingerprint pre-matching; Finger-

print retrieval
Definition

Fingerprint classification is a procedure in which fin-

gerprints are grouped in a consistent and reliable way,

such that different impressions of a same finger fall

into a same group. It can be viewed as a coarse-level

pre-matching procedure so that a query fingerprint

needs to be further compared with only a smaller

subset of fingerprints in the database belonging to the

same group. It is often necessary to integrate a classifi-

cation module into a fingerprint identification system

to speed up the database search. A database can be

partitioned into ▶ human-interpretable fingerprint

classes based on Galton–Henry scheme or into

▶machine-generated fingerprint classes.
Introduction

A fingerprint recognition system captures a user’s fin-

gerprint and compares it with the information stored

in a database to establish or to authenticate his/her

identity. If an identity is claimed, the system compares

the query fingerprint only with the template

corresponding to this identity stored in the database.

This one-to-one matching process is called fingerprint

verification. If no identity is claimed, the system needs

to compare the query fingerprint with all templates
stored in the database to establish the identity. This

one-to-many matching process is called fingerprint

identification. The extension of the one-to-one match-

ing of a verification system to the one-to-many match-

ing of an identification system increases the possibility

of false positive matching. Comparing to the verifica-

tion performance, both accuracy and speed may deteri-

orate significantly if a verification algorithm is naively

extended to solve an identification problem. The per-

formance deterioration could be very serious for large-

scale identification systems as it is directly proportional

to the number of fingerprints in the database [1]. This

problem can be alleviated by reducing the search space

of exact matching. Fingerprint classification, indexing,

or retrieval techniques facilitate the reduction of the

search space. They can be viewed as a coarse-level pre-

matching process before further exact matching in an

identification system. A query fingerprint is first com-

pared to prototypes of the pre-specified classes, bins or

clusters to find its class membership. Then, it is only

necessary to compare the query fingerprint exactly

with a subset of the database that has the same class

membership. For example, if a database is partitioned

into ten groups, and a query fingerprint is matched to

two of the ten prototypes, then the identification sys-

tem only needs to search two of the ten groups of the

database for exact matching. This reduces the search

space by fivefold if fingerprints are uniformly

distributed in the ten groups.

The first rigorous scientific study on fingerprint clas-

sification was made by Sir Francis Galton in the late

1880s [2]. Classification was introduced as a means of

indexing fingerprints to speed up the search in a data-

base. Ten years late, Edward Henry refined

Galton’s work and introduced the concept of finger-

print ‘‘core’’ and ‘‘delta’’ points for fingerprint classifi-

cation [3]. Figure 1 shows the five most common

classes of the Galton–Henry classification scheme

where the core and delta points and the class names are

shown. Henry’s classification scheme constitutes the

basis for most modern classification schemes. Most law

enforcement agencies worldwide currently employ some

variants of this Galton–Henry classification scheme. Al-

though Galton–Henry scheme has some advantages,

such as human-interpretable and rigid segmentation of

a database, only a limited number of classes are applica-

ble to the automated system. For example, most auto-

mated systems [4–8] can only classify fingerprints into

five classes as shown in Fig. 1. Moreover, fingerprints



Fingerprint Classification. Figure 1 Six sample fingerprints from the five commonly used fingerprint classes

(arch, tented arch, left loop, right loop, and whorl) under the Galton–Henry classification scheme where two

whorl fingerprints are shown (a plain whorl and a twin loop whorl). Singular points of the fingerprints, called core and

delta, are marked as filled circles and triangles, respectively. Note that fingerprints of an arch class have neither core

nor delta.
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are not evenly distributed in these classes and there are

some ambiguous fingerprints that cannot be reliably

classified even by human experts. Therefore, Galton–

Henry scheme that partitions the database into

human-interpretable fingerprint classes is not immune

to errors and does not offer much selectivity for fin-

gerprint searching in large databases.

In fact, it is not obligatory for an automated system

to partition the database into human-interpretable fin-

gerprint classes. In automatic fingerprint identification

systems (AFIS), the objective of the classification is to

reduce the search space. This objective can be accom-

plished by partitioning the database into machine-

generated fingerprint classes in feature space as long as

the classification is consistent and reliable. For example,

some fingerprint index techniques [9, 10] can reduce

the search space more efficiently than the Galton–

Henry scheme. Continuous classification techni-

ques [1, 11, 12] do not pre-classify the database, but
represent each fingerprint with a numerical feature

vector. Given a query fingerprint, a class is formed by

retrieving a portion of fingerprints from database

whose feature vectors are close to that of the query

fingerprint. Although these techniques can classify fin-

gerprints into large number of classes, a query finger-

print needs to be compared with all fingerprints in the

database, which could be time consuming for a large

database. This problem can be circumvented

by incorporating data clustering techniques in the

▶fingerprint retrieval framework [12, 13].
Feature Extraction for Classification

Not all measurements of a fingerprint image remain

invariant for a given individual over the time of cap-

ture and can be used to discriminate between identi-

ties. The first step of fingerprint classification is to find
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salient features that have low intra-class variation and

high inter-class variation. Fingerprint image is an ori-

ented texture pattern that contains ridges separated by

valleys and exhibits two levels of feature as shown in

Fig. 2. At the global level, the orientation field and the

ridge frequency are two primitive and fundamental

features. At the fine local level, the most prominent

characteristics are the minutia points, where a ridge

terminates or separates into two ridges.

An orientation field shown in Fig. 2b of a finger-

print shown in Fig. 2a contains information about the

local dominant orientations of fingerprint ridges, from

which some other features can be derived such as

singular points and dominant ridge line flow as

shown in Fig. 2. The dominant ridge flow is repre-

sented by a set of curves running parallel to the ridges

lines but not necessarily coinciding with ridges and

valleys. There are two types of singular points: core

and delta points. A core point is the turning point of an

inner-most ridge and a delta point is a place where two

ridges running side by side diverge. Orientation field,

dominant ridge flow, and singular points are useful

features for classification. A local ridge frequency is

the number of ridges per unit length along a
Fingerprint Classification. Figure 2 A fingerprint image and

of fingerprint local orientations is represented by short lines in

filled circles and triangles, respectively. Two examples of ridge

enclosed by circles and squares in (a), respectively. An example

dominant ridge flow curves that can represent the Galton–Hen
hypothetical segment orthogonal to the local ridge

orientation. Its’ inverse is the local ridge distance as

shown in Fig. 2a. Although the local ridge distance

varies across different fingers, it is difficult to serve as

a reliable feature due to its high within-finger variation

caused by the discontinuity of ridges and valleys and

various unfavorable skin and imaging conditions.

However, the average ridge distance over a fingerprint

shows a stable and reliable feature and is employed in

some approaches [12, 13].

Minutia points as shown in Fig. 2a are in general

stable and robust to fingerprint impression conditions.

They often serve as discriminative features for exact

matching in most automatic fingerprint recognition

systems. However, some fingerprint indexing appro-

aches [9, 10] also use minutiae for coarse level finger-

print search. Another type of feature is the filter

response of fingerprint image. Gabor filters are ori-

ented band-pass filter with adjustable frequency,

orientation, and bandwidth parameters. The responses

of Gabor filters capture information of fingerprint

local orientation, ridge frequency, and ridge disconti-

nuity and hence can be used for both coarse level

classification [5] and exact matching.
its feature representation. The orientation field consisting

(b). Core and delta points are marked in both (a) and (b) by

ending and ridge bifurcation, called minutia points, are

of local ridge distance is shown by two arrows in (a). Three

ry classes (here: right loop) are shown in both (a) and (b).
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Classification Under Galton–Henry
Scheme

Over the last four decades, many techniques have

been developed for the automatic classification of fin-

gerprints under Galton–Henry scheme, which can be

coarsely assigned to one of these categories: rule-based,

syntactic, structural, statistical and other approaches.

While rule-based, syntactic and structural approaches

are mainly used to partition the database into the

human-interpretable fingerprint classes defined by

Galton–Henry Scheme, statistical approaches are able

to classify fingerprints into compact clusters in feature

space.

The rule-based approaches codify the human

expert knowledge of manual classification such as the

singularity and the geometrical shape of ridge lines. It

is not difficult to see from Figs.1 and 2 that the five

human-interpretable fingerprint classes can be deter-

mined by the number and location of the singular

points plus some local ridge orientations. Fingerprints

with neither core nor delta points are classified as arch.

Whorls (plain whorl and twin loop whorl) have one

or two cores and two deltas. Loops and tented arch

contain only one core and one delta. Tented arch is

discriminated from loops by examining the local

orientations lying along the line connecting the core

and delta points. The difference between these local

orientations and the slope of the line is much smaller

for a tented arch than loops. Left and right loops are

distinguished by examining the local orientations

around the core point with respect to the slope of the

line [6]. Although a rule-based approach is simple and

work well on rolled fingerprint with high image qual-

ity, robust and consistent detection of singular points

in a poor quality fingerprint remains a difficult task.

Thus, the rule-based approaches are in general sensi-

tive to noise and cannot work on the partial fingerprint

where the delta point is often missing.

A syntactic method represents a fingerprint by a

sentence of a language extracted from the ridge flow or

orientation field. For example, the three dominant

ridge flow curves in Fig. 2 show the typical pattern of

right loop. It is not difficult to see from Figs.1 and 2

that, in general, the five human-interpretable finger-

print classes can be distinguished by such dominant

ridge flow curves. In the syntactic approaches, a gram-

mar is defined for each fingerprint class to build up

sentences. Classification is performed by determining
which grammar most likely generates the sentence

extracted from a query fingerprint. In general, syntac-

tic methods tend to be robust in the presence of image

noise but often require very complex grammars to

struggle against the large intra-class and small inter-

class variations. Complex grammars often result in

unstable classification.

The structural approaches organize low-level

features into higher-level structure. One approach

partitions the orientation field into connected regions

characterized by homogeneous local orientations [11].

For example, it is not difficult to identify some homo-

geneous orientation regions from the orientation field

shown in Fig. 2b. A relational graph that shows the

relations among these regions of a fingerprint contains

discriminative information for classification. An inex-

act graph matching technique is exploited to compare

the relational graphs with class-prototypes. As a robust

and consistent partition of orientation field is not an

easy task, a template-based matching is developed

to guide the partitioning [11]. Another approach

converts the two-dimensional fingerprint structure

into one-dimensional sequence and exploits hidden

Markov model for classification [8]. A set of horizontal

lines across the fingerprint is used to extract a sequence

of features. It captures information about the local

orientations and ridge distances and thus has higher

discrimination power than the orientation field alone.

Since the structural approaches rely on global struc-

tural information, they can work on noisy images and

are able to deal with partial fingerprints where some

singular points are not available.

Statistical approaches extract a fix-size numerical

feature vector from a fingerprint and exploit statistical

classifiers, such as k-nearest neighbor classifiers, sup-

port vector machines and artificial neural networks.

The feature vector can be constructed based on the

orientation field [4, 11, 12] or the responses of Gabor

filters [5]. As features extracted from different finger-

print regions show different discriminating power,

some weighting schemes [4, 11, 12] or non-uniform

spacing techniques [5, 13] are developed to put higher

weights in more discriminative regions of fingerprint.

Karhunen–Loève (KL) transform and multi-space KL

(MKL) transform [14] are also applied to reduce the

dimensionality of feature vector. Statistical classifiers

in general need to be trained with a fingerprint data-

base. As Galton–Henry scheme defines the human-

interpretable fingerprint classes rather than the natural
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clusters of fingerprints in feature space, supervised

training using fingerprint samples with known class

labels is often applied. On the other hand, statistical

approaches are able to classify fingerprints far beyond

the Galton–Henry scheme into much more classes.
F

Classification with Machine-Generated
Classes

The Galton–Henry Scheme does not offer much selec-

tivity for fingerprint searching in large databases. Most

automated systems [4–8] can only classify fingerprints

into the five classes shown in Fig. 1 and the probabil-

ities of the five classes are approximately 0.037, 0.029,

0.338, 0.317, and 0.279 for the arch, tented arch,

left loop, right loop, and whorl, respectively [15].

The uneven distribution of these human-interpretable

fingerprint classes further lowers the classification

efficiency. In fact, for the application of the automated

identification, it is often not obligatory to partition the

database into human-interpretable fingerprint classes.

Any classification scheme is in principle workable so

long as different impressions of a same finger consis-

tently fall into a same class. Instead of grouping finger-

prints based on the visual appearance of fingerprint

images, we can partition the database in the feature

space into the machine-generated fingerprint classes,

in the hope that more classes can be formed. However,

there are always fingerprints located near the class

boundaries regardless of how well the database is par-

titioned. These fingerprints are likely misclassified due

to the large variations of different impressions of a

same finger. To alleviate this problem, fingerprints are

not pre-classified, but associated with numerical fea-

ture vectors. Given a query fingerprint, a fingerprint

class is then formed by retrieving a portion of finger-

prints from database whose feature vectors are similar

or have small distance to that of the query fingerprint.

Hence, this scheme is also called ‘‘continuous classifi-

cation’’ [1, 11, 12].

Orientation field is often used to construct

the numerical feature vector consisting of local orienta-

tions [4, 11–13]. Note that an orientation angle y is a

periodic variable with a period of 180∘ rather than

360∘ and has discontinuity at �90∘ or 0∘ and 180∘.

The smallest and the largest angles in a period do not

refer to two orientations far away but rather close to

each other. The distance between two orientations
yp and yq cannot be naively measured by jyp�yq j ,
but rather by min( jyp�yq j ,180∘ �jyp�yq j). Thus,
the distance between two feature vectors cannot be

computed by simple arithmetic such as Euclidean

distance. To simplify the distance computation, an

orientation angle y is decomposed into two compo-

nent, cos(2y) and sin(2y) [1, 11, 14] so that the simi-

larity of two fingerprints can be measured by the

convenient dot product of the two feature vectors.

This also enables to put weights on different orienta-

tions, for example, r[cos(2y),sin(2y)], where r is the

weight of orientation y. In fact, the similarity of two

feature vectors can be measured by the consistency of

the orientation differences. Thus, a similarity measure

between two feature vectors Op ¼ ðyp1; yp2; :::; ypk ; :::Þ
and Oq ¼ ðyq1; yq2; :::; yqk; :::Þ is defined by j∑k rk exp

[2j(yk
p�yk

q)] j ∕ ∑k rk, where rk are weights, exp[	] is a
complex exponential function and j 	 j is a magnitude

operator [12, 13]. Besides the orientation field,

the average ridge distance over the fingerprint is

also used as an auxiliary feature in some approaches

[12, 13].

Given a query fingerprint, a fingerprint class is

formed by retrieving a number of fingerprints from

the database whose feature vectors are nearest to that

of the query fingerprint. Depending on application

scenarios, different fingerprint retrieval strategies can

be applied, such as a fixed distance threshold, or a fixed

percentage of fingerprints in database to be retrieved,

or some combination of the both [12]. In an identifi-

cation system, fingerprint retrieval and exact matching

can be integrated so that the retrieval threshold

increases from a small value until the query fingerprint

is matched with one of the retrieved templates by a

matching algorithm. The threshold can increase by

a fixed step or based on a fixed number of newly

retrieved fingerprints. The incorporation of matching

in the fingerprint retrieval may greatly improve the

retrieval performance if a good matching algorithm is

applied [1, 11, 12].

The continuous classification in general needs to

compare the feature vector of a query fingerprint with

those of all fingerprints in the database. The time

consumption of fingerprint retrieval thus directly

depends on the database size. For large database, the

continuous classification could be time consuming. To

circumvent the one-by-one exhausting comparisons of

a query fingerprint with all templates, database is par-

titioned into clusters and hence the query fingerprint
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only needs to be compared with the cluster prototypes

[12, 13]. Since in general there are always some finger-

prints near the cluster boundaries regardless of how

well the clusters are formed, it is crucial to retrieve,

instead of one, a few clusters. For the application of

automated identification, this clustering based classifi-

cation scheme is comparable to the Galton–Henry

scheme in terms of the search speed that is indepen-

dent to the database size. But the former has potential

to achieve better classification accuracy and efficiency.

Fingerprint database indexing [9, 10] is a closely

related problem to this classification scheme. Different

from the clustering based classification scheme, how-

ever, fingerprint indexing approaches [9, 10] utilize

minutia points that most automated fingerprint

matching algorithms rely on for the exact fingerprint

comparison.
Classification Performance

The performance of a fingerprint classification system is

usually measured in terms of accuracy or error

rate, efficiency or penetration rate, and speed or compu-

tational complexity. The measurements of these perfor-

mance indicators could be quite different on different

fingerprint databases. Therefore, the performance com-

parison of different classification algorithms should be

based on the same database. The NIST (National Insti-

tute for Standards and Technology) Special Database 4

is the most often used database for the classification

performance evaluation. It contains 2,000 fingerprint

pairs, uniformly distributed in the five Galton–Henry

classes (see Fig. 1). Some approaches are tested on a

reduced set (called Set 2), containing 1,204 fingerprints

extracted from the database according to the real dis-

tribution of fingerprints.

The error rate is computed as the ratio of the

number of misclassified fingerprints to the total num-

ber of samples in the test set. For a Galton–Henry

classification system, a fingerprint is misclassified if it

is placed in a class different from the human assigned

one as the true class membership of a fingerprint is

determined by human experts. For a system that is

based on the machine-generated fingerprint classes, a

query fingerprint is misclassified if the retrieved subset

from database contains no fingerprint originating from

the same finger as that of the query fingerprint.

The error rate of a classification system in general
should be reported as a function of the penetration

rate that is a performance indicator of the classification

efficiency.

The classification efficiency is measured by the

penetration rate defined as the average ratio of the

number of fingerprints in a class to the total number

of samples in the database [1, 11, 12]. If qi represents

the ratio of the number of fingerprints in class i to the

total number of samples in database and pi is the class

occurrence probability, the penetration rate is calculat-

ed by ∑i pi qi. For example, for the five Galton–Henry

classes with the occurrence probabilities of 0.037,

0.029, 0.338, 0.317, and 0.279, respectively, the pene-

tration rate of a error free classifier (qi ¼ pi) is 0.2948,

which lies between the penetration rates of 0.25 and

0.3333 for the four and three equal-sized classes,

respectively.

Figure 3 illustrates the tradeoff between the classi-

fication error rate and the penetration rate of three

techniques tested on two data sets. Obviously, lower

classification error rate can be achieved at higher pen-

etration rate. As higher classification accuracy and

efficiency are measured by lower error rate and lower

penetration rate, respectively, a lower curve indicates

a better classification performance. Table 1 shows the

classification results of some Galton–Henry scheme

based approaches (the first seven rows) and the

clustering based approach (the last two rows). All

results are obtained from NIST Special Database 4.

Some approaches are tested on the Set 2 and some

approaches are tested on the second half of the data-

base because they use the first half of the database to

train their programs. Classification performance on

the real distributed fingerprints is also resembled by

the ‘‘weighted classes’’ shown in the third and the fifth

columns. Note that Fig. 3 and Table 1 do not serve as a

direct comparison between different algorithms due to

different experimental settings and rate calculations.

More information about the classification perfor-

mances of these approaches can be found in the re-

spective references [4–8, 10–12, 14].
Summary

The development of automatic fingerprint identifica-

tion system for large database is a challenging task due

to both accuracy and speed issues. Fingerprint classifi-

cation as a tool to narrow down the searching space of



Fingerprint Classification. Table 1 Classification error rates in % on NIST Special Database 4 of some Galton–Henry

scheme based approaches (the first seven rows) and the clustering based approach (the last two rows)

Source
Five classes

Five weighted
classes Four classes

Four weighted
classes

Test setP.R. = 20% P.R. = 29.5% P.R. = 28% P.R. = 29.7%

Candela et al. [4] – – 11.4 6.1 Second half

Karu and Jain [6] 14.6 11.9 8.6 9.4 Whole

Jain et al. [5] 10 7.0 5.2 – Second half

Cappelli et al. [11] – 12.9 – – Set 2

Cappelli et al. [14] 7.9 6.5 5.5 – Second half

Senior [8] – – – 5.1 Second half

Park and Park [7] 9.3 – 6.0 – Whole

Jiang et al. [12] 5.3 3.3 3.5 3.2 Whole

Jiang et al. [12] 4.7 2.9 3.2 2.8 Set 2

The penetration rate is shown by the value of P.R. In the columns of ‘‘weighted classes’’, error rates of different classes are weighted by

the class occurrence probabilities in the calculation of the total error rate

Fingerprint Classification. Figure 3 Classification error rate against penetration rate: (a) approach A in [ 11] and B

in [12] tested on the the NIST Special Database 4 Set 2 containing 1,204 fingerprint pairs; (b) approach B in [12] and C in

[10] tested on the the second half of the NIST Special Database 4 containing 1,000 fingerprint pairs.
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exact matching can alleviate these difficulties. A lot of

different techniques have been developed to automate

the Galton–Henry classification scheme, thanks to its

human-interpretability and rigid segmentation of a

database. However, the Galton–Henry classifica-

tion scheme that partitions the database into human-

interpretable fingerprint classes does not reduce the

search space significantly. The database partition

based on the machine-generated fingerprint classes

seems to be a more promising alternative for efficient

reduction of the search space. For a classification
system that requires high accuracy, a fingerprint rejec-

tion engine can be applied to exclude poor quality

fingerprints at a price of lower classification efficiency.

Further research efforts are necessary to improve the

classification performance.
Related Entries

▶ Fingerprint Features

▶ Fingerprint Indexing
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Synonym

Fingerprint Image Compression
Definition

Image files can be reduced in size by exploiting either

more optimized data representation and not compro-

mising the faithful recovery of the source image -

lossless compression, or permitting recovery to within

some distortion criteria - lossy compression. Finger-

print images are relatively large detailed images, and

their compression can alleviate operational problems

of transmission and storage.
Introduction

Fingerprint images, whether prints obtained directly

from live subjects or forensically recovered latents, are

normally recorded at 500 dots or pixels per inch (ppi)

resolution with an 8-bit grayscale, though there is an

increasing tendency to use a higher resolution of 1,000

ppi that permits accurate rendering of individual sweat

pores along the ridge lines. A single digit print has a

minimum area of about 20 mm� 15 mm, which yields

a raw image of about 120 kB; while a tenprint record

card (full set of individual slaps, rolls, and palm prints)

requires several 10 **MB of storage. As national Auto-

matic Fingerprint Identification Systems (AFISs) can

contain tens of millions of individual record cards,

storage requirements can be easily in excess of 100 TB

[1]. It was the rapid rise in storage requirements for

developing AFIS installations that drove the need

for effective compression of reference fingerprint

images. With the availability of low-cost, very high-

capacity mass memory, this requirement may not be so

clear today as it was in the early 1990s. Perhaps of

greater importance is the need to transmit, over re-

stricted bandwidth channels, both reference prints and

latents recovered from crime and other scenes to remote
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locations. Clearly, the transfer of images to a remote

AFIS or between AFISs requires agreed standards for

image compression that do not adversely affect the

usage of fingerprints as a reliable and robust biometric.

Mainstream image compression aims to meet both

the requirements of reducing storage requirements and

enabling faster transmission. Significant compression

is possible due to the limited acuity of the human

visual system especially our low sensitivity in detecting

low- contrast spatially-fine detail, the limited spatial

resolution of electronic displays and some printing

processes, and that humans are often tolerant of

some degree of visible distortion. The normal image

compression standards have been developed (1) to

provide satisfactory reductions in memory require-

ments for all types of scenes, whereas fingerprints are

a very restricted type of image; and (2) to provide an

acceptable viewing experience for a viewer, whereas

fingerprint image may be studied in great detail by an

expert examiner and may be submitted to extensive

automatic processing on AFIS systems.
Fingerprint Image Standards

The typical ridge-valley period is approximately 500 mm
with width of the ridge varying from about 100 - 300

mm. So a minimum image sampling frequency of

200–300 ppi would be sufficient to record unambigu-

ously the friction skin details including local features or

minutiae. FBI-compliant fingerprint scanners, and the

resultant images, are specified at 500 ppi. The grey-

scale resolution of some commercial fingerprint scan-

ners is limited to only 2–3 bits though there is a general

recognition that simple binary images, that is 1 bit

deep, are unsatisfactory. For images to have the appear-

ance of a continuous grey-scale approximately a mini-

mum of 100 discrete levels are required, so current

standards specify 8 bit or 1 byte deep grey- scale reso-

lution (i.e., 256 possible levels). Sweat pores are smaller

in diameter than a ridge width with an effective diam-

eter that depends on whether the pore is open or

closed. For the capture of pore structures, an image

resolution of 1,000 ppi has been proposed [2] and is

becoming to be accepted by the fingerprint community.

These standards are embodied in current national and

international standards for the data formats for the

interchange of fingerprint information. These stan-

dards also recommend that the overall size of an
image should range from 406 � 381 mm (800 � 750

pixels) for a single digit to 1,397 � 2,032 mm (2,750 �
4,000 pixels) for a complete palm print. This translates

to image sizes ranging from about 0.5 MB to 10.5 MB

for 500 ppi images and, of course, four times larger for

1,000 ppi images.
Image Compression

Image compression can be delineated into lossless and

lossy coding schemes. The former referring to an

encoding process that permits the original image to

be retrieved without any degradation. Methods include

Run-Length-Encoding where a consecutive row of

three or more pixels with identical grey-scale or color

values are represented by a two-byte pair. This forms

part of several well-known image file standards such as

TIFF (Tagged Image Format File) and PCX (PC Paint-

brush Exchange). Another approach utilizes entropy

coding which assigns codes to grey-scale or color

values so that code lengths match with the inverse

probabilities of these values. Reductions in storage

requirements are usually very modest – typically less

than 2:1 compression – andwill not be discussed further.

However, some AFIS installations do employ lossless

compression for their archived reference images.

Lossy compression means that it is possible only to

recover the original image to within some distortion

criteria. The normal criterion for the acceptability is

based on the non-visibility of coding artifacts under

normal viewing conditions or, at least, the acceptability

of these artifacts. For fingerprint images, the criteria

need to include the absence of any artifacts that could

subsequently interfere with future processing and fea-

ture recognition – either by AFIS algorithms or by a

human expert. With inappropriate compression, it is

more likely that legitimate queries will not be matched

that is the FNMR or FRR, depending on the applica-

tion, will increase. Several approaches have been ex-

plored for lossy compression but the dominant

technique is based upon transforming an image from

the spatial domain to a second domain which is based

on spatial frequencies. Such an approach exploits the

non-random distribution of the spatial frequencies in

the localized objects that make up an image and the

non-uniform sensitivity to differing frequencies by our

visual system. The basic structure of a transform-based

image coder is illustrated in Fig. 1. The decoder, which



Fingerprint Compression. Figure 1 Overall structure of generic transform-based image coder.

448F Fingerprint Compression
recovers the best approximation of the original image

from the transformed one, is essentially the reverse

process. The source encoder employs a (usually) linear

transform such as the Discrete Fourier Transform,

Discrete Cosine Transform (DCT) or Discrete Wavelet

Transform (DWT) to convert the entire image or some

region of it into the different representational domain.

The quantizer reduces the number of bits employed to

represent the coefficients of the previous transform.

This loss in precision, a many-to-few mapping, is the

major source of compression in the overall encod-

ing process. Quantizationmay be performed on individ-

ual transform coefficients, termed Scalar Quantization;

or on a group of coefficients, termed Vector Quan-

tization. As there are usually some correlation between

consecutive coefficients which can be usefully exploited,

vector quantization is generally more efficient than

the scalar. Small valued coefficients, below a prede-

fined threshold value, are ignored. Quantizers may uni-

formly reduce the precision of coefficients regardless

of their magnitude or, more likely, they implement a

non-uniform approximation by giving greater weight

to higher valued coefficients. The final stage is an entropy

encoder which losslessly compresses the quantized coef-

ficients to yield a smaller output code stream. Typical

methods include Huffman and Arithmetic coding with

both being variable-length coding schemes but the for-

mer applied to individual coefficients while the latter is

applied to a group of coefficients. Image compression

possesses an extensive literature and a useful introduc-

tion is provided in [3].

The most common image compression is the JPEG

(Joint Photographic Expert Group) standard which is

DCT-based; and only the baseline encoder will be dis-

cussed here that sequentially compresses a stream of

8 � 8 pixel blocks of the image. Each block progresses

through each processing step to yield a compressed

output data stream. As adjacent image pixels are highly

correlated, the forward DCT is the basis for achieving

data compression by focusing most of the energy into

the lower spatial frequency bands. The DCT causes no

loss to the source image but simply transforms it into a

domain where they can be efficiently encoded. Each of

the 64 DCT coefficients is uniformly quantized
according to a 64-element quantization table, which

takes into account the falling sensitivity of the human

eye to fine spatial details. After quantization, the quan-

tized coefficients are ordered in a zig-zag sequence to

assist the entropy encoding by placing low-frequency

non-zero coefficients before high-frequency coeffi-

cients. The DC coefficient, which contains a significant

fraction of the total image energy, is differently

encoded. Decoding is essentially the reverse process.

JPEG compression is efficient and simple to implement

especially in dedicated hardware. Good compression

rates can be achieved with little loss of perceived fideli-

ty for naturalistic scenes up to 20:1 or 30:1 compres-

sion ratios. The use of 8� 8 pixel blocks does at higher

compression ratios create objectionable ’’blocking arti-

facts’’ especially in regions of low image contrast.

The basis function for JPEG is a discrete set of

orthogonal cosine waves. Such sinusoidal waves are con-

tinuous in the spatial domain and are, in some sense,

artificially truncated. There are numerous possible basis

functions – some with limited support, that is they

possess only a non-zero value for a limited interval.

Wavelets are such a function which are defined over a

limited distance and possess a zero average. From a

single prototype wavelet function, the basis set is defined

by a series of dilations and contractions of the prototype.

Wavelets are a group of mathematical functions, of

which the earliest example is the well-known Gabor

function. These functions can be approximated as dis-

crete filter structures. The variety of wavelet scales can be

achieved efficiently using a cascade of high and low pass

filters that decompose the image into several subbands,

with each subband possessing optimal filter coefficients

to match the image statistics for that band. Different

numbers of subbands and their scope (bandwidth, ori-

entation, etc), termed decomposition trees, are possible;

and details of these, and other aspects of wavelet com-

pression, are beyond the scope of this essay and the

reader is referred to [4, 5]. As the wavelet transform is

applied to the entire image and basis functions can

overlap, there are no blocking artifacts. The type of

artifact visible in highly compressed images is now

low-level ’’ringing’’ around high-contrast edges. Wave-

lets, because of their local support, mimic the different
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scales of receptive fields found in the human visual

system and so produce visually more appealing images

compared to JPEG images compressed to the same

degree. JPEG, with its reliance on coding small blocks,

is limited to moderate compression ratios; while DWT-

based coding provides significant improvement in pic-

ture quality up to compression ratios of 70:1–100:1 for

naturalistic scenes.

Fingerprint images are a very constrained class of

image and as such it is reasonable to expect that more

optimum forms of compression exist than provided by

the standard methods. They are also exposed to more

detailed scrutiny than most other images and they are

subjected to extensive image processing and pattern

recognition algorithms when submitted to an AFIS

system. Though many quality metrics can be used

to quantify the distortion introduced in lossy com-

pression ranging from generic measures such as Peak-

Signal-to- Noise (PSNR) to those developed specifically

for fingerprints (such as the Image Quality Metric

(IQM) [6]). PSNR, for 8-bit images, is defined as:

PSNR ¼ 20 log10
255

emse

� �
ð1Þ

where the mean square error (emse) is given by

emse ¼ 1

MN

X
m�1

X
n�1

uðm; nÞ � vðm; nÞ½ 
2 ð2Þ

where u(�) and v(�) are the original and compressed

images respectively – each of size M�N pixels. Higher

PSNR means less distortion with no distortion equat-

ing to a PSNR = 48.13 dB. It is a useful metric in

comparing similar image types. However, the ’’ground

truth’’ for any compression scheme is the effect it

has on the ability of fingerprint experts to make

the same decisions as for the corresponding uncom-

pressed image and an AFIS system to recover the

correct match (or, when searching for matches to a

latent, to rank consistently the most likely tenprint

candidates).
Common Fingerprint Compression
Methods

Three main compression methods have been applied for

the storage, transmission and, display of fingerprints

namely, JPEG, WSQ, and JPEG2000. WSQ (Wavelet
Scalar Quantization) was developed, by the FBI in asso-

ciation with Los Alamos National Laboratory and NIST,

specifically to reduce the media storage requirements

of the FBI’s expanding AFIS facility by providing

lossy compression over the range 10:1 to 20:1. It has

become an accepted standard for 500 ppi image storage

and transmission. A set of typical set of compressed

image for a latent fingerprint for these three methods is

shown in Fig. 2.

Though the unsuitability of JPEG compression has

been known for some time [7] as it suffers from visible

blocking artifacts and loss of fine details (e.g., ridge

pores) even at relatively low compression rates, it is still

employed in some systems. Wide-area AFIS systems

with connections to remote terminals often employ

such JPEG compression to return reference tenprint

images of potential matches to bureaux. For example,

the UK national AFIS (Ident 1) displays images of

potential tenprint matches as 12:1 JPEGs. It is possible

for examiners to discern deterioration in such images.

JPEG2000 [8] is a relatively new standard for

general-purpose image compression which attempts

to address the limitations of JPEG as well as incorpor-

ating many other functions. It offers both lossless and

lossy compression, provides a tiled representation of

images at multiple resolutions, nonuniform compres-

sion to preserve greater detail in some region of inter-

est, and embedded metadata and security functions

within the image file. Both WSQ and JPEG2000

schemes are DWT-based, but with major differences

in the form of the decomposition tree, quantization,

and entropy coding employed. The WSQ uses the

Daubechies (9,7) filter [9] to perform the DWT and

the same filter is the default for the lossy JPEG2000

transform. The JPEG2000 employs a dyadic decompo-

sition tree, while WSQ employs a fixed structure with

64 subbands (Fig. 3). The greater decomposition struc-

ture of WSQ may enhance compression as it approx-

imates to orthnormalization and be better suited to the

high spatial frequency content of fingerprints over

more general imagery. The decomposition structure

influences the number and length of the zero coding

runs and so enhances compression, while the bit-plane

scanning order of JPEG2000 permits finer control

to achieve an arbitrarily specified compression rate.

Both schemes use scalar quantization with JPEG2000

having the quantization step varying in response to the

dynamic range of the respective subband. While for

WSQ, all quantizer steps are uniform except for a



Fingerprint Compression. Figure 2 Comparative example of compressed image of 64 � 64 pixel region of latent.

Fingerprint Compression. Figure 3 Schematics of decomposition trees, (a) WSQ and (b) JPEG2000 (default).
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lengthened middle interval. For the last coding step,

WSQemploysHuffman entropy codingwhile JPEG2000

uses scalar arithmetic or trellis-coded quantization.

Much of the flexibility and power of the JPEG2000

comes from the Embedded Block Coding with Opti-

mized Truncation (EBCOT) algorithm. Wavelet coeffi-

cients from small blocks of the image are processed using

the EBCOTalgorithm which adapts the quantizer based

on the statistics of the source image at the bit- plane

level. These blocks are tiled with integrated header infor-

mation concerning with coding details, and further

quantization can be performed on the final bit-stream.

The flexibility of this final stage in JPEG2000 encoding

greatly assists in providing more optimal compression.

WSQ employs a much simpler approach and coding

details is calculated for each image and the coefficients

included in the file header.
Fingerprint Compression Performance

WSQ has proved to be satisfactory at compressing

fingerprint images by factors up to about 20, though

the original requirement was to compress to 0.75 bpp

(i.e., 10.7:1 compression). Watson and Wilson [10]

report that experiments usingWSQ compressed images

with three different matching systems under the con-

ditions that a FAR is 0.001 is maintained and the

maximum reduction in the TAR of less than 0.01 is

permitted, then there is little effect on performance for

compression ratios less than 20:1. A few studies have

compared the relative merits of WSQ and JPEG2000.

Figueroa-Villanueva et al. [11] showed a significant

improvement for JPEG2000 over WSQ at 0.75 bpp

compression in terms of PSNR and Receiver Operating

Curves (ROCs) for different sources namely, capacitive

sensor, optical sensor, and scanned inked prints.

A study of JPEG2000 and WSQ interoperability [12]

concluded that JPEG2000 produced a slightly lower

quality reconstructed image compared to WSQ for

the same file size. Most studies have focused on coding

high-quality inked prints or live print capture from

various sources, and not on poorer quality latents. One

study that involved latents and performance on an

operational AFIS system [13] concluded that for com-

pression ratios less than 32:1, JPEG2000 consistently

produced higher identification rates than WSQ. There

was also strong indication that moderate degrees of

compression facilitated improved identification rates
under normal operating procedures than uncom-

pressed latent images.

Current national and international standards

[14, 15] recommend that WSQ encoding is used

for 500 ppi fingerprint images with compression lim-

ited to 15:1; but for images with resolutions greater

than 500 ppi, 15:1 JPEG2000 should be employed.

The UK national fingerprint system permits latents

to be transmitted and submitted to Ident 1 at 15:1

JPEG2000.
Conclusions

It may appear that satisfactory standards exist for com-

pressing fingerprint images, certainly for the normal

operational requirements associated with the effective

transmission and storage of reference and livescan

images. General enhancements in providing lower-

cost, higher-capacity mass storage and increased band-

width across both fixed and wireless data networks will

reduce the pressure to develop new compression stan-

dards. However, fingerprints are an unusual and fairly

well-defined class of image. Compression schemes such

as JPEG2000 have been developed to cope well for a

very wide variety of imagery and WSQ, though based

on a principled consideration of the statistical proper-

ties of fingerprints, was developed prior to many more

general advances in image compression. Recent propo-

sals for improved fingerprint image compression are

generally based on wavelet transformations but with

more effective decomposition trees, optimized filter

structures and coefficients through the use of genetic

algorithm optimization, and vector quantization.

The relationship between image enhancement and com-

pression is not fully understood. There are sugges-

tions that the filtering that occurs during compression

may be advantageous in increasing identification, espe-

cially for latents. This is an avenue that needs to be

explored further.
Related Entries

▶ Fingerprint Image Enhancement

▶ Fingerprint Matching, Automatic

▶ Fingerprint Matching, Manual

▶ Fingerprint Recognition, Overview
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Synonyms

Fingerprint benchmark; Fingerprint corpora
Definition

Fingerprint databases are structured collections of fin-

gerprint data mainly used for either evaluation or

operational recognition purposes.

The fingerprints in databases for evaluation are

usually detached from the identity of the corres-

ponding individuals, are publicly available for research

purposes, and usually consist of raw fingerprint images

acquired with live-scan sensors or digitized from inked

fingerprint impressions on paper. These databases are

the basis for research in automatic fingerprint recogni-

tion, and together with specific experimental pro-

tocols, are the basis for a number of technology

evaluations and benchmarks. This is the type of finger-

print databases further developed here.

http://www.theiai.org/guidelines/swgfast/
http://www.theiai.org/guidelines/swgfast/
http://fingerprint.nist.gov/standard/
http://www.iso.org/
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On the other hand, fingerprint databases for opera-

tional recognition are typically proprietary, usually in-

corporate personal information about the enrolled

people together with the fingerprint data, and can incor-

porate either raw fingerprint image data or some form

of distinctive fingerprint descriptors such as minutiae

templates. These fingerprint databases represent one

of the modules in operational automated fingerprint

recognition systems, and will not be addressed here.
F

Fingerprint Databases for Evaluation

Among all biometric techniques, fingerprint recogni-

tion is the most widespread in personal identification

due to its permanence and uniqueness [1]. Finger-

prints are being increasingly used not only in forensic

investigations, but also in a large number of conve-

nience applications, such as access control or online

identification [2].

The growth that the field has experienced over the

past two decades has led to the appearance of increas-

ing numbers of biometric databases for research and

evaluation purposes, either ▶monomodal (one bio-

metric trait sensed) or ▶multimodal (two or more

biometric traits sensed). Previous to the databases ac-

quired within the framework of the International Fin-

gerprint Verification Competition series, the only

large, publicly available datasets were the NIST data-

bases [3]. However, these databases were not well

suited for the evaluation of algorithms operating with

live-scan images [1] and will not be described here.

In this section, the authors present some of the most

popular publicly available biometric databases, either

monomodal or multimodal, that include the finger-

print trait acquired with ▶ live-scan sensors.
FVC Databases

Four international Fingerprint Verification Competi-

tions (FVC) have been organized in 2000, 2002, 2004

and 2006 [4, 5, 6, 7]. For each competition, four

databases were acquired using three different sensors

and the SFinGE synthetic generator [1]. Each database

has 110 fingers (150 in FVC2006) with eight impres-

sions per finger (12 in FVC2006), resulting in 880

impressions (1,800 in FVC2006). In the four competi-

tions, the SFinGe synthetic generator was tuned to
simulate the main perturbations introduced in the

acquisition of the three real databases.

1. In FVC2000 [4], the acquisition conditions were

different for each database (e.g., interleaving/not

interleaving the acquisition of different fingers, peri-

odical cleaning/no cleaning of the sensor). For all

the databases, no care was taken to assure a mini-

mum quality of the fingerprints; in addition, a

maximum rotation and a non-null overlapping area

were assured for impressions from the same finger.

2. In FVC2002 [5], the acquisition conditions were

the same for each database: interleaved acquisition

of different fingers to maximize differences in fin-

ger placement, no care was taken in assuring a

minimum quality of the fingerprints and the sen-

sors were not periodically cleaned. During some

sessions, individuals were asked to: (1) exaggerate

displacement or rotation or, (2) have their fingers

dried or moistened.

3. The FVC2004 databases [6] were collected with the

aim of creating a more difficult benchmark be-

cause, in FVC2002, top algorithms achieved accura-

cies close to 100% [6]. Therefore, more intra-class

variation was introduced. During the different ses-

sions, individuals were asked to: (1) put the finger

at slightly different vertical position, (2) apply low

or high pressure against the sensor, (3) exaggerate

skin distortion and rotation, and (4) have their

fingers dried or moistened. No care was taken to

assure a minimum quality of the fingerprints and

the sensors were not periodically cleaned. Also, the

acquisition of different fingers were interleaved to

maximize differences in finger placement. Effects of

quality degradation in fingerprint images can be

observed in Fig. 1.

4. For the 2006 edition [7], no deliberate difficulties

were introduced in the acquisition as it was done in

the previous editions (such as exaggerated distor-

tion, large amounts of rotation and displacement,

wet/dry impressions, etc.), but the population was

more heterogeneous, including manual workers and

elderly people. Also, no constraints were enforced

to guarantee a minimum quality in the acquired

images and the final datasets were selected from a

larger database (the BioSec multimodal database

[8]) by choosing the most difficult fingers according

to a quality index, to make the benchmark suffi-

ciently difficult for an evaluation.



Fingerprint Databases and Evaluation. Figure 1 Examples of quality degradation in fingerprint images due to factors

like low/high pressure, dryness/moisture, dirt, etc.
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BIOMET Multimodal Database

Five different biometric modalities are present in the

BIOMET database [9]: audio, face image, hand image,

fingerprint and signature. This database was designed

with the additional goal of including unusual sensors

(face images captured with an infrared camera and

with a 3D acquisition system). The database consists

of three different acquisition sessions. The number of

individuals participating to the collection of the data-

base was 130 for the first session, 106 for the second,

and 91 for the last one, resulting in 91 individuals who

completed the whole acquisition process. For finger-

print acquisition, an optical and a capacitive sensor

were used. During the first acquisition campaign, only

the optical sensor was used, whereas both the optical

and capacitive sensors were employed for the second

ant third campaigns. The total number of available

fingerprints per sensor in the BIOMET database is

6 for the middle and index fingers of each contributor.
MCYT Bimodal Database

A large biometric database acquisition process was

launched in 2001 by four Spanish academic institu-

tions within the MCYT project [10]. The MCYT data-

base includes ten-print acquisition (MCYT Fingerprint

subcorpus) and on-line signature (MCYT Signature sub-

corpus) samples of each individual enrolled in the data-

base. A total of 330 individuals were acquired in the four

institutions participating in the MCYT project. Regard-

ing the MCYT Fingerprint subcorpus, for each individ-

ual, 12 samples of each finger were acquired using

an optical and a capacitive sensor under different con-

trol conditions. The MCYT database has been extended
with the comprehensive BiosecurID multimodal data-

base [11], which includes 8 different biometric traits

from 400 donors collected in 4 sessions separated in

time.
BioSec Multimodal Database

BioSec was an Integrated Project of the Sixth European

Framework Programme which involved over 20 part-

ners from nine European countries. The goal of BioSec

was to leverage the integration of biometrics in a wide

spectrum of everyday’s applications. One of the activ-

ities within BioSec was the acquisition of a multimodal

database. This database was acquired at four different

European sites and includes face, speech, fingerprint

and iris recordings. The baseline corpus [8] comprises

200 subjects with two acquisition sessions per subject.

The extended version of the BioSec database comprises

250 subjects with four sessions per subject (about

1 month between sessions). Each subject provided in

each session four samples of each of four fingers

(left and right index and middle). Fingerprints were

acquired using three different sensors. Some example

images are shown in Fig. 2.
BioSecure Multimodal Database

The acquisition of the BioSecure Multimodal Database

(BMDB) was jointly conducted by 11 European insti-

tutions participating in the BioSecure Network of

Excellence. [11] The BMDB is comprised of three

different datasets [12], namely:

1. Data Set 1 (DS1), acquired over the Internet under

unsupervised conditions (i.e., connecting to an



Fingerprint Databases and Evaluation. Figure 2 Example fingerprint images of two fingers acquired with

three different sensors (from the BioSec baseline corpus). Fingerprint images of the same finger are shown for

a capacitive sensor (left of each subplot), an optical sensor (center) and a thermal sensor (right).
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URL and following the instructions provided on

the screen).

2. Data Set 2 (DS2), acquired in a standard office

room environment using a PC and a number of

commercial sensors under the guidance of a human

supervisor.

3. Data Set 3 (DS3), acquired using two mobile

▶ hand-held devices under two acquisition con-

ditions (controlled-indoor and uncontrolled-

outdoor).

The three datasets of the BMDB include a common

part of audio and video data. Additionally, DS2

includes signature, fingerprint, hand and iris data,

and DS3 includes signature and fingerprint data. The

three datasets were acquired in two different sessions

(approximately 2 months between them). Pending yet

to be distributed publicly, the BioSecure multimodal

database has approximately 1,000 subjects in DS1,

and 700 in DS2 and DS3. Fingerprint data in DS2

were acquired using an optical and a capacitive sensor.

Fingerprint data in DS3 were acquired with a PDA.

The databases MCYT, BiosecurID, BioSec, and Bio-

Secure have some commonalities that enable their

integration for specific research studies, e.g., on time

variability and sensor interoperability [12].
Fingerprint Evaluation Campaigns

The most important evaluation campaigns carried out

in the fingerprint modality are the NIST Fingerprint

Vendor Technology Evaluation (FpVTE2003) [13] and

the four Fingerprint Verification Competitions (FVC),

which took place in 2000 [4], 2002 [5], 2004 [6] and

2006 [7]. A comparative summary between FVC2004,
FVC2006 and FpVTE2003 is given Table 1. An impor-

tant evaluation is also the NIST Minutiae Interopera-

bility Exchange Test (MINEX) [14].
Fingerprint Verification
Competitions (FVC)

The Fingerprint Verification Competitions were orga-

nized with the aim of determining the state of the art

in fingerprint verification. These competitions have

received great attention both from academic and com-

mercial organizations, and several research groups

have used the FVC datasets for their own experiments

later on. The number of participants and algorithms

evaluated has increased in each new edition of the

FVC. Also, to increase the number of participants,

anonymous participation was allowed in 2002, 2004

and 2006. Additionally, the FVC2004 and FVC2006

were subdivided into: (1) open category and (2) light

category. The light category aimed at evaluating algo-

rithms under low computational resources, limited

memory usage and small template size.

For each FVC competition, four databases were

acquired using three different sensors and the SFinGE

synthetic generator [1]. The size of each database

was set at 110 fingers with eight impressions per

finger (150 fingers with 12 impressions per finger in

FVC2006). A subset of each database (all the impres-

sions from ten fingers) was made available to the

participants prior to the competition for algorithm

tuning. The impressions from the remaining fingers

were used for testing. Once tuned, participants

submitted their algorithms as executable files to the

evaluators. The executable files were then tested at the

evaluator’s site and the test data were not released until



Fingerprint Databases and Evaluation. Table 2 Results in terms of equal error rate (EER) of the best performing

algorithm in each of the four databases of the FVC competitions

Database 2000 2002 2004 2006

DB1 (%) 0.67 0.10 1.97 5.56

DB2 (%) 0.61 0.14 1.58 0.02

DB3 (%) 3.64 0.37 1.18 1.53

DB4 (%) 1.99 0.10 0.61 0.27

Average 1.73 0.19 2.07 2.16

Fingerprint Databases and Evaluation. Table 1 Comparative summary between FVC2004, FVC2006 and FpVTE2003

(adapted from [6])

Evaluation FVC 2004 FVC 2006 FpVTE 2003

Algorithms Open category: 41
Light category: 26

Open category: 44
Light category: 26

Large scale test (LST): 13
Medium scale test (MST): 18
Small scale test (SST): 3

Population Students Heterogeneous (including
manual workers and elderly
people)

Operational data from a variety of
U.S. Government sources

Fingerprint format Flat impressions from
low-cost scanners

Flat impressions from
low-cost scanners

Mixed formats (flat, slap and rolled)
from various sources (paper cards,
scanners)

Perturbations Deliberately exaggerated
perturbations

Selection of the most difficult
images according to a quality
index

Intrinsic low quality fingers and/or
non-cooperative users

Data collection Acquired for this event From the BioSec database From existing U.S. Government
sources

Database size Four databases, each
containing 880 fingerprints
from 110 fingers

Four databases, each
containing 1,800 fingerprints
from 150 fingers

48,105 fingerprints from 25,309
subjects

Anonymous
participation

Allowed Allowed Not allowed

Best average EER
(over all the
databases used)

2.07 % (Open category) 2.16 % (Open category) 0.2 % (MST, the closest to the FVC
open category)

456F Fingerprint Databases and Evaluation
the evaluation concluded. In order to benchmark the

algorithms, the evaluation was divided into: (1) ▶ gen-

uine attempts: each fingerprint image is compared to

the remaining images of the same finger, and (2) ▶ im-

postor attempts: the first impression of each finger is

compared to the first image of the remaining fingers.

In both cases, symmetric matches were avoided.

In Table 2, results of the best performing algorithm

in each FVC competition are shown. Data in the 2000
and 2002 editions were acquired without special

restrictions and, as observed in Table 2, error rates

decrease significantly from 2000 to 2002, demonstrating

in some sense the maturity of fingerprint verification

systems. However, in the 2004 and 2006 editions, it is

observed that error rates increase with respect to the

2002 edition due to the deliberate difficulties introduced

in the data, thus revealing that degradation of quality

has a severe impact on the recognition rates [15].
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NIST Fingerprint Vendor Technology
Evaluation (FpVTE2003)

The NIST Fingerprint Vendor Technology Evaluation

(FpVTE2003) [13] aimed at: (1) comparing systems on

a variety of fingerprint data and identifying the most

accurate systems; (2) measuring the accuracy of finger-

print matching, identification, and verification on ac-

tual operational fingerprint data; and (3) determining

the effect of a variety of variables on matcher accuracy.

Eighteen different companies competed in the FpVTE,

and 34 systems were evaluated.

Three separate subtests were performed in the

FpVTE2003: (1) the large-scale test (LST), (2) the

medium-scale test (MST), and (3) the small-scale test

(SST). SST and MST tested matching accuracy using

individual fingerprints, whereas LST used sets of fin-

gerprint images. The size and structure of each test

were designed to optimize competing analysis objec-

tives, available data, available resources, computational

characteristics of the algorithms and the desire to in-

clude all qualified participants. In particular, the sizes

of MSTand LSTwere only determined after a great deal

of analysis of a variety of issues. Designing a well-

balanced test to accommodate heterogeneous system

architectures was a significant challenge.

Data in the FpVTE2003 came from a variety of U.-

S. Government sources, including low quality fingers of

low quality sources. 48,105 sets of flat slap or rolled

fingerprint sets from 25,309 individuals were used,

with a total of 393,370 fingerprint images. The systems

that resulted in the best accuracy performed consistently

well over a variety of image types and data sources. Also,

the accuracy of these systems was considerably better

than the rest of the systems. Further important conclu-

sions drawn from the FpVTE2003 included: (1) the

number of fingers used and the fingerprint quality had

the largest effect on system accuracy; (2) accuracy on

controlled datawas significantly higher than accuracy on

operational data; (3) some systems were highly sensitive

to the sources or types of fingerprints; and (4) accuracy

dropped as subject age at time of capture increased.
NIST Minutiae Interoperability Exchange
Test (MINEX)

The purpose of the NIST Minutiae Interoperability

Exchange Test (MINEX) [14] was to determine the
feasibility of using minutiae data (rather than image

data) as the interchange medium for fingerprint infor-

mation between different fingerprint matching sys-

tems, and to quantify the verification accuracy

changes when minutiae from dissimilar systems are

used for matching fingerprints. ▶ Interoperability of

templates is affected by the method used to encode

minutiae and the matcher used to compare the tem-

plates. There are different schemes for defining the

method of locating, extracting, formatting and match-

ing the minutiae information from a fingerprint image

[1]. In the MINEX evaluation, proprietary template

formats were compared to the ANSI INCITS 378-

2004 template standard.

The images used for this test came from a variety of

sensors, and included both live-scanned and non live-

scanned rolled and plain impression types. No latent

fingerprint images were used. Participants submitting

a system had to provide an algorithm capable of

extracting and matching a minutiae template using

both their proprietary minutiae format and the ANSI

INCITS 378-2004 minutiae data format standard. The

most relevant results of the MINEX evaluation are:

1. In general, proprietary templates lead to better

recognition performance than the ANSI INCITS

378-2004 template.

2. Some template generators produce standard tem-

plates that are matched more accurately than others.

Some matchers compare templates more accurately

than others. The leading vendors in generation are

not always the leaders in matching and vice-versa.

3. Authentication accuracy of some matchers can be

improved by replacing the vendors template gener-

ator with that from another vendor.

4. Performance is sensitive to the quality of the data-

set. This applies to both proprietary and interoper-

able templates. Higher quality datasets provide

reasonable interoperability, whereas lower quality

datasets do not.
Related Entries

▶Biometric Sample Acquisition

▶ Fingerprint Device

▶ Interoperability

▶Performance

▶Performance Evaluation
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Fingerprint Device
▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Fingerprint Encryption
▶ Fingerprints Hashing
Fingerprint Fake Detection

JEAN-FRANÇOIS MAINGUET

Grenoble, France
Synonyms

Liveness detection; Cut finger problem; Dead finger

detection; Fake finger detection; Gummy bear finger;

Latex finger; Liveness detection
Definition

Fingerprint fake detection is used to identify a fake

finger, such as a cast made of latex. By extension, it

also includes tests to detect a cut finger or dead finger,

or a latent print remaining on a sensor after usage.
Introduction

In ‘‘Diamonds are forever’’ (1971) [1] James Bond took

the identity of Peter Frank with a thin layer of latex

glued on his fingertip to spoof Tiffany Case’s camera.

James was using a simple fake finger, but the situa-

tion can be worse. With automated fingerprint recogni-

tion systems becoming more widely used, concerns over

fingerprint fake detection have increased. In March

2005, a team of carjackers in Subang Jaya in Malaysia

chopped off part of the owner’s left index finger, when

they realized that his S-Class Mercedes Benz had a

security feature which would immobilize the car with-

out his fingerprint. Even with more reliable cut finger

detectors in use, it is likely that this will happen again.

Security of a fingerprint-based system can be

divided into two main areas:

1. The electronic security, which poses the question:

‘‘Is the electronic system, at the other end of the

wires, a real trustful authorized fingerprint system?’’

http://www.itl.nist.gov/iad/894.03/databases/defs/dbases.html
http://bias.csr.unibo.it/fvc2006/default.asp
http://bias.csr.unibo.it/fvc2006/default.asp
http://fpvte.nist.gov
http://fingerprint.nist.gov/minex
http://fingerprint.nist.gov/minex
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2. The liveness security, which asks a different ques-

tion: ‘‘Is the object touching the sensor a real finger,

alive and connected to a living person?’’

Answers for electronic security deal with cryptography,

using challenge-response schemes and cryptographic

codes. Since the focus of this essay is to answer the

second question, we will suppose that the electronic

system is perfect and cannot be broken.

To begin, we know 100% security does not exist.

However, what we would verify is that, ‘‘I’m Mr X, a

living person not under threat and I agree to this

action.’’ Lacking the ability to read a person’s mind,

this is an impossible task. At the opposite end, a basic

fingerprint system will identify a particular fingerprint

image as likely the same one as registered in the tem-

plate, which is only a small brick within a full security

system.

To fill the gap, we need to acquire more informa-

tion that will enable us to say ‘‘this is a real alive finger.’’

If we can do that, then we have a good chance to know

that a real person is making the transaction, rather a

cast or cut finger being applied to the sensor. This will

not answer the problem of detecting a person under

threat, but it should be enough under normal usage,

although some situations will never be detectable. For

example, it will be impossible to detect a graft. In

France, a man received two hands from a donor, a

great medical achievement [2]. But at the same time,

he received 10 brand new fingerprints! There is also

the case of George who attempted to enter the US

illegally on 24 September 2005 through the Nogales,

Arizona Port of Entry during which time US Customs

and Border Protection officers noted that his finger-

prints had been surgically replaced with skin from

his feet. George stated that this procedure had been

done by a doctor in Phoenix to ‘‘clean’’ his identity [3].

But these should be extremely rare cases. What is

primarily desired is to avoid anyone stealing a finger-

print to impersonate someone else. So, while it is

impossible to create an absolute fake finger detection

system, it is possible to make things extremely hard

to be cracked.
Fingerprint Fake Detection. Figure 1 Thin fake made of

gelatine glued on a real finger.
Compromised Fingerprint

When someone creates a fake of one of the fingerprints

and use it to spoof a fingerprint system, then we say

that this fingerprint is compromised. With a smart
card (or a key), the smart card can be revoked. Further

use of the card can be prevented and a new one can be

created. But with fingerprints, this is limited to the

10 fingers. Biometric traits – the basis of biometrics

cannot be revoked.

Liveness detection solves the compromised finger-

print problem. If the system can check that it is the

real alive finger, then there is no possibility of using

a fake.
Attended/Unattended System

It is commonly admitted that an attended biometric

system does not need any liveness detection because

the supervisor ‘‘obviously’’ checks that a real alive

person is present. In the case of fingerprints, this

would be true if the supervisor was checking the finger:

is the finger really connected to the body, and without

any glued cast (Fig. 1)?
Fingerprint Fake Finger Detection Levels

There are three fake finger methods and detection

levels described, starting from the easiest to the hardest

to detect:

1. Latent print left on the sensor

2. Fake/copies:

a. Printed fingerprint image

b. Fake made of gelatin, latex, or other material
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c. Thin layer of material glued to a real finger,

including real skin cells grown in a laboratory

3. Original finger:

a. Cut out

b. Belonging to a dead person

c. Alive person under threat
Significant Developments in Fingerprint
Spoofing

In the early 1990s, Ton van der Putte developed and

improved a technique to fool the available biometrical

fingerprint recognition systems. But when he con-

tacted the manufacturers and showed them the secu-

rity breach in their systems, it was ruled unimportant

and nothing was done to solve it. In 2000, van der

Putte and Jeroen Keuning decided to raise people’s

awareness and published an article [4] ‘‘as a warning

to those thinking of using new methods of identification

without first examining the technical opportunities for

compromising the identification mechanism.’’ Using

duplication with and without cooperation and materi-

al such as silicone rubber, van der Putte and Keuning
Fingerprint Fake Detection. Figure 2 Printed fingerprint sp
fooled four optical sensors and two silicon-based

capacitance sensors.

In 2001, Kàkona [5] described how to spoof an

optical fingerprint sensor using a printed fingerprint

(Fig. 2) and reactivating latent fingerprints on the

sensor’s surface by breathing on it. In 2002, Thalheim

et al. [6] tested five solid-state and two optical finger-

print sensors. Gummy bears were introduced by

Matsumoto [7] in 2002. The experiments involved 11

commercially available fingerprint sensors, both opti-

cal and capacitive, using a new cheap material, gelatin.

Further studies from Kang [8] and Blommè [9]

extended the previous work. Stén et al. [10] spoofed

a capacitance sensor using hot glue for the negative

mold and gelatin for the fake finger. Marie Sandström

(2004) published her thesis [11], ‘‘Liveness Detection

in Fingerprint Recognition Systems,’’ which gathered

most of the available technologies at that time as well

as experiment results on various sensors.

In 2006, Ton van der Putte updated his work [12]

using additional material including silicon gel, acrylic

paint, gelatin, gum arabic. Ongoing attempts to spoof

fingerprint sensors continue to appear on the Internet;

for instance, the Chaos Computer Club [13] used

wood glue and published their results online (Fig. 3).
oofing an optical sensor.



Fingerprint Fake Detection. Figure 3 Wood glue using a printed fingerprint as negative.
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Making a Fake Fingerprint

Making a fake fingerprint always requires a fingerprint

image. The easiest way to get a good fingerprint image

is to have the cooperation of the donor. This is rarely

the case in the real world, except when the latent print

is left on the sensor (Level 1). In that case, the donor

completes a successful acquisition; later, the impostor

‘‘reactivates’’ the latent print by breathing on the

sensor. This happened in the past with some optical

systems and with some capacitance-based sensors.

A simple algorithm rejecting an image previously

acquired is generally enough to avoid this problem,

while swipe-sensing just eliminates this possibility.

The required fingerprint image is not necessarily

exactly the same as the original fingerprint of the

donor. Minutia matching (which is the main matching
technology for fingerprints) only requires having the

minutia locations and directions at the right place. It is

possible, in theory, to create a fingerprint image with

the right minutia locations that does not look like the

original. This requires accessing the minutiae locations

stored in the template, which should be ciphered.

Work related to some form of automated reconstruc-

tion has been proposed, requiring only access to the

matching score (hill-climbing) [14, 15]. This technique

is far more difficult compared to obtaining the

original fingerprint.

So in general, an impostor will take the easiest way

to obtain the original fingerprint image. We will not

deal here with the Level 3 which requires the original

finger, cut, or belonging to a dead person. Obtaining

the original image can be done with or without coop-

eration. With cooperation is the easiest way, and most
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articles dealing with spoofing assume that the right

finger is available to create a negative mould. Without

cooperation will be the most common situation. For-

tunately, stealing the fingerprint of someone else is not

easy. Even for forensic professionals, it is hard to iden-

tify people from fingerprints left in a crime scene.

Moreover, it is very difficult to select which fingerprint

to use. It is likely that the forefinger is the most com-

mon finger used in a fingerprint system, but selecting

the right fingerprint is not obvious.

Once the right image is obtained, image processing

skills are generally required to enhance the fingerprint.

Printed circuit technologies are often proposed to cre-

ate a negative mould, but sometimes direct molding

techniques, such as a rubber stamp (Fig. 4), can be

used to get a positive.

With a negative mold, you need to create the posi-

tive cast that will be used to spoof the fingerprint

sensor. Glue, latex, gelatin, and other materials have

been proposed (Fig. 5), but the most difficult thing is

to select the right material that properly fits the sensor.

Latex may work for some sensors and not for others.

Understanding the physics of the sensing techniques

will help. So, at the end of the day, making a fake

finger without cooperation is difficult, but far from

being impossible.
Fingerprint Fake Detection. Figure 4 Rubber stamp.
Liveness Measurement

To be able to detect a fake, we must first answer the

question of what defines a live finger. Some activities

related to liveness are:

1. Cellular metabolism with material transformation

(protein)

2. Movement

3. Heat production (a sub-product)

4. Blood circulation for material delivery and heat

transportation (regulation)

These activities have a number of signatures: physical,

chemical, mechanical, nervous, geometrical, to name a

few. Moreover, signification changes with the observa-

tion scale.

Detection methods can be active or passive. Active

techniques involve a response to a stimulus, and can

be voluntary or involuntary. It could be seen like a

challenge-response as used in regular cryptographic

techniques. Involuntary are reflexive challenge res-

ponses (removing your finger when you feel an electri-

cal shock), while voluntary are behavioral challenge

responses (how many vibrations did you feel?). Active

detection is very interesting, because the nervous sys-

tem up to the brain can be involved, which is a good

marker of aliveness. But generally, active detection

is not very practical from a user point of view, and

nociceptive methods are not acceptable.

Passive techniques are linked to physiological activ-

ity of the finger. Here are some physiological data

about fingers:

1. Cells, a bone, and a nail make a structure of about

1–10 cm3. Note that there is no muscle (and so

electrical activity is coming from other areas)

2. Arterial blood brings all chemicals, oxygen, and

heat and returns to the body through veins

3. Skin is composed of three layers:

a. Stratum corneum made of dead cells, more or

less hydrated, 100 mm thick, variable electrical

conductivity

b. Blood-free epidermis, 0.05–1 mm thick, made

of proteins, lipids, melanin-forming cells

c. Dermis: dense connective tissues, capillaries

arranged in vertical loops

4. Arteriovenous anastomoses, innervated by nerve

fibers that regulate the blood flow of a factor of 30

in response to heat
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5. Temperature range: 10�–40�C; not regulated
6. Skin emits some specific molecules (odor)

7. Skin presents some plasticity

Remark: The external layer of the skin is made of dead

cells, which is not a favorable configuration for liveness

detection!

Any liveness detection reader should read one or

several data related to the previous list. Also, reading

only one characteristic will not ensure that the read

fingerprint is coming from a real finger: some material

exhibiting the same plasticity than skin exists for

instance.
Fingerprint Sensors with Liveness
Detection

Few fingerprint sensor manufacturers claim to have

some kind of liveness detection; and whenever

claimed, little or evasive information is given. But,

new techniques and ideas are being explored:
1. Maybe the most common liveness detection

method is based on electrical measurements, using

the conductivity and/or impedance of the skin.

Some sensors can acquire fingerprints using electri-

cal properties of the skin (RF-field, capacitance, elec-

tro-optical), and so require a conductive material

to be spoofed. Non-conductive latex cannot work

2. Light transmission properties of the skin and/or the

blood. Hospitals are using pulse oxymetry to mea-

sure the blood oxygenation, i.e., the percentage of

oxyhemoglobin compared to deoxyhemoglobin.

Two LEDs send infrared light through the finger

to a photodiode, so it is some additional material

aside the regular fingerprint sensor. Skin spectrum

has also been proposed [16], using a wider range

of colors

3. Perspiration induces detectable changes in time

when looking at a series of images [17]

4. Distortion of the skin depends a lot on its

plasticity [18]

5. Skin emits some specific molecules that can be

detected (odor) [19]
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Faking the Counter Measures

Any measurement can be faked:

1. Electrical method can be faked by the appropriate

voltage applied on the sensing area (or even a

simple connection to real skin while a fake is

applied)

2. Optical methods can be faked by the appropriate

plastic with the correct absorption characteristics

3. An optical sensor is made of photodiodes; it is

always possible to send the appropriate light, syn-

chronized with the light sent by the system

4. Cardiac pulse can be faked with the appropriate

pump and pipes

But it is possible to make things very hard to spoof.

For instance, the latest immigration control systems

acquire the two forefingers at the same time, and

so trying to spoof both sensors at the same time will

be much harder.
Conclusion

Fake fingerprint detection will be an important feature

of fingerprint sensors in the future, likely mandatory.

We already know that a no fingerprint system will be

100% spoof-proofed, but several different sensors

reading different information at the same time will be

very hard to deceive. The ‘‘Swiss cheese’’ model applies

here: each slice of cheese is not 100% secure, some

holes exist. But more slices will stop most of threats. . .

at the cost of each slice!
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de Lyon. January 13, 2000 http://www.chu-lyon.fr/internet/

relations_medias/2005/5ans_double_greffe/dossier_presse_5ans_

double_greffe.pdf

3. US Department of Justice’s US Attorney’s office for Arizona

press release, May 3 (2006)

4. van der Putte, T., Keuning, J.: Biometrical fingerprint recogni-

tion don’t get your fingers burned. In: Proceedings of IFIP TC8/

WG8.8 Fourth Working Conference on Smart Card Research

and Advanced Applications, pp. 289–303. Kluwer, Dordecht

(2000) (http://cryptome.org/fake-prints.htm)
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Synonyms

Fingerprint analysis; Fingerprint characteristics;

Fingerprint signatures
Definition

Fingerprint features are parameters in epidermis images

of a fingertip (the fingerprint) that can be utilized to

extract information which is exclusively specific to a

unique person. These parameters can be measured by

computational techniques applied to a digital image

obtained by a fingerprint sensing method, e.g., using

live optical or solid-state scanners, and digitizing ink-

rolled or latent fingerprint images. Such identity char-

acterizing parameters include one or more specifics of

ridge–valley direction and frequency, minutiae, and

singular points. The fingerprint features should be re-

producible and resilient to variation in the face of

external factors such as aging, scars, wear, humidity,

and method of collection.
Introduction

Fingerprints consist of ridges alternating with valleys

that mostly run in parallel but also change direction

smoothly or may terminate abruptly. Other patterns in

nature that resemble fingerprints include Zebra skins,

corals, and shallow sea-bottom. Such pattern variations

can be parametrized and used to characterize the
fingerprints of individuals and to distinguish them

from others. Identity establishment by fingerprint

matching has been used by human experts long before

the computer era, e.g., the nineteenth century contribu-

tors to the advancement of fingerprints, Jan. Purkynĕ,

William Herschel, Alphonse Bertillon, Francis Galton,

Edward Henry, Aziz-ul Haque, Chandra Bose, to name

but few [1].

Caused by a foray of factors, low contrast and noisy

images can compromise the reproducibility of finger-

print feature severely. Although the reason of poor

image quality might be known, a better data acquisi-

tion is sometimes not a practicable option, e.g., latent

fingerprints at a crime-scene, aging, scars and bruises,

professional wear, etc. Accordingly, reproducibility is

an important property of fingerprint features to be

used. Another issue is their computational efficiency,

if lacking it can hinder a practice of a fingerprint

recognition method altogether, e.g., AFIS systems

used in border-control, altogether.

Minutiae, to be discussed below in further details,

represent the most widely used feature type by machine

as well as human experts to determine if two finger-

prints match. The geometric interrelationships of

extracted minutiae, the spatial frequency between

them or in their vicinity, and the local direction, con-

tribute all to the strength of a minutiae based feature set

so as to uniquely characterize a fingerprint. Another set

of well-localized points is singular points. As will be

detailed later, these are few, and one need larger neigh-

borhoods to determine them in comparison tominutiae.

An important tool to characterize fingerprints is

their direction fields since they are used in many opera-

tions of fingerprint processing. In the coming sections,

we discuss direction field estimation, followed by min-

utiae, and singular points.
Direction Fields

The fingerprint direction fields are dense vector fields

representing dominant local directions. A direction of

an image-point (a pixel) is thus a property of its

neighborhood; by itself no pixel can define a direction.

Early direction fields were associated with local edges

or lines and were approximated by the gradient of

the image, rf ¼ (∂f ∕∂x, ∂f ∕∂y)T where f is the local

image, on digital lattices. Direction in this sense is the

angle of the gradient and has already been used in
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1960s, including in fingerprint applications. However,

this concept hinders the use of effective signal proces-

sing tools, because a sinusoidal wave pattern (the local

fingerprint) has a unique direction whereas half of its

gradient directions in a fingerprint patch differ with

180∘ from the other half, resulting in a neither unique

nor continuous representation if gradient angles would

have defined feature spaces representing ridge direc-

tions. In turn this hinders efficient signal processing

and inference which require rotation, scale-space, and

interpolaton operations.
Direction Fields by Structure Tensor

An effective cure to representation ambiguity of ridge

and valley direction is to use the concept of iso-curve

(points having the same gray-value), which suggests

the use of 2 � 2 tensors naturally, in the quest of an

optimal direction estimation in the total least squares

sense. This is summarized next, where the notion of

image refers to a local patch of a fingerprint.

If all iso-curves of an image has a common direc-

tion the image is said to be linearly symmetric, e.g.,

sinusoidal planar waves resembling most neighbor-

hoods of fingerprints. Ideally, the unknown direction

k is optimal for an image f(r) if the image is invariant

to a translation in the amount of e along the line k

where e is small and can be positive as well as negative,

and ||k||¼1. Then the total translation error E
EðrÞ ¼ f ðrþ EkÞ � f ðrÞ

¼ E½rf ðrÞ
Tk þOðE2Þ ¼ EeðrÞ ¼ 0
ð1Þ

will be zero for all r if the gray-value patch f is trans-

lation invariant in the direction k. Here e(r) is the

unit-error. Ignoring the quadratic term OðE2Þ, because
e represents small translations, if and only if the unit-

error of translation in the (fixed) direction k

eðrÞ ¼ ½rf ðrÞ
Tk ¼ 0 ð2Þ
vanishes, (1) will vanish for all r of the patch. Evi-

dently, the unit-error will even vanish on a discrete

sub-set of the points of the patch, as below

Dxf1 Dyf1
Dxf2 Dyf2

..

. ..
.

Dxf M Dyf M

0
BBB@

1
CCCA

kx
ky

� �
¼ Dk ¼ 0 ð3Þ
where Dxfl ¼ ∂f(rl) ∕∂x and Dxfl ¼ ∂f(rl) ∕∂y with rl
being a node of a grid having M nodes on the patch.

The matrix D is the set of gradients on the grid nodes,

as indicated on the left in Eq. (3). using the continuous

2D Gaussian

gs2ðx; yÞ ¼
1

2ps2
e�

x2þy2

2s2 ð4Þ

the elements of D, such as Dxfl and Dyfl, can be prefer-

ably obtained by convolving the original discrete image

with the discretized partial derivatives of the Gaussian.

The parameter controlling the amount of smoothing

the thus obtained derivation filter can apply is fixed by

a certain s ¼ sd in x and y directions as standard

deviation, to avoid nonisotropic artificial bias. How-

ever, asking for nil (infinitesimal translation) error at

every rl with a common kmay not be possible to fulfill

in practice because f may not be perfectly linearly

symmetric. The next best thing one can do is to solve

the problem in the total least squares error sense such

that ||Dk||2 is minimized for a direction k. The solu-

tion is given by the least significant eigenvector of the

structure tensor, S ¼ DTD, which is easy to obtain

analytically as discussed in the following section. Alter-

natively, one can apply SVD numerically to D yielding

the same solution obtained by an eigenvalue analysis of

S. Before computing the direction, in practice one needs

to incorporate a window function ml ¼ m(rl) into the

solution as well because the patch must be cut-out of a

larger image. This can be conveniently done in the

tensor-space (at the level of the outer-product of the

gradients) and via a Gaussian, to obtain a mathemati-

cally tractable optimization [2, 3].

S ¼ DTD

¼
P

lðDxf lÞ2ml
P

lðDxf lÞðDyf lÞmlP
lðDxf lÞðDyf lÞml

P
lðDyf lÞ2ml

 !

¼
X
1

ðrf lrTf lÞml

ð5Þ

¼ lmaxkmaxk
T
max þ lminkmink

T
min

¼ ðlmax � lminÞkmaxk
T
max þ lminI

ð6Þ

Here ml is a discrete Gaussian with a certain

sw that defines the extension of the local fingerprint

patches, lmax, kmax are the most significant eigenvalue

of S and its corresponding eigenvector, delivering the

largest error and the maximum variation direction,

respectively. Similarly the lmin, kmin yield the
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corresponding quantities for the least error and the

direction of least variation respectively. Notice that

kmax and kmin are always orthogonal (S is symmetric),

have unit lengths, and sum to identity tensorially,

kmaxk
T
max þ kmink

T
min ¼ I. Thus to represent the

direction we could relate it to kmax, the normal of

the ridges/valleys, as well as to kmin because knowing

one determines the other. The representation of the

direction is made by the tensor kmaxk
T
max rather than

kmax because the tensor representation will map the

two possible numerical representations of the normal

k and �k to the same (tensor) quantity avoiding the

ambiguity inherent to vectors as representations of

axes/directions.
Complex Representation of the Structure
Tensor

There is a mathematically equivalent but a more con-

venient way of representing the structure tensor, by

use of complex gradients [2, 4],

I20 ¼
X
l

ðDxfl þ iDyflÞ2ml ¼ ðlmax � lminÞei2’max

ð7Þ

I11 ¼
X
l

jDxf l þ iDyf l j2ml ¼ lmax þ lmin ð8Þ

with ’max being the direction angle of kmax and

i ¼ ffiffiffiffiffiffiffi�1
p

.

The first benefit of complex representation is that

the direction of the eigenvector is delivered by averag-

ing (summation) squares of complex gradients,

Eq. (6), in the argument of I20, though in double-

angle representation [5], and both eigenvalues are easily

obtained by computing, jI20 j and I11. However easy to

obtain, eigenvalues will not be necessary for many

applications, as it is more useful to work with the

sums and differences of them. This is because if lmin

is very small, an acceptable way to conclude upon this

fact is to compare it with lmax. Accordingly, when we

obtain a large (magnitude) complex number I20 for a

patch, it means that we have a good direction fit

(linearly symmetric patch) and a reliable estimate

of the common direction will be found right in the

argument of I20 (in ▶ double angle representation),

with the reservation that jI20 j must be close to I11.

By contrast, if the error of the worst direction is not

much worse than the best direction then the direction
fit is poor, making the corresponding argument angle

meaningless automatically. Notice that jI20 j � I11
and equality holds between the two quantities if and

only if the iso-curve directions are aligned (linearly

symmetric patch).

The next benefit is that the complex representation

allows effective scale-space operations, including com-

putation by subsampling, band-pass pyramids,

extracting specific ridge frequencies (by changing sd,
and sw), and coarse-to-fine refinements, etc. by using

the complex image (Dxfl þ Dyfl)
2 and its (realvalue)

magnitude image, jDxfl þ Dyfl j2.
Direction Fields as Features

The fact that scalar products on complex number fields

is well defined makes direction fields descriptive fea-

tures which can be used as complements to other

descriptive features. If two fingerprints are registered,

meaning that the query image f q and the reference

image f r are rotated and translated such that they are

aligned, then the scalar product between the

corresponding direction fields of the query, I20(f
q),

and the reference, I20(f
t), fingerprints

bðf r ; f qÞ ¼ j < I20ðf rÞ; I20ðf qÞ> jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< I20ðf rÞ; I20ðf rÞ>< I20ðf qÞ; I20ðf qÞ>

p

ð9Þ
can be used as a belief in the match. Here the scalar

product is

< I20ðf rÞ; I20ðf qÞ> ¼
X
l

I �20ðf rl ÞI20ðf ql Þ ð10Þ

and the summation is applied either to a region, possi-

bly weighted by some quality index [6–8], e.g. the

common region of the fingerprint pair to be matched.

The star as superscript denotes complex conjugation.
Direction Decomposition

A concept, i.e., closely related to direction fields is

the decomposition of the original fingerprint in a set

of images representing the (local) energy in quantized

directions (typically 6–8 angles) and scales (typically 1–3

frequencies). Such decompositions can be obtained by

a suitable Gabor filter bank independent of the direc-

tion field computations discussed earlier. Although the

Gabor filter-bank filtered images can be interpolated to
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generate accurate and dense direction fields [9], these

have been mainly used to enhance fingerprints, and to

estimate texture properties of fingerprints. The meth-

od suggested by [10] assumes that a landmark in each

fingerprint of a pair to be matched is available or the

pair is somehow registered with the corresponding

landmarks. In regular concentric sectors of a circle (de-

fined by a uniform polar grid of 5 radii and 16 angles)

around the landmark, the average absolute deviations of

Gabor-cosine filter responses (single frequency, eight

directions) over the patch are computed. Called Finger-

code, this set of texture measures constitutes a 640

dimensional (5 � 16 � 8) integer valued feature vector

that can be used as a descriptive vector on its own or in

conjunction with other features, Fig. 4.
Segmentation

In addition to their auxiliary or direct use to define

descriptive features, the direction fields are also used

in segmenting fingerprints. The latter refers to separat-

ing the image area that contains an acceptable quality

of fingerprints, from the rest, typically the back-

ground. Because the fingerprint regions have a

dominant orientation, meaning that there is a direc-

tion along which the gray-values change singificantly

faster than the orthogonal direction, the absolute

and/or relative differences of the structure tensor
Fingerprint Features. Figure 1 Commonly used classes to c

(c) Left Loop, (d) Right Loop, (e) Whorl, (f) Twin Loop.
eigenvalues, lmin, lmax have been used to achieve

segmentation [6, 11].
Minutiae

Minutiae are end-points of ridges or valleys of a fin-

gerprint, occupying typically 0.1–0.5 mm on the skin,

and are visible as 2–10 pixels in images captured at 500

dpi resolution. Minutiae are the most widely used

features to match two fingerprints, for a variety of

reasons, including that there is a great amount of

human expertise in their use, and that it is difficult

to reconstruct the original fingerprints only by the

knowledge of minutiae, mitigating privacy concerns.

A minutia can be of the type termination or bifurcation.

A bifurcation of a ridge exists in conjunction with

termination of a valley and vice-versa because the

former engulfes the latter, by definition. This is

known as duality. However, one must bear in mind

that ridges appear as valleys and vice-versa depending

on the sensing conditions, i.e., whether the dark pixels

or the white pixels are ridges. Accordingly, the minu-

tia-type, i.e., bifurcation or termination, as a descrip-

tive feature is meaningful only if the interpretation

ambiguity caused by sensing can be accounted for.

Because from these two types of minutiae it is possible

to derive other constellations, e.g., lake, spur, cross-

over, Fig. 2, several national agencies relying on
ategorize fingerprints [27]. (a) Arch, (b) Tented Arch,
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minutiae for their fingerprint processing base their

taxonomy only on termination and bifurcation, e.g.,

FBI in USA [12]. Before minutiae extraction, finger-

print enhancement is applied if fingerprints are deemed

noisy, usually according to an automatically extracted

quality measure [7, 8, 13, 14].

Two main ways of minutiae extraction can be

achieved by (1) by binary image processing operations,

(2) by using gray-value image processing techniques.

Assuming that the binary image of a fingerprint

can be obtained and it has a reasonably high fidelity

w.r.t. ridges, ▶fingerprint thinning can be achieved by

morphological operators (errosion and dilation) or by

distance transforms [15–17]. A number of algorithms

to extract minutiae from skeletonized binary images

exist. It is common that at the beginning, there are

several thousands of minutiae candidates of which

only approximately 50 are real. Various criteria for
Fingerprint Features. Figure 2 Illustration of minutiae types

bifurcation; (b) vice-versa. (c) basic ridge types in green (term

spur, crossover) (d) the direction of a minutia exemplified at

Fingerprint Features. Figure 3 Illustration of thinning and m

the left, a segment of a ridge is represented. Gray-value profi

tracked along the ridge, until a termination or a bifurcation is

circles and squares represent terminations, and bifurcations r

improvements of a postprocessing.
validating the endpoints, including the duality, a min-

imum length of the ridge or valley , are used to sup-

press spurious false minutiae [18].

However, minutiae detection based on binary

images has a shortcoming, lack of robustness when

used for low quality fingerprint images. Because ridge

skeletons are obtained by applying a thinning method

to the binarized fingerprint, the binary ridges should

correspond to real ridges accurately if thinning proce-

dure is to be successful. This puts high demands on

the quality of the fingerprints, as well as the adaptive-

ness of the binarization since the resulting binary ridges

might not represent the real ridges sufficiently well.

Extracting minutiae from gray images, without pass-

ing through binarization, offers better opportunities

in this respect. The ridges can be directly followed in

the gray-value image by use of the direction field,

and the gray-value ridge profiles [6, 11], Fig. 3.
and duality. (a) a ridge termination engulfed in a valley

ination, bifurcation) and derived types in red (lake,

a ridge-bifurcation.

inutia detection by ridge following in gray-images [11]. On

les, like the one in green, are regularly sampled and

found. On the right, the result is shown where the white

espectively. The black circles and boxes are
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Alternatively, a large number of candidate minutiae

can first be obtained, e.g., by detecting lack of linear

symmetries during the direction field estimation, then

a gray-value model of the minutiae, e.g., the parabolic

appearance of terminations and bifurcations, can be

enforced the candidates to retain the true minutiae

[19], Fig. 4.

Minutia Direction When matching or registering

two fingerprints the ▶minutia direction is a valuable

discriminative information. The minutiae directions

can be either extracted from the direction field directly

or from the direction of the binarized and thinned

ridges, corresponding to minutiae locations, Fig. 2.

The directions along with the type information (ter-

mination or bifurcation) are attached to minutiae

coordinates.

Spatial Frequency Another descriptive feature which

can be attached to minutiae positions is the spatial

frequency information in the vicinity of minutiae. The

spatial frequency is usually defined in terms of a direc-

tion in fingerprints and has different implementations

[20]. One implementation is to use the average

frequency of the ridge or the count of ridges in a

fixed line segment orthogonal to the minutia direction.

Another implementation of the frequency measure is

to count ridges or the average frequency along the line

joining a pair of minutiae. Because pairs as well as

triplet constallations of minutiae are commonly used

in fingerprint matching, the frequency measures are
Fingerprint Features. Figure 4 Illustration of a use of direct

vector field color coded, the original superimposed with minu

respectively. On the far right the Fingercode grid placed, on t

image (second) represents the complex quantities I20 (7), whe

the HSV color model (same color indicates common direction

direction fit is mapped to the Value (intensity).
attached as a descriptive feature to the corresponding,

pairs or triplets.
Singular Points

Singular points are landmarks that are defined in large

image patches (1–5 mm) compared to the size of

minutiae. There are typically 1–2 singular points in a

fingerprint though they may occasionally be missing or

may be difficult to identify in a fingerprint. Three basic

types can be discerned, loop (also known as core),

whorl, and delta.

A major use of them is to classify a fingerprint

typically into one of the six categories, (Left-loop,

Right-Loop, Double-Loop, Arch, Tented-Arch, Whorl)

which are different constellations of loops and deltas,

Fig. 1. Such rough categorizations are employed to

match, and to organize massive amounts of fingerprits

data efficiently.

Loops can provide a unique intrinsic global orien-

tation and position for a fingerprint, allowing an orien-

tation and translation normalization of the fingerprint

only on the basis of itself. Most whorls and deltas can

provide a direction too, though these are in general not

unique. Two singular points in the same image provide

always a unique ▶ intrinsic direction of fingerprint.

This normalization is a practical alternative to registra-

tion by minutiae or can be complementary. Every
ion field. From the left, the original image, the direction

tiae locations and the loop singularity [19, 24] are shown,

he loop singularity, is shown [10]. The direction field

re the argument of I20 is mapped to the Hue (color) of

) and the magnitude representing the quality of the
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fingerprint (the query, as well as every fingerprint in

the database) is rotated and translated such that a

reference point and a half-line that is well defined w.r.

t. a singular point of the fingerprint become the origin

and the positive x-axis. Two translation and rotation

normalized fingerprints are then more efficiently

matched – with minutiae or other features, because

no rotation or translation compensation specific to the

considered pair will be necessary.

Finally, singular points can function as anchors to

extract other descriptive features, e.g., the spatial fre-

quency. One can count the ridges along a line joining

two singular points, or along a line joining a minutia

and a singular point, etc. The spatial frequency estima-

tion issue is analogous to the one that has been dis-

cussed in conjunction with minutiae.
Singularities by Poincaré Index

One of the oldest singular point detection techniques

used in fingerprint processing is the Poincaré index

[21]. The index is defined for a path in a vector field

and represents the total amount of angle change of the

vectors along the curve. Assuming that the curve is

closed and it is in the gradient field of a fingerprint

then the Poincaré index, P, is given by
Fingerprint Features. Figure 5 The top row shows the harmo

the second row. The iso-curves (their linearized examples are

combination of the real and the imaginary parts of the respe

weights, defining the direction parameter ’ of each pattern [

ordinary Gaussian (4), to detect the singularity points and ’ by

The third row shows the symmetry order of the filters. The las
P ¼
I

@y
@x

dx þ @y
@y

dy ¼
Z Z

ð @
2y

@x@y
� @2y
@y@x

Þdxdy

ð11Þ
where the function y(x, y) represents the argument

(angle) of the gradient vectors and the last expression

is obtained by Green’s Lemma. It is worth noting that

even though the original fingerprint image is assumed

differentiable (continuous) the gradient angle is not

continuous, (p and �p) though its partial derivatives

are. By laying the closed curve around a loop, a whorl,

a regular (non-singular) point, and a delta, it can be

concluded that P will assume�2p,�p, 0 and p
radians, respectively. In Fig. 5 stylistic models of such

fingerprint patches are shown along with segments of

iso-curves (to which the gradients are orthogonal but

are not shown for convenience). When one walks the

dashed circle in full, the direction of iso-curves, and

thereby the gradient angles change with the Poincaré

index. This observation is used, typically along with

the curve integral of Eq. (11), to determine if a candi-

date point is a whorl, loop, regular, or delta type. It is

also possible to compute P according to the right hand

side of the equation, by a double integral applied to the

interior patch of the curve. By using the directions of

linear-symmetry vector field, as opposed to those

of the gradient field and the double integral [22]
nic functions that generate the iso-curves of the patterns in

shown as red line segments) are given by a weighted

ctive harmonic functions, with a certain ratio between the

23]. The third row shows the filters, n where gs2w is an

a (complex) convolution applied to the direction field (12).

t row shows the Poincaré index of gradients.
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suggested an alternative way of computing P. In this

case the angles of the used vector field are continuous

from the beginning so that no special care needs to be

taken to achieve continuity at angles around p and�p.
The resulting P must be divided by 2 to correspond to

the gradient based Poincaré index.
Singularities by the Generalized Structure
Tensor

A singular point can also be detected by use of

the Generalized Structure Tensor (GST), which is

an extension of the structure tensor to curvilinear

(harmonic) coordinates [9, 23]. The fundamental

idea is the same as that of the structure tensor – to

find an (unknown) angle such that the patch remains

invariant to a small translation along the found angle

direction but in the curvilinear coordinates. It turns

out that in this model, a singularity can be detected

by complex filtering of the direction fields, already in

the complex representation (7).

I
0
20 ¼

X
l

ðDxf l þ iDyf lÞ2n�
l ¼ ðlmax�lmaxÞei2’max ð12Þ

Here nl is a filter specialized to detect a loop, a delta

or a whorl, Fig. 5. The magnitude of a filter response,

which is complex valued, encodes the likelihood

that a location represents a singularity exactly in the

same way as the ordinary structure tensor, but now

the coordinates are harmonic, representing a pattern

of a singularity, and the lmax, and lmin are the error

extrema due to translation in curvilinear trajectories

having a certain direction. Likewise, its argument

(angle) encodes the intrinsic orientation of the

singularity (for loops and deltas their global inclina-

tion, for whorls the amount of chirality). The singu-

larity filters can be implemented by derivatives of

Gaussians which are separable, making them 1D filters.

Because the complex feature space obtained from

such filter responses are continuous both in their

arguments and positions, scale-space filtering, e.g.,

coarse-to-fine refinement, is possible [24]. That the

symmetry axes (intrinsic orientation) are available

in the GST method is useful, because the obtained

angle information can be used as a descriptive feature

attached to the singular point coordinates, much like

the use of minutiae orientations in fingerprint match-

ing. Additionally, loop orientations alone allow a
normalization/registration of a fingerprint pair even

if other singular points lack, and no minutiae are

available.

Singularities by Other Methods

The methods discussed earlier can find singular points

by modeling direction variations on closed curves (in

practice a circle) or in regions containing a singularity.

Methods which do not use closed paths are exemplified

as follows. Such a method to obtain singularities is the

early suggestion by [25] which models the direction

variations along the horizontal scan lines. Information

defining the location and the type of the singularity is

contained in the direction information around the

singular point and the horizontal lines contain only a

part of this. This information is instead injected into

the model in terms of orientation-change rules be-

tween scan lines. In [26], gradient vectors model half

a circle, like ‘‘n.’’ Then generalized Hough transform is

used to find a peak, suggesting the location of a loop.

In contrast to GST and Poincaré index methods, the

(loop) inclination is assumed to be approximately

vertical, or a separate model is designed for alternative

loop inclinations.
Summary

Descriptive features are used to match fingerprints.

They include the locations of minutiae points, and

the singular points. The location information can be

enhanced with additional descriptive measurements

including the local direction of the ridges and valleys

at minutiae locations, the intrinsic orientation of sin-

gular points, the type of the singular points, ridge

counts or average frequencies between minutiae as

well as singular points. To extract such descriptive

information direction maps are computed. Being tex-

ture measures, structure tensor representations of di-

rection maps can also be used as descriptive features on

their own if anchor points are available or in addition

to minutiae based features. Similarly, Gabor filters can

be used to obtain descriptive features if anchor points

are available. Commonly used anchors for registration

as well as descriptive features are the three basic singu-

larity types, loops, whorls, and deltas. They can be

detected and described independent of minutiae

information.
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▶ Fingerprint Compression
Fingerprint Image Enhancement

MASANORI HARA

NEC Corporation, Tokyo, Japan
Synonyms

Fingerprint contrast enhancement; Ridge enhance-

ment; Ridge extraction
Definition

Fingerprint image enhancement is the process of

applying techniques to emphasize fingerprint images

in order to facilitate the identification of ridge valley

structures and hence their features.
Introduction

Computerized fingerprint feature extractors more or

less require some sort of image pre-processing or en-

hancement to improve perceptibility. In doing so, they

need to contend with twomajor types of problems: one

is associated with image contrast such as insufficient

dynamic range, and the other is associated with adverse

physical factors such as scars, blurs, creases, sweat

pores, and incipient ridges. Fingerprint image enhance-

ment aims to minimize the undesired effects caused

by such elements in order to extract a sufficient

number of reliable features, namely, minutiae and

▶fingerprint singularities (cores and deltas). Broadly

speaking, fingerprint image enhancement encom-

passes, but is not limited to, the intermediate steps

such as contrast enhancement, pore and incipient

ridge removal, ridge orientation and frequency estima-

tion, foreground segmentation, and ridge enhance-

ment filtering.
The focus here is on the performance and limita-

tions of current image enhancement techniques rather

than on their algorithmic details. For this purpose,

many samples including problematic images and

their corresponding enhanced images are presented.
Fingerprint Image Digitalization and
Density

Fingerprint images are digitized through either inked-

print scanning or live scanning, most often with a

resolution of 500 dpi and a depth of 8 bits (i.e., 256

gray levels) in compliance with the NIST standard [1].

The gray level is a value associated with each pixel

representing its intensity or luminance. However, the

term density, the degree of ink thickness on the paper

surface, has been used throughout this section for the

sake of illustration. Thus, the higher the density, the

darker the ridges, and vice versa.

Ideally, the density of pores should be higher than

that of valleys and the density of incipient ridges

should be lower than that of true ridges. In fact, this

is precisely what some feature extractors traditionally

use to distinguish pores and incipient ridges from true

ridges and valleys. Although most inked-print scanned

images have continuous density, some live scanned

images exhibit a sparse nature. It has been reported

that the effective bit depth of some live scanners is only

2 or 3 bits [2, 3]. Obviously, such loss of information

makes the subsequent processes virtually impossible

to distinguish the key features.
Recognition of Fingerprint Ridge

Since ridge orientation and frequency characterize the

local ridge valley structure in the region of interest, the

problem of fingerprint ridge recognition essentially

simplifies to the task of estimating these two pieces of

information. Therefore, local ridge orientation and

frequency estimation play a key role in fingerprint

ridge recognition.

Local orientation estimation, taking advantage of

the fact that ridge orientation does not change sudden-

ly when viewed locally, can ‘‘interpolate’’ ridge orien-

tation even in obscured regions. However, this is not

the case in frequency estimation; frequency can be-

come rather unstable when there is a sudden change



Fingerprint Image Enhancement. Figure 1 An Example of Unstable Frequency Estimation (NIST DB#27 002T).

Notes: (c) and (f) A skeleton image was extracted by one of the traditional algorithms [7] using the contextual ridge

enhancement filter with a narrow spacing, which corresponds to higher frequencies. (d) A skeleton image was

extracted by the same algorithm as in (c) and (f) with a wide spacing, which corresponds to lower frequencies.
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in ridge spacing even in a clear, well-defined region, as

illustr ated in Fig . 1 . The ridge s in the region marked by

the red square (region A) in Fig . 1(a ) are nicely aligned

in the vertical direction, whereas frequency significantly

changesdue to thepresenceofa spur, alternativelycalleda

whisker, in the regionmarkedby the redoval (regionB) in

Fig. 1(b) . An average inter-ridge spacing is 8.7 pixels

(0.435 mm) in region A whereas it is only 5.7 pixels

(0.285 mm) in region B, which is narrower than the

neighboring region by 35%. For this image, some feature

extractions are able to correctly extract this narrow spur

as show n in Fig. 1(c) but some others fail (Fig . 1(d) ).

Even if the spur in region B is invisible as

shown in Fig . 1(e) , it is still easy to estimate ridge

orientation in the region with a high degree of certain-

ty. However, if this small region is contaminated with

noise, most feature extractions incorrectly estimate

the frequency in region B to be the same as that of

its neighbor, which results in a failure to detect the

spur (Fig . 1(f )). An ideal feature extractor should be

able to mark this region as ‘‘indeterminate’’ because it

is difficult even for human examiners to identify the

spur confidently.
Intermediate Steps in Fingerprint Image
Enhancement

A typical set of intermediate steps in fingerprint image

enhancement includes:

1. Contrast enhancement or normalization.

2. Pore and incipient ridge removal.

3. Ridge orientation estimation.

4. Frequency estimation.

5. Foreground segmentation.

6. Ridge enhancement filtering.
Contrast Enhancement

Whatever features or structures there may be, either

local or global, distinctiveness is important to appro-

priately separate one from the other. The conditions

that are preferably satisfied may include uniform

background density and a sufficiently wide dynamic

range between ridges and valleys/background. If these

conditions are fulfilled, a simple stretching and/or
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thresholding should suffice. In reality, however, more

elaborate and rigorous approaches are needed. Some

real issues related to dynamic range are outlined in the

following:

1. Uneven dynamic range.
A sample of uneven dynamic range is presented

in Fig . 2(a) . The ridges on the left (surrounded by

the red oval) are substantially lighter than the ones

on the right.
2. Uneven valley density.
A sample of uneven valley density is shown in

Fig . 2(b) . This is a late nt imag e that is lifte d from

paper. The latent print is impressed on across the

regions where letters (‘‘O’’, ‘‘A’’, ‘‘N’’) are printed.

Here, the ridges and valleys cannot be recognized

easily because their actual density considerably

deviates from their original definition in which

‘‘the ridges are dark and the valleys are light’’; the

density of the valley on the letters is contrarily high

and local dynamic range is extremely narrow,

whereas the valley density in the plain region is low.
3. Noisy background.
The background containing leftover fingerprint

images or stripe patterns resembling fingerprints

makes it difficult to isolate true fingerprint pat-

terns. Problematic live scanned images and an

inked imag e are presented in Fig . 2(c, e) and 2(d) ,

respectively.
Contrast enhancement is a technique to accommo-

date such problems by expanding the dynamic range of

ridges and valleys. Adaptive histogram equalization is a

popular contrast enhancement technique. Other popu-

lar techniques include a simple linear contrast stretching

that uses the local minimum and maximum densities,

and a density normalization that uses the local density

mean and variance [2, 5]. Contrast-enhanced images of

the sample problematic imag es are prese nted in Fig . 2

(a0) through (e0).
Although contrast enhancement is a powerful tool,

it has a drawback, i.e., it boosts background noise at

the same time since it cannot selectively enhance only

the targeted region unless some additional information

is given. As shown in Fig . 2(a 0 ), (c0 ), (d0 ), and (e0 ), the
distinguishability of the foreground and background is

lower than the original.

However, it should be stressed that it is still

imperative to employ contrast enhancement when

dealing with poor quality images, mainly latent images
(Fig. 2(b0), for example). Once the ridge valley struc-

ture becomes visible, it essentially boils down to the

problem of identifying and analyzing ridge continuity.
Pore and Incipient Ridge Removal

Sweat pores are major obstacles in frequency estima-

tion. There are a variety of methods for removing pores

or at least for reducing their side effects. Some methods

do not remove pores but they remove false minutiae

that possibly originated from the pores. Other meth-

ods rely on the fact that pores are enclosed by darker

pixels as shown in Fig . 3(a) , and they can rem ove

typical pores but not problematic pores such as con-

tinuou s po res and swollen pores as show n in Fig . 3(b) .

Ridge structures such as lakes and spurs are easily

confused with pores, leading to miscalculation of

frequency if they are falsely filled in.

Incipient ridges are another obstacle in frequency

estimation. The significant incipient ridges as shown

in Fig . 3(c) can easily fool frequency estimati on

algorithms.

These two factors have not yet been fully explored,

and their distinguishability plays an important role

in improving fingerprint matching accuracy.
Ridge Orientation Estimation

Ridge orientation estimation is a fingerprint-specific

image processing technique. A ridge orientation esti-

mation algorithm was developed for a FBI system

in the 1960s. In the 1960s and 1970s, many ridge

orientation estimation algorithms set ‘‘slits’’ of prede-

termined orientations (8, 12, or 16 quantized orienta-

tions) and analyzed the density response [6–8]. The

orientation slit having a higher amount of density

change is indicative of the slit running perpendicular

to the direction of the ridge flow. Similarly, the slit

with a lower amount of density change is indicative

of the slit running parallel to the direction of the

ridge flow.

In the 1980s, more sophisticated methods were

introduced to extract ridge orientation such as a method

based on the gradient of two-dimensional vectors whose

components are derivatives of densities at horizontal and

vertical orientations [2, 5], and a method based on the

two-dimensional Fourier transform [9, 10].



Fingerprint Image Enhancement. Figure 2 Examples of Contrast-related Problematic Images. Notes: (a’) through (e’)

The images were contrast-enhanced with one of the local adaptive stretching methods specialized for fingerprints [4].
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In this process, the confidence level of ridge orien-

tation is calculated. The difference in density fluc-

tuation between the estimated orientation and its

orthogonal orientation can be a base for confidence,

and the power spectrum is another in the case of the

Fourier analysis.
Since all these techniques estimate ridge orienta-

tion locally, the influence of adverse factors such as

scars and smudges are not negligible and often lead

to wrong estimation. In order to correct such anomaly,

local orientation is examined for validity and re-

estimated from its neighbor. This process is called
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ridge orientation smoothing, and several such techni-

ques have been proposed [2, 5, 9, 11].

Ridge orientation smoothing also has a drawback.

The orientation in the region where the ridge flow is

not stable (e.g., in the proximity of the core and delta)

cannot be properly corrected due to its interpolative

nature. It also fails and propagates errors if the overall

estimation quality is low because it is based on the

assumption that the majority of orientations of neigh-

boring regions are indeed correct.

Examples of problematic images in orientation es-

timat ion are presented in Fig . 4 . Orien tations in the red

oval in Fig . 4(a0 ) and (b 0 ) are incorrectly estimated

because of smudges and fragmented ridges.

One of suggested methods to improve estimation

accuracy is to use global pattern types and prior

knowledge of ridge flow. Once the core and delta

have been extracted with high confidence, the global

pattern shape can be estimated. This information can

help estimate and adjust local ridge orientation more

accurately.
Frequency Estimation

Frequency estimation is another fingerprint-specific

image processing technique. Frequency is defined as

the number of ridges per unit length and is often

interchangeably referred to as the inverse of the inter-

ridge distance. It is far more difficult to estimate than

orientation, and that explains why most feature extrac-

tions in the 1960s and 1970s did not fully exploit

this information.

In the 1980s, frequency analysis such as the

two-dimensional Fourier transform was proposed
to estimate frequency [9, 10]. Another technique

of frequency estimation analyzes peak intervals from

gray-level profile orthogonal to the ridge orienta-

tion [2, 5].

In Fig . 5(a ) an examp le of a problematic image

with a sudden frequency change, denoted by the red

oval is presented. In Fig . 5(b ), the true frequency is

reflected via some manual correction, and Fig. 5(c)

shows an example of automatically estimated frequency

image using one of the latest algorithms [12]. Dark

density pixels correspond to the region where the

inter-ridge spacing is narrow, that is, frequency is

high. It can be observed that the frequency of the

area with very narrow inter-ridge spacing is falsely

estimated to be halved from its true value.

It is known that the presence of a minutia affects

the structure of its surroundings and hence the

corresponding local frequency. This often becomes a

problem in frequency estimation where a strong fre-

quency smoothing aimed to facilitate the estimation

process can adversely eliminate true minutiae.
Foreground Segmentation

It is natural to conduct minutia extraction only in the

foreground region to minimize the possibility of

extracting false minutiae. Foreground segmentation

aims to distinguish the fingerprint ridge region from

the background. Some methods rely heavily on the

confidence of the ridge orientation to define the fore-

ground, whereas others rely on gray-level statistics as

well. As already explained, gray-level analysis is not an

ideal approach when dealing with very low quality

images such as the ones shown in Fig. 2.



Fingerprint Image Enhancement. Figure 4 Problematic Images in Ridge Orientation Estimation. Notes: (a’) and (b’)

A ridge orientation image was extracted by one of the traditional algorithms [7].

Fingerprint Image Enhancement. Figure 5 Problematic Images in Frequency Estimation (NIST DB#27 073T).

Notes: (b) True frequencies were calculated from an ideal skeleton image, which was manually generated so that

skeleton curves correctly coincided with the original ridges. (c) Frequencies were calculated from an automatically

extracted skeleton image using one of the recent algorithms.
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Ridge Enhancement Filtering

Ridge enhancement filtering is another fingerprint-

specific image processing technique. In the 1960s

and 1970s, most filtering techniques were labeled con-

textual. They used filtering masks similar to the ones

used to estimate orientation, either fixed size or pre-

determined variable frequencies. However, it was diffi-

cult for these techniques to flexibly adapt to very

narrow or very wide ridges and spacing [6–8]. In the

1980s, a more sophisticated method based on the two-

dimensional Fourier transform was proposed [9, 10].

In the 1990s and 2000s, Gabor filtering and wavelet

filtering were introduced [2, 5, 13].

Conceptually, ridge enhancement filtering aims to

‘‘enhance’’ ridges by generating stripe patterns from

scratch using the previously estimated orientation

and frequency. Strong enhancement is effective for

low quality images but at the risk of destroying the

original ridge structure. The strength of filtering thus
Fingerprint Image Enhancement. Figure 6 Unstable and Sta

(a) was enhanced by one of the popular algorithms [9] with a

image and minutiae were automatically extracted from the im

popular algorithms [9] with a relatively strong enhancement

automatically extracted from the image in (d).
needs to be controlled adaptively and depends on the

field in which it is used: law enforcement and non-law

enforcement. In the former case, the original ridge

structure needs to be preserved as much as possible

in order to improve compatibility with the examiners’

definition of minutiae since it still relies on manual

processing such as latent minutia coding. This is im-

portant to improve latent-print matching accuracy,

especially for fragmental latent prints with few minu-

tiae. In order to match such latent prints, even unstable

minutiae need to be incorporated to increase chances

of hit. On the contrary, in the latter case, which is fully

automatic, neither the original ridge structure has to

be preserved nor is compatibility with the examiners’

definition critical.

With respect to minutia preserving ability, there

are two types of minutiae to be considered: stable min-

utiae and unstable minutiae. The stable minutia is a

minutia that is topologically isolated from other minu-

tiae with no chance of interfering with other minutiae.
ble Minutiae (NIST DB#27 076T). Notes: (b) The ridge image

relatively weak enhancement parameter. (c) A skeleton

age in (b). (d) The image in (b) was enhanced by one of the

parameter. (e) A skeleton image and minutiae were
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The unstable minutia is a minutia that may either re-

main unchanged or completely disappear depending on

the physical conditions of its surroundings. Crossover

minutiae are a typical example of unstable minutiae. In

Fig. 6(a ) a stab le minu tia is presented in the yellow

circle and an unstable minutia in the red circle. Notice

how the different levels of enhancement affect the ex-

traction results. If the strength of the ridge enhancement

filter is relatively mild, the crossover ridge structure and

the corresponding minutiae are maintained (Fig. 6(c) ).

On the other hand, the crossover minutiae completely

disapp ear w hen a strong filter is applied (Fig . 6(e)).

Despite this drawback, however, it is still beneficial to

adopt strong filtering since it is capable of consistently

extracting stable minutiae even from poor quality

images as illustrated by the following example. The

image in Fig. 7(b) represents an ideal , man ually edited
Fingerprint Image Enhancement. Figure 7 Effects of Strong

Notes: (b) The ideal skeleton image was manually generated

original ridges. Then, minutiae were extracted from the ideal

automatically enhanced by one of the popular algorithms [9]

skeleton image and minutiae were automatically extracted fr

(d) was automatically enhanced by one of the popular algorit

Then, a skeleton image and minutiae were automatically extr
minutia e of the image Fig . 7(a) , containing a total of

76 minutiae, 55 of which are stable and 21 are unstable.

The image in Fig . 7(d) is an ar tificially produced poor

quality image by covering it with several circular

‘‘patches.’’ When a strong filter is applied to the images

in Figs. 7(a) and (d) , most of the 55 stable minutia e are

correctly extr acted as shown in Figs. 7(c) and (e) ,

respectively. It should also be noted that this method

is especially effective when the area of the overlapping

region between the two images is large enough in

which a sufficient number of stable minutiae exist.

Thus, filtering strength depends on the operational

strategy, requirements, and target image characteristics.

Once fingerprint ridges are suitably enhanced,

▶fingerprint binarization is then conducted to pro-

duce a black and white image and, finally,▶fingerprint

skeletonization to generate a skeleton image.
Ridge Enhancement Filter (NIST DB#27 076T).

so that skeleton curves correctly coincided with the

skeleton image. (c) The ridge image in (a) was

with a relatively strong enhancement parameter. Then, a

om that enhanced ridge image. (e) The ridge image in

hms [9] with a relatively strong enhancement parameter.

acted from that enhanced ridge image.
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Summary and Future Improvement

Fingerprint image enhancement is a very effective tool

for improving ridge clarity. Undoubtedly, improve-

ment in matching accuracy reported in the past two

to three decades can be attributed to innovation in

image enhancement techniques. Unfortunately, it is

far from true if considered in terms of how close the

automated fingerprint recognition got to the ability of

human perception. This is because the current techni-

ques that heavily rely on ridge orientation and fre-

quency (and whatever information one can think of)

are not capable of perceiving a fingerprint image as a

fingerprint but just a collection of gray-scale pixels,

and the circumstance has not changed in the course

of over 40 years of research. This may change in the

future if a leap forward in the computational neurosci-

ence reveals the mechanism of human pattern recogni-

tion, but for the time being, a goal pro tempore is

probably to find a way to extract information from

unmodified gray images to avoid side effects of the

image enhancement as far as possible.
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The intrinsic characteristic of a biometric signal may
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sing by the biometric system or assess its conformance

to preestablished standards. The quality of a biometric
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Fingerprint Image Quality. Figure 1 Good quality fingerprint images (a) have clear pattern of ridge and valleys;

however, poor quality fingerprint images (b) do not have easily distinguishable patterns. Poor quality images result in

spurious and missed features, thus degrading the performance of the overall system. Poor quality samples can be due to

distorted source like abraded skin (b), distortion in one or more steps of the process, e.g., capture (residual fingerprints on

the platen in (c)) or compression, or low character source, the sample may subjectively be assessed as ’’good’’ quality, but

a matcher may not be able to match it to its mate (d).
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signal is a numerical value (or a vector) that measures

this intrinsic attribute. Quality score is a quantitative

expression of the utility, or predicted performance of a

biometric sample in a comparison environment. This

means that finger image quality scores should correlate

to the observed false match and ▶ false non-match

rates of the samples.
Introduction

With an increase in the need for reliable identity

authentication, biometric recognition systems have

been increasingly deployed in several different applica-

tions: government applications such as national ID

card, border control; and commercial applications,

such as physical access control, e-commerce, or mobile

phone. Among all biometric modalities, fingerprint

recognition is the most widespread due to its perma-

nence and uniqueness [1].

A fingerprint is a pattern of friction ridges on the

surface of a fingertip. A good quality fingerprint has

distinguishable patterns and features that allow the

extraction of features, which are useful for subsequent

matching of fingerprint pairs. This viewpoint may be

distinct from the human conception of quality. If, for

example, an observer sees a fingerprint with clear ridges,

low noise, and good contrast then he or she might

reasonably say it is of good quality. However, if the

image contains few minutiae points then a minutiae-

basedmatcher would underperform. Thus, in the context

of automated matching, the term quality should not

be used to refer to the fidelity of the sample, but instead
to the utility of the sample to an automated system.

Figure 1 shows examples of good and poor quality

fingerprint images.

Automatically and consistently determining the

quality of a given biometric sample for identification

and/or verification is a problem with far-reaching

ramifications. If one can identify low quality biometric

samples, this information can be used to improve the

acquisition of new data. This same quality measure can

be used to selectively improve an archival biometric

database by replacing poor quality biometric samples

with better quality samples. Weights for multimodal

biometric fusion can be selected to allow better quality

biometric samples to dominate the fusion. All of these

applications require that the quality of the biometric

sample be determined prior to identification or verifi-

cation. Most of these applications also require that

quality of the biometric sample be computed in real-

time during data acquisition.
Fingerprint Image Quality

Performance of an automated fingerprint recognition

system is greatly affected by the degree of imperfection

present in the finger image. Accuracy of current finger-

print recognition systems is high when high-quality

samples are being compared [2] (Note that according

to Minutia Interoperability Exchange Test 2004

(MINEX04) report, best single finger proprietary fin-

gerprint recognition system performed at 0.0047 false

non-match rate at 1% false match rate.). However,

performance degrades substantially as quality drops.
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Although only a small fraction of input data are of

poor-quality, the bulk of recognition errors can be

attributed to poor-quality samples.

Degradation in fingerprint image quality reduces

the amount of identifiable information in a finger-

print. Poor quality images cause spurious and missed

features which decrease the likelihood of a correct

verification and/or identification, while extremely

poor quality samples might be impossible to verify

and/or identify. The variation in performance for dif-

ferent quality levels is shown in Fig. 2. The five traces

of Detection Error Tradeoff (DET) curves correspond

to five different levels of quality as measured by NIST

Fingerprint Image Quality (NFIQ) [3, 4]. NFIQ is an

integer between 1 and 5 where 1 represents the highest

quality and 5 the lowest (unusable) quality.

Several factors affect the quality of fingerprint images:

user’s skin condition, improper finger placement, scan-

ner limitation or imperfection, impurities on the scanner

surface and others. The cause of these imperfections can

be classified in four groups: (1) impairments in the

source of▶Biometric characteristics: like scars, blisters,

skin conditions such as wet or dry, age, occupation,

etc.; (2) user behavior: such as improper finger place-

ment, e.g., rotating finger or placing only tip of a finger
Fingerprint Image Quality. Figure 2 Quality ranked detectio

to five NFIQ levels. Fingerprint images with NFIQ¼1 (highest

NFIQ¼5 (lowest quality).
which cause capturing insufficient area of finger image;

(3) imaging: e.g., low contrast, distortion, sampling

error, insufficient dynamic range, etc.; and (4) environ-

ment: such as temperature, humidity, or unclean

platen.
Fingerprint Image Quality Measures

It is widely accepted that a statement of a biometric

sample’s quality should be related to its recognition

performance. That is, a quality measurement algo-

rithm takes a signal or image, x, and produces a scalar,

q ¼ Q(x), which is predictive of error rates associated

with the verification or identification of that sample.

This predictive value of quality measures may be im-

perfect but valuable nevertheless. It should be noted

that operationally the requirement for a scalar is not

necessary: a vector could be stored and could be used.

The fact that quality has historically been conceived of

as scalar is a widely manifested restriction [5].

International Standards Organization (ISO) has

recently established a biometric sample quality draft

standard [6], in which quality score of a biometric

sample is defined as predicted performance of the
n error trade-off characteristics. Five traces correspond

quality) cause lower recognition error than images with
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sample in a comparison environment. It considers

three components of quality: (1) character, which refers

to quality of inherent physical features of the source,

for example, a fingerprint with a scar has low character;

(2) fidelity, which is the degree to which a sample is an

accurate representation of its source, for example, dis-

tortion degrades fidelity; and (3) utility, which refers to

contribution of a sample to the overall biometric rec-

ognition error rates and is related monotonically to the

performance of biometric matchers. Character and

fidelity of a sample positively or negatively impact the

utility of the sample.

There are several fingerprint analysis approaches

that gauge character and fidelity of fingerprint images.

These measures are then summarized into a scalar (or a

vector) quality score that is indicative of utility of the

sample. Broadly fingerprint image analysis can be

divided into local and global analysis methods [7].

Fingerprint local structure constitutes the main texture-

like pattern of ridges and valleys within a local region

while valid global structure puts the ridges and valleys

into a smooth flow for the entire fingerprint. The quality

of a fingerprint image is determined by both its local and

global structures. Local feature analysis methods parti-

tion an image into nonoverlapping blocks and assign a

quality score to each block which indicates the amount of

useful information in that block for subsequent match-

ing. Final image quality score can be computed by com-

bining quality scores of the blocks. Global feature analysis

examines continuity and uniformity of ridge–valley
Fingerprint Image Quality. Figure 3 Local analysis consists

features such as orientation consistency or directional flow ar

information useful for comparison of the image and therefore
structure of a fingerprint image in a holistic manner

and computes a global measure of fingerprint quality.

Global and local quality measures could be com-

bined to obtain final quality score of a fingerprint

image such that the overall quality score is a measure

of matchability of the sample in an automated match-

ing process, i.e., the derived quality score should be

related to the biometric error rates that is likely to be

realized when the sample is matched.

1. Local Analysis To locally analyze a fingerprint

image, it is divided into grids of blocks (Fig. 3).

For each block, local features such as directional

flow of ridges are computed which are then sum-

marized into a quality score representing quality of

the block. Each block should be large enough to

contain sufficient ridge–valley information, at least

two ridges per block. For example, for a fingerprint

with a resolution of 500 ppi, each block could be

32 � 32 pixels. An overview of existing local analy-

sis methods follows.

a. Orientation certainty field: A fingerprint image

within a small block generally consists of ridges

(dark pixels) separated with valley (light pixels)

lines along the same orientation. High-quality

blocks of a fingerprint image contain consistent

ridge (or valley) orientation. Local angle infor-

mation in each block can be used to compute

local features. Lim et al. [8] computed energy

concentration along the dominant direction of
of partitioning a fingerprint image into small blocks. Local

e extracted from each block. These features convey

indicate quality of the block.
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ridges by computing the ratio between two eigen-

values of the covariance matrix of a block’s

gradient vector. It gives an indication of how

strong the energy is concentrated along the

ridge–valley orientation. Chen et al. [9] measured

orientation coherence in each block using gra-

dient of the gray level image.

b. Ridge–valley structure: Well-formed and clearly

visible ridges are essential to the reliable detec-

tion of ridge endings and bifurcations, also

known as minutia points. Ridges that are too

close or too far apart, or ridges that are unrea-

sonably thick or thin indicate that the finger

image may not have captured properly, due to,

e.g., pressing too hard or too soft (Fig. 4). Shen

et al. [10] applied Gabor filter to image sub-

blocks, to identify blocks with clear repetition of

ridge and valley pattern as good quality blocks.

c. Pixel intensity or Directional contrast: Region of

good quality exhibits high directional contrast,

which means that the ridges and the valleys are

well separated with regard to gray values. High-

quality blocks will exhibit large variance in gray

levels while low-quality blocks will show small

variance. [11–13] assess quality of each block

based on its pixel intensity. Bolle et al. [14]

used ratio of directional area to other nondirec-

tional area as a quality measure.

d. Power Spectrum: Ridge and valley structure in a

high-quality block forms a periodic signal,

which can be approximated either by a square

wave or a sinusoidal wave with its frequency
gerprint Image Quality. Figure 4 Examples of (a) good,

llenge to automated matching system and hence are of lo
lie in certain range. In frequency domain, a

square wave exhibits a dominant frequency

with sideband frequency components (sinc

function), and a sinusoidal wave consists of

one dominant frequency and minimum com-

ponents at other nondominant frequencies.

Therefore, existence of a dominant frequency

component plus its frequency are indicative of

high- quality blocks of fingerprint image. Poor

quality blocks will not exhibit a dominant fre-

quency or it will be out of the normal range of

ridge frequency [12]. Hong et al. [15] modeled

the ridge and valley pattern as sine wave, and

computed the amplitude, frequency as well as

the variance of the sine wave to decide the

quality of the fingerprint. Nill and Bouzas [16]

propose an objective image quality based on the

digital image power of normally acquires

scenes. Their system is designed to assess the

quality of digital images and can be applied to

fingerprint as well.

2. Global Analysis A good quality fingerprint exhibit

smooth changes in ridge orientation across the

entire fingerprint image except when a core or

delta point occurs. Ratio of ridge to valley thickness

should also be fairly constant throughout the whole

image. [8] used local angle information in each

block to assess continuity in orientation field be-

tween neighboring blocks and uniformity of ridge

to valley thickness ratio. Chen et al. [13] computed

a block’s absolute difference in the orientation

angle with its neighboring blocks as a measure of
(b) thin, and (c) thick ridge structure. (b) and (c) pose

wer quality than (a).
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smoothness of the change in orientation angles

among blocks. As mentioned earlier, the ridges of

a finger image can be locally approximated by one

sine wave with its frequency in a certain range.

A region of interest (ROI) of the spectrum is de-

fined as an annular region with radius ranging

between the minimum and maximum typical

ridge frequency values. For a more robust ridge

structure (i.e., the better image quality) the energy

will be more concentrated within the ROI. [9]

measured the energy concentration in ring-shaped

regions of the ROI by employing bandpass filters to

extract the energy in each frequency band. Good

quality images will have the energy concentrated in

few bands while poor quality fingerprints will have

a more diffused distribution.

3. Overall Fingerprint Image Quality: prediction of

performance: It is desirable to combine local and

global quality features into one scalar or a vector of

quality such that the overall fingerprint image qual-

ity is related to the expected false match and false

non-match of the image. The summarization can

simply be the percentage of blocks classified as

‘‘good’’ or ‘‘bad’’ quality after a local analysis, or

more elaborate combination methods such as

weighted average of local qualities. For example,

higher weights could be assigned to blocks closer

to the centroid of a fingerprint since features

extracted from blocks near the centroid have

more useful and reliable information [9, 11]. Use

of a classifier to nonlinearly combine local and

global features was first proposed by Tabassi et al.

[3, 4]. The method called NIST Fingerprint Image

Quality NFIQ [3, 4] was developed to predict how

far a genuine score would lie from its impostor

distribution and is thus effective at improving

false rejections while suppressing false acceptance

errors. NFIQ extracts minutia, assigns a quality value

to each minutia point, and measures orientation

field, pixel intensity, and directional map to com-

pute the following local and global features: num-

ber of foreground blocks, number of minutia,

number of minutia that have quality value better

than certain thresholds, percentage of foreground

blocks of excellent, good, fair, and poor quality.

A neural network was trained to classify the com-

puted feature vectors into five levels 1–5 where

NFIQ = 1 is the best quality and NFIQ = 5 is the
lowest quality. Figure 2 shows that the highest

recognition performance is achieved for the best

quality samples (NFIQ¼1), and samples with low-

est quality (NFIQ¼5) have the lowest perfor-

mance. The plots of Fig. 5 show, respectively, the

genuine and impostor distributions for NFIQ

values 1 (excellent quality), 3 (average quality),

and 5 (poor quality). The overlapping of genuine

and impostor for the poorest NFIQ (i.e., NFIQ = 5)

means higher recognition errors for that NFIQ

level while the almost complete separation of the

two distributions for the best quality samples (i.e.,

NFIQ = 1) indicates lower recognition error. Source

code for NFIQ algorithm can be found in [17].
Applications of Biometric Quality
Values

This section describes the roles of a sample quality

measure in the various contexts of biometric opera-

tions. The quality value here is simply a scalar sum-

mary of a sample that is taken to be some indicator of

matchability. These uses of biometric sample quality

are not fingerprint specific and can be generalized to

other modalities like face or iris.

1. Enrollment Phase Quality Assessment Enrollment is

usually a supervised process, and it is common to

improve the quality of the final stored sample by

acquiring as many samples as are needed to satisfy

either an automatic quality measurement algorithm,

a human inspector (a kind of quality algorithm), or a

matching criterion (by comparison with a second

sample acquired during the same session). Our

focus on automated systems’ needs is warranted

regardless of analyses of these other methods, but

the authors do contend that naive human judg-

ment will only be as predictive of a matcher’s

performance as the human visual system is similar

to the matching system’s internals, and it is not

evident that human and computer matching are

functionally comparable.
Specifically, human inspectors may underesti-

mate performance on overtly marginal samples.

Certainly human inspectors’ judgment may be im-

proved if adequate training on the failure modes

and sensitivities of the matcher is given to the



Fingerprint Image Quality. Figure 5 Probability density of impostor scores is shown in blue and probability density

of genuine scores is shown in gray. There is a higher degree of separation between the genuine and impostor

distribution for better quality samples as measured by NFIQ. (a) Best. (b) Middle. (c) Worst.
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inspector, but this is often prohibitively expensive

or time consuming and not scalable. Immediate

matching also might not be predictive of perfor-

mance over time because same-session samples

usually produce unrealistically high match scores.

For instance, Fig. 6 shows an example of two same-

session fingerprint images that were matched suc-

cessfully by three commercial vendors despite their

obvious poor quality.

In any case, by viewing sample acquisition as a

measurement and control problem in which the

control loop is closed on the quality measure, a

system gains a powerful means of improving over-

all sample quality.
2. Quality Assurance Finger image quality assessment

algorithms may be used to monitor quality across

multiple sites or over time. This is useful to signal

possible performance problems ahead of some

subsequent matching operation. Quality values
may be aggregated and compared with some his-

torical or geographic baselines. Use of quality

values in this role has been documented in [18].

The National Institute of Standards and Technol-

ogy (NIST) has published a technical guidance

toward quality summarization [19]. Quality sum-

marization addresses the important issue of enter-

prise quality-assurance surveying by providing

tools on how to combine quality scores of individ-

ual samples into one scalar representing quality of

the whole database. Such a function would support

identification of, e.g., defective sensors, underper-

forming sites, and seasonal or secular trends.

3. Verification Quality Assessment During a verifica-

tion transaction, quality can be improved by clos-

ing an acquire–reacquire loop on either a match-

score from comparison of new and enrollment

samples or on a quality value generated without

matching. Indeed it is common to implement an
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(NFIQ¼5) were matched correctly by three leading commercial matchers.
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‘‘up to three attempts’’ policy in which a positive

match is a de facto statement that the sample was of

good quality – even if the individual happens to be

an impostor. Depending on the relative computa-

tional expenses of sample matching, reacquisition,

and quality measurement, the immediate use of a

matcher may not be the best solution. The key

difference here (as compared with the enrollment-

phase) is that quality values of bot h the enrollment

and verification samples can be used to predict

performance. This two-dimensional problem is

distinct from the enrollment case where only one

quality value is used.

4. Identification Quality Assessment Quality measure-

ment in identification systems is important for at

least three reasons. First, many users often do not

have an associated enrollment sample. So a one-to-

many match will be an inefficient and inconclusive

method of stating whether the authentication sample

had high quality. Second, in negative identification

systems where users with an enrolled sample are

motivated to evade detection, quality measurement

can be used to detect and prevent submission of

samples likely to perform poorly [20], which may

help prevent attempts at spoofing or defeating de-

tection. Third, identification is a difficult task: it is

imperative to minimize both the false non-match

rate (FNMR) and the false match rate (FMR). To

the extent that consistently high-quality samples

will produce high genuine scores, a high matching
threshold can be used and this will collaterally

reduce FMR. But in large populations FMR

becomes dominant, and this raises the question:

can a quality apparatus be trained to be directly

predictive of false match likelihood?

5. Differential Processing Quality measurement algo-

rithms can be used toalter the subsequent pro-

cessing of a sample. Such conditional activity

arecategorized as follows.

a. Pre-processing Phase

An identification system might apply image res-

toration algorithms or invoke different ▶ fea-

ture extraction algorithms for samples with

some discernible quality problem.

b. Matching Phase

Certain systems may invoke a slower but more

powerful matching algorithm when low-quality

samples are compared.

c. Decision Phase

The logic that renders acceptance or rejection

decisions may depend on the measured quality

of the original samples. This might involve

changing a verification system’s operating thresh-

old for poor quality samples. For example, in

multi-modal biometrics, the relative qualities of

samples of the separate modes may be used to

augment a fusion process [21, 22].

d. Sample Replacement

To negate the effects of template aging, a quality

measurement may be used to determine whether
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a newly acquired sample should replace the en-

rolled one. An alternative would be to retain

both the old and new samples for use in a

multi-instance fusion scheme.

e. Template Update

Again to address template aging, some systems

instead combine old and new sample features.

Quality could be used in this process.
Summary

Fingerprint quality measurement is an operationally

important task. This paper enumerated ways in

which it is useful to compute a quality value from a

sample. In all cases the ultimate intention is to improve

matching performance. The authors asserted therefore

that quality algorithms should be developed to explic-

itly target matching error rates, and not human per-

ceptions of sample quality. The term quality should

not be equated to the acquisition settings of the sam-

ple, such as image resolution, dimensions in pixels,

grayscale/color bit depth, or number of features.

Though such factors may affect sample utility and

could contribute to the overall quality score. We

reviewed the existing practice of fingerprint local and

global analysis. Local and global quality scores could be

combined to form a vector of overall finger image

quality. However, it is useful, even necessary for some

applications, if local and global quality measures are

summarized into a scalar which is predictive of error

rates associated with the verification or identification

of that sample.
Related Entries

▶Biometric Sample Quality Standard

▶Performance of Quality Measures
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Definition

When matching a query fingerprint to a large finger-

print database for identification purposes, a critical

issue is how to narrow down the search space. Indexing

provides a mechanism to quickly determine if a query

fingerprint is in the database and to retrieve those

fingerprints that are most similar with the query, with-

out searching the whole database.
Introduction

Fingerprint matching is one of the most popular and

reliable biometric techniques used in automatic personal

identification. Typically, fingerprint matching is based

on low-level features determined by singularities in

the finger ridge pattern known as minutiae. To be

practical, matching should be robust to translation,

rotation, scale, shear, occlusion, and clutter. In this con-

text, matching two fingerprints implies finding a subset

of minutiae in the first fingerprint that best match to a

subset of minutiae in the second fingerprint through

a geometric transformation in an optimal sense.

There are two main applications involving finger-

print matching: fingerprint authentication and fin-

gerprint identification. While the goal of fingerprint

authentication is to verify the identity of a person,

the goal of fingerprint identification is to establish

the identity of a person. In this case, matching involves

comparing a query fingerprint against a database of

reference fingerprints to establish the identity of the

query. An important issue in fingerprint identification

is how to select the most similar fingerprint(s) to the

query fingerprint from the fingerprint database. The

easiest but least effective way to search a large database

is to compare the query fingerprint with each
fingerprint in the database. Since usually there is no

a-priori knowledge of possible correspondences be-

tween the query and the reference fingerprints, howev-

er, matching can be computationally too expensive,

even for a moderate number of reference fingerprints.

A common approach to narrow down the search is

by dividing the fingerprint database into smaller sets

using fingerprint classification. The idea is to match the

query fingerprint against fingerprints of the same type

only. Although this approach can reduce the number

of matches, it is not very effective since fingerprints are

unevenly distributed (i.e., more than 90% of the fin-

gerprints belong to only three classes [1]). Several sub-

classification systems have been proposed to address

this issue by further dividing some of the classes into

more specific categories, however, these systems are

much more complex and difficult to implement [1].

A more effective approach to narrow down the

search space is to use indexing. In principle, indexing

can quickly determine if a query fingerprint is in the

database and to retrieve those reference fingerprints

which are most similar to the query fingerprint, with-

out searching the whole database. Therefore, methods

based on indexing are less dependent on the size of

the database. The main idea is to assign an index value

to each fingerprint and match the query against those

reference fingerprints having comparable indices only.

Indexing methods have been very popular in computer

vision for searching large databases of models in

object recognition [2–4]. Therefore, many indexing

schemes for finger identification have their roots in

object recognition.
How Indexing Works

Indexing is a mechanism which, when provided with a

key value, can rapidly access some associated data.

Thus, instead of searching the space of all possible

matches and explicitly rejecting invalid ones, indexing

inverts the process so that only the most feasible

matches are considered for matching. In essence,

indexing serves as a ‘‘filtering’’ step which allows to

verify a query fingerprint against the most similar

fingerprints in the database only. To implement

indexing, certain information about the reference fin-

gerprints is prestored in an index structure. During

identification, the index structure is accessed efficiently

to narrow down the search.
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Typically, a single index can be computed from the

whole fingerprint or multiple indices can be computed

from groups of local features. Using a single index,

fingerprints are mapped to numerical vectors in a high-

dimensional space through a similarity-preserving

transformation. During identification, the query

fingerprint is compared against those reference finger-

prints which are close to the query in the multidimen-

sional space. This approach, also known as continuous

classification [5], is in essence a classification approach,

however, the classes are not disjoint. Commonly, the

orientation image is used in the mapping transforma-

tion, however, different transformations and distance

measures have been proposed [5–8].

Using groups of local features, reference finger-

prints are represented redundantly in the database

by computing a separate index for each group of

features and making an entry for each index [9–11].

This kind of redundancy provides robustness during

identification by allowing the retrieval of reference

fingerprints that match the query fingerprint only

partially. Specifically, for each reference fingerprint,

groups of features are extracted and an index is

constructed from each group. The indexed locati-

ons are filled with entries containing information

about the reference fingerprints. At a minimum, each

entry contains information about the identity of the

reference fingerprint and the group of features that

generated the index.

During identification, the information stored in the

index structure is used to quickly eliminate noncompat-

ible matches between the query and the reference fin-

gerprints. To reduce the number of false matches,

geometric constraints can be used [11]. The reference

fingerprints listed in the indexed locations are collected

into a list of candidate fingerprints and the most

often indexed fingerprints are selected for further veri-

fication. Verification works by computing the transfor-

mation between the candidate fingerprints and the

query. Then, the candidate fingerprints are aligned

with the query and their similarity to the query is

estimated by finding the percentage of candidate fea-

tures that have been aligned with query features.
Fingerprint Indexing. Figure 1 A minutiae triangle

defined by a minutiae triplet (A,B,C).
An Example

Here is an example, based on [9, 10], to illustrate the

use of indexing for fingerprint identification. In this
example, matching a pair of minutiae sets is performed

by comparing minutiae triangles, formed by minutiae

triplets, using geometric invariant features. In general,

a pair of corresponding minutiae triangles provides

enough information to compute a geometric transfor-

mation (e.g., similarity or affine) that potentially aligns

the minutiae sets. To compute good alignments, voting

can be applied in the transformation space to find

transformations that are supported by many minutiae

triangles [9]. A number of hypothetical transforma-

tions is obtained by considering transformations that

have received a high number of votes. Each hypotheti-

cal transformation is then explicitly verified by count-

ing the number of aligned minutiae.

The indexing mechanism used in this example

is based on geometric hashing [2]. Specifically, given

a triplet of minutiae, three geometric invariants can

be computed by considering the triangle formed by

the minutiae triplet. The geometric invariants are

based on the sides and angles of the minutiae triangle,

as shown in Fig. 1, and remain unchanged under

similarity transformations (i.e., translation, rotation,

and scale). First, the sides of the triangle are sorted to

avoid considering all possible orderings:

l1 � l2 � l3

Then, we compute the following geometric

invariants:

0 � l1
l3
� 1

0 � l2
l3
� 1

�1 � cosðAÞ � 1

where A is the angle between the smallest two sides.

To compute an integer index, a simple hash function

is applied on the geometric invariants which involves

linear scaling followed by quantization. For each index,
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information is stored about the fingerprint and the

minutiae triangle in a hash table. Each entry stored

in the hash table has the following format:

ðperson ID; print ID;m1;m2;m3Þ
where person_ID corresponds to the identity of the

person whose fingerprint is considered, print_ID is

an identification code for the particular fingerprint

of that person, and mi are the (x,y) coordinates of

the mi minutia in the triangle. Figure 2 illustrates the

indexing step.

During identification, each index generated by

the query fingerprint is used to retrieve all reference

fingerprints stored in the hash table under the same

index. For each minutiae triangle, the lengths of the

sides are computed, sorted in ascending order, and

the geometric invariants are computed as before.

Then, the invariants are scaled and quantized in the

same manner. The resulting index is used to extract

all entries from the database stored at the same index

table location. To account for noise, entries stored in

a small neighborhood around the indexed location

could be also retrieved.

Several indexing-based approaches accumulate

evidence about reference fingerprints by casting a

vote for every entry stored in the indexed locations

and by ‘‘histograming’’ the entries to pick the ones

which have received a high number of votes. However,

this approach takes into consideration only the num-

ber of votes received by a particular entry and not

whether these votes are consistent among themselves.

To introduce a measure of coherence, voting in the

transformation space has been proposed [9]. The idea
Fingerprint Indexing. Figure 2 Pre-storing information

about the reference fingerprints using indexing.
is simply to consider transformations which form large

clusters in the transformation space.

Each of the entries retrieved from the index

table represents a hypothesized correspondence

between minutiae triplets in the query and a reference

fingerprint. Given this information, the transforma-

tion that best maps the query triplet to the reference

triplet is computed. The computed transformation

parameters are binned and, along with the person_ID

and imprint_ID, form a key that indexes another data

structure used for evidence accumulation. An eight-

dimensional integer array is used to store the number

of votes in the transformation space (i.e., six dimen-

sions for the parameters of the transformation, one for

the person_ID and one for the imprint_ID).

If a large number of minutiae points can be brought

into correspondence by a transformation, then all the

indices generated by the triangles formed by those min-

utiae points will yield close transformation parameters.

Hence, a larger number of votes for a correct match will

be accumulated. Although there might be a number of

random correspondences between minutiae triplets in

the query fingerprint and some arbitrary reference fin-

gerprints, the likelihood of a number of consistent

transformation parameters being generated by random

correspondences is small, and the verification step will

eliminate most of them. Figure 3 illustrates these iden-

tification procedure based on indexing.
Practical Issues

Several important issues must be considered

while employing indexing for fingerprint identification

including: index construction, index selectivity, storage

requirements, indexing mechanism, performance anal-

ysis, and error analysis. Each of them briefly discussed

in the following section.
Index Construction

As illustrated in the earlier example, each index

is typically constructed from groups of local featu-

res, such as minutiae triplets. In general, index

construction should be based on features that are

robust to fingerprint distortions, occlusion, and noise

[11]. To reduce storage requirements, the computation

of the index is based on geometric invariant features,
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that is, features that remain unchanged under certain

geometric transformations. In the earlier example, we

used length ratios and angles which are invariant to

similarity transformations (i.e., translation, rotation,

and scale). Other geometric invariant features include

ridge count, triangle handedness, triangle type, triangle

direction, and maximum side, minutiae density, and

various ridge invariants [9, 11–13].
Index Selectivity

Although indexing is an attractive approach, very often

it becomes less effective because of limited index selec-

tivity. The issue of index selectivity relates to the dis-

crimination power of the features considered for

indexing. Features with low discrimination power

give rise to very similar indices (i.e., low index selectiv-

ity). As a result, a large number of hypothetical

matches can be generated during identification,

making indexing ineffective. One way to deal with

this problem is to increase the index dimensionality

using larger groups of features, however, this would

also increase memory requirements since the number
of groups increases exponentially with group size.

Alternatively, additional information can be computed

from each group and added to the index to increase its

dimensionality. For example, the FLASH algorithm,

introduced in [3] for object recognition and adopted

in [9] for fingerprint identification, computes a nine-

dimensional index from minutiae triangles. It should

be mentioned that although this is an effective

approach, it increases time requirements and raises

the issue of computing the additional features fast

and reliably. Recent studies using high-dimensional

indices include [11] and [12].
Storage Requirements

Indexing methods have high storage requirements as

they trade space for speed. For example, the number of

entries to be indexed using minutiae triplets is of the

order of O(N3) where N is the average number of

fingerprint minutiae. If M is the number of finger-

prints to be indexed, the total space requirements is

of the order of O(MN3). To reduce storage require-

ments, geometric constraints can be used to limit the
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number of minutiae triangles considered for indexing

[9]. Alternatively, a unique topological structure can be

associated with the fingerprint minutiae using the

Delaunay triangulation [10, 13]. This approach con-

siders only O(N) minutiae triangles for indexing

leading to significant memory savings and faster iden-

tification. A problem with this approach is that it is

sensitive to noise and distortions (e.g, introduced by

missing or spurious minutiae), however, both noise

and distortion have only a local effect on the triangu-

lation. Nevertheless, hierarchical matching schemes

have been proposed to deal with these issues [14].
Indexing Mechanism

Hashing has been the most common indexing mecha-

nism used both in fingerprint identification and object

recognition. Hashing performs a range search, retriev-

ing all points within a certain distance from the query

point. However, the highest probability hypotheses can

be discovered by observing just a few of the closest

neighbors. Hashing is not efficient for nearest-neighbor

search in high dimensions since it requires time expo-

nential in the dimension of the space (i.e., the nearest

neighbors might not lie in the same hash bin as the

query point, but in one of the many adjacent bins).

Moreover, ‘‘good’’ hash functions are required for dis-

tributing the data uniformly [15, 16]. In general, more

effective indexing mechanisms can be employed, such

as kd-trees [17], to retrieve only the k nearest points.

Kd-trees are data structures used to divide the data

into hypercubes containing equal numbers of data.

When a query point is presented, the boundaries

between the hypercubes are used as decisions to discover

the hypercube that contains the query point, and the

data in this hypercube will be close matches. To guaran-

tee that the matches in the hypercube containing the

query point are in fact closer to the query point than

data lying just over the boundary of the hypercube, it is

necessary to examine neighboring hypercubes. This can

make search quite slow. To deal with this issue, approx-

imate nearest-neighbor schemes can be used which

maintain good performance even in quite high dimen-

sions (i.e., 10–20) and large number of data [18, 19].

These algorithms have been demonstrated to uncover

the exact nearest neighbor a high percentage of the

time and a very close neighbor in the remaining cases.
Performance Analysis

To analyze the performance of indexing schemes, it is

typical to use identification rate versus ▶ penetration

rate graphs. The ratio of fingerprints retrieved over

the size of the database. These graphs show the identi-

fication rate achieved by varying the penetration

rate. Typically, a low penetration rate with a high

identification rate is desirable. Close to 99% identifica-

tion accuracy with only 5% penetration rate is

reported in [12] on DB1 from FVC2002. Alternative

measures include the ▶Correct Index Power (CIP)

and the ▶Correct Reject Power (CRP) [11]. CIP is

defined as the number of correctly retrieved finger-

prints over the size of the database while CRP is de-

fined as the ratio of correctly rejected reference

fingerprints over the number of query images not

having a corresponding fingerprint in the database.

Using the NIST-4 special database and extrapolating

the results from 2,000 images to 30,000 images, Bhanu

et al. [11] report a CIP rate of 50% using the top 100

candidate matches (i.e., 0.33% penetration rate). Using

a smaller database (i.e., 400 image pairs) and assuming

the top candidate match, they report a CIP rate of

96.2% for good quality images, 85.5% for fair quality

images, and 83.3% for low quality images. Using the

top five candidate matches, the CIP rate increases to

100, 99.2 and 98% correspondingly. The CRP rate

reported using 200 query fingerprints not in the data-

base was 100%.
Error Analysis

In the noiseless case, each indexed location will contain

exactly the set of reference groups compatible with the

query group used to access the index structure. In

practice, however, several different sources of error

must be taken into consideration to improve robust-

ness. The most common source of errors is from the

feature extraction step. Using minutiae triplets, for

example, errors in the localization of the minutiae

can lead to errors in the computation of the geometric

invariants and, as a result, to errors in the computation

of the indices. In this case, the correct entries will not

be found in the indexed location but in a neighbor-

hood around it. Several studies have considered the

effect of localization errors on indexing performance
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for object recognition [20]. Other studies model local-

ization errors probabilistically in order to estimate the

appropriate neighborhood size to retrieve the correct

entries [15].
Summary

Indexing is an attractive method for reducing the

number of matches when comparing a query finger-

print with a fingerprint database for identification

purposes. This chapter reviewed the main concepts

behind fingerprint indexing and discussed several crit-

ical issues to be addressed in practice.
Related Entries

▶ Fingerprint Authentication

▶ Fingerprint Classification

▶ Fingerprint Identification

▶ Fingerprint Matching
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Fingerprint Individuality
Fingerprint Individuality is the study of the extent of

which different fingerprints tend to match with each

other. It is the most important measure to be ascer-

tained when fingerprint evidence is presented in court

as it reflects the uncertainty with the decision of the

expert.

▶ Individuality of Fingerprints
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Synonyms

Fingerprint comparing; Automatic
Definition

In contrast to manual fingerprint matching, automat-

ic fingerprint matching can be efficiently operated on

a computing machine following a series of preset

procedures. Automatic matching compares two

given fingerprint templates (raw images or extracted

features) and returns their similarity score (in a con-

tinuous range) or a binary decision (matched/

non-matched).
Introduction

With the increasing expansion of large-scale databases,

manual fingerprint matching cannot satisfy the de-

mand of efficiency in many applications. Automatic

fingerprint matching simulates how human experts

compare the fingerprints to measure the similarity

between two given fingerprint templates or to deter-

mine whether they come from the same finger [1]. For

most fingerprint matching procedures, experts calcu-

late the similarity score of two templates and give the

final judgment with a preset threshold. If the score

exceeds the threshold, the compared templates are

considered matched, otherwise they are non-matched.

The templates are the representation of fingerprints,

comprising extracted features or the raw images in case

of no extraction. The features can be categorized into

two kinds: local features (minutiae, pores) and global

features (compressed raw fingerprint, ridge pattern,

orientation and curvature map).

Fingerprint matching is one of the most important

stages in ▶Automatic Fingerprint Identification Sys-

tem (AFIS). It is really difficult to match the different
impressions of the same finger and find the

corresponding features reliably because of the following

interferential factors. First, there are several kinds of

transformation between two impressions, including lin-

ear transformation (translation, rotation, and scale) and

non-linear distortion. The translation and rotation is

caused by the differential finger placement with respect

to the sensor surface during different acquisitions, which

may result in a partially overlapped area. If the impres-

sions are captured by different sensors with different

resolutions, there exists scale variation in the transfor-

mation space. The non-linear distortion of fingerprints

is inevitable because the capture is a process of mapping

a three-dimensional finger to a two-dimensional im-

pression. The pattern of distortion is firstly determined

by finger pressure, finger condition, and the character-

istics of sensors. Secondly, the quality of raw fingerprints

are also influenced by the noise (fingerprint residues

from the previous capture), skin condition (dryness,

grease, skin disease), and the capture environment (hu-

midity, temperature). Figure 1 displays three examples

of these interferential factors in fingerprint matching.

In addition, the algorithms of fingerprint enhancement

and feature extraction are imperfect and often intro-

duce some mistakes into the extracted features. Errors

may be made and accumulated during each of the

foregoing stages (orientation estimation, singular

points detection and minutiae extraction). These

objective factors are likely to generate spurious features

or miss genuine features. All the above variations

may make the templates from the same finger appear

quite different, sometimes more severely than the

similar templates from different fingers. Many finger-

print matching algorithms have been proposed in the

scientific literature. Most of these algorithms are

proved successful when dealing with good-quality fin-

gerprints. However, fingerprint matching is still a

challenging task due to the difficulty in matching

low-quality, partial, or large-distorted fingerprints.

There have been a series of strategies to cope with the

transformation between two fingerprints. In most of

typical fingerprint matching processes, alignment is uti-

lized to estimate the optimum linear transformation

between two fingerprints. It rotates and translates one

of the compared templates in order to make its features

mostly overlap the corresponding features in another

template. To achieve the optimum feature-pairing

requires correctly calculating the parameters of transla-

tion and rotation. Note that scale has to be taken



Fingerprint Matching, Automatic. Figure 1 Three examples of these interferential factors in fingerprint matching.

(a) a pair of fingerprints with large translation and rotation; (b) a pair of poor-quality and partially overlapped fingerprints;

(c) a pair of large-distorted fingerprints [22]. While the corresponding minutiae in blue rectangle are overlapped, the

maximal distance of corresponding minutiae in red ellipse is above 100 pixels.
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into account when the resolutions of fingerprints vary.

Previous researches [2] prove that the performance

of the matcher drastically decreased when the com-

pared fingerprints originated from sensors with
different resolutions. Fingerprint alignment is certainly

an important but time-consuming stage. Therefore,

some algorithms [3] attempt to avoid this stage in

fingerprint matching. For instance, experts construct
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local feature structures invariant to the linear transfor-

mation for matching without priory global alignment.

Such matching algorithms ignore the global relationship

among local features and therefore may lose part of the

discriminating information. On the other hand, non-

linear distortion is universal during fingerprint acquisi-

tion, so it is needed to develop fingerprint matchers

tolerant of the distortion. Some methods [4, 5] allow

corresponding features to alter in the predetermined

range (tolerance box). Others [6, 7] adopt local feature

structures for matching because distortion affects to a

lesser degree local areas. Few developers [8, 9] intro-

duce an appropriate model to recover the distortion

prior to matching. In general, tolerating more trans-

formations may increase the successful percentage of

not only ▶ genuine matching but ▶ imposter match-

ing. When designing the matching algorithms, the

degree of tolerance needs careful evaluation. Based on

the calculated transformations, the correspondences

between features can be established through the opti-

mization methods.
Classification

Because fingerprint matching algorithms rely heavily

on the stored features in the templates, they can be

coarsely classified into three categories in terms of the

selection of features:

� Local feature-based matching: The most popular

local feature is minutia, which was earliest used in

fingerprint matching technologies [5]. Minutiae

features are extracted and stored in the templates

as sets of points in the two-dimensional plane.

They are usually described by the location, orienta-

tion, type, and other information in the neighbor-

hood region. Most commonminutiae matching are

addressed as a point pattern matching problems

and many approaches can be applied. Furthermore,

several adjacent minutiae are constructed as local

structures in various forms of minutiae, such as

simplex [10] triangle [6] and so on.

� With the advent of high-resolution fingerprint sen-

sors, more precise local features (pores and ridge

contours [11]) are employed in fingerprint match-

ing to satisfy the growing demand and require-

ments for accuracy. These algorithms usually

align two different templates to establish the
correspondences between two sets of local features

and calculate the similarity score combining all the

matched features. Compared to other fingerprint

features, local features have several advantages in

terms of the template size and its discriminability,

but they have inevitable drawbacks in practical

usage. Sometimes it is difficult to exactly obtain

local features due to its sensitivity to the fingerprint

quality and capture area, which seriously degrades

the performance.

� Global feature-based matching: The global fea-

tures represent the fingerprint in a global per-

spective, many of which are more continuous

and smooth everywhere except in some special

regions. For poor-quality or partial fingerprints,

global features can be extracted more reliably. It

is too space-and time-consuming to directly store

and compare the map/field of features pixel by

pixel. To reduce the template size and simplify

the matching, features can be approached with

appropriate models and stored as a series of

parameters. Global feature-based matching [12]

overlaps two given templates with different trans-

formation parameters and estimates the similarity

score between the corresponding cells. Compared

to local features, the global features have less dis-

tinctness, so they are often exploited together with

other features or in the preprocessing stage of

fingerprint matching.

� Combined feature-based matching: Since the local

and global features are somewhat independent and

capture contemporary information, it is reasonable

to improve the discriminating ability of matching

by fusing features. The approaches in this category

[13, 14] combine the local and global features in

the matching stage with available feature-level fus-

ing strategies. The combination can reinforce the

individuality of fingerprints and improve the per-

formance for fingerprint systems on large-scale

databases.

� How to select features is pivotal for the effect of

feature combination. It is proved that combining

the irrelative features will bring the most obvious

improvement of accuracy or efficiency. On the

other hand, fusing local and global features may

result in additional time or memory cost, so the

appropriate hierarchical strategy can be utilized to

reduce resource consumption. For instance, due to

the complexity of alignment, two fingerprints can
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be pre-aligned by the modeled orientation field

(global feature). Then the similarity score is calcu-

lated based on the minutiae (local feature). Pre-

alignment is more efficient while matching on the

large-scale database.
Performance Evaluation

Performance evaluation is necessary for understanding

the limitations and advantages of a fingerprint match-

ing algorithm and addressing its appropriate applica-

tions. The performance can be evaluated from different

aspects: accuracy, resource consumption, scalability

and sensor interoperability.

� The accuracy of matching is evaluated based on the

distribution of similarity score in genuine and im-

postor matching. Genuine matching compares two

fingerprint templates from the same finger, whereas

impostor matching is for two fingerprint templates

from different fingers. The overall accuracy can be

illustrated by Receiver Operation Characteristics

(ROC) curve, which shows the dependence of

False Non-match Rate (FNMR) on False Match

Rate (FMR) at all thresholds. A series of indicators

are adopted to quantify the accuracy containing

Equal Error Rate (EER – the point where FNMR

and FMR yield the same value), FMR100 (the low-

est FNMR for FMR <= 1%), FMR1000 (the lowest

FNMR for FMR <= 0.1%) ZEROFMR (the lowest

FNMR for FMR <= 0%), and ZEROFNMR (the

lowest FMR for FNMR <= 0%) [15, 16]. Accuracy

usually attracts most of the attention in common

applications, but the algorithms cannot just be

characterized by these indicators.

� Resource consumption can be measured through

three aspects: the amount of storage, time, and

memory required by the algorithms. The storage

cost is measured by the average/maximum size

of template for each database. The efficiency is

indicated by the average/maximum time in genu-

ine/imposter matching and the memory require-

ment is measured by the average/maximum size

of allocated memory in genuine/imposter match-

ing. The variation of the indicators through the

whole database reflects the stability of the tested

algorithms.

� The scalability reflects the degradation of the accu-

racy with the growing scale of database, which is
available in one-to-many matching. It should be

evaluated on different-scale databases through

observing the relationship between the aforesaid

indicators and the scale of database. The interna-

tional competition FpVTE2003 [17] adopted three

different-scale databases to evaluate the scalability

of the tested algorithm.

� Sensor interoperability denotes the ability to han-

dle the templates obtained from different sensors

[18]. The features in templates are sensitive to

different characteristics of multiple sensors in a

fingerprint system. The comparison of measures

(accuracy, efficiency) between intra-sensor match-

ing (comparing templates from the same sensor)

and inter-sensor matching (comparing templates

from different sensors) somewhat reflects the inter-

operability of the matching approach. Research on

sensor interoperability is at its fledgling stage and

so far there have been no authorized databases or

indicators for quantified evaluation.

Performance during evaluation is relative to many

objective conditions. Accuracy is influenced by both

the characteristics of database (size, average quality,

distortion) and the testing ▶ protocol, while resource

consumption relies on the hardware capability, so it

is meaningless to evaluate the matching approach

without considering these conditions. An authentic

evaluation should be conducted on the databases that

have independent training/testing parts and sufficient

fingerprints, and calculate the statistical indicators

with a reasonable protocol. Because the above indica-

tors are statistical results, it should be reported how

believable the evaluation of these statistics really are.

The problem can be addressed by computing the con-

fidence intervals on the distribution of these values

[19]. The accuracy of these confidence interval esti-

mates is ascertained by both correct estimation strate-

gies and correct dataset sampling.

The comparison of performance among various

matching algorithms is always a controversy. Dif-

ferent algorithms have different advantages and dis-

advantages; therefore it is unfair to directly conclude

one better than the other. Some research displays

experiment results conducted on the proprietary

databases using different protocols. This makes

it difficult to compare the performance fairly.

Evaluating and comparing these indicators among

different algorithms is required to operate on the
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same public databases with the same authoritative

protocol and testing environment, such as FVC

and FpVTE.
F

Application

In AFIS, the fingerprint matching can be applied in

two distinct models: verification and identification.

The verification model is a one-to-one matching

(1:1) in which a user states his/her identity by means

of an ID and proves it with a fingerprint. A new

fingerprint sample taken from the user is compared

with the user’s previously registered or stored finger-

prints. The comparison only occurs once between the

input fingerprint image and the selected sample from

the database following the claim of the user. If the

fingerprints are successfully matched, the user is ver-

ified as who he/she is claiming to be, and granted all

the privileges and access of the stated user. On the

contrary, the identification process is a one-to-many

matching (1:N), in which a user need not claim his or

her identity. A new impression is taken from the user

and compared to the existing fingerprints of registered

or stored users in the databases. The identification can

be implemented with a sequence of verification be-

tween the input template and the query templates

in the database. Fingerprint identification requires

searching the database for a matched template or sev-

eral candidates, which is a process more complex than

verification. Although satisfactory performances have

been reported for fingerprint verification, both the

efficiency and accuracy of identification deteriorate

seriously by simple extension of a 1:1 verification pro-

cedure to a 1:N identification system. It is still necessary

to improve the performance of fingerprint matching in

the large-scale fingerprint database. Fingerprint classi-

fication and indexing techniques are proved effective to

narrow down the searching space of verification, which

will speed up the identifying process.

Different kinds of applications focus on different

requirements. For the same algorithm, the matching

threshold can be modulated or other parameters

configured to realize trade-off among these perfor-

mance indicators. There exists a strict relationship

between accuracy and resource consumption, FMR

and FNMR of each algorithm. For instance, both

FMR and FNMR are actually the functions of match-

ing threshold. The decrease in value makes the
algorithm more tolerant to the transformations

(lower FNMR), but increases the possibility of incor-

rectly matching two templates from different fingers

(higher FMR). Contrarily, if the value increases, the

algorithm performs with higher FNMR and lower

FMR. According to the given application, the threshold

is carefully chosen as suitable for the special require-

ment. It is difficult to develop a matching approach

omnipotent in every scenario, therefore s different

applications may at times need different algorithms.

The embedded applications (mobile phone, identity

card) emphasize limited resources and put significant

strain on the recognition reliability, because high per-

formance fingerprint matching approaches tend to be

computationally intensive. In this case, we tend to

adopt these algorithms with lower resources consump-

tion. In contrast, the resource-unlimited applications

equipped with adequate resources attach more impor-

tance to accuracy rather than the computation and

storage expenditure. For instance, fingerprint match-

ing in network security operates on the distributed

computer system with a ‘‘Trustworthy Authority + Re-

mote Client’’ mode, where extreme accuracy is the

most crucial target. In these situations, we choose the

algorithms that have more accuracy despite of the

possible computational complexity.
Summary

Recently, there have been great advances in the research

on automatic fingerprint matching. However, the vari-

ous applications of AFIS in personal identification

desire further improvement of the performance of

matching algorithms. Recent research demonstrates

that fusion in different levels (feature, score, decision)

is effective in improving the performance in many

aspects, attracting increasing interest. Besides the fea-

tures, the fusion of multiple independent matchers

[20, 21] is likely to ameliorate the accuracy of finger-

print matching.
Related Entries

▶ Fingerprint Classification

▶ Fingerprint Clustering

▶ Fingerprint Matching, Manual

▶ Fingerprint Recognition

▶ Fingerprint Templates
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Synonyms

Identification; Individualization; Minutial
Definition

Identification has been defined as the determination by

a fingerprint examiner that two examined images of

friction ridge skin are deposited by the same source

(finger, palm or foot), with the goal of determining the

identity of a donor. If this can be established it is

generally accepted within the discipline that given the

uniqueness or ▶ individuality of friction ridge skin,

this fingerprint can be attributed to this donor at the

same time excluding all others. (In this contribution

an expert for practical reasons is referred to as ‘‘he’’.

Female experts should not feel excluded but may

comfort themselves with the idea that with respect to

erroneous identifications also the male form is used)
Fingerprint Matching: Manual

Thematching process described here applies tomarks or

latent prints found at a crime scene or on pieces of

evidence associated with a crime. Those marks tend to

be incomplete and of lesser quality than ▶ comparison

prints. The process where known prints are compared,

one to one or one to many, to verify an identity has

become an increasingly automated process. Because of

the amount of quality and quantity of data available

and the accuracy of current Automated Fingerprint

Identification Systems (AFIS) this process can be ap-

plied in a ‘‘lights out’’ mode or monitored by examiners.

This automated process to determine individuality

is generally referred to as ‘‘matching’’ and is executed

by matching algorithms. For the process where latent

prints or marks are analyzed and compared by an

examiner the more generic term identification or indi-

vidualization is used rather than matching.

http://bias.csr.unibo.it/fvc2002/perfeval.asp
http://fpvte.nist.gov
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The identification process is a one to one com-

parison and starts after a similar print is found which

cannot be excluded as being the same at face value.

Three possible scenarios can lead to this:

A candidate can be the result of an AFIS search in

which the similarity of the extracted features is calcu-

lated against known exemplars in a digital repository.

If one of the best resembling candidates cannot

be excluded it might be eligible for input in an identi-

fication process.

Second, a candidate can be selected after manual

comparison of one or more named suspects.

Third, a candidate may be found through a manual

search of a physical fingerprint repository. This last

occasion becomes increasingly rare because physical

fingerprint repositories and manual searching become

distinct by the broad use of AFIS.

The process by which the expert examines possible

candidates focuses more on elimination based on dif-

ferences than on weighing of similarities. At this stage

the examiner searches for differences in the overall

pattern formed by the ridges which is considered the

first of three levels of information that are generally

distinguished [1]. They are addressed to as ▶ the first,

▶ second and ▶ third level detail.

When an expert manually compares a mark against

known, or comparison prints he visually assesses the

main aspects of the ridge flow and/or a discernible

pattern and a chosen target group of ▶minutiae which

he can relate to a recognizable area or location in the

mark such as a delta, core or along the type lines.

This information is used to eliminate compared

prints, this exclusion may be a very fast process. At

one glance an expert may see that a compared donor

shows 10 whorl patterns in the fingertips while he is

looking for a loop. Even so a donor with a number of

loops to the right with high ridge counts between the

delta and core can be excluded definitively if the

mark has a low ridge count. If no exclusion on ridge

flow is possible because it is similar the remaining

print will be compared keeping the target group in

mind and looking for differences in the known print

at the given positions relative to known locations. If

he initially finds small clusters in a similar sequence he

will then expand the assessed area both in the mark

and the known exemplar.

If the print does not originate from the same source

he will quickly find discrepancies and the comparison

print will be excluded. If exclusion fails, the candidate

will be included in the identification process.
The identification process

The generally accepted methodology for the identifi-

cation process of friction ridge impressions is known as

ACE-V [1] or a variation of this [2]. ACE-V is the

acronym for Analysis, Comparison and Evaluation

followed by Verification by another expert. ACE-V

was first introduced by R.A. Huber [3] and later by

D. Ashbaugh [1] for the examination of friction ridge

skin. This methodology is generally accepted in foren-

sics as a universal protocol to promote reproducibility

and objectivity and should allow for the validation of

the stated conclusions by reference to the process

through which they are constructed.

It has been argued that ACE-V may not fully pro-

vide the requirements [4] necessary for an identifica-

tion technique which should be explicit and defined in

more detail [5]. Professors van Koppen and Crombag

[6, 7] proposed the use of a descriptive model and a

decision making model in forensic identification of

ear-, lip- and fingerprints.

The Interpol European Expert Group on Finger-

print Identification (IEEGFI) report [2] not only

describes a method similar to ACE-V (Fig. 1), but

also provides both a descriptive model and a decision

making model [6].

These models present a common terminology,

grounds for establishing the value of features, rules of

thumb, describe the pitfalls and provide good guidance

for decision-making with respect to details and the

overall decision of identification. It is essential to re-

produce the whole process rather than to confine re-

producibility to the conclusion.

The IEEGFI uses the word information phase as a

synonym for the analyses phase and addresses the

evaluation as the balance phase.
Analyses

A thorough and objective analysis of the latent print is

the basis of a sound process, an unbiased establishment

of the quantity and quality of available data is the aim.

The analysis is the establishment of features and their

properties and values recorded in a combination of

mental and explicit written notes of all observed data.

A copy of the image of the latent can be marked up in

order to document observations. All three levels of

information that are regarded as properties of friction

ridge skin are assessed to determine their reliability
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and value, taking into account the influence of devel-

opment technique(s) used, the exhibit, distortion,

surface, deposition pressure, matrix, and anatomical

aspects. Ambiguous Galton features of which the exact

location cannot be seen at face value can still be estab-

lished by ▶ tracing. In these instances the ridge detail

and the exact appearance of the detected feature are

unknown and may add little weight to the value of

the latent and, subsequently, to the comparison. Nev-

ertheless, it can be helpful to check whether certain

Galton features in the comparison print are at least

not in conflict with the latent.

Although a good practise in all cases, it is acknowl-

edged that not all latent prints require such an in-

depth analysis. In instances of high quality latent prints

with unambiguous and/or an abundance of data, the

analysis can be very quick.

However, it should be stressed that with low quality

and quantity latent prints a full in-depth analysis is

essential. The importance and depth of the analysis is

inversely proportional to the quality of the latent print.

The IEEGFI II proposed a special procedure,

‘‘▶The need for a questionable ID procedure’’ for

complex examinations [6]. The examiner has to form

an opinion about the quality, quantity, and reliability

of the observed data in the latent print and on the
basis of this he has to decide whether the latent

print has sufficient potential to relate it to its unique

source. If that is the case he moves on to the compari-

son phase.
Comparison

The latent and the comparison prints are placed side by

side enabling accurate comparison and the preserva-

tion of observations.

The data obtained in the analysis phase form the

basis and guide for the comparison process and should

be leading. During comparison not only data in the

latent are checked against the comparison print, but

also data found in the comparison print are cross-

checked whether or not they are present in the latent.

The relations of all features within the configura-

tion are checked through triangulation [8]. This is

done by following the ridges or furrows and counting

the number of intervening ridges between features

along a virtual connecting line. The relative location

aspects and relations to other features in the latent have

to be within tolerance compared to the features in the

corresponding locations of the comparison print. (The

direction in which the neighboring feature is found is
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checked towards the general ridge flow and relative to

the connecting line with other minutiae in the same

area.) Due to the flexibility of the skin the interrela-

tionship of features can be disturbed, but as in the case

of a stretched spider web the relative positions remain

the same (Fig. 2).

At this stage the expert also looks for similar third

level detail which he relates to the location of second

level detail.

It can be a very powerful contribution to each

individual minutia and to the whole of a print but its

accurate representation is dependent on a large num-

ber of variables such as pressure, moisture, the surface,
Fingerprint Matching, Manual. Figure 2 Triangulation/Disto

Fingerprint Matching, Manual. Figure 3 Third level detail o

similar fashion on exact corresponding locations.
and the detection technique. Reliable third level detail

in latent prints is a gift rather than a given fact. It is

often difficult to draw a distinction between third level

detail and anomalies. Matching third level detail is not

very common and often calls for rationalization. In-

stead, the relationship of the minute events amongst

them and with minutiae is more often studied. A large

pore on the edge of a line followed by a small one in the

centre of a ridge, the flow of an individual ridge like a

recognizable river bed, a small dot lying in front of a

tapered ridge ending are examples of ridge detail that,

if similar, can be very significant contributions to the

weight of the comparison (Fig. 3).
rtion.

f exceptional quality, organic shapes that are found in a
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Overall similarities should be apparent and demon-

strable and be primarily based upon findings obtained

in the analysis phase. Thus, avoiding the implementa-

tion of features found in the supposed original into

the latent. When marking corresponding features

it is important to establish the existence, the relations

and their significance. For each individual point of

similarity the quality may differ. If a point is clear

and shows corresponding ridge detail its value is sig-

nificantly higher than points that do not have these

properties.

Dissimilarities and/or discrepancies should be

detected, assessed, noted and accounted for. Any ex-

planation of dissimilarities should preferably reflect

the observations made during the analysis phase. An

opinion has to be formed whether the differences in

appearance are considered distortions or discrepancies.

In the case of discrepancies, the conclusion should be

an exclusion or/and inconclusive.

There is a distinct difference between the com-

parison of minutiae and ridge detail. Minutiae must

be the same and ridge detail can be the same. Whereas

the basic properties of the Galton points are firmly

established during the analysis phase true third level

detail is often only acknowledged and confirmed dur-

ing comparison taking the supposed original as

the blueprint. This carries the risk of a picking attitude

of the expert who may select everything that appears

to be similar and ignore all that is not.

Further, this promotes the risk of circular reasoning

[6] or ‘‘gestalt analyses’’ [4], instead of proving origin

by the similarities one ‘‘proves’’ similarities by the

assumed origin.

It has been discussed that the ACE-V protocol is a

recurring and reversible process [9, 10]. Opinions vary

however whether or not the process should be totally

recurring, and reversible (or up to a certain level) or

that attempts should be made to confine it to a more

linear process wherever possible. With a recurring

and reversible process the risk of inserting information

of the ‘‘known’’ exemplar into the unknown is higher

than in a strict linear process in which ACE-V is exe-

cuted once in the exact order.

The risk of making a (subconscious) decision early

in the comparative process and the potential influence

of it must be recognized [11]. The comparison must be

an unbiased ‘‘step by step’’ building process ensuring

that the data in the latent and comparison print match,

with nothing in disagreement which cannot be
logically explained and accounted for. The decision

must be made at the end of the process only.

An expert who has executed the process of search-

ing and elimination has performed an initial and in-

complete analysis directed towards elimination and/or

the search process. Since he has singled out a compari-

son print for the identification process he has arrived

at a preliminary conclusion about possible identifica-

tion. With an eye to the ‘‘half baked’’ analysis and the

preliminary conclusion it is advisable that the expert

renounces himself from the identification process.
Evaluation and Preliminary
Conclusion

Requirements for the conclusion of identification

as provided by SWGFAST [12] are; agreement of suffi-

cient friction ridge detail; determined by a competent

examiner; applied to a common area in both impres-

sions; based on quantity and quality of friction ridge

detail; without any discrepancy and a reproducible con-

clusion. The total volume in agreement is a composition

of coherent qualitative and quantitative information.

In the USA, after a 3-year study by a Standardiza-

tion Committee, the use of a numerical standard

was discouraged by the adoption of a resolution at a

conference of the International Association for Identi-

fication which stated: ‘‘no scientific basis exists for

requiring that a predetermined minimum of friction

ridge features must be present in two impressions in

order to establish positive identification’’.

Sufficiency is since left to the discretion of the expert

and measured against his training, knowledge and expe-

rience, and his personal standard. SWGFAST [12] relates

reproducibility primarily to the format of ACE-Vand to

the conclusion. This position is known as the Expert

Opinion System or the holistic approach [2, 13].

In many other countries a numerical standard is

used as an aid to measure sufficiency which is called

the Empirical Standard Approach [2, 13]. This stan-

dard expresses a minimum number of minutiae in

agreement that is used as a common, empirical refer-

ence and a tool to guide the process, to facilitate

verification and to obtain and guarantee quality.

In either system if an expert decides that in his

opinion identification is justifiable because the equa-

tion is both sufficient and cogent he will put it up for

verification [14].
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Verification

The postulated conclusion should be reproducible by

another examiner applying the same methodology.

This is accomplished by the verification phase of the

ACE-V methodology.

The reliability of a conclusion can be checked and

demonstrated by an independent verification. Verifica-

tion can be limited to another expert independently

arriving at the same conclusion or by repeating

and checking the whole examination of the initial

examiner. The verification process should have the

characteristics of scrutiny rather than confirmation of

the conclusion. (Also see mistakes.)

If the verifier is satisfied that the process and the

conclusion meet the requirements, then the conclusion

is confirmed and the identification is established.
Conclusion

The conclusion of identification is a verified opinion

that the investigated latent and the comparison print

come from the same source. It also implicates the expec-

tation of reproducibility, i.e., any other examiner using

the same methodology should arrive at the same con-

clusion. Given the empirical, biological and statistical

support for friction ridge skin uniqueness or individual-

ity, an identified fingerprint is attributed to a single

donor [15].
Charting

The use of a computer screen during the analysis and

side by side comparison of friction ridge images can

be of tremendous help in the examination process. The

data and the relations of the configuration can be

cross-checked, in particular with ambiguous informa-

tion. Details can be better observed and compared by

enlarging and/or enhancement of the images to opti-

mize the perceptibility of the characteristics in print.

This not only increases the quantity and accuracy of

the data observed [16], but also makes it easier to value

and appreciate the similarities and dissimilarities.

At the same time similarities can be marked up,

printed and saved for documentation purposes.

In order to meet the requirement of demonstrabil-

ity of all the phenomena upon which the expert bases
his findings and conclusion this tool is indispensable.

It also facilitates consultation and discussion amongst

experts.

Historically, court charts have been produced in

which coinciding minutiae have been marked up and

numbered. Court charts can be a useful tool to dem-

onstrate some of the findings but are just meager

illustrations of a very complex process and should

not be taken as ultimate proof. (The simple argument

for that is the fact that in the past with erroneous

identifications court charts were produced with even

extensive numbers of marked similarities (Fig. 4).)
Mistakes

Error rates, an endless source of scientific debates, phi-

losophies and semantics, will not be covered nor decided

here but known errors will be discussed. It is obvious

that, in relation to the immense numbers of identifica-

tions effected over the more than hundred years of

fingerprinting, the number of erroneous identifications

that surfaced is extremely low. In a study by Simon Cole

[17] 22 erroneous identifications were investigated for

the period from 1920 to 2004. Even if the number is

tripled or multiplied by 10 incorporating a number

of dark figures the positive ratio against the millions

of identifications performed remains. Some support

for this positive ratio is also found in data collected

during comparison training exercises [18].

This does not implicate that mistakes are regarded

as part of the system and inevitable, on the contrary.

Every mistake is one too many and can do irreparable

harm to innocent people. The profession should take

all possible measures to prevent them.

Another ongoing debate is whether themistakes can

be attributed to flaws in the technique or to human

error or whether the two can be separated at all. How-

ever, it is clear that erroneous identifications are dis-

covered and exposed by experts. This is a strong

indication that the human factor is dominant. Second,

it is important to note that the examination of ques-

tioned identifications can be repeated and checked

endlessly. When opinions differ upon sufficiency

the comparsion should be regarded as inconclusive.

In general, experts view mistakes very seriously. They

believe that making amistake is the worst thing that can

happen to them and may discredit them in the eyes of

their contemporaries.
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The paradox is that the acceptance of the sus-

ceptibility for human error by experts should be the

basis for a quality system, whilst very often the initial

response of experts to such criticism is defensive rather

than open minded. This blocks the feedback essential

for a quality cycle.

A preliminary analysis of mistaken identifications

revealed the following factors:

� It concerned a border line latent with respect to

quality, quantity or both.

� There was no apparent relationship between the

organization or level of experience of the expert

(s) involved.

� Verification was degenerated to confirmation

rather than scrutiny.

� Experts were biased by domain irrelevant

information.

� Discrepancies were ignored or erroneously attrib-

uted to distortion.

� Applied tolerances were too wide given the quality

of the latent. This is another paradox; ‘‘the worse the

print the larger the tolerances applied’’; experts may

attribute differences to the lack of quality and dis-

tortion and ‘‘explain them away’’ something they

may not do with an image of good quality. Thus,

bad quality may not only conceal real discrepancies,

but also provide an excuse for it at the same time.

In general, there is a growing opinion that a number of

psychological factors may potentially contribute to

cognitive and decision-making errors [19].
Examples are; the primacy effect, when informa-

tion is judged in the light of an early opinion; and

confirmation biases like myside bias and truth bias

[11] are found in all types of fields as well as in

ordinary life. One major concern is that sufficiency

may be established after the comparison process and

as such after a conscious or subconscious decision is

made about identity. This makes the expert more vul-

nerable to bias [19].

Studies have been done to enhance insight into the

potential influences of bias during the examination of

fingerprints [20].
Infallible or Reliable?

Some have criticized the profession for the explicit or

implicit claim of infallibility [17, 21].

The apparent reliability of fingerprint identifica-

tion for decades may have created this image as

reflected by the proverbial expression ‘‘as reliable as a

fingerprint’’. This meant an image so strong that all

other forensic techniques were compared against it,

much like the introduction of DNA that was errone-

ously labeled the ‘‘genetic fingerprint’’.

Responsible experts never claim infallibility be-

cause this is an unsustainable and unscientific position.

In retrospect, however, fingerprints in general can

claim a record of great reliability, but as in any human

endeavor mistakes occur so safeguards have to be in

place.



Fingerprint Quality F 509

F

The main ground for quality is the acceptance of

fallibility by individuals and communities. With that in

mind, instruments to achieve a solid conclusion,

the rigorous application of the methodology, Quality

Assurance protocols, training, testing and transpar-

ency, will be applied and maintained with conviction

and can be further improved.

Per individual case reliability of a conclusion can be

reached and demonstrated by verification, peer review

and counterchecks by independent experts. This pro-

cess can be repeated over and over again without

affecting the material.
Related Entries

▶Classification

▶ Feature Extraction

▶ Fingerprint Classification

▶ Fingerprint Matching Automatic

▶ Individuality
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Fingerprint Pre-Matching
▶ Fingerprint Classification
Fingerprint Quality
The intrinsic characteristic of a fingerprint image that

may be used to determine its suitability for further

processing by the biometric system or assess its con-

formance to pre-established standards is fingerprint

quality. The quality of a biometric signal is a numerical

value (or a vector) that measures this intrinsic

attribute.
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Fingerprint Biometric
Definition

Fingerprint recognition allows a person to be verified

or identified through the analysis and comparison of

his or her finger dermal ridges. Fingerprint recognition

was one of the first techniques used for automatically

identifying people and today is still one of the most

popular and effective biometric techniques.
Introduction

A fingerprint is the representation of the dermal ridges

of a finger [1]. Dermal ridges form through a combi-

nation of genetic and environmental factors; the genet-

ic code in DNA gives general instructions on the way

skin should form in a developing fetus, but the specific

way it forms is a result of random events such as the

exact position of the fetus in the womb at a particular

moment. This is the reason why even the fingerprints

of identical twins are different [2]. Fingerprints are fully

formed at about 7 months of fetus development and

finger ridge configurations do not change throughout

the life of an individual, except in case of accidents such

as severe cuts on the fingertips. This stability makes

fingerprints a very attractive biometric identifier. Several

mathematical models based on the ▶ anatomy of fric-

tion ridge skin were developed over the years to quan-

tify ▶fingerprint individuality [3] and to prove that
finding two persons with identical fingerprints is ex-

tremely unlikely. This does not imply that fingerprint

recognition is a perfect technique: in fact, various

kinds of errors can affect fingerprint acquisition and

processing thus requiring to introduce thresholds to

decide if two fingerprint impressions are similar

enough to be considered belonging to the same person.

As for any biometric technique, a sound performance

evaluation (see ▶ fingerprint databases and evalua-

tion) is extremely important to estimate the accuracy

of a fingerprint-based biometric system and to under-

stand if it is well-suited for a particular application.

Recent independent evaluation campaigns such as

FVC2006 [4] proved that state-of-the art fingerprint

recognition algorithms are nowadays very accurate

(i.e., EER less than 0.1% for a database collected with

a large area optical scanner).
History

Human fingerprints have been discovered on archaeo-

logical artefacts and historical items (Fig. 1). Although

these findings prove that ancient people used finger-

prints for a number of purposes, it was not until the

late sixteenth century that the modern scientific finger-

print studies were initiated [5]. In 1686, Marcello

Malpighi, a professor of anatomy at the University of

Bologna, noted the presence of ridges, spirals and

loops in fingerprints. Henry Fauld, in 1880, was the

first to scientifically suggest the individuality of finger-

prints based on an empirical observation. At the same

time, Herschel asserted that he had practiced finger-

print recognition for about 20 years. In the late nine-

teenth century, Sir Francis Galton conducted an

extensive study on fingerprints; in 1888 he introduced

the ▶minutiae features for fingerprint matching. An-

other important advance was made in 1899 by Edward

Henry, who established the well-known ‘‘Henry sys-

tem’’ of ▶ fingerprint classification.

In the early twentieth century, fingerprint recogni-

tion was formally accepted as a valid identification

method and became a standard routine in forensics

[5]. Fingerprint identification agencies were set up

worldwide and criminal fingerprint databases were

established; for instance, the FBI fingerprint identifica-

tion division was set up, in 1924, with a database of

810,000 fingerprint cards. With the rapid expansion

of fingerprint recognition in forensics, operational
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Fingerprint Recognition, Overview F 511

F

fingerprint databases grew so large that manual finger-

print identification (see ▶fingerprint matching, man-

ual) became infeasible; for example, the total number

of fingerprint cards in the FBI fingerprint database

stands well over 200 million and is continuously grow-

ing. With thousands of requests being received daily,

even a team of more than 1300 fingerprint experts were

not able to provide timely responses to these requests.

Starting in the early 1960s, the FBI, Home Office in the

UK, and Paris Police Department began to invest

a large amount of effort in developing Automatic

Fingerprint Identification Systems (▶AFIS). Based on

the observations of how human fingerprint experts per-

form fingerprint recognition, three major problems in

designing AFIS were identified and investigated: digital

fingerprint acquisition, local ridge feature extraction,

and ridge characteristic pattern matching. Their efforts

were so successful that today almost every law enforce-

ment agency worldwide uses an AFIS. These systems

have greatly improved the operational productivity of

law enforcement agencies and reduced the cost of hiring

and training human fingerprint experts.

Automatic fingerprint recognition technology

has now rapidly grown beyond forensic applications.

On the one side, together with face, fingerprint is the

main biometric modality for electronic documents

(e-passport, visas, ID cards, etc) used to enforce border

crossing and citizen security. On the other side, thanks

to a very good performance/cost tradeoff, fingerprint-

based biometric systems are becoming very popular

and are being deployed in a wide range of commercial

applications such as logon to computers and networks,

physical access control, ATMs.
Components of a Fingerprint
Recognition System

The block diagram of a fingerprint-based recognition

system is depicted in Fig. 2.

A fingerprint is acquired through a live-scan ▶ fin-

gerprint device that allows to simply and quickly cap-

ture a digital fingerprint image: most of the fingerprint

devices sample the pattern at 500 DPI (Dots per Inch)

and produce an 8-bit gray-scale raw image (see Fig. 3).

Some devices also include fake detection mechanisms

(see ▶fingerprint fake detection) that allow to reveal

spoofing attacks carried out with fake fingers.

The acquired raw image is then passed to a quality

control module that evaluates if the fingerprint sample

quality is good enough to correctly process it and to

extract reliable features. In case of insufficient quality,

the system rejects the sample and invites the user to

repeat the acquisition; otherwise, the raw image is passed

to an ▶ image enhancement module whose goal is

improving the clarity of the ridge pattern, especially in

noisy region, to simplify the subsequent feature extrac-

tion. Special digital filtering techniques, known as con-

textual filtering [1], are usually adopted at this stage; the

output enhanced image can still be a gray-scale image or

become a black-and-white image. The ▶ feature extrac-

tion module further processes the enhanced image and

extracts a set of features from it. This feature set often

includes minutiae but, depending on the matching algo-

rithm, other features (e.g., local orientation, local fre-

quency, singularities, ridge shapes, ridge counts, parts of

the enhanced image, etc.) can be extracted in conjunc-

tion with (or instead of) minutiae.



Fingerprint Recognition, Overview. Figure 2 Block diagram of a fingerprint-based recognition system.

Fingerprint Recognition, Overview. Figure 3 Example of

fingerprint images from FVC2006 databases [4].
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Finally, the fingerprint matching module (see▶ fin-

gerprint matching, automatic) retrieves from a system

database one or more templates (see ▶fingerprint

templates) and matches it/them with the features

extracted from the current sample. Most of the match-

ing algorithms, following the well established manual

method (see ▶fingerprint matching, manual), com-

pare two fingerprints by searching the spatial correspon-

dence of a minimum number of minutiae; this is not a

simple task because of the large variations (e.g., dis-

placement, rotation, skin condition, distortion, noise,

etc.) that can characterize two fingerprint images ac-

quired from the same finger at different times. If the

systems is operating in verification mode, the user has

been required to claim his identity and therefore just

one template is retrieved from the database and

matched with the current sample; if the system is
operating in identification mode the current sample is

matched against all the database templates to check is

one of them is sufficiently similar.

Protecting fingerprint templates is very important

to avoid attacks to fingerprint-based biometric systems

[6] and to preserve user privacy: cryptography techni-

ques can be used to this purpose (see ▶ Fingerprints

Hashing).
Large-Scale Automatic Fingerprint
Identification Systems

Large-scale automatic fingerprint identification sys-

tems (AFIS) are used in forensic and civil government

applications. The basic functioning of these systems

is the same as described in the previous section, but

a number of ad-hoc optimizations are employed to

effectively and efficiently store, retrieve and match

millions of fingerprints in a few seconds. In the past,

special dedicated hardware and storage devices were

used to guarantee the required throughput; nowadays,

most of the AFIS cores run on conventional hardware

(e.g., cluster of personal computers) and the software is

the main responsible of the system efficiency. Finger-

print classification and ▶ fingerprint indexing are the

two main techniques used to speed-up a fingerprint

search in a large database [1]. The former allows to split

the database in a number of partitions and to limit the

search to the partition to which the searched sample

belongs to. The latter enables sorting the database tem-

plates according to the similarity with the searched
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sample, so that the probability to find a mate in the first

attempts increases significantly. Even if the capacity of

mass storage devices is continuously growing, storing

fingerprints as uncompressed raw images would require

too much space (nowadays AFIS must store billions of

fingerprint images) and would increase the time neces-

sary to transmit a fingerprint record over a network; to

alleviate this problem, without compromising recogni-

tion accuracy, specific ▶fingerprint compression tech-

niques such as WSQ (Wavelet Scalar Quantization)

have been developed by researchers.
Related Entries

▶Biometrics, Overview

▶Biometric Recognition

▶ Fingerprint Anatomy
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Fingerprint Representation
▶ Fingerprint Templates
Fingerprint Retrieval
Fingerprint retrieval is a procedure that draws a subset

of fingerprints from a database stored on a computer

system based on some similarity measure between a

query fingerprint and the fingerprints in the database.

The ultimate goal of fingerprint retrieval is not to find

a group of fingerprints similar to the query fingerprint,

but to get back the fingerprint originating from the

same finger as that of the query fingerprint. Hence,

success or failure of the fingerprint retrieval is deter-

mined by whether the retrieved subset contains the

fingerprint originating from the same finger as that of

the query fingerprint.

▶ Fingerprint Classification

▶ Fingerprint Indexing
Fingerprint Sample Synthesis

RAFFAELE CAPPELLI

Biometric System Laboratory, DEIS, University of

Bologna, Cesena, Italy
Synonyms

Synthetic fingerprint generation; Synthetic finger-

prints; Artificial fingerprints
Definition

Fingerprint sample synthesis is the generation of

images similar to human fingerprints, through para-

metric models that simulate the main characteristics

of such biometric data and their modes of variation.

The image synthesis is typically performed by a

computer program that, starting from some input

http://bias.csr.unibo.it/fvc2006
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parameters, executes a sequence of algorithmic steps

that finally produce a synthetic fingerprint image.
Introduction

With the increasingly adoption of fingerprint recogni-

tion systems, driven by their very appealing accuracy/

cost tradeoff, methodical and accurate performance

evaluations of fingerprint recognition algorithms are

needed. Unfortunately, this requires large databases

of fingerprints, due to the very small rates of error

necessary for the procedure. For instance, according

to [1], in order to support a claim of FMR less than

1/10,000 (the requirement for verification applications

in [2]), 30,000 impostor matches from at least 250

individuals should be performed without observing

any false match error. On the other hand, collecting

large databases of fingerprint images is expensive both

in terms of money and time, boring for both the

people involved and for the volunteers, and problem-

atic due to the privacy legislation that protects such

personal data. FVC competitions [3] are examples of

technology evaluations, where real fingerprint data-

bases have been collected to test different algorithms,

but do not constitute lasting solutions for evaluating

and comparing different algorithms; in fact, since FVC

databases are made available to the participants after

the competition to let them improve the technology,

they expire once ‘‘used,’’ and new databases have to be

collected for future evaluations.

Fingerprint synthesis is a feasible way to address the

issues just cited, since it allows large databases of images

to be easily generated and used for testing fingerprint

recognition systems without infringing on privacy.

A fingerprint synthesis method typically consists of

two main steps: first, a ridge pattern, which represents

the unique and immutable characteristics of a ‘‘synthetic

finger,’’ is generated according to a given model; then,

one or more ‘‘fingerprints’’ of the synthetic finger are

generated by simulating the main factors that make the

fingerprints of a given human finger different each other.
Physical Ridge Pattern Models

Physical ridge pattern models are based on some

hypothesized physical mechanisms of fingerprint for-

mation during embryogenesis.
The crucial period of fingerprint development in

humans starts at the 10th week of pregnancy [4], when

the epidermis consists of three layers (outside layer,

intermediate layer and basal layer). It is then observed

that the basal layer of the epidermis becomes undulat-

ed toward the surface, forming the so-called ‘‘primary

ridges,’’ whose development ends at about the 17th

week of pregnancy: at this stage the geometry of the

epidermal ridge pattern is determined for life and

becomes visible on the skin surface in subsequent weeks.

Several theories for fingerprint pattern formation

have been proposed in the scientific literature [4],

including cell proliferation phenomena, mechanical

interaction between the extracellular matrix and fibro-

blasts in the dermis, reaction-diffusion models.

In a study by Sherstinsky and Picard [5], a complex

method which employs a dynamic non-linear system

called ‘‘M-lattice,’’ is introduced. The method is based

on the reaction-diffusion model first proposed by Tur-

ing in 1952 to explain the formation of animal patterns

such as zebra stripes. Although this work is aimed at

optimally binarizing a fingerprint image, the underly-

ing ridge-line model could be used as a basis for

synthetic generation.

An interesting model was proposed by Kücken

[4, 6], based on the following hypotheses:

1. Fingerprint patterns are created by forces that are

induced by differential growth of the epidermis’

basal layer (as argued by Cummins [7] from the

observed dependency of the pattern class on the

fingertip geometry)

2. Non-uniform growth of the epidermis’ basal layer

results in compressive stress that leads to buckling,

creating the primary-ridges [8]

Kücken considers the basal layer as an elastic sheet

trapped between the neighboring tissues of the inter-

mediate epidermis layer and the dermis (Fig. 1)

and studied the buckling process by means of the von

Karman equations, which describe the behavior of a

thin curved sheet of elastic material. The analysis of

those equations confirmed that the direction of the

ridges is roughly perpendicular to the direction of

greatest stress; Kücken postulated that two factors

mainly contribute to generate the compressive stress

in the basal layer: (1) resistance at the nail furrow and

at the major flexion creases of the finger (boundary

effects); (2) the regression of the ‘‘volar pads’’ at the

time of fingerprint development. Volar pads are



Fingerprint Sample Synthesis. Figure 1 The basal layer of epidermis: Kücken and Newell [6] assumes that due to

differential growth, a compressive stress act on this layer.

Fingerprint Sample Synthesis. Figure 2 Simulation of three common fingerprint patters (from left to right: whorl, loop,

and arch) using the model proposed in [6].
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temporary eminences of the skin surface that form

during the 7th week of pregnancy and start to digress

at about the 10th week. From studies of embryos,

monkeys and malformed hands, it has consistently

been observed that highly rounded pads at the finger-

tips exhibit whorls; less well-developed pads show

loops, where the direction of the loop opening is de-

termined by the asymmetry of the pad; small indistinct

pads give rise to arches.

Computer simulations have shown results consis-

tent with the above observations and hypothesis; Fig. 2

shows how an almost periodic pattern very similar to

human fingerprints can be generated by applying

Kücken’s model: the three main fingerprint classes

can be simulated and▶minutiae are present in regions
where ridge patches with different directions and/or

wavelength meet.
Statistical Ridge Pattern Models

Statistical ridge pattern models aims to reproduce

realistic-looking fingerprints without starting from

embryological hypothesis. Such models are based on

the empirical analysis of real fingerprints, from which

statistical data about the main characteristics of the

patterns are derived and parameterized into appro-

priate equations or synthesis algorithms.

In 1999, Kosz published some interesting

results concerning fingerprint synthesis based on a
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mathematical model of ridge patterns and minutiae

[9]; further details on this technique have been

provided online by Bicz [10] in 2003. According to

this model, a fingerprint can be described by a wave

pattern:

f x; yð Þ ¼ cos ’ x; yð Þð Þ ð1Þ
where:

’ x; yð Þ ¼ ’0 x; yð Þ þ ’M x; yð Þ ð2Þ
is a function that defines the phase of the wave struc-

ture as the sum of two parts: ’0 , which describes the

global ‘‘shape’’ of the ridge lines, and ’M , which

describes the minutiae. According to the model intro-

duced by bicz [10], ’M can simply generate nminutiae

by adding n spatially-shifted arctangent functions:

’M x; yð Þ ¼
Xn
i¼1

arctan
y � yi

x � xi

� �
ð3Þ

where (xi, yi) is the location of minutia i. Figure 3

shows a synthetic pattern generated by using the

above equations.

In 1993, Sherlock and Monro [11] proposed an

orientation model that allows a consistent ▶ orienta-

tion field to be computed from the sole knowledge
Fingerprint Sample Synthesis. Figure 3 A simple

synthetic pattern generated by equations (1)–(3),

with ’0 x; yð Þ ¼ 20 	 2p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and fðxi; yiÞg ¼

fð0:2;�0:25Þ; ð�0:2;�0:37Þ; ð0:0; 0:2Þ; ð�0:25; 0:3Þ;
ð0:2; 0:43Þg.
of the position of fingerprint ▶ singularities (loops

and deltas). In this model, the image is located in the

complex plane and the local ridge orientation is

the phase of the square root of a complex rational

function whose singularities (poles and zeros) are lo-

cated at the same place as the fingerprint singularities

(loops and deltas). Let lsi, i = 1..nc and dsi, i = 1..nd
be the coordinates of the loops and deltas respecti-

vely. The orientation y at each point z = [x, y] is

calculated as:

y ¼ 1

2

Xnd
i¼1

arg z� dsið Þ �
Xnc
i¼1

arg z� lsið Þ
" #

ð4Þ

where the function arg(c) returns the phase angle of

the complex number c (see Fig. 4).

The Sherlock and Monro model may be exploited

for generating synthetic orientation fields by first ran-

domly choosing a fingerprint class and then randomly

selecting the positions of the singularities, according to

the class-specific constraints (for instance, in a left loop,

the delta must be on the right side of the loop). Figure 5

shows some examples of orientation fields generated

by this model.

However, in nature the ridge-line flow cannot

be completely determined by the singularity type

and position. In 1996, Vizcaya and Gerhardt proposed

a variant of the Sherlock and Monroe model that
Fingerprint Sample Synthesis. Figure 4 Sherlock and

Monro model: each element of the orientation field is

considered as a complex number.



Fingerprint Sample Synthesis. Figure 5 An example of Arch (a), Tented Arch (b), Right Loop (c) and Whorl

(d) orientation field as generated by the Sherlock and Monro model. In (e), an example of left-loop orientation field

superimposed to a real left-loop fingerprint with coincident singularity positions.
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introduces more degrees of freedom to cope with

the orientation variability that may characterize orien-

tation fields with coincident singularities. The orienta-

tion y at each point z is calculated as:

y ¼ 1

2

Xnd
i¼1

gdsi arg z� dsið Þð Þ �
Xnc
i¼1

glsi arg z� lsið Þð Þ
" #

ð5Þ
where gk að Þ, for k 2 ls1; :::; lsnc; ds1; :::; dsndf g, are

piecewise linear functions capable of locally correcting

the orientation field with respect to the value given by

Sherlock and Monroe model:

gk að Þ ¼ �gk aið Þ þ a� ai
2p=L

�gk aiþ1ð Þ � �gk aið Þð Þ ð6Þ

for ai � a � aiþ1, ai ¼ �pþ 2pi
L
.

Each function gk að Þ is defined by the set of values

�gk aið Þ i ¼ 0::L � 1jf g, where each value is the amount

of correction of the orientation field at a given angle

(in a set of L angles uniformly distributed between �p
and p). If �gk aið Þ ¼ ai8i 2 0::L � 1f g (i.e. gk að Þ is the
identity function), the model coincides with that of

Sherlock and Monro.

Figure 6a and b show two examples of orientation

fields generated according to the Vizcaya and Gerhardt

model; these images are definitely more realistic than

those in Fig. 5. The superiority of the Vizcaya and

Gerhardt model in approximating existing ridge pat-

terns is also evident from the comparison between

Fig. 6c and d.
In 2000, Cappelli et al. introduced a ridge pattern

generation approach based on the following steps [12]:

1. Orientation field generation

2. Frequency map generation

3. Ridge pattern generation

Step 1 adopts the Vizcaya and Gerhardt model for

generating the orientation field starting from the posi-

tions of loops and deltas; for generating arch type pat-

terns (which do not contain any singularity), a simple

sinusoidal function, whose frequency and amplitude are

tuned to control the arch curvature and aspect, is used.

Step 2 creates a frequency map (see Fingerprint

Feature Extraction) on the basis of some heuristic

criteria inferred by the visual inspection of a large

number of real fingerprints (for instance, in the regions

above the northernmost loop and below the southern-

most delta, the ridge-line frequency is often lower than

in the rest of the fingerprint, see Fig. 7).

Finally step 3, given anorientationfield and a frequen-

cy map as input, generates a ridge line pattern by itera-

tively enhancing an initial image (containing one ormore

isolated points) through ▶Gabor filters. The filters are

applied at each pixel (x, y) and adjusted according to

the local ridge orientation fxy and frequency vxy :

gabor r; s : fxy ; nxy
� �

¼ e�
rþsð Þ2
2s2 	 cos 2pnxy r sinfxy þ s cosfxy

� �h i
ð7Þ



Fingerprint Sample Synthesis. Figure 7 An example of a

right-loop fingerprint where the ridge-line frequency is

lower in the regions above the loop and below the delta.

Fingerprint Sample Synthesis. Figure 6 An example of Right Loop (a) and Whorl (b) orientation fields, as generated

by the Vizcaya and Gerhardt model. In (c) and (d) the orientation fields produced by the two models, for a given

fingerprint, are compared.

Fingerprint Sample Synthesis. Figure 8 An example of

Gabor filter used in step 3: note that the bandwidth is

adjusted so that the filter does not contain more than

three peaks.

518F Fingerprint Sample Synthesis
Parameter s, which determines the bandwidth of

the filter, is set according to the frequency, so that the

filter does not contain more than three effective peaks

(see Fig. 8).

While one could reasonably expect that iteratively

applying ‘‘striped’’ filters to random images would

simply produce striped images, very realistic minutiae

are generated at random positions. Based on their

experiments, in [12] the authors argue that minutiae

primarily originate from the ridge-line disparity

produced by local convergence/divergence of the
orientation field and by frequency changes. In Fig. 9,

examples of the iterative ridge-line generation process

are shown; the authors experimentally found that

increasing the number of initial points determines

a more irregular ridge pattern richer of minutiae: this is

not surprising, since expanding distinct image regions

causes interference where regions merge, thus favoring

the creation of minutiae (see Fig. 10).
Generation of Synthetic Fingerprint
Impressions

Several factors contribute in making the impressions

of a real finger substantially different when captured



Fingerprint Sample Synthesis. Figure 9 Some intermediate steps of a fingerprint-generation process starting from a

single central point (top) and from a number of randomly located points (bottom). Usually, increasing the number of

initial points determines a more irregular ridge pattern richer of minutiae.

Fingerprint Sample Synthesis. Figure 10 Genesis of a minutia point during the merging of the two regions

originated by two different initial points.
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by an on-line acquisition sensor (see ▶ Fingerprint

Device):

1. Displacement in x and y direction and rotation

2. Different touching areas

3. Non-linear distortions produced by non-orthogonal

pressure of the finger against the sensor

4. Variations in the ridge-line thickness given by pres-

sure intensity or by skin dampness

5. Small cuts or abrasions on the fingertip

6. Background noise and other random noise

In 2002, Cappelli et al. proposed an evolution of the

approach introduced in [13], which is able to simulate

most of the above factors, thus generating very realistic

fingerprint impressions. Starting from a synthetic

ridge-line pattern, the main steps involved in the sim-

ulation of a fingerprint impression are: (1) Variation of

the ridge thickness; (2) Skin distortion; (3) Noising

and global translation/rotation; (4) Background

generation. The subsections that follow briefly
describe the various steps, as they were proposed by

Cappelli [14].

Variation of the Ridge Thickness

Skin dampness and finger pressure against the sensor

platen have similar effects on the acquired images:

when the skin is dry or the pressure is low, ridges

appear thinner, whereas, when the skin is wet or the

pressure is high, ridges appear thicker (see Fig. 11).

Morphological operators (see Image Preprocessing)

are applied to the ridge line pattern, to simulate different

degrees of dampness/pressure. In particular, the erosion

operator is applied to simulate low pressure or dry

skin, while the dilation operator is adopted to simulate

high pressure or wet skin (see Fig. 12).

Skin Distortion

One of the main aspects that distinguish the different

impressions of the same finger is the presence of non-

linear distortions, mainly due to skin deformations



Fingerprint Sample Synthesis. Figure 11 Three impressions of the same real finger as captured when the finger is

dry, normal and wet, respectively.

Fingerprint Sample Synthesis. Figure 12 The application of different levels of erosion/dilation to the same ridge line

pattern.

Fingerprint Sample Synthesis. Figure 13 Two

impressions of the same real finger where a few

corresponding minutiae are marked to highlight

distortion.
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according to different finger placements over the sens-

ing element (see Fig. 13). In fact, due to the skin

plasticity, the application of forces, some of whose

components are not orthogonal to the sensor surface,

produces non-linear distortions (compression or

stretching) in the acquired fingerprints (see ▶ Finger-

print Matching).

In ‘‘Synthetic Fingerprint Generation’’ [14], the

skin-distortion model introduced by Cappelli, Maio,

and Maltoni [15] is exploited. While in the latter, the

distortion model was applied to re-map minutiae

points, in order to improve fingerprint matching,



Fingerprint Sample Synthesis. Figure 14 A synthetic ridge line pattern (on the left) and a distorted impression (on the

right); the equivalent distortion of a square mesh is shown in the middle. To better highlight the non-linear deformations,

some corresponding minutiae are connected by white segments in both the fingerprint images.

Fingerprint Sample Synthesis. Figure 15 An example

of noising and global translation/rotation, where the

intermediate images produced after steps 2, 4 and 5 are

reported.
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here the mapping has to be applied to the whole image,

in order to simulate realistic distorted impressions. In

Fig. 14, a ridge line pattern and its distorted impres-

sion are shown.

Noising and Global Translation/Rotation

During fingerprint acquisition, several issues contrib-

ute to deteriorate the original signal, thus produc-

ing a gray-scale noisy image: irregularity of the

ridges and their different contact with the sensor sur-

face, presence of small pores within the ridges, presence

of very-small-prominence ridges, gaps and clutter-

ing noise due to non-uniform pressure of the finger

against the sensor. Furthermore, the fingerprint is

usually not perfectly centered in the image

and can present a certain amount of rotation. The

noising phase sequentially performs the following steps:

1. Isolate the valley white pixels into a separate layer.

This is simply performed by copying the pixels

brighter than a fixed threshold to a temporary

image

2. Add noise in the form of small white blobs of

variable size and shape. The amount of noise

increases with the inverse of the fingerprint border

distance

3. Smooth the resulting image with a 3 � 3 averaging

box filter

4. Superimpose the valley layer to the image obtained

5. Rotate and translate the image

Steps 1 and 4 are necessary to avoid an excessive overall

image smoothing. Figure 15 shows an example where

the intermediate images produced after steps 2, 4 and 5

are reported.
Background Generation

The output of the previous step is a fingerprint that

appears realistic, but the image background is

completely white. In order to generate backgrounds



Fingerprint Sample Synthesis. Figure 16 Examples of background-only images (acquired from an optical sensor)

used for training the background generator.

Fingerprint Sample Synthesis. Figure 17 Three synthetic images with backgrounds generated according to the

model in [14].
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similar to those of fingerprints images acquired with a

given sensor, a statistical model based on the KL trans-

form (see ▶Dimensionality Reduction) is adopted.

The model requires a set of background-only images

as a training set (see Fig. 16): a linear subspace that

represents the main variations in the training back-

grounds is calculated and then used to randomly gen-

erate new backgrounds.

Figure 16 shows some examples of the background

images (obtained from an optical acquisition sensor)

used as a training set for the background generation

step; Fig. 17 reports three synthetic fingerprints with

backgrounds generated according to the above-

described model.
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Fingerprint Scan
▶Biometric Sample Acquisition
Fingerprint Sensor
▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Fingerprint Signatures
▶ Fingerprint Features
Fingerprint Singularity
Fingerprint singularity is defined as a core or delta of a

fingerprint. Minutiae have dual correspondence

between the normal image and density-inverted

image, that is, terminations appear as bifurcations

and vice versa. However, singularity does not have

such trait.

▶ Fingerprint Image Enhancement
Fingerprint Skeletonization
Fingerprint skeletonization, also referred to as thin-

ning, is the process of reducing the width of binarized

ridgelines to 1 pixel. Standard thinning algorithms are

applicable. Modified methods based on local ridge

orientation have been proposed to improve skeletoni-

zation accuracy. Post-processing for skeleton image,

such as skeleton adjustment, is also important.

▶ Fingerprint Image Enhancement
Fingerprint Templates

WEI-YUN YAU

Institute for Infocomm Research, Agency for Science,

Technology & Research, Singapore
Synonym

Fingerprint representation
Definition

A fingerprint template is a set of stored fingerprint

features extracted from the fingerprint of a user.

It is stored during the enrollment process to represent

the actual owner of the fingerprint. It is subsequen-

tly compared directly to the fingerprint features of

the query fingerprint in order to establish whether the

http://www.optel.pl/article/english/idea.htm.
http://www.optel.pl/article/english/idea.htm.
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query fingerprint is obtained from the same person as

the actual owner. It should be noted that the original

fingerprint or its enhanced or compressed form is not

a fingerprint template.
Introduction

As discussed in the section on general biometrics, the

operation of a fingerprint recognition system, just like

any other biometric system, follows a common process

flow as shown in Fig. 1.

A fingerprint sensor is required to capture the

fingerprint image which is then processed by a feature

extractor to obtain the unique features of the finger-

print. If the user is new, the features extracted are

stored in a database, typically along with other person-

al details of the new user such as name, and identifica-

tion number. This set which stores the fingerprint

feature is commonly known as a fingerprint template.

The process by which this is done is called the enroll-

ment process. Subsequently, when the user wants to use

the fingerprint recognition system, the fingerprint fea-

tures extracted from the fingerprint image acquired

live or as a query image provided into the system are

compared against the stored fingerprint template(s). If

the comparison involves only one fingerprint template

from the database, such as when the user key in the

name to retrieve the enrolled fingerprint template, the

comparison process is called verification. Alternatively,

the comparison can be done against all the fingerprint

templates stored in the database and such a process is

referred to as identification.
Composition of Fingerprint
Template

In general, a fingerprint template contains the unique

features extracted from the fingerprint image.
Fingerprint Templates. Figure 1 Process Flow of a Fingerpr
However, the exact content varies according to the

type of algorithm used to extract and match the finger-

print. Nevertheless, if the stored file is merely the en-

hanced or compressed fingerprint image or the original

fingerprint image itself, it is not considered a fingerprint

template. There are two general types of algorithm used

in fingerprint feature extraction and matching, namely,

minutia-based and pattern-based or ridge feature-based

[1, 2]. Minutia arises when a fingerprint ridge comes to

an end (called ridge ending) or when it forks out into

two ridges (called bifurcation). A sample fingerprint

image with the detected minutiae is presented in Fig. 2.

Minutia detection is a complex process and is thus

beyond the purview of this contribution.

Each minutia, F, can be represented by a parameter

vector F = (x, y, ’, t)Twhere (x, y) is the coordinate in

the image, ’ the local ridge direction and t the type of

the minutia (i.e., bifurcation or ridge ending). The

basic composition of the minutia template, S, of a

fingerprint image is then the set of all n valid minutia

parameter vectors found in the fingerprint image

given by:

S ¼ Fk ¼ xk; yk; ’k; t k
� �

; k ¼ 1; 2; :::; n ð1Þ
Apart from the minutia information, the ridge count

[2] between two minutiae, which is the number of

ridges intersecting a straight line joining two minutiae,

is commonly used and included in the template. The

non-minutia data commonly extracted and included

in the template are the location, direction and the

number of core and ▶ delta points. There are many

other details that can be extracted and included in the

template such as a short ridge line information asso-

ciated to the minutia, and the number and type of

minutia encountered by the straight line used in the

ridge count with the aim to improve the performance

of fingerprint matching.

A popular pattern-based approach is the Finger-

Code [3] approach. The fingerprint image is tessellated
int Recognition System.



Fingerprint Templates. Figure 3 A Sample Set of

Spectral Triplets Representation (right) of a Fingerprint

Image Block (left).

Fingerprint Templates. Figure 2 A Fingerprint Image Showing Detected Ridge Endings and Bifurcations.
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into sectors and bands with respect to a reference

point, such as the ▶ core point. A bank of Gabor filters

is then applied to each cell in the tessellation, bounded

by the boundary delineated by the sector and band of

the tessellation. For every cell, the average absolute

deviation of each filter response over all the pixels in

the cell is computed and used as an element of the

feature vector, called the FingerCode. To approximate

rotation invariant, rotate the FingerCode cyclically.

Thus, the combined FingerCode becomes the template

for this approach. Another proposed approach

includes dividing the fingerprint image into small

blocks. For each block, the spectral information that

describes the fingerprint pattern in that block as closely

as possible is obtained. This can be done using Discrete

Fourier Transform, Gabor Filterbanks or by selecting

the spectral component from a predefined set of spec-

tral triplets [4] (see Fig. 3). The parameters describing

the spectral component for each block, such as (y, l, d)
for the spectral triplets, is quantized to limited discrete
values and then stored as a feature vector. The set of

feature vectors for all the blocks in the region of inter-

est of the fingerprint image is then stored as the finger-

print template.
Storage of Fingerprint Template

Usually fingerprint templates are stored in a central

database residing in a central database server. To per-

form a match, the extracted features from the query

fingerprint image are sent to the server. Such a model

requires connection from the point where the query

image is acquired to the central server. Since the fin-

gerprint template is stored in a central server, it carries

a notion of ‘‘big brother’’ which is a cause of concern

for the privacy advocates as such a system is capable of

tracking an individual. Another model for the storage

of fingerprint template is the distributed database con-

cept. The fingerprint templates are stored at each unit

where the use of the fingerprint system is the most

common. However, if a user wishes to be recognized

in the other system, the fingerprint template has to be

sent to the unit in advance, usually via a central server

which acts as a backup and synchronization unit. Such

a model is usually preferred to the central database

model if the usage spans over a large geographical

area. Instead of depending on a database, the finger-

print template can also be stored in a token such as a

smartcard, memory stick or thumb drive in a fully

decentralized model. A smartcard is usually preferred

since it is generally regarded as more secure. The user

carries the token containing his or her fingerprint
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template with him/her. To perform fingerprint match-

ing, the user has to present the token and the finger-

print template stored in the token is retrieved for

matching with the query features. Alternatively, the

matching is performed inside the token itself with the

query features sent into the token. As such, the use of

the fingerprint system is not dependent on any con-

nectivity. Also, the number of users can easily be scaled

when managing the template database. Unfortunately,

once the token is lost, the genuine user is unable to use

the system.
Template Synthesis

Various types of fingerprint sensors are available that

capture live fingerprint images. Traditionally, those

used for law enforcement purposes require a sensor

with a sensing area of at least 2.54cm � 2.54cm. The

consumer version is usually smaller, about a quarter of

the size or even smaller. However, such a small sensor is

not able to image the complete portion of the finger

that touches the sensor. Consequently, if the user does

not position his/her finger such that the contact por-

tion of the skin is largely similar to the portion used

during enrollment, then the matching will fail. This

will result in false non-match, causing inconvenience

to the user. To solve this, an image mosaicking tech-

nique has been proposed [5] for constructing a com-

posite fingerprint from an image sequence of partial

fingerprints. This is done by applying a low pass filter

to smooth the images and then compressing the intensi-

ty to the range of [10, 20]. The images are then aligned

using the Iterative Closest Point algorithm [6] before

superimposing the aligned images to form the▶mosaic.

Another mosaicking technique for rolled fingerprints

has been proposed in [7]. Alternatively, a minutia-

based template synthesis approach to combine the

various fingerprint templates obtained from the small

fingerprint images into a composite template which

resembles the template obtained using a larger finger-

print image has been developed in [8].

Minutia-based template synthesis is performed by

finding all the correspondent or matched minutiae

between two fingerprint images, IR and I1, to be

synthesized. Based on the matched minutiae, an affine

transformation that maps the minutiae from I1 to IR is

then determined. This is repeated until all the other

fingerprint images are synthesized. The experimental
comparison [9] revealed that the template synthesis

approach is faster, less affected by elastic deformation,

and is more suitable for larger partial images while the

imagemosaicking approach is more appropriate when

accurate performance for small partial images is

required.
Template Improvement

Fingerprint images are often corrupted by noise, imag-

ing artifacts and affected by the skin condition (wet,

dry), amount of pressure exerted when touching the

sensor, etc. This causes the occurrence of missing min-

utiae (valid minutiae are not detected) or spurious

minutiae (false minutiae detected). Thus, accurate

detection of minutia is a very challenging task. If many

dropped or spurious minutiae are present in the finger-

print template, the usability of the fingerprint recogni-

tion system is affected. To expect the user to re-enroll

regularly may cause a lot of convenience. The purpose

of template improvement is to improve the fingerprint

template using multiple fingerprint images captured

over a period of time [10]. For each minutia in the

template, it is initialized with a default certainty level.

When a query fingerprint submitted after a time inter-

val is matched above a predefined threshold, the tem-

plate and the certainty level associated with each

minutia will be updated. This is done by finding

those unmatched minutiae in the template within the

region which overlaps with the query fingerprint and

then reducing their certainty level by a predefined

weight, a. Next, all the unmatched minutiae found in

the query fingerprint outside of the overlapping region

will be included in the template using the template

synthesis technique but with a reduced certainty level

of (1 � a). Then all minutiae in the template with a

certainty level lower than a predefined threshold will

be removed. In this way, spurious minutiae can be

eliminated after many unmatched iterations while the

missing minutiae can be incorporated.
Template Interchange

There are many ways in which a fingerprint system can

generate a fingerprint template. In order to facilitate

the interchanging of fingerprint templates among the
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various fingerprint systems from different vendors,

fingerprint templates have to be coded in a consistent

manner. This is defined by the International Organiza-

tion for Standardization (ISO) and the International

Electrotechnical Commission (IEC). The ISO/IEC

documents specify the standards for the minutia-

based template [11], the pattern-based template [4],

and the combined minutia and pattern template, called

the pattern skeletal [12]. The standards specifying con-

sistent formats for the construction of fingerprint tem-

plates comprise 3 sections:

1. A header which describes the generic information

about the template and its source.

2. A normative section which describes all the man-

datory features to be included and the manner in

which they have to be coded.

3. A non-normative section which allows for other

non-mandatory information to be included in the

fingerprint template.
Image Reconstruction from Template

It is often assumed that the minutiae-based template

cannot be used to construct back the corresponding

original fingerprint, partly because the way the data is

stored in the template is proprietary. However, it has

been shown that this is possible with a standard tem-

plate [13], such as those defined by the ISO/IEC [9].

The general idea is to reconstruct the orientation pat-

tern using the orientation modeling approach [14] and

the fingerprint area based on the template information.

Subsequently, the ridge pattern is developed by apply-

ing a high gain Gabor filter adjusted to the local fre-

quency and orientation and then rendering it to make

the image look realistic [2].
Summary

A fingerprint template contains the unique features of

a fingerprint image and can be used for fingerprint

matching. The exact composition of the template is

dependent on the algorithm used to extract the unique

features. Nevertheless, international standards exist to

facilitate the interchanging of the template. It can be

stored in a database which can either be centrally
managed, distributed or stored in portable tokens

instead of a database. Template synthesis and template

improvement techniques can be used to improve the

performance of the system when dealing with small

fingerprint sensor and poorly enrolled fingerprint tem-

plates respectively.
Related Entries

▶Enrolment

▶ Fingerprint matching

▶Minutia
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Fingerprint Thinning
Obtaining a 1 pixel wide digital skeleton of ridges.

▶ Fingerprint Features
Fingerprint, Forensic Evidence of

DIDIER MEUWLY

Netherlands Forensic Institute, The Hague,

The Netherlands
Synonyms

Fingermark identification procedure; Automatic finger-

print identification system; Forensic evaluation of

fingerprints and fingermarks.
Definition

Forensic evidence of fingerprint is the field of forensic

expertise related to the inference of the identity of

source from the examination of all the friction ridge

skin, namely the fingers, the palms, the toes, the soles,

and their marks. But for the sake of simplicity, the text

is mainly focused on fingerprints and fingermarks. The

extreme variability of the fingerprints derives firstly

from the knowledge of the morphogenesis of the

papillary ridges pertaining to embryology and, second-

ly, from statistical researches pertaining to dactylo-

scopy. This variability is mainly used in four different

processes within forensic science: identity verification,

forensic intelligence, forensic investigation, and foren-

sic evaluation. The first three processes are based on
the use of Automatic Fingerprint Identification Sys-

tems (AFIS). The fourth process, forensic evaluation, is

an expert-basedprocess, built onprocedure, training, and

experience. Theprocedure andpractice vary a lot between

countries, principally regarding the threshold used for

forensic identification. Most of the European and South

American countries favor a quantitative approach based

on a numerical standard when the USA, UK, andmost of

the Scandinavian countries have adopted a qualitative

approach based on the experience and knowledge of the

dactyloscopist. For both approaches, the decision is an

expert opinion that is deterministic: exclusion, inconclu-

sive or identification. As the current practice is not error-

free and partly based on the subjective probabilities of

the dactyloscopists, efforts are made to develop a new

approach based on a logical inference model and statisti-

cal probabilities, in order to assist the dactyloscopists in

producing a logical, testable, and quantitative evaluation

of the fingerprint evidence.
Nomenclature

At the end of the 19th century William Herschel and

Henry Faulds expressed the principles of the forensic

use of fingerprints and fingermarks: the use of finger-

prints and fingerprint databases for the identification of

serial offenders and the use of fingermarks to establish a

link between a crime scene or an object and an individ-

ual. In literature, confusion exists between the term

fingerprint and fingermark. This article uses a uniform

terminology: the finger dermatoglyphics and their stan-

dard rolled inked impressions are named fingerprints,

whereas recovered traces left by unprotected fingers are

named fingermarks. In criminal records, reference

prints are collected using forms named ten-print cards.
Individuality of the Fingerprint

Confusion surrounds the terms identity, identify, and

identification in forensic science. This is clearly demon-

strated in popular practice, when the perpetrator of an

infringement is said to be ‘‘identified from her/his

fingerprints’’. The perpetrator is not identified, but

individualized. What is proved by the fingerprints is

individuality. To individualize a human being on the

basis of fingermarks in forensic science ultimately con-

sists in determining if an individual is the source of
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the fingermark linked to the criminal activity [1]. The

individuality of fingerprints derives firstly from

the knowledge of the morphogenesis of the papillary

ridges pertaining to embryology and, secondly, from

statistical researches pertaining to dactyloscopy.
F

Morphogenesis

The friction ridge skin morphogenesis offers a

biological basis to explain the variability in friction

ridge patterns. The morphogenesis of the human

hands and feet starts during the 6th week of the esti-

mated gestational age (EGA). The pattern of ridge skin

is established from the 10th week to the 14th week of

EGA when the basal layer of the volar epidermis

becomes folded and forms the primary ridges. This

process is influenced by the volar pads, local eminences

of subcutaneous tissue in well-defined locations of the

volar surfaces. It is conjectured that the inversion of

the volar pads creates tensions in the epidermis that

align the ridge pattern [2]. From this moment on up to

the 16th week of EGA, the tissues growing under the

dermis, named volar pads, induce physical stress in the

cell layers constituting this dermis. This physical stress

forms a two-dimensional structure of ridges on the

palms, the soles, the fingers tips, and the toes. From

the 16th to the 24th week of EGA, the dermis matures;

secondary dermal ridges start to develop between the

primary dermal ridges and bridges, named dermis

papillae, appear between the apex of the primary and

secondary ridges. After 24 weeks of EGA, the develop-

ment of the dermis is finalized and the epidermis is

gradually formed by cell development from the dermis,

named papillary ridges. In its final stage, the papillary

ridges grow as a three-dimensional structure based on

the two-dimensional pattern. The anchorage of this
Fingerprint, Forensic Evidence of. Figure 1 Examples of fing
epidermal structure in the dermis ensures the stability

and the permanence of the dermatoglyphics. Therefore

a permanent modification or destruction of the der-

matoglyphics can only occur in case of destruction of

the dermis [3].
Variability of the Fingerprint

The fingerprint is expressed through the interaction of

genotype, development, and environment; therefore

this biometric modality is qualified as epigenetic, sim-

ilar to the iris of the eye but contrarily to a DNA

sequence, from which by instance a DNA profile is

extracted, that is genetically determined. The informa-

tion content in the fingerprint ridges is structured in

three levels named the general pattern, the minutiae,

and the third level details.
General Pattern

The general shape of the ridge flow, named general

pattern, is to some degree indirectly genetically inher-

ited and is classified in three generic types: arches

(simple or tented), loops (left or right), and whorls

(including various composite forms). The approxi-

mate center of the general pattern is named the core,

and the small area where 3 flows of ridges meet to form

a triangular pattern is called a delta. Arches have no

delta, loops have 1 delta, and whorls, 2 deltas (Fig. 1).
Minutiae

In addition to the general ridge flow of the ridges,

deviations appear along the papillary ridges. They are

named minutiae, and can be classified in three basic

types: ridge ending, bifurcation, and dot (Fig. 2). All

other denominations, employed at the convenience of
erprint with different general patterns: arch, loop, and whorl.
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and the dot.
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the users or for statistical purposes, are a combination

of two or three minutiae of basic type.

The minutiae contribute the most to the selectivity

of the fingerprint, due to the combination of their

spatial arrangement along the ridges and their intrinsic

characteristics: type, location, and orientation. The

selectivity offered by a minutiae configuration present

on a fingerprint or on a fingermark is a function of

their number, type, and topology (relative position and

orientation on the ridges).

The process underlying the development of the

minutiae is not known yet, but models offered by

mathematical biology and empirical studies suggest

that it is epigenetic [2]. For ridge endings, bifurcations,

and dots, more correlations are observed on finger-

prints of monozygotic twins as opposed to dizygotic

twins [4]. Correlations are also observed between the

number of minutiae and the finger number, which can

be explained by the fact that the surface of the fingertip

of the thumb is bigger than the surface of the finger-

tip of the little finger. The relative frequencies of

the minutiae type are correlated with gender, but no

difference has been observed between the fingerprint

characteristics of the left and right hands [5].
Third Level Details

The study of the friction ridge details may be further

subdivided into the description of ridge contours or

edges, and the position and the shape of the pores [6].

However, the degree of agreement between dactylosco-

pists on the value of these latter characteristics is

limited so far, and no systematic study supports the

different opinions.
Statistical Research

The first statistical investigations were conducted at the

end of the nineteenth and at the beginning of the

twentieth century, but the initial models were devel-

oped on the basis of unrealistic premises: it was pre-

sumed that each minutiae type appeared with the same

probability and independently of each other on the

ridge skin surface. More sophisticated models were

developed later during the twentieth century, first in-

cluding the unbalance between the minutiae type (e.g.,

the bifurcations are more rare than the ridge endings)

and then including the uneven density of the minutiae

(e.g., the density of minutiae increases in the centre

and delta zones) [7].

Statistical studies mainly focus on the second level

features and especially the spatial arrangement of minu-

tiae, while studies of other fingerprint features remain

too seldom. These studies onminutiae provide extreme-

ly valuable fundamental knowledge about the degree

of randomness of minutiae configurations, but they

cannot be used yet for the deployment of large-scale,

case-specific statistical evaluation of the fingermark

evidence. Current statistical models simplify reality,

emphasizing the statistical behavior of minutiae, and

adopting a restricted view of the overall factors like the

general pattern, the main ridge flows, the ridge edges,

or the pores. Nevertheless, this new approach aims to

offer a uniform framework and a transparent method-

ology to the dactyloscopists. Coupled to a logical infer-

ence model originating in the Bayes theorem, these

models aim to assist them in producing a logical, test-

able, and quantitative evaluation of the fingerprint

evidence based on statistical probabilities [8].



Fingerprint, Forensic Evidence of F 531

F

Classification of Fingerprints and
Fingermarks

Manual Classification

For about a century the classification of fingerprints

based on general patterns allowed the dactyloscopists

to limit the search for the source of an unidentified

fingermark to a specific section of their databases of

fingerprint reference files. Francis Galton proposed the

first system of fingerprint classification in 1891, and

the development and practical application of dactylo-

scopy for forensic use were materialized in 1892 with

the publication of his manual of dactyloscopy. This led

to the acceptance of fingerprints in Great-Britain and

the British Empire. In 1900, Henry modified the clas-

sification system of Galton, which remained the most

widely used system in the world under the name of

Galton-Henry. In 1891, Vucetich began to collect the

first ten print cards databases based on the ideas of

Francis Galton and developed another classification

system, which was adopted by some South-American

countries. The size of the ten print cards databases

increased progressively during the twentieth century,

and the workability was maintained sophisticating the

indexation system, but to the cost of a trade-off be-

tween selectivity and reliability. The coexistence of

several classification systems around the world limited

the interoperability of the manual classification be-

tween different systems. In the second part of the

twentieth century, manual classification was slowly

abandoned and replaced by computerized classifi-

cation systems named Automatic Fingerprint Identi-

fication Systems (AFIS) [9].
Automatic Classification

Development

From the mid-1960s, research on automation of

fingerprint identification started. USA and Japan con-

centrated on automation of the high-volume ten-print

workload, while France and the UK focused more on

automation of fingermark identification. After a de-

cade of effort, digitization of the ten-print card and

automatic designation of minutiae were effective

enough for the USA and the UK to produce auto-

matic fingerprint reader systems. This advancement

opened the possibility to digitize the ten print card
records and to store the standard impressions and

the demographic data of individuals (e.g., name,

citizenship, and date of birth) in a computerized

database.

Forensic Uses of AFIS Technology

AFIS technology was initially developed to assist the

dactyloscopists with computers in the identity verifica-

tion process of individuals through their fingerprints.

This process consists in searching the ten fingerprints of

an individual in the database of standard impressions to

verify if he or she is already present in the database and,

if present, to check his or her demographic data. The

AFIS technology has achieved enough maturity to en-

sure an identity verification process that is virtually

error-free from the technological point of view, even if

clerical mistakes in the database or in the running of the

process can never be excluded.

In the 1990s the improvement of both AFIS and

computer technologies allowed for the processing of

fingermarks, exploited in two forensic processes. Fin-

germarks can be used for forensic investigation, in

order to establish a link between a crime scene or an

object and an individual. They can also be used for

forensic intelligence to establish links between several

crimes, even if the potential for links using marks

depends on their limited quality.

In the 2000s the improvement of the computer

mass-storage, in terms size and affordability, favored

the constitution of large-scale palmprints databases.

This development allowed for an extension of forensic

investigation and forensic intelligence based on palm-

marks. In most countries, the constitution of large

scale palmprints databases is an ongoing process.

The challenge of standardization has only been

solved recently, through the use of a common format,

developed by the American National Institute for Stan-

dards and Technology (NIST), facilitating the compu-

terized exchange of fingerprint and fingermark data

between countries and agencies [10].
Individualization of Fingerprints and
Fingermarks

History

The criminalist Edmond Locard enounced the

first rule establishing a minimum number of minutiae
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necessary for fingermark identification. During

1911–1912 he initiated the discussion of a numerical

standard for the forensic identification of fingermarks,

suggesting the following rule:

1. If more than 12 minutiae (‘‘concurring points’’) are

present, and the fingermark is sharp, then the iden-

tity is certain. The imperative requirement for the

absence of significant differences is implicit.

2. With 8–12 concurring points, the case is borderline

and the certainty of the identity depends on

a. The sharpness of the fingermark.

b. The rarity of the type.

c. The presence of the core of the general pattern

and the delta in the usable part of the mark.

d. The presence of pores.

e. The perfect and obvious similarity of the print

and the mark regarding the width of the papil-

lary ridges and valleys, the direction of the lines,

and the angular value of the bifurcations.
In these instances, the certainty of the identifica-

tion can only be established following a discussion

of the case by at least two competent and experi-

enced specialists.
3. With less than 8 minutiae, the fingermark cannot

provide certainty for the identification, but only a

presumption proportional to the number of min-

utiae available and their clarity.

Principally the first two parts of this rule were

largely adopted by the community of the dactylosco-

pists but, unfortunately, the third part of the rule

remained largely ignored [5].
Current Practice

The current dactyloscopic practice has evolved from

the body of knowledge developed about the fingerprint

individuality and the forensic use of fingermarks.

It is formalized in a 4-step procedure named ACEV

(Analysis-Comparison-Evaluation-Verification).

This procedure consists in the analysis of the fingermark

followed by the analysis of the fingerprint, the compari-

son of the fingermark and the fingerprint, the evalua-

tion and the decision based on the observed similarities

and discrepancies between the fingermark and the fin-

gerprint, and the verification of the findings by a second

dactyloscopist.
Despite the formalization of the identification pro-

cedure, the practice varies between continents and

countries, and even within some countries. The evalu-

ation step, in particular, is based either on a quantita-

tive threshold or on a qualitative threshold.

Quantitative Threshold: Presence of a Numerical

Standard

A majority of European and South American

countries favor a purely quantitative approach for

forensic individualization, by fixing a numerical

standard and considering qualitative aspects such

as the third level details as secondary. A formal iden-

tification is established only if a minimal number

of corresponding minutiae between the observed

mark and the fingerprint – and an absence of signifi-

cant differences – is put in evidence.

The numerical standard differs between countries

and sometimes also between agencies in the same coun-

try: Italy (16-17); UK (before 2000) (16); Belgium,

France, Israel, Greece, Poland, Portugal, Romania,

Slovenia, Spain, Turkey, South American Countries

(12); Netherlands (10-12); Germany (8-12); Switzerland

(before 2008) (8-12); and Russia (7) [5].

Qualitative Threshold: Absence of Numerical Standard

Until 1970, the fingerprint identification procedure in

the USA was also based on a numerical standard of

12 points, and below this threshold, qualitative factors

in the comparison were taken into consideration. In

1970, a commission of experts from the International

Association for Identification (IAI) was established to

study the question of the relevancy of a fixed numerical

standard for dactyloscopy. The following resolution

was adopted by the IAI in 1973: ‘‘The International

Association for Identification, based upon a 3-year

study by its Standardization Committee, hereby states

that no valid basis exists for requiring a predetermined

minimum of friction ridge characteristics that must be

present in two impressions in order to establish posi-

tive identification.’’

It was accepted that the concept of identification

could not be reduced to counting fingerprint minutiae,

because each identification process represents a unique

set of features available for comparison purposes; the

identification value of concurring points between a

fingerprint and a fingermark depends on a variety of

conditions that automatically excludes any minimum

standard.
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In 1995, during a conference meeting on finger-

mark detection techniques and identification hosted in

Ne’urim, Israel, 28 scientists active in the field of dac-

tyloscopy, representing 11 countries, unanimously ap-

proved a resolution that is a slight variation of the IAI

1973 resolution. The Ne’urim declaration states that

‘‘no scientific basis exists for requiring that a predeter-

mined minimum number of friction ridge features

must be present in two impressions in order to estab-

lish a positive identification.’’

Decision Process

A formal identification is established when the dacty-

loscopists reach a decision threshold. They evaluate the

contributions to individuality on a quantitative level

(numerical standard), or on a qualitative level (absence

of numerical standard), and the size of the relevant

population of potential sources of the fingermark is set

to its maximum, independently of the circumstances of

the case [5].

On the basis of their evaluation, most dactylosco-

pists report three types of qualitative opinion: identifi-

cation, exclusion, and inconclusive. As their evaluation

is deterministic, they also make an implicit use of

their own subjective probabilities of the rarity of the

characteristics used to substantiate their opinion. They

refine these subjective probabilities through training

and experience, but they rarely consider results from

research, particularly in the fields of embryology and

statistics.

Admissibility of the Fingerprint in the USA

Like for other forensic disciplines, the scientific status

of fingerprint identification has been questioned since

1993, when the Supreme Court of the USA handed

down its ruling in Daubert v. Merrell Dow Pharma-

ceuticals (1993, Inc., 509 US, 579). Previously the main

criterion for the admissibility of expert testimony in

the federal courts of the USA was the Frye standard,

which requires the general acceptance of the methods

by the relevant scientific community. Daubert gave

federal judges much greater discretion in deciding ad-

missibility. It suggested that they consider (1) whether

a theory or technique can be tested, (2) whether it has

been subject to peer review, (3) whether standards exist

for applying the technique, and (4) the technique’s

error rate. Although it is possible to test and validate

methods for the forensic individualization of finger-

marks, the research on this topic is still very limited.
The admissibility of fingerprint evidence, as being

scientific in nature, has been subject to a Daubert hearing

in the case U.S. v. Mitchell (1999, U.S. District Court for

the Eastern District of Pennsylvania, Criminal), followed

by Daubert hearings in more than 20 other fingermark

cases. In the same case, U.S. v. Mitchell, the FBI provided

calculations based on experiments carried out on anAFIS

system. Randommatch probabilities of 10�97 and 10�27

were claimed respectively for complete fingerprints

and partial fingermarks. These extraordinary numbers

have been obtained by an extreme extrapolation of the

probability density of the score using a postulated

model, but they are so far from reality that it is

surprising that they were admitted as evidence. Until

January 2002, all Daubert hearings on fingermark cases

led to the full admissibility of fingermark evidence in

the courtroom. Judicial notice was given to the fact

that fingerprints are permanent and unique [5].

January 2002 coincides with the first decision that

proposes to limit expert testimony on fingerprint iden-

tification. Indeed in U.S. v. Llera Plaza (188F. Supp. 2d

549, 572–73 (E.D. Pa. 2002)), the defense ‘‘Motion to

Preclude the United States from Introducing Latent

Fingerprint Identification Evidence’’ has been partly

successful. Judge Pollak held that a dactyloscopist

could not give an opinion of identification, and re-

quired that the expert limits his testimony to outline

the correspondences observed between the mark and

the print, leaving to the court the assessment of the

significance of these findings. That led the Government

experts to ask for reconsideration bringing to the de-

bate background documents in relation to the move of

the UK toward the abandonment of the 16 point stan-

dard. Judge Pollak later reversed his opinion, and ad-

mitted the evidence.

Two cases of wrongful fingermark identification

following the case of the Scottish police officer Shirley

McKie perpetuated this controversy. In the first case

the American Stephan Cowans was convicted by fin-

gerprint identification, but later exonerated by DNA

analysis. In the second case, the American Brandon

Mayfield was wrongly associated with the 11 March

2003 Madrid bombing, by means of fingerprint to a

latent mark revealed by the Spanish National Police on

a plastic bag containing detonators recovered from a

stolen van associated with these bombings. Three FBI

experts and an independent court-appointed expert all

identified Mayfield as the donor of the mark. Mayfield,

a lawyer based in the US State of Oregon, came to the
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FBI’s attention when one of the latent marks sent by

the Spanish authorities through Interpol gave a hit

against his name on the FBI integrated AFIS (IAFIS),

containing about 440 millions of fingerprints from

44 millions of persons. Brandon Mayfield was arrested,

and remained in custody for a few weeks until the

Spanish dactyloscopists, who immediately had raised

issues with this identification, finally identified the

mark with the finger of an Algerian suspect.

The FBI offered an apology and published a re-

search report in the beginning of 2004 in which the

existing FBI procedures were investigated extensively.

This report showed that the mistake in this case was

not owed to the methods the FBI used, but was the

consequence of ‘‘human error’’ which cannot be ex-

cluded. The problem with this frequently used expla-

nation is that the method and the human cannot be

separated in case of an activity at which the human acts

as a measuring instrument as is the case in traditional

dactyloscopy [11].

An extensive research by the General Inspector of

theUS department of Justice appeared in January 2006 in

which a clear analysis was given of the facts and circum-

stances causing the incorrect identification [12]. Accord-

ing to this report, an important factor in the Mayfield

case was that when a search is performed using a very

large database, there will always be a reference print

which strongly looks like the unknown mark. A posi-

tive consequence of these cases is that they initiated a

move towards a much more open discussion about the

misidentifications in the forensic fingerprint field.

Analysis of the Current Practice

Research in embryology and statistics clearly do not

legitimate the reduction of fingerprint individuality to

counting minutiae. Indeed the scope of features is

much broader than minutiae alone, and the nature of

the papillary individuality prevents the adoption of

any predefined number of ridge characteristics neces-

sary for identification, without significant differences

[13]. It is axiomatic that no two fingerprints are iden-

tical, as no two entities of any kind can be identical to

each other. A common misconception lies in the fact

that the features of individuality of the fingerprint is

often attributed to the fingermark. As already de-

scribed by Locard, in criminalistics, the transfer of

material is logically never perfect. In dactyloscopy,

the transfer of the pattern from the fingerprint ridges

to the fingermark is accompanied by two types of loss
of information: quantitative, due to the limited size of

the trace, and qualitative, due to distortion, blurring,

bad resolution, and loss of pore and edge details.

The challenge for dactyloscopy is about the ability

to quantify the information available for the individu-

alization process in a partial distorted fingermark,

and not to prove the individuality of the friction

ridge skin. The first step in the quantification of the

evidential value of fingermark evidence consists in

estimating the similarity between the features of this

fingermark and those of the fingerprint considered

as potential source of this mark. The second step

consists in estimating the typicality or the rarity of

these features, and the third step, in reporting the

similarity–typicality ratio as evidential value. This con-

cept encapsulates a continuum of values for individu-

alization of the fingermarks ranging from very high to

very low, depending on the feature analyzed. There-

fore, the forensic individualization process of finger-

marks cannot be considered as a binary decision

process, but has to be envisaged as a purely probabilis-

tic assessment of the value of evidence, as it is for any

type of evidence [14].

Probabilistic models, which are applicable to fin-

germark individualization [15], have been proposed

and accepted by forensic scientists in other forensic

areas – i.e., DNA, microtraces and speaker recognition

[16]. The absence of extensive statistical analysis

on fingerprint variability can be viewed as the main

reason to prevent giving qualified opinions. Statistical

data only support and comfort identification state-

ments used by dactyloscopists but, according to

Stoney, ‘‘we must realize that to reach absolute identi-

fication, or its probabilistic equivalent, through an

objective process is not possible. Probabilities are ob-

jective when they can be tested and reproduced’’ [17].
Future Perspectives

The statistical studies applied to fingerprints and fin-

germark individualization provide valuable knowledge

about the statistical behavior of various types of fea-

tures, mainly the minutiae, and to a more limited

extent, the pores, but they do not provide a robust

tool to assess the probability associated with a given

configuration of features for several reasons: none of

the proposed models has been subjected to an extend-

ed empirical validation, and the assumptions about
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the features used in these models have not been fully

explored.

The research possibilities are huge, mainly in three

different directions. The first is a refinement and an

empirical validation of the model-based approaches

developed in earlier studies [8]. The second is the

development of data-driven approaches taking advan-

tage of the capabilities of the current AFIS systems,

embedding large fingerprint and fingermark databases,

high computation capabilities, and sophisticated pat-

tern recognition techniques. The third direction is to

explore the morphogenesis process from the point of

view of mathematical biology, with the aim to

determine the contribution of the genetic, environ-

mental, and the other factors, which influence the

features defined in the three levels of informat-

ion present in the fingerprint. These studies require

the availability of large samples of fingermarks

and fingerprints and a clear definition of the features

used by the examiners to compare fingermarks with

fingerprints.
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Fingerprint, Palmprint, Handprint
and Soleprint Sensor
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Synonyms

Fingerprint device; Fingerprint sensor; Handprint

sensor; Palmprint device; Palmprint sensor; Soleprint

device; Soleprint sensor
Definition

A fingerprint or palmprint or handprint or soleprint

sensor is a transducer that converts the ridge–valley

structure of a person’s hand or foot sole to an electri-

cal signal. Generally, the sensor reads the difference of
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pressure, temperature, light, electrical capacity or other

kinds of energies are measured between the ridges and

the valleys. Then, this difference is converted into an

electrical digital signal that is encoded as an image

representing the ridge–valley pattern. Different tech-

nologies can be applied to achieve this conversion and

each of them brings advantages and disadvantages.

It is important to highlight that the output signal is

a representation of the real-world ridge–valley pattern.

Hence, if F is a ridge–valley pattern of a real-world

finger tip and s is the transfer function of a device, the

output signal is F 0¼s(F) and F 0 6¼ F.
Introduction

The similarity of the ridge–valley pattern of the epider-

mis present on finger tips, palms, and soles [1] allows

to use the same physical principles for capturing fin-

gerprints, palmprints and soleprints. The devices using

these technologies can be grouped into a single family,

known as ▶ livescan furrow devices or shortly, livescan

devices.

The technological advancement of livescan devices

has been mainly driven by the research done in the

fingerprint recognition field more than the palmprint

and soleprint modalities. The reason has to be found in

a more convenient use of fingerprint devices, instead of

the larger, heavier, and more power-consumer palm-

print and soleprint ones. Moreover, fingerprint being

the oldest biometric means used to identify people,

large collection of data have always been available.

This facilitated the development of algorithms for fin-

gerprint recognition, pushing experts and scientists to

focus mainly on this modality more than palmprints

and soleprints.
Ink-on-Paper Method

The oldest approach to capture the furrow pattern is

represented by the ink-on-paper method. Even if we

cannot consider this as a real sensing technology, it is

important to mention it here, since ink-on-paper is

still widely used to collect palmprints, fingerprints,

handprints, and soleprints. Moreover, it represents a

strong obstacle for the advancement and the introduc-

tion of new capture technologies. The reason has to be

found in the existence of very large databases collected

using this method during the last ten decades. When a
new technology is introduced on the market, it must

have a high degree of interoperability with the ink-on-

paper method to ensure the continuity of the use of

these databases, because a fingerprint or palmprint

representation different than the legacy one would

make the comparison very difficult. Thus, the repre-

sentation of the ridge–valley pattern provided by the

ink-on-paper method still represents the model that

the modern technology tries to imitate.

The ink-on-paper capture approach consists in

covering the ridge–valley pattern with black ink.

Then, the print is obtained impressing the inked skin

onto a white paper applying a small pressure. The

resulting print is represented by a black mark for each

ridge, while nothing is left in correspondence of each

valley. The quantity of the ink applied on the skin and

the pressure applied onto the paper during the impres-

sion are very important factors influencing the quality

of the final result. In spite of other approaches, this

technique does not suffer the skin condition problems

(dry skin, wet skin, etc.), which are instead very difficult

to overcome in the case of the other capture methods.

In some applications, the capture of fingerprints is

performed rolling the finger onto the paper. This

is done to acquire as much information as possible of

the finger tip that can be used during an identification.

The impression obtained with this approach is called

▶ rolled-equivalent fingerprint. Using dedicated image

processing algorithms, rolled-equivalent fingerprints

can also be obtained rolling the finger on the sensing

surface of a sensor.

Collecting fingerprints, palmprints, handprints,

and soleprints with the ink-on-paper method is still

widely used, because it still represents the cheapest

way to collect these biometric data. In Spain, the regis-

tration of all new born children is done applying ink on

the baby soles of the feet and impressing them on a

paper. In some Asian countries, inked fingerprints are

used to register civilians during elections to avoid dou-

ble voting. In Switzerland, Spain, Germany, and many

other Countries, criminals are still registered by inking

the tips of their fingers and their hands to collect the ten

flat and rolled fingerprints and palms.

Once the fingerprints are collected on the paper,

they can be digitalized using a flatbed scanner and then

stored in digital format. This approach is still the most

used by an Automated Fingerprint Identification Sys-

tem (AFIS) or an Automated Palmprint and Finger-

print Identification System (APFIS).
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To improve the user convenience, especially in ci-

vilian applications, a special transparent oily substance

is used in place of the black ink. In this way, the

fingerprinted person does not need to wash her/his

hands many times to remove the inconvenient residues

of the black ink.

Nowadays, palmprints are becoming more and

more popular in crime investigation, especially for

latent comparison, since recent studies have demon-

strated that more than 30% of the latent prints found

on a crime scene belongs more likely to palms than

fingers. Generally, the ink-on-paper palm capture

consisted of inking the lower palm and the impress

it on a paper. Nowadays, the reduction of the cost of

the digital storage space allows to store larger quantity

of data. Thus, the most modern approach consists of

capturing the full handprint consisting of the three

▶ palm segments (lower, upper and writer palms).
Sensor Characteristics

Before describing the modern fingerprint sensor tech-

nologies, their main characteristics are highlighted in

this article. These features define the application range

in which the sensor can be used. For some applications,

livescan devices have to pass very strict tests. The most

famous and required certification is the FBI fingerprint

scanner certification, covered in the Appendix F of the

Criminal Justice Information Service (CJIS) Electronic

Fingerprint Transmission Specification [2]. A list of

FBI certified livescan devices is available at http://

www.fbi.gov/hq/cjisd/iafis/cert.htm.

The first important feature for a livescan device is

the Image Resolution, which describes the ability of a

sensor to distinguish, detect, and/or record physical

details of the ridge–valley pattern. It represents the num-

ber of pixels in a unitary length and is expressed in pixel-

per-inch or shortly, ppi. Typical image resolution values

are 500 and 1,000 ppi. The first value is the most

common and it is used in majority of the applications

and products present in the market. The 1,000 ppi is

mainly used for criminal investigation, especially for

palmprints. The interest in analyzing the so-called

third level details of a ridge–valley pattern is now

pushing the manufacturers to introduce new devices

with very high resolution (1,500–5,000 ppi).

Radiometric Resolution or Image Depth or Dynamic

Range determines how finely a sensor can represent
or distinguish differences of intensity. It is usually

expressed as a number of gray levels or bits, for exam-

ple, 8 bits or 256 gray levels which is typical of finger-

print image.

TheModulation Transfer Function (MTF) or Spatial

Frequency Response is another important parameter.

Spatial frequency is typically measured in cycles or

line pairs per millimeter (lp ∕mm). The more extended

the response, the finer the detail and the sharper the

image. MTF is the contrast at a given spatial frequency

f relative to contrast at low frequencies and it can be

computed with the following Eq. (1):

MTF ¼ 100%
Cðf Þ
Cð0Þ ; ð1Þ

whereC( f )¼ (Vmax� Vmin) ∕(Vmaxþ Vmin) is the con-

trast at frequency f, and C(0)¼ (VW � VB) ∕(VW þ VB)

is the low frequency contrast. VB, VW, Vmin and Vmax

represent the luminance for black areas, the luminance

for white areas, the minimum luminance for a pattern

near spatial frequency f and the maximum luminance

for a pattern near spatial frequency f respectively.

All the optical features of a sensor can be measured

using special targets. To test the quality of a device,

a manufacturer must purchase these targets and test

the accuracy of all its optical features.

The Geometric Image Accuracy represents the abso-

lute value of the difference D ¼ X�Y, between the

distance X measured between any two points on the

target and the distance Ymeasured between those same

two points on the output image. This is a very impor-

tant parameter especially for devices having a very

large capture area.

The Grayscale Linearity (GL) represents the capacity

of a device to reproduce the gray level values cor-

rectly. A target with gradually varying grayscale levels

is used for this scope. The grayscale levels on the

output image are compared with the grayscale levels

on the input target to measure the accuracy of the

representation.

The Signal-to-Noise Ratio (SNR) is measured using

another special target representing a grayscale level

reference. This reference can be a white-colored and a

black-colored target. An image is generated from these

two targets and compared point by point with the

reference.

The Framerate represents the number of frames a

sensor can generate per time unit. It is measured in

frames ∕s and it is a very important parameter when the

http://www.fbi.gov/hq/cjisd/iafis/cert.htm
http://www.fbi.gov/hq/cjisd/iafis/cert.htm
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object (finger, palm or hand) movements are implied

during a capture (sweep devices). To improve the final

image quality, many sensors acquire more images of the

same finger or palm during an acquisition. The captured

images are then combined to produce the final image.

The Shutter-speed is the time that a detector needs

to capture a single image.

Other important sensor characteristics that can

change the application range of a device are the commu-

nication interface type (USB, Firewire, Ethernet, etc.),

the sensor dimensions and weight, the Mean-Time-

Before-Failure (MTBF), the self-powering capacity (if

the power of the device comes from the communica-

tion interface) and obviously the price.
Optical Sensors

Sensors using light to discriminate between ridges and

valleys represent the oldest technology to capture fin-

gerprints, palmprints, and soleprints with no need of

inking hands and feet.

The most widely used optical capture principle is

known as Frustrated Total Internal Reflection (FTIR)

and highlighted in Fig. 1. The sensor contains an opti-

cal prism and one of its faces is used as the ▶ platen

that must be touched by the finger to produce an

image. A monochromatic light source enters the

prism and is reflected in accordance with each valley
Fingerprint, Palmprint, Handprint and Soleprint Sensor. Fig
of the skin. Then, it is collected by a detector (CMOS

or CCD array). The light is absorbed in accordance

with each ridge touching the platen. The lack of reflec-

tion allows the ridges (appearing dark in the image) to

be discriminated by the valleys (appearing bright in the

image). The 3D ridge–valley structure plays here an

important role: presenting to the platen a picture or a

drawing of a fingerprint does not produce any image.

On the other hand, molding the shape of the ridge–

valley pattern with special materials (latex, silicon, etc.)

and touching the platen with it produces an image that

cannot be distinguished by the image obtained by the

real ridge–valley pattern (spoofing).

This capture technology is strongly influenced by

the skin conditions. When the skin is too dry, the ridges

do not completely adhere to the glass platen and thus,

an image with very low contrast is obtained. On the

other hand, very wet fingers produce an uniform black

spot image, because during the finger pressure, the

sweat accumulates in accordance with each valley

and the light of the LEDs is fully absorbed. The result

is a uniform dark spot with very low contrast between

ridges and valleys. To overcome these problems, before

each capture the user is asked to clean her/his hands

and wet them with special non-toxic substance pro-

viding the right quantity of wet on the skin.

Another problem related to optical devices is repre-

sented by the so called ▶ halo effect. When the wet

skin touches the colder platen, the moisture starts to
ure 1 Total frustrated internal reflection (▶ TFIR) principle.
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condense. This results in a halo on the final image

reducing the ridge–valley contrast. To avoid the halo

effect, the platen has to be warmed up. This process is

expensive in terms of current consumption especially

for palmprint and soleprint devices with very large

platen. The warming process requires a certain period

of time and thus, these devices cannot be used imme-

diately after they are switched on. This is sometimes

impractical for some applications.

The physical size is another limitation of the optical

sensors. The length of the optical path (the path tra-

versed by the light from its source to the detector)

cannot be significantly reduced without introducing

severe optical distortions on the final image. The use

of small mirrors and special lenses can help in keeping

the same path length in a small space, but the

manufacturing costs drastically increase and the ro-

bustness of the device decreases.

Nowadays, optical sensors represent the maturest

technology in the market for capturing fingerprints,

palms and soleprints. The large production of

this kind of devices is reducing their price more and

more. Since they are rugged and less sensitive to

environmental factors than other technologies, optical

sensors are spreading very fast and blocking the pene-

tration of other capture technologies into the market.

Palmprint devices, ▶ slap or four-four-two devices

and ▶Rolls Capture Devices are only available based

on this technology for the quality it can provide also in

the case of devices with large platens. This is why

palmprint sensors are only available based on optical

technology.
Fingerprint, Palmprint, Handprint and Soleprint Sensor. Fi
Optical Multispectral Sensors

To improve the ridge detail representation provided by

the FTIR method, a novel approach to capture finger-

print has been recently proposed [3–5]. This approach

is called Multispectral Imaging (Fig. 2) and uses mul-

tiple illumination wavelengths rather than a single

monochromatic illumination commonly used in the

FTIR approach. The orthogonal configuration of linear

polarizers emphasizes this multispectral light, which

penetrates the surface of the skin. The light then under-

goes multiple scattering events before emerging from

the skin toward the image array. In avoiding the

optical phenomenon of the FTIR, the multispectral im-

aging sensor is capable of collecting more identifying

data from the finger than the FTIR sensor. Currently,

only fingerprint devices are available based on this

technology.

Optical Multispectral Imaging is also claimed to be

capable of detecting fake fingers obtained with organic

or synthetic materials. The difference between the

spectral characteristics of the skin and these materials

is known and can be used to detect fake fingerprint.
Optical Contactless or Touchless
Sensors

When a finger touches or rolls onto a surface, the elastic

skin deforms. The quantity and direction of the pres-

sure applied by the user, the skin conditions, and the

projection of an irregular 3D object (the finger) onto a
gure 2 Multispectral imaging principle.
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2D flat plane introduce distortions, noise and incon-

sistencies on the captured fingerprint image. To over-

come these problems, a new approach to capture

fingerprints has been proposed [6, 7], called touchless

or ▶ contactless fingerprinting. Because of a lack of

contact between the finger and any rigid surface, the

skin does not deform during the capture and the re-

peatability of the measure is improved.

The approaches used to capture a fingerprint

based on touchless technology can be grouped in two

main families: ▶Reflection-based Touchless Finger

Imaging (RTFI) and ▶Transmission-based Touchless

Finger Imaging (TTFI). Figure 3 highlights the two

approaches. In the RTFI approach, the light generated

by monochromatic light sources and reflected on the

finger skin is collected by the detector. In the TTFI

approach, the light penetrating the finger is collected

by the detector positioned in front of the ridge–valley

pattern.

Since both the light reflecting on or penetrating the

valleys and the light reflecting on or penetrating

the ridges are collected by the detector, the final

image has a contrast lower than that in the traditional

FTIR technology. This has a huge impact on the min-

utiae extraction algorithm and thus, the advantage

of a lack of skin deformation is negatively compen-

sated by this low contrast. Moreover, the illumina-

tion not being perfectly perpendicular to the skin

surface, shadowing effects of the ridges on the valley

provide a wrong representation of small details (min-

utiae, pores, island, branches, etc.). Sophisticated
Fingerprint, Palmprint, Handprint and Soleprint Sensor. Fi

(a) reflection-based touchless finger imaging; (b) transmission
illumination techniques are required to avoid this rep-

resentation problem and increase the final image con-

trast. The consequence is an increase of the size and

final costs of these devices.

Another disadvantage of this technology is repre-

sented by the easy methods that can be used to attack

these devices, which cannot be definitively used for

high-security applications. In contrst to the FTIR

case, where the ridge–valley 3D structure is important

to generate an image, the touchless approach cannot

discriminate between a 2D and a 3D pattern. Hence,

presenting a photograph or a simple drawing of a

fingerprint to the sensor, a new fingerprint image sim-

ilar to the synthetic one is generated and the access is

granted. Finger positioning, sensor usability, and user

convenience must be still addressed.
Solid-State Sensors

The first solid-state fingerprint capture device appeared

on the market only in the middle of 1990s. It was a

CMOS sensor capable of measuring the electrical ca-

pacity between the finger skin and the sensing surface

(Fig. 4), which is composed by many squared pixels.

Each pixel and the corresponding skin portion can

be considered as an electrical capacitor with capacity

C ¼ eA ∕d, where A represents the pixel area and d the

distance between the skin and the pixel and e is the

permittivity (a constant depending on the material) of

the dielectric contained between the two capacitor
gure 3 ▶ Touchless or contactless capture approach:

-based touchless finger imaging.
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ridge–valley structure.

Fingerprint, Palmprint, Handprint and Soleprint Sensor. Figure 5 Radio Frequency Field principle used to capture the

ridge–valley structure.

Fingerprint, Palmprint, Handprint and Soleprint Sensor F 541

F

plates. Each pixel produces a graylevel value propor-

tional to its distance from the skin.

Another approach used to capture the ridge–valley

pattern is based on the Radio Frequency (RF) electrical

field (Fig. 5). A signal generator produces a low-level

RF field traveling through the finger. The signal is then

collected by AC sensors after being attenuated by the

finger skin. The attenuation level of the signal is a

function of the ridges and the valleys; the sensor array

calculates the attenuation to synthesize the fingerprint

structure. RF signal can be dynamically optimized in

frequency and level to obtain the best possible image.

Using pyroelectric materials, it is possible to mea-

sure the difference of temperature between ridges and

valleys. This approach is used while the finger is swiped

on the small sensor surface (Fig. 6). This type of

devices are called ▶ sweep sensors [8, 9]. The thermal
sensing elements detect temperature difference be-

tween valleys and ridges during the finger movement.

This technology is claimed to overcome the skin con-

dition issues of optical sensors. However, the resulting

images are not rich in gray level values, i.e., dynamic

range. Sweep sensors are very attractive because of

their small size and low cost. This makes easier their

integration in handheld and mobile devices.

The big advantage of the solid-state technology is

represented by their smaller dimensions and lower

costs with respect to the optical technology. Since

they can be manufactured very thin and their power

consumption needs are very low, solid-state sensors

can be mounted on cards, handheld devices or laptops

and used as logon means. This has an implication on

the range of applications in which solid-state finger-

print sensors can be involved with respect to the
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Sensor. Figure 7 Capture principle of an ultrasonic

capture device.

Fingerprint, Palmprint, Handprint and Soleprint

Sensor. Figure 6 An example of sweep sensor.
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optical devices. However, external environmental fac-

tors (temperature, humidity, dust, etc.) are the major

drawbacks of this technology. The sensing area is a chip

completely open to the external world. Thus, special

electrostatic protection methods must be used to avoid

that external electrostatic charges destroy the chip sur-

face. The same human skin can be the cause of the

surface destruction, since the human body is usually

electrically charged. Dust is another common vehicle

of electrostatic charges that can quickly and easily

degrade the sensing surface characteristics.

The use of solid-state sensor is mainly limited to

fingerprint for their small sensing area. Palmprint and

soleprint would require very large silicon areas that

would make these sensors completely unaffordable in

term of costs.

Even if their introduction on the market has been

revolutionary and the expert envision new kinds of

applications for fingerprint recognition (domotic,

health-care, id-card and credit-card protection, etc.)

their reduced lifetime and their high sensitivity to the

external environmental factors limit the wide-spreading

of these devices.
Ultrasonic Sensors

The ability to obtain images using ultrasound is based

upon the reflection and transmission coefficients of
ultrasound as it propagates through media of varying

acoustic impedance.What makes sound waves valuable

for the imaging of the ridge–valley pattern is that they

can both reflect and pass through objects. The charac-

teristics of sound waves make it possible for high-fre-

quencies to pass through substances and accurately

measure the ridges and valleys of a fingerprint even if

in presence of dirt, grease, ink, moisture, dye, or other

substances routinely found on fingers.

The capture principle of a ultrasonic device is high-

lighted in Fig. 7. An ultrasonic wave generator pro-

duces high-frequency sound impulses. These impulses

reflect on each material found on their path producing

echos. The strength of each echo depends on the mate-

rial and the shape of the object on which they were

generated. Special receptors are used to translate the

echos in an electrical signal.

Livescan imaging the fingerprints of children 5

years and younger is a technically challenging task,

since the ridge structure is usually very fine and con-

tains high ‘‘spatial frequencies,’’ meaning that the

ridges very close together. The spatial frequency

of the fingerprint directly determines the resolution

that the imaging device needs to accurately image the

finger. Most live-scan fingerprint scanners have been

designed to image adult fingers where a high-resolu-

tion scan is unnecessary. High-resolution ultrasonics is

the only technology that can reliably and repeatedly

capture clear and useful images of a young child’s

fingerprint.
Next Generation

Although most of the technologies mentioned earlier

are quite new (some of them are still in the prototyping

phase), the research and the development continues to
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bring new ideas to this field. The study of the physiol-

ogy and the formation of the furrow pattern allowed

to propose new fingerprint and palmprint capture

approaches. It is important to mention here the Opti-

cal Coherence Tomography (OCT) which is an inter-

ferometric, noninvasive, optical tomographic imaging

technique offering millimeter penetration (approxi-

mately 2–3 mm in tissue) with micrometer-scale axial

and lateral resolution. OCT is like an optical version of

ultrasound imaging. The technique is already routinely

used in medicine, but has not had a forensic applica-

tion until now. The technique provides a transparent

3D structural picture by sending light though the pat-

tern of natural secretions left on a surface by a finger

and combining the reflected beam with a ‘‘reference

beam’’ produced by bouncing light from a laser off a

mirror. This produces an interference pattern at

a photodetector the same as those found in a digital

camera which can then be used to reconstruct an image

of the original fingerprint.

This technology together with multispectral and

touchless imaging must be still further developed to

demonstrate their superiority with respect to the FTIR

approach that still remains the most used method to

capture fingerprints and palmprints.
Summary

Livescan furrow sensors represent a family of devices

used to capture fingerprints, palmprints, handprints,

and soleprints. The same anatomical characteristics of

the skin present on finger tips, palms, and soles allow

the use of the same technology for the capture of these

biometric treats.

The ink-on-paper method is first method used to

capture fingerprints and palmprints. Optical devices

try to overcome the inconvenience of the ink on the

skin and provide a good alternative method to the

legacy ink-on-paper. Solid-state sensors are very at-

tractive for their very small size and reduced costs,

but they can only be used to capture fingerprints.

Moreover, environmental factors limit the life time of

these devices.

Multispectral and touchless imaging technologies try

to overcome the limitation of the optical devices, but

their relatively higher costs and very low interoperability

with legacy technology limit their wide-spreading.
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Definition

Fingerprint hashing is merging fingerprint recognition

and cryptographic methods. The aim is to perform a

recognition using fingerprint while, at the same time,

hiding the private information related to the finger-

print, thus enabling public fingerprint templates.
Introduction

Keeping a database in a safe place is not easy. Even with

good encryption methods and special care, databases

containing sensitive information, such as bank account

numbers, are vulnerable to being compromised.

Nobody wants something like that to happen when

dealing with fingerprint identification.

Security of a fingerprint-based system can be

divided into two main areas:

1. The electronic security, which poses the question:

‘‘Is the electronic system, at the other end of the

wires, a real trustful authorized fingerprint system?’’

2. The liveness security, which asks a different ques-

tion: ‘‘Is the object touching the sensor a real finger,

alive and connected to a living person?’’
Fingerprints Hashing. Figure 1 Protecting fingerprint temp
Liveness security is not addressed in this essay.

Fingerprint hashing is part of the electronic security

solution and deals with encryption.

Any biometric system requires the storage of

a template (or reference). For fingerprint systems, the

most common method consists in storing the minu-

tiae. This information is considered as private infor-

mation and should be protected and ciphered, not only

for privacy reasons, but also against template replace-

ment. This prevents a hacker from replacing the

owner’s minutiae, or using reverse engineering to get

the minutiae locations and create a fake fingerprint.

Even if biometric data cannot be considered as secret

(they are public information in its cryptographic sense,

always hiding ones face or voice is impossible), it is

important to protect biometric data and the additional

data that goes with them (name, bank account or

whatever).

The template storage problem is generally solved

using encryption. A template database can be created

and protected using a single key pair (Fig. 1). Everything

is fine up to the date when the key is compromised or

badly protected, allowing hackers to access the data.

However, in the case of fingerprints, this is ones very

private information that is stored, and so it seems

desirable to have an even better security scheme.
lates: Key is not protected.
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template is not protected.
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Another problem occurs when one tryies to create a

system enabling encryption/decryption features (like

▶Pretty Good Privacy (PGP)). One needs to protect

the access to the encryption/decryptionmodule, which is

done using a password. If one tries to replace the pass-

word with a fingerprint (Fig. 2), then one faces the

problem of protecting the template, and cannot use

the encryption/decryption scheme, because it is not yet

enabled! It is the sameproblem as ‘‘you cannot put the key

of the safe inside the safe itself.’’ One needs another safe.

There is also an additional problem from a security

point of view. The result of matching is only one bit of

information that is easy to find and hack (too low

entropy). It would be better to eliminate this weakness.
Desirable Features, Definitions

A better fingerprint system includes:

1. The storage of the template (minutiae) in a nonre-

versible way. It is still possible to perform a match,

but it is impossible to recover the original minutiae

and impossible to derive the secret key.

2. It is possible to revoke (cancel) a template. If a

template is not to be used anymore, it is possible

to forbid its use and create a new one.
3. There is no step with a single yes/no bit

corresponding to the match/no match result.

Properties #1 and #2 are generally linked, because it

would be very impractical and dangerous to use a

transform that is unique. Each individual would have

a unique number ID for his or her whole life, impossi-

ble to change.

Fingerprint hashing is the use of a non-reversible

transform (similar to a hash function) over a finger-

print. It is also called ‘‘cancellable biometrics,’’ because

it is possible to cancel or to revoke the template.

Fingerprint hashing involves using some kind of cryp-

tographic scheme, similar to a hash function, but it is

not a hash function.

Property #3 requires a stronger merge between

biometrics and cryptography. Having all the properties

at the same time is pretty hard to achieve and to prove,

but has been originally proposed under the name of

‘‘Biometric Encryption’’ [1, 2]. Unfortunately, ‘‘bio-

metric encryption’’ can be a simple combination of a

biometric template and a simple encryption scheme.

But it is much more; it is a real merge. In quantum

cryptography, the word ‘‘▶ intricated’’ is used to des-

ignate the non-separable nature of some properties in

quantum mechanics, and so ‘‘Intricated Biometrics’’

seems a better designation.
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Cancelable Biometrics

Fingerprint hashing seems pretty close to password

protection. A password is protected using a hash func-

tion, which is basically a method to transform some

data into a relatively small number, the hash value,

sometimes called fingerprint (which causes confu-

sion), because of its uniqueness property (no collision

should occur). A hash function is not reversible, and in

most cases, some original data is lost as the result-

ing hash value is much shorter. This works well for

password storage. You just need to apply the same hash

function to the proposed password and perform a bit-

to-bit comparison for checking. It is not useful to

regain access to the original password.

Unfortunately, this scheme cannot apply to a fin-

gerprint, because you never enter exactly the same

fingerprint image. Every acquisition is different, and

usual hash functions will return a different value,

forbidding a further comparison. The problem is

much more complex as it needs to be accepted that

there will be some variability of the data. Fingerprint

hashing must use a non-reversible transform like a

hash function, but the comparison stops here. The

other properties of a hash function, such as fixed

length and uniqueness, are not required, but there

needs to be a comparison, a match at the end, as

depicted in Fig. 3.
Fingerprints Hashing. Figure 3 Fingerprints hashing/cancel

biometric data from the template as the transform is non-rev
General concepts related to cancelable biometrics

have been discussed by Ratha et al. [3]. Davida et al. [4]

added data to create a non-reversible template. Lin-

nartz and Tuyls [5] proposed the use of specific shield

functions before a hash function.

Lumini and Nanni [6] proposed the BioHash, a

combination of a hash code, a Gram–Schmidt normal-

ization and using a Hamming distance for comparison.

This has been tested using the FVC-2002 fingerprint

database.

Boult et al. [7] proposed another scheme called

BioToken, and also tested on the FVC-2002 and 2004

fingerprint databases, which showed some enhance-

ments of the accuracy of the system.

As usual in cryptography, proving that the trans-

form is non-reversible or reversible with an extremely

long computation time is very hard to achieve.

Although there are some good reasons to believe that

some solutions exhibit the right properties, nothing is

mathematically proven yet. It took a long time for the

security of regular cryptographic schemes to be accepted,

and biometrics is in a similar situation, still in its infancy.
Intricated Biometrics

Cancelable biometrics shows interesting features,

but still shows the potential weakness of the
lable biometrics: It is not possible to extract the original

ersible.
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match/no-match bit. This type of weakness may not be

as critical when speaking of a physical or logical access,

because of the need of a go/no go answer. But in most

cases, the aim of the biometrically enabled system is to

provide a service, and secure systems always use some-

where a cryptographic key when a transmission is

involved in a non-secured environment.

A simple scheme uses the result of the match to

enable the decipher key, as shown in Fig. 4. The
Fingerprints Hashing. Figure 4 A simple use of biometrics t

protected, and the 1-bit match/no match still exists.

Fingerprints Hashing. Figure 5 Intricated biometrics: It is no

fingerprint data from the intricated fingerprint template, and

deciphering. The 1-bit match/no match step is eliminated.
template and the key are not protected. This requires

external means; another secret key and method. There

is still the one bit match/no match result. Intricated

biometrics proposes to merge the decipher key with

the template, so that neither the biometric template

(the minutiae) nor the decipher key can be obtained

from the stored template alone; they are intricated

(Fig. 5). The intricated biometric template can be

stored anywhere, even in a non-secured area.
o use a secret key: fingerprint and secret key are not yet

t possible to get the secret key and the original

the extracted key appears only for a short while for

F
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When the decipher key is to be used, the live

fingerprint can be scanned. If the extracted minutiae

corresponds to the stored template, then the right

decipher key will be regenerated, immediately used

to decipher the message (this is the service) and

destroyed (the key never leaves the secure area). If

the extracted minutiae are not the genuine minutiae,

a key is still generated but not the correct key. The

message is then incorrectly deciphered, giving a

meaningless result. At the end, there is no informa-

tion revealed, which is a very good property of

a secure system, and it is not possible to apply a

scheme such as hill-climbing, based on access of the

matching score.

It is possible to reach these objectives, but it is hard

to achieve and to prove, especially for fingerprints.
Cryptography is Accurate; Biometrics is
Fuzzy

In cancelable biometrics, a function similar to a

hash function had to be applied, but the data varia-

bility was a problem. Intricated biometric involves

re-generating a cryptographic key and the same prob-

lem. Every bit must be correct; no error is allowed. With

biometrics, there is always some uncertainty. Each time

a fingerprint is scanned or applied to a sensor, it may

not be exactly the same area. The personmay have a new

cut or scar; the finger could be dirty, wet, or dry.

A partial solution would be to extract a stable

sequence from a fingerprint image, always the same,

and then combine it with a cryptographic key. This is

like extracting a stable signal from a noisy, fuzzy envi-

ronment. Some research proposed the use of error-

correcting code, with the so-called ‘‘fuzzy extractor’’

[8, 9] that can be applied to different biometric mod-

alities, and then specifically over fingerprint databases

[10, 11].

The ‘‘▶ fuzzy vault’’ was proposed in 2002 by Juels

et al. [12]. The proposal involved secret being merged

with biometric data such as minutiae that does not

need to be in a specific order. ▶Chaff points [13] are

added to hide the genuine minutiae. The experiment

was later enhanced using lattice [14], tested on the

FVC-2002 database and enhanced with helper data by

Uludag et al. [15, 16].

Soutar et al. [2] proposed in 1999 using filters to

extract stable characteristics of the fingerprint and then

merged them with a secret.
One example scheme is:

� Enroll
� A set of M minutiae is extracted from a

fingerprint.

� A secret key is divided into M pieces of data;

each piece is linked to one minutiae.

� Random chaff points are added, corresponding

to non-existing minutiae and wrong pieces of

secret key.
� Recognition
� A live set of Nminutiae are extracted from a live

fingerprint.

� The matching minutiae enable extraction of the

correct piece of the secret key.
As the live minutiae may not be exactly the same, it

is important to introduce some kind of redundancy for

the secret key. A subset of the M enrolled minutiae is

needed to perform amatch. Lagrange interpolation has

been proposed to recover the full secret key, with the

advantage of not depending on the order of the points

or minutiae.

But some problems arise:

� Brute force attack: It is important to add enough

chaff points to hide the genuine points and to

create too many possible combinations for a brute

force attack to succeed.
� Generating chaff points is not a simple operation,

because care must be taken to avoid flaws. The

chaff points must be indistinguishable from gen-

uine points. It is a similar problem to random

number generators, where it is difficult to prove

that they are really random.Always using the same

chaff points would make it too easy to find them.

� Matching minutiae for key extraction will likely

require more computation.

� Chaff points may lead to wrong alignments,

especially with poor fingerprints, making min-

utiae matching less robust.

� Intricated fingerprint template requires more

memory space than a simple template (but

another key and program would be needed for

protection).
Conclusion

Fingerprint hashing (intricated biometrics) seems to

be the ultimate protection scheme. This is not a proven

technology yet, but achieving the objectives would lead
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to a better protection of privacy without worrying

about databases.
F

Related Entries

▶Encryption, Biometric

▶ Fake Finger Detection

▶ Fingerprint Features

▶ Fingerprint Matching, Automatic

▶ Fingerprint Templates
References

1. Cavoukian, A., Stoianov, A.: Biometric encryption: A positive-

sum technology that achieves strong authentication, security

and privacy. White paper, Information and privacy commiss-

ioner of Ontario, March (2007)

2. Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., Vijaya Kumar,

B.V.K.: Biometric Encryption, chap. 22, McGraw-Hill (1999)

3. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and

privacy in biometrics-based authentication systems. IBM Syst. J.

40(3), 614–634 (2001)

4. Davida, G.I., Frankel, Y., Matt, B.J., Peralta, R.: On the relation of

error correction and cryptography to an off-line biometric based

identification scheme. In: Proceedings of the Workshop on Cod-

ing and Cryptography, Paris, France, pp. 129–138 (1999)

5. Linnartz, J.P., Tuyls, P.: New shielding functions to

enhance privacy and prevent misuse of biometric templates.

In: Proceedings of the Fourth International Conference on

Audio and Video based Biometric Person Authentication, Guild-

ford, UK, pp. 393–402 (2003)

6. Lumini, A., Nanni, L.: An improved biohashing for human

authentication. Pattern Recognit. 40, 1057–4065 (2007)

7. Boult, T.E., Scheirer, W.J., Woodworth, R.: Revocable Fingerprint

Biotokens: Accuracy and Security Analysis. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR’07), Minneapolis, USA, pp. 1–8, 17–22 June (2007)

8. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to gener-

ate strong keys from biometrics and other noisy data. In:

Proceedings of the Eurocrypt 2004, pp. 523–540 (2004)

9. Burnett, A., Byrne, F., Dowling, T., Dury, A.: A biometric identity

based signature scheme. In: Proceedings of the Applied Cryptog-

raphy and Network Security Conference, New York, USA (2005)

10. Costanzo, C.R.: Biometric cryptography: Key generation using

feature and parametric aggregation. Online techreport, School

of Engineering and Applied Sciences, Department of Computer

Science, The George Washington University, October (2004)

11. Al-Tarawneh, M.S., Khor, L.C., Woo, W.L., Dlay, S.S.: Crypto key

generation using contour graph algorithm. In: Proceedings of

the 24th IASTED International Multi-Conference Signal Proces-

sing, Pattern Recognition and Applications, Insbruck, Austria,

February (2005)

12. Juels, A., Sudan, M.: A fuzzy vault scheme. In: Lapidoth, A.,

Teletar, E. (eds.) Proceedings of the IEEE International Sympo-

sium on Information Theory, p. 408. IEEE Press (2002)
13. Chang, E.-C., Li, Q.: Hiding secret points amidst Chaff. In:

Proceedings of the Eurocrypt, Saint Petersburg, Russia (2006)

14. Zheng, G., Li, W., Zhan, C.: Cryptographic key generation from

biometric data using lattice mapping. In: Proceedings of the 18th

International Conference on Pattern Recognition (ICPR’06),

Washington, DC, USA, pp. 513–516. IEEE Computer Society

(2006)

15. Uludag, U., Jain, A.K.: Fuzzy fingerprint vault. In: Proceedings

on Workshop: Biometrics: Challenges Arising from Theory to

Practice, August 2004, pp. 13–16 (2004)

16. Uludag, U., Jain, A.: Securing fingerprint template: Fuzzy vault

with helper data. In: Proceedings of the 2006 Conference on

Computer Vision and Pattern Recognition Workshop, June

2006, pp. 163–170 (2006)
First Level Detail
This reflects the general flow of the papillary ridges

which may form certain patterns such as arches, loops,

whorls, and deltas.

▶ Fingerprint Matching, Manual
Fisher Criterion
Fisher criterion is a discriminant criterion function

that was first presented by Fisher in 1936. It is defined

by the ratio of the between-class scatter to the within-

class scatter. By maximizing this criterion, one can

obtain an optimal discriminant projection axis. After

the sample being projected on to this projection axis,

the within-class scatter is minimized and the between-

class scatter is maximized.

▶Non-linear Techniques for Dimension Reduction
Fixed Pattern Noise
It is characterized by the same pattern of ‘‘hot’’ pixels

occurring with images taken under the same condi-

tions of temperature and exposure.

▶ Face Device
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Focal Distance
The distance that is required between the iris acquisi-

tion device and the iris, for the system to be able to

acquire and accurately recognize.

▶ Iris Acquisition Device
Focal Length
With respect to a lens or mirror, the distance from

the lens or mirror at which a parallel beam of light

rays will be focused to the smallest size possible

for the lens or mirror. The focal length of a simple

converging (convex) lens can be measured by focus-

ing the rays from the sun to the smallest point possi-

ble and measuring the distance from the image to

the lens.

▶ Face Device

▶ Iris Device
Footprint Comparison
▶ Forensic Barefoot Comparisons
Footstep Identification
▶ Footstep Recognition
Footstep Recognition
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Synonyms

Footstep identification; Footstep verification
Definition

Footstep recognition is a relatively new biometric and

is based on the study of footstep signals captured from

persons walking over an instrumented sensing area.

Since the biometric information is embedded in a

time varying signal, thereby implying some form of

action (in this case those of walking or running for

example), footsteps can be included in the group of

behavioral biometrics.
Introduction

Footstep recognition was first suggested as a biometric

in 1977 by Pedotti [1], but it was not until 1997 when

Addlesee et al. [2] reported the first experiments. Since

then the subject has received relatively little attention

in the literature and so it is perhaps of little surprise

that reported performances fall short of those achiev-

able with other, more popular, and researched

biometrics. However, recent work has demonstrated

the real potential of the footstep biometric which is

certainly not without its appeal.

One significant benefit of footsteps over other, bet-

ter known biometrics is that footstep signals can be

collected covertly with minimal client cooperation.

Other benefits lie in the robustness to environmental

noise (a limiting aspect of speaker recognition) or

lighting variability (as in the case of face recognition).

There is, however, a number of new challenges to be

addressed. Footsteps can exhibit a high degree of intra-

class variability, i.e., different footwear, persons carry-

ing heavy baggage and different walking speeds, all
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extraneous factors which make footstep recognition an

extremely challenging task.

In addressing these difficulties among others,

researchers have investigated footstep signals using

different sensor approaches. Systems reported in the

literature include the extraction of footstep positions

using video cameras, acoustic-based approaches which

capture the sound of footsteps [3] and, by far the most

common, under-floor contact or tactile-based sensors.

These approaches range from simple ON/OFF sensors

that indicate the position of the footstep [4–7] to more

sophisticated sensors that capture transient pressure

[1, 2, 8–13]. Pressure sensors generally measure the

ground reaction force (▶GRF). An example GRF pro-

file for a single footstep signal captured from the sensor

approach reported in [13] is shown in Fig. 1. Generally

there are two peaks to the GRF profile, the first peak is

attributable to the heel strike and the second to the toe

push-off as the body is propelled forward. Figure 1 also

illustrates some of the most common geometric fea-

tures (maximum, minimum and mean values) as used

in the works of [9, 12, 14] for subsequent classification.

Reported performances vary widely. The most statis-

tically meaningful results obtained for footstep recogni-

tion with an identification protocol relate to a database

comprised of 1,680 footsteps from 15 persons [9]. Here
Footstep Recognition. Figure 1 Example of a GRF profile ag

to the heel strike and the second corresponds to the toe pus
an accuracy of 93% was reported. For the case of verifi-

cation as a protocol, best results relate to a database

comprised of 3,147 footsteps from 41 persons [15].

Equal error rates (EERs) of 9.5 and 13.5% are reported

for development and evaluation sets respectively.

Results to date are promising and show that the use

of footsteps as a biometric warrants further

investigation.

The following sections present an overview of dif-

ferent applications of footstep signals and a review of

published literature which has investigated the use of

footsteps more specifically for biometrics.
Applications

It is possible to classify different biometric techniques

according to the original application of the biometric

signal. In the case of the fingerprint and hand geometry

biometrics, signals are captured with the sole application

of biometrics; whereas for speech, for example, the main

application is communication, and biometrics can be

considered a secondary application. Other biometrics

such as the footsteps are in the middle of this range. A

footstep is an action that can be captured for several

applications. Potential uses of footstep signals in the
ainst time for a single footstep. The first peak corresponds

h-off.
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literature include medicine, surveillance, smart homes,

multimedia, and biometrics, none of them dominating

and therefore this overview presents the entire spectrum.

In the field of medicine, footstep signals have been

used to analyse different gait deficiencies by comparing

normal and pathological patterns of footstep pressure

signals. Following early work on biomechanics, in 1977

Pedotti [1] studied the three orthogonal components

of the GRF signal using a square force plate with four

piezoelectric transducers placed in the corners, similar

to other systems used later for biometrics [2, 9, 10, 12].

He studied visually around 4,500 footsteps from 65

normal and 165 pathological subjects and observed

stride symmetry between the left and the right feet

for normal subjects but not for pathological subjects;

furthermore, Pedotti noted low intra-person variabil-

ity, leading to one of the first suggestions to the use of

footsteps as a biometric. Commercial products today

provide high resolution pressure image sequences from

thin sensor mats created by printing processes. These

systems are used in medicine to study for example the

plantar pressure profiles, identify asymmetries between

left and right feet, review dynamic weight transfer

and local pressure concentrations, or identify areas of

potential ulceration amongst others.

More focused on the detection of footsteps for sur-

veillance applications, footstep signals have been used to

detect human presence in a determined area. The work

described in [3] reports some experiments carried out

with a database comprised of five people walking ten

times toward a microphone. The aim of the research

was not only on footstep detection but person identifi-

cation using mel-cepstrum analysis. Other work

reported in [16] used piezoelectric accelerometers to

detect impulses induced by walking. Footsteps were

identified from three or more impulses where the

sensor was excited at its resonant frequency, having

satisfactory results in most occasions.

One particularly appealing application of footstep

signals is found in the field of smart homes. In 2000

Mori et al. [17] developed a robotic room where multi-

ple sensors were distributed in several locations. Foot-

step signals were collected from a distribution of force

sensing resistors (FSRs) to specify human position in

the room. A total number of 252 FSRs were installed in

a 200 mm � 200 mm lattice shape. More recent work

on the same floor [4] (2002) increased the spatial

resolution of the sensors to a 64 � 64 switch sensor

array in a 500 mm2 space. With this higher resolution,
experiments determined the positions of a human and

a four-wheeled cart and distinguished between them.

In 2004 Murakita et al. [5] reported a system for

tracking individuals over an area of 37 m2 employing

basic block sensors of 18 cm2. The systemwas capable of

tracking two different people when separated by more

than 1.4 m but failed to track people in a crowded area

due to the low spatial resolution and a low capture rate of

5 Hz. Making use of the hardware developed for the

Active Floor [2], in 2001 Headon and Curwen [18]

used the vertical component of the GRF and a hidden

Markov model (HMM) classifier to recognise different

movements including stepping, jumping, or sitting

down. Applications of such a system exist in safety (i.e.,

fall detection for the elderly) and entertainment (i.e.,

video games). More recently, in 2008 Liau et al. [19]

developed a system which used load cells over an area

of 4 m � 4 m to track people and addressed the cross-

walking problem where the paths of two or more

people intersect.

Footstep signals have also been used for multimedia

applications. In 1997 Paradiso et al. [20] developed

a system which he called The magic carpet to be used

in an audio installation where users created and

modified complex musical sounds and sequences as

they wandered about the carpet. The sensor floor

comprised a 16 � 32 grid of piezoelectric wires in an

area of 1.8 m � 3 m carpet. Later in the same year, the

same laboratory developed a system installing PVDF

(polyvinylidene fluoride) and FSR sensors into a danc-

ing shoe [21]. The goal was to capture many degrees of

expression and use them to drive music synthesizers

and computer graphics in a real-time performance.

More recently, in 2005 Srinivasan et al. [8] developed

a portable pressure sensing floor constructed of mod-

ular high resolution pressure sensing mats. A sensor

mat comprised 2,016 sensors made from a pressure

sensitive polymer and covered an area of 62 cm � 53

cm, sampling each sensor at a frequency of 30 Hz.

Initial applications of the system were to study interac-

tive dance movement and video game controlling.
Review of Footsteps as a Biometric

Review of footsteps as a biometric is now an addressed

work in the open literature which considers the use of

footsteps specifically as a biometric. One of the first

investigations into footstep recognition was reported
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by UK researchers in 1997 [2]. They reported experi-

ments on a database of 300 footsteps signals that were

captured from 15 walkers in one session. The system

was comprised of four load cells measuring the vertical

component of the GRF and placed on the corners of a

tile working at a sampling frequency of 250 Hz. They

divided the database into train and test and an identi-

fication accuracy of 91% was achieved with an HMM

classifier and samples from the GRF of a single footstep

signal as features.

In 2000, and using a similar sensor approach, a

group in the USA reported results on a database of

1,680 footstep signals collected from 15 persons using a

frequency sampling of 150 Hz [9]. Signals were collect-

ed from both left and right feet and different footwear

having 20 footsteps per condition using half of them

for training and half for testing. Ten geometric features

were extracted from the GRF of a single footstep signal

including the mean value, the standard deviation,

maxima, and minima, etc. They considered each com-

bination of user, foot, and shoe type as a cluster. Then a

nearest neighbour classifier was used to measure the

Euclidean distance of a footstep from the test set to

each cluster. An identification accuracy of 93% was

reported regardless of whether the correct shoe or

foot was given. In 88% of the cases, a user’s footstep

was more similar to other footsteps for that same user

than for another user, concluding from these results

that footwear does not greatly affect the ability of their

approach to identify the user by his footsteps.

While focused toward the study of gait, a group from

Switzerland [10] developed in 2002 a system fusing

data acquired from 3 tiles of 4 piezo force sensors

each and video cameras. A database of 480 footsteps

was collected from 16 persons walking barefoot using a

sampling frequency of 300 Hz. The database was fur-

ther divided into train and test. They studied different

feature extraction techniques as geometric features

from GRF [9] and phase plane (as area within the

curve, position of the loop, maxima, minima, etc.).

The best verification performance was achieved using

the power spectral density (PSD) of the derivative GRF

of footsteps signals in the band of 0–20 Hz with

generalized principal component analysis (GPCA),

obtaining a verification EER of 9.5% with an Euclidean

distance classifier.

A Korean group reported a system in 2003 [6] that

used 144 simple ON/OFF switch sensors in a total area

of 1m � 3m. Stride data (connected footsteps) was
collected from ten persons who each one walked

50 times across the ubiFloor resulting in a database of

500 walking samples. Then the database was divided

into training, validation, and testing data randomly.

The position of several connected footsteps was used as

users walking features instead of the pressure of one

footstep, as proposed in [2, 9]. An accuracy of 92% was

reported with a multi-layer perceptron (MLP) neural

network used as an experimental identification method.

In 2004 a group from Finland investigated footstep

recognition using electro mechanical film (EMFi). Long

strips of the sensor material were laid over an area

covering 100m2. A database of around 440 footstep

signals (of both feet) was collected from 11 persons at

a frequency rate of 100 Hz. In their publication [11]

they reported experiments with a two level learning

vector quantisation (LVQ) based classifier and consid-

ered three consecutive footsteps of a person to carry

out a single test. On the first level each of the three

single footstep signals was classified independently,

and on the second level the decisions of the three

consecutive footsteps were taken into account having

a final acceptance if a majority of the footsteps were

classified to the same class. The recognition rate

reported was 89% of accuracy with an 18% of rejection

rate. In the same year they reported different experi-

ments [14] based on the same database. Geometric

features were extracted from the GRF profiles as in

[9] and first FFT coefficients. Using a distinction-

sensitive LVQ (DSLVQ) classifier for a single footstep,

an identification accuracy of 70% was achieved. Later

in 2005, they presented experiments in [22] combining

different feature sets using a two level classifier. On the

first level three different feature sets were extracted

from a single footstep as geometric features from the

GRF as in [14], FFT of GRF with PCA, and FFT of the

derivative GRF with PCA. Then, a product rule was

used to combine the three results obtained. On the

second level different footsteps from the same person

were combined using an average strategy. These experi-

ments were done for two classifiers: LVQ and a MLP

neural network. Results were better for MLP classifier

in all cases, having a recognition rate of 79% for the

case of a single footstep and a 92% for three consecu-

tive footsteps.

In 2005 a group from Southampton (UK) [7]

reported trials with a system comprising 1,536 sensors

arranged in a 3 m � 0.5 m rectangular strip with an

individual sensor area of 3 cm2. A database of 180
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signals was collected from 15 people without wearing

footwear at a frequency of 22 Hz. Each person walked

over the mat 12 times and in each case two complete

gait cycles (4 foot falls) were captured. Three features

were extracted: stride length, stride cadence, and heel-

to-toe ratio. An identification accuracy of 80% was

reported using a nearest neighbor classifier to measure

the Euclidean distance between each feature vector and

the mean feature vector of the experimental popula-

tion, i.e., the whole database. This work along with the

early work of [6], differs from other published material

in using binary signals rather than sampled waveforms

and capture stride information from a short series of

footfalls. Stride characteristics are also considered by

[11, 22] as stated above.

In 2006 another group from Southampton [12]

investigated a system similar to the work in [2, 9]. A

database of 400 signals was collected from 11 people.

Using geometric features extracted from GRF profiles

as in [9] an identification accuracy of 94% was

achieved using a nearest neighbor classifier in the

same way as in [7].

More recently, in 2007, a research group from

Swansea (UK) presented in [13, 15] experiments

obtained with a database comprised of 3,174 footsteps

from 41 different persons in different sessions and shoes
Footstep Recognition. Figure 2 Screenshot of the footstep
from two piezoelectric transducers sampled at a fre-

quency of 1,024Hz. The database was further divided

into independent development and evaluation datasets

adopting a standard best practice evaluation strategy,

and therefore, presenting more statistically meaningful

results and potentially more reliable predictions of per-

formance. The database is freely available to the research

community [23]. Due to the amount of data collected,

a semi-automatic footstep capture system was devel-

oped to facilitate automatic labeling and rapid manual

validation. Figure 2 shows a screenshot of the footstep

capture system user interface. A microphone captured

a spoken ID used for automatic speaker recognition to

label the data (bottom part of Fig. 2); and two video

cameras, one recording the face and the other the foot

(top and bottom right part of Fig. 2 respectively), were

used for manual data validation; the sensor responses

are illustrated in the top left part of Fig. 2 as a function

of time (horizontal axis). For feature extraction, two

approaches were followed, namely geometric and ho-

listic. The geometric approach was based on the ex-

traction of main characteristic points of the footstep

profile: the area, mean, length, maxima/minima, etc.

The holistic approach was based on both sensor out-

puts and the GRF profile after PCA to reduce di-

mensionality of the data. In [13] two different
capture system software developed in [13, 15].



Footstep Recognition F 555

F

classifiers, a nearest neighbor and SVM were also com-

pared and findings were as expected that SVM outper-

forms the NN, and surprisingly holistic features

outperforms the geometric features. Results of 9.5

and 11.5% EER were obtained for development and

evaluation sets respectively for holistic features with an

SVM classifier. Following best-practice, a formal assess-

ment protocol was defined for the footstep recognition

evaluation presented in [15]. The protocol reflects that

utilized by the international NIST speaker recognition

evaluations. Also, an optimization of the two feature

approaches was carried out obtaining results of 9.5%

EER for the development set and 13.5% EER for the

evaluation set using optimized holistic features with an

SVM classifier. EER given of 13.5% corresponds to

1,697 errors of each class (false acceptance and false

rejection) from a total number of 25,143 tests. Such

simple analysis allowing comparison across systems

comes from adopting the task with verification. Work

is ongoing with a multi-sensor stride capture system

with the primary goal of improving confidence in the

assessment of footsteps as a biometric.
Footstep Recognition. Table 1 A comparison of different ap

Group, year

Database
(total steps/
persons) Technology F

The ORL Active
Floor (UK) 1997 [2]

300 steps,
15 persons

Load cells Sub sa

The Smart
Floor (USA)
2000 [9]

1,680 steps,
15 persons

Load cells Geome

ETH Zurich
(Switzerland)
2002 [10]

480 steps,
16 persons

Piezo force
sensors

Power
density

Ubifloor (Korea)
2003 [6]

500 steps,
10 persons

Switch
sensors

Positio
steps

EMFi Floor (Finland)
2004 [11, 14, 22]

440 steps,
11 persons

Electro
mechanical
film

Geome
and FF

Southampton
University (UK)
2005 [7]

180 steps,
15 persons

Resistive
(switch)
sensors

Stride l
cadenc
toe rat

Southampton
University (UK)
2006 [12]

400 steps,
11 persons

Load cells Geome

Swansea
University (UK)
2007 [13, 15]

3,174 steps,
41 persons

Piezoelectric
sensors

Geome
holistic
Table 1 presents a comparison of this related work.

The second column shows that relatively small data-

base sizes is a common characteristic of the earlier

work certainly judged in relation to other biometric

evaluations where persons are normally counted in

hundreds or thousands and the number of tests per-

haps in many thousands. A maximum number of

16 persons and 1,680 footstep examples were gathered

in all cases except in [13, 15] which reports results on

3,147 footsteps and 41 persons. In each case, except for

[7, 12], the databases are divided into training and

testing sets, but none use independent development

and evaluation sets, with exception of [13, 15], a limi-

tation which makes performance predictions both

difficult and unreliable. Identification, rather than ver-

ification, was the task considered in all but three of the

cases, the exceptions being [10, 13, 15]. Identification

has the benefit of utilizing the available data to a

maximum but suffers from well known scalability pro-

blems in terms of the number of classes in the set. Also, it

is interesting to point out that some systems present

classification results for stride data (consecutive
proaches to footstep recognition 1997–2007

eatures Classifier Results

mpled GRF HMM ID rate: 91%

tric from GRF NN ID rate: 93%

spectral Euclidean
density

Verif EER: 9.5%

n of several MLP neural
net.

ID rate: 92%

tric from GRF,
T

MLP neural
net. and
LVQ

Best ID rate [22] of 92%
using three footsteps as
test

ength,
e and heel-to-
io

Euclidean
distance

ID rate: 80%

tric from GRF NN ID rate: 94%

tric and SVM [15] Verif EER: 9.5% for
Devel, 13.5% for Eval
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footsteps) [6, 7, 11, 14, 22] while the rest only for a

single footstep [2, 9, 10, 12, 13, 15]. In [22] an identi-

fication accuracy of 79% using a single footstep as a

test was improved to 92% when three consecutive

footsteps were used. This equates to a relative improve-

ment of 16%.
Summary

Footstep recognition is a relatively new biometric rela-

tive to other biometrics in terms of the research

reported in the literature. As reviewed, footstep sig-

nals have been used for different applications, thus

different capture systems have been developed. In the

field of biometrics the same trend is observed;

researchers have developed systems with different sen-

sors, extracting different features, and with different

assessment protocols. Recently, in 2007, the world’s

first freely available footstep database was released to

the research community [23]. Of particular impor-

tance to this development is, not only the size of the

database both in terms of the number of footsteps and

clients, but the standard, best practice evaluation pro-

tocols that accompany the database. For the first time

researchers will be able to develop and assess new

approaches on a common andmeaningfully sized data-

base. As has happened for many other biometric mod-

alities, it is hoped that this will stimulate new interest

in the footstep biometric, lower the cost of entry and

provide a solid foundation for future research.

Given its current state of development the future of

footstep recognition research is difficult to predict.

Some obvious avenues include new features and

novel normalization approaches to reduce the effects

of extraneous factors. Other possibilities include fur-

ther investigation into connected footsteps, i.e., stride

information, information that isn’t captured by single

footstep systems. This research would explore the mid-

dle ground between footsteps and gait. Gait is another

biometric that finds applications in different areas such

as in medicine, the sports industry, and biometrics. In

the biometrics context, gait aims to recognise persons

from a distance using walking characteristics extracted

from video recordings. In contrast, footsteps are a

more controlled biometric due to the fixed, con-

strained sensing area. It would thus seem natural for

future research to investigate the fusion of the two

biometrics.
Related Entries

▶Gait Recognition
References

1. Pedotti, A.: Simple equipment used in clinical practice for eval-

uation of locomotion. IEEE Trans. Biomed. Eng. BME-24(5),

456–461 (1977)

2. Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: The ORL

active floor. IEEE Pers. Commun. 4(5), 35–41 (1997)

3. Shoji, Y., Takasuka, T., Yasukawa, H.: Personal identification

using footstep detection. In: Proceedings of 2004 International

Symposium on Intelligent Signal Processing and Communica-

tion Systems, pp. 43–47 (2004)

4. Morishita, H., Fukui, R., Sato, T.: High resolution pressure

sensor distributed floor for future human–robot symbiosis

environments. In: Proceedings of 2002 IEEE/RSJ International

Conference on Intelligent Robots and Systems, vol. 2, pp. 1246–

1251 (2002)

5. Murakita, T., Ikeda, T., Ishiguro, H.: Human tracking using floor

sensors based on the Markov chain Monte Carlo method. In:

Proceedings of the 17th International Conference on Pattern

Recognition (ICPR), vol. 4, pp. 917–920 (2004)

6. Yun, J.S., Lee, S.H., Woo, W.T., Ryu, J.H.: The user identification

system using walking pattern over the ubiFloor. In: Proceedings

of International Conference on Control, Automation, and Sys-

tems, pp. 1046–1050 (2003)

7. Middleton, L., Buss, A.A., Bazin, A.I., Nixon, M.S.: A floor

sensor system for gait recognition. In: Proceedings of Fourth

IEEEWorkshop on Automatic Identification Advanced Technol-

ogies (AutoID’05), pp. 171–176 (2005)

8. Srinivasan, P., Birchefield, D., Qian, G., Kidane, A.: A pressure

sensing floor for interactive media applications. In: Proceedings

of the 2005 ACM SIGCHI International Conference, vol. 265,

pp. 278–281 (2005)

9. Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural

user identification and tracking. In: Proceedings of Conference on

Human Factors in Computing Systems, pp. 275–276 (2000)

10. Cattin, C.: Biometric authentication system using human

Gait. Swiss Federal Institute of Technology, Zurich. PhD

Thesis (2002)

11. Suutala, J., Pirttikangas, S., Riekki, J., Roning, J.: Reject-optional

LVQ-based two-level classifier to improve reliability in footstep

identification. Lecture Notes Comput. Sci. Springer, Berlin 3001,

182–187 (2004)

12. Gao, Y., Brennan, M.J., Mace, B.R., Muggleton, J.M.: Person

recognition by measuring the ground reaction force due to a

footstep. In: Proceedings of Ninth International Conference on

Recent Advances in Structural Dynamics (2006)

13. Vera-Rodriguez, R., Evans, N.W.D., Lewis, R.P., Fauve, B.,

Mason, J.S.D.: An experimental study on the feasibility of foot-

steps as a biometric. In: Proceedings of 15th European Signal

Processing Conference (EUSIPCO’07), pp. 748–752. Poznan,

Poland (2007)



Footwear Recognition F 557

F

14. Suutala, J., Roning, J.: Towards the adaptive identification of

walkers: automated feature selection of footsteps using distinc-

tion-sensitive LVQ. In: Proceedings of International Workshop

on Processing Sensory Information for Proactive Systems,

pp. 61–67 (2004)

15. Vera-Rodriguez, R., Lewis, R.P., Evans, N.W.D., Mason, J.S.D.:

Optimisation of geometric and holistic feature extraction

approaches for a footstep biometric verification system. In:

Proceedings International Summer School for Advanced Studies

on Biometrics for Secure Authentication. Alghero, Italy (2007)

16. Mazarakis, G.P., Avaritsiotis, J.N.: A prototype sensor node for

footstep detection. In: Proceedings of the Second European

Workshop on Wireless Sensor Networks, pp. 415–418 (2005)

17. Mori, T., Sato, T., Asaki, K., Yoshimoto, Y., Kishimoto, Y.: One-

room-type sensing system for recognition and accumulation

of human behavior. In: Proceedings of 2000 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, vol. 1,

pp. 344–350 (2000)

18. Headon, R., Curwen, R.: Recognizing movements from the

ground reaction force. In: Proceedings of the 2001 Workshop

on Perceptive User Interfaces, vol. 15, pp. 1–8. Orlando, USA

(2001)

19. Liau, W.H., Wu, C.L., Fu, L.C.: Inhabitants tracking system in a

cluttered home environment via floor load sensors. IEEE Trans.

Autom. Sci. Eng. 5(1), 10–20 (2008)

20. Paradiso, J., Abler, C., Hsiao, K., Reynolds, M.: The magic carpet:

physical sensing for immersive environments. In: Proceedings of

CHI’97, pp. 277–278. Atlanta, USA (1997)

21. Paradiso, J., Hu, E.: Expressive footwear for computer-augment-

ed dance performance. In: Proceedings of the First international

Symposium on Wearable Computers. IEEE Computers Society

Press, pp. 165–166. Cambridge, USA (1997)

22. Suutala, J., Roning, J.: Combining classifiers with different foot-

step feature sets and multiple samples for person identification.

In: Proceedings of International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), vol. 5, pp. 357–360 (2005)

23. S.U.: Footstep recognition at Swansea University. Available at

http://eeswan.swan.ac.uk
Footstep Verification
▶ Footstep Recognition
Footwear Marks
Footwear marks is an umbrella term describing the

various types of marks that an item of footwear can
produce through its use. The terms outsole print, im-

print and impression, or footwear print, imprint and

impression are collectively called footwear marks.

▶ Footwear Recognition
Footwear Recognition

MARIA PAVLOU, NIGEL M. ALLINSON

University of Sheffield, Mappin Street, Sheffield, UK
Synonyms

Outsole pattern matching; Shoeprint matching
Definition

Footwear recognition is the process of acquiring, iden-

tifying, and verifying the marks of the outsole (under-

side) patterns of a shoe. These marks arise as a result of

the normal use of footwear in many conditions and

environments. Footwear recognition can be used by

the police and other law enforcement agencies in the

identification of crime suspects.
Introduction

Although footwear recognition in a strict sense is not a

biometric, it does provide a very useful source of

intelligence and potential evidence in the application

of forensics for policing and security. As shoes are fairly

personal items of apparel with usually an extended

period of ownership by their wearer, they could be

termed a ‘‘near-biometric.’’ Similar to latent finger-

prints, ▶ footwear marks are very frequently left be-

hind on surfaces at crime scenes [1]; and they can be

more commonly recovered than fingerprints for some

crime categories. A number of methods are then used

to develop and collect these ▶ scene marks to provide

useful evidential clues by linking patterns of movement

of suspect individuals (at crime scenes), and can even

provide strong courtroom evidence by matching a

mark to an individual shoe. This useful resource has

gained recent interest internationally, even resulting in

http://eeswan.swan.ac.uk
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legislative changes in the UK [2] where collected foot-

wear evidence is treated in the same way as fingerprint

and DNA evidence. Namely, they have to be provided

at time of arrest, and can be held and searched on local/

national computer systems.
Etiology, Detection and Recovery

The typical shoe comprises of three parts (see Fig. 1) –

upper, midsole, and outsole. The footwear upper is

generally constructed from a variety of hard wearing

fabrics or leather and is fashioned and colored in a

multitude of ways. The upper holds the foot firmly in

place and provides suitable support. The midsole holds

the inner sole and is also used to fasten the uppers to

the outsole. The outsole is the underside of the foot-

wear, made of a durable leather, rubber or polyplastic,

which provides traction and cushioning for the wearer.

Manufacturers have made great efforts in the design of

the outsole for the benefit of the wearer in varying

activities by incorporating functional and decorative

▶ tread patterns. More commonly worn leisure foot-

wear or sneakers typically have intricate tread designs

based on the shoe model theme or manufacturer logos.

What is important here is that the tread pattern is

usually very distinctive to any design of shoe model

just like the friction skin ridge patterns of fingers are

unique to an individual.

Similar to latent fingerprints, it is the contact of the

outsole with various surfaces that results in the forma-

tion of a footwear mark in a number of ways. This can

be from the deposition of dry material such as dust or

dirt, or wet materials such as water, blood or mud,
Footwear Recognition. Figure 1 Components of a

typical athletic shoe, comprising the upper, midsole, and

outsole.
onto a surface. The removal of material from a surface

may also form a mark, leaving a negative impression

for example when stepping into and out of a shallow

pool of blood, while an indented impression can be

formed in a soft substrate such as snow or clay.

Accordingly for each type of mark there are numerous

methods by which these are detected, recorded, and

preserved. Details can be found in [1, 3]. Briefly, these

range from using specialized lighting methods, such as

oblique and multispectral lighting, and chemical devel-

opers to enhance hard to see traces which can then be

photographed. Several lifting techniques are also used

to capture deposited particle materials onto a fixing

substrate such as a ▶ gelatin pad. When a footwear

mark is left in a soft material, such as snow, specialized

plaster or molten sulphur can be used to produce a cast

of the impression. Finally a print of the outsole can be

made directly if available. This is done using dusting

techniques, such as fine aluminum powder and then

pressing onto a transparent gel sheet. More commonly

the outsole can be impregnated with a dye, and printed

onto paper, or with an oil-based liquid and printed

on special sensitized paper – a method commonly

called Printscan (see Fig. 2). This last method is

the technique most employed in Police ▶ custody

suites to produce impressions of a suspect’s shoes.

The resulting impression can then be used for one-

to-one comparisons to provide forensic evidence, or

can be scanned for computer-based processing. The

overriding aim of all these development and recovery

techniques is to obtain as true and unaltered a repre-

sentation of the mark as possible for later processing

and examination.
Uniqueness and Application

Intuitively the uppers of an item of footwear are im-

mediately more useful in identifying the make or

model of a shoe. This is because of their styling, color-

ing, and the presence of manufacturer logos, with

detailed information being readily obtainable from

outlets and manufactures. However the uppers and

any associated markings are rarely encountered as

forensic evidence. The impressions and marks pro-

duced by the outsole are more readily found and can

contain sufficient characteristic information to ascer-

tain the manufacturer, model, and potentially the

wearer. These characteristics originate in a number of
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ways starting from the manufacture process. Footwear

manufactures use a number of processes for the pro-

duction of outsoles [1] resulting in a varying degree

of ▶ process artifacts and defects remaining in the

final product. These are one of the three useful char-

acteristics of an outsole, which also comprises the

outsole tread pattern and the accumulated wear-

and-tear artifacts. Of these characteristics only the

wear-and-tear artifacts are unique provided they have

occurred due to a random process where something is

added or taken away from the outsole that either

causes or contributes to making the outsole unique.

Such artifacts include nicks, cuts, scratches and

▶ feathering of the rubber material due to the normal

usage of the footwear. These can be called ‘‘individual

characteristics’’ while the outsole tread pattern and

other manufacture defects are termed ‘‘class character-

istics’’ which are distinct to a particular model of foot-

wear and the process of its production, such as its

outsole mold.

The identification and use of these characteristics

have different meaning and implications. In a forensic

setting the class characteristics are important as they

provide information on the manufacture and model of

the footwear worn and also its size. This is useful when

restricting a suspect list based on physical build/size,

accessibility of rare/expensive items and even geo-

graphical distribution of crimes. Once candidates of

the same footwear class are available only then can

comparisons be made on individual characteristics.
Forensic examiners will look for common individual

characteristics between items of recovered footwear,

their reproduced marks and marks found as evidence

which provide conclusive links and can be used as

court room evidence. Provided there are sufficient

individual characteristics between an outsole and a

recovered mark it may be possible to state that the

outsole created the outsole mark to court room stan-

dards of evidence. Outside the forensic setting, foot-

wear class characteristics can be very useful for

screening and intelligence gathering. The footwear

of a suspect can be collected and from which its class

characteristics are ascertained. Usually suspects will be

offenders detained or held on an unrelated offense and

may have their footwear proactively compared with

evidence collected at an earlier time in relation to

other offenses in a local area, such as burglaries.

If a link is made between an arrestee and marks

found at crime scenes then it can provide law enforce-

ment officers with some important information

with which to interrogate while the arrestee is still in

custody.
Comparison and Identification
Methods

The comparison of class and individual characteristics

of an outsole have been largely carried out by experi-

enced forensic professionals, as an intimate
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knowledge of footwear marks and their etiology is

required. However, some efforts have been made to

automate the identification of outsole patterns and

their associated shoe model based on class character-

istics. While this task is feasible, the task of automati-

cally verifying an outsole-to-mark or a mark-to-mark

based on class and individual characteristics is much

more difficult. Current nation-wide footwear data-

bases in the UK comprise over 15,000 shoe models

and are constantly expanding as manufacturers intro-

duce new styles. Crime scene marks are recovered by

diverse techniques and the resulting impressions are

often of poor quality, confounded by details of the

underlying surface and may only represent a partial

impression of the entire outsole. Such factors will make

the fully automatic identification or verification

of outsoles marks a very difficult, if not impossible,

option.

Automatic matching of footwear patterns has not

been reported much in the literature. Early works [4]

have employed semi-automatic methods of ▶manual-

ly annotated footwear print descriptions using a code-

book of shape and pattern primitives, for example,

wavy lines, geometric shapes, and logos. Searching for

an example impression then requires its encoding in a

similar manner to that used for the reference database.

This process is laborious and can be the source of poor

performance as similar patterns may be inconsistently

encoded by different users. It is still, however, pre-

dominantly used by Police Forces across the UK and

elsewhere. Two major factors are attributed to this;

firstly, the ease of understanding the coding metho-

dology and its primitives (i.e., their visual intuitive-

ness), and secondly, a lack of proven and accepted

automated systems based on rigorous standards and

robust performance.

One early work [5] employed an intuitive coding

scheme based on shapes automatically generated from

footwear images using various ▶ image morphology

operators. The spatial positioning and frequencies

of these shapes were used for classification with a

neural network. Unfortunately, the authors did not

report any performance statistics for their system.

Later works do not follow this approach but instead

use template matching approaches based on the pat-

tern representation in a suitable transform space. Frac-

tal representations were used in [6, 7] with a mean

square noise error method for classification. They
report good results; however the dataset used was

small and contained no spatial or rotational variations.

In [8], Fourier Transforms (FT) are used for the classi-

fication of full and partial marks of varying quality.

The FT provides a degree of invariance to translations

and encodes spatial frequency information. By incor-

porating duplicate rotated templates a degree of

rotation invariance was also possible. Their approach

was weak on first rank precision, and this may have

been due to the large variation in print quality.

Also, the footwear prints were processed globally and

hence noise in the images could have hindered the

quality of useful encoded local information evident

in the print. Despite these failings this approach is

promising and shows the importance of encoding

local information.

In [9] local image features (LIF) were used to make

one-to-one comparisons of patterns in a database of

footwear marks which had been subjected to added

noise and transformed in various ways. This work com-

pared a number of the aforementioned approaches, for

which LIF performed very well, indicating that local

image information is crucial to good matching perfor-

mance especially when considering partial marks. How-

ever as test samples were generated from the training set

it is not clear how this template matching approach

would perform on untrained test samples or in a one-

to-many and pattern search scenario.

Moving away from a template-based approach,

work in [10] employed a histogram approach by quan-

tizing edge directions into 5� intervals. In order to cope
with rotational variations of the image, and hence

translation of the histogram bins, an FT was also ap-

plied. Their approach is useful as now the pattern

information is described in a compact way based on

the content of edges, however, due to histogram nor-

malization and the use of the FT, this approach is not

effective with partial marks.

The flexibility of histogram-based encoding is ef-

fective in many image retrieval and indexing tasks as

has been demonstrated in [11]. It is interesting that the

manual coding schemes still used for footwear impres-

sions bear a strong resemblance to basic histogram

coding methods. The work proposed by [12] proceeds

by encoding footwear patterns into a compact vector

space model using a feature-rich codebook of local

feature descriptions. The codebook is a quantized set

of features derived by applying such feature detectors
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as maximally stable extremal regions (MSERs), fol-

lowed by the use of robust feature descriptors.

A query shoe impression can be coded using this code-

book and compared against others. This approach
Footwear Recognition. Figure 3 Outsole marks captured us

of wear and print quality. From left to right the pattern show

appearance.

Footwear Recognition. Figure 4 Various footwear marks co

in blood on soft tiles, outsole imprint in mud, an electrostatic

dusty mark.
is fully automated and yet still preserves some simi-

larity to manual coding approaches in that the coded

features resemble the use of annotated features in

the semi-automated systems described previously.
ing the Printscan method showing different stages

n has increasing wear. Note the change in tread pattern

llected from scenes of crime. From left to right, a print

lift of dirt from carpet, a casting, and a gel lift of a

F
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This approach is able to cope with rotational changes

and queries in the form of partial impressions. Though

good performance is reported in this study (e.g., for a

reference set of 374 different footwear models, a preci-

sion at first rank of 87% was obtained), it is difficult to

compare the performance of differing approaches as

no common datasets have been employed nor is there

agreement on testing methodologies.

A number of issues are not addressed by these meth-

ods. One is the problem of dealing with large appearance

changes in footwear marks as the outsole becomes worn

over time and where the mark is strongly degraded or

partially missing (see Fig. 3). Some work by Su et al. in

[13, 14] looked at methods for assessing and improving

image quality of footwear marks collected using the

Printscan process. Even if good quality marks are ob-

tainable there is still work to be done on how to compare

marks obtained by different methods, for example be-

tween a casting and a gel lift (see Fig. 4). Additionally, a

lack of standards for the digital capture of marks and

the absence of an agreed and openly available dataset

are issues that still need to be addressed.
Summary

The use of footwear impressions both recovered from

crime scenes and acquired from suspect’s shoes have a

significant role to play as a ‘‘near-biometric’’ in forensic

investigations. It has, despite its long history as an im-

portant tool of forensics, remained until recently largely

forgotten. This will undoubtedly change in the near

future with a much greater development and application

of mainstream biometric tools and methodologies.
Related Entries

▶ Forensic Applications, Overview

▶ Forensic Barefoot Comparison
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Force Field Feature Extraction
The overall objective in defining feature space is to

reduce the dimensionality of the original pattern

space, while maintaining discriminatory power for

classification. To meet this objective in the context of

ear biometrics a novel force field transformation

which treats the image as an array of mutually attract-

ing particles that act as the source of a Gaussian force

field has been developed. Underlying the force field

there is a scalar potential energy field, which in the

case of an ear takes the form of a smooth surface that
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resembles a small mountain with a number of peaks

joined by ridges. The peaks correspond to potential

energy wells and to extend the analogy the ridges

correspond to potential energy channels. Since the

transform also happens to be invertible, and since the

surface is otherwise smooth, information theory sug-

gests that much of the information is transferred to

these features, thus confirming their efficacy. Force

field feature extraction, using an algorithm similar to

gradient descent, exploits the directional properties of

the force field to automatically locate these channels

and wells, which then forms the basis of the character-

istic ear features.

▶Physical Analogies for Ear Recognition
Force Field Transform
An invertible linear transform which transforms an

image into a force field by pretending that pixels have

a mutual attraction proportional to their intensities

and inversely to the square of the distance between

them rather like Newton’s Law of Universal Gravita-

tion. Each pixel is assumed to generate a spherically

symmetrical force field so that the total force FðrjÞ
exerted on a pixel of unit intensity at the pixel location

with position vector rj by a remote pixel with position

vector ri and pixel intensities PðriÞ is given by the

vector summation,

FðrjÞ ¼
X
i

PðriÞ ri � rj

ri � rj
		 		3 8i 6¼ j

08i ¼ j

8><
>:

9>=
>;
: ð1Þ

To calculate the force field for the entire image, this

equation should be applied at every pixel position in

the image. In practice this computation would be done

in the frequency domain using Eq. 2 where ℑ stands for

FFT and ℑ�1 stands for inverse FFT.

forcefield¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�N

p
ℑ�1 ℑ unitforcefieldð Þ�ℑ imageð Þ½ 
:

ð2Þ

▶Physical Analogies for Ear Recognition
Forensic
Forensic is the use of science or technology in the

investigation and establishment of facts or evidence

in the court of law.

▶ Skull, Forensic Evidence of
Forensic Anthropology
Forensic anthropology is the application of physi-

cal anthropology in special cases with forensic impor-

tance, such as to identify the skeletonized human

remains.

▶ Skull, Forensic Evidence of
Forensic Applications, Overview
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Introduction

The use of biometric data is a decisive process in

▶ forensic science that helps to establish a person’s

identity or associate two unknown persons. Forensic

scientists realized that physiological or behavioral data

could help to inform about, sort, and potentially indi-

vidualize the persons involved in criminal offences. It

is the case when (1) an unknown individual (living or

his/her remains) has to be identified, (2) when biomet-

ric traces left by unknown individuals during activities

of interest have to be traced back to their sources, or

(3) when biometric traces have to be linked together in

a series. Situations (1) and (2) require comparison

between biometric information gathered from un-

known sources and material of known (or declared as
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such) origin, either on a one-to-one or on a one-to-

many basis. In the latter case, data of known origin are

organized in a database, allowing one-to-many

searches. The third situation (3) compares biometric

material from unknown sources and groups them

according to potential (yet unidentified) sources. This

last activity may involve the use of a database or may be

carried out on a case-by-case basis.

Both situations (2) and (3) take advantage of what

is known in forensic science as ‘‘Locard’s exchange

principle’’. Locard suggested in 1920 that forensic

scientists can take advantage of the traces (such as

fibers, paint, firearms discharge residues, dust, blood-

stains, etc.) and marks (e.g., finger marks, footwear

marks, toolmarks, etc.) exchanged between actors

(e.g., a victim and an offender), and associated objects

or scenes involved in criminal activities. The systematic

search (potentially helped with detection techniques),

preservation and analysis of these marks and traces will

help to establish the relation between the actors,

objects or scenes, and reconstruct the course of activ-

ities. The biometric features that can be helpful are

many (and tend to increase in our modern society)

and may consist of the following types of traces or

marks:

1. Handwritten notes, including disputed signatures.

2. Finger marks and, by extension, any marks of fric-

tion ridge skin.

3. Barefoot impressions.

4. Bloodstain, semen stain, saliva stain, and any other

biological fluids.

5. Earmarks.

6. Impression left by a face on airbags in car crashes

[1].

7. Images of individuals (including images showing

face, ears, or other identifying features) in stills or

videos taken either from CCTV systems or any

image-recording device.

8. Recording of a voice utterance of an individual

(either in analog or digital form).

Biometric features have been used in forensic science

for many centuries for some attributes (such as hand-

writing) and more recently for others (e.g., DNA

profiling or recognition of faces from CCTV surveil-

lance camera). However, in many respects, the applica-

tion of biometry in forensic science is in contrast to the

deployment of biometric systems in other areas (such

as access control) this is mainly due to the
unpredictable nature in terms of quality and quantity

of the biometric features available to the forensic sci-

entist, especially when they are collected as traces.

These contrasts have been detailed elsewhere [2].

This overview is intended to cover the standard

use of biometric features by forensic experts, either

manually or with semi-automated or automated sys-

tems. While distinguishing the types of biometry

helps to structure the text, it also helps to distinguish

between the investigative and evaluative use of the

techniques.

In the investigative mode, marks and traces are

questioned to provide leads that may help to focus

the inquiry, without making any reference to a poten-

tial source at the outset. Typical questions are as

follows:

1. Can we link these criminal incidents the biometric

evidence recovered?

2. On the basis of the recovered material, can we make

any inference regarding the sex, age, ethnicity, or

other physical attributes of the donor?

3. By comparing this biometric entry with a forensic

database, is it possible to prepare a short list of

potential donors?

In the evaluative mode, the questions are directed

towards a source that is available, to provide control

material to be compared against the unknown materi-

al. The case is then focused on one or more identified

persons, with a view to help assess whether they are the

source of the recovered material.

The references used hereinafter are limited to

major textbooks or papers for each evidence type con-

sidered. Some evidence types are largely covered

in specific chapters of this encyclopedia and address

specifically the issues associated with automatic

recognition.
Admissibility of Biometric Evidence
in Court

The question of admissibility is crucial when the scien-

tific element is used in the evaluative mode, especially

when it is expected to find and present identification

evidence in a courtroom. In the United States of

America, the criterion for admissibility was tradition-

ally based on the Frye rule (1923), which invites the

judge – acting as a gatekeeper – to assess if the
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technique has gained general acceptance within the

relevant scientific community. It was under Frye that

numerous human identification evidence types such as

fingerprints, handwriting evidence, and DNA gained

acceptance. Earprint, however, failed to pass the Frye

test. The Frye standard has been revised following a

ruling of the US Supreme court in Daubert v. Merrell

Dow Pharmaceuticals (1993) and its progeny [3].

Daubert gave an interpretation of the Federal Rule of

Evidence (FRE) and required the judge, still acting as

gatekeeper, to assess more than only the general accep-

tance and include five criteria:

1. Whether the expert’s technique or theory can be or

has been tested, that is, whether the expert’s theory

can be challenged in some objective sense.

2. Whether the technique or theory has been subject

to peer review publication.

3. The known or potential rate of error of the tech-

nique or theory when applied.

4. The existence and maintenance of standards and

controls.

5. Whether the technique or theory has been generally

accepted in the scientific community.

Nowadays in the United States of America, at the

federal level, Daubert is in force. States may apply

either Frye (or similar state decisions) or Daubert.

Daubert led to an increased number of challenges

in court and forced the forensic community to articu-

late in detail the foundations of their disciplines, even

in areas that had gained acceptance in US courtrooms

for numerous years (see http://www.daubertonthe

web.com/).

In Europe, there is no specific admissibility rule

regarding scientific evidence. The principle of the judges’

free evaluation of the evidence prevails. Hence, it is not

surprising to see currently, a limited debate in the

European jurisprudence regarding the admissibility of

identification evidence.
From Anthropometry to Fingerprinting
and AFIS

In the face of the absence of any reliable means of

identifying recidivists, Alphonse Bertillon proposed

in 1881 a classification and retrieval method based on

anthropological measures. He took advantage of the

fact that bone lengths remain constant in adulthood.
It varies from individual to individual and can be

measured with reasonable precision. Eleven precise

measurements (height of the individual, length of out-

stretched arms, height of trunk, length and width of

the head, length of the left middle finger, the left foot,

left forearm, and right ear) combined with a mention

of the color of the iris, were proposed to establish an

anthropometric form for each arrested individual. This

anthropometric record was completed with a photo-

graph of the face and a standardized description of

particular marks that can be filled and retrieved. The

system was essentially used as an investigative measure

to help identify individuals arrested multiple times

(in time and place). The combination of anthropomet-

ric measurement, forensic photograph, and the

standard description of the face was coined ‘‘Bertillon-

nage’’. A rapid spread of Bertillonnage has been ob-

served at the turn of the 20th century across the world

police departments and penal institutions [4]. The

limitations of this technique were quickly noticed: (1)

uneven distributions of the measurements; (2) correla-

tion between features; (3) inter-operator variations,

and (4) the imperative need of the body of the individ-

ual because no anthropometric traces are left on crime

scenes (at the time).

In 1880, Herschel, a colonial administrator in India,

published his proposal to use finger prints to identify

individuals. At the same time (in 1880), Faulds, a med-

ical missionary in Japan, proposed using finger prints

for investigative identification purposes as well, as

finger marks could be detected on crime scenes. Finger-

printing became a credible alternative to anthropome-

try for identification of habitual offenders, when

Galton presented in 1892 the basic axioms of finger-

printing, including permanence (based on Herschel’s

work and data), discriminative power (Galton pub-

lished the first statistical model on the fingerprint varia-

bility), and the possibility of reliably classifying

fingerprints into three basic patterns. The classification

method was then greatly improved by Henry and

gained a large acceptance in English-speaking

countries. Almost simultaneously, Vucetich , proposed

a simpler system, based on Galton’s initial proposal,

that proved very successful for small to medium size

databases. From the early 1900s, fingerprinting became

the sole means of identification of habitual offenders

throughout the world [5]. The use here is investigative

(search for a potential candidate in a repository of

fingerprint forms) and evaluative (verification on a

http://www.daubertontheweb.com/
http://www.daubertontheweb.com/
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one-to-one basis), based on ten print records (taken

from living or dead individuals).

An additional benefit of papillary ridge skin is that

marks are left on the crime scene and are either readily

visible or detectable using adequate detection techni-

ques [6]. The first cases of identification of criminals

through the finger marks left by them are attributed to

Vucetich (1892) and Bertillon (1902). These marks can

be searched against a fingerprint file or, of late, in an

AFIS (Automatic Fingerprint Identification System).

With the increase of tenprint cards and the difficulty

of searches based on papillary marks, research in auto-

matic retrieval processing systems took off in parallel

with the technological advances since the 1960s. All

forensic AFIS are nowadays largely based on minutiae

matching both for finger and palm impressions [7].

The main advantage of an AFIS is the ability to com-

pare a single print or mark, as well as a tenprint card, to

the whole database. Note that AFIS provides a list of

best candidates (according to a scoring/ranking met-

ric). The identification process is not carried out by the

system, but processed manually by an expert (through

a dedicated user interface) in exactly the same way as if

the potential candidate prints were suggested as a

result of the usual police inquiry.
Other Biometric Characteristics used for
Human Identification Purposes

The use of deoxyribonucleic acid (DNA), a chain of

nucleotides contained in the nucleus of our cells, has

been a major breakthrough in forensic science to help

in the identification of unknown individuals or

biological samples left by them. Nuclear DNA can be

extracted from all biological tissues (blood, saliva,

urine or semen, from hair (with roots) and skin cells

left by contact with the skin). For identification pur-

poses (of the living or dead), samples are obtained

from blood, saliva, or bones. The most common anal-

ysis of nuclear DNA is focused on STRs (short tandem

repeats) [8]. STRs are repetitive sequences at a given

location of the DNA molecule, of non-coding nature,

which show a large and well-documented polymor-

phism. At a given locus, one individual will show two

specific numbers of repetitions of the given sequence of

nucleotides. These two numbers called alleles then give

the biometric template for that locus. Note that one

allele results from the genetic transmission from
the biological father, and the other from the biolog-

ical mother. The constitution of DNA databases to

assist investigation is simple and has been developed

in most countries.

Forensic applications of DNA profiling for human

identification are numerous for STR analysis and cover

(1) the comparison of an unknown profile (for exam-

ple, from human remains) of an individual to a data-

base of known profiles or profiles of potential relatives;

(2) filiation testing when putative genitors are available

or alternatively with ancestors or descendants. The

first introduction of DNA profiling in forensic science

dates back to 1986 (the Pitchfork case in the UK),

but the large development of practices started in

the 1990s. Before that time, biological fluids were ana-

lyzed using blood grouping determination or analysis

of various proteins or enzymes [9]. Most of these

forensic analyses have been abandoned for identifica-

tion purposes in favor of DNA profiling because

of the limited sensitivity and discriminating power

of these systems.

When nuclear DNA cannot be analyzed (typically

because of the degradation of DNA), mitochondrial

DNA (contained in the mitochondria and inherited

through maternal lines) can be used. Its discriminat-

ing power, however, is much lower than STR nuclear

DNA analysis.

Dental features are mainly used in the identification

of human remains in cases of missing persons or mass

disasters [10]. The features used range from the stan-

dard dental record (indication of missing teeth, resto-

rations, crowns, etc.) to dental radiographs (tooth

contours, relative positions of neighboring teeth, and

shapes of the dental work). These anatomical features

have shown very good stability and variability and the

teeth serve as a suitable repository of manmade opera-

tions that will leave various marks and shapes. Alpha-

numerical data can easily be organized in databases

and such systems are used operationally in cases

of mass disasters (http://www.interpol.int/Public/

DisasterVictim/Default.asp).

Forensic analysis of soft tissues can help in the iden-

tification of remains. Analysis of scars, incised wounds,

burn marks, trauma, and medical/surgical intervention

are typical either in the investigative or evaluative

mode [11]. When no tissue is left, forensic anthropology

becomes an essential part of forensic and archeological

investigations [11, 12]. Following the recovery of un-

identified skeletal remains, the forensic anthropologist

http://www.interpol.int/Public/DisasterVictim/Default.asp
http://www.interpol.int/Public/DisasterVictim/Default.asp
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can assist in guiding the investigation to identify the

sex, ethnic origin, stature, and age (and if it is a

woman’s remains, whether she had gave birth) of the

deceased. This information is investigative in nature.

The same applies to cranio-facial reconstruction from

the skull to help in the search for a deceased person

[13]. When reference material is made available (X-ray

images from ante mortemmedical documentation), its

comparison with post mortem data can help to estab-

lish identity through the analysis of morphology, frac-

tures, medical interventions on the bones, and frontal

sinus shapes [14]. Most of these areas have not been

subjected to extensive automation research [15].
Other Biometric Marks Left Following
Activities of Forensic Interest

DNA profiles can be obtained from the marks left

behind by activities of forensic interest, typically from

stains of blood, saliva, urine or semen, and from hair

(with roots) and skin cells left by mere contact.

Extracts are amplified using a sensitive and selective

DNA replication method known as Polymerase Chain

Reaction (PCR). In practice sensitivity to levels below

100 pg of DNA (a few cells) can be achieved. Such

sensitivity widens the investigative possibilities, allow-

ing the analysis of biological stains of very limited

quantity. These profiles can be used to compare a

DNA profile obtained from biological material against

profiles from known individuals. If a correspondence is

obtained, then this information can be used as evi-

dence in court. It is important to stress that a match

between two DNA profiles does not establish conclu-

sively an identification of sources. Indeed, although the

selectivity of DNA profiling is very high, there exists a

probability of random association. In addition, DNA

analysis offers some investigative capabilities gathered

through the systematic comparison of DNA profiles

coming from various scenes or familial searches against

the DNA database. Another investigative aspect is the

use of specific DNA analysis (SNP for single nucleotide

polymorphism) to infer (within defined uncertainty

boundaries) iris or hair color, skin pigmentation, and

ancestry background [16].

The morphology of the ear was considered by

Bertillon as the most identifying part of an individual.

This modality was thus quickly used for identification

purposes in forensic cases, either on photographs
(or still images from video recording [17]) or on ear

marks left on crime scenes, for instance, on doors.

Forensic ear or ear print comparison is traditionally

completed by skilled examiners according to published

principles and protocols [18]. It is important to note

that there is a big gap in terms of quality between a

well-taken photograph of a ear and its impression on

a door; hence, the strength of the evidence may vary

from case to case as a function of the quality and the

extent of the available material. Ear print examination

can be used in the investigative phase to constitute a

series based on the collected marks or to estimate the

height of the donor, or in an evaluative manner, to

associate a recovered mark with the ears of a designated

individual.

Barefoot impressions can be left either on crime

scenes or inside the shoes [19]. In the first instance,

their investigation will help to assess the sequence of

events and associate or exclude a given individual from

being at the source of these marks. In the second, the

analysis can help to assess whether a given individual is

the habitual wearer of the shoe. Their use in criminal

investigations predates the use of finger marks [20].

Barefoot impressions have shown a very high discrim-

ination power and allow, when the quality of the mark

is adequate, to bring powerful evidence of the identity

of the sources in court.

Bite marks can be left on various substrates (the

skin of a victim, some food, etc.) and can be compared

against the control material from potential donors.

A full account of their detection and analysis can be

found in [21]. If bite mark analysis is to continue to

play a role in the judicial process, there is an urgent

need for high quality studies that meet the levels of

forensic and scientific scrutiny applied to the other

disciplines within the criminal justice system [22, 23].

From time to time, lip marks can be recovered from

objects that came into contact with lips. Forensic lip

print analysis is a very anecdotal area.

Handwriting and signature are biometric attributes

with a long history in forensic science. The principles

and procedures used by forensic experts to assign ques-

tionable handwritten documents to known individuals

are described in [24]. The forensic expert tries to assess

existing similarities and dissimilarities between control

and recovered samples through a subjective estimation

of the individuality and variability of the material at

hand. At the moment, the automatic techniques used

for handwriting and signature recognition are in their
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infancy, especially in forensic science. Following the

Daubert challenges, the field has been the focus of an

increased scrutiny as to its scientific underpinning. It

has led to a new body of research that shows the fertile

avenues of collaboration between biometric computer

science and forensic science [25–27].
Analog/Digital Biometric Information
Recorded in Investigations

Forensic speaker recognition can be defined as any

process using speech signals to determine if a specific

individual was the speaker of a specific declaration.

Experts may reach opinions from a variety of tech-

niques used alone or in combination: auditive com-

parison, visual comparison of spectrograms, and

semi-automatic methods for extraction of specific

parameters (e.g., formant frequencies). Auditive

comparisons are more likely to be conducted by pho-

neticians. They assess voice characteristics (voice,

speech, language, and linguistic) either subjectively

or objectively (using signal processing tools). The

visual spectrographic approach was first proposed in

1962. In 1976, the US National Academy of Sciences

recommended the use of this approach in forensic

cases cautiously [28]. Automatic speaker recognition is

also used in forensic science (see related entry in this

Encyclopedia). Several characterization and modeling

tools have been developed for automatic speaker recogni-

tion. All are sensitive to voice modification in recording

and transmission conditions and their performance wor-

sens when the conditions deteriorate. In forensic cases,

the recording conditions of the trace and the reference

materials are rarely similar or ideal, but rather record in

different and unconstrained conditions, i.e., throughmo-

bile communications (GSM) transmission and with

background noise. Due to these factors, the comparison

is often undertaken under adverse conditions.

Facial images are more and more available for

forensic investigations. Forensic face recognition is

generally carried out by dedicated experts using appro-

aches based either on morphological analysis of facial

structures, anthropometric measurements, or image

superimposition [29]. The morphological approach

is based on a nomenclature for the description of

the physiological aspects of the nose, the forehead,

and the ear. Additional information, such as facial

wrinkles and scars, can also be used. As the description
is rather subjective, variations between operators are

observed. In addition, the features of the same individ-

ual change due to expression changes, photographic

angles or aging, and the demonstration of their statis-

tical independence is often weak. The anthropometric

approach can be described as the quantification of

physiological proportions between specific facial land-

marks. This method is only used for the comparison of

faces with the same orientation. In order to avoid any

scale and absolute size differences between photographs,

ratios are calculated from these landmarks. Lighting

conditions, camera distortions, camera positioning,

facial orientation, facial expressions, and aging may

impact the measures. The superimposition-based

approach is the juxtaposition or the superimposition

of facial images, taken under the same acquisition con-

ditions (the orientation, the pose, and the size).

These three main comparison approaches do not

yet consider automatic face recognition (a subject cov-

ered in several chapters of this Encyclopedia). Auto-

matic face recognition systems have a large role to play

in the future, not only in dealing with the face as such

but also taking advantage of lips [30] or other features.

But before introducing any automatic face recognition

in court, a full and systematic assessment of the system

should be conducted under realistic conditions, using

fit-for-purpose forensic efficiency measures.

The prevalence of images or videos in modern

society opens the route to the development of new

types of forensic biometry (some are already covered

in this Encyclopedia, e.g. gait analysis). Is it not rare to

observe anatomical features on images that can help

towards the identification of the individual captured

on these images? These features can be skin details,

scars, veins and tattoos. Biometric developments are

still in their early stages [31].
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Synonyms

Barefoot morphology comparison; Footprint

comparison
Definitions

Forensic barefoot comparison, or barefoot morpholo-

gy comparison, describes the comparison of impres-

sions of the weight-bearing areas of feet in an attempt

to include or exclude a suspect as someone linked to a

crime scene. A bare or socked foot impression found at

the crime scene can be compared to inked barefoot



570F Forensic Barefoot Comparisons
impressions and footprint casts taken from a suspect.

Similarly, a link to footwear matched to a crime scene

can be determined by comparing the insoles of the

crime scene footwear to footwear seized from a sus-

pect, or to inked impressions and casts taken from

a suspect.
Introduction

Barefoot morphology comparison refers to the exami-

nation of the weight-bearing areas on the bottom of a

human foot, when ridge detail is not present, to estab-

lish a link between the bare foot of an individual and

a footprint impression found at a crime scene [1–3].

In the case of footwear linked to a crime scene, com-

parison can be made to shoes seized from a suspect, or

to inked impressions or casts taken from a suspect.

Research has indicated that the shapes of footprints

are sufficiently variable to make it possible to include

(as having possibly made the impression) or exclude

(as definitely not having made the impression) a sus-

pect as being the person who created a particular

footprint at a crime scene [3]. As an example, Fig. 1

show barefoot impressions taken from identical twins,
Forensic Barefoot Comparisons. Figure 1 Barefoot

impressions taken from identical twins, illustrating the

variability of footprints, even for twins.
illustrating that even twins can be differentiated based

on their footprints.

When a crime scene is being examined, it is com-

mon to find footprints that might be those of the

perpetrator of the crime. If ridge detail is developed

in a barefoot impression, the comparison to a suspect’s

foot can be carried out in exactly the same fashion as a

fingerprint comparison [4, 5]. If enough ridge detail,

with sufficient clarity, is available for comparison, a

positive identification may be forthcoming. However,

if the barefoot impression is smudged or unclear for

any other reason, or if it is a socked impression,

then recourse can be made to barefoot morphology

comparison.

Similarly, when a shoe has been positively identi-

fied back to a crime scene, and no suspect has been

found in possession of the footwear in question, re-

course can again be made to barefoot morphology

comparison. This can be accomplished by comparing

the impressions on the insole inside the crime scene

shoe to the impressions inside a similar shoe worn by

the suspect, or to inked impressions and casts seized

from the suspect.

The comparison itself is similar to a toolmark or

tire track comparison, where the foot has acted like a

tool or a tire in creating an impression at the

crime scene. The shapes of various parts of the foot

are compared to see if there is correspondence

between the crime scene impression and the suspect

exemplars. In a footwear example, the impression to

be compared has been made on the insole of the

identified footwear.
Background

Although footprints in general look quite similar,

it has long been assumed that careful examination of

barefoot impressions could be used to differentiate

between people. Historically, in various societies,

trackers have been trained to be able to pick up some-

one’s trail and to follow the person based on their

footprints [3].

Footprint evidence was presented in court as early

as the late nineteenth century, when a criminal was

convicted in 1888 based on his footprint. Other cases

have since been documented in the forensic literature,

mainly from Europe and North America [6]. Much of

this early casework was based on the assumption that
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footprints were unique to the individual, without

many studies to support this hypothesis.

Whenever a new means of including or excluding

suspects is being introduced in court, the basis for the

comparison must be justified. Some early work on foot-

print variability was carried out in India [7], while in

North America, Dr. Louise Robbins, an anthropologist,

carried out studies on the individuality of footprints in

the 1970s [8]. In the 1980s, the Federal Bureau of

Investigation (FBI) collected and compared footprint

impressions from hundreds of volunteers to show how

variable barefoot impressions might be [9, 10].

The Royal Canadian Mounted Police (RCMP)

began research in this area in the 1990s [11]. Inked

barefoot impressions were collected from thousands of

volunteers for entry into a computerized database. As

each footprint was measured and entered, it was com-

pared with previous impressions in the database to

ensure that another foot did not share the same mea-

surements. A statistical analysis of the impressions was

carried out to illustrate how variable barefoot impres-

sions are [12]. Even with a limited number of samples

and measurements, probabilities on the order of 1 in

a billion were achieved.
Collecting Evidence [3]

When a bare or socked foot impression is found at a

crime scene, the investigator must document the evi-

dence correctly. Photographs, with a scale included,

should be taken. If required, barefoot impressions can

sometimes be enhanced in situ using fingerprint pow-

der or chemical techniques, especially for impressions

in blood. Impressions can then be lifted, or, depending

on the surface, the entire impression can be removed

from the scene. All of this evidence will have to be sent

to the expert who is doing the final barefoot morphol-

ogy comparison.

Similarly, when footwear impressions are found,

they should be thoroughly documented. Again, en-

hancement techniques can be used to make the

impressions more visible. If accidental characteristics

are noted, there is the possibility of positively linking a

shoe to the impression found at the crime scene.

If a suspect is arrested, his feet and his foot impres-

sions must be well-documented. Several photographs,

including a scale, should be taken of the feet to ensure

that the tops, sides, and bottoms are all recorded. Foam
impressions should be taken for later casting. Inked

standing and walking impressions should also be

obtained. Standing and walking impressions should

also be obtained with the suspect wearing a pair of

socks.

If the case involves footwear impressions, attempts

should be made to seize similar footwear from the

suspect. The best comparison would be of a shoe

insole with another shoe insole. However, the feet of

the suspect should also always be recorded in the

same manner as described above.
The Comparison Process [3]

Barefoot morphology comparison should only be

undertaken by an adequately-trained specialist. The

RCMP has conducted barefoot comparison courses in

North America and Europe, training forensic specia-

lists from several countries. A group of doctors has

recently formed a forensic podiatry sub-committee

within the International Association for Identification

(IAI), currently establishing its own criteria for train-

ing and standards.

As in any other physical comparison, class charac-

teristics are compared first. The overall size of the foot

and the number of toes making contact with the

ground would be considered class characteristics, and

can be used to quickly eliminate a suspect foot.

The shape and placement of the toes, the shape

of the ▶metatarsal ridge, the length and width of the

arch, and the contour of the heel can be examined and

compared (see Fig. 2). Any unexplained feature can

be used to eliminate a suspect, while correspondence

of features means that the suspect foot remains

included as a possible source of the crime scene im-

pression. Some examiners will make positive iden-

tifications based on foot morphology [13], while

others will only go as far as a strong likelihood that

the same foot made both the crime scene print and the

exemplar [3]. Because the uniqueness of barefoot

impressions has not been proven, and crime scene

and inked impressions are not exactly reproducible,

current RCMP policy advises examiners against

making positive identifications. Positive identifications

may be possible when flexion creases, marks, and scars

are visible [14].

When the impression is three-dimensional, like

a footprint in mud, it is important to try to obtain a
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three-dimensional replica of the suspect’s foot for

comparison. The use of foam impression material

and dental casting material should be considered.

In the case of footwear that has been positively

identified back to the crime scene, and where footwear

has been seized from the suspect, the outer areas of the

shoe can be examined to confirm that wear on the

shoes is similar. The barefoot impressions made on

the insoles can then be compared in much the same

fashion as the barefoot comparisons described above.

The inside uppers of the footwear can also be exam-

ined to look for agreement or disagreement of wear

and damage. If footwear cannot be seized from the

suspect, then the examiner must make-do with inked

impressions and casts of the suspect’s bare feet, bearing

in mind the changes in morphology caused by the foot

being constricted in the shoe.
In Court

Barefoot morphology comparison is not yet a rou-

tinely-accepted forensic technique. As such, it is still

vigorously challenged when it is presented in court.

In Canada, the testimony has been successfully

defended in Mohan and Voir Dire hearings [15],

(R v Dimitrov was overturned because the jury

put too much emphasis on ‘‘could have been’’ testimo-

ny, and not because of the technique itself) while in

the US it has withstood the scrutiny of ‘‘Rule 702,’’

Frye, and Daubert challenges. An early case that was

sent back on appeal when the judge felt that not

enough background research had been done has been

successfully re-tried in light of more recent published

research. In essence, the courts have started to
recognize the scientific foundation upon which the

evidence is based.

Besides Canada and the United States, barefoot

comparison testimony has been tendered in several

countries around the world. In Israel, barefoot

morphology comparison testimony was appealed

all the way up to the highest court, and upheld.

As the technique becomes more accepted, prosecu-

tors and defense lawyers will soon start to look for

opportunities where this type of evidence might be

useful.
Conclusion

Barefoot morphology comparison refers to the com-

parison of the weight-bearing areas of feet in an effort

to include or exclude a suspect as being linked to a

crime scene. Background research has established the

variability of barefoot impressions, justifying their use

in a forensic context. Crime scene investigators should

be aware of this technique and should always be look-

ing for suitable evidence of this kind.
Related Entries

▶Earprints

▶ Fingerprints
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Synonyms

DNA analysis; DNA profiling; DNA typing
Definition

Deoxyribonucleic acid (DNA) is a large molecule present

in all living cells (e.g., animals, plants, viruses). As a tape

allows the storage of a recording, DNA allows the storage

of genetic information. It consists of two long chains of
nucleotides twisted in a double helix. There are four types

of nucleotides designed by the name of their bases:

Adenine (A), Guanine (G), Cytosine (C) and Thymine

(T). The genetic information is encoded in the sequence

of nucleotides of the DNA molecule. Part of its name

originates from its localization in the nuclei of the cell.

However, the acronym is also used for ▶mitochondrial

DNA (mtDNA), which is the DNA present in the

mitochondria of the cells. It is transmitted only by

the mother.
Introduction

Although DNA profiling has high discriminating

power and can help establishing the biological identity

of a person, it is not used as a biometric yet. Indeed, the

results of the analysis are not immediate (nor yet

amenable to full automation), the cost of analysis is

high, and there are contamination and transfer issues.

Moreover, as parents transmit biological material

to their children, DNA can be intrusive and reveal

unknown family relationships.

Most of the text that follows is based on [1].

Another standard text in English is [2].
DNA: Basic Concepts

Each human cell contains biological information; each

of the cells thus contains the same DNA. As DNA is

a very long molecule (three billion base pairs), it is

organised into 23 small bundles: the chromosomes.

Each child receives two DNA: one from the mother

and one from the father. Each person (and each cell

from this person) has thus two copies of each chromo-

some, one from the mother and one from the father,

giving a total of 46 chromosomes. They are numbered

in pairs from 1 to 22, the 23rd pair being the sex

chromosomes X and Y. On each of the chromosomes,

there are genes (i.e., a zone where the DNA codes how

to make a protein). The number of genes is estimated

to be around 20,000–25,000. When reading DNA from

one extreme to the other, one will encounter a code

‘‘START’’ to indicate that one can read from here how

to make a given protein, and a code ‘‘STOP’’ to indi-

cate that this is the end of the genetic information

necessary for that protein. The code for the following

protein does not begin immediately after the ‘‘STOP’’
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message and there are usually several thousands

nucleotides in between that do not code genetic infor-

mation. These are called noncoding DNA or junk DNA

and represent 98% of the genetic material. The geo-

graphical distribution of the genes and the noncoding

DNA is in principle identical across all individuals in a

given species.

A geographical nomenclature has been derived to

designate a given localization on the DNA strand of

human chromosomes: the locus (pl. loci). For each

locus, one copy is received from the father and one

copy from the mother. These two copies are called

alleles: therefore for each locus, a person will have

two alleles. The set of alleles owned by a person for a

locus is called his/her genotype. If the alleles transmit-

ted by the father and the mother are the same, the

individual is homozygote for this locus. If the two

alleles transmitted are different, then the individual

will be heterozygote at this locus. The loci are symbo-

lized by a four-digit code, that is particularly useful for

noncoding DNA. The first letter of the code is D (for

DNA), the second is the chromosome number (1, . . .,

22, X, Y), the third element indicates the sequence type

(S: a unique sequence; Z a sequence that has several

copies, at different localizations, on the same chromo-

some; F a sequence that is part of a family with similar

sequences that are encountered on several chromo-

somes); the last digits are a unique number that gener-

ally correspond to the order in which the sequences

were discovered. As an example, the locus D18S51 is a

DNA region on chromosome 18, with the serial num-

ber 51. This locus is commonly used in forensics be-

cause of its polymorphism and is present in different

commercial kits (e.g., SGMplus ABI; Powerplex 16

Promega).

Since DNA is stable over the lifetime of an individ-

ual, and is reasonably resistant to chemical degra-

dation, it is a good candidate for use in forensic

science. One must further find a sensitive and not

too expensive technique that enables the analysis of

parts of the DNA that vary between individuals: the

genetic markers. These markers should show as much

as polymorphism as possible. There are two types of

polymorphisms: sequence polymorphism (the nature

of the nucleotides themselves differ from individual

to individual, e.g., mtDNA, SNPs) and length polymor-

phism (the difference between individuals is based

on the length of a given repetitive sequence of nucleo-

tides, e.g., STR).
In 1985, thanks to the discovery of repetitive

sequences, Sir Alec Jeffreys first applied the analysis

of DNA to forensic science. As discussed previously,

there are coding and non coding DNA. The repetitive

sequences are zones in the DNA, where noncoding

DNA seems to stutter. The human DNA has a very

large number of different repetitive sequences (30% of

the genome) and the length of the repetitive sequences

varies between individuals. If the length of the repeti-

tive sequence is larger than six nucleotides, one

speaks of VNTR (Variable Number Tandem Repeats,

Nakamura). If it is equal or smaller to six, one will speak

of STR (Short Tandem Repeat). STRs have also

been named microsatellites and VNTRs minisatellites.

Nowadays, STRs are the standard targets of the routine

analysis of forensic samples. Companies offer different

type of kits allowing the analysis of several STRs at

the same time (multiplex STR analysis). An example

of some kits available is given below:
Forensic DNA Analysis

Before analysis, one has to sample the DNA on the

crime scene and to sample the individual. As genetic

information is theoretically the same in every cell,

saliva is generally used for the later. On crime scenes,

chemical tests to detect saliva, sperm, or blood can be

used to help in finding the invisible stains. If a stain is

detected, the object is either cut, or swabbed. As, it is

possible to detect very low levels of DNA, it is highly

recommended to wear gloves and a face mask when

collecting DNA.

Once DNA has been collected, it will be extracted,

purified, and quantified. Because there is often very

little material in forensic samples, the specific zones

of DNA that are the target of the analyses will be

first amplified using a technique called Polymerase

Chain Reaction (PCR). PCR is often compared to a

DNA photocopier, where a given DNA segment is

copied a given number of times. First, the zone to

be amplified is delimited using two primers: one is

placed at the beginning of the sequence and one at

the end. During the copying cycles of the PCR pro-

cess, copies of the original DNA zone will be produced.

After one cycle, there will be the original DNA and

one copy; after two cycles, there will be 2 more copies

and after 30 cycles there will be about a billion

copies (Fig. 1).
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Multiplex STR Analysis

PCR can be used to copy simultaneously several DNA

fragments: one uses different primers, each corres-

ponding to the DNA zone that has to be copied. This

simultaneous amplification of different DNA zones

is called Multiplex PCR. The PCR products are ana-

lyzed using Capillary Electrophoresis. This technique

allows the separation of DNA fragments according to

their sizes while they travel through a thin capillary.

The large fragments move more slowly than small

fragments. A peak is displayed on the results’ graph,

when the detector at the end of the capillary detects

DNA molecules. The detector is able to differentiate

between up to five different dyes. The detector can

recognize STR alleles that have the same length but

are labeled with different dyes.

Theoretically, one can amplify dozens of different

fragments in one operation, which saves considerable

time. However, the design of multiplex STR analysis

kits is not straightforward: the numerous primers

involved must not interfere with each other; the set

of alleles of one STR must be recognized from the

alleles of the other STRs, either through the use of

different labeling dyes or because they are in different

size ranges. The different STR will be chosen if possible

on different chromosomes, so that the transmission of

the alleles from generation to generation can be con-

sidered independent.

PCR is unable to amplify efficiently large frag-

ments. It is thus not possible to increase indefinitely

the number of STR analyzed simultaneously with a

multiplex kit. The practical limit is around 15–20
STRs. An example of a profile obtained with Multiplex

STR analysis is shown below. The vast majority of

forensic DNA analyses done today is multiplex STR

analysis. It is the golden standard and fulfils most of

the needs of forensic DNA analysis.

Figure 2 shows the resu lt of an ana lysis performed

on an individual with the SGMplus kit.
Nonautosomal DNA

An autosome is a nonsex chromosome. Nonautosomal

DNA is a DNA that originates either from a sex chro-

mosome (i.e., X, Y), or from mitochondria (mtDNA).

Sex chromosome DNA is used to study the paternal

heritage: if there is no mutation, a son will have the

same Y chromosome than his brothers, his father, and

his paternal lineage; a daughter will have one of her X

chromosome identical to her father and her paternal

lineage. Mitochondrial DNA is used to study the ma-

ternal heritage: a mother will transmit her mitochon-

drial DNA to her children, grandchildren, etc. These

markers are useful for parentage testing. Since there are

hundreds of copies of mtDNA per cell, mtDNA can

also be used when the trace is degraded or/and there

is very little nuclear DNA (e.g., hair without roots).

STRY may also be useful in rape cases, when the male

DNA of the agressor is not detected in the DNA profile

because of the presence of vast amounts of female DNA

in the mixture. When speaking of alleles observed for

Y chromosome STR or mtDNA and STRX, one speaks

of haplotype and not genotype, as a person owns

only one single allele.
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the SGM plus hit. The raw data are decomposed by color: the labels below the peaks show the designation of the

detected alleles. She name above is the STR name. For most STRs, our individual has two peaks and is heterozygote

for these makers. For VWA, this person precents only one peak and is therefore homozygote for that particular marker.
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Low Template DNA Analysis

In essence, PCR allows a sensitivity at the singlemolecule

level. However, for the standard DNA profiling, the

potential of PCR is curbed to avoid the stochastic effects

and contamination problems associatedwith an extreme

sensitivity. The sensitivity of standard DNA profiling is

thus adjusted to provide a DNA profile only when there

is DNA from at least 50 cells in the evidence material.

The concept of low template level analysis, or as previ-

ously known LCN (Low Copy Number), covers strate-

gies designed to go beyond this limit. The usual strategy

to reach such an extreme sensitivity is to increase the

number of copying cycles of the PCR (e.g., 34 cycles

instead of 28) [3]. Increasing sensitivity does not go

without caveats: artefacts arise with alleles dropping in

and dropping out. This added sensitivity also increases

the issue of contamination. The use LCN profiles

should induce very strict protocols to avoid contami-

nation on the scene and at the laboratory. It requires

cautious interpretation. In the Omagh Bombing,

the use of low template level profiles was challenged,

but was shown to be scientifically robust in the review

conducted by Professor Caddy, Dr Linacre, and

Dr Taylor [4].
SNPs and DNA Chips

SNPs (Single Nucleotide Polymorphisms) occur on

average every 1,200 nucleotides: that means that
depending on the individual the nucleotide in that

position will differ. In theory there might be four

variants (A, T, G, C) for the nucleotide; however,

because of the reality of the evolution process only

two variants are usually observed. The main caveat

of SNPs is their limited sequence polymorphism.

Multiplex analysis of a large number of SNPs can

however overcome this limitation. SNPs can be ana-

lyzed using miniaturized devices called DNA chips.

These are miniaturized systems allowing the analysis

of hundreds of SNPs. The disadvantages of SNPs

are their low polymorphism, and their very limited

capacity to handle DNA mixture cases. SNP analysis

certainly has good prospects for specific applica-

tions. ▶Mitochondrial DNA polymorphisms are in

essence SNPs. SNP analysis has better chances of

success for highly degraded samples than STR ana-

lysis. Some specific SNPs have the capacity to pro-

vide morphological information (hair, eye colour, . . .)

and Y chromosome SNPs should be able to pro-

vide useful ethnic information. Some companies

(e.g., 23andme; Decode genetics; . . .) have star-

ted to offer to the public wide ranging SNP analyses

providing information on their ancestry, and pre-

dispositions to possible diseases (see, for example,

https://www.23andme.com/ or http://www.decode.com/).

Although their approach is controversial and not

forensically oriented, it is a good example of the

power of the SNP analysis technologies. Applications

of SNPs in context of forensic intelligence will

be briefly mentioned later.

http://https://www.23andme.com/
http://www.decode.com/


Forensic DNA Evidence F 577
DNA Sequencing

This method consists in reading the sequence of the

nucleotides of small pieces of DNA. It is the standard

tool for mtDNA analysis. More recent ‘‘whole genome

DNA sequencing’’ technologies are being developed.

They are massively parallel sequencing approaches

with the potential to provide the complete sequence

of an individual in a single process. Their potential for

forensic DNA analysis is not yet clear.

F

DNA used as Evidence and
Interpretation

DNA (human, animal or vegetal) can be used in diverse

areas: nature and species preservation, food control, miss-

ing persons, mass disaster identification, serious, and

volume crime. As parents transmit part of their DNA to

their children, parentage testing using DNA (autosomal

and nonautosomal) is also common, whether for civil

cases, historical cases (e.g., Thomas Jefferson, Nicolas

II), immigration, or genealogy. DNA techniques are very

sensitive and sources of DNA are diverse (e.g., blood,

saliva, sperm, dandruff, skin, hair (nuclear DNA if root,

mtDNA on shaft, bones, teeth. . .), which explains the

great potential of forensic DNA analysis.

DNA evidence can help the court in assessing three

types of propositions [5]: offence level propositions

(e.g., the suspect has raped the victim vs. the suspect

has not raped the victim), activity level propositions

(e.g., the suspect has had sexual intercourse with the

victim vs. the suspect has not had sexual intercourse

with the victim) and source level propositions (e.g., the

recovered DNA comes from the suspect vs. the recov-

ered DNA originates from a person unrelated to the

suspect). The higher the hierarchy (from source to

offence level), the more information will be required

to inform an opinion. Through DNA profiling and

other means, the forensic scientist is usually only able

to provide useful evidence for source and activity

levels. If addressing source level proposition, the scien-

tist will take into account the rarity of the DNA profile,

estimating the match probability (Weir and Evett), [6].

When addressing activity level propositions, the foren-

sic scientist will in addition take into account transfer

and persistence of DNA (or/and blood pattern in the

presence of blood, see [7]), as well as the relevance of

the trace to the alleged activities.
DNA interpretation is a very large subject area [8, 6,

9–11] and (NRC reports I and II). With the large

number of polymorphisms available, DNA of an indi-

vidual can certainly be considered as unique. Thus,

DNA profiles are frequently viewed as unique in the

general public, but they are not. Only a limited number

of polymorphisms are examined in DNA profiling,

providing DNA profiles that are indeed very rare, with

match probabilities smaller than 1 in a billion. The value

of DNA evidence is usually assessed using the likelihood

ratio approach (also called the Bayesian approach). The

evidence is evaluated considering two propositions (e.g.,

the prosecutor’s and the defence’s): in the given example,

the forensic scientist would, for example, assess the

probability of the evidence given that the suspect has

had sexual intercourse with the victim and the probabil-

ity of the evidence given that the suspect denies knowing

the victim. This approach insures an unbiased interpre-

tation of the evidence.
DNA Used as an Intelligence Tool

With the launching of DNA databases in the 1990s,

DNA has become a very useful intelligence tool. Most

countries have national DNA databases or are in the

process of doing so. The largest are the USA database

and the England and Wales DNA database. Each coun-

try has its own legislation and own set of STR loci (in

Europe there is a set a ‘‘core’’ loci that are used by all

EU countries). The most common program used for

storing and searching the DNA profiles is CODIS

(Combined DNA Index System). The program was

developed by the FBI and the private firm SAIC. The

profiles are stored in different indexes (e.g., forensic

profiles index, offender index, victim index, staff

index, and missing person’s relatives index). This

allows comparing only profiles that should be (e.g.,

the profiles from relatives of missing persons will not

be compared to crime scene profiles). Criteria for

entering a profile in a database vary according to the

country and the size of the database. DNA databases

rely on the fact that the vast majority of crimes is

committed by a small proportion of the population,

that tends to re offend and on the fact that DNA

profiles are extremely rare. This last prerequisite is

not fulfilled with so-called partial DNA profiles (i.e.,

does not present results for all loci in the given kit

because of DNA degradation), or with mixture DNA
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profiles. That type of DNA profiles has to be used with

more caution in conjunction of the database, especial-

ly, if the suspect population is large (i.e., the searched

database is large). When there is no other forensic

evidence than DNA to limit the suspect population,

then the discriminating power of the technique must

be higher, than if there are other means (e.g., partial

fingerprints, modus operandi, micro-traces, and tradi-

tional police investigation information).

New approaches of the DNA database involve

the use of partial profiles and familial searching for

intelligence purpose. In general, to limit adventitious

matches, partial profiles with less than six loci, for

example, are generally not entered in the database,

but they could be used to generate intelligence. Familial

searching aims at helping the investigation when

no match is found in the database. The technique con-

sists in looking for profiles that share alleles with the

crime scene profile. As it is more common for relatives

to share part of their DNA than unrelated persons, there

are examples where it was possible to find in the data-

base a close relative of the offender. The Forensic Science

Service (UK) has been able to solve a couple of famous

cases using this method. There are ethical issues to

consider when using this technique [12].

The analysis of some SNPs can predict physical

characters (such as red hair, eye colour, . . .) based on

the analysis of the crime scene sample (see www.

dnaprint.com).
Conclusion

The advent of DNA analysis and DNA databases has

revolutionised forensic science, police investigation

and the whole criminal justice system. It is anticipated

that automation will play tomorrow an even more

important role than today. With the advent of ultra-

sensitive methods, the relevance of the recovered

material, the questions of transfer and persistence

of DNA will become the core of interpretation.

Today, the research in this area is still scarce and

needs to be developed. Regarding the techniques, anal-

ysis of STR is here to stay for years. Other fascinating

techniques for SNP analysis or even whole genome

sequencing are coming. But they will not improve

much the performance of DNA profiling and their

use will require very difficult validations before they
can diffuse widely into the routine practice. As it was

portrayed in the film ‘‘Gattaca’’ by Mike Nichols, 1997,

it seems clear that DNA on a chip and DNA as a

biometric system at the finger tip will be available

one day. But that day is not yet at the horizon.
Related Entries

▶ LCN DNA/Low Template Level
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Forensic Evaluation of Fingerprints
and Fingermarks
▶ Fingerprint, Forensic Evidence of
Forensic Identification Based on
Dental Radiographs
▶Dental Biometrics
Forensic Science
Forensic science refers to the applications of scientific

principles and technical methods to the investigation

of criminal activities, in order to establish the existence

of a crime, to determine the identity of its author(s)

and their modus operandi.

▶ Forensic Applications, Overview
Forensic Speaker Recognition
▶Voice, Forensic Evidence of
Forgery Attempt
Active forgery attempt is an impostor attempt in which

an individual tries to match the stored template of a
different individual by presenting a simulated or repro-

duced biometric sample, or by intentionally modify-

ing his or her own biometric characteristics.

▶ Influential Factors to Performance
Forgery Sign
Synonyms

Forgery signature; Impostor sign; Mimicked sign
Definition

Forgery sign is an illegal sign by simulating or tracing a

genuine signature. There are two kinds of forgery signs

such as ‘‘substitution or random’’ and ‘‘freehand or

skilled.’’ The former is called as ‘‘zero effort’’ forgery,

because the forger uses his or her own signature

instead of the signature to be tested. The later includes

signatures imitated as closely as possible by simulating

or tracing a genuine signature.

▶ Signature Matching
Forward-Backward Algorithm
The Forward–Backward algorithm is the conventional,

recursive, efficient way to evaluate a Hidden Markov

Model, that is, to compute the probability of an observa-

tion sequence given the model. This probability can be

used to classify observation sequences in recognition

applications.

▶Hidden Markov Models
Fourier Transform
Mathematically, the continuous Fourier transform is

one of the specific forms of the Fourier analysis.
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It transforms the original function in the time-domain

into another function in the frequency domain. The

term ‘‘Fourier transform’’ can refer to either the fre-

quency domain representation of a function or to

the process/formula that transforms one function

to another.

▶ Face Recognition, Component-Based

▶ Image Pattern Recognition

▶ Iris Encoding and Recognition Using Gabor Wave-

lets

▶ Iris Recognition Using Correlation Filters
Fovea
The fovea is a small depressed region at the center of

the macula, the central area of the retina. There, the

inner retinal layers are shifted aside, allowing light to

pass unimpeded to the photoreceptors. Only tightly

packed cones, and no rods, are present at the foveola,

the center of the fovea. The elongated axons of these

cone cell bodies are called Henle fibers. The fovea is the

region of maximum visual acuity.

▶Anatomy of Eyes
Fragile Bits
▶ Iris Template Extraction Via Bit Inconsistency and

GRIT
Fraud Deterrence
▶ Fraud Reduction, Applications

▶ Fraud Reduction, Overview
Fraud Mitigation
▶ Fraud Reduction, Applications
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Synonyms

Biometric fraud reduction; Duplicate detection; Fraud

deterrence; Fraud mitigation
Definition

Fraud is conventionally defined as the deliberate per-

version or withholding of veracity in order to induce

another to surrender something of value. In the con-

text of biometrics, the item of value is typically an

identity or a privilege associated with an identity.

For the purposes of this entry, fraud reduction in

a biometric applications context refers to the use of

biometric technology’s duplicate detection capabilities

to deter, inhibit, and mitigate fraud. Duplicate detec-

tion refers to the discovery of multiple identities

claimed by a single, given individual.
Introduction

For numerous decades, individuals have sought to mis-

represent their identities for the sake of obtaining ben-

efits and privileges to which they are not properly

entitled. Such fraud can be costly – both financially

and politically. For fiscal year 2007/2008, the United

Kingdom’s Department for Work and Pensions esti-

mated that it overpaid about £2.7 billion in housing-

related benefits, alone, due to fraud and error [1]. From

October 2002 to September 2005, the US Justice

Department indicted 40 voters (21 noncitizens) for

illegal voting or voter registration fraud [2].
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In 2000, following the United States’ presidential

election, a study in Georgia, USA, discovered over

15,000 deceased individuals on the state’s active

voting rolls. The US Federal Election Commission

also discovered 502,968 names on Alaska’s 1998

voter rolls – yet only 437,000 eligible voters were

estimated by the statewide census conducted that

year [3]. In both cases, several thousand invalid, but

influential, votes could have been cast in close elec-

tions by individuals assuming others’ identities or

fake identities.

In the past, such fraudulent actions were enabled

by the tendency to ascertain identity based upon doc-

umentation with little – if any – connection to the

distinctive characteristics of the legitimate document

holder, aside from often replaceable or forgeable

photographs. Authenticity of transactions was assured

more by anti-forgery, document-oriented techniques

(such as watermarks, holographs, security strips,

microlines, intaglio printing, etc.) rather than by

examination of the document bearer.

The advent of biometrics, however, has enabled

a shift of focus from predominantly documents to

a mix of documents and individuals. In 1858, the

United Kingdom’s William Herschel of the Civil

Service of India was precocious in his decision to

capture employee palmprints to help distinguish

amongst his native Indian staff on paydays [4].

Today, automated biometric capture and processing

systems allow for quick determinations and verifica-

tions of identity. They enable the detection of indivi-

duals who may assume multiple nominal identities

through various documents, but who are really the

same, single entity.

This duplicate detection capability deters and inhi-

bits fraud in applications including:

1. Benefits issuance and disbursement

2. Voter registration

3. Visa shopping

4. Border control

5. Consumer recognition and

6. Time and attendance monitoring

This entry introduces and provides examples of the

first four aforementioned applications. Consumer

recognition (including check cashing) and time and

attendance monitoring are both addressed in other

entries.
Benefits Issuance and Disbursement

Governments are often responsible for the proper and

equitable distribution of benefits to their qualified

citizenry. With large populations of potential benefits

recipients, however, it can be a logistics challenge to

keep track of who is a qualified recipient and whether

or not they have previously claimed a given benefit

and are attempting illegitimately to reclaim the same

benefit (a phenomenon sometimes referred to as

‘‘▶ double dipping’’).

Biometrics can help mitigate the problems asso-

ciated with such challenges. Initially, when biometrics

are first captured and associated with a given identity

in an enrollment process, biometrics are particularly

vulnerable and dependent on the legitimacy and ro-

bustness of ▶ breeder documents. But once a ▶ nomi-

nal identity has been paired with a biometric, a

government can be relatively certain that whenever

that biometric is presented, it is presented by the indi-

vidual with that same nominal identity and not an

imposter. This is because of the fundamental assump-

tion and belief that biometrics based on individual

physiological and behavioral characteristics are more

difficult to steal and forge than are documents.

One example of the benefits that can ensue is

the deployment of fingerprint recognition technology

by the United States of America’s Texas Health and

Human Services Commission (HHSC). HHSC sought

to ensure that Texas’ limited Medicaid benefits be

distributed only to the truly needy. HHSC wanted

to make sure that it was paying for services actually

rendered and delivered only to those authorized

to receive Medicaid benefits. By leveraging finger-

print biometrics, HHSC sought to confirm that

authorized Medicaid recipients were indeed physical-

ly at treatment facilities when Medicaid benefits were

disbursed [5].

Another example of biometrics applied to fraud

reduction in benefits issuance is the Andhra Pradesh

Ration Card Entitlements program in India. In this

deployment, first announced on 16 June 2005, iris

recognition systems were employed in the issuance of

food ration cards by the state of Andhra Pradesh [6].

Through the incorporation of biometrics in the pro-

gram, Andhra Pradesh officials seek to deter its citi-

zenry from selling or sharing their food ration cards, as

well as returning to claim multiple cards under differ-

ent nominal identities.
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Voter Registration

The validity of elections critically depends on ensuring

that only legitimate voters vote and that the general

democratic principle of ‘‘one voter, one vote’’ is fol-

lowed. As with benefits issuance, biometric systems

can help in determining who is voting, that they are

authorized to vote, and that they are not voting, or

registering to vote, multiple times. Biometrics can also

act as a fraud deterrent by, for example, facilitating the

forensic identification of a person who attempts to

vote using a deceased individual’s credentials.

One example of biometrics in a voter registration

application is the Bangladeshi Voter Registration Proj-

ect. This project, run by the Bangladesh Army and

Bangladesh Elections Commission, utilized fingerprint

biometric technology to register voters for Bangla-

desh’s 2008 general elections and to issue national

identity cards. Four fingerprints were captured from

each registrant and checked to see if they matched

those captured from a prior registrant [7].

The Bangladeshi Voter Registration Project fol-

lows similar voter registration deployments conducted

in countries like Mexico, Mozambique, and Nigeria.

In Mexico, the Instituto Federal Electoral implemented

a multi-biometric system that uses fingerprint and

facial recognition to analyze historical voter rolls for

duplicates, as well as to vet new voters against existing

voter rolls [8].
Visa Shopping

In 2007, the European Parliament recognized a chal-

lenging problem facing several European Union mem-

ber states: visa applicants rejected by a Schengen

country were applying to other Schengen countries

in the hopes of finding one that would issue them

a visa. They were ‘‘visa shopping.’’ In some cases,

applicants would present forged documents as part

of the visa application process.

To counter such attempts, the European Parlia-

ment established the Visa Information System (VIS).

VIS is a database that contains fingerprint and face

images and associates the collected biometrics with

visa applicants’ biographical data, as well as the dates

and locations of application attempts [9]. Authorized

officials responsible for border security can now better

detect if a visa applicant has previously been rejected
by another Schengen nation and is presenting falsified

documents.

One result of the implementation of VIS has been

that some visa applicants who have been rejected pre-

viously, or who have reason to believe they may be

rejected, have mutilated their own fingers to avoid

being processed against VIS. Others have attempted

to perpetuate fraud by trying to alter their fingerprints

using often painful processes with low chances of suc-

cess, given that fingerprints extend beyond the

epidermis.
Border Control

As with visa shopping deployments, border control

deployments seek to protect national borders by deter-

mining with greater certainty who is entering (and,

sometimes, exiting) a nation. These biometric applica-

tions help deter and expose entrance document fraud

and identity fraud. They differ from visa shopping

deployments insofar as they are oriented more towards

identity and credential verification at the arrival and

departure stages, rather than at the registration or

application stages.

One example of a border control fraud reduction

effort using biometrics is the United Arab Emirates’

Iris Expellee Tracking System, deployed in 2003 and

run by the Abu Dhabi Police. United Arab Emirates

(UAE) officials were concerned about foreigners ex-

pelled from the UAE subsequently attempting to reen-

ter the country after changing their name and/or

nationality and then obtaining a new passport. The

Iris Expellee Tracking System involves collecting iris

images from all expelled foreigners. Arriving Passen-

gers have their irises scanned at the UAE borders to

verify that they were not formerly expelled. In 2005,

the UAE reported catching approximately 32,850 pre-

viously expelled individuals [10].

Another program, the Canadian Passenger Acceler-

ated Service System (CANPASS), uses iris recognition

to allow preapproved, low risk travelers to clear

Canadian customs and immigration without having

to present documentation to border officials. Appli-

cants who are approved to participate in CANPASS

have their irises enrolled into the system. They then

present their irises at designated kiosks at participating

border environments (e.g., airports) for quick passage

into Canada. This system not only helps reduce the
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chance of forged documents passing inspection due to

human error, it also allows border control officers to

focus more on persons of greater interest who are more

likely to be potential fraudsters.
Related Entries

▶Asset Protection

▶Binding of Biometric and User Data

▶Biometric Encryption

▶Consumer Recognition

▶ Forgery Sign

▶ Fraud Reduction, Applications

▶ Liveness and Anti-Spoofing

▶ Spoofing

▶Time and Attendance
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Synonyms

Biometric fraud reduction; Fraud deterrence; Fraud

mitigation; Identity theft reduction
Definition

Fraud is conventionally defined as the deliberate per-

version or withholding of veracity to induce another to

surrender something of value. In the context of

biometrics, the item of value is typically an identity

or a privilege associated with an identity.

Fraud can assume a variety of forms ranging from

phishing to scams to hacking. In the specific case of

biometrics, fraud can also consist of spoofing, or the

presentation of an artifact designed to imitate a legiti-

mate biometric.

Fraud reduction in a biometric context entails both

the use of biometric technology to deter, inhibit, and

mitigate fraud, as well as efforts to counter the exploi-

tation of biometric system vulnerabilities through ille-

gitimate submissions.

http://www.nytimes.com/2008/05/12/us/politics/12vote.html?ref=opinion
http://www.nytimes.com/2008/05/12/us/politics/12vote.html?ref=opinion
http://www.cato.org/testimony/ct-js031401.html
http://www.biometrics.gov/Documents/PalmPrintRec.pdf.
http://www.biometrics.gov/Documents/PalmPrintRec.pdf.
http://www.hhsc.state.tx.us/OIE/RFP/FrontEnd/FingerImaging_RFI.pdf
http://www.hhsc.state.tx.us/OIE/RFP/FrontEnd/FingerImaging_RFI.pdf
http://www.findbiometrics.com/article/115.
http://www.reuters.com/article/pressRelease/idUS121192+17-Jun-2008+PRN20080617
http://www.reuters.com/article/pressRelease/idUS121192+17-Jun-2008+PRN20080617
http://www.theregister.co.uk/2007/06/08/schengen_visa_data/
http://www.theregister.co.uk/2007/06/08/schengen_visa_data/
http://www.biometrics.org/bc2005/Presentations/Conference/2%20Tuesday%20September%2020/Tue_Ballroom%20B/Lt.%20Mohammad%20UAE2005.pdf
http://www.biometrics.org/bc2005/Presentations/Conference/2%20Tuesday%20September%2020/Tue_Ballroom%20B/Lt.%20Mohammad%20UAE2005.pdf
http://www.biometrics.org/bc2005/Presentations/Conference/2%20Tuesday%20September%2020/Tue_Ballroom%20B/Lt.%20Mohammad%20UAE2005.pdf
http://www.biometrics.org/bc2005/Presentations/Conference/2%20Tuesday%20September%2020/Tue_Ballroom%20B/Lt.%20Mohammad%20UAE2005.pdf


Fraud Reduction, Overview F 585

F

Introduction

With the increased reliance of modern society on

technology, fraudsters have developed new exploitative

techniques to prey upon the unsuspecting and the

vulnerable. Internet merchants offer wares at hard-

to-resist discounts, but never deliver their patrons

any of the purchased goods. Sophisticated counterfei-

ters create fake currency and checks that are frequently

difficult to distinguish from their genuine counter-

parts. Identity thieves send realistic, yet illegitimate,

emails designed to harvest passwords and identity in-

formation from the careless and the inexperienced.

The cost of fraudulent activity, which includes

tangible sums lost and expenditures to recover stolen

goods, identities, or privileges, can be enormous. In

2005, British insurer Norwich Union estimated the

cost of fraud in UK to be around £16 billion, or roughly

1.4% of UK’s gross economic output (http://news.bbc.

co.uk/1/hi/business/4463132.stm). In 2006, this num-

ber soared to £40 billion according to conservative UK

government estimates (http://www.timesonline.co.uk/

tol/news/uk/article633540.ece). The same year, identity

theft alone victimized over 8 million people in the

US to the tune of more than US $49 billion, according

to the California Office of Privacy Protection. Unfor-

tunately, loss due to fraudulent activities is likely

to increase as fraudsters expand their reach thanks to

increased globalization and rapid development of

technology.

Technology, however, can be used both to abet, aswell

as combat, fraud. Biometric technologies and systems,

especially, enable the deterrence, inhibition, and mitiga-

tion of fraud. For the purpose of this discussion,

biometrics are defined as technologies that perform auto-

mated measurement of human physiological or behav-

ioral characteristics to determine or authenticate identity.

Biometrics, thus, revolve around the concept of

identity. Identity, in turn, is often seen as a proxy for

trustworthiness, whether through linkage of identity to

a historical and/or transactional record, or through

connection of identity to a privilege or right.

Trustworthiness is the first victim of any fraudulent

act. Security, robustness, and confidence of identity are

therefore critical. Biometrics, if employed judiciously

and with appreciation for the limitations and vulner-

abilities of the technology, can satisfy such crucial

needs.
Biometrics Vis-à-Vis Alternative
Authentication/Identification
Technologies

Biometric Advantages in Fraud Reduction

Currently several non-biometric methods and technol-

ogies exist to help combat fraud by serving an ▶ au-

thentication or ▶ identification function. Examples of

such technologies include smart cards, tokens, fobs,

passwords, and personal identification numbers

(PINs). Generally, these technologies can be divided

into two categories: those based on something one has

and those based on something one knows.

Biometrics introduces a third, complementary as-

pect: authentication and identification technologies

based on something one is. By focusing on the ele-

ments that are inherent to an individual, biometrics

offer additional protections that are unavailable or

weaker through more traditional authentication/iden-

tification technologies. These include:

� Convenience

� Accountability

� Security
Convenience

Biometrics can obviate the carrying of tokens or cards

that can be lost, misplaced, or – more saliently – stolen,

leading to fraudulent access or unauthorized trans-

actions. Biometrics can also eliminate the need to

remember passwords or PINs. Often, people select

simplistic passwords that can be easily guessed or

hacked because they fear that they will forget more

complex passwords.

Losing or forgetting a biometric, however, is con-

siderably more difficult, especially for biometrics pri-

marily dependent on physiological, rather than

behavioral characteristics. Whereas one can suffer

brain damage and forget how to sign one’s name,

rendering signature recognition useless, misplacing or

forgetting a finger that is integrally tied to the rest of

one’s body is harder to accomplish. While violent

criminals can go to extremes to remove a finger from

a target so as to gain access to a fingerprint-secured

facility, it is markedly more challenging to trick a target

into unwittingly giving up such a personal feature.

http://news.bbc.co.uk/1/hi/business/4463132.stm
http://news.bbc.co.uk/1/hi/business/4463132.stm
http://www.timesonline.co.uk/tol/news/uk/article633540.ece
http://www.timesonline.co.uk/tol/news/uk/article633540.ece
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Accountability

Biometrics are excellent technologies when trans-

ferability is of concern. Instead of relying on force or

compulsion, fraudsters achieve success through convinc-

ing, coercion, and deception designed to encourage vic-

tims to surrender, or provide access to, a privilege, right,

or item of value. Sophisticated scams, for example,

can lead victims consciously and willingly to hand over

precious access cards or passwords to perpetrators of

fraud.

Biometric characteristics, however, are distinct and

very personal. Their transference from one individual

to another can be, as mentioned earlier, extremely

challenging. This can contribute markedly to account-

ability, in addition to deterring and inhibiting fraud. If

it is difficult for a fraudster to trick an individual into

giving up their biometric, then any action taken that

can be linked to that biometric is likely to have been

undertaken by the legitimate possessor of the biomet-

ric in question. This makes it difficult to believe

excuses in which a misdeed was allegedly committed

by another who fraudulently obtained one’s biometric

characteristics.

With more traditional authentication/identifica-

tion technologies, however, transferability can translate

into reduced accountability. One fraudster could

borrow access cards or passwords that allow him to

take advantage of services or privileges intended for

another. There could even be complicity in this effort –

something that would take a high degree of personal

sacrifice if biometrics were involved.

Biometrics can also add an element of accountabil-

ity by deterring and inhibiting fraudulent attempts at

establishing or relying on multiple identities. In the

past, for instance, certain fraudsters with notorious

histories of cashing bad checks would assume several

identities so as to avoid the stigma and troubles accom-

panying their negative transactional histories. The in-

troduction of biometric technologies and systems,

however, has helped identify and address problems of

multiple registrations by linking personal, biometric

characteristics, rather than just nominal identities, to

transactional histories and other historical records.

This has also aided in the combating of fraudulent

acts including multiple civil ID registrations and visa

shopping.

Additionally, in some case, biometrics deter and

mitigate acts of fraud by encouraging or necessitating
the leaving behind of distinct, personal characteristics.

For example, some prospective culprits may think

twice before acting if they are aware that their criminal

and fraudulent activity could potentially result in the

leaving behind of biometric markers, such as their

latent fingerprints. Those who proceed anyway and

ignore the concern of enrolling in a biometric system

and leaving behind an image or template of a distinct,

personal characteristic could possibly be identified

later and tracked by the biometrics they previously

presented, a potential advantage for law enforcement

and means of mitigating the severity and impact of a

fraudulent act (e.g., by catching fraudsters before they

are able to take advantage of the captured item of value

or privilege).
Security

As described above, biometrics offers security and anti-

fraud advantages over more traditional authentication/

identification technologies with respect to identity

transference, establishment of multiple fake identities,

and loss or forgetting of credentials. They can render

certain fraudulent activities – like phishing – almost

irrelevant.

Biometric characteristics also provide additional

anti-fraud security benefits thanks to their inherent

nature; compared with passwords/PINs and cards/

fobs/tokens, biometric characteristic is generally more

difficult to capture, steal, replicate, and fake. Cards, for

instance, are often designed to be robust, yet flexible

enough that, in case they are lost, a replacement can

be relatively easily created. PINs can be sniffed out

through tracking or hidden monitoring technologies.

They can also be readily discovered, in several cases,

through brute force and trial-and-error techniques.

Replication of a compromised PIN is then no more

complicated than re-entering the newly revealed PIN.

It can be challenging, however, to create a replica of

a biometric characteristic that has sufficient enough

fidelity to work with a targeted biometric system. Cre-

ating a plausible fake iris, for example, often requires

more effort than just copying electronic data onto a

new smart card or retyping a password (in which cases

the artifact will be identical to the genuine sample).

This is due in part to liveness detection, a security

function that is built into several biometric systems.

Liveness detection, a fraud countermeasure, deters or



Fraud Reduction, Overview F 587

F

inhibits the presentation of artifacts, called spoofs, as

legitimate biometric characteristics. Examples of live-

ness detection include: measurement of finger perspi-

ration over time, 2D Fourier spectrum analyses, and

behavioral reactions to cues (e.g., blinking upon

command).

In addition, several biometric systems rely on tem-

plates, rather than full images of biometric charact-

eristics, for reasons that range from privacy to cost

to efficiency of data management and processing.

Attempting to regenerate or reverse-engineer a com-

plete biometric image from a select template is a very

challenging, if not, at times, outright impossible, task.

Also, trying alternative, brute-force techniques to rec-

reate a biometric characteristic could take extremely

lengthy and impractical periods of time, given the vast

number and variability of components that make up

many biometric characteristics.

Furthermore, biometric systems can often be cost-

ly, expensive, and technologically complex. Spending

large sum of money to obtain a biometric device for

study and identification of vulnerabilities and penetra-

tion points may not be cost effective. Likewise, even

those who have the resources and know-how to create

fake biometric characteristics, however, may find the

effort of doing so to be cost-inefficient, especially when

the value of the item or privilege being protected is

outweighed by the cost of fraudulently obtaining it.

In some of the Panasonic’s US offices, for example,

hand geometry biometric readers are employed for time

and attendance functions vis-à-vis custodial staff.

Though several special effects and novelty item firms

have the ability to create fake hand models, the cost and

effort entailed in obtaining a suitable spoof would proba-

bly exceed the financial return of an extra hour of pay.
Authentication/Identification Trifecta

While biometrics offer significant advantages over

more traditional and conventional authentication/

identification technologies, it is important to note

that this does not mean that biometrics should be

employed in lieu of these other technologies. When

issues of fraud, as well as security and protection of

identity, are at stake, it may be optimal to leverage all

proven options, especially given the potentially high

cost of fraud and the ease with which fraud can often

be committed.
Also, as will be discussed in the following section,

biometrics have their own inherent vulnerabilities.

These potential weaknesses can sometimes be mitigated

by adopting complementary technologies which can

provide an extra – if not necessarily equally effective –

layer of defense. Where fraud is involved, the need for

security may outweigh convenience and cost; such sce-

narios encourage reliance on an authentication trifecta

that consists of:

� Something you have

� Something you know

� Something you are
Biometric Vulnerabilities

While biometric technologies can prove to be relatively

robust and effective tools in fraud reduction through

deterrence, inhibition, and mitigation, biometric sys-

tems themselves are not immune to fraudulent and

exploitative attacks. These attacks can be classified

according to three overarching categories:

� Input level attacks

� Processing and transmission level attacks

� Backend and storage level attacks
Input Level Attacks

Input Level Attacks generally fall into one of three

categories:

� Spoofing attacks

� Bypassing attacks

� Overloading attacks

Spoofing attacks consist of attempts to deceive biomet-

ric system sensors into accepting an artifact as a legiti-

mate biometric sample, typically for false enrollment,

verification, or identification purposes. Spoofing

attacks are usually considered to be attempts at break-

ing into biometric systems that are predominantly

physiological in their focus. Biometric systems that

are predominantly behaviorally based revolve less

around the creation of spoof items and more around

careful observation and practiced imitation of legiti-

mate behavior.

Bypassing attacks consist of attempts to circum-

vent biometric system processes by creating artificial
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Fingerprint Face Iris Hand geometry Voice recognition

Prostheses Prostheses Prostheses Prostheses Audio playback
recordings

Props/Models/Gag
items

Masks/Disguises Video playback
recordings

Props/Models/Gag
items

Audio composite
recordings

Photograph
imitations

Photograph
imitations

Photograph imitations

Residual prints Imprinted contact
lenses

Latent prints
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failures during enrollment or recognition so as to skip

the biometric system altogether. One example of a

bypassing attack would be to alter the quality of a

biometric characteristic in such a way that a biometric

system has difficulty in acquiring that characteristic.

This could, for example, entail artificially filing down

fingerprints so that there is a failure to enroll. The risk,

as a result, is that an individual could then possibly be

excused from biometric system recognition require-

ments and permitted to use a less robust authentica-

tion/identification system.

Closely related to bypassing attacks are variants

called overloading attacks. In an overloading attack, a

fraudster attempts to defeat or circumvent a biometric

system by damaging or overwhelming the biometric

sensor(s). Overloading attacks can range from flashing

strobe lights against an optical sensor to presenting

artificial heat sources to near-infrared-based sensors

to short circuiting of sensitive sensors using liquids.

As with bypassing attacks, the goal of an overloading

attack is to either reduce the robustness, precision, and

accuracy of the targeted biometric system and/or to

encourage the substitution of the biometric recogni-

tion method with a less robust authentication/identifi-

cation process and mechanism.
Processing and Transmission Level
Attacks

Processing and transmission level attacks generally fall

into one of three categories:

� Hacking

� Skimming/Sniffing

� Hill-Climbing
Processing and transmission level attacks are, strictly

speaking, lesser acts of deception and fraud and more

direct, technically based invasions. However, the result

of success in any such attack on a biometric system

could enable future acts of fraud, so it is important to

be aware of these potential vulnerabilities.

Hacking, as herein defined, consists of electronical-

ly based attempts to penetrate a biometric system by

altering the operation and functionality of the system

through non-physical modifications and subterfuge

(often at the code or system communications levels).

A hacker could change the enrollment or recognition

algorithms of a biometric system, lowering thresholds

to accommodate less robust performance and security

checks. They could program the system to forward them

the copies of legitimate samples or instruct the system to

allow them special, otherwise unauthorized, access.

Skimming and sniffing refers to techniques by

which data is captured – often surreptitiously – during

communication or processing of the information.

Skimming devices, for example, could be designed to

read and copy biometric data being submitted on a

smart card to a biometric system for comparison

against a live sample. This data could then be illegally

replicated. Sniffing could occur if monitoring pro-

grams are put in place to capture data packets being

sent from the capture sensor to the backend for

verification.

Hill-climbing attacks first consist of the presenta-

tion of a test biometric sample to a biometric algo-

rithm for comparison against an enrolled sample. A

match score is then obtained and studied so that a

new test sample can be presented for re-comparison

and the achievement of a higher match score. This

process is re-iterated until the biometric system’s

threshold has been discovered and is penetrable.
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Backend and Storage Level Attacks

Backend and storage level attacks generally fall into

two categories:

� Infiltration

� Implantation

As with the process and transmission level, the back-

end and storage levels are susceptible to malicious

hacking. Skilled hacker-fraudsters could alter the per-

mission levels tied to specific images or templates

stored in databases. They could infiltrate the backend

and alter the way biometric data that is classified and

stored. More of concern, they could perhaps steal bio-

metric characteristics data and try to generate spoofs

using the information captured.

In addition, acts of fraud can be facilitated if

fraudsters are able to gain unauthorized or complicit

access to backend and storage databases of biometric

information to perform acts of implantation. In this

attack, fraudsters might implant their own biometric

characteristics into a targeted biometric system’s

database. By doing so, fraudsters would be able to

appear as legitimately authorized individuals with

free access to the rights or privileges otherwise se-

cured by the biometric system.
Countermeasures

In order to counter – or at least inhibit – the three

aforementioned types of attacks, certain countermea-

sures can be enacted. These countermeasures can be

classified according to the level of attack they are best

suited to address.

At the input level, spoofing is typically counter-

acted by the attempt to determine whether a live, real

human sample is being presented to the capture device.

This is, as mentioned earlier, called liveness detection

and is based on the assumption that, with the excep-

tion of some cadaver recognition applications, a legiti-

mate biometric will always be presented by the live

possessor of that biometric characteristic.

As for bypassing and overloading attacks, counter-

measures include increased ruggedization of capture

devices and sensor equipment, conscientious form factor

design (e.g., creating shielding from external light

sources that could be potentially malevolent), supervi-

sion of enrollment and recognition submission
processes, as well as rigorous fallback procedures and

processes. After all, those who seek to accomplish fraud

will often target the weakest link. If this means taxing a

biometric system out so that, for example, access to a

secure facility can be obtained through a potentially

more fallible human guard inexperienced at identifying

fake identity documents, which will often be the strategy

of choice for motivated fraudsters.

At the processing and transmission levels, counter-

measures may entail proven information systems and

information technology security techniques, such as

the use of firewalls and encryption. After all, at a

certain level, biometric data is often converted into

streams of digital data that should be accorded no

less than the rudimentary security protections already

commonplace for digital information that is less per-

sonally sensitive. In addition, best practices should be

implemented, such as requiring the use of data trans-

mission shields (that limit the range at which data can

be sniffed from contactless smart chips), as well as

strict limitation of access to matching score data.

At the backend and storage levels, highly advisable

countermeasures include firewalls, as well as extensive

auditing functions and logs of modifications executed

(whether they are additions, subtractions, or altera-

tions of biometric data). A best practice countermea-

sure would also be the frequent, though not necessarily

habitual or scheduled, review of random images and

templates for evidence of tampering, alteration, miss-

ing presence, or unexpected presence.

In order to further deter or inhibit the abuse of bio-

metric systems by fraudsters, biometric systems may also

be designed with the following four countermeasures:

� ▶Multifactor or ▶multimodal authentication

requirements

� Randomization of modality

� System challenges

� Emphasis on internal/subcutaneous characteristics

By adopting multifactor or multimodal systems,

deployers increase the challenge for fraudsters by requir-

ing them to defeat several disparate systems for which

the optimum exploitation and penetration techniques

may be very different. Though there is a convenience

tradeoff, the security that accrues can be significant,

particularly when security of identity is at stake. The

main caveat, however, is that potential fraudsters are not

encouraged to pretend to be unable to use one of the

modalities so as to simplify their, say, spoofing task.
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Fingerprint Face Iris Hand geometry Voice recognition

Spectroscopic
analysis
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Commands, and stimuli
(e.g., – blinking)
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specifically- placed
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randomly generated
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dilation)

Ink/Dye detection

Timestamping and
byte scrambling
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To provide a little more balance between conve-

nience and security, a multimodal system could still

be employed, but only with one or two randomly

selected biometric modalities required for authentica-

tion/identification. Variations could also be introduced

within a single modality (e.g., requiring submission of

a right index finger, one day, and submission of a left

thumb on the next day).

The authentication/identification systems could also

be designed to issue randomized as well as cued

challenges – even if the original submission would

otherwise have been acceptable. At the very least, this

implementation would provide the opportunity to ob-

tain two biometric samples. Where the samples are un-

usually similar, extra caution might be merited in case a

spoof is involved, as the likelihood that a personwill be as

infallible as to place their biometric so consistently is slim.

Finally, biometric systems can be deployed and

designed so as to focus on internal or subcutaneous

characteristics that are generally much more difficult

to capture surreptitiously, as well as to forge or modify.
Biometrics and Fraud: Looking
to the Future

While a lot of focus has been placed on the design and

utilization of biometrics to deter, inhibit, and –

to a lesser degree – mitigate non-biometric fraud,

comparatively little attention has been paid to the con-

sequences and implications when fraudsters are success-

ful in compromising biometric data. Because biometric

characteristics are so intrinsic and relatively immutable,

this is an issue of particular concern that can impact the

successful deployment of the technologies.
Cancelable/Changeable Biometrics

To address concern over the immutability of bio-

metrics, research has been conducted by entities like

IBM and the Korean Biometrics Engineering Research

Center into cancellable biometrics, also known as

changeable biometrics. The high-level concept of such

research has been to look into altering biometric data

that is captured before it is actually fully processed and

stored in template form. In this way, a compromised

biometric can theoretically be revoked and a new algo-

rithm can generate a novel distortion of the affected

individual’s biometric characteristic – essentially giving

them a new biometric.

However, one should keep in mind that if a fraud-

ster is able to get hold of the original source biometric

characteristic (or an equivalent spoof), this approach

would not suffice, as the fraudster would then still be

able to regenerate a new cancelable/changeable bio-

metric characteristic just as easily as the legitimate

bearer of the original source biometric.
Nominal Identities Versus Biometric
Identities

As biometric systems increasingly protect sensitive

data and items or access privileges of high value, the

incentive fraudulent activity to exploit them will also

increase. And at some point, as the case has been with

virtually every major security technology in the past,

biometric data will be compromised.

One of the important ways in which the impact of

such compromise can be mitigated is to sever, when-

ever feasible and reasonable, the connection between
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an individual’s nominal identity and their biometric

identity. If, for instance, a deployment merely

requires a determination as to whether a given indi-

vidual, represented by their biometric characteristics,

should be granted access to a given secure location,

then there is no need to link permanently the indivi-

dual’s name and background information to their

biometric data after an initial background check has

been conducted.

Whereas names have often served as proxies for

trustworthiness or transactional histories, biometrics

can now serve this purpose going forward. With

biometrics there is also the possibility of selecting dif-

ferent biometric aspects for accreditation or validation

given each distinct application or deployment. A single

biometric characteristic, thus, has the flexibility to serve

in a variety of functions that process that biometric

differently – without making that biometric into a

universal identifier rife with the problems of overuse

that have plagued the US social security number.

In the scenario described above, if a fraudster com-

promises one biometric system, the damage is miti-

gated insofar as other systems and deployments may

still be protected, in addition to sensitive and private

information tied to one’s nominal identity.
Valuing Biometric Data

One of the remaining challenges with respect to

biometrics and fraud is the determination of how to

value biometric data. This is especially important as

fraudsters increasingly target not just data protected by

biometrics, but biometric data, itself.

Traditionally, items have been valued based on

three factors:

� Scarcity

� Uniqueness

� Demand

With biometrics, however, such a framework for asses-

sing value is of little use: virtually each and every given

biometric characteristic is inherently distinct (if not

unique), scarce, and of high demand for both the

possessor and potential imposters/fraudsters. It

would seem, therefore, that all biometric characteris-

tics should be deemed priceless or at least assigned

extremely lofty values.
However, this would be impractical in an age of risk

calculations and need by insurance companies, govern-

ments, and other entities realistically to quantify the

impact and cost of fraud. Therefore, valuation of a

biometric is best conducted according to a different

set of three factors:

� Value of the Biometrically-Protected Item or Privilege

� Range of Utility

� Spoofability

In addition, whenever a biometric system is designed,

careful consideration needs to be taken as to whether

templates or images should be used. Generally, images

will be more valuable from perspectives concerned

with forensics, interoperability, and scalability.

Templates, however, will be more desirable from an

identity-protecting perspective. Thus, from a fraud

reduction perspective, the guiding principle should

be that templates, which are more limited than images,

normally, should be employed whenever possible in

lieu of images. To achieve this balance, a negative

incentive should be implemented such that there will

be stiffer legal penalties for compromised biometric

image data versus biometric template data.
Related Entries

▶Asset Protection

▶Binding of Biometric and User Data

▶Biometric Encryption

▶Consumer Recognition

▶ Forgery Sign

▶ Fraud Reduction, Applications

▶ Liveness and Anti-Spoofing

▶ Spoofing

▶Time and Attendance
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Freeman Chain Code (FCC)
Freeman Chain Code (FCC) is a compact method

for representing the contours of an object, first made

popular by Herbert Freeman.

▶Hand Data Interchange Format, Standardization
Function Creep
This refers to the use of data beyond the purposes

originally intended at the time of data collection. For

biometrics, this usually means using the data for
purposs other than identification, as when a face

image is used to determine gender or ethnicity.

▶Privacy Issues
Fundamental Frequency,
Pitch, F0
The fundamental frequency or F0 is the frequency at

which vocal chords vibrate in voiced sounds. This

frequency can be identified in the sound produced,

which presents quasi-periodicity, the pitch period

being the fundamental period of the signal (the inverse

of the fundamental frequency). Pitch is more often

used to refer to how the fundamental frequency is

perceived.

▶ Speech Analysis
Fusion Network Topology
The network architecture including sensors, commu-

nication channels, and fusion processing. The fusion

processing may be distributed due to physical con-

straints in the system. If a communication channel

between two sensors is long, it may be beneficial to

fuse all the sensors at one end of the channel so that

only the single fused decision is sent through the

channel. The topology is directly impacted by the

physical layout of the sensor network.

▶ Fusion, Decision Level
Fusion, Biometric
See Multi-biometrics.
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▶Multibiometrics and Data Fusion Standardization

▶Multiple Experts
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Synonyms

Distributed detection; Distributed inference making;

Multiple classifier fusion; Statistical signal processing
Definition

Decision level fusion falls under a broader area known

as distributed detection systems and is the process of

selecting one hypothesis from multiple M hypotheses

given the decisions of multipleN sensors in the presence

of noise and interference. In biometrics, decision level

fusion creates a single decision from typically two

hypotheses, imposter or genuine user, frommultiple bio-

metric sensor decisions, whichmay ormay not be identi-

cal sensors. Often, decision level fusion is implemented to

save communication bandwidth as well as improve deci-

sion accuracy. A statistical performance model for each

biometric sensor is needed a priori to support the system

wide optimization in terms of two error rates: false accep-

tance rate, admitting an imposter, and false rejection rate,

rejecting the genuine user. A weighted sum of these two

errors is a useful objective function. This provides the

designer with the flexibility to weigh one errormore than

the other error. Decision level fusion may be done at one

processor, centrally, or atmultiple processors, distributed.
Introduction

In biometric decision level fusion, the biometric sensors

send their final decisions through a communication

network that finally fuses these decisions at a fusion

center. Optimal decision fusion theory can be applied

to these problems. In distributed detection systems, the

number of decisions a sensor can make varies as well as

the ▶ fusion network topology. It may be more advan-

tageous to fuse a few sensors at a local node before

transmitting the information over a long distance to

the final fusion processor [1]. This complicates the

fusion problem by introducing different fusion net-

work topologies. Decision level fusion remains at the

foundation of the problem, however.

The decision level fusion problem in the biometric

area is typically one in identifying the user as a genuine

user or an imposter with the final decision made by a

central fusion processor [2–5]. This is referred to as a

▶ parallel fusion network. The advantages of fusion are

twofold. The first advantage is a more accurate final

decision by using multimodal, multiple and diverse,

biometric sensors, which provide significantly more

information to base a decision. Secondly, communica-

tion bandwidth needs, which are great as more sensors

are networked, remain relatively constant if the deci-

sions instead of the full observation or measurement

are communicated.

The fusion accuracy of the sensor decisions relies

on the accuracy of the statistical models for the sensors

and an optimally designed fusion rule. The biometric

verification problem may be posed as a ▶ binary

hypothesis testing problem with the match score(s)

serving as observations. The two hypotheses are

H0: Imposter Identified and

H1: Genuine User Identified

Probability of false alarm,

PFA ¼ Pðu ¼ 1jH0Þ ð1Þ
and probability of false rejection,

PFR ¼ Pðu ¼ 0jH1Þ ð2Þ

In the Bayesian formulation, these two errors are

weighted by costs and summed into a single cost func-

tion called the Bayesian risk function. The Bayesian

risk function is

R ¼ PðH0Þ � CFA � PFA þ PðH1Þ � CFR � PFR; ð3Þ
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where PðH0Þ, a priori probability of an imposters,

PðH1Þ a priori probability of a genuine user CFA, cost

of false acceptance, and CFR, cost of false rejection. In

the worst-case scenario, one assumes equal a priori

probabilities. Thus, we get

R ¼ CFA � PFA þ CFR � PFR: ð4Þ
We can rewrite Eq. 4, using a single cost factor by

replacing the cost of false acceptance by

CFA ¼ 2� CFR: ð5Þ
This simplifies the problem to one design parameter to

optimize if the a priori probabilities of genuine users

and imposters are assumed to be fixed.
Decision Level Fusion with Single Bit
Information

Often Gaussian distribution functions are used as the

statistical sensor models for a binary hypothesis problem.

Each sensor has a different Gaussian distribution func-

tion as shown in Fig. 1 for each hypothesis: genuine user

and imposter. Higher observation values are typically

associated with a positive user identification or the

genuine user hypothesis. This leads to the distribution

on the right side of the plot in Fig. 1. The imposter has a

lower mean. Sensor 1 must measure a score that exceeds

a threshold for comparison purpose to decide if it has the
Fusion, Decision-Level. Figure 1 Illustration of thresholding

Gaussian conditional density functions.
genuine user. The error rates are simply the areas under

the distribution corresponding to the opposite hypothe-

sis or wrong side of the threshold. False acceptance

probability is the area to the right of the threshold

under the imposter distribution. False rejection proba-

bility is the area to the left of the threshold under the

genuine user distribution. A single bit of 1 denotes that

the user is detected while the 0 is for the imposter [7].

The threshold divides the entire decision region

into region of acceptance and region of rejection. If a

user’s matching score happens to fall above the thresh-

olds, he/she is considered as genuine. If the user’s

matching score falls below threshold he/she is consid-

ered as imposter [1, 2, 5, 6]. This process using the

threshold, li , for sensor i is given by

ui ¼ 1; yi >¼ li
0; yi < li



8i ð6Þ

Let ½u
 ¼ u1; u2; . . . ; un½ 
, be the combined vector

of decisions represented by 1s and 0s for all the

sensors. These decisions are combined using a fusion

rule of

uf ¼ f ð½u
Þ: ð7Þ
The complete set of fusion rules for the 2-sensor case is

given in Table 1 [1]. There are 16 possible rules

for 2 sensors or (22)N with N sensors as 2. The fusion

rule can be written as a 4-bit vector, where each

bit represents the final fused decision given the
process, Decision Regions, and Error Regions, for given



Fusion, Decision-Level. Table 1 All Possible Fusion Rules for 2 Sensors

u1 u2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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sensor decisions, [u1 u2]. Since, there are two hypo-

theses, the fusion rules are based on Boolean logic.

For example, in Table 1, f2 is a rule based on AND

logic. The final decision is ‘‘1’’ only when both the

sensors say ‘‘1’’ and is ‘‘0’’ otherwise. Similarly, f9 is

‘‘NAND’’, and f8 is ‘‘OR’’.

For 3 sensors, there are 8 possible vectors requiring

a fused decision. Hence, the fusion rule is 8 bits long,

and the number of possible fusion rules for this prob-

lem is (22)3 or 64 rules for 3 sensors.

The error probabilities as in Eqs. 1 and 2 for the

entire system after fusion is estimated using

GPFA ¼
X
½u


Pðuf ¼ 1j½u
;H0ÞPð½u
jH0Þ: ð8Þ

Assuming independence, Eq. 8 can be calculated using

the statistical models and

GPFA ¼
X
½u


Pðuf ¼ 1j½u
;H0Þ
Yn
i¼1

PðuijH0Þ

¼
X
½u


Pðuf ¼ 1j½u
;H1Þ
Yn
i¼1

ð

yi

PðyijH0Þdyi ð9Þ

In case of correlation [8], however, the product dis-

appears resulting in a multivariate integral or

¼
X
½u


Pðuf ¼ 1j½u
;H0Þ
ð

y1

ð

y2

	 	 	 	 	 	 	 	 	
ð

yn

fY1;Y2;			:Yn

0
B@

ðy1;y2; . . . ;ynjH0Þ dy1dy2; . . . ;dyn

1
CA

ð10Þ

Similarly,

GPFR ¼
X
½u


Pðuf ¼ 0j½u
;H1ÞPð½u
jH1Þ: ð11Þ
Assuming independence, (11) can be calculated

using

GPFR ¼
X
½u


Pðuf ¼ 0j½u
;H1Þ
Yn

i¼1

PðuijH1Þ: ð12Þ

In case of correlation, the multivariate integral arises as

before giving

¼
X
½u


Pðuf ¼ 0j½u
;H1Þ
ð

y1

ð

y2

	 	 	 	 	 	 	 	 	
ð

yn

fY1;Y2;...;Yn

0
B@

ðy1;y2; . . . ;ynjH1Þ dy1dy2; . . . ;dyn

1
CA:

ð13Þ

This multivariate integral can only be calculated using

numerical methods. Since there are 2N combinations

of local decisions for N sensors, this integral must be

evaluated 2N�1 times to estimate each error. This

operation can be very expensive computationally as

the number of sensors increases. An alternative is

using the Bahadur–Lazarfeld expansion, which enables

the estimation of the error probabilities using ‘‘n�1’’
evaluations of integrals [8].

The Bayesian risk function is now given by,

R ¼ P0C10Pðu0 ¼ 1j½u
;H0Þ þ P1C01Pðu0 ¼ 0j½u
;H1Þ:
ð15Þ

Optimal Fusion Rule

For independent sensors, however, the optimal fusion

rule is the ▶ likelihood ratio test [5]. For fixed thresh-

olds, the optimal fusion rule can be obtained by using

the likelihood ratio as in

Pðu1; u2; u3 	 	 	 	 	 	 	 	 	 unjH1Þ
Pðu1; u2; u3 	 	 	 	 	 	 	 	 	 unjH0Þ

u0 ¼ 1

>
<

u0 ¼ 0

P0ðC10 � C00Þ
P1ðC01 � C11Þ :

ð16Þ



Fusion, Decision-Level. Table 4 Optimal Fusion Rule

Under Assumption of Independence

CFA Optimal Fusion Rule

0.2 Majority Voting Rule

0.6 Majority Voting Rule

1 (1 OR 2) AND 3

1.2 (1 OR 2) AND 3

1.5 (1 OR 2) AND 3

1.9 (1 OR 2) AND 3

Fusion, Decision-Level. Table 3 Thresholds for the 3 Sensors for Single Bit Information

Sensor Threshold FAR FRR

1 95.945029260756 0.13409060569213 0.00007790554000

2 185.799498919171 0.01245661704014 0.00223574300430

Fusion, Decision Level. Table 2 Means and Standard Deviations of the Gaussian Distributions Under both the

Hypothesis for Different Sensors

Hypothesis/Paremeter H0/m0 H0/s0 H1/m1 H1/s1

Sensor 1 47.375 43.864 144.514 12.843

Sensor 2 67.755 52.633 251.209 23.008
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Pðu1; u2; u3 	 	 	 	 	 	 	 	 	 unjHhÞ in (16) can be replaced by
Qn
i¼1

Ð
yi

PðyijHhÞdyi in case of independence or

Ð
y1

Ð
y2

	 	 	 	 	 	 	 	 	 Ð
yn

fY1;Y2;...;Yn
ðy1;y2; . . . ;ynjHhÞdy1dy2; . . . ;dyn

in case of correlation. Optimal fusion rule can be

employed when the thresholds are fixed. The optimal

fusion rule as in Eq. 16 minimizes the Bayesian risk

function.

In the case of independence [5], the optimum rule

simplifies to

XN
i¼1

uilog
1� FFR

FAR

� �
þ ð1� uiÞlog FFR

1�FAR

� �� �

uf ¼ 1

>

<

uf ¼ 0

log
CFA

2�CFA

� �
:

ð17Þ
Independent Pair of Biometric Sensors

Consider two sensors with conditional distributions

under both the hypotheses given by the familiar

Gaussian distribution. A Gaussian distribution is char-

acterized by Nðm; sÞ with a different mean, m, and
standard deviation, s, for each hypothesis as men-

tioned earlier. Table 2 gives the parameters of the

Gaussian distributions used for the 2 sensors in this

example. In Table 3, the threshold that achieves the

false alarm rate and false rejection rate given is speci-

fied for both sensors. Using these thresholds as well
as the error rates in the optimal fusion rule of Eq. 17,

we give the rules in the right column for the specified

costs in the left. Thus, different rules become optimum

as the error rates are weighted differently. If the sensor

is replaced with a more accurate biometric sensor, the

rule selection will change. Finally, if the sensors are

correlated, the original rule in Eq. 16 must be applied

and performance computed accordingly.
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Feature Fusion
Definition

In feature-level fusion, the feature sets originating from

multiple biometric sources are consolidated into a

single feature set by the application of appropriate

feature normalization, transformation, and reduction

schemes. The primary benefit of feature-level fusion is

the detection of correlated feature values generated by

different biometric algorithms thereby identifying a

compact set of salient features that can improve recog-

nition accuracy. Eliciting this feature set typically

requires the use of ▶ dimensionality reduction meth-

ods and, therefore, feature-level fusion assumes

the availability of a large number of training data.

Feature-level fusion algorithms can also be used for

template update or template improvement.
Introduction

Feature level fusion is an example of an early fusion

strategy, i.e., the biometric evidence from multiple

sources are consolidated before invoking the matcher.

In this scheme, multiple feature sets are integrated in

order to generate a single template that is expected to

be more robust than the individual feature sets. When

the feature sets to be integrated are homogeneous (e.g.,

multiple measurements of a person’s hand geometry),

a single feature vector can be computed as a weighted

average of the individual feature sets. When the feature

sets are nonhomogeneous (e.g., features of different

biometric modalities like face and hand geometry),

they can be concatenated to form a single feature set.

Feature selection schemes are employed to reduce

the dimensionality of the ensuing feature set [1]. Con-

catenation is not possible when the feature sets are

incompatible (e.g., fingerprint minutiae and eigen-

face coefficients).

If the feature sets to be combined originate from

the same feature extraction algorithm (thus, a single

modality is assumed) then feature level fusion can be

used for template update or template improvement as

discussed in the following section.

1. Template update: The template in the database

can be updated based on the evidence presented

by the current feature set in order to reflect (possi-

bly) permanent changes in a person’s biometric.

Hand geometry systems use this process to update

the geometric measurements stored in the database

in order to account for changes in an individual’s

hand over a period of time. A simple scheme would

be to take the average of the two feature vectors

corresponding to the two instances of the biometric

signal and use the average feature vector as the

new template (Fig. 1).

2. Template improvement: In the case of fingerprints,

the minutiae information available in two impres-

sions can be combined by appropriately aligning

the two prints and removing duplicate minutia

thereby generating a larger minutia set. This process,

known as template improvement, can also be used to

remove spurious minutiae points that may be pres-

ent in a feature set. While template update is used to

accommodate temporal changes in a person’s bio-

metric, the purpose of template improvement is to

increase the number of features (and decrease the

number of spurious features) in the template.



Fusion, Feature-Level. Figure 1 A template update procedure may be viewed as a feature fusion scheme. In this

example, the nine-dimensional feature set of a user (‘‘Feature Set 1’’) is updated based on the evidence

presented by the current feature set (‘‘Feature Set 2’’), via the averaging scheme.

598F Fusion, Feature-Level
Several template improvement algorithms have been

discussed in the literature for fingerprints. Jiang and

Ser [2] propose a template improvement scheme where

a reliability measure is associated with each extracted

minutia point. This reliability measure is updated as

minutiae evidence from newly acquired impressions is

made available. The parameters of a minutia point

(i.e., its x-y location and orientation) are updated

via a weighted average scheme; even the ‘‘type’’ of

the minutiae (i.e., ridge-ending or ridge-bifurcation)

is altered if necessary. Template improvement is appli-

cable only when the new fingerprint impression is

accurately aligned with the stored one. The authors

use the match score to determine if two impressions

are accurately aligned. During the verification stage,

only those minutia points whose reliability measure is

above a certain threshold are used in the matching

process. The authors show that their scheme results

in (1) the elimination of spurious minutiae points,

(2) the addition of missed minutiae points, (3) the

relabeling of incorrect minutiae types and, conse-

quently, (4) a general improvement in matching per-

formance. Other algorithms for minutiae template

improvement have been discussed in [3, 4].
Feature Fusion Scheme

How does one consolidate feature sets originating from

different algorithms and modalities? Feature level
fusion is difficult to achieve in such cases because of

the following reasons:

1. The relationship between the feature spaces of dif-

ferent biometric systems may not be known.

2. The feature sets of multiple modalities may

be incompatible. For example, the minutiae set

of fingerprints and the eigen-coefficients of

face are irreconcilable. One is a variable length

feature set (i.e., it varies across images) whose

individual values parameterize a minutia point;

the other is a fixed length feature set (i.e., all

images are represented by a fixed number of

eigen-coefficients) whose individual values are

scalar entities.

3. If the two feature sets are fixed length feature vec-

tors, then one could consider augmenting them to

generate a new feature set. However, concatenating

two feature vectors might lead to the ▶ curse-of-

dimensionality problem [5] where increasing the

number of features might actually degrade the sys-

tem performance especially in the presence of small

number of training samples. Although the curse-

of-dimensionality is a well known problem in pat-

tern recognition, it is particularly pronounced in

biometric applications because of the time, effort

and cost required to collect large amounts of bio-

metric (training) data.

4. Most commercial biometric systems do not pro-

vide access to the feature sets used in their pro-

ducts. Hence, very few biometric researchers have
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by Ross and Govindarajan [1] to perform feature level

fusion.
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focused on integration at the feature level and

most of them generally prefer fusion schemes

that use match scores or decision labels.

If the length of each of the two feature vectors to

be consolidated is fixed across all users, then a feature

concatenation scheme followed by a dimension-

ality reduction procedure may be adopted. Let X ¼
{x1,x2, . . .,xm} and Y ¼ {y1,y2, . . .,yn} denote two

feature vectors (X 2 Rm and Y 2 Rn) representing the

information extracted from two different biometric

sources. The objective is to fuse these two feature sets

in order to yield a new feature vector, Z, that would

better represent an individual. The vector Z of di-

mensionality k, k < (m þ n), can be generated by

first augmenting vectors X and Y , and then performing

feature selection or feature transformation on the re-

sultant feature vector in order to reduce its dimension-

ality. The key stages of such an approach are described

as follows (also see Fig. 2).
Feature Normalization

The individual feature values of vectors X¼ {x1,x2, . . .,

xm} and Y ¼ {y1,y2, . . .,yn} may exhibit significant

differences in their range as well as form (i.e., distribu-

tion). Augmenting such diverse feature values will

not be appropriate in many cases. For example, if the
xi ’s are in the range [0,100] while the yi ’s are in

the range [0,1], then the distance between two aug-

mented feature vectors will be more sensitive to the xi ’s

than the yi ’s. The goal of feature normalization is to

modify the location (mean) and scale (variance) of

the features values via a transformation function in

order to map them into a common domain. Adopting

an appropriate normalization scheme also helps

address the problem of outliers in feature values.

While a variety of normalization schemes can be

used, two simple schemes are discussed here: the

min–max and median normalization schemes.

Let x and x 0 denote a feature value before and after

normalization, respectively. The min–max technique

computes x 0 as

x0 ¼ x �minðFxÞ
maxðFxÞ �minðFxÞ ; ð1Þ

where Fx is the function which generates x, and

min(Fx) and max(Fx) represent the minimum and

maximum of all possible x values that will be observed,

respectively. The min–max technique is effective when

the minimum and the maximum values of the compo-

nent feature values are known beforehand. In cases

where such information is not available, an estimate

of these parameters has to be obtained from the avail-

able set of training data. The estimate may be affected

by the presence of outliers in the training data and this

makes min–max normalization sensitive to outliers.

The median normalization scheme, on the other

hand, is relatively robust to the presence of noise in

the training data. In this case, x 0 is computed as

x 0 ¼ x �medianðFxÞ
medianðjðx �medianðFxÞÞ jÞ : ð2Þ

The denominator is known as the Median Absolute

Deviation (MAD) and is an estimate of the scale

parameter of the feature value. Although, this nor-

malization scheme is relatively insensitive to outliers,

it has a low efficiency compared to the mean and

standard deviation estimators. Normalizing the fea-

ture values via any of these techniques results in

modified feature vectors X 0 ¼ fx 0
1; x

0
2; . . . x

0
mg and

Y 0 ¼ fy 0
1; y

0
2 ; . . . y

0
mg: Feature normalization may not

be necessary in cases where the feature values pertain-

ing to multiple sources are already comparable.
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Feature Selection or Transformation

Augmenting the two feature vectors, X 0 and Y 0, results
in a new feature vector, Z 0 ¼ fx 0

1; x
0
2; . . . x

0
m; y

0
1,

y 0
2 ; . . . y

0
ng, Z 0 2 Rmþn. The curse-of-dimensionality

dictates that the augmented vector of dimension-

ality (mþ n) need not necessarily result in an improved

matching performance compared to that obtained by

X 0 and Y 0 alone. The feature selection process is a

dimensionality reduction scheme that entails choosing

a minimal feature set of size k, k< (mþ n), such that a

criterion (objective) function applied to the training

set of feature vectors is optimized. There are several

feature selection algorithms in the literature, and any

one of these could be used to reduce the dimensionali-

ty of the feature set Z 0. Examples include sequential

forward selection (SFS), sequential backward selection

(SBS), sequential forward floating search (SFFS), se-

quential backward floating search (SBFS), ‘‘plus l take

away r’’ and ▶ branch-and-bound search (see [6, 7] for

details). Feature selection techniques rely on an appro-

priately formulated criterion function to elicit the op-

timal subset of features from a larger feature set. In the

case of a biometric system, this criterion function

could be the Equal Error Rate (EER); the d-prime

measure; the area of overlap between genuine and

impostor training scores; or the average GAR at pre-

determined FAR values in the ROC/DET curves

corresponding to the training set (see [1]).

Dimensionality reduction may also be accom-

plished using feature transformation methods where

the vector Z 0 is subjected to a linear or a nonlinear

mapping that projects it to a lower dimensional sub-

space. Examples of such transformations include the

use of principal component analysis (PCA), indepen-

dent component analysis (ICA), multidimensional

scaling (MDS), Kohonen Maps, and neural networks

[8]. The application of a feature selection or feature

transformation procedure results in a new feature vec-

tor Z ¼ { z1,z2, . . .zk} which can now be used to repre-

sent the identity of an individual.
Examples of Feature Level Fusion

Ross and Govindarajan [1] discuss feature level fusion

as applied to three different scenarios: (1) multialgo-

rithm, where two different face recognition algorithms

based on Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) are combined; (2)

multisensor, where the three different color channels of

a face image are independently subjected to LDA and

then combined; and (3) multimodal, where the face and

hand geometry feature vectors are combined. The gen-

eral procedure adopted in [1] is summarized as follows.

1. Let {Xi,Yi} and {Xj,Yj} be the feature vectors

obtained at two different time instances i and j.

Here, X and Y represent the feature vectors derived

from two different information sources. The

corresponding fused feature vectors may be

denoted as Zi and Zj, respectively.

2. Let sX and sY be the normalized match scores

generated by comparing Xi with Xj and Yi with Yj,

respectively, and let smatch¼ (sXþ sY) ∕2 be the fused
match score obtained using the simple sum rule.

3. A pair of fused feature vectors, Zi and Zj, are then

compared using two different distance measures:

the Euclidean distance (seuc) and the Thresholded

Absolute Distance or TAD (stad). Thus,

seuc
Xk
r¼1

ðzi;r�zj;rÞ2 ð3Þ

stad
Xk
r¼1

Iðjzi;r�zj;r j; tÞ: ð4Þ
Here, I(u,t)¼1, if u >t (and 0, otherwise), t is a

prespecified threshold, and k is the dimensionality

of the fused feature vector. The thresholded abso-

lute distance measure determines the number of

normalized feature values that differ by a magni-

tude greater than t. The seuc and stad values are

consolidated into one feature level score, sfeat, via

the simple sum rule (Fig. 2). This retains informa-

tion at the match score level (smatch) as well as the

feature level (sfeat).
4. Finally, the simple sum rule is used to combine

smatch and sfeat in order to obtain the final score

stot (Fig. 3).

The authors compare the matching performances

obtained using smatch and stot in all three scenarios.

Results indicate that feature level fusion is advanta-

geous in some cases. The feature selection scheme

ensures that redundant or correlated feature values

are detected and removed before invoking the matcher.

This is probably one of the key benefits of performing

fusion at the feature level [9].
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combined in a multibiometric system [1].
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Chibelushi et al. [10] discuss a scheme to combine

the features associated with the voice (audio) and lip

shape (video) of an individual in an identification

system. Fourteen mel-frequency cepstral coefficients

(MFCC) and 12 geometric features are extracted

from the audio and video streams to represent the

voice and shape of the lips, respectively. The PCA and

LDA transformations are used to reduce the dimen-

sionality of the concatenated feature set. The authors

demonstrate that the use of feature level fusion in their

system is equivalent to increasing the signal-to-noise

ratio (SNR) of the audio signal thereby justifying the

use of lip shape in the fusion module. Other examples

of feature level fusion can be found in [11] (face and

iris) and [12] (hand geometry and palmprint).
Summary

Feature-level fusion represents an early fusion strategy

in which multiple feature sets are consolidated in order

to generate a more robust template. These feature sets

can emerge (1) from a single biometric algorithm

operating on different biometric samples (e.g.,
two images of the right hand of a single subject),

or (2) from multiple biometric algorithms. If the fea-

ture sets to be combined originate from the same

biometric algorithm (thus, a single modality is as-

sumed), then feature level fusion can be used for tem-

plate update or template improvement. If the feature

sets originate frommultiple biometric algorithms, then

a concatenation procedure can be used to integrate

them. The concatenation procedure has a feature nor-

malization and a feature selection (or transformation)

stage resulting in a compact set of salient features that

can be used by the matcher. The primary advantage of

such an approach is the elimination of redundant fea-

tures thereby improving matching accuracy. In some

cases, it may be advantageous to design a hybrid system

that combines the outputs of score-level fusion and

feature-level fusion. The disadvantages of feature-level

fusion include the need to design a new matcher and to

acquire a large number of training samples.
Related Entries

▶Multibiometrics
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Fusion, Image Level
▶ Fusion, Sensor-Level
Fusion, Measurement Level
▶ Fusion, Score-Level
Fusion, Physics-Based
Physics-based fusion makes use of the physical char-

acteristics of the multispectral image acquisition pro-

cess. In this fusion scheme, information on the spectral

response of the sensor, the transmittance of the liquid

crystal tunable filter (when used), the spectral reflec-

tance of the object being imaged, and the spectral

power distribution of the illuminant, are used, sepa-

rately or in combination, as weights for the different

sub-spectral images for their fusion.

▶Multispectral and Hyperspectral Biometrics
Fusion, Quality-Based

NORMAN POH

CVSSP, FEPS, University of Surrey Guildford, Surrey

GU2 7XH, UK
Synonym

Quality-dependent fusion
Definition

Quality-based fusion refers to the use of quality mea-

sures in combining several biometric system outputs.

Quality measures are an array of measurements quan-

tifying the degree of excellence or conformance of

biometric samples to some predefined criteria known

to influence the system performance. Examples of qual-

ity measures for face biometrics are focus, contrast, and

face detection reliability; and for iris biometrics are iris

texture richness, the area of iris used for matching, and

iris detection reliability. In quality-based fusion, the
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match scores of biometric samples of higher quality are

considered more important, i.e., given higher weights,

in order to compute the final combined score.
F

Introduction

Quality-based fusion in the context of multibiometric

systems is more challenging than multi-algorithmic

systems because quality measures of the different bio-

metric modalities are not comparable. This implies that

quality-based fusion techniques have to necessarily

consider the joint space of scores and quality measures,

hence taking into account not only the dependency

among scores themselves but also the dependency

between scores and quality measures.

Prior studies in this direction include but are not

limited to [1–4]. Nandakumar et al. proposed a likeli-

hood ratio-based approach to achieve quality depen-

dent score fusion [1]. This is a generative approach to

model the relationship between scores and quality

measures of the same modality. The likelihood of

scores and quality measures of different biometric

modalities are combined using the product rule,

hence, realizing a naive Bayes classifier. The result is

that the less informative modalities will produce likeli-

hood ratios close to one and will therefore not influ-

ence the final combined score.

Fierrez-Aguilar et al. proposed a quality-based

fusion realized using a support vector machine

(SVM) [2]. In their context, quality measures were

manually annotated and were used in two ways. First,

they were used to control the penalty function of the

SVM learning criterion. Second, during inference,

quality measures were also used to weigh the relative

influence of the respective modalities and the joint

decision making process. Intuitively, the approach

enables the multimodal system to focus on the single

modality of dominant quality or for comparable

qualities on the joint decision making system. Unfor-

tunately, as a result of the SVM training strategy the

joint decision making system is optimized for good

quality data only.

Bigun et al. proposed the Bayesian Conciliation

method [3]. This method relies on two components

known as a client and an impostor supervisor. The

client supervisor estimates the expected true authentic-

ity score of a claim based on its expertise in recogniz-

ing client data (likewise for the impostor supervisor).
The final decision is made by taking into account

the different expertise of the two supervisors and

choosing the one which comes closest to its goal,

which is defined as zero for impostor supervisor and

one for client supervisor. Effectively, the supervisor

adapts to each identity claim as a function of the quality

of the input data.

Kryszczuk et al. proposed a derived quality measure

[4] instead of raw quality measures as done in [1–4].

The derived quality measure, or the confidence is

defined as the posterior probability of making the

correct decision given some observed evidences,

which include both the system output and raw quality

measures. In the context of bimodal fusion, this means

that if the decision of two systems are in conflict

(different), one takes the decision of the system

which is more likely to be correct.

Kittler et al. proposed a framework to incorporate

the quality information in fusion from a pattern recog-

nition perspective [5]. In this framework, various levels

of system output dependency, i.e., whether they belong

to the same modality or to different modalities, are

considered.

Last but not least, Poh et al. proposed a generative

approach to estimate the joint density of scores and

quality measures by first clustering the quality mea-

sures into discrete hidden states [6]. This approach

assumes that the scores and quality measures are

independent given the discrete quality state/cluster.

This approach is sensible because similar quality

measures in a cluster will share similar statistical

properties and thus they can be combined by the

same fusion classifier, and vice versa for dissimilar

quality measures.
Quality-Based Fusion from the Pattern
Recognition Perspective

Let x 2 RR be a vector of output scores of R experts, q

2 RP be a vector of P quality measures and k 2 {C, I}

be one of the two possible classes of users, i.e., genuine

users or clients and impostors. From the Bayesian

point of view, the generative and discriminative

approaches which incorporate the quality information

directly can be written as follows:

yllrcom  f llrðx; qÞ ¼ log
pðx; qjCÞ
pðx; qjIÞ ð1Þ
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yprobcom  f probðx; qÞ ¼ PðCjx; qÞ ð2Þ
In practice (2) is approximated by:

PðCjx; qÞ � sigmoid
�
f discðx; qÞ� ¼ 1

1þ exp f discðx; qÞ� �

ð3Þ
where the output f disc(x,q) 2 [�1,1] does not have

to be associated with probability. f disc(x, q) is known as

a discriminative function and very often, based on the

sign of its output, one classifies x as either belonging

to a client or an impostor. One can implement f llr(x, q)

using any density estimator, e.g., Gaussian Mixture

Model and Parzen windows [7]; f prob(x, q) using logis-

tic regression [8] or any neural network [6] with the

sigmoid activation function; and f disc(x, q) using a

support vector machine [9], linear or quadratic dis-

criminant functions and their variant [8], and neural

networks.

The conventional fusion approaches without using

the quality information can also be divided into either

generative or discriminative. They can be written in

similar ways as in (1) and (2) except that q is not used

as part of the observations.
Classifier Design and System Output
Dependency

Considered here is the case where the system outputs, x,

can be obtained from the same biometric modality or

from different modalities. For this reason, xm, i is intro-

duced to denote the i-th classifier of the m-th biomet-

ric modality. There are Im systems for the m-th

modality and M biometric modalities are available.

As a result, the number of systems available for fusion

is ∑m Im.

In general, higher dependence is expected among

the system outputs sharing the same biometric modal-

ity and, in contrast, independence when the system

fuses different biometric modalities. By assuming dif-

ferent types of system output dependency, the follow-

ing three types of fusion architecture are identified, in

increasing levels of complexity:

1. Multi-stage single processing (MSSP). This architec-

ture is a result of assuming independence among all

the system outputs despite the fact that systems

sharing the same biometric modality may be
dependent. It can be written as:

yMSSP
com ¼

Y
m

Y
i

PðCjxm;i; qÞ ¼
Y
m

Y
i

f probðxm;i; qÞ

ð4Þ
Note that since f prob(xm, i,q) operates on a

single system at a time, it can be considered as

a quality-dependent score normalization proce-

dure. It is therefore not a deterministic one-to-

one mapping function as studied in [10] but rather

a function of xm, i and q jointly. Note that discrimi-

native functions f disc(x,q), e.g., a Support Vector

Machine (SVM), do not output scores which satisfy

the axiomatic properties of probabilities and can-

not therefore be used in conjunction with a product

fusion rule. Instead, the sum rule may be more

appropriate, i.e.,

yMSSP
com ¼

X
m

X
i

f discðxm;i; qÞ ð5Þ

By doing so, one implicitly assumes that the class-

conditional distributions of the outputs f disc(xm, i,q)

across all m and i are comparable. This is, in gener-

al, not the case, thus implying the need for normal-

izing the outputs. Fortunately, this can be avoided

by normalizing the input to the function f disc :

RRþP!R instead of its output. Suppose that

each of the RRþP input elements is normalized to

having zero mean and unit variance (across all the

training examples), and the same complexity of

f disc(xm, i,q) is used for allm and i, then the outputs

f disc(xm, i,q) will be comparable. For the generative

approach, using the sum rule, i.e.,

yMSSP
com ¼

X
m

X
i

f llrðxm;i; qÞ; ð6Þ

is a direct implication of assuming independence

among the output of systems xm,i for all m and i.

2. Multi-stage joint processing (MSJP). This architec-

ture takes into consideration the dependency

among system outputs derived from the same bio-

metric modality yet ignores the dependency of the

system outputs coming from different biometric

modalities. It can be written as:

yMSJP
com ¼

Y
m

PðCjxm; qÞ ¼
Y
m

f probðxm; qÞ; ð7Þ

where xm denotes a vector the components of

which are the system outputs sharing the m-th

biometric modality, i.e., xm  ½xm;1; . . . ; xm;Im 
.
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The practical implication of this architecture is that

one designs a fusion classifier per biometric modal-

ity and then combines allM resulting fusion classi-

fiers using a fixed rule, e.g., the product rule for

f prob(xm,q) and the sum rule for f disc(xm,q) and

f llr(xm,q).

3. Single-stage joint processing (SSJP). This architec-

ture does not assume system output independence.

It can be written as:

ySSJPcom ¼ PðCjx; qÞ ¼ f probðx; qÞ; ð8Þ
where x is a vector containing all the system out-

puts, i.e., x ¼ {xm, i j8i,m}. The function f prob(x, q) is

simply replaced by f llr(x, q) when using a ▶ gener-

ative classifier and by f disc(x, q) when using a▶ dis-

criminative classifier.

In the discussion that follows, the focus is on train-

ing the discriminative function f disc(x, q). However,

the discussion generalizes to the functions f llr(x, q)

and f prob(x, q). For this reason, the generic term

f (x, q) is used and refer to one of the three particular

fusion algorithms, i.e., f llr(x, q), f prob(x, q), or

f disc(x, q), only when necessary.
The Complexity of Modeling Scores and
Quality Measures: A Generative
Approach

In the generative approach, modeling the joint space of

x and q is difficult since q is not directly relevant to the

classification task. For example, if one uses a mixture

of Gaussian components to estimate the joint density,

one would use many more components than one does

if one models just x. This problem is particularly acute

when the dimension of q is large. One way to reduce

the complexity (the number of components and their

associated parameters) is to first cluster the quality

measures and then learn the density of x for each

cluster. This strategy was reported in [6]. Instead of

modeling p(x,q) directly, Poh et al. proposed to factor-

ize it into p(x jq)p(q) where,

pðxjqÞ ¼
X
Q

pðxjQÞPðQjqÞ ð9Þ

where Q is a cluster state and P(Q jq) is the posterior
probability of Q given the observation q. Since Q is not

observed (hidden), it has to be integrated out, hence,
explaining the sum over Q in (9). In [6], it turns out

that one does not need to model p(q) to implement a

quality-based fusion classifier.

The solution of (9) is more elegant than the one

that directly estimates p(x, q). This is because the

density p(x jQ) has only R dimensions, i.e., the dimen-

sion in x, whereas p(x, q) has R þ P dimensions. As a

result, one can potentially face the curse of dimension-

ality when modeling p(x, q), especially in the situation

where x is small and q is large in dimension. In brief,

this curse means that modeling the increased number

of dimensions may be less effective since this is not

necessarily supported by an exponential increase in

the number of training samples. In fact, there is only

a fixed number of training samples to design one

fusion classifier. Note that when q is one dimensional,

the classifier should be more appropriately called

a quality-dependent score normalization procedure.

The realized quality-based fusion via (9), when

written in the form of (1), is:

f llrðx; qÞ ¼ log

P
QpðxjC;QÞpðQjqÞP
QpðxjI;QÞpðQjqÞ ð10Þ
The Complexity of Modeling Scores and
Quality Measures: A Discriminative
Approach

Similar to the generative approach, jointly estimating

x and q is also a challenging problem for the discrimi-

native approach. Suppose that, one uses a linear func-

tion in f (x, q) to distinguish the client class from the

impostor one. In this case a weight will be associated

with each element in x and q. The result after training

is that magnitude of the weight associated with q will

be comparatively small because q has no discriminative

information. This suggests that using nonlinear func-

tion of f (x, q) may be more useful.

One way to introduce non-linearity is by using

some kind of expansion between x and q, i.e., x � q,

where� is called a tensor product. Note that x and q are

not vectors of the same length. If x has R elements

and q has P elements, then x � q will result in P � R

elements and each element is a product between a

pair of the elements in x and q. Therefore, when train-

ing f (x, q), the fusion classifier must be fed with inputs

[x, q, x � q] instead of [x, q].
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When one uses [x, q, x� q], the linear function can

be written as:

f ðx;qÞ¼
X
i

X
j

wi;jxiqjþ
X
i

wixiþ
X
j

vjqj

¼
X
i

xi
X
j

qjwi;j

|fflfflfflfflffl{zfflfflfflfflffl}
þwi

0
BB@

1
CCAþ

X
j

vjqj ;

|fflfflfflffl{zfflfflfflffl}
ð11Þ

where the weight wi, j is associated with xiqj, the weight

wi is associated with xi, and vj is associated with qj.

In this notation, xi is an element of vector x and qj is an

element of vector q. (11) clearly shows that the result-

ing classifier is linear except that the weight is modified

dynamically by the quality measures via the first under-

braced term. The second under-braced term shows

that q dynamically adjusts the decision threshold.

Several possible ‘‘arrangements’’ are outlined in

Table 1, presented in the order of increasing complexi-

ty, i.e., the number of parameters. f ([x, q]) is

written to explicitly refer to the second arrangement,

f([x, x � q]) to refer to the third arrangement, etc. The

second column shows the four possible arrangements,

i.e., the way the features are used as input to a fusion

algorithm. The third column shows the resulting dis-

criminative linear function f disc(x, q). While similar

analyzes cannot be done for the linear discriminative

function f prob(x, q) (due to the sigmoid function) and

for the generative function f llr(x, q), our purpose in

showing the elements in the expanded input vector

along with their associated weight parameters is to

illustrate the complexity of each arrangement. For

instance, the first arrangement, i.e., f([x]), does not

use any quality information. The second arrangement,

i.e., f([x, q]) does not contain any interaction between

x and q. However, it considers the case where the
Fusion, Quality-Based. Table 1 The complexity of the

function f(x,q) when implemented using a linear

classifier, in increasing level of complexity due to different

input arrangements

No. Arrangement
The resulting

function f disc(x,q)

No. of
parameters

1 [x] ∑ixiwi R

2 [x,q] ∑ixiwiþ∑jqjvj RþP

3 [x, x � q] ∑ixi (∑jqjwi, jþwi) R � (Pþ1)

4 [x, q, x � q] ∑ixi
(∑jqjwi, jþwi )þ∑jvjqj

RþPþR� P
decision threshold may be modified by q. In the third

arrangement, one creates a linear classifier whose

weights can change dynamically as a function of q. The

last arrangement, i.e., f ([x, q, x � q]) or (11), is the

most general one since it contains all possible interac-

tions between x and q of the first three arrangements.

In [5], it was shown that the last three arrangements

achieve superior results compared to the first one

(without considering the quality information) across

many intramodal and multimodal fusion tasks.

The quality-enhanced discriminative fusion classi-

fier with the input [x, x� q] (the third arrangement) is

structurally very similar to the one proposed in [11]

where a reduced polynomial discriminative function

was used. In our case, one can use any discriminative

classifier to implement it. This is an elegant solution

because one does not need to design a dedicated fusion

algorithm such as those proposed in [2, 3, 11] to

achieve the same goal any longer.
Related Entries

▶Biometric Sample Quality

▶ Face Sample Quality

▶ Feature-level Fusion

▶ Fingerprint Image Quality

▶ Iris Image Quality

▶Multiple Classifier Systems

▶Multibiometrics

▶ Score-level Fusion
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Synonym

Biometric Fusion, Rank-Level
Definition

Rank level fusion is the method of consolidating

more than two identification results to enhance the

reliability in personal identification. In multimodal

biometric system, rank level fusion can be used to com-

bine the biometrics matching scores from the different

biometric modalities (for example face, fingerprint,

palmprint, and iris). It can also be used for performance

improvement in unimodal biometric system by combin-

ing multiple classifier output that use different classifiers

(K nearest neighbor, neural network, support vector

machine, decision tree, etc.), different training set,

different architectures (different number of layers or

transfer function in neural network), or different
parameter values (different kernels in support vector

machine or different K in K nearest neighbor).
Introduction

The majority of biometric system deployed using fea-

ture extraction from a single biometric modality and a

particular classification procedure to determine the

identity on an individual. The perfect solutions for

user identification are often difficult to achieve, mainly

due to the large number of user classes and the imper-

fection in the feature extraction process. Therefore, the

improvement in the user identification results using the

simultaneous extraction of features and classifiers of

different types has been investigated. The combination

of potentially conflicting decisions in multimodal or

unimodal biometric system employing different classi-

fiers can be achieved in several ways: at feature, score,

and decision level. In general, the improvement in iden-

tification accuracy is achieved by selecting combination

mechanism that can take advantage of strengths of

individual classifiers while suppressing their weakness.

Any biometric recognition system is capable of

generating matching scores for the input user with

those of the enrolled possible identities. The set of all

the possible user identities can be ranked by sorting the

matching scores in the descending order. Thus a bio-

metric system can identify an unknown user by gen-

erating ranks, i.e., integer numbers for each of the

possible user identity. The rank level fusion refers to

the mechanism of combining such output ranks from

the various biometrics ▶matchers (subsystems), to

consolidate the combined output ranks to establish

the identity of an individual with higher confidence.

The matching score contains more information than

ranks and therefore matching score level fusion

schemes are believed to be more flexible. However,

the rank level fusion schemes do not require ▶ trans-

formation of ranks from various biometrics matchers

into a common domain and are simpler to implement.

Several decision level fusion schemes only use ▶ top

choice (rank) from each of the biometric classifiers,

which is likely to be sufficient for biometric systems

with small number of users. However, with the increase

in number of enrolled identities or users, the correct

rate for top choices drops, the ▶ secondary choices

often contain near misses that should not be over-

looked and are made use of in the rank level fusion.
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Methods for Combining Ranks

The voting techniques proposed by different research-

ers [1–3] for consolidating rank output from the dif-

ferent biometric matchers will now be introduced.

Given the ranked list of user identities returned by M

different biometric matchers, let ri(k) be the rank

assigned to the user k by the ith matcher. The user

identity for kth user is assigned by computing the fused

rank score mk from all the M matchers.

1. The Highest Rank Method. In this method, the user

identity is ascertained from the highest ranks

returned by the individual matchers. Each of the

possible user identity receives M ranks, each from

the M matchers. The fused rank score mk for every

possible user identity k is computed from the min-

imum (highest) of these M ranks. The user identi-

ties are then sorted in the order of fused rank scores

to obtain the combined or new ranking from all M

matchers. Any ties in the fused rank scores (mk) are

randomly broken to obtain linearly ordered com-

bined ranking. These ties are due to a number of

user identities sharing the same combined ranks

and depend on the number of employed matchers.

The chances of the occurrences of such ties will be

smaller, if the number of enrolled user identities are

large and the number of matchers employed in the

fusion are small. The advantage of this method lies

in the utilization of strength of each of the biomet-

ric matchers. However, large number of matchers

can result in more ties in the combined ranking,

which is the major problem in this method. There-

fore this method is considered useful in biometric

systems combining small number of matchers with

large number of enrolled users.

2. Borda (Named for the French scientist Jean-Charles

de Borda (1733–1799) who formulated this prefer-

ential voting system.) Count Method. The Borda

count is the generalization of majority vote and

the most commonly used method for ▶ unsuper-

vised rank level fusion. It is the voting method in

which each matcher gives priority to all possible user

identities. Eachmatcher ranks the fixed set of possible

user identities in the order of its preference. For every

matcher, the top ranked user identity is givenN votes,

the second ranked candidate identity is given N-1

votes and so on. Then for every possible user iden-

tity, the votes from all the matchers are added. The
user identity that receives the highest number of

votes is assigned as the winner or the true user

identity.

mk ¼
XM
i¼1

riðkÞ 8k; k ¼ f1; 2; . . .Ng: ð1Þ

The Borda count scoremk represents strength of agree-

ment among different biometric matchers. The Borda

count method assumes statistical independence, i.e.,

ranks assigned to a given user by different matchers

are independent. This assumption is often made

in practice but it may not be true. The Borda count

method is particularly considered suitable for combining

the biometrics matchers with large number of

user identities that often generate the correct user iden-

tities near the top of list (ranks) but not at the top.

This method is efficient, simple, and does not require

any training. However, it assumes that all matchers are

equally correct. This may not be the case when some

matchers are more likely to be correct than others.

Therefore, weighted Borda count method has been sug-

gested to utilize the strength of individual matchers.

3. Weighted Borda Count Method. The performance of

different biometric matchers is not uniform, for

example, a biometric matcher using iris images is

expected to perform better than those matchers

using hand geometry or face images. Therefore,

modification of Borda count method by assigning

corresponding weights to the ranks produced by

individual matchers has been suggested. The fused

rank scores in weighted Borda count method are

computed as follows:

mk ¼
XM
i¼1

wiriðkÞ; ð2Þ

where the wi represents the weights assigned to the

ith matcher. The weight wi are assigned to reflect the

significant of each matcher and can be computed from

the overall assessment of the performance. The weights

are computed during the training phase using logistic

regression (as detailed in [3]) or using more sophisticat-

ed machine learning techniques.

4. Bayes Fuse. The Bayes fuse is the ▶ supervised

rank level fusion method based on Bayesian infer-

ence. Each of the possible user identity is ranked
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according to the fused rank scores computed as

follows:

mk ¼
XM
i¼1

log
Pr½mkðiÞjgennuine

Pr½mkðiÞjimposter
 ; ð3Þ

where Pr[mk(i)| imposter] is the probability that an

imposter user would be ranked to mk(i) by the ith

matcher and Pr[mk(i)| gennuine] is the probability

that a genuine user would be ranked to mk(i) by the

ith matcher. These two likelihood probabilities are com-

puted from the training data during training phase. The

above equation is easily derived [2] from the estimation

of two posterior probabilities, each for the genuine and

imposter class, using Bayes rule. The combined ranks

generated using Eq. (3) makes a common naive Bayes

assumption, i.e., individual ranks assigned to the user

identities byMmatchers are independent. The training

phase in Bayes fuse method required the collection of

simple statistics about the distribution of ranks among

various user identities. The rank level fusion using

Bayes fuse was originally introduced for information

retrieval but is equally useful in biometrics fusion.
Example

The four different rank level fusion methods discussed

above can be better clarified with a simple example in

multimodal biometric fusion. This example illustrates

the combination of three different biometric matchers

(Fig. 1), using iris, fingerprint, and face image, to
Fusion, Rank-Level. Figure 1 An example of multimodal bi
generate matching scores. These matching scores are

internally sorted to produce different ranking among

the possible user identities. There are only five different

users (user A, user B, user C, user D, and user E) and

1, 2, . . .5 represents the ranks for the possible input

user identity with 1 being the highest rank/possibility.

Let the weights of different matchers computed from

the training data using linear regression be 0.5, 0.15,

0.35 for the matcher 1, matcher 2, and matcher 3

respectively. Let the probability that a genuine user be

ranked at ranks (1, 2, 3, 4, 5) be (0.8, 0.1, 0.06, 0.02,

0.02), (0.5, 0.42, 0.06, 0.01, 0.01), and (0.6, 0.2, 0.08,

0.07, 0.05) for matcher 1, matcher 2, and matcher 3

respectively. Similarly the prior probabilities for an

imposter user be ranked at ranks (1, 2, 3, 4, 5) have

been obtained from the training data and are listed as

(0.2, 0.9, 0.94, 0.98, 0.98), (0.5, 0.58, 0.94, 0.99, 0.99),

and (0.4, 0.8, 0.92, 0.93, 0.95) respectively for matcher

1, matcher 2, and matcher 3.

Let us now compute the fused rank scores (mA, mB,

mC, mD, mE) and the new rankings for each of the four

methods discussed in previous section.

1. Highest Rank. The fused rank scores using highest

rank level method are shown in Table 2. The fused

rank score for user A (mA) will be 2 (highest rank or

minimum of 2, 3, 2). The ties for mC and mD are

randomly broken and the combined ranking is also

shown in Table 1. The highest rank method

achieves highest ranking for C and therefore the

unknown input identity is user C.
ometric system employing rank level fusion.
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Highest rank method Borda count method

User identity Fused rank score Combined ranking Fused rank score Combined ranking

A mA 2 3 mA 7 2

B mB 3 4 mB 12 4

C mC 1 1 mC 10 3

D mD 1 2 mD 4 1

E mE 4 5 mE 13 5

Fusion, Rank-Level. Table 2 Example for consolidating ranks using supervised rank level fusion methods

Weighted borda count method Bayes fuse method

User identity Fused rank score Combined ranking Fused rank score Combined ranking

A mA 2.15 2 mA �6.34 2

B mB 3.8 3 mB �10.93 4

C mC 4.05 4 mC �6.48 3

D mD 1.15 1 mD 1.47 1

E mE 4.35 5 mE �11.43 5
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2. Borda Count. The fused rank scores using Borda

count are computed as follows:mA = (2 + 3 + 2) = 7,

mB = (4 + 5 + 3) = 12, mC = (5 + 1 + 4) = 10,

mD = (1 + 2 + 1) = 4, mE = (4 + 4 + 5) = 13. Thus,

mD is lowest and user D achieves highest combined

ranking (Table 1).

3. Weighted Borda Count. The fused rank scores

mA = (2 � 0.5 + 3 � 0.15 + 2 � 0.35) = 2.15. Simi-

larly rank fused scores for rest of the users can be

computed and are shown in Table 2.

4. Bayes Fuse. The prior probabilities that each of

the ranks are true (untrue), i.e., belongs to the

genuine (imposter) class, can be obtained from

the training data and are provided in the problem.

The fused rank score for user A can be computed

using (3) as follows: mA = log (0.1/0.9) + log (0.06/

0.94) + log (0.2/0.8) = �6.34. The rest of the fused

rank scores and the combined rankings are dis-

played in Table 2.

Summary

In the biometrics literatures, one can find several

examples [1, 3, 4, 6] of above rank level fusion methods

to consolidate the outputs from different matchers.

Bhatnagar et al. [4] employs a variation of Borda

count method that uses partitioning of templates
to consolidate the combined ranks. Highest rank

method employed by Rautiainen and Seppanen [6], is

referred as lowest rank method since it chooses the

minimum rank from the list of dissimilarity score

instead of conventional maximum rank methods that

employ highest ranks from the list of similarity scores.

Several other variations of Borda count method have

also been developed in the literature [7]; Nenson’s

method that uses successive elimination from Borda

count that are below average Borda count or Quota

Borda method that includes the quota element in

counting ranks. However, they have not yet been inves-

tigated for their utility in the biometrics literature.

A survey of biometrics on various fusion techni-

ques [5] suggests that the rank level fusion method is

less preferred method of fusion while score level fusion

continues to be the most popular method. The rank

level fusion can be more useful in combining decisions

from a large number of biometric matchers and such

large systems has not yet been evaluated in the

biometrics literature.
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Synonyms

Fusion at the confidence level; Fusion at the measure-

ment level; Match score fusion
Definition

In score-level fusion the match scores output by mul-

tiple biometric matchers are consolidated in order to

render a decision about the identity of an individual.

Typically, this consolidation procedure results in the

generation of a single scalar score which is subsequently

used by the biometric system. Fusion at this level is the

most commonly discussed approach in the biometric

literature primarily due to the ease of accessing and

processing match scores (compared with the raw bio-

metric data or the feature set extracted from the data).

Fusion methods at this level can be broadly classified

into three categories: density-based schemes, transfor-

mation-based schemes and classifier-based schemes.
Introduction

A match score is the result of comparing two feature

sets extracted using the same feature extractor. A simi-

larity score denotes how ‘‘similar’’ the two feature sets

are, while a distance score denotes how ‘‘different’’ they

are. Consequently, a high similarity score between a

pair of feature sets indicates a good match whereas

a high distance score indicates a poor match.

In score-level fusion the match scores output by

multiple biometric matchers are combined to generate

a new match score (a scalar) that can be subsequently

used by the verification or identification modules for

rendering an identity decision (alternatively, the fusion

process may directly result in a decision). Fusion at this

level is the most commonly discussed approach in the

biometric literature primarily due to the ease of acces-

sing and processing match scores (compared with the

raw biometric data or the feature set extracted from

the data). Fusion methods at this level can be broadly

classified into three categories [1]: density-based

schemes, transformation-based schemes and classifier-

based schemes.
Density-Based Fusion schemes

Let s ¼ ½s1; s2; . . . ; sR
 denote the scores emitted by

multiple matchers, with sj representing the match

score of the jth matcher, j ¼ 1, . . ., R. Further, let

the labels o0 and o1 denote the genuine and impostor

classes, respectively. Then, by ▶Bayes decision theory

[2], the probability of error can be minimized by

adopting the following decision rule. (This is known

as the Bayes decision rule or the minimum-error-rate

classification rule under the 0-1 loss function [2]).

Assign s ! oi if

PðoijsÞ > Pðoj jsÞ; i 6¼ j; and i; j ¼ 0; 1: ð1Þ
Here, the a posteriori probability PðoijsÞ, i ¼ 0,1,

can be derived from the class-conditional density func-

tion pðsjoiÞ using the Bayes formula, i.e.,

PðoijsÞ ¼ pðsjoiÞPðoiÞ
pðsÞ ; ð2Þ

where P(oi) is the a priori probability of observing

class oi and pðsÞ denotes the probability of encounter-
ing s. Thus, Eq. (1) can be re-written as
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Assign s ! oi if

pðsjoiÞ
> t; i 6¼ j; and i; j ¼ 0; 1 ð3Þ
pðsjojÞ
where

pðsjoiÞ
pðsjojÞ is known as the likelihood ratio and

t ¼ PðojÞ
PðoiÞ is a predetermined threshold. The density

pðsjoiÞ is typically estimated from a training set of

match score vectors, using parametric or nonparametric

techniques. However, a large number of training sam-

ples are necessary to reliably estimate the joint-density

function pðsjoiÞ especially if the dimensionality of the

feature vector s is large. In the absence of sufficient

number of training samples (which is typically the case

when the multibiometric system is first deployed or if its

parameters are subsequently adjusted), it is commonly

assumed that the scalar scores si,s2, . . . sR are generated

by R independent random processes. This assumption

permits the density function to be expressed as

pðsjoiÞ ¼
YR
j¼1

pðsj joiÞ; ð4Þ

where the joint-density function is now replaced by

the product of its marginals. The marginal densities,

p(sj joi), j ¼ 1, 2, . . . R, i ¼ 0, 1, are estimated from a

training set of genuine and impostor scores

corresponding to each of the R biometric matchers.

Equation (4) results in the product rule which com-

bines the scores generated by the R matchers as,

sprod ¼
YR
j¼1

pðsj jo0Þ
pðsj jo1Þ: ð5Þ

Kittler et al. [3] modify the product rule by further

assuming that the a posteriori probability PðoijsÞ of

class oi does not deviate much from its a priori proba-

bility P(oi) resulting in the sum rule:

ssum ¼
PR

j¼1 pðsj jo0ÞPR
j¼1 pðsj jo1Þ

: ð6Þ

Similar expressions can be derived for combining the

match scores using the max, min, and median rules

[1, 3]. All the aforementioned rules implicitly assume

that the match scores are continuous random variables.

Dass et al. [4] relax this assumption and represent

the univariate density functions (i.e., the marginals in

Eq. (4)) as a mixture of discrete as well as continuous
components. The resulting density functions are

referred to as generalized densities. The authors dem-

onstrate that the use of generalized density estimates

(as opposed to continuous density estimates) signi-

ficantly enhances the matching performance of the

fusion algorithm. Furthermore, they use ▶ copula

functions to model the correlation structure between

the match scores s1, s2, . . ., sR and, subsequently, define

a novel fusion rule known as the copula fusion rule.
Transformation-Based Fusion
schemes

Density-based schemes, as stated earlier, require a large

number of training samples (i.e., genuine and impos-

tor match scores) in order to accurately estimate the

density functions. This may not be possible in most

multibiometric systems due to the time, effort, and

cost involved in acquiring labeled multibiometric

data in an operational environment. In such situations,

it may be necessary to directly combine the match

scores generated by multiple matchers using simple

fusion operators (such as the simple sum of scores or

order statistics) without first interpreting them in a

probabilistic framework. However, such an approach

is meaningful only when the scores output by the mat-

chers are comparable. To facilitate this, a score normali-

zation process is essential to transform the multiple

match scores into a common domain (it must be

noted, however, that some score normalization schemes

do require a large number of training samples as seen in

the following section). The process of score normaliza-

tion entails changing the location and the scale para-

meters of the underlying match score distributions in

order to ensure compatibility between multiple score

variables. A few of the commonly discussed score nor-

malization methods are described in this article.

The simplest normalization technique is the min–

max normalization. Min–max normalization is best

suited for the case where the bounds (maximum and

minimum values) of the scores produced by a matcher

are known. In this case, the minimum and maximum

scores can be easily transformed into 0 and 1, res-

pectively. However, even if the match scores are not

bounded, the minimum and maximum values for the

given set of training match scores can be estimated

prior to applying min–max normalization. Let sij
denote the ith match score output by the jth matcher,
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i ¼ 1, 2, . . ., N; j ¼ 1, 2, . . ., R (R is the number of

matchers and N is the number of match scores avail-

able in the training set). The min–max normalized

score, nstj , for the test score sj
t is given by

nstj ¼
stj�minNi¼1 sij

maxNi¼1 s
i
j�minNi¼1 sij

: ð7Þ

When the minimum and maximum values are esti-

mated from the given set of match scores, this method

is not robust (i.e., the method is sensitive to outliers in

the data used for estimation). Min–max normalization

retains the original distribution of scores except for

a scaling factor and transforms all the scores into a

common range [0, 1]. Distance scores can be trans-

formed into similarity scores by subtracting the nor-

malized score from 1.

Decimal scaling can be applied when the scores

of different matchers are on a logarithmic scale. For

example, if one matcher has scores in the range [0, 10]

and the other has scores in the range [0, 1000], the

following normalization could be applied to trans-

form the scores of both the matchers to the common

[0, 1] range.

nstj ¼
stj

10nj
; ð8Þ

where nj ¼ log10maxi¼1
Nsj

i. In the example with two

matchers where the score ranges are [0, 10] and

[0, 1000], the values of nwould be 1 and 3, respectively.

The problems with this approach are the lack of

robustness and the implicit assumption that the scores

of different matchers vary by a logarithmic factor.

The most commonly used score normalization

technique is the z-score normalization that uses the

arithmetic mean and standard deviation of the training

data. This scheme can be expected to perform well if

the average and the variance of the score distributions

of the matchers are available. If the values of these two

parameters are not known, then they can be estimated

based on the given training set. The z-score normalized

score is given by

nstj ¼
stj � mj
sj

; ð9Þ

where mj is the arithmetic mean and sj is the standard
deviation for the jth matcher. However, both mean

and standard deviation are sensitive to outliers

and hence, this method is not robust. Z-score
normalization does not guarantee a common numer-

ical range for the normalized scores of the different

matchers. If the distribution of the scores is not

Gaussian, z-score normalization does not preserve

the distribution of the given set of scores. This is

due to the fact that mean and standard deviation are

the optimal location and scale parameters only for a

Gaussian distribution. While mean and standard de-

viation are reasonable estimates of location and scale,

respectively, they are not optimal for an arbitrary

match score distribution.

The median and median absolute deviation (MAD)

statistics are less sensitive to outliers as well as points

in the extreme tails of the distribution. Hence, a nor-

malization scheme using median and MAD would be

relatively robust and is given by

nstj ¼
stj �medj

MADj

; ð10Þ

where medj ¼ median N
i¼1s

i
j and MADj ¼ median N

i¼1

jsij �medj j. However, the median and the MAD esti-

mators have a low efficiency compared to the mean

and the standard deviation estimators, i.e., when the

score distribution is not Gaussian, median and MAD

are poor estimates of the location and scale parameters.

Therefore, this normalization technique does not pre-

serve the input score distribution and does not trans-

form the scores into a common numerical range.

Cappelli et al. [5] use a double sigmoid function for

score normalization in a multibiometric system that

combines different fingerprint matchers. The normal-

ized score is given by

nstj ¼

1

1þexp �2
st
j
�t

a1

� �� � if stj < t;

1

1þexp �2
st
j
�t

a2

� �� � otherwise;

8>>><
>>>:

ð11Þ

where t is the reference operating point and a1 and

a2 denote the left and right edges of the region in

which the function is linear. The double sigmoid

function exhibits linear characteristics in the interval

(t�a1, t�a2). While the double sigmoid normaliza-

tion scheme transforms the scores into the [0, 1] inter-

val, it requires careful tuning of the parameters t,a1
and a2 to obtain good efficiency. Generally, t is chosen
to be some value falling in the region of overlap be-

tween the genuine and impostor score distributions,

and a1 and a2 are set so that they correspond to the
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normalization techniques.

Normalization technique Robustness Efficiency

Min–max No High

Decimal scaling No High

Z-score No High

Median and MAD Yes Moderate

Double sigmoid Yes High

Tanh-estimators Yes High
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extent of overlap between the two distributions toward

the left and right of t, respectively. This normalization

scheme provides a linear transformation of the scores

in the region of overlap, while the scores outside this

region are transformed nonlinearly. The double sig-

moid normalization is very similar to the min–max

normalization followed by the application of a two-

quadrics (QQ) or a logistic (LG) function as suggested

by [6]. When the values of a1 and a2 are large, the

double sigmoid normalization closely resembles the

QQ-min–max normalization. On the other hand,

the double sigmoid normalization can be made to

approach the LG-min–max normalization by assigning

small values to a1 and a2.
The tanh-estimators introduced by Hampel [7] are

robust and highly efficient. The tanh normalization is

given by

nstj ¼
1

2
tanh 0:01

stj � mGH
sGH

� �� �
þ 1


 �
; ð12Þ

where mGH and sGH are the mean and standard devia-

tion estimates, respectively, of the genuine score distri-

bution as given by Hampel estimators. Hampel

estimators are based on the following influence

(c)-function:

c uð Þ ¼
u 0 � juj < a,

a � signðuÞ a � juj < b,

a � signðuÞ � c�juj
c�b

� �
b � juj < c,

0 juj � c,

8>>><
>>>:

ð13Þ
where

signfug ¼ þ1; if u � 0;
�1; otherwise:



ð14Þ

The Hampel influence function reduces the influ-

ence of the scores at the tails of the distribution (iden-

tified by a, b, and c) during the estimation of the

location and scale parameters. Hence, this method is

not sensitive to outliers. If many of the points that

constitute the tail of the distributions are discarded, the

estimate is robust but not efficient (optimal). On the

other hand, if all the points that constitute the tail of the

distributions are considered, the estimate is not robust

but its efficiency increases. Therefore, the parameters a,

b, and c must be carefully chosen depending on the

amount of robustness required which in turn depends

on the amount of noise in the available training data.
Mosteller and Tukey [8] introduce the biweight

location and scale estimators that are robust and effi-

cient. But, the biweight estimators are iterative in nature

(initial estimates of the biweight location and scale para-

meters are chosen, and these estimates are updated based

on the training scores), and are applicable only for Gauss-

ian data. A summary of the characteristics of the different

normalization techniques discussed in this article is

shown in Table 1. The min–max, decimal scaling

and z-score normalization schemes are efficient, but

are not robust to outliers. On the other hand, the

median normalization scheme is robust but inefficient.

Only the double sigmoid and tanh-estimators have

both the desired characteristics, namely, robustness

and efficiency.

Once the match scores output by multiple match-

ers are transformed into a common domain they can

be combined using simple fusion operators such as the

sum of scores, product of scores or order statistics (e.g.,

maximum/minimum of scores or median score).
Classifier-Based Fusion schemes

In the verification mode of operation, the match scores

generated by the multiple matchers may be input to a

trained pattern classifier, such as a neural network, in

order to determine the class label (genuine or impos-

tor). In this approach, the goal is to directly estimate

the class rather than to compute an intermediate

scalar value. Classifier-based fusion schemes assume

the availability of a large representative number of

genuine and impostor scores during the training

phase of the classifier when its parameters are com-

puted. The component scores do not have to be trans-

formed into a common domain prior to invoking the

classifier.
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In the biometric literature several classifiers have

been used to consolidate the match scores of multiple

matchers. Brunelli and Falavigna [9] use a HyperBF

network to combine matchers based on voice and face

features. Verlinde and Cholet [10] compare the relative

performance of three different classifiers, namely, the

k-Nearest Neighbor classifier using vector quantiza-

tion, the decision tree classifier, and a classifier based

on the logistic regression model while fusing the match

scores originating from three biometric matchers.

Experiments on the M2VTS database show that the

total error rate (sum of the false accept and false reject

rates) of the multimodal system is an order of magni-

tude less than that of the individual matchers. Chatzis

et al. [11] use classical k-means clustering, fuzzy clus-

tering and median radial basis function (MRBF) algo-

rithms for fusion at the match score level. The

proposed system combines the output of five different

face and voice matchers. Each matcher provides a

match score and a quality metric indicating the reli-

ability of the match score. These values are concate-

nated to form a ten-dimensional vector that is input to

the classifiers. Ben-Yacoub et al. [12] evaluate a num-

ber of classification schemes for fusion including sup-

port vector machine (SVM) with polynomial kernels,

SVM with Gaussian kernels, C4.5 decision trees, mul-

tilayer perceptron, Fisher linear discriminant, and

Bayesian classifier. Experimental evaluations on the

XM2VTS database consisting of 295 subjects suggest

the benefit of score level fusion. Bigun et al. [13]

propose a novel algorithm based on the Bayesian clas-

sifier that takes into account the estimated accuracy of

the individual classifiers (i.e., matchers) during the

fusion process. Sanderson and Paliwal [14] use a sup-

port vector machine (SVM) to combine the scores of

face and speech experts. In order to address noisy

input, they design structurally noise-resistant classi-

fiers based on a piece-wise linear classifier and a mod-

ified Bayesian classifier.
Summary

In a multibiometric system, fusion at the score level

offers the best tradeoff between amount of information

that is available and ease of fusion. Hence, score level

fusion is typically adopted by most multibiometric

systems. Although a wide variety of score level fusion

techniques have been proposed in the literature,
these can be grouped into three main categories, viz.,

density-based, transformation-based and classifier-

based schemes. The performance of each scheme

depends on the amount and quality of the available

training data. If a large number of match scores is

available for training the fusion module, then density-

based approaches such as the likelihood ratio test can

be used. Estimating the genuine and impostor distri-

butions may not always be feasible due to the limited

number of training samples that are available. In such

cases, transformation-based schemes are a viable alter-

native. The nonhomogeneity of the match scores pre-

sented by the different matchers raises a number of

challenges. Suitable score normalization schemes are

essential in order to transform these match scores into

a comparable domain. The sum of scores fusion meth-

od with simple score normalization (such as min–

max) represents a commonly used transformation-

based scheme. Classification-based fusion schemes

consolidate the outputs of different matchers into a

single vector of scores which is input to a trained

classifier. The classifier then determines if this vector

belongs to the ‘‘genuine’’ or ‘‘impostor’’ class.
Related Entries

▶ Fusion, Quality-Based

▶ Fusion, User-Specific

▶Multibiometrics
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Synonyms

Fusion, data level; Fusion, image level
Definition

Sensor level fusion combines raw biometric informa-

tion that can account for inter-class and intra-class

variability and facilitate decision making based on the

fused raw information. A typical sensor level fusion

algorithm first integrates raw biometric data either
obtained from different viewpoints (for example,

mosaicing several fingerprint impressions) or obtained

from different sensors (for example, multimodal bio-

metric images). The integrated data is then processed

and discriminatory biometric features are extracted for

matching. This level of fusion can be operated in both

verification and ▶ identification modes. Few examples

of sensor level fusion are: fingerprint mosaicing, multi-

spectral face image fusion, and multimodal biometric

image fusion.
Introduction

The concept of biometric information fusion is moti-

vated from classical multi-classifier systems that com-

bine information from different sources and represent

using a single entity. Performance driven systems that

use multiple biometric characteristics are known in

multibiometric system [1]. These systems have several

advantages over unimodal biometric systems such as

tolerance to noise and malfunction, universality, and

improved accuracy. Multibiometric systems are broadly

classified into five levels of fusion.

1. Sensor level fusion. Raw data obtained directly from

the sensors are fused without any feature extraction

and represented as a single unit. This level of fusion

is also known as data level fusion or image level

fusion (for image based biometrics).

2. Feature level fusion. Data obtained from different

sensors are first subjected to feature extraction

algorithms and the feature sets are combined to

generate a new feature vector which is subsequently

used for recognition.

3. Match score level fusion. Features extracted from

individual biometric modalities are first matched

to compute the corresponding match scores. Match

scores obtained from different biometric systems

are then combined to generate a fused match score.

4. Decision level fusion. Decisions of individual

biometric classifiers are fused to compute a com-

bined decision. This level of fusion is also known

as abstract level fusion because it is used when there

is access to only decisions from individual classifier’s.

5. Rank level fusion. With identification systems, rank

level fusion involves combining identification ranks

obtained from multiple unimodal biometrics. The

output of rank level fusion is a consolidated rank

that is used for final decision.
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This article focuses on sensor level fusion and pro-

vides a comprehensive overview of the methodologies

involved. In this level of fusion, first the raw data

obtained from the sensors are combined to generate a

fused data. An application oriented feature extraction

algorithm is then used to compute the features from

the fused data and matching is performed. Figure 1

illustrates the basic concept of sensor level fusion.

Sensor level fusion can be broadly classified into

three categories: (1) single sensor multi-samples, (2)

multi-sensor, and (3) multimodal. This article is

organized to accentuate various algorithms proposed

in each fusion category.
Sensor Level Fusion: Single Sensor Multi-
Samples

In these systems, multiple samples of a single biometric

modality are acquired using a single sensor and the

information is combined to account for variations that

can occur in a biometric modality. For example, as

shown in Fig. 2, different profiles of a face image can

be combined to obtain a fused representation of face

image that can address the challenges due to pose

variations [2]. In this category of sensor fusion,
Fusion, Sensor-Level. Figure 1 Basic concept of sensor leve

Fusion, Sensor-Level. Figure 2 Combining profile and front

frontal face images and (b) Mosaiced face image.
image ▶mosaicing techniques are used for integrating

information obtained from several impressions or view

points, to augment the biometric content and to en-

hance the verification/identification performance.

Singh et al. [2] describe the concept of mosaicing in

biometrics as an exercise in information fusion when

multiple images of a subject’s biometric information

are fused into a single entity in the image domain

itself. Therefore, this could be viewed as fusion at the

sensor level.

Mosaicing was first introduced in biometrics by

Ratha et al. [3]. A rolled fingerprint image is generated

from several partial fingerprint images using segmen-

tation and blending algorithms assuming that the

partial fingerprints are spatially registered. The per-

formance of this fingerprint mosaicing algorithm is

evaluated using different blending algorithms. The

mosaicing algorithm generates rolled fingerprint image

that is very close to the ground truth and improves

the minutiae count that is useful for recognition. Fur-

ther, Jain and Ross [4] proposed the use of iterative

closest point algorithm to seamlessly register the ridges

of two fingerprint images and to generate a composite

fingerprint image. Recently, Ross et al. [5] employed

thin-plate splines (TPS) to model the non-linear

deformation in fingerprint images and integrate it
l fusion.

al face images using mosaicing technique. (a) Profile and
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in the mosaicing process. This algorithm first aligns

two fingerprint images using coarse alignment (affine

model) followed by TPS based fine alignment. Once

the fingerprint images are registered, a mosaiced fin-

gerprint image is obtained by applying simple pixel

averaging based blending method.

Mosaicing has also been applied to face biometrics.

Yang et al. [6] describe an algorithm to create pano-

ramic face mosaics. The acquisition system consists of

five cameras that simultaneously obtains five different

views of a subject’s face. Based on the manually marked

control points, the algorithm uses a series of linear

transformations and smoothing operations on com-

ponent images to generate a face mosaic. Unlike fin-

gerprint mosaicing, face mosaicing requires specific

feature extraction algorithm. Two different schemes

to represent the panoramic image were proposed: one

in the spatial domain and another in the frequency

domain. Experimental evaluation on a database of

12 individuals shows that the face mosaicing algorithm

improves identification accuracy in both the spatial

and frequency domains. In [7], Liu and Chen describe

a face mosaicing algorithm in which the human head is

approximated with a 3D ellipsoidal model. The face, at

a certain pose, is viewed as a 2D projection of this 3D

ellipsoid. All 2D face images of a subject are projected

onto this ellipsoid via geometrical mapping to form a

texture map which is represented by an array of local

patches. Matching is accomplished by adopting a prob-

abilistic model to compute the distance of patches

from an input face image. An identification accuracy

of 90% on different databases has been reported.

In [2], Singh et al. proposed a face mosaicing algo-

rithm that can perform mosaicing in visible spectrum

domain as well as in short wave infrared domain.
Fusion, Sensor-Level. Figure 3 Multi-spectral face image fus

(b) Fused image.
The algorithm first registers the component face

images using two stage registration algorithm and

then a face mosaic is generated using multi-resolution

splines based blending algorithm. Facial features are

encoded using a generic feedforward hierarchical

model-based feature extraction algorithm that extracts

local facial features using the fundamentals of a

biological visual system. Experiments conducted

on three different face databases indicate that the pro-

posed face mosaicing algorithm offers significant ben-

efits by accounting for pose variations that are

commonly observed in face images. Moreover, the

mosaicing algorithm requires less time for matching

compared to the score level fusion and also reduces the

memory requirements.
Sensor Level Fusion: Multi-Sensors

In this category of sensor level fusion, multiple samples

of a single biometric modality are obtained using

multiple sensors and the information is combined

such that the fused multi-sensor information improves

the recognition performance. In general, the informa-

tion obtained frommultiple sensors are complementary

to each other and can account for the intra-class varia-

bility. For example, as shown in Fig. 3, multi-spectral

face images obtained using visible spectrum and infra-

red sensors can be fused to minimize the intra-class

variations due to illumination and expression.

Multi-spectral face image fusion is the classical

model for this level of fusion. Face recognition algo-

rithms generally use visible spectrum images for rec-

ognition because the reflectance property yields a
ion. (a) Visible and infrared spectrum images and
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clear representation of facial features to differentiate

between two individuals. However, visible spectrum

images also possess several other properties which

affect the performance of recognition algorithms. For

example, changes in lighting affect the representation

of visible spectrum images and can influence feature

extraction. Other variations in facial appearance such

as hairs, wrinkles, and expression are also evident in

visible spectrum images and these variations increase

the false rejection rate of face recognition algorithms.

To address the challenges posed by visible spectrum

images, researchers have used infrared images for face

recognition [8]. Among all infrared spectrum images,

long wave infrared (LWIR) images possess several

properties that are complementary to visible images.

Visible spectrum captures the electromagnetic energy

in the range 0.4–0.7mm, whereas long wave infrared or

thermal images are captured in the range of 8–12mm.

Thermal images represent the heat pattern of the object

and are invariant to illumination and expression. Face

images captured in long wave infrared spectrum have

less intra-class variation and help to reduce the false

rejection rate of recognition algorithms. These proper-

ties of long wave infrared and visible images can be

combined to improve the performance of face recogni-

tion algorithms.

In literature, researchers have proposed several

multi-spectral face image fusion algorithms [8]. Bebis

et al. [9] proposed an image fusion algorithm in wave-

let domain using genetic algorithm. In this algorithm,

multi-spectral face images are first transformed into

wavelet domain and a multiresolution representation

is obtained. Then, a genetic algorithm is used to select

the most appropriate wavelet coefficients at pixel level.

Finally, inverse ▶wavelet transform is applied to gen-

erate a fused face image and Eigenface based algorithm

is used for feature extraction andmatching. The genetic

fusion algorithm suffers from making a good choice of

fitness function. Kong et al. [10] proposed a wavelet

based multi-spectral face image fusion algorithm in

which the visible and infrared spectrum images are

first registered using affine transformation. An empiri-

cal weighting scheme is then applied on the registered

multi-spectral face images in wavelet domain to obtain

the composite face image. Although the algorithm

is straightforward, the generic empirical weighting

scheme is not sufficient to address the inter-class and

intra-class variability in face images. Recently, Singh

et al. [11] proposed a 2n-granular support vector
machine (2n-GSVM) based multi-spectral face image

fusion algorithm. This algorithm first registers multi-

spectral face images using mutual information based

registration algorithm. Then, a 2n-GSVM learning

scheme is invoked in wavelet domain to learn the

properties of the multi-spectral face images at different

resolution and granularity levels, determine optimal

information and combine them to generate a fused

image. Finally, texture features are extracted from the

fused image for recognition. Experimental results show

that 2n-GSVM based fusion algorithm can address the

challenges due to illumination, expression, and occlu-

sion variations. This algorithm provides improved

verification accuracy (>94%) compared to other

image fusion schemes.

Another example of sensor level fusion with multi-

ple sensors is fusing 2D and 3D facial information.

Lu et al. [12] describe a semi-automatic sensor level

fusion algorithm that integrates range and texture fea-

tures for improved face recognition performance.

Combining 3D shape information with registered 2D

texture information using iterative closest point algo-

rithm improves the face identification performance.

The authors report that the algorithm is robust to

arbitrary view, lighting, and facial appearance. How-

ever, the algorithm is computationally expensive and

suffers due to non-rigid variations.
Sensor Level Fusion: Multimodal

In most of the multimodal biometric systems, such as

bimodal system with face and fingerprint, fusion is

performed at match score level or decision level. Very

limited research is undertaken to perform sensor level

fusion in a multimodal system. In this category of

sensor level fusion, multimodal biometric images are

fused to address issues such as universality, memory

storage, small sample size recognition, and recognition

performance. Further, an efficient sensor level fusion

algorithm has advantages due to the availability of

fused raw information from where the representative

composite biometric features can be extracted and

used for matching. The main challenge lies in develop-

ing fusion algorithm that can account for inter-class

and intra-class variability in multimodal biometric

images. An example of multimodal biometric image

fusion is shown in Fig. 4.
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Jing et al. [13] propose a sensor level fusion algo-

rithm that generates a composite image from face and

palmprint biometrics. Circular Gabor filters are first

applied on face and palm print images to generate 32

filtered responses of each biometric data. These filtered

responses are concatenated to generate a fused image.

A pixel normalization scheme is then used to minimize

variations due to imaging conditions. Finally, kernel

discriminative common vectors are extracted from the

fused image and radial basis function based neural net-

work is used for classification. The fusion algorithm

improves the recognition performance and is an effective

solution for the small sample size recognition problem.

Noore et al. [14] proposed discrete wavelet transforma-

tion based image fusion algorithm that generates

a composite image by combining multimodal bio-

metric images. The algorithm starts with transforming

biometric images into wavelet domain and genera-

ting composite image by amalgamating the wavelet

coefficients. The composite image is then scrambled

using a secret encoding key generated with Fibonacci

transforms. The algorithm not only improves the

recognition performance but also reduces the memory

requirements and provides resilience to common

image processing attacks such as smoothing, cropping,

JPEG 2000 compression, and filtering.
Future Research Directions

As discussed in previous sections, sensor level fusion

has several advantages. However, compared to other

levels of fusion, this level of fusion is less explored and

requires further research to address the limitations of

current research. First and foremost is to further im-

prove the recognition accuracy. Researchers have

shown that for certain applications, sensor level fusion

algorithms do not provide better results compared to

match score level fusion algorithms [5, 11]. This is

mainly because existing algorithms do not effectively
reconcile the information that is useful for recognition.

We believe that existing sensor level fusion algorithms

fail in some cases because during information fusion

it is possible that redundant and less discriminatory

features become predominant. Furthermore, there is

a lack of generalized sensor level fusion algorithms

that can be used for different biometric scenarios or

applications. For instance, genetic algorithm based

multi-spectral image fusion algorithm can not be

directly used for multimodal image fusion. Additional

research is required to design an effective and generalized

sensor level fusion algorithm which can be applied to

different biometric modalities. Every sensor level fusion

algorithm requires specific feature extraction algorithm

that can effectively extract discriminatory biometric in-

formation from the composite image or data. This

requirement is not mandatory with a generalized sen-

sor level fusion algorithm. Therefore, a generalized al-

gorithm can be easily incorporated in commercial

systems and can conform to data fusion standards.

Another important research issue is to unify the

sensor level fusion in a ▶ unification framework that

reconciles multiple fusion algorithms. Originally pro-

posed by Vatsa et al. [15], a biometric unification

framework combines multiple fusion algorithms by

dynamically selecting the most appropriate fusion algo-

rithm depending on the input evidences such as quality

and other priors. Currently, the unification framework

includes only the match score fusion algorithms. How-

ever, with proper modifications, the unification frame-

work can be expanded to include multi-level fusion

algorithms that can address the operational needs

of biometric systems and provide better recognition

performance.
Related Entries

▶Data Fusion

▶ Face Recognition
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Synonyms

Adapted fusion; Local fusion; Target-dependent

fusion; User-dependent fusion
Definition

User-specific fusion in the framework of biometrics,

initially devised for score fusion in the verification

mode, refers to techniques used for information fusion

in which there is a specific fusion function for each

user enrolled in the system. These fusion functions are

retrieved and used for information integration in the

same way the enrolled templates corresponding to the

claimed identities are retrieved and used for matching.

User-specific fusion techniques find application in

several biometric fusion scenarios, e.g., multi-modal

fusion, where some subjects may be not adequate for

recognition based on specific modalities (these evi-

dences can be ignored or given less importance in the

information fusion step), or multi-algorithm fusion,

where some subjects may be better recognized based on

particular algorithms (their fusion functions can be

adapted to give more importance to those algorithms).

The biggest challenge for effective user-specific

fusion is the need for user-specific training data,

which is usually very scarce. Recent user-specific fusion

techniques exploit the usually scarce training data by

considering also for training the information provided

by background users. These new techniques are known

as adapted user-specific fusion.
System Model

The following nomenclature is used throughout the

essay. Given a multi-biometric verification system con-

sisting of a number of uni-modal systems, each one

computes a similarity score between an input biomet-

ric pattern and the enrolled pattern or model of the
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given claimant. The similarity scores are then normal-

ized to a given score range. Let the normalized similar-

ity scores provided by the different uni-modal systems

be combined into a multi-modal score. The design of a

fusion scheme consists in the definition of a function

which maps a multi-modal score to a fused real value,

so as to maximize the separability of client and impos-

tor fused score distributions. This function may be

fixed or trained (see the entry in this encyclopedia on

Multi-biometrics) by using a set of training scores

(scores known to be genuine or impostor).

The aim in user-specific fusion is to obtain the best

score fusion function for a particular user, resulting in

the system model shown in Fig. 1.
Fusion, User-Specific. Figure 1 System model of multi-biom

Fusion, User-Specific. Figure 2 System model of biometric v

Fusion, User-Specific. Figure 3 System model of multi-biom
User-Specific Multi-Biometrics

User-specific multi-biometric verification can be

achieved not only by making the fusion functions

user-specific as shown in Fig. 1, but also other proces-

sing modules, such as the score normalization and the

decision processing blocks. In the first case, each indi-

vidual system will be used as indicated in Fig. 2, in the

latter case the overall system diagram will be as indi-

cated in Fig. 3.

On one hand, user-specific score normalization has

been traditionally studied for individual behavioral bio-

metric modalities in which there are large variations

between users (such as speech [1] or signature [2]),
etric verification with user-specific score fusion.

erification with user-specific score normalization.

etric verification with user-specific decision functions.
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where their application is very effective to compensate

the problems related to the heterogeneity between

users. When user-specific score normalization is

used in one of the systems being combined in a

multi-biometric setup, the resulting approach can be

seen as integrating the multi-biometric data in a user-

specific way [3]. Despite the success of user-specific

score normalization in individual modalities, and the

success of fusion techniques, few efforts have been

reported in the literature studying the combined use

of both techniques to make the most out of the usually

scarce user-specific training data.

On the other hand, the use of user-specific decisions

in multi-biometrics has been typically studied in

combination with user-specific score fusion. In this

case, it has been demonstrated that it is better to use

the available training data for computing user-specific

fusion functions instead of user-specific decision

schemes [4].
User-Specific Fusion

The idea of exploiting user-specific parameters at the

score level in multi-modal biometrics was introduced,

to the best of our knowledge, by [5]. In that work, user-

independent weighted linear combination of similarity

scores was demonstrated to be improved by using

either user-specific weights or user-specific decision

thresholds, both computed by exhaustive search on

the testing data. The idea of user-specific fusion para-

meters was also explored by [6]. Other attempts to

personalize multi-modal biometrics include the use

of the claimed identity index as a feature for a global

trained fusion scheme based on neural networks [7],

computing user-specific weights using lambness

metrics [8], and using personalized Fisher ratios [9].

The existing score fusion approaches can be classi-

fied as global or local depending first on the fusion

function (i.e., user-independent or user-specific fusion

strategies) and secondly on the decision making process

(i.e., user-independent or user-specific decision thresh-

olds), resulting in [10]: global-learning-global-decision

(GG), local-learning-global-decision (LG), and simi-

larly GL and LL. Some example works on user-specific

multi-biometrics using this classification are: LG [4, 5,

6, 7, 8, 10, 11], GL [4, 5, 10], and LL [4, 10].

User-specific score fusion is confronted with a great

challenge: the scarcity of user-specific training scores.
For overcoming this challenge, the simultaneous use of

user-specific and background information has been

proposed for training the user-specific fusion func-

tions, in what has been called adapted user-specific

fusion. This approach can be seen as a particular case

of a more general type of approaches, referred to as

▶ adapted fusion [11]. In these approaches, a baseline

fusion function is first constructed based on some

general knowledge of the problem at hand, and then

adjusted during the operation of the system. The ad-

aptation can be based on ancillary information such as:

the user being claimed (adapted user-specific fusion),

quality measures of the input biometrics (quality-

based fusion [12], see related entry in this encyclope-

dia), or other kind of environmental information af-

fecting the various information channels being fused.
Adapted User-Specific Fusion

Adapted methods in the context of user-specific fusion

refer to the use of both global and local information for

learning the fusion functions.

The idea of adapted learning is based on the fact

that the amount of available training data in localized

learning is usually not sufficient and representative

enough to guarantee good parameter estimation and

generalization capabilities. To cope with this lack of

robustness derived from partial knowledge of the

problem, one can exploit the information provided

by background global data. In general, the relative

balance between the background information (pool

of users) and the local data (specific user) is performed

as a tradeoff between both kinds of information.

The system model of adapted user-specific score

fusion is shown in Fig. 4, where we can see that the

fusion function of a given user is trained with two sets

of training data, both including both genuine and

impostor matching scores. The first training set con-

sists of scores corresponding to the user being claimed.

The second set consists of scores corresponding to a

pool of background users different to the user being

claimed. By considering these two sets simultaneously,

the resulting adapted user-specific fusion schemes out-

perform the traditional user-independent fusion (also

known as ▶ global fusion, in which only the pool

of users is used for training), and the traditional

user-specific fusion depicted in Fig. 1 (also known as

▶ local fusion, in which only data from the claimed
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user is used for training). This affirmation has been

demonstrated experimentally in various scenarios,

such as multi-algorithm speaker verification [3, 13],

and multi-modal verification combining on-line sig-

nature and fingerprint traits [4, 11].
Related Entries

▶ Fusion, Quality-Based

▶Multi-Algorithm Systems

▶MultiBiometrics

▶Multi-Modal Systems
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Fusion, Wavelet-Based
Wavelet-based fusion has been widely used in litera-

ture. The wavelet transform is a data analysis tool that

provides a multi-resolution decomposition of an

image. Wavelet-based pixel-level data fusion is used

on two or more sets of probe images. Given two
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registered images I1 and I2 of the same object from two

sets of probe images (two different spectral bands in

this case), a two-dimensional discrete wavelet decom-

position is performed on I1 and I2 to obtain the wavelet

approximation coefficients (a1, a2) and detail coeffi-

cients (d1, d2). The wavelet approximation and detail

coefficients of the fused image, af and df, are then

calculated as follows:

af ¼Wa1 � a1 þWa2 � a2 and

df ¼Wd1 � d1 þWd2 � d2;

where Wa1 ;Wa2 ;Wd1 , and Wd2 are weights deter-

mined either empirically or according to some selected

rule. The two-dimensional discrete wavelet inverse

transform is then performed to obtain the fused image.

▶Multispectral and Hyperspectral Biometrics
Fuzzy Extractor
▶Encryption, Biometric

▶ Fingerprints Hashing
Fuzzy Vault
Fuzzy vault is where a secret key is hidden behind some

biometric data which are fuzzy and noisy by nature.

▶ Fingerprints Hashing
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Gabor Jets
Gabor jets are a set of filters that are used to extract the

local frequency information from the face images.

These filters are generally linear filter with impulse

responses defined by a harmonic function and a

Gaussian function. The Fourier transform of a Gabor

filter’s impulse response is the convolution of the

Fourier transform of the harmonic function and

the Fourier transform of the Gaussian function.

▶ Face Recognition, Component-Based
Gabor Transform
A complete representation of a signal or image in terms

of coefficients on Gabor wavelets, such that the original

data can be reconstructed exactly by combining togeth-

er those wavelets using their computed coefficients. A

complication is that the necessary coefficients cannot

be obtained simply by operations of filtering or by the

inner product projections of the data with the wavelets,

since they do not constitute an orthogonal basis. More

complex methods are required (biorthogonal bases;

relaxation networks) to obtain the needed expansion

coefficients from projection coefficients. Once

obtained, a Gabor Transform is a powerful tool for

signal or image encoding, analysis, and compression.

▶ Iris Encoding and Recognition using Gabor

Wavelets
# 2009 Springer Science+Business Media, LLC
Gabor Wavelets
Complex exponentials (Fourier components) multi-

plied by Gaussian envelopes. Although they fail to

satisfy some parts of the stricter mathematical defini-

tions of wavelets, such as orthogonality and compact

support, these elementary functions can constitute a

powerful basis for signal or image encoding, represen-

tation, compression, and analysis. They are increas-

ingly used today in computer vision and in pattern

recognition, particularly in biometrics, where they

are the basis of iris recognition and have also been

used for several other biometric modalities. Among

their advantages (besides forming a complete basis

for signal or image encoding) are; their optimality

under the Heisenberg Uncertainty Principle for simul-

taneous resolution in time/space and in frequency;

their closed analytical form; their self-Fourier property

and closure under convolution and multiplication;

and their neurobiological basis in the receptive field

profiles of neurons in the mammalian visual cortex.

Their chief disadvantage is that they are not mutually

orthogonal, and so the projection coefficients obtained

by computing their inner product with an image are

not the same as the expansion coefficients that would

be needed to reconstruct the same image exactly

from them.

▶ Face Recognition, Component Based

▶ Iris Encoding and Recognition using Gabor

Wavelets

▶ Local Image Features

▶ Local Image Filters
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Gait
The manner of a person’s movement, specifically dur-

ing walking is called gait. The human gait cycle consists

of two main phases: during stance phase, the foot is on

the ground, and during the swing phase, the leg is

swinging forward in preparation for the next ground

contact.

▶Gait, Forensic Evidence of
Gait Analysis
▶Gait, Forensic Evidence of
Gait Biometrics, Overview

RAMA CHELLAPPA, ASHOK VEERARAGHAVAN
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Synonym

Gait recognition
Definition

Gait is defined as the style or manner of walking. Studies

in physchophysics suggest that people can identify famil-

iar individuals using just their gait. This has led to a

number of automated vision based algorithms that use

gait as a biometric. Such a system usually consists of a

video camera capturing images of a personwalking with-

in its field of view. Appropriate features such as joint

angles or silhouettes are extracted from this video and are

then used to compare with the stored gait signatures of

known individuals. As with any other biometric system,

the system can operate in both the identification and

the verification mode. Gait as a biometric has several
advantages compared to traditional biometrics such as

fingerprint in that gait is non-intrusive, does not require

cooperation from the individual, and can function at

moderate distances from the subject.
Introduction

The study of human gait has gathered pace in recent

years driven primarily by its potential as a biometric.

Gait-based person authentication has several signifi-

cant advantages compared to traditional biometrics

such as fingerprint or iris. Firstly, gait based biometric

systems do not require the individuals to be cooperative

since the input of these systems is the video feed cap-

tured by passive cameras. Secondly, gait is a non-intru-

sive biometric – it does not require the individuals to

wear any special equipment in order to be recognized.

Thirdly, gait based biometric systems have an extended

range compared to traditional biometrics – they can

operate reliably even when the subjects are tens of

meters away from the camera. Finally, such a system

harnesses the potential of thousands of surveillance

video cameras installed in public locations into a bio-

metric authentication system.
Operation of a Gait Based Biometric
System

The sensor for a gait-based biometric system is a video

camera capturing videos of human subjects walking

within its field-of view. The raw sensor video is then

processed to extract relevant features which can then be

used for recognition. If the acquisition conditions are

expected to be controlled and favorable, then the quality

of the video will enable the extraction of features such as

joint angles from the individual video frames. In more

typical uncontrolled settings, the features extracted could

either be background subtracted binary images, silhou-

ettes, shapes or width vectors – all examples of features

capturing the extent of the human body to differing

amounts of detail. During the training phase, several

such sequences of each individual in the gallery are col-

lected and the appropriate features are then stored in the

database. During the test phase, each test sequence is

compared with the training sequences available in the

database and the similarity is used to perform person

authentication.
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Challenges for Gait Based Biometrics
Systems

The discriminative information in gait is present in

both the shape of the individual and also in the manner

of his/her gait. This means that gait based biometric

systems must be able to model gait as a time series of

features or as a dynamical model in order to perform

accurate recognition. Static template based methods

which have been used for most other biometric systems

need to be adapted to a temporal sequence in order to

achieve robust performance. In this regard, another

challenge is time alignment of two sequences so that

critical events during gait like ‘‘mid-stance’’, ‘‘toe-off ’’

etc. are time aligned accurately so that recognition per-

formance is not affected by inaccurate time alignment

between postures that occur during gait. Since, gait

based person identification often occurs without any

particular viewpoint, view-invariance of the feature

extracted from the video is another important challenge.

This will ensure that recognition performance is robust

to changes in the viewpoint of the camera. In scenarios

with moderate amounts of acquisition control, one can

set up multiple video cameras so as to ensure that the

best possible viewpoint which happens to be the fronto-

parallel gait is captured on atleast one of the cameras.

Another challenge for automated gait-based biometrics

is that of changing illumination conditions in the scene.

In order to be robust to changing illumination condi-

tions, background subtraction is typically performed on

the raw videos before the video data is used in a recogni-

tion algorithm. Finally, another important challenge is

the variability in the clothing, shoe type and the surface

onwhich the individuals walk. Obviously, the clothing of

the subject especially their type of footwear has signifi-

cant impact on the gait features observed and it is im-

portant to bear this in mind while developing gait-based

biometric systems.
Features for Gait Based Biometrics

Silhouette: In most gait-based biometric systems the

cameras can be assumed to be static during the short

duration of time that they capture the gait of a single

individual for verification. This allows simple back-

ground models to be built for each of these cameras.

Background subtraction then identifies the set of

all pixels in the image that belong to the moving
individual. Figure 1 shows a sequence of color images

captured by a video camera as a person walks through

its field of view. Shown below are the binary back-

ground subtracted images in which all pixels belonging

to the individual are white, while the background is

black. This binary image is then scaled to a uniform

size so that the feature extracted is independent of the

distance of the camera from the subject. Several algo-

rithms for gait based person identification use this

binary silhouette as a feature [1–5].

Shape: ‘‘Shape is all the geometric information

that remains when location, scale, and rotational

effects are filtered out from the object’’[6]. Kendall’s

statistical shape is a sparse descriptor of the shape that

describes the shape configuration of k landmark points

in an m-dimensional space as a k�m matrix contain-

ing the coordinates of the landmarks. Image space is

2-dimensional and therefore it is convenient to de-

scribe the shape vector as a k dimensional complex

vector. First, a binarized silhouette denoting the extent

of the object in an image is obtained. A shape feature

is then extracted from this binarized silhouette. This

feature vector must be invariant to translation and

scaling since the object’s identity should not depend

on the distance of the object from the camera. So any

feature vector that we obtain must be invariant to

translation and scale. This yields the pre-shape of the

object in each frame. Pre-shape is the geometric infor-

mation that remains when location and scale effects are

filtered out. Let the configuration of a set of k landmark

points be given by a k-dimensional complex vector

containing the positions of landmarks. Let us denote

this configuration as X. Centered pre-shape is obtained

by subtracting the mean from the configuration and

then scaling to norm one. The centered pre-shape is

given by

Zc ¼ CX

k CX k ; where C ¼ Ik � 1

k
1k1

T
k ; ð1Þ

where Ik is a k � k identity matrix and 1k is a

k dimensional vector of ones.

The advantage of using shape feature is that the

differential geometric properties of the spherical man-

ifold in which the shapes lie are very well understood

and therefore, appropriate distance measures that can

account for translational, rotational and scale invar-

iances are well defined. For example, consider two

complex configurations X and Y with corresponding

preshapes a and b. The full Procrustes distance
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between the configurations X and Y is defined as the

Euclidean distance between the full Procrustes fit of

a and b and is chosen so as to minimize

dðY ;XÞ ¼ k b� ase j y � ða þ jbÞ1k k; ð2Þ
where s is a scale, y is the rotation and (aþ jb) is the

translation. The full Procrustes distance is the mini-

mum Full Procrustes fit i.e.,

dFðY ;XÞ ¼ inf
s;y;a;b

dðY ;XÞ: ð3Þ
The extracted shape sequence is shown in the bottom

row of Figure 1 with a graphical illustration of the

spherical manifold in which shapes lie. Shape is a

very popular feature for gait-based biometrics and

several state of the art algorithms perform gait match-

ing as a matching of a sequence of shapes [7–10].

Joint Angles: A very popular feature for gait analysis

in the medical and the psychophysics community

is the joint angles – i.e., the angles made at each of

the limb joints such as the knee, elbow ankle, wrist
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etc. There have been a few gait based biometrics

algorithms that use joint angles as the feature for

matching [11, 12]. The advantage of using joint angles

as a feature is the fact that view-invariance is automat-

ically achieved while using joint angles as a feature.

Nevertheless, the essential problem with using joint

angles is the fact that it is very challenging to robustly

estimate them from uncontrolled monocular video

sequences.
G

Algorithms for Matching

Most of the features described above have incorporated

modest forms of view-invariance (atleast scale and

translational invariance) as a part of the feature. There-

fore the essential task of the algorithm for matching

would be to model the dynamics of the feature during

gait and use this to perform matching in a manner that

is fairly insensitive to the speed of walking.

Dynamic Time Warping (DTW): Dynamic time

warping is an algorithm for estimating the non-linear

time synchronization between two sequences of fea-

tures. The two sequences could be of differing lengths.

Experiments indicate that the intra-personal variations

in gait of a single individual can be better captured by

non-linear warping rather than by linear warping [13].

The DTW algorithm which is based on dynamic

programming computes the best non-linear time nor-

malization of the test sequence in order to match

the template sequence, by performing a search over

the space of all allowed time normalizations. The

space of all time normalizations allowed is cleverly

constructed using certain temporal consistency con-

straints. Several gait-based biometrics algorithms

have used the Dynamic time warping algorithm in

order to time synchronize and match gait sequences

[7, 8]. Recently, the DTW algorithm has also been

extended so as to learn the warping constraints in a

class-specific manner in order to improve discrimina-

tion between individuals [9].

HiddenMarkovModel (HMM) The Hidden Markov

Model (HMM) is a statistical state space model in

which the observed shape sequence is modeled as out-

puts of a hidden states whose transitions are assumed

to be Markovian. The model parameters of the HMM

encode both the transition probabilities between the

hidden states and the outputs of hidden states. The

advantage of using a HMM is that there exists a wealth
of literature on learning the parameters of the HMM

and to perform inference using the HMM. Typically,

the model parameters for each individual in the gallery

is learnt and stored during the training phase. During

the test phase, the probability of the observation se-

quence conditioned on the model parameters is max-

imized in order to perform recognition. The HMM

[2, 3] and its many variants [14] have been successfully

used for gait based person identification.

Autoregressive Moving Average Model (ARMA):

Matching gait biometrics essentially is a problem of

matching time-series data where the feature at each

time instant is a silhouette or shape or joint angles.

Therefore traditional time series modeling approaches

such as the autoregressive model (AR) and the

autoregressive moving average (ARMA) model have

also been successfully used for gait based person iden-

tification. The model parameters of the ARMA model

are learnt from the training sequences and stored.

Given a test sequence, the model parameters for the

test sequence are learnt and the distance between

the model parameters is used in order to perform

recognition [7].
Model Based Approaches

Typical feature based approaches first compute a se-

quence of features from each video and then match the

sequence of features obtained in the test video to those

stored in the gallery. Model-based approaches are dif-

ferent in the sense that they fit the sequence of features

to a physical model of the human body and its inherent

dynamics. For example, a model-based feature extrac-

tion process guided principally by biomechanical anal-

ysis for gait-based person identification is proposed

[15]. The shape model for human subjects is composed

of an ellipse to describe the head and the torso, quad-

rilaterals to describe the limbs and rectangles to de-

scribe the feet. Anatomical data is first used in order to

derive shape and motion models that are consistent

with normal human body proportions. Prototype gait

motion models are then adapted to individuals using

the specific characteristics of the extracted features.

These individual specific shape and motion models

are then used for gait recognition. A systematic analysis

of the model-based approach also showed that cadence

and static shape parameters of the human body ac-

count for most of the recognition performance.
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Experiments on the USF Gait Data

In order to quantitatively test the performance and the

viability of gait based biometrics a challenging gait

database of 122 individuals was collected at the Uni-

versity of South Florida [4] as part of the DARPA

Human Identification at a Distance (HID) program.

The entire dataset containing over 1,200 videos was

separated into 12 different experiments with varying

levels of difficulty. The different challenge experiments

amounted to varying different covariates during gait,

like viewpoint, clothing, surface type, shoe type, and

time etc. A bar plot of the recognition performance

of various algorithms on the USF dataset (Experiments

A-G) is shown in Figure 2. Experiments A,B and C

correspond to changes in ‘‘view’’, ‘‘shoe type’’ and

‘‘view þ shoe type’’ respectively without any change

in the surface of walking, while challenege experiments

D,E,F and G correspond to changes in the surface

type from grass to concrete. The experiments indicate

that changes in the surface type has significant impact
Gait Biometrics, Overview. Figure 2 Comparison of various
on the recognition performance while view, shoe

type affects recognition performance to a much lesser

degree.
Summary

Gait is thus a novel biometric that provides significant

operational advantages over several other biometrics

such as face, fingerprint, iris etc. Unlike traditional

biometrics like fingerprint, gait does not require the

active cooperation of the subjects. Moreover, gait is a

medium range biometric in the sense that acquisition

distances can be as large as tens of meters. Moreover, in

most operational scenarios, it is non-intrusive and

does not require the subject to wear any special cloth-

ing. Preliminary experiments into gait as a biometric

seem to indicate that the discriminative power of gait

is not as strong as that of traditional biometrics such

as fingerprints or iris. Therefore, several successful

investigations for fusing the gait biometric with other
algorithms on the USF gait database. (Courtesy [1]).



Gait Recognition, Model-Based G 633
traditional biometrics in order to boost the identifica-

tion performance have been performed and this seems

to be an area of immense potential [16].
Related Entries
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▶ Surveillance
G
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Definition

Model-based gait recognition relates to the identifica-

tion using an underlying mathematical construct(s)

representing the discriminatory gait characteristics

(be they static or dynamic), with a set of parameters

and a set of logical and quantitative relationships be-

tween them. These models are often simplified based

on justifiable assumptions, e.g., a system may assume a

pathologically normal gait. Such a system normally

consists of gait capture, a model(s), a feature extraction

scheme, a gait signature, and a classifier (Fig. 1). The

model can be a 2- or 3-dimensional ▶ structural

(or ▶ shape) ▶model and/or ▶motion model that

lays the foundation for the extraction and tracking of

a moving person. An alternative to a model-based

approach is to analyze the motion of the human sil-

houette deriving recognition from the body’s shape

and motion. A gait signature that is unique to each

person in the database is then derived from the extr-

acted gait characteristics. In the classification stage,

many pattern classification techniques can be used,

such as the k-nearest neighbor approach.

The main advantages of the model-based approach

are that it can reliably handle occlusion (especially self-

occlusion), noise, scale and rotation well, as opposed

to silhouette-based approaches.

Practical issues that challenge the model-based ap-

proach can be divided into two categories, which relate

to the system and to the person. One of the systems-

related challenges is viewpoint invariance, whilst

person-related challenges include the effects of physio-

logical changes (such as aging, the consistency of gait

taken/enrolled at different times, whether our walking

pattern changes over a longer period of time), psycho-

logical changes (mood), and external factors (load,

footwear, and the physical environment).

The first model-based approach to gait biometrics

was by Cunado et al. in 1997 [1, 2], featuring the ability
Gait Recognition, Model-Based. Figure 1 Components

of a typical model-based gait recognition system.
to reliably accommodate self-occlusion and occlusion

by other objects, noise, and low resolution. Also, most

of the time, the parameters used within the model and

their relationship to the gait are obvious, i.e., the

mathematical construct may itself contain implicit/

explicit meaning of the gait pattern characteristics.

Though, it often suffers from high computational

cost, this can be mitigated by optimization tools or

increased computing power. Gait sequences are usually

acquired when the subject is walking in a plane normal

to the image capture device since the side view of a

moving person reveals most information, though it is

possible to use other views.
Models

In a typical model-based approach, often, a ▶ structural

model and a motion model are required to serve as

the basis for tracking and feature (moving human)

extraction. These models can be 2- or 3- dimensional,

though most of the current approaches are 2-

dimensional and have shown the capability to achieve

promising recognition results on large databases

(>100 subjects). A structural model describes the to-

pology or the shape of human body parts such as head,

torso, hip, thigh, knee, and ankle by measurements

such as the length, width, and position. This model

can be made up of primitive shapes (cylinders, cones,

and blobs), stick figures, or arbitrary shapes describing

the edge of these body parts. On the other hand, a

motion model describes the kinematics or the dynam-

ics of the motion of each body part. Kinematics gener-

ally describe how the subject changes position with

time without considering the effect of masses and

forces, whereas dynamics account for the forces that

act upon these body masses and the resulting motion.

When developing a motion model, the constraints of

gait such as the dependency of neighboring joints and

the limit of motion in terms of range and direction has

to be understood.

Bobick et al. used a structural model to recover

static body and stride parameters (Fig. 2a) determined

by the body geometry and the gait of a person [3].

Lee et al. fit ellipses to seven regions representing the

human body (Fig. 2b), then derived two types of fea-

tures across time: mean and standard deviation, and

magnitude and phase of these moment-based region

features [4].
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Cunado et al. proposed an early motion-model-

based approach, based on the angular motion of the

hip and thigh [1, 2], where the angular motion of

the hip and the thigh is described by a Fourier series.

For this method, a simple structural model was used

and the angular rotation as defined in Fig. 3. Although

the motion model is for one leg, assuming that gait is

symmetrical, the other leg can be modeled similarly,

with a phase lock of ½-period shift (Fig. 4).

Cunado et al. modeled the angular motion of the

thigh by

yT ¼ a0 þ 2
XN
1

½bk cos ko0t � ck sin ko0t �;

where N is the number of harmonics, o0 is the funda-

mental frequency, and a0 is the offset. In application,

the frequency data was accumulated from a series of

edge-detected versions of the image sequence of the

walking subject. The gait signature was derived by the

multiplication of the phase and magnitude component

of the Fourier description.
Gait Recognition, Model-Based. Figure 2 Example body pa

(b) Lee (c) Wagg (d) Wang.

Gait Recognition, Model-Based. Figure 3 Structural model o

thigh and the lower leg, respectively, connected at the knee
Later, Yam et al. [5] extended the approach to

describe the hip, thigh, and knee angular motion of

both walking and running gaits first by an empirical

motion model, then by an analytical model motivated

by coupled pendulum motion. Similarly, the gait signa-

ture is the phase-weighted magnitude of the Fourier

description of both the thigh and knee rotation.

Bouchrika et al. [6] have proposed one of the latest

motion-model-based gait feature extraction using a

parametric form of elliptic Fourier descriptors to de-

scribe joint displacement.

xðtÞ
yðtÞ

� �
¼ a0

b0

� �
þ cosðaÞ� sinðaÞ

sinðaÞ cosðaÞ
� �

XðtÞ � Sx
Y ðtÞ � Sy

� �
;

where a is the angle, Sx and Sy are the scaling factors,

and X(t) and Y(t) are Fourier summation. The joint

trajectory is then fitted to the image sequence by opti-

mizing a0, b0, a, Sx and Sy; the motion model fit is

implemented by the Hough Transform.

Wagg et al. (Fig. 2c) andWang et al. (Fig. 2d) used a

combination of both structural and motion models to
rameters that are used in structural models. (a) Bobick

f a lower limb: upper and lower pendulum represents the

joint.
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rotation (b) Left and right lower leg rotation.

636G Gait Recognition, Model-Based
track and extract walking human figures [7, 8]. Wagg

introduced a self-occlusion model whilst Wang used

the conditional density propagation framework [9] to

aid feature extraction.

Beyond the 2D models, Urtasun et al. developed a

3D gait motion model derived from a small group of

subjects [10]. The joint motion is approximated by a

weighted sum of the mean motion and the Eigenvec-

tors of sample angular motion vectors. This approach

also shows that it is capable of approximating running

motion as well.
Feature Extraction

Feature extraction segments interesting body parts

for a moving human, and extracts static and/or dyna-

mic gait characteristics. The process normally invol-

ves model initialization, segmentation, and tracking

(estimation) of the moving human from one image

to the next. This is a significant step that extracts

important spatial, temporal, or spatial-temporal sig-

nals from gait. Feature extraction can then be carried

out in a concurrent [1, 2, 5, 8], or iterative/hierarchical

[7] manner.

A conventional starting point of a gait cycle is the

heel strike at the stance phase, although any other stage

within a gait cycle can be used. Earlier techniques

determine the gait cycle manually, later, many have

employed automatic gait cycle detection. A gait cycle

can be detected by simply identifying the stance phase;
if using a bounding box method, the width of the box

has the highest value during the stance phase. Other

alternatives are counting the pixels of the human fig-

ure, using binary mask (Fig. 5) by approximating the

outer region of the leg swing [7].
Quality of Feature Extraction

A good model configuration is defined as one that

yields a high correlation between the model and the

subject’s image. Useful measures for computing model

and image data correlation include edge correspondence

and region correspondence [8]. Edge correspondence is

a measure of how closely model edges coincide with

image edges, whilst region correspondence is a mea-

sure of similarity between the image region enclosed by

the model and that corresponding to the image of the

subject. These two measures are used together. A high

edge correspondence indicates that the model is closely

aligned with image edges; however, it does not guaran-

tee that the model matches the correct edges. If the

initial model configuration is poor, or the subject is

occluded, the match may be coincidental. For this

reason, region correspondence is also required.

Another measure is a pose evaluation function

(PEF) which combines the boundary (edge) matching

error and the region matching error to achieve both

accuracy and robustness. For each pixel, pi, in the

boundary of the projected human model, the cor-

responding pixel in the edge image along the gradient
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to detect gait cycle. The sum edge strength within the

mask varies periodically during the subject’s gait

and the heel strike being the greatest.

Gait Recognition, Model-Based. Figure 6 Measuring the

boundary matching error.
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direction at pi (Fig. 6) is searched. In other words, the

pixel nearest to pi and along that direction is desired.

Given that qi is the corresponding pixel and that Fi
stands for the vector piqi, the matching error of pixel pi
to qi can be measured as the norm Fik k. Then the

average of the matching errors of all pixels in
the boundary of the projected human model is defined

as the boundary matching error

Eb ¼ 1

N

XN
i¼1

Fik k;

where N is the number of the pixels in the boundary.

In general, the boundary matching error measures

the similarity between the human model and image

data, but it is insufficient under certain circumstances,

as illustrated in Fig. 7a, where a model part falls into

the gap between two body parts in the edge image.

Although it is obviously badly-fitted, the model part

may have a small boundary matching error. To avoid

such ambiguities, region information is further con-

sidered. Figure 7b illustrates the region matching.

Here the region of the projected human model that is

fitted into the image data is divided into two parts: P1
is the model region overlapped with the image data

and P2 is the rest of the model region. Then the match-

ing error with respect to the region information is

defined by

Er ¼ P2j j= P1j j þ P2j jð Þ
where Pij j; ði ¼ 1; 2Þ is the area, i.e., the number of

pixels in the corresponding region.
Recognition

A gait signature is a discriminatory feature vector that

can distinguish individual. These signatures have invari-

ant properties embedded in a person such as stride

length, person’s height/width, gait cycle and self-

occlusion, and that related to the imaging system such

as translation, rotation, scale, noise, and occlusion by

other objects. These signatures can be of static [3],

dynamic [2, 5] or a fusion of static and dynamic

[7, 8] characteristics of gait or with other biometrics

[11, 12]. The fusion can happen either at the feature

extraction stage or at the classification stage. On

the Southampton datasets of 115 subjects filmed in-

doors (in controlled conditions) and outdoors (with

effects of shadows, background objects, and changing

illumination) Wagg’s approach achieved an overall

CCR of 98.6% on the indoor data and 87.1% on the

outdoor data.

In the case of 3D approach [10], experiments show

that the first six coefficients of that motion model can



Gait Recognition, Model-Based. Figure 7 Illustrating the necessity of simultaneous boundary and region matching.

(a) A typical ambiguity: a model part falls into the gap between two body parts (b) Measuring region matching error.
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characterize 90% gait patterns of the database used.

This resulted in a very compact gait signature, which

requires only the first three coefficients to form sepa-

rate clusters for each subject. It is interesting that this

study found that the first few coefficients could repre-

sent physiological characteristics like weight, height,

gender or age, while the remaining ones can be used

to distinguish individual characteristics. Another in-

teresting finding is that the nature of the gait signature

for running derived from this 3D motion model is

similar to that of Yam et al., that is, signature clusters

are more dispersed within subject, and span more

widely within the signature space, as compared to

that of walking. Both studies were based on data col-

lected by having subjects running on the treadmill.
Conclusions and Outlook

Using a model is an appealing way to handle known

difficulty in subject acquisition and description for gait

biometrics. There is a selection of models and appr-

oaches which can handle walking and running. Clearly,

the use of a model introduces specificity into the feature

extraction and description process, though this is gen-

erally at the cost of increased computation. Given their

advantages, it is then likely that model-based appro-

aches will continue to play a part in the evolution of

systems which deploy gait as a biometric. Currently,

practical advantages of three-dimensional (3D) appro-

aches have yet to be explored and investigated. Given

that human motion occurs in space and time, it is

likely that much information is embedded within the

3D space. Further, 3D approaches may provide a more
effective way to handle issues like occlusion, pose, and

view point. Therefore, 3D model-based gait recognition

may be a good way to move forward.
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Synonyms

Appearance-based gait analysis; Silhouette analysis for

gait recognition
Definition

The appearance of gait in an image sequence is a

spatiotemporal process that characterizes the walker.

The spatiotemporal characteristics of gait contain rich

perceptual information about the body configuration,

the person’s gender, the person’s identity, and even the

emotional states of the person. Motion analysis for gait

recognition is a computer vision task that aims to

capture discriminative spatiotemporal features (signa-

ture) from image sequences in order to achieve human

identification. Such a signature ought to be invariant
to the presence of various viewing conditions, such as

viewpoint, people clothing, etc. In contrast to Model-

based gait analysis systems, which is another article,

the goal here is to capture gait characteristics without

fitting a body model or locating the body limbs, rather

by analyzing the feature distribution over the space and

time extent of the motion.
Human Gait as a Biometric

Human gait is a valuable biometric cue that has the

potential to be used for human identification similar to

other biometric features, such as faces and fingerprints.

Gait has significant advantages compared to other

biometric features since it is easily observable in an

unintrusive way, it does not require collaborative sub-

jects, and it is difficult to disguise [1]. Therefore, using

gait as a biometric feature has a great potential for

human identification in public places for surveillance

and for security. A fundamental challenge in gait rec-

ognition is to develop robust algorithms that can ex-

tract visual gait features invariant to the presence of

various conditions that affect people’s appearance, as

well as conditions that affect people’s gait. That

includes, viewpoint, clothing, walking surface, shoe

type, object carried, etc. [2].

Johansson’s seminal psychophysical experiments

[3] showed that humans can recognize biological mo-

tion, such as gait, from Moving Light Displays (MLD).

Cutting and Kozlowski [4] showed that humans can

also identify friends from their gait using MLD. Moti-

vated by these results, many researchers in different

disciplines, have shown that the spatiotemporal char-

acteristics of gait contain rich perceptual information

about the body configuration, the person’s gender, the

person’s identity, and even the emotional states of the

person. That motivated extensive recent computer vi-

sion research on extracting features from gait.

Vision-based human motion tracking and analy-

sis systems have promising potentials for many applica-

tions, such as visual surveillance in public area, activity

recognition, sport analysis, video retrieval, and human–

computer interaction. Extensive research has been done

in this area in the last two decades with lots of promising

results. For excellent literature surveys in the subject,

the reader can refer to [5, 6]. The human body is an

articulated object with a large number of degrees of

freedom. This fact makes the problems of tracking the
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body configuration and extracting biometrics very

challenging. Besides the articulation nature of the

body, the variability in people’s appearance adds to

the problems. Human gait is a special case of the

general problem of human motion analysis, and to

some extent, is easier. This is because of the physical

constraints on such a motion as well as the periodic

nature of it.

The appearance of gait in an image sequence is a

spatiotemporal process that characterizes the walker.

Gait recognition algorithms, generally, aim to capture

discriminative spatiotemporal features (signature)

from image sequences in order to achieve human

identification. Gait analysis approaches can be categor-

ized according to the way the gait features are extracted

for classification. There are two broad categories of

approaches: model-based approaches and appear-

ance-based approaches. Model-based approaches,

e.g., [1], fit 3D body models or intermediate body

representations to body limbs in order to extract prop-

er features (parameters) that describe the dynamics of

the gait (see the related entry on ‘‘Model-based Gait

Recognition’’ for details). Model-based approaches

typically require a large number of pixels on the

tracked target to fit their model, i.e., high resolution

zoomed-in images are required on the tracked person.

In contrast, appearance-based approaches aim to cap-

ture a spatiotemporal gait characteristic directly from

input sequences without fitting a body model. The

appearance-based approaches are mainly motivated

by the psychophysical experiments, mentioned earlier,

e.g., [3, 4], which showed that spatiotemporal patterns

such as Moving Light Displays could capture impor-

tant gait information without the need of finding

limbs. Appearance-based approaches do not require

high resolution on subjects, which makes them more

applicable in outdoor surveillance applications where

the subjects can be at a large distance from the camera.
Characteristics and Challenges of
Gait Motion

Gait is a 3D articulated periodic motion that is pro-

jected into 2D image sequences. Therefore, the appear-

ance of a gait motion in an image sequence is a

spatiotemporal pattern, i.e., a spatial distribution of

features that changes over time. Researchers have de-

veloped several algorithms for capturing gait signature

from such spatiotemporal patterns by looking at the
space-time volume of features. The observed shapes of

the human body, in terms of the occluding contours of

the body (silhouettes), are examples of such spatiotem-

poral patterns, which contain rich perceptual infor-

mation about the body configuration, the motion

performed, the person’s gender, the person’s identity,

and even the emotional states of the person. Objects

occluding contours, in general, have a great role in

perception [7] and have been traditionally used in

computational vision, besides other appearance cues,

to determine object category and pose.

The objective of any gait tracking and analysis

system is to track the global deformations of contours

over time and to capture invariant gait signature from

such contours. There are several challenges to achieve

this goal. An observed person’s contour in a given

image is a function of many factors, such as the per-

son’s body build (tall, short, big, small, etc.), the body

configuration, the person’s clothing and the viewpoint.

Such factors can be relevant or irrelevant depending on

the application. Modeling these sources of variabilities

is essential to achieve successful trackers and to extract

gait biometric features. Modeling the human body

dynamic shape space is hard, since both the dynamics

of shape (different postures) and the static variability

in different people’s shapes have to be considered. Such

shape space lies on a nonlinear ▶manifold.

Figure 1 shows an example of a walking cycle from

a side view where each row shows half a walking cycle.

The shapes during a gait cycle temporally undergo

deformations and self-occlusion. The viewpoint from

which the gait is captured imposes self-similarity on

the observed shapes over time. This similarity can be

noticed by comparing the corresponding shapes at the

two rows in Fig. 1. This right part of the figure shows

the correlation between these shapes. The similarity

between the corresponding shapes in the two half

cycles is exhibited by the dark diagonally parallel

bands in the correlation plot. The similarity in the

observed shapes indicates a nonlinear relation between

the observed gait and the kinematics of the gait. This

can be noticed by closely inspecting the two shapes in

the middle of the two rows in Fig. 1. These two shapes

correspond to the farthest points in the walking cycle

kinematically (the top has the right leg in front

while the bottom has the left leg in front). In the

Euclidean visual input space (observed shapes) these

two points are very close to each other as can be

noticed from the distance plot on the right of Fig. 1.

This nonlinear relation between the observed shapes



Gait Recognition, Motion Analysis for. Figure 1 Twenty sample frames from a walking cycle from a side view. Each row

represents half a cycle. Notice the similarity between the two half cycles. The right part shows the similarity plot: each

row and column of the plot corresponds to one sample. Darker means closer distance and brighter means larger

distances. The two dark lines parallel to the diagonal show the similarity between the two half cycles.
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and the kinematics poses a problem to gait tracking

and analysis systems. However, such similarity can

be useful in extracting gait features. For example,

the temporal self-similarity characteristic has been

exploited in the work of BenAbdelkader et al. [8] for

gait recognition.
Extracting Gait Signature from
Motion

There have been extensive research on appearance-

based extraction of gait signatures. Typical prepro-

cessing steps for gait analysis include detecting

and tracking the human subject in order to locate a

bounding box containing the motion and/or extracting

the body silhouette (see the related entry on human

detection and tracking).

One of the early papers on gait analysis using

spatiotemporal features is the work of Niyogi and

Adelson [9] where a spatiotemporal pattern (corres-

ponding to leg motion) was used to detect gait motion

in an image sequence represented as an XYT volume.

Gait was then parameterized with four angles for rec-

ognition. Murase and Sakai [10] used a parametric

eigenspace representation to represent a moving object

using Principle Component Analysis (PCA). In their

work, the extracted silhouettes were projected into an

eigenspace where a walking cycle forms a closed trajec-

tory in that space. Spatiotemporal correlations be-

tween a given trajectory and a database of trajectories

were used to perform the recognition. Huang et al. [11]

extended the method using Canonical space transfor-

mation (CST) based on Canonical Anaylsis (CA), with

eigenspace transformation for feature extraction.

Little and Boyd [12] exploited the spatial distri-

bution of optical flow to extract spatiotemporal

features. From dense optical flow, they extracted
scale-independent features capturing the spatial distri-

bution of the flow using moments. This facilitates

capturing the spatial layout of the motion, or as they

call it ‘‘the shape of the motion.’’ Periodicity analysis was

then done on these features to capture gait signatures for

recognition. BenAbdelkader et al. [8] used image self-

similarity plots (similar to Fig. 1) to capture the spa-

tiotemporal characteristics of gait. Given bounding

boxes around a tracked subject, correlation is used to

measure self-similarity between different time frames

in the form of similarity plots. PCA analysis was used

to reduce the dimensionality of such similarity plots

for recognition. Hayfron-Acquah et al. [13] used spa-

tial symmetry information to capture gait chara-

cteristics from silhouettes. Given a walking cycle, a

symmetry operator was used to extract a symmetry

map for each silhouette instance in the cycle. Fourier

transform was used to extract descriptors from such

symmetry maps for recognition.

Since gait is a temporal sequence, researchers have

investigated the use of Hidden Markov Models

(HMM) to represent and capture gait motion charac-

teristics. HMMs have been successfully used in many

speech recognition systems, as well as gesture recogni-

tion applications. Typically a left-right HMM with a

small number of states (three to five) is sufficient to

model the gait of each subject in the database, where

the HMMs are trained from features extracted from

silhouettes. In [14], HMM was used to capture gait

dynamics from quantized Hu moments of silhouettes.

HMM was also used in [15] with features representing

silhouette width distribution.

Lee and Elgammal [16] used bilinear and multi-

linear models to factorize the spatiotemporal gait pro-

cess into gait style and gait content factors. A nonlinear

mapping was learned from a unit circle (representing a

gait cycle) to the silhouettes’ shape space. The unit

circle represents a unified model for the gait manifold
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of different people, therefore, any spatiotemporal char-

acteristics of the gait of a specific person should exist

on the mapping space. Bilinear and multilinear models

were used to factorize such mapping to extract gait

signatures.
Manifold-based Representation for
Gait Analysis

Despite the high dimensionality of the human body

configuration space, any body motion is constrained

by the physical dynamics, body constraints, and the

motion type. Therefore, many human activities lie

intrinsically on low dimensional manifolds. This is
Gait Recognition, Motion Analysis for. Figure 2 Embedded

frames from a walking cycle along the manifold with the fram

are shown. Right: three different views of the manifold. � IEE
true for the body kinematics, as well as for the observed

motion through image sequences. For certain classes of

motion like gait, facial expression, and simple gestures,

considering a single person and factoring out other

sources of variability, the deformations will lie on a

one-dimensional manifold. Recently many researchers

have developed techniques and representations for gait

analysis that exploit such manifold structure, whether

in the visual space or in the kinematic space, e.g.

[17, 18]. Modeling the gait manifold was earlier used

for gait recognition in [10].

Intuitively, the gait is a one-dimensional closed

manifold that is embedded in a high dimensional

visual space. Such a manifold can twist and self-inter-

sect in such high dimensional visual space. This can be
gait manifold for a side view of the walker. Left: sample

e numbers shown to indicate the order. Ten walking cycles

E.
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noticed by considering the human silhouette through

the walking cycle, (as shown in Fig. 1) as points in a

high dimensional visual input space. Given the spatial

and the temporal constraints, it is expected that these

points will lay on a closed trajectory. In order to

achieve a low dimensional embedding of the gait man-

ifold (▶manifold embedding), dimensionality reduc-

tion techniques can be used. Linear dimensionality

reduction can be used to achieve an embedding, as in

[10]. However, in such a case the two half cycles would

be collapsed to each other because of the similarity in

the shape space. Nonlinear dimensionality reduction

techniques such as LLE [19], Isomap [20], GPLVM

[21], and others can successfully embed the gait

▶manifold in a way that separates the two half cycles.

As a result of nonlinear dimensionality reduction, an

embedding (and a visualization) of the gait manifold

can be obtained in a low-dimensional Euclidean

space [17]. Figure 2 illustrates an example embedded

manifold for a side view of the walker. The data used

are from the CMU Mobo gait data set which contains

25 people from six different view points. Data sets

of walking people from multiple views are used in

this experiment. Each data set consists of 300 frames

and each containing about 8–11 walking cycles of

the same person from a certain view points. The
Gait Recognition, Motion Analysis for. Figure 3 Embedded

view manifold is the right most one and back view manifold

illustrates its shape in the 3D embedding space is visualized.
walkers were using treadmill which might result in

different dynamics from the natural walking. Figure 3

illustrates the embedded manifolds for five different

view points of the walker. For a given view point, the

walking cycle evolves along a closed curve in the

embedded space, i.e., only one degree of freedom con-

trols the walking cycle, which corresponds to the

constrained body pose as a function of the time.

Such a conclusion conforms to the intuition that the

gait manifold is one-dimensional.

As can be noticed in Fig. 3, The manifold twists in

the embedding space given the different viewpoints,

which impose different self occlusions. The least twist-

ed manifold is the manifold for the back view as this

is the least self occluding view (left most manifold in

Fig. 3. In this case the manifold can be embedded in

a two dimensional space. For other views, the curve

starts to twist to be a three-dimensional space curve.

This is primarily because of the similarity imposed by

the view point which attracts far away points on the

manifold closer. The ultimate twist happens in the

side view manifold where the curve twists to get

the shape of the numeral 8 where each cycle of the

eight (half eight) lies in a different plane. Each half of

the ‘‘eight’’ figure corresponds to half a walking cycle.

The cross point represents the body pose where it is
manifolds for five different views of the walkers. Frontal

is the leftmost one. The view of the manifold that best

� IEEE.



644G Gait Recognition, Motion Analysis for
totally ambiguous from the side view to determine

from the shape of the contour which leg is in front,

as can be noticed in Fig. 2. Therefore, in a side view, a

three-dimensional embedding space is the least that

can be used to discriminate the different body poses.

Embedding a side view cycle in a two-dimensional

embedding space results in an embedding similar to

that shown in top right of Fig. 2 where the two half
Gait Recognition, Motion Analysis for. Figure 4 Adaptive C

frames. (b) adapting to the target style. (c) the tracked body c

From [22].
cycles lie over each other. Interestingly, despite that

the side view is the most problematic view of the gait,

most gait recognition systems seem to favor such view

for recognition! Different people are expected to have

different manifolds. However, such manifolds are all

topologically equivalent.

The example embeddings shown here are for sil-

houette data, i.e., the visual manifold of the gait is
ontour Tracking of Gait: (a) tracking through sample

onfiguration showing a constant speed dynamic system.
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embedd ed. Simil ar embedd ing can be obtai ned for

kinem atic data, in such a case the kin ematic manifo ld

of the gait is embedde d. In suc h a case PCA would be

suffic ient to achieve an em bedding . The impor tance of

such em bedded representat ions is that they prov ide a

low dimension al representation for tracki ng the gait

motion. On ly a one-dime nsional paramet er is nee ded

to control and track the gait moti on. This leads to a

simple constant speed dynam ic model for the gait .

Figure 4 shows an examp le of gait contour tr acking

system [22 ] that uses an embedded re pre sentation o f

the gait manifold. As a result, a constant speed linear

dynamics is achieved (Fig . 4b). The tracke r can a lso

adapt t o t he tracke d person shape st yle a nd identify

that st yle fro m a database of st yles ( Fig . 4c).

Explicit manifol d representation for gait is not only

useful for tracking and pose estimati on, but also can be

used in gait recognition sy stems. Different people are

expecte d to have different manifol ds for the appear-

ance of their gait. However, such manifol ds are all

topolo gically equivalen t to a unit circle. A person’s

gait manifol d can be tho ug ht of as a tw iste d circle in

the input space. The spati otemporal process of gait is

captured in the tw ist of a given per son’s manifol d.

Therefore, a per son’s gait signature can be captu red

by mode ling how a unit circle (an ideal manifol d)

can def orm to fit that per son’s gait manifol d. This

can be achieved by fitting a nonlinear war ping functio n

between a unit circle and a given person’s silhouet te

sequen ce. In [23 ] this approach was used to capture

gait si gnatures by factor izing the w arping func tions’

coefficient space to obtain a low -dimensi onal gait sig-

nature space for recogni tion.
Summary

Appearance-b ased ana lysis of gait is motivat ed and

justifi ed by psychophysical exp erimen ts. Appearance-

based app roaches fo r gait recognition aim to extrac t a

gait signatu re from the spati al and tempora l distri bu-

tion of the features on a tr acked subjec t w ithout the

need to fit a body model or to locate limb s. Such

approaches have proved ver y successful in gait recog-

nition and are applicab le in scenarios where the gait

biome tric features can onl y be extra cted from a

dista nce. The re are many limitatio ns to the current

gait recognition system s incl uding achiev ing invaria nt

to v iew ing condi tions, such as v iew point invariant.
Recent progress in manifol d-based representation of

gait, as well as facto rized models, such as mu ltilinear

tensor models prov ides potential solutio ns to such

problems.
Related Entries

▶ Gait Recognition, Model-B ased

▶ Human detectio n and tra cking
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Definition

Silhouette-based gait recognition is the analysis of

walking human figures for the purpose of biometric

recognition. Gait biometrics offers the advantage

of covertness; acquisition is possible without the

awareness or cooperation of the subject. The analysis

may apply to a single static image, or to a temporal

sequence of images, i.e., video.
Introduction

The phenomenon of gait is the ‘‘coordinated, cyclic

combination of movements that result in human loco-

motion’’ [1]. Gait is necessary for human mobility and

is therefore ubiquitous and easy to observe.
The common experience of recognizing a friend

from a distance by the way they walk has inspired

the use of gait as a biometric feature. In fact, Cutting

and Kozlowski [2], using ▶moving light displays

to isolate the motion stimulus, demonstrated that

humans can indeed identify familiar people from gait.

In their experiments, seven subjects identified the

gaits of a subset of six subjects correctly at a rate of

38%. While this rate is less than adequate for bio-

metrics, it is significantly better than random (17% in

for their sample size), and validates the human source of

inspiration.

To convert a gait into a feature vector suitable for

biometrics, one can characterize the motion in the gait,

e.g., by analyzing joint angles and limb trajectories, or

by measuring the overall pattern of motion. Alterna-

tively, one can measure critical body dimensions such as

height or limb lengths. In the later approach, biometric

features can be measured statically, but the motion in

the gait provides a convenient mechanism to reveal

joint positions, and consequently, limb lengths.

McGeer’s work on passive dynamic walkers [3, 4]

reveals the extent to which gait motion relates to

body mass and limb lengths: in the passive dynamic

model of a human gait, the motion is a stable limit

cycle that is a direct result of body mass and limb

length. Factors not accounted for in McGeer’s original

model are muscle activation (gravity powers a passive

dynamic walker), walking surface, injury, and fatigue.

Intuitively, the motion in a gait is a reflection of the

mass and skeletal dimensions of the walker. McGeer’s

passive dynamic model leads to more sophisticated

models that account for some of these other factors.

For example, see the work of Kuo [5, 6].

Confounding factors in gait biometrics include

clothing and footwear. Clothing can change the

observed pattern of motion and make it difficult to

accurately locate joint positions. The effect of footwear

is more complex. Some variation in footwear causes

changes in muscle activation, but causes no outwardly

visible change in the pattern of motion [7], whereas

other footwear changes will alter gait.

▶ Silhouette-based gait recognition extracts the

form of a walking subject, and then computes a feature

vector that describes either the pattern of motion

in the gait, or the physical dimensions of the subject.

A classifier then matches the feature vector against

previously acquired examples for identification or

verification.
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Silhouettes

Definitions of silhouette are often ambiguous: some

definitions refer to the region covered by a figure,

whereas other definitions refer to the boundary be-

tween a figure and its background. In the context of

silhouette-based gait biometrics, we assume that the

silhouette refers to the region, rather than the border.

Nevertheless, there are related examples that use the

boundary, e.g., see Baumberg and Hogg [8].

To form a silhouette of a walking figure requires

the ▶ segmentation of image pixels into foreground

(the moving figure) and background (everything else)

sets of pixels. The silhouette is the set of foreground

pixels. The easiest way to acquire a reliable silhouette is

chroma-keying [9], which relies on color disparities

between a backdrop and the foreground subject. The

background color (usually green or blue), is chosen to

make the color discrimination robust. Figure 2d shows

an example of chroma-keying in gait analysis. The

unusual color of the backdrop makes the subject

aware that they are under surveillance, negating the

covertness of gait biometrics.

▶Background subtraction obviates the need for a

colored backdrop by measuring the naturally occur-

ring scene behind the subject. This entails estimating

the statistical properties (usually in the luminance

and color) of every pixel over one or more frames

of video. By comparing the background estimate

with subsequent frames of video, one can classify fore-

ground pixels as those that do not match the back-

ground. The classifier can be as simple as thresholding

of the absolute difference between the background and

video frames. In most cases, the background estima-

tion and subtraction are merged into an online system

that continuously computes pixel differences and then

updates the background for each frame of video. Back-

ground subtraction requires that the background

and camera be stationary. Stauffer and Grimson [10]

describe a widely used background subtraction method

that uses a multimodal estimate of background statis-

tics to produce reliable silhouettes of moving objects.

Their method is robust in the presence of some back-

ground motions (e.g., rustling leaves or swaying tree

branches).

The projection of motion in a scene onto a camera

image plane is called a motion field. When a human

figure is walking, segmenting moving from slow or

stationary pixels in the motion field will extract a
silhouette of the figure. Additionally, a motion field

provides richer information than a simple silhouette

because it indicates not onlywhere the subject ismoving,

but also how fast the various body parts are moving. In

general, it is not possible to measure a motion field, but

one can measure ▶ optical flow, an approximation to

the motion field that is sufficient for biometric gait

recognition. If one imagines the luminance of pixels to

be a fluid that can flow around an image, the optical

flow estimates the movement of that fluid. It is, in part,

related to themotion field, but is not necessarily equal to

the motion field in all cases. Barron et al. [11] provide a

comparative survey of some well-known optical flow

algorithms. For example, see Fig. 2a.

Most silhouette-based biometric gait analysis

focuses on a view of the subject orthogonal to the

sagittal plane of the subject, i.e., the subject walks

across the field of view rather than toward or away

from the camera. We believe that this preference exists

because front or rear views of the subject show mostly

side-to-side motion and do not reveal either joint

location or the complex patterns of limb motion.

Marker-based motion capture, e.g., Johansson’s

moving light displays, offers a counterpoint to silhou-

ettes that are less practical for biometrics, but are

useful for gaining insight into the perceptual issues

surrounding gait [12, 13].
Duration of Observation

In general, it is desirable to observe the gait as long as

possible. One way to extend the duration of an obser-

vation indefinitely is to have a subject walk on a tread-

mill in front of a stationary camera, e.g., see Fig. 2b.

However, this requires the cooperation and awareness

of the subject.

Alternatively, allowing the camera to pan with the

motion of the subject can extend the observation time

without the subject walking on a special apparatus.

However, when the camera moves, the images acquired

contain both the movement of the subject, and the

background. The changing background makes accu-

rate background subtraction difficult.

Using a static camera simplifies both the apparatus

and the processing to extract the silhouette, but the

duration of observation is limited by the time it takes

the subject to cross the field of view of the camera. The

actual duration will vary with the angular width of



648G Gait Recognition, Silhouette-Based
the field of view, the distance between the subject

and the camera, and the speed of the subject. The

practical limit on distance to subject depends on the

resolution of the camera. Higher resolutions allow

the subject to be further away while maintaining

enough pixel coverage to measure biometric feature

vectors accurately. In examples reported in the litera-

ture that use a static cameras and subjects walking on

the ground, the typical duration of observation is

approximately three to six strides.
Periodicity and Synchronization

Gait is a periodic phenomenon, so the silhouette of a

walker varies with position in the gait cycle. Conse-

quently, it is necessary to synchronize measurements of

the silhouette to positions in the gait cycle. In turn, this

requires measurement of the frequency of the gait and

establishment of a phase reference within the gait cycle.

The method used to perform the synchronization

depends on the particular measurements acquired and

can serve to differentiate gait analysis methods. For

example, Little and Boyd [14] measure the frequency

from the oscillations of the centroid of the figure.

To establish a phase reference, they use the phase of

an oscillating measurement. In methods that measure

height, e.g., Ben-Abdelkader et al. [15], the frequency

of oscillations of the figure height gives the frequen-

cy of the gait. Positions of maxima in the height corre-

spond to the positions in the gait where the swinging

leg is vertical, thus defining a phase reference.
Conversion of Silhouettes to Features

A necessary step in silhouette-based gait recognition is

conversion of a temporal sequence of silhouettes into a

gait signature, i.e., a feature vector suitable for classifi-

cation. One approach is to extract features that char-

acterize the silhouette shapes and their variation over

time, as illustrated schematically in Fig. 1a.

As an example, Little and Boyd [14] use geometric

moments to describe a silhouette within a single frame

of video. The moments include geometric centers, i.e.,

the average position of pixels in the silhouette, some-

times called the center of mass. Weighting the pixel

positions by corresponding optical flow values gives

geometric moments sensitive to rapid limb movement.
Little and Boyd also use eccentricity [16], based on

higher-order geometrical moments. A further step is

necessary to combine the shape description for silhou-

ettes in individual frames to a feature vector repre-

sentative of the entire gait. Cyclic oscillations in the

silhouette shape moments result naturally from a gait,

so Little and Boyd exploit this to collect the individual

shape descriptions into a single feature vector of the

relative phases of the moment oscillations. Shutler and

Nixon [17] describe a variation on this approach that

uses Zernike moments to represent an accumulated

shape over the duration of a gait cycle.

Ben-Abdelkader et al. [18] also exploit the periodic

nature of a gait to form feature vectors. Periodicity and

symmetry in a gait mean that similar shapes occur

throughout the cycle of a gait. A feature vector built

from measures of the silhouette self-similarity over

period forms the basis for gait recognition. Periodicity

in the self-similarity measures establishes the frequency

of the gait. Hayfron-Acquah et al. [19] characterize the

silhouette shape in a single frame by measuring sym-

metries in the outline of the silhouette to produce a

symmetry map. The average of these symmetry maps

over a gait cycle gives the gait signature used for recog-

nition. Boyd [20] uses an array of phase-locked loops

to measure the frequency, amplitude, and phase of

pixel intensity oscillations due to a gait. The ampli-

tudes and relative phases form a vector of complex

phasors that acts as gait signature for recognition.

Rather than relying on the connection between gait

and body structure to form a gait signature, one can

use feature vectors that relate directly to body dimen-

sions as shown in Fig. 1b. For example, Bobick and

Johnson [21] measure stride and torso lengths, and

Ben-Abdelkader et al. [15] measure height and stride

characteristics. Collins et al. [22] identify key frames

in a gait sequence for both the double-support (two

feet on the ground) and mid-stride phase of a gait.

From these key frames they measure cues related to

height, width, and other body proportions, and move-

ment-related characteristics such as stride length, and

amount of arm swing.
Data Sets

A database of sample gaits is essential for developing a

silhouette-based gait recognition system. Little and

Boyd [14] provided one of the earliest databases
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the silhouette combine to form a gait signature from the motion of the gait, or (b) critical body dimensions are measured

from key frames within the gait cycle. Existing methods use variations on both of these themes and can even

combine them.
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featuring seven sample gaits for each of six subjects, for

a total of 42 gait sequences (Fig. 2a).

Gross and Shi [23] created the Motion of Body

(MOBO) database (Fig. 2b). It features gait samples

for 25 subjects. Each subject walks on a treadmill under

four different conditions (slow, fast, on an incline, and
carrying a ball) and from a variety of viewing angles.

Segmented silhouettes are part of the database.

Sarkar et al. [24] present a large (1.2 Gigabytes) gait

database as part of the HumanID Gait Challenge Prob-

lem associated with the Defense Advanced Research

Projects Agency (DARPA) HumanID project (Fig. 2c).



Gait Recognition, Silhouette-Based. Figure 2 Example images from gait databases suitable for testing silhouette-based

gait recognition: (a) Little and Boyd [14], (b) MOBO [21], (c) HumanID Gait Challenge [22], and (d) Shutler et al. [23].

All examples show raw video images in the top row and silhouettes or magnitude of the optical flow (Little and Boyd

only) in the bottom row. The silhouettes shown for the Shutler et al. do not correspond to the images above.
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The database contains samples for 122 subjects

acquired in multiple sessions and under variable con-

ditions. The challenge problem specifies a series of tests

using the database as well as a reference algorithm to

facilitate comparative testing by researchers.
Shutler et al. [25] created a database featuring

over 100 subjects (Fig. 2d). The database contains

sequences acquired over multiple sessions and features

subjects walking from both left-to-right and right-to-

left. Subjects walk on the ground or on treadmills, and
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in front of green screens (for chroma-keying) or in

outdoor scenes.
G

Examples

Bhanu and Han [26] estimate upper bounds on the

performance of gait recognition by equating gait with

body dimensions, presented as plots of recognition rate

versus gallery size for varying assumptions of accuracy.

As one might expect with upper bounds, these rates are

optimistic. Random guessing is a good lower bound on

performance, but any practical biometric system must

be much better. One can reasonably expect that a gait

biometric system should perform at least as well as

humans on moving light displays [2], i.e., 38% from

a gallery of six.

Within these broad bounds, there are numerous

examples of existing silhouette-based gait recognition

systems. Most of these have been tested with one

or more of the databases mentioned earlier. Examples

include the work of Hayfron-Acquah et al. [19],

Shutler and Nixon [17], Collins et al. [22], Bobick

and Johnson [21], Ben-Abdelkader et al. [15, 18], Liu

and Sarkar [27], Robledo and Sarkar [28]. Lee and

Grimson [29], Little and Boyd [14, 20], and Wang

et al. [30]. The best reported correct classification

rates (CCR) are better than 90% from a gallery of

approximately 100 people.
Summary

Human experience supported by psychological obser-

vation suggests that humans can be recognized by

their gaits, which inspires gait biometric systems.

Silhouette-based gait recognition systems convert

images from a video gait sequence to silhouettes of

the walker. Dynamic shape or body dimensions are

measured from the silhouettes and combined to form

a gait signature used for recognition. There are several

databases available for testing silhouette-based gait

recognition, and numerous published examples of suc-

cessful recognition using these databases.
Related Entries
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▶Gait Recognition, Motion Analysis for
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Synonyms

Gait analysis; Perpetrator identification
Definition

Forensic evidence of gait, or forensic gait analysis, may

be defined as analyses of gait performed in the service

of the law. Usually, this involves analyses of criminal
cases with the aim to characterize the gait of a perpe-

trator, and often to compare the gait of a perpetrator

with the gait of a suspect. The results of the analyses

may furthermore need to be presented in court. The

methods involved in forensic gait analyses comprise

morphological assessment of single gait features and

kinematic assessment of body movement, often com-

bined with photogrammetrics. The latter means that

body segment lengths, stride length, etc. may be quan-

tified and used in direct comparisons.
Introduction

Forensic analysis of ▶ gait has a lot of common ground

with biometric gait recognition, but there are also some

major differences. In terms of image capture, the imag-

ery used in forensic gait analysis is mostly always ac-

quired from CCTV, with the perpetrator specifically

trying to conceal identity. In biometric systems, image

capture of a person, or registration, takes place under

specific circumstances, designed to maximize data

quality, and obviously a person will willingly follow a

set of guidelines in order to ensure proper registration.

On the other hand a bank robber might try to hide his

or her face to avoid facial recognition or wear baggy

clothes to blur body morphology.

Biometric gait recognition systems may operate

with various false accept or reject rates, which govern

how exclusive the system is, and reflect the number of

‘‘wrong’’ registrations that can be tolerated. For exam-

ple, a relatively high false reject rate (i.e., rejecting a

person who otherwise should be cleared) is not a

problem if the system is meant for a screening func-

tion, where rejection simply leads to an additional

identity check. It is possible to generate computer

models which can identify people by their gait with

more than 90% success [1, 2], but these models are still

based on a small number of people and require optimal

conditions seldom found outside the laboratory [3].

Alternative biometric approaches use a description of a

subject’s silhouette, often with reportedly improved

recognition performance [4]. In forensic gait analysis,

the analysis is often specifically carried out to match a

perpetrator with a suspect. If the case is made that

there is a match then the suspect may be sentenced.

This places a certain onus on the gait analysis and the

scientists carrying out the analyses, and the prosecution

and the defense may well challenge the findings of the
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gait analysis. This also means that when presenting

the results of a forensic gait analysis, one has to be

familiar with the legal prerequisites for the legal state-

ments, and how expert evidence is adjudicated.
G

Technical Issues

Bank CCTV systems are often set up not to capture gait

specifics, but rather to give fields of view covering

office spaces, teller machines, etc., and also often to

supervise the bank employees. It is a not uncommon

experience when perusing CCTV footage after a bank

robbery that the perpetrator is seen moving behind

desks and tellers, so that only the upper part of his

body is filmed. Also, the CCTV system may vary quite

a lot in terms of technical quality, e.g., image capture

frequencies, digital versus analog data storage, color

versus b/w cameras (the latter often of sharper quality),

and numerous supplier – dependent video and com-

puter systems (e.g., in terms of data compression of

video images).

The recording frequency should ideally be about

15 Hz allowing the examination of dynamic features

such as, e.g., lateral instability in the knee at heel strike.

Others have found a similar frequency sufficient for

obtaining joint angles [5] and for automatic recogni-

tion of gait [2]. Lower recording frequencies may also

be sufficient to examine features that are more static,

although the gait will have a ‘‘jerky’’ appearance. Even

at a low 5 Hz recording frequency, it has proved possi-

ble to examine gait parameters such as dorsal/plantar

flexion at heel strike, degree of ‘‘push-off ’’ at toe-off,

and knee flexion during stance. At even lower record-

ing frequencies, where the images really are still image

series, specific gait-related characteristics may be no-

ticed, e.g., a perpetrator with a bow-legged left knee.

This means that even just one single image of the gait

can sometimes be useful, if the gait feature captured

can be deemed characteristic.
Gait

The ability to recognize other individuals is fundamen-

tal to human life. Identification by gait is a part of

this process. Shakespeare made use of this in his play

‘‘The Tempest’’ where Ceres said: ‘‘High’st queen of

state, Great Juno, comes; I know her by her gait’’.
Psychophysiological studies have proved that the

human being can recognize the sex of a walker [6]

and friends and colleagues [7, 8] with a success rate

up to 70–80%.

The authors derive from the Institution that

has conducted what are, so far, the only scientific

approaches to gait analysis for evidential procedures.

The essay describes how evidential analysis was derived

and presented in two forensic investigations [9, 10].

Gait analyses is performed by first gaining a purely

morphological, ▶ anthroposcopic impression of the

gait of a perpetrator. We then combine the basic ability

to recognize people with biomechanical knowledge in

order to give statements as to whether a suspect could

have the same identity as a perpetrator in a given case

by comparing the suspect’s posture and joint angles

during gait with the perpetrator’s. A checklist has been

developed for forensic gait analysis (Table 1). First

described are the general characteristics of the perpe-

trator’s gait following which are analyzed each of the

joint rotations and segment movements found relevant

for forensic gait analysis (by trial end error). When a

profile of the perpetrator has been completed, each

item of the list is compared to the recording of the

suspect and stated if agreement (A), no agreement (N),

or comparison not possible (-) is found. An item can

be incomparable because either the joint rotation/

movement cannot be analyzed due to poor quality of

the surveillance recordings, or the recording of the

suspect differs too much in some way from the record-

ing of the crime such as differences in shoulder angles

between suspect and perpetrator because of elevated

shoulders in one of the recordings.

There have been several automated assessments of

feature analysis for forensic and biometric purposes

which show that there is a natural match between

technique and observed performance [5]. Their fea-

tures include foot angle (degree of outward rotation),

the step length, and the mean hip joint angle, among

others. Several other characteristic features have also

been identified: inversion/eversion in the ankle during

stance, lateral flexion in the dorsal column of the

spine, and the knee angle in the frontal plane that

would show lateral instability of the knee and signs

of a person being bow-legged/knock-kneed. Further-

more, some of the characteristic features found were

so special, such as limping, that it was not necessarily

expected to be found in the 11 randomly selected

subjects.



Gait, Forensic Evidence of. Table 1 IFM Copenhagen

gait description form/checklist. The rightmost column is

marked up either with ‘‘A’’ for agreement; ‘‘N’’ for no

agreement; and ‘‘-’’ for incomparable (see text).

The middle column is used for notes and specific

observations

General

Notes on gait of
perpetrator/

suspect

Long/short steps, stiff/
relaxed gait with Narrow/
wide distance between
the feet

Signs of pathologic gait

Feet/ankle joint

Outward rotation

Inversion/eversion

Dorsal/plantar flexion at
heel strike

Degree of ‘‘push-off’’ at
toe-off

Knee

Varus/valgus

Knee flexion during stance

Hip/pelvis

Pelvis Abduction/adduction

Pelvis Rotation

Pelvis tilt

Upper body

Lateral flexion of spinal
column

Forward/backward leaning

Rotation of the upper body
during walk

Shoulders

Angle in frontal plane

Forward/backward rotation

Neck/head

Posture in sagittal plane

Head movements in frontal
plane

Quality of recordings/
other precautions
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It should be stressed that a rather wide definition

of ‘‘gait analysis’’ is used, so that basically all bodily

movements may be studied. Posture and stance may be

quite specific. For example, when standing, one leg is
more often weight-bearing than the other; there may

be marked lordosis; the neck and shoulders may be

more or less slouched, and so on. These stance-related

characteristics have a bearing on how a person initiates

or stops walking, and should thus also be involved in

the analysis.

All the above features may be judged purely mor-

phologically, but it may be of great evidentiary value to

attach numbers to these features. Thus, the morpho-

logical approach is combined with photogrammetry in

order to acquire specific measurements of body seg-

ment lengths and heights.
Photogrammetry in Association with
Gait Analysis

Photogrammetry literally means measuring by pho-

tography. Photogrammetry enables the measurement

of unknown values in two-dimensional space (2D)

using known values within a single image [9, 10].

Another basic application of photogrammetry is mea-

suring objects in three-dimensional space (3D) using

photographs taken from different sides and angles.

Zhao et al. [11] have also worked with video sequences

in this respect. Jensen and Rudin [9] used a 2D method

to measure the stature and several segment lengths in

two different cases and found excellent agreement be-

tween perpetrator and suspect. Lynnerup and Vedel

[10, 12] used a 3D method in the investigation of a

bank robbery where the perpetrator was recorded si-

multaneously from two different cameras and found

good agreement in bodily measurements when com-

paring the perpetrator to the suspect.

A first step in photogrammetry is calibration of

the CCTV cameras. This is done by placing frames

with targets on the locations (Fig. 1). The frames

are photographed with both the surveillance video

cameras and a calibrated digital camera. Using the

digital camera images and special software (PhotoMo-

deler Pro1) the points are measured and subsequently

imported as control points (‘‘fiduciary points’’). A

feature in PhotoModeler Pro1 allows determination

of the internal parameters of the surveillance video

cameras, e.g., focal length, and subsequent calculation

of the exact placement of the cameras. After calibration,

still images from the surveillance cameras are input in

PhotoModeler Pro1. The photogrammetrical method

described here has the advantage that there is no need
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to ascertain the position of the perpetrator in relation

to a measuring device. After calibration by fiduciary

points, the photogrammetrical analysis produces

points in a 3D space, and an evaluation of the goodness

of fit may be made directly in the software. This then
Gait, Forensic Evidence of. Figure 1 Measuring screens

put up in a department store, in order to calibrate the

CCTVs [10].

Gait, Forensic Evidence of. Figure 2 Screen shots of PhotoM

Simultaneous images from different CCTV cameras are used to

from different POV. The lines between the points are to scale

G

allows measuring body segment lengths, stature, etc. of

a perpetrator in various locations and with various

body stances (Fig. 2). The selection of anatomical

points is done by choosing specific points such as the

top of the head, eyes, and joint center-points on an

image. This selection is made by judging anatomical

landmarks, clothing displacement, comparison with

images just before and after the chosen photo, etc.

When then focusing on the other images of the same

situation, but from other cameras, the program will

indicate the epi-lines (the ‘‘line of sight’’) from the first

image, as well as a line connecting the two joints. After

selecting the identical anatomical points in this image,

it is immediately apparent how good the fit is, and

whether the points selected in the first image are ade-

quate. Thus, the 3D coordinates are calculated not only

by a simple averaging of points chosen from two

images, but reflect a dynamic process where the tight-

ness of the intersections of the epi-lines is minimized.

The absolute error associated with measuring using

photogrammetry as described is small. For instance,

the height of a desk (bolted to the floor and not moved

between the incident and the analysis) was measured

by photogrammetry (result: 89.3 cm) and compared to
odeler Pro1 interface, showing selection of points.

pinpoint concurrent anatomical points (and markers) seen

and thus hold accurate measures of distance [10].
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an actual physical measurement (result: 90.0 cm), thus

the error was 7 mm or less than 1%. Intra- and inter-

observer tests of photogrammetric measurements of

bodily segments seem to indicate that the error asso-

ciated with clearly identifiable body points, such as top

of the head, eyes, ear lobes, among others is small. On

the other hand, if the body points are hidden or ob-

scured by clothing, such as joint center-points, then

there is some variation, which needs to be taken into

account.

Currently, research focuses on implementing the

possibility of performing accurate measurements

of a perpetrator even though images are from only

one camera. To do this, a measuring screen is used,

the contours of which can be accurately measured

by the software, which is physically placed near to

where the perpetrator was standing (it needs to

place the perpetrator on a specific point on the

floor). If the screen is oriented perpendicular to

the camera, then the screen can be imported as a

virtual screen overlaid the crime video-footage

(Fig. 3). The perpetrator can then be measured against

this screen, akin to seeing a person standing in front

of a light-source, and whose shadow is cast of a screen

or wall behind him.
Comparing Gait and Photogrammetry

As the forensic analysis mostly pertains to comparisons

of perpetrators and suspects, then gait analyses and
Gait, Forensic Evidence of. Figure 3 Using the back-project
measuring of the suspect also has to be carried out.

Owing to legal exigencies, this may be performed

under very different settings and conditions, compris-

ing hidden and overt image capture for gait, and

hidden and overt photogrammetry. In some cases,

legal circumstances have ruled out hidden image cap-

ture; in other cases the defense counsel was invited to

be present (but without the knowledge of the suspect);

and finally, the suspect has sometimes been filmed

completely overt. Ideally, it is felt that gait image cap-

ture should be performed hidden, so as the suspect

does not know he is being filmed. This is to ensure that

the gait is not ‘‘changed’’. Preferably, the setting for

performing the image capture should to some extent

mimic the crime scene. For example, if at the crime

scene there was a step at the entrance, which the

suspect engaged in a distinct fashion, then filming

the suspect engaging a somewhat likewise step would

be obvious for comparison. If the crime scene images

show a perpetrator walking down a corridor, either

against or away from the CCTV camera, then a setting

at police offices with a long corridor may be suitable.

The filming usually takes place with ordinary DV-

cameras, and is done by forensic technicians, but the

setting would have been discussed in advance. For

instance, a policeman can be instructed to accompany

the suspect, but walking at a speed that matches the

velocity of the perpetrator, because the gait speed may

influence some of the features. For example, a lateral

instability in the knee will be more pronounced at a

higher gait speed.
ion screen method (see text).
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G

The photogrammetric measurement of the suspect

is most easily performed overtly. Usually a corner in an

office is identified with points fixed on the wall, and

the suspect is asked to stand in the corner. Using two or

three digital cameras, coupled to a computer, several

sets of images of high quality for subsequent photo-

grammetry can be rapidly acquired. While height

could be just as easily acquired using a stadiometer,

it is found that the same measuring method (photo-

grammetry) should be used for comparing perpetrator

and suspect. While at first glance stadiometer-measured

stature might seem as a ‘‘gold-standard’’, it is also found

that people almost automatically straighten themselves

when asked to stand against a stadiometer, meaning in

fact that a better agreement between subsequentmeasur-

ings of stature by photogrammetry has been found, than

between photogrammetry and a stadiometer. Of course,

measuring the suspect by photogrammetry also makes

it easier to measure other heights, such a floor to eye,

floor to shoulder, and floor to ear-lobe.

Schöllhorn et al. [13] concluded that ‘‘identifica-

tion of individuality seems to be impossible with single

variables or specific parameters of single variables’’, so

the more gait characteristics and bodily measurements

of the perpetrator that can be extracted and compared

to the suspect, the better.
The Nature of Forensic Statements

In statements to the police it is noted what image mate-

rial has been available, and what manner of image

enhancing techniques had been used. The results of the

above analyses are then presented, each followed by a

separate conclusion, and each conclusion always sum-

ming up what features were found to indicate concor-

dance between the suspect and the perpetrator, as well as

features which seemed to indicate incongruity. Each

item may therefore be seen as constituting single pieces

of evidence. This renders a statistical approach, for

instance the calculation of likelihood ratios for identity,

based on the prevalence of certain facial and bodily traits,

problematical [14].

Using the data sheets for gait analyses and photo-

grammetry fulfils three of the four guidelines in

the ▶Daubert Standard, a legal precedent set by Su-

preme Court of the United States [15], for determining

whether expert witnesses’ testimony is admissible as

evidence: (1) the testimony in court is based on an
empirically used technique, (2) the technique has

been published in peer-reviewed literature and (3) it

is generally accepted for use in forensic medicine. The

last Daubert Guideline states that the reliability of

the technique has been tested and potential error

rates known.

Image based comparisonwill probably never achieve

specific identification such as associated with DNA-

typing and fingerprinting. However, analyzing gait

and measuring stature and segment lengths of a perpe-

trator from surveillance video has the possibility of

becoming a valuable forensic tool because the gait and

the measures are an integrated part of the offender.

At present, the methods can be used effectively to

exclude a suspect if the gait and anthropometrical mea-

sures of the suspect and perpetrator are entirely different

from each other. On the other hand, if the perpetrator

and suspect do have a similar gait and similar measures,

it can only be stated in court that the suspect cannot be

excluded as the perpetrator. To give a more specific

statement of the value of evidence, a database with gait

characteristics and measures for a population of which

the perpetrator and suspect could be referenced against.

In theory, this might mean that if a perpetrator and a

suspect are measured to have an unusual height, i.e.,

either very tall or very small, then this might in itself

increase the likelihood of concordance between them,

whereas very average heights would lower the likelihood

(because then it might be almost anybody). In actuality,

such databases are rather restricted, with often only

specific subsamples of the entire population repre-

sented; populations also change in terms of e.g., immi-

gration; and finally the perpetrator might well be from

an entirely different part of the world. If comparing with

such databases, it is important to stress that ‘‘given the

perpetrator/suspect are drawn from the same popula-

tion as the database’’, then their stature is more or less

common, and the likelihood of concordance between

them is more or less likely.

Future work will probably focus on a better inte-

gration of gait characteristics and photogrammetry in

order to perform dynamic measurements of gait (basi-

cally ‘‘animating’’ the line models, cf. Fig. 4). This has

the potential of calculating angles of flexion – exten-

sion in the major joints, step length, degree of side-to-

side movement of the torso during walking, etc. These

parameters may then further assist in discriminating

between suspects and more specifically in identifying

individual traits of gait.
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produced by the Photomodeler1 based on the selected

anatomical points, showing the gait.
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Related Entries

▶Gait Recognition, Model-Based

▶Gait Recognition, Motion Analysis for

▶Gait Recognition, Overview

▶Gait Recognition, Silhouette-Based
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Gallery and Probe
Gallery is one of the data partitions in an algorithm-

level biometric evaluation experiment. It is a collection

of biometric templates that form the search dataset.

Typically, these are representative of the enrolled tem-

plates in an actual biometric deployment scenario. In

algorithm-level evaluations, care should be taken to

have same number of representative templates per

subject in the gallery. Probe is the second data partition

in an algorithm-level evaluation experiment. It is a

collection of biometric templates that need to be recog-

nized or identified by matching against the gallery. In

any given algorithm-level evaluation, the probes and

gallery differ with respect to the covariate that is being

studied. For example, to study the impact of viewpoint

covariate, the gallery is chosen to be from one view-

point and the probe is chosen to be from a different

viewpoint. Since during actual operations biometric

data is expected to arrive in a sequential fashion, it is

not appropriate to normalize or adjust biometric



Gaussian Mixture Models G 659
matching scores over the probes. Neither is it appro-

priate to train on the probe data.

▶Evaluation of Gait Recognition
Gaussian Mixture Density
▶Gaussian Mixture Models
G

Gaussian Mixture Models

DOUGLAS REYNOLDS

Lincoln Laboratory, MIT, Lexington, MA, USA
Synonyms

Gaussian mixture density; GMM
Definition

A Gaussian Mixture Model (GMM) is a parametric

▶ probability density function represented as a weight-

ed sum of Gaussian component densities. GMMs are

commonly used as a parametric model of the pro-

bability distribution of continuous measurements or

features in a biometric system, such as vocal-tract

related spectral features in a speaker recognition

system. GMM parameters are estimated from training

data using the iterative Expectation-Maximization

(EM) algorithm or ▶Maximum A Posteriori (MAP)

estimation from a well-trained prior model.
Introduction

A Gaussian mixture model is a weighted sum of M

component Gaussian densities as given by the equation,

pðxjlÞ ¼
XM
i¼1

wi gðxjmi; SiÞ; ð1Þ

where x is a D-dimensional continuous-valued data

vector (i.e. measurement or features), wi, i ¼ 1, . . .,M,
are the mixture weights, and gðxjmi; SiÞ, i = 1, . . ., M

are the component Gaussian densities. Each compo-

nent density is a D-variate Gaussian function of the

form,

gðxjmi; SiÞ ¼ 1

ð2pÞD=2jSij1=2
exp �1

2
ðx�miÞ0 S�1

i ðx�miÞ
� �

;

ð2Þ

with mean vector mi and covariance matrix Si.

The mixture weights satisfy the constraint thatPM
i¼1wi ¼ 1.

The complete Gaussian mixture model is parame-

terized by the mean vectors, covariance matrices and

mixture weights from all component densities. These

parameters are collectively represented by the notation,

l ¼ fwi;mi;Sig i ¼ 1; . . . ;M : ð3Þ

There are several variants on the GMM shown in

Eq. (3). The covariance matrices, Si, can be full rank or

constrained to be diagonal. Additionally, parameters

can be shared, or tied, among the Gaussian compo-

nents, such as having a common covariance matrix for

all components, The choice of model configuration

(number of components, full or diagonal covariance

matrices, and parameter tying) is often determined by

the amount of data available for estimating the GMM

parameters and how the GMM is used in a particular

biometric application.

It is also important to note that since the compo-

nent Gaussian are acting together to model the overall

feature density, full covariance matrices are not neces-

sary even if the features are not statistically indepen-

dent. The linear combination of diagonal covariance

basis Gaussians is capable of modeling the correla-

tions between feature vector elements. The effect of

using a set of M full covariance matrix Gaussians can

be equally obtained by using a larger set of diagonal

covariance Gaussians.

GMMs are often used in biometric systems, most

notably in speaker recognition systems [1, 2], due to

their capability of representing a large class of sample

distributions. One of the powerful attributes of the

GMM is its ability to form smooth approximations

to arbitrarily shaped densities. The classical unimodal

Gaussian model represents feature distributions by a

position (mean vector) and a elliptic shape (covariance

matrix) and a vector quantizer (VQ) or nearest neigh-

bor model represents a distribution by a discrete set
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of characteristic templates [3]. A GMM acts as a hybrid

between these two models by using a discrete set of

Gaussian functions, each with its own mean and

covariance matrix, to allow a better modeling

capability. Figure 1 compares the densities obtained

using a unimodal Gaussian model, a GMM, and a

VQ model. Plot (a) shows the histogram of a single
Gaussian Mixture Models. Figure 1 Comparison of distribut

coefficient from a 25 second utterance by a male speaker (b)

and its ten underlying component densities (d) histogram of

ten element codebook.
feature from a speaker recognition system (a single

cepstral value from a 25 second utterance by a male

speaker); plot (b) shows a unimodal Gaussian model of

this feature distribution; plot (c) shows a GMM and

its ten underlying component densities; and plot

(d) shows a histogram of the data assigned to the

VQ centroid locations of a ten element codebook.
ion modeling. (a) histogram of a single cepstral

maximum likelihood unimodal Gaussian model (c) GMM

the data assigned to the VQ centroid locations of a
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The GMM not only provides a smooth overall distri-

bution fit, its components also clearly detail the multi-

modal nature of the density.

The use of a GMM for representing feature distri-

butions in a biometric system may also be motivated

by the intuitive notion that the individual component

densities may model some underlying set of hidden

classes. For example, in speaker recognition, it is reason-

able to assume the acoustic space of spectral related

features corresponding to a speaker’s broad phonetic

events, such as vowels, nasals, or fricatives. These acous-

tic classes reflect some general speaker-dependent vocal

tract configurations that are useful for characterizing

speaker identity. The spectral shape of the ith acoustic

class can in turn be represented by the mean mi of

the ith component density, and variations of the aver-

age spectral shape can be represented by the covari-

ance matrix Si. Since all the features used to train the

GMM are unlabeled, the acoustic classes are hidden in

that the class of an observation is unknown. A GMM

can also be viewed as a single-state HMM with a

Gaussian mixture observation density, or an ergodic

Gaussian observation HMM with fixed, equal transition

probabilities. Assuming independent feature vectors, the

observation density of feature vectors drawn from these

hidden acoustic classes is a Gaussian mixture [4, 5].
Maximum Likelihood Parameter
Estimation

Given training vectors and a GMM configuration, the

parameters, l, are estimated which, in some sense, best

match the distribution of the training feature vectors.

There are several techniques available for estimating

the parameters of a GMM [6]. By far the most popular

and well-established method is▶maximum likelihood

(ML) estimation.

The aim of ML estimation is to find the model

parameters which maximize the likelihood of the

GMM given the training data. For a sequence of T

training vectors X ¼ fx1; . . . ; xTg, the GMM likeli-

hood, assuming independence between the vectors

(The independence assumption is often incorrect but

is needed to make the problem tractable.), can be

written as,

pðX jlÞ ¼
YT
t¼1

pðxt jlÞ: ð4Þ
Unfortunately, this expression is a nonlinear function

of the parameters l and direct maximization is not

possible. However, ML parameter estimates can be

obtained iteratively using a special case of the expecta-

tion-maximization (EM) algorithm [7].

The basic idea of the EM algorithm is, beginning

with an initial model l, to estimate a new model �l,
such that pðX j�lÞ � pðX jlÞ. The new model then

becomes the initial model for the next iteration and

the process is repeated until some convergence thresh-

old is reached. The initial model is typically derived by

using some form of binary VQ estimation.

On each EM iteration, the following re-estimation

formulas are used which guarantee a monotonic

increase in the model’s likelihood value,

Mixture Weights

�wi ¼ 1

T

XT
t¼1

Prðijxt ; lÞ: ð5Þ

Means

�mi ¼
PT
t¼1

Prðijxt ; lÞ xt
PT
t¼1

Prðijxt ; lÞ
: ð6Þ

Variances (diagonal covariance)

�s2i ¼
PT
t¼1

Prðijxt ; lÞ x2t
PT
t¼1

Prðijxt ; lÞ
� �m2i ; ð7Þ

where si
2, xt, and mi refer to arbitrary elements of the

vectors si
2, xt , and mi , respectively.

The a posteriori probability for component i is

given by

Prðijxt ; lÞ ¼ wi gðxt jmi;SiÞ
PM
k¼1

wk gðxt jmk;SkÞ
ð8Þ

Maximum A Posteriori (MAP) Parameter
Estimation

In addition to estimating GMM parameters via the

EM algorithm, the parameters may also be estimated

using Maximum A Posteriori (MAP) estimation. MAP
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estimation is used, for example, in speaker recognition

applications to derive speaker model by adapting

from a universal background model (UBM) [8]. It is

also used in other pattern recognition tasks where limited

labeled training data is used to adapt a prior, general

model.

Like the EM algorithm, the MAP estimation is a

two-step estimation process. The first step is identical

to the ‘‘Expectation’’ step of the EM algorithm, where

estimates of the sufficient statistics (These are the basic

statistics needed to be estimated to compute the de-

sired parameters. For a GMM mixture, these are the

count, and the first and second moments required to

compute the mixture weight, mean and variance.) of

the training data are computed for each mixture in

the prior model. Unlike the second step of the EM

algorithm, for adaptation these ‘‘new’’ sufficient statis-

tic estimates are then combined with the ‘‘old’’ suffi-

cient statistics from the prior mixture parameters

using a data-dependent mixing coefficient. The data-

dependent mixing coefficient is designed such that

mixtures with high counts of new data rely more on

the new sufficient statistics for final parameter estima-

tion and mixtures with low counts of new data rely

more on the old sufficient statistics for final parameter

estimation.

The specifics of the adaptation are as follows. Given

a prior model and training vectors from the desired

class, X ¼ fx1 . . . ; xTg, the probabilistic alignment

of the training vectors into the prior mixture compo-

nents is determined (Fig. 2a). That is, for mixture i

in the prior model, Prðijxt ; lpriorÞ is computed as

in Eq. (8).
Gaussian Mixture Models. Figure 2 Pictorial example of two

(a) The training vectors (x’s) are probabilistically mapped into

parameters are derived using the statistics of the new data an

is data-dependent, so UBM (prior) mixture parameters are ad
Then compute the sufficient statistics for the

weight, mean, and variance parameters x2 is shorthand

for diag(xx
0
):

ni ¼
XT
t¼1

Prðijxt ; lpriorÞ weight; ð9Þ

EiðxÞ ¼ 1

ni

XT
t¼1

Prðijxt ; lpriorÞxt mean; ð10Þ

Eiðx2Þ ¼ 1

ni

XT
t¼1

Prðijxt ; lpriorÞx2t variance: ð11Þ

This is the same as the ‘‘Expectation’’ step in the EM

algorithm.

Lastly, these new sufficient statistics from the

training data are used to update the prior sufficient

statistics for mixture i to create the adapted parameters

for mixture i (Fig. 2b) with the equations:

ŵi ¼ awi ni=T þ ð1� awi Þwi

� �
g

adapted mixture weight;
ð12Þ

m̂i ¼ ami EiðxÞ þ ð1� ami Þmi

adapted mixture mean;
ð13Þ

ŝ2
i ¼ avi Eiðx2Þ þ ð1� avi Þðs2

i þ m2
i Þ � m̂2

i ð14Þ

adapted mixture variance

The adaptation coefficients controlling the balance

between old and new estimates are {ai
w, ai

m, ai
v} for

the weights, means, and variances, respectively. The

scale factor, g, is computed over all adapted mixture

weights to ensure that they sum to unity. Note that the
steps in adapting a hypothesized speaker model.

the UBM (prior) mixtures. (b) The adapted mixture

d the UBM (prior) mixture parameters. The adaptation

apted by different amounts.
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sufficient statistics, not the derived parameters, such as

the variance, are being adapted.

For each mixture and each parameter, a data-

dependent adaptation coefficient ai
r, r 2 {w, m, v},

is used in the equations mentioned earlier. This is

defined as

ari ¼ ni

ni þ rr
; ð15Þ

where rr is a fixed ‘‘relevance’’ factor for parameter r.
It is common in speaker recognition applications

to use one adaptation coefficient for all parameters

(ai
w ¼ ai

m ¼ ai
v ¼ ni ∕(ni þ r)) and further to only

adapt certain GMM parameters, such as only the mean

vectors.

Using a data-dependent adaptation coefficient

allows mixture-dependent adaptation of parameters.

If a mixture component has a low probabilistic count,

ni, of new data, then ai
r ! 0 causing the de-emphasis

of the new (potentially under-trained) parameters and

the emphasis of the old (better trained) parameters.

For mixture components with high probabilistic

counts, ai
r ! 1, causing the use of the new class-

dependent parameters. The relevance factor is a way

of controlling how much new data should be observed

in a mixture before the new parameters begin replacing

the old parameters. This approach should thus be

robust to limited training data.
Related Entries

▶ Session Effects on Speaker Modeling

▶ Speaker Matching

▶ Speaker Recognition, Overview

▶Universal Background Models
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GC
GC is an analytical chemistry separation technique

which provides separation of mixtures on the basis of

differential affinity between a liquid or solid stationary

phase and a gas mobile phase.

▶Odor Biometrics
Gelatin Pad
Gelatin lifting pads are designed for the lifting of

fingerprints, footprints, dust marks, and trace evi-

dences. They comprise three layers, the first layer is

the carrier, which holds the second layer of thick low-

adhesive gelatin in a pliable and flexible format. The

thick gelatin layer is ideal for lifting evidence without

sticking to the surrounding lift area. The third layer, a

cover sheet, is a clear polyester film which is removed

prior to lifting, and may be replaced once the lift is

completed.

▶ Footwear Recognition
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General Model
▶Universal Background Models
Generalization
The classifier is designed to correctly classify unseen

objects which are not used during the training process.

Generalization represents the capacity of the classifier

to respond to this task. When a classifier has a good

generalization capacity, it can correctly classify unseen

examples.

▶Ensemble Learning

▶ Support Vector Machine
Generalization Error
The generalization error of a machine learning model

is a function that measures how far the student ma-

chine is from the teacher machine in average over the

entire set of possible data that can be generated by the

teacher after each iteration of the learning process. It

has this name because this function indicates the ca-

pacity of a machine that learns with the specified

algorithm to infer a rule (or generalize) that is used

by the teacher machine to generate data based only on

a few examples.

▶ Image Pattern Recognition
Generative Classifier
A generative classifier is a classification algorithm that

learns the full joint distribution of class and attribute

values. As a result, it can generate labeled instances

according to this distribution. To classify an unlabeled
instance, one commonly uses the Bayes decision

theory.

▶ Fusion, Quality-Based
Genetic Identification
Identification of a victim based on the victim’s DNA

samples.

▶Dental Biometrics
Genuine Matching
Genuine matching is matching of two templates gen-

erated from the same finger.

▶ Fingerprint Matching, Automatic

▶ Individuality of Fingerprints
Genuine Sign
Genuine sign, also called genuine signature, is a legal

sign. It is legally accepted as the registered sign.

▶ Signature Matching
Genuine/Impostor Attempt
In a genuine attempt, a biometric sample is compared

against other biometric samples from the same subject.

If similarity between the samples is not high enough,

the subject will be wrongly rejected by the system.

In an impostor attempt, a biometric sample is com-

pared against biometric samples from other subjects.
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If similarity between the samples is high enough, the

subject will be wrongly accepted by the system. It

should be noted that biometric samples from the

same user are not necessarily similar (e.g., temporary

injuries in the finger) and on the other hand, biometric

samples from different users can be quite similar (e.g.,

signature forgeries).

▶ Fingerprint Databases and Evaluation
G

Geodesic
Geodesic is the integral curve between two points

corresponding to the gradient direction of the intrinsic

distance function of the manifold.

▶Manifold Learning
Geometry Image
A geometry image is the result of representing all

vertices of a 3D object (x, y, and z coordinates) as a

simple 2D array of quantized points. Geometry images

have at least three channels assigned to each u, v pair of

coordinates, encoding geometric information (x, y, z

coordinates) of a vertex in R3, but surface normals and

colors can also be stored using the same implicit sur-

face parametrization. Creating a geometry image is

accomplished by cutting an arbitrary mesh along a

network of edge paths and parametrizing the resulting

single chart onto a square.

▶ Face Recognition, 3D-Based
Global Fusion
Global fusion in the framework or multi-biometric

score fusion refers to user-independent score fusion
techniques in which a unique fusion function is used

for all users, which is trained based on background

data from a pool of users (both genuine and impostor

scores).

▶ Fusion, User-Specific
Global Thresholding Techniques
Global thresholding technique is used to convert an

image consisting of gray scale pixels to one containing

only black and white pixels. Usually a pixel value of

0 represents white and the value 255 represents black

with the numbers from 1 to 254 representing different

grey levels. A threshold value Th is chosen in the range

of 1–254 and each grey pixel P in the image is modified

to either black or white according to the test.

If P � Th then P = 255 (white) orelse P = 0 (black).

There are a number of ways to select the value of

threshold Th depending on the nature of grey pixel

distributions in the image.

▶Hand Vein
Glottal Excitation
The glottal excitation corresponds to the pulsating

flow of air that comes from the lungs through the

vibrating vocal folds. This first process of the human

speech production mechanism is named after the ori-

fice between the vocal folds, the glottis.

▶ Speech Production
Glyph
A glyph is the shape of a handwriting sample. In

Roman scripts, it may contain one letter or even a



666G GMM
group of letters depending on the content of the sam-

ple. In oriental scripts, a glyph corresponds to a char-

acter which consists of a set of strokes.

▶ Signature Sample Synthesis
GMM
▶Gaussian Mixture Models
Graph Matching
The configural identification of a face relating to the

measurable distances between features and the relative

ratios of height and width. A unique algorithm is

created from the key points on the face; this algorithm

is regarded as a unique biometric identifier.

▶ Face, Forensic Evidence of
Graphic Tablet
▶Digitizing Tablet
Graphical User Interface
▶User Interface, System Design
Graphometric Features
Graphometric features are intrinsic properties from an

individual handwriting style, which may be employed
by forensic experts during handwriting or signature

recognition. These include curvature and pressure

among others.

▶ Signature Features
Gray Scale
A continuous-tone image that has one component,

which is luminescent.

▶Vascular Image Data Format, Standardization
GRF (Ground Reaction Force)
The ground reaction force is, according to Newton’s

law of reaction, the force equal in magnitude but

opposite in direction produced from the ground as

the reaction to force the body exerts on the ground.

The ground reaction force is used as propulsion to

initiate and control the movement, and is normally

measured by force sensor plates.

▶ Footstep Recognition
Ground-Truth
The actual facts of a situation, without errors intro-

duced by sensors, software processing or human per-

ception and judgment. For example the actual location

of a minutia in a fingerprint image that could be used

to check the accuracy of the location reported by a

given automated minutiae extraction algorithm.

▶ SFinGe
Gummy Bear Finger
▶ Fingerprint Fake Detection
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Haar-Like Features
Similar to the what Haar wavelets are developed for

basis functions to encode signals, the objective of two-

dimensional Haar features is to collect local oriented

intensity difference at different scale for representing

image patters. This representation transforms an image

from pixel space to the space of wavelet coefficients

with an over-complete dictionary of features. Such

features can be used to represent face and pedestrians

images. The Haar-like features, similar to Haar wave-

lets, compute local oriented intensity difference using

rectangular blocks (rather than pixels) which can be

computed efficiently with an integral image.

▶ Face Detection
Habituated Subject
A user of a biometric system who is well versed in its

use; someone who routinely uses a biometric system.

▶ Iris on the Move
Habituation
The academic and medical world has several different

definitions for habituation. Two recurrent characteris-

tics in the literature are acclimation and habituation.

The first is acclimation, which consists of a user’s first
# 2009 Springer Science+Business Media, LLC
exposure to a device or process, the formal training

that goes along with it, and individual learning and

experimentation. The second characteristic, habitua-

tion consists of two parts, partially habituated and fully

habituated.

1. Acclimation is the process in which a user of a

biometric system adapts his or her techniques to

achieve a proper match of his or her biometric

template.

2. External Teaching is the formal training that a

user receives revealing proper techniques and the

series of steps included with using the biometric

system.

3. Self teaching occurs after external teaching where a

user experiments with the device and begins to

eliminate techniques that do not work well or are

not comfortable. Through this iterative process,

techniques that work are narrowed, leading to par-

tial habituation.

4. Partial habituation is defined as the period of time

when no new adaptation of techniques is used to

achieve a proper match to the biometric template.

5. Full or complete habituation is defined as the point

at which a user matches his or her biometric tem-

plate using subconscious techniques.

▶Ergonomic Design for Biometric Systems
Halo Effect
The temperature difference between a wet finger and

the platen of an optical sensor generates a halo on the

final image around the fingerprint.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
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Hamming Distance
A measurement of the (dis)similarity between two

strings of bits having equal length, based on tallying

how many corresponding pairs of bits in the two

strings disagree. If each string has N bits, then a cardi-

nal Hamming Distance is the count of disagreeing bits

and is thus an integer between 0 and N inclusively.

Alternatively, a fractional Hamming Distance nor-

malizes (divides) this count by the total N and is thus

a rational number between 0 and 1. Hamming Dis-

tance is an extremely fast metric to compute because it

can be implemented digitally by simple Exclusive-OR

logic operating in parallel on chunks of bits as large as

the word length of the processor itself (e.g., 64 bits at

once) in a single executable instruction cycle, and thus

within almost a single ‘‘tick’’ of the system clock. In

dedicated hardware there is no necessary limit to how

manybits canbeXOR’edatonce, thus allowingHamming

Distances to be computed at virtually unlimited rates.

This confers an advantage to this similarity metric when

searching databases on a national scale. A normalized

HammingDistance is themetric underlying thematching

of IrisCodes for recognizing persons by their iris patterns.

▶ Iris Encoding and Recognition using Gabor Wavelets

▶ Score Normalization Rules in Iris Recognition
Hand Biometrics
▶Hand Geometry
Hand Biometrics, 3D
▶ Finger Geometry, 3D
Hand Contour
▶Hand Shape
Hand Data Interchange Format,
Standardization
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Synonyms

Encoding of hand geometry information; Hand

silhouette data
Definition

Standard that defines a common format to code infor-

mation related to hand geometry based biometrics. This

format is defined to allow interoperability among dif-

ferent vendors worldwide, and has been developed by

the international community taking part in ISO/IEC

JTC1/SC37 standardization subcommittee.
Introduction

Subcommittee SC37 from ISO/IEC JTC1 deals with

the standardization of biometrics. Among SC37 Work-

ing Group 3 is devoted to define Interchange Data

Formats for biometric modalities, among other duties.

For that purpose, a multipart standard is under devel-

opment, and it is referred to by the number ISO/IEC

19794. Part 10 of the multipart standard covers hand

geometry biometrics, and is denoted ISO/IEC 19794-

10. The full title is ‘‘Information technology - Biometric

data interchange formats - Part 10: Hand geometry

silhouette data’’[1].

This International Standard provides a data inter-

change format, based on a CBEFF data block [2], for

applications requiring an interoperable hand geometry

record. The information consists of a variety of manda-

tory and optional items, including data capture para-

meters, standardized hand position, and vendor specific

information. This information is intended for inter-

change among organizations that rely on automated

devices and systems for identification or verification

purposes based on the information from hand geometry.
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It is important to note that although this part of

ISO/IEC 19794 mandates a particular data format, it

does not mandate a particular algorithm. For example,

a user may be enrolled on a system from one vendor,

and verified on a system from another.

Also, an important issue is that this format stores

hand silhouette data rather than color or greyscale

image data. To increase the flexibility of the data for-

mat, provisions have been made to store views of the

left and right hands, in addition to multiple views of

each hand.

Specific implementations of this part of ISO/IEC

19794 that could be constrained by storage space or

transmission capability (such as smart card applica-

tions) may wish to limit the number of views stored for

each hand. Such limitations are outside the scope of

this part of ISO/IEC 19794, but authors of the Interna-

tional Standard advise that the reduced choices can

prejudice interoperability.
Silhouette Acquisition Requirements

The capture device as well as the capture process is out

of the scope of the standard. As already mentioned,

this is not an image-based standard, but one related to

the coding of the shape of the hand. Therefore, no

matter what camera has been used for acquiring the

sample (black and white, colour, resolutions, etc.), or

which algorithm has been used for preprocessing such

image, the primary input for this document is such

preprocessed image, showing the silhouette of the

hand captured. This silhouette can be either the one
Hand Data Interchange Format, Standardization. Figure 1

(b) side-view. Images taken from [1].
referring to the top-view of the hand, or its side-view.

Figure 1 shows the standardized orientation of both

types of view.

The hand silhouette will be represented in this

standard as a sequence of points showing the direction

to the next point in the silhouette (what is called a

▶ Freeman Chain Code or ▶ FCC). In order to code

the FCC in an interoperable way, a set of requirements

have to be defined:

� The basic requirement is that aspect ratio shall be

1:1, with an error less than�2%

� The starting point shall be in the rightmost column

of the silhouette in Fig. 1, at the uppermost row

occupied by the silhouette in that column (i.e., the

upper right corner of the silhouette). Successive

points shall trace the outline in a counter-clockwise

direction.

� The silhouette shall be a closed shape (i.e., it shall

have no gaps in the outline, and the final outline

point shall be common to the starting point).

� The starting point shall occur exactly twice in the

silhouette, as the first and last points only (the

silhouette will not cross through the starting

point at any other time)

� The right column shall be vertical (i.e., the penulti-

mate point shall occur directly below the starting

point, and no points occur to the right of the starting

point)

The orientation of the camera while capturing

the image is quite important. Figure 2, shows

the coordinate system when dealing with the
Standard hand orientation images: (a) top-view,
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the 4-FCC directions. Image taken from [1].
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▶ camera point of view. This is really significant for

some data to be stated in the record to be coded.
Record Format

After defining the set of requirements for image acqui-

sition, the Standard defines the way such information

has to be coded and stored within a CBEFF-compliant

wrapper. The structure to be followed is:

� A fixed-length (15-byte) general record header con-

taining information aboutthe overall record, with

the following fields:
– Format identifier (4 bytes with the hexadecimal

value 0x484E4400) and version number (coded

in another 4 bytes)

– Record length (in bytes) including all hand

views within this record (coded in 4 bytes)

– Number of hand views (HGVRs) (1 byte)

– 2 bytes reserved for future use
� One or more variable-length ▶Hand Geometry

View Records (HGVRs), eachcontaining a single

hand silhouette, consisting of:
– A fixed-length (25-byte) hand view header con-

tains the following information:
� Length of the HGVR (in 2 bytes)

� HGVR index (in 1 byte)

� Hand identifier (1 byte), which indicates the

fingers that the system attempts to acquire
within the silhouette, and the view of the

hand (top view of the palm, top view of

the back of the hand, side view from the

thumb side, or side view from the little finger

side)

� Hand Integrity (1 byte), which shows the

identified problems in the sample acquired

(e.g., finger missing, misplacement, etc.)

� Data resolution in pixels per centimetre (1

byte)

� Geometric distortion of the system, as a

signed value incrementing 0.1% (1 byte)

� Silhouette quality (3 bytes), with being 0 the

lowest quality and 100 the highest possible

quality, always coded in the lower byte,

while the higher 2 bytes are reserved for

the future use

� Camera position relative to the global origin

(1 byte for X position, 1 byte for Y position,

and 1 byte for Z position)

� Target position relative to the global origin

(1 byte for X position, 1 byte for Y position,

and 1 byte for Z position)

� Silhouette starting point relative to the view

origin (1 byte for X position and 1 byte for Y

position)

� Data compression algorithm (1 byte), which

currently refers to only 2 coding methods,

such as 8-way FCC and 4-way FCC
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� Hand scanning technology (1 byte), giving

information whether the image was ac-

quired using an optical camera, a linear

scanning array, or no information is

specified

� Extended data length (2 bytes)

� 3 bytes reserved for future use
H

– Silhouette data, encoded using a Freeman

Chain Code (FCC), either using 8-way FCC,

or 4-way FCC (depending on what is declared

in the ‘‘Data compression algorithm’’ field at

the HGVR header

– Extended data (optional), for any application-

specific or proprietary data used by the system

vendor
For further details refer to the current version of

this International Standard [1]. Current version also

provides a record sample, as well as an informative

annex related to the best practices in this biometric

modality, including hand placement and platen and

optical design.
Other Related Standards

There are other standards related to this technology,

born under ANSI/INCITS scope. This is ANSI/INCITS

396-2005 – ‘‘Information Technology - Hand Geome-

try Interchange Format.’’ This standard is extremely

similar to ISO/IEC 19794-10, where the major techni-

cal differences are:

� Within the General Header:
– ANSI/INCITS 396 includes a CBEFF Product

Identifier

– ANSI/INCITS 396 version number is a binary

byte, while in 19794-10 is a 4-byte string
� Regarding the View Header:
– ANSI/INCITS 396 has a creation date that was

dropped by ISO 19794-10

– 19794-10 adds a view index that associates

multiple views of the same hand (such as a

top-view and side-view captured at the same

time)

– 19794-10 adds a Hand Integrity field that indi-

cates which fingers are ok and which are missing/

mangled

– 19794-10 adds a starting-point location linking

the absolute position of the silhouette to the

camera’s optical axis
– 19794-10 supports 4-way or 8-way FCCs, where

ANSI/INCITS 396 only supports 8-way
Due to the fact that the International Standard

ISO/IEC 19794-10 is already available, INCITS has

withdrawn ANSI/INCITS 396-2005.
Summary

To provide interoperability in storing and transmit-

ting hand-geometry-related biometric information,

one international standard has been developed. Be-

yond this International Standard, other standards

deal with conformance and quality control, as well

as interfaces or performance evaluation and reporting

(see relevant entries in this Encyclopedia for further

information).
Related Entries

▶Biometric Data Interchange Format

▶Common Biometric Exchange Framework Formats

▶Hand Geometry

▶Hand-Geometry Device

▶Palm Vein
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Introduction

The human hand is the source of a number of unique

physiological characteristics. The main technologies

for hand recognition fall into three categories:

palmprint technologies – those measuring the unique

pattern of prints from the palm of the hand – similar to

a fingerprint; Hand geometry measurements – those

measuring the shape and size of either all or part of the

human hand or fingers; Hand vein patterns – those

measuring the distinct vascular patterns of the human

hand, including hand dorsum vein and palm vein.

Palmprint: A palmprint is defined as the skin pat-

terns of a palm, composed of the physical character-

istics of the skin patterns such as lines, points, and

texture. Palmprints are covered with the same type of

skin as a finger, but their surface area is much larger

than a finger tip [1]. Automatic palmprint identifica-

tion systems can be classified into two categories: on-

line and offline. An online system captures palmprint

images using a palmprint capture sensor that is directly

connected to a computer for real-time processing. An

offline palmprint identification system usually pro-

cesses previously captured palmprint images, which

are often obtained from inked palmprints that have

been digitized by a digital scanner. Several offline

palmprint databases were set up for algorithms design

during the early stages of palmprint research and they

yielded promising results. Today most researchers

focus on the online palmprint recognition techniques

and system development. Some public online palm-

print databases are readily available for the researcher

to design efficient recognition algorithms.

Hand geometry: The hand geometry biometric

involves several features including the length, width,

thickness, and surface area of the hand or fingers of a

user [2]. Hand geometry has several advantages over

other biometrics, including small feature size, and

smaller computation requirement as a result of using

low resolution images. In spite of its current wide-

spread use (4.7% market share in 2007), the hand

geometry system suffers from high cost and low accu-

racy. In addition, uniqueness of the hand features is

not guaranteed, making it unsuitable for use in one-to-

many identification applications [1].

Hand dorsum vein: The idea of verifying user

identity on the basis of the pattern of subcutaneous

veins on the back of the hand was first proposed by

MacGregor and Welford in 1991 [3]. A palm dorsum
vein pattern authentication system named VP-II is

provided by the company I-OnAsia. The system uses

an infrared sensor to capture the thermal image of the

hand dorsum vein pattern. Since no contact with the

device is required, it ensures excellent convenience,

sanitary use, and prevents copying of system-residual

biometrics.

Palm vein patterns: The Fujitsu Laboratories Lim-

ited developed a new type of biometric authentication

technology which verifies a person’s identity on the

basis of the pattern of veins in his/her palms [4]. It

makes use of the characteristic of light absorption

difference for oxygenated and deoxidized hemoglobin

in the blood to capture the pattern of the palm vein.

The image of the palm vein would appear as a black

pattern if the palm is illuminated with a near-infrared

light. This is because some of the infrared light is

absorbed by the vein and thus weakens the reflected

light back. The company claims that, except for their

size, palm vein patterns are personally unique, and do

not vary over the course of a person’s lifetime.
Palmprint Databases and Evaluation

The earliest paper on palmprint identification [5]

reported in detail the construction of an offline palm-

print database, which included palmprints of 20 indi-

viduals – 10 prints from both left and right palms

yielding a total of 400 palmprint images. The authors

used 100 dpi resolution to digitize these inked palm-

prints paper sheets with 400 � 400 pixels to reduce the

computation burden. A sub database, which included

60 special palmprint images, was employed to ascertain

the performance of palmprint line matching algorithm

using datum points. This sub database consisted of

20 rotated palmprint images, 35 partial palmprint

images, and 5 palmprint images in which the life line

and head line did not touch each other. Some typical

palmprint images are shown in Fig. 1 and the results of

the datum point detection from special palmprint

images are given in Table 1.

Another offline palmprint database was developed

and reported by You, Li, and Zhang [6]. It was collec-

ted from 100 individuals with two prints from the right

palm, and comprised a total of 200 palmprint images.

The palmprint images were of 232 � 232 pixels, with

the resolution of 125 dpi and 256 gray levels. The

palmprint samples were collected from both female



Hand Databases and Evaluation. Figure 1 Examples of datum points determination: (a) normal palmprint, (b) rotated

palmprint, (c) incomplete palmprint, and (d) the life line and head line unintersection [5].

Hand Databases and Evaluation. Table 1 Experimental

results of datum point determination in special palmprint

images

Classification R I U

Experiment images 20 35 5

Accurate determination images 19 33 4

Rate of accuracy (%) 95 94 80

R rotated image; I incomplete image; U life line and head line

unintersection
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and male adults in the age group of 18–56 years.

Samples of such palmprint images are shown in

Fig. 2. They proposed hierarchical palmprint identifi-

cation via multiple feature extraction. First, a texture

based dynamic selection scheme is proposed to facili-

tate rapid search for the best matching of the sample in

the database. The global texture energy is used to guide

the dynamic selection of a small set of similar candidates

from the database at a coarse level for further proces-

sing. An interesting point based image matching is

performed on the selected similar patterns at a fine

level for the final confirmation. The experimental results

from this database show that the average accuracy rate is

95%. Since the majority of samples was filtered out by

the coarse level classification, the execution speed of the

fine level feature matching increased significantly.

At present many different online palmprint data-

bases have been used in research papers. Among these

[7, 8, 9], the following two public databases are more

representative: The Hong Kong Polytechnic University

(PolyU) Palmprint Database 1.0 and 2.0 [9]. The

PolyU Palmprint Database 1.0 is a subset of 2.0.

The PolyU Palmprint Database 1.0 contains 600

palmprints which were collected from 100 different

palms. Six samples from each of these palms were
collected in two sessions, in other words, three samples

were captured in each session. The palmprints were

of 384 � 284 pixels and with 256 grayscales. Some-

typical palmprint images in this database are shown

in Fig. 3. Many research papers have been published

that frequently employ this database. The performance

achieved in the literature is very high and comparable

with any other established biometric modality. For

example, Wangmeng Zuo et al. [10] achieved a recog-

nition rate of 97.67% by using 2DPCA-AMD.

The PolyU Palmprint Database 2.0 contains 7,752

grayscale images corresponding to 386 different palms,

and all the images are available in bitmap format.

Around 20 samples from each of these palms were

collected in two sessions, that is around 10 samples

were captured in the first session and the second ses-

sion, respectively. The average interval between the

first and the second collection was 2 months. In this

dataset, there were 131 males, and the age distribution

of the subjects was as follows: younger than 30 years

about 86%, older than 50 about 3%, and around 11%

between 30 and 50 years. Numerous papers in

the literature have employed the PolyU Palmprint

Database 2.0. The typical algorithms that revealed

most promising results are Competitive Coding [11],

RLOC (Robust Line Orientation Coding) [12],

and DoG (Derivative of Gaussian Coding) [13].

The testing results of the three methods based on

the PolyU Palmprint Database 2.0 are given in Fig. 4.
Hand Geometry Databases and
Evaluation

The hand geometry features can be typically extrac-

ted from a binary image. Therefore, low-resolution



Hand Databases and Evaluation. Figure 2 Samples of different palmprint patterns with distinctive texture features

(a) strong principle lines, (b) full of wrinkles, (c) less wrinkles, and (d) strong wrinkles [6].

Hand Databases and Evaluation. Figure 3 Some typical palmprint images from PolyU palmprint database 1.0.

Hand Databases and Evaluation. Figure 4 The ROC curves of the three typical identification methods based on the

PolyU palmprint database 2.0.

674H Hand Databases and Evaluation
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imaging is employed to gain the advantage associated

with faster processing. The hand geometry database

introduced by Savic and Pavesi [14], includes the gray-

scale hand images of 100 individuals (68 males and

32 females) with 10 images of the right hand and

10 images of the left hand (a total of 2,000 images).

The average age of the subjects was 36 years; the oldest

was 78 years and the youngest was 21 years, all subjects

belonged to the same ethnic group. The images were

collected in two separate sessions over a period of

3 months. As the left and right hands are different,

the left hand images were mirrored and used as the

right hand images of ‘‘new’’ people. In this way, 200

image classes with 10 images per class were obtained.

The geometrical parameters extracted from the hand

are illustrated in Fig. 5(a), and the experimental result

is presented in Fig. 5(b).

Kumar et al. [15] developed a hand database

captured by a digital camera, in which they collec-

ted 1,000 images of the left hand from 100 subjects,

i.e., 10 samples from each subject. The geometry

features are defined in Fig. 6(a). Based on this

method, the testing results are presented in Fig. 6(b)

when they used the first five images from each

subject for training and the remaining for testing.

One of the earliest hand geometry database con-

struction was reported by Sanches-Reillo et al. [16],

which comprises 200 hand images obtained from
Hand Databases and Evaluation. Figure 5 (a) Geometrical p

regularization parameter [14].
20 people of different ages, sex, profession, and living

style. Ten samples were collected from each person on

different days over a period of 3 months. Experimental

results show that the proposed method can achieve up

to 97% accuracy in classification by using Gaussian

Mixture Modeling.
Hand Dorsum Vein Databases and
Evaluation

Hand dorsum vein pattern has been widely researched

during the last decade. Some typical hand dorsum vein

images obtained from low-cost near infrared imaging

are shown in Fig. 7. The researchers designed their own

capture devices to collect hand dorsum vein images. So

far, there is no public hand dorsum vein database

available to researchers. Here, the attempt is to intro-

duce some typical hand dorsum databases from pub-

lished research papers.

Lin and Fan [17] obtained 960 palm dorsa thermal

images from 32 volunteers. The volunteers in this set

of verification experiments included 29 male adults

and 3 females. Each of the thermal images of

640 � 480 pixels was captured under varying light

conditions (even in the dark). The authors obtained

an equal error rate of 2.3%. Another hand dorsum vein

database which includes 300 images from 100 persons
arameters of the hand, (b) the EER as a function of the



Hand Databases and Evaluation. Figure 7 Typical hand dorsum vein images.

Hand Databases and Evaluation. Figure 6 (a) Defined geometrical features, (b) the ROC of the testing results (note the

hand geometry curve) [15].
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of different ages and gender has been employed by

Kumar and Prathyusha [18]. This database was devel-

oped by using a low-cost near infrared camera, tradi-

tionally utilized for surveillance, using contactless

image acquisition. The volunteers were requested to

present their folded right hand (palm dorsal surface)

near the imaging window such that the knuckle tip of

the middle finger remained at the top. The authors

[18] obtained an equal error rate of 1.14% by integrat-

ing knuckle shape information into this contactless

image database. Sang-Kyun Im et al. [19] developed a

hand dorsum vein database comprising 5,000 grayscale

images. Each image was of 160 � 120 pixels. They
evaluated the database by using CSD codes and

achieved a reliability accuracy of 99.45%. By using

the FPGA (field programmable gate array) device, the

whole verification process required only 150 ms per

person.
Palm Vein Database and Evaluation

Research on palm vein technologies is fairly recent and

employs low-cost near infrared imaging to obtain palm

vein images. The Fujitsu Laboratories Limited developed

a palm vein system by testing 1,400 palm profiles of
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700 individuals, the system achieved a false rejection rate

of 1% and a false acceptance rate of 0.5% with an equal

error rate of 0.8% [4]. The palm vein image database

used by Wang et al. [20] was constructed from 120

subjects and each image was of 768 � 576 pixels. This

database also contains palmprint images as the

employed image acquisition device can simultaneously

acquire palm vein images from near infrared imaging

and palmprint images from visible illumination.
H

Summary

Hand based biometric technologies have attracted a lot

of attention both in research and industry. An increas-

ing number of hand based biometric systems have

appeared in the literature. There is a lot of interest in

research on hand based biometrics for the simulta-

neous acquisition of several hand based traits. These

multimodal biometric technologies try to combine all

the features (palmprint, hand geometry, hand vein,

palm vein) of the hand to build a higher accuracy

biometric system. Such multimodal systems offer

very high resistance against spoof attacks and have

diverse applications.
Related Entries

▶Hand Geometry

▶Hand Vein

▶Palm Vein

▶Palmprint
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Definition

Biometric modality based on identifying a person by

the shape of his or her hand. In its basic form, it is

based on taking a photograph of the user’s hand while

placed on a surface, and after a ▶ contour detection,

finding singular points and taking measurements

among them.
Introduction

Hand Geometry is considered as a medium-profile

biometric modality which reaches a really high level

of user acceptance with low computational cost. Not

being one of the first biometric modalities, it has

gained great popularity due to the success of some

commercial products, at the end of the twentieth cen-

tury. In fact, the commercial product from Schlage

Recognition Systems, known as HandKey II [1], was

one of the most sold at the beginning of the 2000s,

especially for physical access control systems and time

and attendance control.

As mentioned below, after some initial works, other

scientists have continued researching on other algorithms

and more comfortable means of using this technology.

Error rates achieved are not as low as those modalities

considered as high-performance ones (e.g., fingerprint,

iris or vascular). In order to gain applicatibility, some

researchers have included this technology in multimodal
Hand Geometry. Figure 1 HandKey II device and illustration

[1] (Images published under authorization of Schlage Recogn
biometric systems, reducing error rates, and gaining in

▶ usability and user acceptance.
Basics and Initial Works

Hand Geometry biometrics is based on the measure-

ment of the shape of the contour of the hand [2],

including finger widths at several points, finger lengths,

palm shape, deviation angles, etc. Main idea comes

from the Bertillon system (http://en.wikipedia.org/

wiki/Bertillon) used during the late nineteenth century

to identify prisoners. But it was not till 1997 that the

first paper in a scientific journal is found. In such

paper, among may other interesting things, Golfarelli

et al. [3] outline a system based on a semi-opaque

plastic material with some fixed ▶ pegs to guide posi-

tioning of the hand. With a CCD camera located over

the hand, and some light located under the surface

plate, a high contrast image of the user’s hand is

obtained. As to acquire also the lateral projection

of the hand, the system is replicated on the side, and

a 45 mirror is placed to project such image to the

same camera. The counterlight image allows a very

easy contour detection of the hand, and from there

17 geometrical features are extracted. Figure 2 illus-

trates image acquisition and feature extraction steps

from this work.

In 1999 and in 2000 two papers were published

detailing this biometric modality. They were written
of its use as a door lock in a physical access control system

ition Systems).

http://en.wikipedia.org/wiki/Bertillon
http://en.wikipedia.org/wiki/Bertillon
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by Jain et al. [4] and Sanchez-Reillo et al. [5]. In this

last work, the device developed is also based on a CCD

camera located over the hand of the user. But differ-

ently from the Golfarelli approach [3], here the hand is

located over an opaque peg-oriented surface painted in

blue (see Fig. 3). The reason for the platform to be blue

is that the human skin, no matter the race, has a very

low portion of blue component. Therefore discarding

all blue component in the RGB, allows an easy way to

eliminate all background information. As in Golfarelli
Hand Geometry. Figure 2 Illustration of the Hand Recogniti

of the photographs taken and the geometrical measurement

Hand Geometry. Figure 3 Prototype developed in [5] and m

(b) Positioning of the hand; (c) Sample taken; (d) Geometric f
et al. system [3], also a mirror is placed to obtain the

lateral view of the hand. In contrast, the illumination

demands of this new systemwere lower, as only the one

coming from the camera built-in flash was employed.

From the image sample acquired, as mentioned

above, the background surface is removed by eliminat-

ing the blue component of the image. In fact, in order

to obtain a better output for next stage, the back-

ground removal is done by the following formulae

(cropping all negative values to 0):
on system designed by Golfarelly et al., including a sample

s extracted. Images taken from [3]. �IEEE.

easurements taken: (a) General view of the prototype;

eatures. Images extracted from [5]. �IEEE.

H
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IBW ¼ ððIR þ IGÞ � IBÞ ð1Þ
Afterwards, a Sobel edge-detection is performed,

obtaining a binary image where only the borders are in

black, while the rest of the image is in white. With this

result, the way to obtain the 31 absolute features is by

locating singular points in the image, and counting

pixels among them. In [5], authors proposed the fol-

lowing basic features (as seen in 3d):

� Palm width at a certain point (avoiding conflict

with pegs). It is obtained as the number of pixels

from the first black pixel on the right side of the top

view of the hand, to the next black pixel along the

same horizontal line, after going through a set of

white pixels moving to the left.

� Finger widths at certain points, also avoiding pegs

and ring area, and obtained in an analogue way as

mentioned with the palm width.

� Palm and finger heights, through the same mecha-

nism as mentioned above, but this time with the

side view of the hand.

� Finger curvature or Deviations. This is defined by

the distance between a middle point of the finger

and the middle point of the straight line between

the inter-finger point and the last height where the

finger width is measured. Equation used can be

seen below, where exponents refer to the coordi-

nate used, and subindex defines the finger used and

the width measurement used.

� Angles between inter-finger points and the hori-

zontal line, which reflects the depth of each of the

inter-finger point.

deviation ¼ PX
12 �

PX
14 � PX

1

PY
14 � PY

1

ðPY
12 � PY

1 Þ ð2Þ

From those features, the feature space was grown

by adding relative measurements, i.e., relationships

among different sets of basic features. Authors, after

applying a Principal Component Analysis, discovered

that from all those measurements, only 25 features had

significant discriminant properties. Figure 3d shows

the 25 absolute measurements from whose the final

25 features extracted.

Authors researched the behavior of four different

comparators: Euclidean Distance, Hamming Distance

in the continu ous domai n (as seen in eq uation (3)

where xi refers to the ith component of the sample, L

is the feature vector length, ti
m is the mean of the ith
component, and ti
v is the standard of the ith compo-

nent), Gaussian Mixture Models (GMM) and Radial

Basis Function Neural Networks (RBF-NN). Also they

analyzed the dependence of the performance with the

number of samples used during enrollment. Results

showed that best performance was achieved with

GMMs, using five enrollment samples, and that the

system did not loose much of the performance is the

number of features reduced down to 15 (another rele-

vant work can be seen in [6]). As the number of

features is so low and each of them can even be

coded in one single byte, the viability of integrating

this modality with smart cards was a reality, and even

the development of a match-on-card prototype was

shown in [7].

dhamming ðxi; tmi Þ ¼ # i 2 f1; :::; Lg=jxi � tmi j > tvi
� �

ð3Þ
As already mentioned, it is of significant impor-

tance to show the success of the first commercial sys-

tems, because these systems demonstrated the viability

of this biometric modality in real scenarios. The first

unit shown was in 1972 from Identimat, but popularity

was gained by the products of Recognition Systems.

They developed their first prototype named HandKey

ID3D before 1990, and improved such system in 1997

by launching HandKey II (shown in Fig. 1). Hundreds

of thousand units have been sold, including applica-

tions in Universities, Airports, or Nuclear Plants. This

technology has gained wide application and accep-

tance, especially in Access Control Systems, and in

Time and Attendance Control.
Evolutions from Initial Works

From the results shown in the previous mentioned

works, several R&D groups have worked in this biomet-

ric modality. They have improved the system in several

ways. One of those working lines has been improving

usability by removing the orientation pegs. Some

researchers use a commercial scanner (e.g., [8, 9]),

while others have worked not only in a peg-free, but

also a contact-free system (e.g., [6, 10, 11]).

Other working lines have been focused in new

feature extraction approaches. Some authors have

increased the number of features, by including not

only geometrical measurements, but also information
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about the hand contour [12]. Kumar and Zhang [13]

improved verification rates in 4–7%, by discretizazing

features based on entropy studies. Gross et al. [9] have

worked with Active Appearance Models. Others have

worked in modeling hand contour and extracting fea-

tures by curvature gradient (e.g., [14]). Ma et al. model

hand geometry by using B-Spline curves [15]. Other

authors work with neural networks (e.g., [12]), either

for performing the whole identification process, or just

for the comparison block.

Most of these studies claim error rates below 5%.

Some authors give even better figures, approaching a

99% of identification accuracy. But even though, there

are some major open issues regarding this biometric

modality. One of those is the size of databases used for

testing. Unfortunately in most works such databases

are quite small, going up to 100 users with 10 photos

per user.

There are still some open issues, especially nowa-

days and within some kind of population. The expan-

sion in the use of jewelery, such as rings or piercings

with a wide variety of shapes and sizes, can be consid-

ered as image artifacts by hand recognition systems,

and lower the identification rates. Also tattoos, and

specially those made in several colors can provoke the

denial of use by the hand recognition system. These

kind of problems have to be considered by new sys-

tems, to gain universality.
Usability and Multimodality

One of the most important facts related to this bio-

metric modality is its great usability. It seems that users

do not feel themselves afraid of using the system,

neither of noting their privacy attacked. Kukula and

Elliott [16] carried on a study that showed that 93% of

users enjoyed the system, nearly all found it easy to use,

and no one had privacy concerns. Kukula et al. [17]

have also studied the effects of training and habitua-

tion in using the system, showing a better performance

when users are familiar with the identification device.

This great usability, together with the fact that

other biometric modalities use the same part of the

body (e.g., palmprints or fingerprints), have pushed

researchers based on multimodal biometrics to use this

biometric modality. Fusion works using palmprints

and hand geometry can be found in [18] or [8].

Other authors work even with three modalities,
adding fingerprints to the previously mentioned ones,

like in [19] or [9]. Or even some authors have devel-

oped multimodal prototypes with other non-hand-

based modalities [20, 21].
Summary

Hand Geometry is a biometric modality whose pro-

mising features are the ease of use and high friendliness

to the user. Furthermore, researchers have demon-

strated that error rates below 5% are possible, and

when applied to limited number of users, the level of

performance is high enough for certain applications.

Commercial products have found their business appli-

cations in Access Control Systems, as well as in Time

and Attendance environments.
Related Entries

▶Gaussian Mixture Models

▶Hand Data Interchange Format

▶Hand Databases and Evaluation

▶Hand-Geometry Device

▶Match-on-Card

▶Multibiometrics

▶User Acceptance
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Hand Geometry View Record – HGVR
Block of data that contains a hand silhouette captured

from one camera point of view during one hand

placement.

▶Hand Data Interchange Format, Standardization
Hand Physiology
▶Anatomy of Hand
Hand Shape

NICOLAE DUTA

Nuance Communications, Burlington, MA, USA
Synonym

Hand contour
Definition

A hand shape biometric system uses a camera or

scanner-based device to acquire the hand image of a

person from which shape information is extracted and

compared against the information stored in a database

to establish identity. Due to its limited discrimination

power, a hand shape biometric system mostly operates

in verification mode; that is the system confirms or

negates the claimed identity of an individual.
Introduction

An increasing number of systems require positive iden-

tification before allowing an individual to use their

services. Biometric systems are already employed in

domains that require some sort of user verification.

It is generally accepted that fingerprint and iris pat-

terns can uniquely define each member of an extremely
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large population which makes them suitable for large-

scale recognition (establishing a subject’s identity).

However, in many small-population applications, be-

cause of privacy or limited resources, it is only needed

to authenticate a person (confirm or deny the person’s

claimed identity). In these situations, traits with less

discriminating power such as hand shape, hand geom-

etry, voice or signature can be used.

As noted in [1], hand shape-based authentication is

attractive due to the following reasons:

1. Hand shape can be captured in a relatively user

convenient, nonintrusive manner by using inex-

pensive cameras.

2. Extracting the hand shape information requires

only low resolution images, and the user templates

can be efficiently stored (120-byte templates are

reported in [1]).

3. This biometric modality is more acceptable to the

public mainly because, it lacks criminal connotation.

4. Additional biometric features such as hand geome-

try, palmprints, and fingerprints can be easily

integrated to an existing hand shape-based authen-

tication system.
Operation of a Hand Shape-Based
Biometric System

A hand shape-based biometric system operates accord-

ing to the general diagram in [2] Fig. 2. In the enroll-

ment stage, hand shape data is acquired from the
Hand Shape. Figure 1 (a) Example of a hand shape image a

verification system. The three curves correspond to feature ve
registered users, feature sets are extracted from the

acquired data, and one or multiple templates per indi-

vidual are computed and stored in a database. In the

deployment stage, one snapshot of the user’s hand is

captured; a feature set is computed and then compared

to the user’s templates in the database. Based on the

comparison result, the claimed identity is accepted

or denied. As described in [2], the system comprises

the following modules: the sensor module, the feature

extraction module, the matching module, and the

decision-making module.

The sensor is usually a low/medium resolution

CCD camera attached (beneath or above) to a platform

on which the hand is placed (Fig. 1a). Some multi-

modal biometric systems capture the palm surface

which includes both the hand shape and palmprints

[3]. Other systems capture the dorsal surface of the

hand from which only the hand contour can be

extracted (Fig. 2, [1, 4, 5]). Some of the systems in-

clude on the platform 4–6 pegs to guide the placement

of the user’s hand [4, 5]. Several researchers noted that

the guidance pegs deform the hand contour and de-

crease user convenience and proposed peg-less setups

[1, 3, 6]. In a few systems, the sensor consisted of a 45

dots per inch (DPI) scanner [3, 6].

In the feature extraction module, a set of discrimi-

nating features is computed from a user’s raw hand

image(s). The hand images are first pre-processed in

order to extract the hand contour and eliminate arti-

facts such as the guidance pegs, user rings, overlapping

cuffs, or creases around the contour due to too light or
cquisition system. (b) ROC curves for a hand shape-based

ctors extracted from three, four and five fingers.
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extracted from (a) and (b) overlaid, and (d) finger aligned shapes (Mean alignment error = 2.20 pixels).
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too heavy hand pressing. The pre-processing step can

range from simple▶ thresholding [1, 5] to sophisticate

gray-level segmentation (▶ Image segmentation) [4].

Possible dents at the artifact location are smoothed by

linear interpolation [4, 5] and/or morphologic opera-

tors [3].

In order to properly compare feature vectors

extracted from hand images, one has to align the hand

contours such that each feature is computed from the

same region of the hand. Most of the older systems

relied on the pegs to align the hand images. However,

if the user is untrained or does not cooperate to proper

use of the hand scanner, then the resulting images are

not aligned (Fig. 2(c)) and the system’s verification

performance degrades [4]. Therefore, it is necessary

to automatically align the acquired hand shapes before

extracting the feature vectors used for verification. Due

to the flexible nature of the palm and fingers, there may

be no linear transformation which accurately aligns

two hand contours. Hence, many of the proposed

alignment procedures detect and align each finger sep-

arately. The simplest finger alignment method consists

in registering the fingertip, the two adjacent valley

points and several equally spaced points along the

contour in between the three landmarks [5]. Similarly,

a translation, rotation, and scaling can be found to

align the finger with symmetry axis [6]. A more so-

phisticated alignment procedure (based on quasi-

exhaustive polynomial search of point pair matching

between two sets of contour points) is presented in [4].

This procedure has the advantage of always finding a

good alignment even if the valley-point landmarks are

not accurately detected. The alignment step can be

avoided if the set of features extracted from the hand

image is invariant to Euclidean transformations [1].
The hand shape can be modeled either explicitly as

a set of 2D coordinates of several landmark points

along the hand contour [4, 5] or implicitly as a binary

image of the hand over an empty background [1, 6].

The two representations are intrinsically equivalent;

each of them can be easily derived from the other.

With both representations, dimensionality reduction

procedures may have to be applied as the original data

typically has a high dimensionality (see the fifth col-

umn in Table 1). The dimensionality reduction meth-

ods most used are ▶ principal component analysis

(PCA) and independent component analysis (ICA),

and are applied to either the original data or to a

transformed version of the data (e.g., the Zernike

moments in [1]).

One or several templates per user may be created

during the enrollment stage and stored in the system’s

database. The templates are either the raw feature

vectors computed from a user’s hand images or the

average of those feature vectors.

The matching module compares a user feature

vector against the user’s template(s) stored in the da-

tabase in order to generate matching scores. Since the

feature vectors are usually points in an N-dimensional

Euclidean space, any metric distance can be used for

computing a matching score: Euclidean distance [1],

▶Mahalanobis distance, absolute (L1) distance [6],

correlation coefficient, etc. A few studies explicitly

model the class-conditional probabilities under Gauss-

ian assumptions [5]. As an exception, [3, 4]▶Procrus-

tes shape distance can be used since the feature vectors

are shapes corresponding to the hand contour. The

matching score is a positive number which shows the

dissimilarity between the user’s hand and the templates

in the database.
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System
Population

size
Samples/
person

Number/
type of

templates Features used
Similarity
measure Performance

[1] 40 10 5 (raw
feature
vectors)

Zernike moments of the binary
hand image followed by PCA
(30)

Euclidian FAR = 0.01

FRR = 0.02

EER = 0.0164

[2] 53 2–15 1–14 (raw
contours)

Hand contour coordinates
(120–350 contour points)

Mean alignment
error

FAR = 0.01

FRR = 0.06

[4] 51 10–20 1 (average) +
multiple raw

Hand contour coordinates,
angles (51–211 contour points)

Log-Likelihood
under Gaussian
assumption

EER = 0.00001 –
0.002

[5] 458 3 2 (raw
feature
vectors)

Contour coordinates (2048
points) ICA on binary hand
image (458)

Modified
Hausdorff L1,
cosine distance

EER = 0.01– 0. 02
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The final decision concerning the user’s identity

(identification) or the user’s claimed identity (verifica-

tion) is taken by the decision module. In verification

mode, the decision is typically threshold based: if the

matching score is below a given threshold the claimed

identity is accepted, otherwise it is rejected. The

threshold value is chosen based on the system’s ROC

curve such that the system satisfies some operating

constraints (e.g., an upper bound on the false accept

rate, an equal error rate, etc.). In identification mode,

the incoming feature vector is typically assigned the

identity of the closest database template if the distance

to that closest template is lower than the verification

threshold, otherwise the feature vector is considered

to belong to an imposter.
Performance Evaluation

For most of the research systems, performance evalua-

tion can only be based on the results and comparisons

provided by their authors. Several enrollment and per-

formance evaluation methodologies are discussed in

[5]. If extensive enrollment data can be acquired, best

performance is attained when an average template is

computed from each user’s enrollment measurements.

However, such a system is less user-friendly and more

difficult to deploy. A more realistic deployment scenar-

io requires only one or few enrollment measurements

per user. In such case, a template may actually be a raw

feature vector and the main system parameter to
estimate is the decision threshold. Most researchers

split the available measurements for each user into an

enrollment set and a testing set, and evaluate the

threshold value based on the enrollment data. This

has an advantage that the training data is representa-

tive for the test data, i.e., one expects to obtain an

estimate of the decision threshold which works as

well on the test data. In commercial deployments

though, the system may be trained by the manufactur-

er while the enrollment is performed by the customer

who has to use the factory set threshold.

It is difficult to directly compare the performance

figures reported in the literature. The main reason is the

absence of (1) a common benchmark data set and (2)

standard enrollment and testing procedures. The differ-

ent datasets used for research introduce several variation

factors in the systems reported: (1) population size,

(2) population age and/or structure, and (3) users’ mo-

tivation to cooperate. Table 1 summarizes the perfor-

mance of some research systems tested in identity

verification mode. Some authors only report equal

error rate (EER) figures while others include the sys-

tem ROC curve. When the ROC curve was present, the

estimated FRR rate corresponding to FAR = 0.01. As it

can be seen in the last column of Table 1, most systems

reported error rates on the order of 10�2. A few sys-

tems have also been tested in identification mode

and report identity recognition errors of 1–3% [6].

Note that no separate imposter population is used so

the recognition error may be under estimated. Some

authors integrate hand shape features with palm-based
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features (which can be acquired through a single image

measurement) and report verification error rates on

the order of 10�3 [3].
Limitations of the Hand Shape-Based
Biometric Systems

There are two factors which make a hand shape-based

biometric system less accurate than a fingerprint or

iris-based system [4]:

1. The hand shape is not unique within a large popu-

lation. That is demonstrated in Fig. 3: after finger-

alignment, the hand contours of two different

users are almost identical. Therefore any geometric

features extracted from the two aligned contours

will be very similar and the system will likely con-

fuse the identity of the two persons. In [4] three

pairs of users with very similar hand shapes

within a population of 53 persons were iden-

tified. However, the problem is alleviated if the

system is used in verification mode since an impo-

ster is less likely to know the identity of the

registered user(s) whose hand shape best matches

his or hers.

2. The human hand is a flexible object and its contour

may suffer non-linear deformations when multiple

hand images are acquired from the same person.

That is demonstrated in Fig. 2 where a user’s thumb

appears to be longer in one of the images, a fact

which makes the system reject its true identity. This

problem is alleviated if the thumb (which can de-

form more than the other four fingers) is excluded

from the feature vector calculation. Figure 1(b)

compares the ROC curves corresponding to using

all five fingers versus excluding the thumb and/or
the little finger. The system which excludes the

thumb exhibits a substantially better performance

over the system which uses all five fingers.
Summary

Hand shape-based biometric systems have been success-

fully demonstrated for applications involving personal

identity verification. Their ease of use, nonintrusiveness,

public acceptance, integration capabilities, and small

resource requirements have made hand shape popular

among the different biometric modalities.
Related Entries

▶Hand geometry

▶ Independent Component Analysis

▶Multimodal systems

▶Palmprint matching
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Synonyms

Finger vein; Palm dorsal vein; Palm vein
Definition

In the human hand there is a complex structure of veins

and blood vessels, many of which are just a few milli-

meters below the skin surface. Using noninvasive and

safe imaging techniques it is possible to capture an

image of the larger veins and blood vessels near the

skin surface in various parts of the hand. These images

are most readily obtained from the back of the hand and

the palm of the hand. This vein structure, which is

mostly invisible to the human eye, forms a pattern of

interconnecting lines which is different from one indi-

vidual to another and can be used as a physiological

biometric. Two imaging methods can be used for safe,

noninvasive imaging of veins near the skin surface:

(1) Far infrared thermography, and (2) near infrared

imaging. Far infrared imaging detects heat radiated

from the hand and veins. Near infrared imaging detects

infrared light reflected from a hand illuminated by near

infrared light.
Introduction

In recent years, vein pattern biometrics has attracted

increasing interest from research communities and

industry. A system that scanned the back of a clenched

fist to determine hand vein structure for verifying user

identity was first reported in 1991 by Cambridge Con-

sultants Ltd., in collaboration with the British Technol-

ogy Group (BTG), who had been studying the hand

vein pattern concept with the aim of developing a

commercial system which they call Veincheck [1].

Though their product did not achieve much commer-

cial success, the concept of hand vein patterns as a

biometric was founded and has recently attracted fur-

ther research and development interests to acquire the

vein patterns in the back of the hand [2–5] and in the

palm [6–8] as well as in the fingers [9].

A vein pattern is the vast network of blood vessels

within a person’s body carrying blood back to the

heart. Anatomically, the distribution of veins in the

body creates a vascular pattern which is believed to be

distinct from person to person [10] and is also ob-

served to be different between identical twins. The

vascular patterns are reported to be stable over a long

period of time, as a person’s pattern of blood vessels

is ‘hardwired’ into the body at birth, and remains

relatively unaffected by aging, except for predictable
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growth as seen in fingerprints. In addition, as the blood

vessels are hidden underneath the skin and are invisible

to the human eye, vein patterns are more difficult to

copy or forge as compared to many other biometric

features.

The properties of probable uniqueness, stability,

and strong immunity to forgery of the vein pattern

make it a potentially good physiological biometric

to provide more secure and reliable person verification.

However, as the vein patterns formed by superficial

blood vessels lie underneath the skin surface, the invis-

ibility of veins to simple visual inspection system cre-

ates significant difficulties in the acquisition of the

vein pattern images. As the quality of the images

plays a key role in all the subsequent processing stages

of a vein pattern biometric system, the image acquisi-

tion is critical. In vein imaging for medical purposes,

X-rays and ultrasonic scanning are used to obtain

vascular images. While these methods can produce

high quality images of blood vessels, X-ray imaging

requires the invasive injection of a contrast agent into

the blood stream and dosage of ionizing radiation

which is dangerous with repeated exposure of even

low level radiation. Ultrasonic imaging, while not

known to have any adverse side effects, requires the

application of a gel to the skin to improve the trans-

mission of the sound waves as well as operator skill to

obtain a good image. These constraints are not accept-

able in general purpose biometric applications for se-

curity screening. Obtaining the vein pattern images

quickly and accurately in a nonintrusive and noninva-

sive manner is a key challenge in the vein pattern

biometric system.

Currently, the most effective means of obtaining

images of veins near the surface of the skin without

any invasive procedure or potentially dangerous side

effect is to use the infrared range of the ▶ electromag-

netic spectrum. Infrared imaging provides a contact-

less data acquisition method and requires no injection

of any agents into the blood vessels. In the electromag-

netic spectrum infrared refers to a specific region with

wavelength typically spanning from 0.75 to 1,000 mm.

This region is commonly further divided into four

sub-bands: (1) Near infrared (0.75–2 mm); (2) Middle

infrared (2–6 mm); (3) Far infrared (6–14 mm);

(4) Extreme infrared (14–1,000 mm). Imaging objects

within these four regions operates using different phys-

ical mechanisms and it results in images with signi-

ficantly different properties. Far infrared and near
infrared are the most suitable to capture images of

human bodies.
Far Infrared Imaging

All objects emit infrared radiation when they are

heated. The far infrared imaging technology forms an

image passively using the infrared radiation emitted

by the human body.
Principle of Far Infrared Imaging

The total emissive power w is described by the Stefan-

Boltzmann Law given in (1), where x is the emissivity

of the object and s = 5:6703 � 10�8watt/m2K 4 is

Stefan’s constant. The relationship between the wave-

length l and black body temperature T is formulated

by Wiens Displacement Law based on Planck’s energy

distribution law given in (2).

w ¼ x� s� T 4 ð1Þ
lmax ¼ 2 : 9� 10�3=T ð2Þ

Typically, a human body emits infrared radiation with

wavelength in a range of 3–14 mm. These infrared waves

radiate into the atmosphere and are attenuated accord-

ing to the infrared transmittance spectrum of the atmo-

sphere. At wavelengths of 3–5 mm and 8–14 mm, the

radiant emittance of the infrared spectrum possesses

the highest transmittance rate. Therefore, by using a

thermal camera with detector sensitivity in the range of

either 3–5 mmor of 8–14 mm, an image showing the heat

distribution of the human body can be obtained. Medi-

cal researchers have observed that superficial veins have

slightly higher temperature than the surrounding tissue.

Therefore, using thermal imaging, an image of the heat

distribution of body will display the location of veins

just below the surface of the skin.

To acquire a far infrared image of the hand, the

hand is usually placed on a flat surface with a far

infrared camera focused on the hand from above.

The far infrared camera will capture the temperature

profile of the hand and transfer it to a computer

which can convert the temperature data into either

grey scale or color coding for display on a standard

visual display and stored as a digital image for later

computer processing.



Hand Veins. Figure 1 Examples of far infrared images of hands at room temperature mapped to grey scale.

Hand Veins. Figure 2 Examples of far infrared images of hands in a tropical climate mapped to grey scale.
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Far-Infrared Vein Image Quality

Figures 1 and 2 show typical vein pattern images cap-

tured using a far infrared imaging method and con-

verted to grey scale images. The darker the grey scale

the cooler the pixel. The major vascular network in the

back of the hand is successfully captured and appears

as light grey lines as shown in Fig. 2. The images in

Fig. 1 were captured in a normal office environment

(approximately 20�C and 50% humidity) such that

there is sufficient temperature difference at the skin

surface to distinguish the location of the major veins
beneath the skin. Figure 2 shows two images captured

outdoors in a hot tropical climate (30–34�C and>80%

humidity). In this case the temperature of the hand

is closer to the blood temperature and there is insuffi-

cient difference in radiated thermal energy where the

veins are located and the surrounding tissue to be

discernable using the 0.08�C resolution of the camera

used to capture this image. Far infrared imaging

technology is very sensitive to external conditions

which affect the temperature of the hand. In addi-

tion, far infrared imaging can only capture the major

vein patterns. The smaller capillaries are not visible

and the information contained in the large vein pattern

is limited.
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Near-Infrared Imaging

Human eyes can only see visible light which occupies

a very narrow band (approximately 400–700 nm wave-

length representing the color range from violet to

red) of the entire electromagnetic spectrum. However,

generally speaking, there is often more information

contained in other bands of the electromagnetic spec-

trum reflected from the objects of interest. Some appli-

cations, such as remote sensing of crops, use special

multispectral or hyperspectral imaging instruments to

obtain the object images in a wide spread of bands of

the electromagnetic spectrum. These images show

more detail than is available in the visible light range.

Similarly, while human vein patterns beneath the skin

are invisible under normal visible light conditions they

can be seen using near infrared imaging techniques.
Principle of Near Infrared Imaging

Two special attributes of infrared radiation and human

blood create a different principle for imaging vein pat-

terns: (1) infrared radiation penetrates into biological

tissue to a depth of approximately 3 mm, and (2) the

reduced hemoglobin in venous blood absorbs more of

the incident infrared radiation than the surrounding

tissue [2]. Therefore, by shining an infrared light beam

at the desired body part, an image can be captured

using a CCD camera with an appropriate infrared filter

attached to its lens. The location of veins within about

3 mm of the skin surface will appear as darker lines

than the surrounding tissue because less infrared is

reflected from where the veins are located due to

it being absorbed in the blood. Biologically, the hemo-

globin has the highest absorption of infrared light in
Hand Veins. Figure 3 Examples of near infrared images of th
the range of 800–900 nm [11]. Therefore, the wave-

length of the infrared source should be selected to be

within the near infrared region with wavelength

around 800–900 nm. With this wavelength, it also

avoids undesirable interference from the far infrared

radiation (with a wavelength of 3–14 mm) emitted by

the human body and the environment.

To acquire a near infrared image of the hand, the

hand must be placed on a surface and evenly illumi-

nated by infrared light. The infrared light should emit

peak infrared radiation at about a wavelength of

850 nm. In order to obtain an image with this reflected

infrared light from the hand, a CCD camera is needed

whose spectral response also peaks at around 850 nm.

Such cameras are readily available. To reduce the effect

of visible light, an optical infrared filter of about

800 nm should be mounted on the cameras lens.
Near Infrared Vein Image Quality

Figures 3 and 4 show examples of vein pattern images

captured using a near infrared camera. The veins just

beneath the surface of the skin appear as dark lines.

The near infrared imaging technique can capture the

major vein patterns in the back of the hand as effec-

tively as the far infra red imaging technique as shown

Fig. 3. More importantly, the near infrared technique is

capable of imaging some of the small veins lying in the

palm and wrist areas. Unlike the image of the back of

the hand, where only major veins are visible, the vein

pattern in the palm is far more complex and poten-

tially contains more information than an image of the

back of the hand. This is important because it signifi-

cantly increases the discrimination power of the

vein pattern biometrics when the size of user group is
e back of the hand and the underside of the wrist.



Hand Veins. Figure 4 Examples of near infrared image of the palm of the hand.

Hand Veins. Figure 5 The typical region of interest in

palm of back of hand vein imaging.
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large. Near infrared imaging technique is more tolerant

to the external environment and the subject’s body

temperature than far infrared imaging. However, near

infrared images of vein patterns suffers from the dis-

advantage that visible marks on the skin surface are

also visible in the image, which can corrupt the struc-

ture of the vein patterns and lead to problems in the

later imaging processing and pattern recognition

stages. The palm lines are also visible with the vein

patterns as seen in Fig. 4. While human beings are

capable of distinguishing these lines from the vein

patterns in the image, it requires extra effort to remove

these defects using automatic processing of these

images and is particularly difficult if, for example,

there are marks on the palm which are similar in

appearance to veins, and for example when the person

has drawn lines on the hand using a black pen.
A Hand Vein Pattern Matching System

A hand vein recognition system will typically consist of

the following processing stages:

1. Hand Vein Image Acquisition

2. Region of Interest Location and Image

Enhancement

3. Vein Pattern Extraction

4. Feature Extraction and Matching Against a Data-

base of Vein Patterns

5. Decision

The methods and problems associated with Stage 1 –

obtaining an image of the veins in the hand have been

described above. Stage 2 – locating the region of inter-

est and enhancing the image – is usually achieved by

extracting the profile of the hand and locating the
valleys between the fingers and the thumb, and using

these as reference points to identify a region (usually a

rectangle) on the palm or back of the hand as shown

in Fig. 5. Image enhancement is needed because the

clearness of the vein pattern in the extracted region

of interest varies from image to image, therefore, the

quality of these images need to be enhanced before

further processing. There are many pre-processing

techniques available in image processing for image

enhancement. The choice of which to use will depend

on the quality and nature of the image. An example

of region of interest location, extraction, and image

enhancement for a far infrared grey scale image of

the back of a hand is shown in Fig . 6 (a -c).

After image enhancement, processing in Stage 3

is required to extract the vein patterns in the region

of interest. This involves separation of the vein pattern

from the background. Due to the fact that the grey-

level intensity values of the vein vary at different



Hand Veins. Figure 6 Example of (a) Original far infrared image of the back of the hand, (b) Extraction of the region

of interest, (c) Image enhancement of the region of interest, (d) Extraction of the vein lines, (e) Skeltonization of

the vein lines.
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locations in the image, ▶ global thresholding techni-

ques do not usually provide satisfactory results. Hence,

a ▶ local adaptive thresholding algorithm is usually

required to separate the vein patterns from the back-

ground. The binary image in Fig. 6(d) shows a typical

result of the vein image after thresholding. The vein

image may be processed in this binary form or the

shape of the vein pattern is extracted as a skeleton,

or one pixel wide line image, of the vein path. The

result of a typical skeletonization process is shown

in Fig. 6(e).

Stage 4 of the recognition process involves the

extraction of features from the vein pattern and match-

ing these against the same features extracted from

reference patterns collected from known individuals

and stored in a database of template or reference

vein patterns. This stage remains an area for further

research. The features can be extracted from the grey

scale image (Fig. 6(c)), the binary image (Fig. 6(d)) or

the skeletonized image (Fig. 6(e)). Previous research

has investigated the matching of vein patterns using

the Hausdorff distance as used in face recognition [12]

and the extraction of minutiae from the skeletonized

image in a similar manner to that frequently applied to

fingerprint images [13].
The major factor restricting further investigation of

hand veins as a biometric is the lack of a large data-

base of hand vein images for research study. All

reported work carried out to date has involved rela-

tively small databases collected by the individual

researchers. It is therefore not possible to compare

performance results or predict the likely false accep-

tance and false rejection rates that might be expected of

hand vein biometrics.
Summary

The study of hand veins as a biometric has been inves-

tigated sporadically since about 1990. The most suc-

cessful imaging methods use near and far infrared

imaging. Far infrared imaging can capture images of

the large veins in the back of the hand but has difficul-

ties in capturing vein images in the palm because

of the relatively small size of the veins and the resulting

small amount of thermal energy they radiate. Far infra-

red imaging is very sensitive to ambient temperature

and varying human body temperature, which can be

significant in an extremity such as the hand. Near

infrared imaging produces good quality images of
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veins just below the surface of the skin as observed

when capturing vein patterns in the back of the hand

or the palm. Near infrared is more tolerant to envi-

ronmental changes because the technique measures

reflected infrared and not transmitted infrared. The

major problem with near infrared images is the reten-

tion of visual features such as marks on the skin and

hairs. Detailed study of the processing and matching

of hand vein images needs to be carried out to fully assess

the potential of hand veins as a biometric.
H
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ric devices used for capturing the geometric
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characteristics (e.g., the length, width, thickness and

curvature of the fingers, the palm size, and the dis-

tances between joints) of a human hand for hand-

geometry-based identity verification. A typical hand-

geometry device records images of the lateral and

dorsal parts of the hand using a charge-coupled device

(CCD) camera that is mounted above a flat surface on

which the person presented to the device places his/her

hand. The set of geometrical features extracted from

these images is then matched against a prerecorded

template stored in the device’s database. Depending

on the result of this matching procedure, the identity

of the person presented to the device is either verified

or not.
Hand-Geometry Device. Figure 1 A commercial

hand-geometry device [7].
Introduction

Hand-geometry devices are among the earliest commer-

cially available biometric devices for automated identity

verification [1]. The production and distribution of

the first commercial hand-geometry device, called the

Identimat, was launched in the early 1970s by the

Identimation Corp., which adopted a hand-reader

concept developed and patented by Robert P. Miller

[2]. Like with Miller’s original design, Identimation’s

device used spatial characteristics of the index, middle,

ring, and little fingers as the means of establishing the

identity of a person. It utilized a number of electrome-

chanical components and photoelectric cells to mea-

sure the length of the four digits and compare them

to finger-length measurements that were previously

recorded and stored on an identification card. The

device was very well received on the market and was

eventually installed for access-control purposes at

several high-security facilities run, for example, by

the U.S. Department of Energy, Western Electric, and

U.S. Naval Intelligence [3].

Encouraged by the success of Identimation’s hand-

based verification system and the growing demand for

reliable and user-friendly verification schemes, several

other companies tried to enter the hand-biometry

market during the 1970s and early 1980s. They devel-

oped numerous prototypes, using ideas and device

designs from early patents (e.g., [2, 4, 5]); however,

most of them never actually made it to the market. One

of the few exceptions was the ‘‘3D hand profile identi-

fication apparatus’’ devised by David Sidlauskas [6].

His device featured a ▶ platen on which a person

placed his/her hand and a digital camera that captured
images of the hand’s side and top views. Discriminative

hand characteristics extracted from these images were

then employed for the identity verification. Unlike

previously developed hand-geometry readers, Sidlaus-

kas’ device did not rely solely on two-dimensional

measurements of the hand, but used ▶ orthographic

scanning to capture the hand’s three-dimensional

structure. Later manufactured under the commercial

name ID3D by Recognition Systems Inc. (RSI) [7], it

became an important milestone in the field of hand-

geometry-based verification and is, albeit in a much

refined form, still on the market today.

By the late 1990s, manufacturers of commercial

hand-geometry devices (such as RSI) were the only dri-

ving force in the development of hand-geometry-based

biometric technology. However, in the past decade,

due to advancements in the fields of biometrics

and computer vision, the academic community has

taken a more active role in the development of hand-

geometry devices, e.g., [1, 8, 9, 10].
Description of the Device

Unlike early hand-geometry devices (e.g., [2, 4]),

which were primarily based on electro-mechanical

components, modern devices, such as the one pre-

sented in Fig. 1, use imaging technology and internal

software to capture and process the images of a per-

son’s hand and to extract the geometrical features, e.g.,

the lengths, widths, thicknesses, and curvatures of the

fingers, and the width, thickness, and area of the palm,

that are used for the identity verification.
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The basic design and use of a hand-geometry de-

vice is quite simple. When a person places his/her hand

on the device’s reflective, flat surface, referred to as the

platen, he/she first has to align his/her fingers with a

number of guiding pegs that direct the hand to a

predefined position. The pegs are equipped with pres-

sure sensors which, when enough pressure is applied to

them, simultaneously trigger the charge-coupled de-

vice (CCD) camera (commercial devices typically use a

32,000 pixel CCD camera) and the infrared light

source (e.g., light emitting diodes) positioned above

the device’s platen. The platen then reflects the emitted

light back to the camera and an image is recorded.

However, as parts of the platen are covered with the

person’s hand, some of the infrared light is absorbed

and only a silhouette is visible in the resulting image

[11, 12, 13]. Because of the design of modern hand-

geometry devices, which feature a side-mounted

mirror inclined at 45∘ to the platen, the acquired

silhouette image contains both the shape of the dorsal

(i.e, the top view) as well as the lateral (i.e., the side

view) surfaces of the hand [9]. Once recorded, internal

software extracts a number (more than 90 in commer-

cial devices) of geometrical features from the silhouette

image and uses them to verify the identity of the

person presented to the device.

However, before a person can use the device, he/she

first has to enroll. During the enrollment phase, the

device captures several images of the person’s hand,

extracts geometrical features from each of these images

and uses them for the calculation of the template. The

template is then stored in the memory of the device or

on an identification card (i.e., a ▶ smart card) and is

later retrieved for comparison. A similar procedure

is required when a person presented to the device is

trying to verify his/her identity. First, the person claims

an identity by entering a personal identification num-

ber (PIN) or by swiping an identification card

(depending on the input mechanism provided by

the device at hand) through a card-reader module

connected to the device. The device then proceeds

with the image-acquisition and feature-extraction

stages and finally recalls (either from an internal mem-

ory or from the smart card) the template associated

with the claimed identity for comparison. In the

final step, a matching procedure is applied to decide

whether or not the person presented to the device is

who he/she claims to be [7, 9, 11, 12]. In the case of a

positive decision, i.e., the identity of the person is

verified, the device usually updates the template to
account for possible changes in the geometry of the

person’s hand (which is especially important when the

device is used by children, whose hand-geometry is

changing fast) and stores a new template for future

verification attempts in the device’s memory (or ID

card). This process is commonly referred to as tem-

plate averaging [11].

While typical hand-geometry devices are designed

to be used in conjunction with the right hand, it is

possible for a person to enroll and verify his/her iden-

tity using the left hand. In this case, the (left) hand is

placed on the platen with the palm facing upwards [11].

As only the geometry of the hand is of significance, this

has no negative effect on the verification accuracy of

the device.

There are also commercial devices available on the

market that do not use the geometry of the whole hand

to verify the identity of a person, but accomplish this

task based on measurements of only two fingers.

The main part of the device is a camera-based

sensor that uses three-dimensional scanning techno-

logy to capture the structure of the index and middle

finger (of either hand) of the person presented to the

device. From these scans, a set of geometrical features

is extracted and matched against a template recorded

during the enrollment session. Depending on the

outcome of the matching procedure, the identity of

the person presented to the device is either verified

or not [14].
Research Trends

In recent years, many research groups from private

companies as well as academic institutions have direct-

ed their research towards hand-geometry-based iden-

tity verification. They are developing new verification

schemes that require new kinds of hand-geometry

devices, different from those available on the market

today. The main trend at present is to design devices

that require no pegs to control the placement of the

hand. These designs, like the current commercial

devices, still feature a platen upon which the person

places his/her hand. However, as there is no guiding

mechanism, the hand is simply positioned on the

platen with the fingers spread naturally. A CCD camera

or a digital scanner then captures images of the hand

from which pose-independent geometrical features are

extracted and used to verify the identity of the person

presented to the device [10]. Peg-free designs are
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commonly considered to have a number of advantages

over classical hand-geometry devices: first, they do not

cause any deformations of the hand’s silhouette shape

as no contact with the guiding pegs occurs; second,

they reduce the chances of the person incorrectly posi-

tioning his/her hand; and third, they allow people with

small hands, e.g., children, who might have problems

reaching all the pressure sensors of current commercial

devices and so are unable to initiate the verification

procedure, to use the device. Although numerous ex-

perimental designs following the described trend were

presented in the literature, none of them has yet suc-

ceeded in passing the prototype stage [9, 10].
Characteristics

Over the past 30 years, hand-geometry-based recogni-

tion has become one of the most popular biometric

technologies for physical access control and time-and-

attendance applications. The broad success of hand-

geometry devices in these specific application areas

was triggered by various human and operational factors,

among which the following are the most important [9]:

1. User acceptance. Hand-geometry devices offer a

fast, easy to use, and fairly reliable method of user

authentication, and are therefore enjoying a rela-

tively high level of public acceptance. A survey con-

ducted by the Sandia National Laboratories [15]

in 1991 reported that most of the test subjects

favored hand-geometry devices over other devices

based on fingerprint, signature, retina, or face

biometrics.

2. Functionality. Hand-geometry devices can operate

in harsh environmental conditions and are there-

fore suitable for indoor as well as outdoor deploy-

ment [10]. Furthermore, as they rely only on the

geometric structure of the hand, while ignoring its

surface details, they are to some extent insensitive

to the presence of dirt or dust, which makes them a

preferable choice for access control and time-and-

attendance applications in labor-intensive branches

such as the construction industry [7].

3. Template size. The memory requirements for stor-

ing a template are the lowest among all biometric

technologies. With a size of 9 bytes (or 20 bytes for

devices based on the geometry of just two fingers)

they are significantly lower than those imposed by

other modalities [11, 12]. Such a small size is
advantageous for three reasons: first, when a

hand-geometry device is operating as a stand-

alone unit, it allows a large number of templates

to be stored in the device’s internal memory; sec-

ond, it saves processing time; and third, it permits

the storage of user-templates on identification

cards.

4. Failure to enroll (FTE) and failure to acquire (FTA)

rates. Hand-geometry devices can be used by most

of the world’s population, except for some indivi-

duals who suffer from severe arthritic conditions

and are therefore unable to correctly position their

hands on the device’s platen. For this reason, hand-

geometry devices exhibit relatively low FTE and

FTA rates, when compared to other biometric

devices. A recent study involving 200 participants

showed [16] that the FTE and FTA rates for hand-

geometry devices were the lowest among all the

tested devices (tested were face, iris, vein, voice,

hand-geometry, and fingerprint scanners).

Although the presented characteristics resulted in

the widespread use of hand-geometry devices for ac-

cess control and time-and-attendance purposes, there

are, nevertheless, still a number of shortcomings that

limit their use in other application areas, the most

significant being:

1. Size. Typical hand-geometry devices are designed to

accommodate the whole human hand (or at least

two fingers) and are consequently significantly lar-

ger than other devices used for capturing the bio-

metric traits of a person (e.g., face, voice, and

fingerprints). This fact makes them unsuitable for

security applications, where a compact size for the

biometric device is preferable (e.g., laptops and

mobile devices) [12].

2. Cost. Commercial hand-geometry devices can cost

considerably more than, for example, fingerprint

scanners, which target a similar market segment

(i.e., access control and time-and-attendance).

With a price of approximately $1,000–2,000, they

are among the more expensive biometric technolo-

gies [9, 12].

3. Performance. The false-acceptance (FA) and false-

rejection (FR) rates for hand-geometry-based

security systems are typically higher than those of

fingerprint-, palmprint- or iris-based systems,

which makes hand-geometry devices suitable only

for low/medium security applications. Several
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independent studies (e.g., [13, 15, 16]) reported

that commercial hand-geometry devices achieve

FA and FR rates in the range of 0.1–1.0% at the

equal-error operating point.
H

Operation

Commercial hand-geometry devices are capable of

operating in two distinct types of configurations:

as stand-alone units or as part of a networked system

[7, 11, 17].

1. Stand-alone units. While hand-geometry devices

deployed for time-and-attendance monitoring typ-

ically require an additional time clock and a com-

puter to record and retrieve information about the

arrival and departure times of people, they can,

nevertheless, be used for access control purposes

without the need for any additional components.

A hand-geometry device can, for example, directly

control the locking mechanism of a door and

release it if the identity of the person trying to

gain access to the secured facilities is successfully

verified. In this stand-alone configuration, the

devices are suitable only as access control systems

for single doors (e.g., main entrances, doors to

sensitive areas such as computer rooms, storage

areas, etc.), while a (networked) system of hand-

geometry devices is needed when multiple doors

have to be secured. The number of people that can

be enrolled in a stand-alone device is limited by

the storage capabilities of the device, as all user

templates are stored locally in the device’s internal

memory. Furthermore, as no other means are avail-

able, for example, a central computer, all administra-

tive tasks have to be preformed with the help of the

device’s keypad [7, 11, 17].

2. Networked system. Commercial devices support a

number of communication standards and proto-

cols (e.g., RS-485, RS-422, RS-232, and TCP/IP)

that can be used to connect an arbitrary number of

devices with a host computer to form a networked

system. In contrast to stand-alone units, net-

worked systems are commonly employed in appli-

cations that require multiple hand-geometry

devices (e.g., access control to facilities with seve-

ral entrances). While these requirements can be

met with several stand-alone devices, the use of a
networked system has a number of advantages:

first, a person does not have to undergo the incon-

venience of enrolling at each of the units, but is

able to enroll at a single location and retrieve his/

her template for comparison from a central stor-

age location at any unit (for which he/she has

access rights) of the network; second, all door

activities and time (and/or attendance) records

can be stored and viewed via a central computer,

making system monitoring simple and efficient;

and third, a networked system enables the cen-

tralized management of user profiles (e.g., their

access rights, and deletions) [7, 17].

Commercial devices are also able to emulate stan-

dard card-reader units, which makes it easy to integrate

them into existing security systems. When employed in

the card-reader emulation mode, the hand-geometry

device, upon successful verification, simply forwards

the user’s identification number in an appropriate for-

mat to the card-reader module, which then proceeds as

if the identification number had been read from an

identification card. Several card protocols are com-

monly supported, the main ones being Wiegand, bar-

code, and magnetic stripe [7, 11, 17]. In fact, there are

two standards defining the data-interchange formats

of hand-geometry devices: the ‘‘ANSI INCITS 396-

2005 Hand Geometry Interchange format’’ and its

international counterpart the ‘‘ISO/IEC 19794-10:2007

Biometric Data Interchange Format – Part 10: Hand

Geometry silhouette data.’’ The standards define both

the format and the content for the exchange of the

hand-silhouette data, and are aimed at increasing

the interoperability of hand-geometry devices [18].
Summary

Among the different biometric devices available on the

market, hand-geometry devices have emerged as the

preferred choice for physical access control and time-

and-attendance applications, especially in harsh envir-

onments where other devices might have problems in

reliably verifying the identity of a person. They are

based on a field-proven technology that by today has

been in use for more than 20 years. However, research

is already on the way to produce the next generation of

hand-geometry devices, which will undoubtedly result

in smaller, faster, and more user-friendly units. Several
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research groups have already developed prototypes

that require no guiding pegs to capture an image

suitable for the extraction of hand-geometry features.

While these prototypes still need time to mature, they

are a clear indication of future trends in the develop-

ment of hand-geometry devices.
Related Entries

▶Anatomy of Hand

▶Biometric Sensor and Device, Overview

▶Hand Recognition
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Hand-Geometry Reader
▶Hand-Geometry Device
Hand-Geometry Scanner
▶Hand-Geometry Device
Hand-Held Devices
A hand-held device is a pocket-sized computing de-

vice, typically, comprising of a small visual display

screen for user output and a miniature keyboard

or touch screen for user input. New hand-held

devices include a number of sensors that can be used

to acquire biometric data, e.g., touch-screens (signa-

ture and handwriting), fingerprint sensors, micro-

phones (speech), cameras (face, video), etc.

▶ Fingerprint Databases and Evaluation
Handprint
In a handprint writing style, the writer is inclined to

write each individual character in an isolated fashion.

In other words, there is no connection between adja-

cent letters.

▶ Signature Sample Synthesis

http://www.recogsys.com
http://www.biometricgroup.com
http://www.biometricgroup.com
http://www.biomet.ch/
http://www.recogsys.com
http://www.ansi.org/
http://www.ansi.org/
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Handprint Sensor
▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Hand-Scanning Device
H
▶Hand-Geometry Device
Handwriting Sample Synthesis
▶ Signature Sample Synthesis
Handwriting Synthesis
▶ Signature Sample Synthesis
Handwritten Signature Recognition
▶ Signature Recognition
Head Pose Analysis
▶ Face Pose Analysis
Head Yaw/Tilt/Roll
Yaw, Pitch, and Roll are the three angles of rotation

that describe changes in the orientation of a 3D object,

which in the case of face pose are with respect to the

face being in upright position facing the camera/sen-

sor. Yaw is the left/right rotation angle (head turning),

pitch is the up/down rotation angle (head nodding)

and roll is the sideways rotation angle (head tilting

while facing the camera/sensor).

▶ Face Pose Analysis
Headspace
Headspace is the gaseous phase above a sample (liquid

or solid) containing the volatile and semi-volatile com-

pounds released by the substance.

▶Odor Biometrics
Helper Data
Information extracted from biometric data to assist

aligning or retrieving original biometric template. It

should not leak any information about original tem-

plate but assure alignment accuracy to some extent.

▶User Interface, System Design
Heterogeneous
Heterogeneous is an adjective used to describe some-

thing that has a large amount of variants or different

forms. Heterogeneity (a noun), resulting from having

different properties, leads to a difference in expected

results, more than can be accounted for by chance.

▶Heterogeneous Face Biometrics
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STAN Z. LI

Biometrics and Security Research & National

Laboratory of Pattern Recognition Institute of

Automation, Chinese Academy of Sciences, Beijing,

China
Synonyms

Cross-modality face biometrics; Heterogenous face

image matching
Definition

Face images can be captured in different spectral

bands, e.g., Visual (VIS), near infrared (NIR), or

thermal infrared (TIR), or as measurements of 3D

facial shape. These different image types, due to differ-

ent image formation characteristics, are said to be

▶ heterogeneous. More generally, even within the VIS

type, the face images can come from different image

sensors, such as charge coupled device (CCD) and

complementary metal oxide semiconductor (CMOS)

cameras, photo scans, face sketches, under different

illumination conditions, with different image resolu-

tions and different image quality. These are heteroge-

neities in the broad sense. Although heterogeneous

face images of a given person differ by pixel values,

the identity of the face should be classified as the same.

The processing and matching of these diverse face

images is collectively referred to as ▶ heterogeneous

face biometrics (HFBs).
Introduction

Different types of face biometrics have been developed,

including visual (VIS) (see a survey in [1]), near infra-

red (NIR) [2], thermal infrared (TIR) [3], and 3D [4]

image based. In each case, it is assumed that both the

enrollment and query face images are of the same type.

This assumption results in the homogeneous processing

and matching of face images. Two different image

types are said to be heterogeneous if they have different

image formation characteristics. Although heteroge-

neous face images of a given person may
differ significantly by pixel values, the identity of the

face should be classified as the same notwithstanding

the source, illumination, and quality of the image. The

processing and matching of these diverse face images

is collectively referred to as heterogeneous face

biometrics (HFBs).

HFBs provide engines and systems for matching

across different imaging systems, either in different

spectral bands or modalities. These are considered

HFBs (in the true sense). These involve comparison of

face images between VIS, NIR, TIR, and 3D face

images. Heterogeneities in the same type of imaging

system are, in the broad sense, such as variations dealt

with by the conventional VIS face recognition, includ-

ing photo scans and face sketches. Arguably, the true

sense HFBs are more challenging than the broad sense

HFBs of VIS-VIS, NIR-NIR, and 3D-3D comparisons,

because the former contain more heterogeneous fac-

tors and larger variations than the latter.

Recent developments have led to several proposals

of HFBs that include matching between VIS and face

sketch [5], VIS and NIR [6], and 3D and NIR [7], and

also the reconstruction of the facial shape from an NIR

image [8]. The MBGC (Multiple Biometric Grand

Challenge) tests organized by NIST (National Institute

of Standards and Technology) has devised the scenario

of matching between VIS and NIR face images as one of

its experiments [9], with the purpose of examining the

feasibility of NIR-VIS face matching and determining

how its fusion with VIS-VIS face biometric could im-

prove the overall performance. In the following sec-

tions, the heterogeneities encountered in HFBs are

discussed and related research issues are identified.
Heterogeneities in Face Recognition

Images used in face recognition are related to facial

shape, skin, and hair. A 3D face image is related to the

shape only. It is captured by a range-measuring system

usually made from a laser range system or stereo vision

system. Represent a range image taken from a view-

point by z(x, y). The pixel values measure the distances

of the sensor to the facial surface points.

In developing face biometric engines and systems

using spectral images, researchers and engineers have

identified intrinsic and extrinsic factors that affect face

recognition. The ▶ Lambertian law provides an image

formation model, relating a spectral image with the 3D
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shape of the sensed object, the object surface proper-

ties, and the illumination source:

Iðx; yÞ ¼ rðx; yÞnðx; yÞs ð1Þ
where I(x, y) is the spectral image, r(x,y) is the albedo
of the facial surface material at point (x, y) (also a func-

tion of the illumination wavelength), n ¼ (nx, ny,nz)

is the surface normal (a unit row vector) at the 3D

surface point z(x, y), and s¼(sx, sy, sz) is the point

lighting direction (a column vector, with magnitude).

The normal directions n(x, y) may be derived from the

range image z(x, y), but not vice versa.

In developing face biometric engines and systems

using spectral images, researchers and engineers have

identified intrinsic and extrinsic factors that affect face

recognition. The facial albedo and the surface shape are

intrinsic factors pertinent to the face identity. These

should be the most important information to be used

for face recognition. On the other hand, extrinsic factors

include illumination, facial ware, hairstyle, expression,

and posture. Since they are irrelevant to the identity of

the face, their influence on face recognition should be

mitigated. Much research and development effort has

been spent to minimize the impact of extrinsic factors,

but the problems still persist and are difficult to solve [1].

Heterogeneous spectral face images have different

albedos, and hence, encode intrinsic factors in different

ways even if extrinsic factors are not accounted for.

Set aside extrinsic factors and focus on the intrinsic

ones. Given a still, frontal face under a fixed illumina-

tion, heterogeneous image formation processes produce

face images of different image configurations of pixel

values. The pixel values have different properties and

interrelationships across heterogeneous face images.

While the above heterogeneities in HFBs are con-

sidered in the true sense, HFBs in the broad sense deals

with heterogeneities in homogeneous face images cap-

tured under heterogeneous conditions. The VIS type of

face images, for example, can be captured

� under different illumination conditions,

� by different types of image sensors, such as CCD

and CMOS, or sensor brands,

� in different image resolutions,

� in different image quality, and

� by photo scanning or face sketching,

These cause heterogeneities in image formation and

pixel configuration. Among these, face sketches may

have different image styles and contain more
heterogeneities. Also, heterogeneities due to image

resolutions and different image quality also count.

Quality control by imposing constraints on image ac-

quisition conditions is thus suggested, for example, in

the ISO/ICAO (International Organization for Stan-

dardization/International Civil Aviation Organization)

standard [10].
Research Issues

Despite the heterogeneities, it is desired to perform

face biometric identification and verification with

whatever types of face images available. Research pro-

blems in HFBs include the following:

� Understanding heterogeneous image formation

models: This provides a physical basis for modeling

properties of heterogeneous face images.

� Discovering relationships between heterogeneous

images: Relations or correlations between hetero-

geneous images of faces or sets of features derived

thereafter may be discovered using heterogeneous

image formation models.

� Formulating transformation of one type to ano-

ther: With latent correlations discovered, one

could construct a transformation or mapping

from one type to another.

� Extracting common features: Discovered latent

correlations could also be used for extracting com-

mon features for characterizing face identities in

heterogeneous images.

� Matching across heterogeneous images: Matching

algorithms should be developed based on extracted

features that associate heterogeneous face image

properties.

� Fusion of heterogeneous information: HFBs can take

advantage of heterogeneous information in face

images and fuse them to improve the performance.

Statistical learning can be used to develop algo-

rithms for solving these problems. For example, for

the recovery of face shape from a single NIR face image

[8], for matching between VIS face and face sketch [5],

VIS face and NIR face [6], and between 3D face and

NIR face [7].

HFBs require the extraction of features common

across heterogeneous types of faces so as to create a

common ground for things to be compared. The ex-

traction of common features is the most distinct issue
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among all in HFBs, while the other issues have been

researched in homogeneous face biometrics, and their

results can be applied herein. Methods differ in how

and where to extract the common features – whether it

is done at one end of the two types as in the ▶ analysis-

by-synthesis approach, or somewhere in the middle as

in the ▶ common feature approach.

For example, in [6, 7], common features are

extracted using canonical correlation analysis (CCA)

[?] and are in the middle of the two ends rather than at

a single end. In [5], VIS face images (at one end) are

synthesized from face sketches (the other end) explic-

itly, and the matching is performed using features

extracted from the VIS end of face images. Possible

solutions to HFBs can therefore be categorized under

two classes: common feature based and analysis-

by-synthesis based.

Summary

Heterogeneous face biometrics (HFBs) perform bio-

metric matching across heterogeneous face images.

This article has discussed an analysis of problems

in HFBs, identified issues therein, and point out re-

search directions. HFBs could be used as a standalone

module for biometric authentication or work as an

added module to improve face recognition with

homogeneous face images. HFBs are not only new

directions for face-based biometrics, but also address

the underlying issues in conventional homogeneous

face biometrics in the broad sense of HFBs. Research

and development of HFBs, with investigation into

problems caused by heterogeneities in homogeneous

face biometrics, may lead to better solutions.
Related Entries

▶ 3D Based Face Recognition

▶ Face Recognition, Near-Infrared

▶ Face Recognition, Thermal

▶Hyperspectral and Multispectral Biometrics

▶ Skin Spectroscopy
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Synonym

HMM
Definition

A Hidden Markov Model is a twofold stochastic pro-

cess composed by a first-order Markov chain, which is
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a finite state machine ruled by state transition prob-

abilities that solely depend on the immediate predeces-

sor, and an associated probabilistic function. In a

regular Markov model, the state is visible to any ob-

server external to the model, whereas in a Hidden

Markov Model (HMM), the state is not observable,

that is, hidden, but each state has associated output

probabilities over the possible observable tokens.
Hidden Markov Models. Figure 1 Representation

of a Hidden Markov Model. H
Introduction

Hidden Markov Models (HMMs) [1] were introduced

by L.E. Baum in the late 1960s [2], and since the

mid-1970s [3–5], they have become popular to model

the statistical variation of the spectral features in

speech recognition research. In the late 1980s, HMMs

were applied to the analysis of DNA and other

biological sequences. Nowadays, they are ubiquitous

in bioinformatics, and in particular, in biometrics.
Architecture and Types

An HMM is characterized by the following

components:

� A set of N states of a first-order Markov chain

S = {Si}, i = 1, . . . , N. Denoting the instants of

time regularly spaced associated with the state tran-

sitions by t = 1, 2, . . . , T, the state in time t is

denoted by qt.

� The set of transition probabilities between the

states. Assuming the first-order Markov chain con-

dition, they can be represented by the matrix

A = {aij}, i, j = 1, . . . , N, where

aij ¼ Pðqtþ1 ¼ Sj=qt ¼ SiÞ 1 � i; j � N

� The initial state probability matrix, which will be

denoted by the vector

pi ¼ Pðq1 ¼ SiÞ 1 � i � N

� The output probabilities B = {bj (Ot)}, j¼ 1, . . . ,N,

where

bjðOt Þ ¼ PðOt jqt ¼ SjÞ j ¼ 1; . . . ;N ;

bj being the probability distribution corresponding

to the state j, assumed to be independent of time,

and Ot the value of the observation at instant t,
corresponding to the observation sequence O = {Ot},

t = 1, . . . , T.

Therefore, the HMM can be represented as

l ¼ (A, B, p). The architecture of a three state

HMM is illustrated in Fig. 1. When any state is reach-

able from any other state, as it is represented in the

figure, the model is called ergodic. However, in text-

dependent speaker recognition, as well as in speech

recognition, the models are left-to-right, that is, the

states are only reachable from the state itself of lower

index states.

The probability distributions of the output prob-

abilities are discrete in the so-called Discrete Hidden

Markov Models (DHMM) and continuous in the so-

called Continuous Hidden Markov Models (CHMM).

When the original observation data are continuous,

they must be quantized if the DHMM is preferred.

In the case of speech and speaker recognition, where

the observation data are a sequence of acoustic param-

eter vectors, vector quantization techniques were used

when the computational efficiency and amount were

crucial. However, nowadays CHMMs have become

most popular in speech and speaker recognition.

In the DHMMs, the output probabilities take

values in a finite set of symbols called alphabet

V = {vk}, k = 1, . . . , M, M being the alphabet size.

Hence, they can be denoted with the matrix B = {bj(k)},

where

bjðkÞ ¼ Pðvken t jqt ¼ SjÞ;
j ¼ 1; . . . ;N ; k ¼ 1; . . . ;M :
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In the CHMMs, generally, the output probabilities

take values in multidimensional, continuous space,

and they are modeled by parametric multivariate prob-

ability density functions. A Gaussian mixture is the

most used [6, 7], because it can approximate any

probability density function with an adequate number

of mixtures. In this case,

bjðOtÞ ¼
XM
m¼1

cjm@ðOt ; mjm;SjmÞ; j ¼ 1; . . . ;N

that is, a linear combination with weight cjm of M ℵ
multivariate Gaussian probability density functions

with mean vector mjm and covariance matrix Sjm.

In both cases, once the number of states and the

permitted transitions between them (topology) and

the parameter tying between states are predefined,

these three main problems must be solved in order to

use HMMs in real applications.
Hidden Markov Models. Figure 2 Computation lattice of

the Forward algorithm.
Evaluation

Given the observation sequence O = {Ot}, t = 1, . . . , T

and a model l = (A, B, p), the evaluation pro-

blem consists in efficiently computing P(O|l), the

probability of the observation sequence, given the

model. This probability can be used to classify obser-

vation sequences in recognition applications.

The brute force solution for this problem is to

enumerate all possible state sequences and calculate

their score directly. For a fixed state sequence

Q = {qt}, t = 1, . . . , T and assuming independence

between the observations Ot, the probability of the

observation sequence O can be written as

PðOjO; lÞ ¼
YT
t¼1

PðOt jqt ; lÞ

¼ bq1ðO1Þbq2ðO2Þ � � � bqT ðOTÞ:
On the other hand, the probability of the state se-

quence Q can be written as

PðQjlÞ ¼ aq1aq1q2aq2q3 � � � aqT�1qT :

Finally, the joint probability of both the observation

and a fixed state sequences given the model P(O, Q|l)
is simply the product of the terms shown earlier, and

the probability of the observation sequence given the

model can be obtained summing this product over all

possible state sequences
PðOjlÞ ¼
X

q1q2���qT
pq1bq1ðO1Þaq1q2bq2ðO2Þ � � �

aqT�1qTbqT ðOT Þ:
This procedure has a time complexity of o(2TNT),

and therefore it is not tractable in real application,

even for moderate values of N and T. Fortunately,

there is an alternative recursive procedure called

Forward–Backward [2] that computes this probability

in an efficient way, which is summarized as follows.

The forward variable be a1(i) is given by

at ðiÞ ¼ PðO1O2 � � �Ot ; qt ¼ SijlÞ:
It is easy to show that it can be computed in the

following inductive way:

1. Initialization a1ðiÞ ¼ pibiðO1Þi ¼ 1; . . . ;N

2. Induction atþ1ðjÞ ¼
PN
i¼1

at ðiÞaij
� �

bjðOtþ1Þ;t ¼ 1; . . .

T � 1; j ¼ 1; . . . ;N

3. Termination PðOjlÞ ¼ PN
i¼1

aT ðiÞ
Theses computations can be organized in the

observations and state lattice as shown in Fig. 2, and

have a time complexity of o(N2T), which is acceptable

for real application.

Alternatively, the backward variable

btðiÞ ¼ PðOtþ1;Otþ2; . . . ;OT jqt ¼ Si; lÞ:
It can be computed in the following inductive way:

1. Initialization bT ðiÞ ¼ 1; i ¼ 1; . . . ;N

2. Induction (see ure 3) bt ðiÞ ¼
PN
j¼1

aijbjðOtþ1Þ
btþ1ðjÞ; t ¼ T � 1; T � 2; . . . ; 1 i ¼ 1; . . . ;N

3. Termination PðOjlÞ ¼ PN
i¼1

pibiðO1Þb1ðiÞ
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the Viterbi algorithm.

Hidden Markov Models H 705

H

Decoding

Given the observation sequence O = {Ot}, t = 1, . . . , T

and a model l = (A, B, p), the decoding problem

consists in choosing the opitmal state sequence

Q = {qt}, t ¼ 1, . . . . T, which best explains the observa-

tions. The solution of this problem permits to

obtain information about the hidden process and is

also a good and efficient approximation of the evalua-

tion problem.

The most popular criterion is to select the state

sequence that maximizes the conditional probability

Q	 ¼ arg max
Q

fPðQjO; lg ¼ arg max
Q

fPðQ;OjlÞg:

Again, the brute force method cannot be tackled, even

for moderate values of N and T, and in this case, it is

replaced by the ▶Viterbi algorithm, which recursively

solves the problem in an efficient way.

The Viterbi algorithm defines the variables

dtðiÞ ¼ max
q1;q2;...;qt

fPðq1q2 � � � qt ¼ i;O1 O2 � � �Ot jlÞg

and ct(j) in order to recursively maximize the con-

ditional probability and to retrieve the corresponding

optimal state sequence respectively. Both of them are

updated by using the following procedure:

1. Initialization: dt(i) = pi bi(O1) i = 1,. . . , N ct(j) = 0

2. Recursion: dtðjÞ ¼ i ¼ 1; . . . ;N
max

fdt�1ðiÞajiÞgbjðOtÞ;
t ¼ 2; . . . ;T ; j ¼ 1; . . . ;NctðjÞ ¼ i ¼ 1 . . .N

agrmax

fdt�1ðiÞaijÞg t ¼ 2; . . . ;T ; j ¼ 1; . . . ;N

3. Termination: P	 ¼ i ¼ 1 . . .N
agrmax

fdt�1ðiÞajiÞg
4. State sequence backtracking: qt	 ¼ i ¼ 1 . . .N

agr max

ðdT ðiÞg q	t ¼ ctþ1ðq	tþ1Þ t ¼ T � 1; T � 2; . . . ; 1

In this case also, the lattice structure implements the

computations in an efficient way (see Fig. 3). It is

worth noting that not all the state transitions are con-

sidered, but only the ones that lead to the maximum

probability.
Estimation

Given the observation sequence O = {Ot}, t = 1, . . . , T,

the estimation problem consists in adjusting the para-

meters of the model l = (A, B, p) so as to maximize the
probability of observation of this sequence, given

the model P(O|l). The solution to this problem per-

mits to develop a method to train self-learning

classifiers.

This is the most challenging of the three problems.

In fact, given a finite sequence of observations, it is not

possible to optimally estimate the model parameters.

However, the model parameters can be chosen to lo-

cally maximize the probability P(O|l) by using the

▶Baum–Welch algorithm [8], which is summarized

in the following section.

For the DHMM case, the variable

xtði; jÞ ¼ Pðqt ¼ Si; qtþ1

¼ Sj jO; lÞ ¼ Pðqt ¼ Si; qtþ1 ¼ Sj ;OjlÞ
PðOjlÞ ;

which is the probability of being in the state Si at time

t and in state Sj at time t + 1, given the model and the

observation sequence. This value can be written in

terms of the forward and backward variables an the

parameter models as

xtði; jÞ ¼
at ið Þaijbj Otþ1ð Þbtþ1 jð Þ

PN
i;j¼1

at ið Þaijbj Otþ1ð Þbtþ1 jð Þ

The variable

lt ðiÞ ¼ Pðqt ¼ SijO; lÞ ¼ Pðqt ¼ Si;OjlÞ
PðOjlÞ

which is the probability of being in the in the state Si at

time t, given the model and the observation sequence,

and can also be written as
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ltðiÞ ¼ at ið Þbt ið Þ
PN
i¼1

at ið Þbt ið Þ

The sum of xt(i, j) over t = 1, . . . , T�1 can be inter-

preted as the expected value (over time) of the number

of transitions from the state Si to the state Sj. Further-

more, the sum of gt(i) over t = 1, . . . , T is the expected

number of times that state Si is visited, the sum of gt(i)
over t = 1, . . . , T�1 is the expected number of transi-

tions made from the state Si, and the sum of gt(i) over
t = 1, . . . , T, when the symbol is vk observed, is the

expected number of times that the model generates the

symbol vk in the state Si, Therefore, reasonable re-

estimation formulas for p, A and B are

�pi ¼ l1ðiÞ i ¼ 1; . . . ;N

�aij ¼
PT�1

t¼1

xt i; jð Þ
PT�1

t¼1

gt ið Þ
; i; j ¼ 1; . . . ;N

PT
gt jð Þ
�bjðkÞ ¼ t¼1;Ot¼vk

PT
t¼1

gt jð Þ
; j ¼ 1; . . .N ; k ¼ 1; . . .M

For the CHMMS, the variable gt (j, k) is given by

ltðj; kÞ ¼ at jð Þbt jð Þ
PN
j¼1

at jð Þbt jð Þ

cjk@ Ot ; mjk ;Sjk

� �

PM
m¼1

cjm@ Ot ; mjm;Sjm

� �

which is the probability of being in the state j at time

t with the kth mixture accounting for Ot. Following the

analogous reasoning done for DHMMS, a reasonable

re-estimation formula for B is (formulas for p and A

are the same)

�cjk ¼
PT
t¼1

gt j; kð Þ
PT
t¼1

PM
k¼1

gt j; kð Þ
; j ¼ 1; . . .N ; k ¼ 1; . . .M

�mjk ¼
PT
t¼1

gt j; kð ÞOt

PT
t¼1

PM
k¼1

gt j; kð Þ
; j ¼ 1; . . . ;N ; k ¼ 1; . . . ;M
�Sjk ¼
PT
t¼1

gtðj; kÞ Ot � mjk
� �

Ot � mjk
� �0

PT
t¼1

PM
k¼1

gt j; kð Þ
;

j ¼ 1; . . . ;N ; k ¼ 1; . . . ;M

where prime denotes vector transpose.

It can be shown that using this re-estimation for-

mulae uniformly converge to Maximum Likelihood

estimation, but they only lead to local maxima and

that, in most applications, the optimization surface is

complex, and hence initialization is an issue.

On the other hand, these formulae can also be

obtained directly by maximizing the Baum auxiliary

function

Qðl; l0Þ ¼
X
Q

PðQjO; lÞ log P QjO; l0ð Þ½ 


and also they can be interpreted as an implementation

of the Expectation-Modification algorithm [9].

Finally, it is worth noting that this optimization

problem has been solved by conventional gradient

techniques. This approach permits the use of other

optimization criteria like MMI (Maximal Mutual In-

formation) [10]. Furthermore, less formalized algo-

rithms like corrective training [11] have been applied.
Summary

Hidden Markov Models composed by a hidden Mar-

kov chain and an observable associated probabilistic

function have become ubiquitous in biometric in the

recent years. Once the topology has been designed, the

three conventional procedures, which solve the main

problems for the application of the Hidden Markov

Models in the real world, have been discussed in this

paper: the ▶ Forward-Backward algorithm for the

evaluation of the model, the Viterbi algorithm for

the decoding of the optimal sequence of the states,

and the Baum–Welch algorithm to adjust the model

parameters to the observations.
Related Entries

▶Biometric Algorithm

▶Classifier Design

▶Gaussian Mixture Models
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▶Machine-Learning

▶Probability Distribution
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Hill-Climbing Attack
Security attacks based on generating artificial data,

injecting it in the system and after analyzing the out-

put, modify such data, as to improve the output. This

is done recursively till the output is the desired result.

In biometrics this attack can be used to generate a

synthetic sample, by analyzing the matching score

returned by the system.

▶Tamper-proof Operating System
Histogram Equalization
Histogram equalization is a common technique for

adjusting the pixel intensities of images. In histogram

equalization, a monotonic transformation is applied

to the intensities of the pixels in an image. The

transformations are chosen so that the resulting images

have a standard or specified histogram. This is some-

times performed to enhance the contrast or reduce

the effect of lighting variation on the appearance of

a scene.

▶ Face Variation

▶ Image Pattern Recognition

▶ Illumination Compensation

▶Pre-Processing
HMM
▶Hidden Markov Models
Human Computing
Human computing is the merging of mobile commu-

nications and sensing technologies, with the aim of

enabling a pervasive and unobtrusive intelligence in

the surrounding environment supporting the activities

and interactions of the users in a human-centered

manner. Specifically, human-centered interfaces sup-

port detection of subtleties of and changes in the user’s

behavior, and initiate interactions based on this infor-

mation rather than simply responding to the user’s

commands. Technologies like machine analysis of fa-

cial expressions and affective computing are inherent

human-computing technologies.

▶ Facial Expression Recognition
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Human Dental Atlas
Human dental atlas is a model for describing shape

and relative positions of teeth in a fully developed

adult dentition. The model categorizes a complete set

of 32 teeth into 6 different classes according to tooth

shape and position.

▶Dental Biometrics
Human Detection and Tracking

JAMES W. DAVIS, VINAY SHARMA, AMBRISH TYAGI,

MARK KECK

Ohio State University, Columbus, OH, USA
Synonyms

Association; Correspondence; Localization; Pedestrian

detection; Target detection; Video surveillance
Definition

Human detection and tracking are tasks of computer

vision systems for locating and following people in

video imagery. Human detection is the task of locating

all instances of human beings present in an image, and

it has been most widely accomplished by searching all

locations in the image, at all possible scales, and com-

paring a small area at each location with known tem-

plates or patterns of people. Human tracking is the

process of temporally associating the human detec-

tions within a video sequence to generate persistent

paths, or trajectories, of the people. Human detection

and tracking are generally considered the first two

processes in a video surveillance pipeline, and can

feed into higher-level reasoning modules such as ac-

tion recognition and dynamic scene analysis.
Introduction

In relation to large-scale biometric and video surveil-

lance systems, there is an increasing need for persistent,
autonomous sensing of people in video using compu-

ter vision algorithms. Biometric systems can be

employed in close proximity (using fingerprint or iris

scans) or remotely (employing face or gait patterns) to

identify or confirm a person’s identity. Hence knowing

‘‘when’’ and ‘‘where’’ to attempt a remote biometric

signature can greatly aid the task in terms of reliability

and efficiency. Being able to detect and track people

from a distance using video cameras can be used to

reliably cue remote biometric sensors to engage only

when appropriate. Furthermore, the desire for (semi‐)
autonomous video surveillance necessitates computer

vision systems to detect, track, and analyze the beha-

viors of people in video. For example, a large airport

security system could use computer vision systems to

simultaneously monitor multiple video camera feeds

and could present only those camera feeds showing

suspicious activity to security personnel.

Fundamental to the aforementioned remote bio-

metrics and video surveillance applications is the ability

to automatically detect and track people in video. The

purpose of human detection is to find the location of

every person in each video image, while producing as few

false detections as possible. The most common methods

used for detection are template or pattern matching

algorithms. The detections themselves can be used for a

variety of applications, such as person counting or deter-

mining if a person is located in an area where nobody

should be present. Human tracking is the process which

associates the human detections over time to create a

consistent path trajectory for each person. Tracking sys-

tems typically retain some history of the past detections

and use this information alongwith the current detection

to match and update the trajectories. The output of the

human detection and tracking systems can be further

used in higher-level reasoning modules such as activity

analysis and recognition.
Human Detection

Detection, in general, refers to the task of determining

whether or not an instance of a specific object class

is present in the scene. With the growing emphasis on

biometrics and surveillance, special attention has been

paid to the task of detecting humans in images. Smart

urban surveillance systems are typically designed to

monitor people, both to ensure safety and to recognize

unlawful acts. The success of such surveillance systems
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H

is critically dependent on their ability to first reliably

detect and localize all humans in the scene. The task of

human detection is especially challenging due to the

non‐rigid, articulate nature of the human body.

The typical detection output is a bounding box

surrounding each person in the image (Fig. 1). Most

researchers approach human detection as a pattern

classification problem, where the emphasis is on

learning characteristic appearance features of humans

from specially designed training datasets. These data-

sets generally consist of hundreds of labeled images

containing people (positive examples) and a larger

collection of images not containing people (negative

examples). Often the positive examples included in the

datasets are constrained to specific poses or camera

views such that the variability of the human class is

limited to some extent. Within such a training frame-

work, several researchers in human detection focus on

devising the most appropriate set of features that

would encompass the variations exhibited naturally

by humans (e.g., changes in pose, size, appearance,

non‐rigid motion, etc.) and at the same time adequ-

ately differentiate the human class from the rest of the
Human Detection and Tracking. Figure 1 Typical human de
objects in the scene. Image features such as Haar wave-

lets [1], histograms of oriented gradients [2], and

covariance matrices [3], have shown to provide

promising results.

Research in human detection also focuses on effi-

cient learning algorithms and classification techniques

that provide high detection accuracy with low false

positive rates. For example, the use of AdaBoost to eff-

ectively combine hundreds of weak, computationally

inexpensive classifiers was introduced for human de-

tection in [4]. In [3] a classification scheme was pro-

posed that takes advantage of the geometry of the

manifold on which the extracted features reside.

Other approaches adopt statistical tools such as field

models for modeling human shape and motion [5]

and support vector machines for human classification

[2]. Certain approaches to human detection also

make explicit use of the structure and ▶ kinematics

of the human body, utilizing some form of human

body model [6]. Such techniques often detect the

human body by its smaller components (arms,

legs, torso) instead of training a classifier for the

whole-body form.
tection output showing the location and scale of people.
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Human detection algorithms can also be differen-

tiated based on whether or not they utilize motion

cues. Humans have movement patterns that are dis-

tinct from other object classes, and some algorithms

exploit motion features such as periodicity and motion

symmetry to detect humans in video [7]. While

motion provides a very powerful cue to detect humans,

it is important for human detection algorithms to

utilize both appearance and motion features in a bal-

anced manner, so as to detect people irrespective of

whether they are moving or stationary [2, 4, 8].

Typically human detection algorithms aim at

providing only the location and scale of the people in

the scene. More recently there has been a growing

emphasis on additionally recovering the silhouette

shape of each detected person. Such algorithms typi-

cally require training images in which the silhouettes

are manually annotated in each image [9], though

there are other algorithms that require either only

very limited or no manual annotation of the training

dataset [8]. Since humans have articulated limbs, can

occur in different poses, and may carry objects (e.g.,

briefcase, backpack, etc.), acquiring the actual silhou-

ette shape can provide valuable cues for gait and activ-

ity recognition systems.
Human Detection and Tracking. Figure 2 Trajectories of tra
Human Tracking

Tracking is the process of temporally associating the

location of the target object (e.g., human) from one

frame to the next in a sequence of images (video).

A detailed survey on object tracking can be found in

[10]. Human tracking is of considerable interest to

security applications, and the tracking information is

useful for determining the origin, pathway, and desti-

nation of each person (Fig. 2). As most human track-

ing approaches employ standard (generic) object

tracking algorithms, an overview of these techniques

is presented here.

Most tracking algorithms can be broadly classified

into two categories: (1) data association and filtering

techniques or (2) target representation and localization

methods. The first category is a class of solutions

characterized by associating a set of detection locations

from the previous image to a set of detections in the

current image. The second category is distinguished

by building a target model of the appearance of

the object in the initial frame and searching for the

object location in successive frames by generating can-

didate models and finding the best possible target-

candidate match. The tracking task is complicated by
cked people.
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changes in illumination, image noise, nonrigid target

motion, and occlusion. For practical applications,

algorithms from both categories may be combined to

obtain robust and efficient trackers.
H

Data Association and Filtering

Tracking techniques based on association assume that

there is a set of detection locations in an image at time

t and a set at time tþ1. The goal of these trackers is to

find a mapping from the set at time t to the subsequent

set at time tþ1, establishing detection correspondence

between the frames. The simplest solution is to map

the set at time t to its successor according to Euclidean

distance. A more complex approach may incorporate

the velocity of each detection into the computation,

assuming both positional proximity and smooth con-

tinuity in the movement [11]. These data association

techniques use simple assumptions and minimize

some criteria according to kinematic features extracted

from the video sequence. Naturally occlusion is a sig-

nificant challenge with these techniques, as the map-

ping is more difficult to recover when the cardinalities

of the two sets are not equal (i.e., missing data).

Filtering strategies improve upon the basic data

association approach by supplying a specific model of

object motion and algorithms by which one can re-

cover the optimal sequence of locations of the object

throughout the video. These strategies generally follow

a predict and update framework, where the new posi-

tion and velocity of the object at time tþ1 is hypothe-

sized/predicted by the model from time t, and then the

model is updated after the frame at time tþ1 is pro-

cessed. These methods tend to smooth the trajectories

(removing noise) and improve the robustness to oc-

clusion (as new object locations are hypothesized even

when data are not present).

One of the simplest and most common of these

filtering approaches is the Kalman filter [12]. The

Kalman filter is a state-space model that makes

assumptions that the position and velocity at time

tþ1 is a linear function of the position and velocity

of the object at time t plus some additive Gaussian

noise and that the posterior distribution of the hidden

state variable is Gaussian. These assumptions allow the

model to recover the optimal positions and velocities

from the data locations (assuming the object motion

obeys the model assumptions). Unfortunately
trajectories of human motion can at times be nonline-

ar, and in such cases the Kalman filter framework is

likely to fail. Extended Kalman filters have been pro-

posed to relieve the linear model assumption by taking

the first-order approximation of a non-linear process

and casting the problem in a similar predict-update

framework [13].

Particle filtering is a general filtering strategy

that relieves the previous Gaussian assumption, allow-

ing the posterior distribution to be generic. This is

achieved by representing the posterior distribution

as a set of weighted points (particles) in the state

space. This representation is predicted at time tþ1

by sampling an importance density function (which

approximates the posterior) at time t. It is then updated

at each frame by changing the weight of each sample,

thus allowing the modes of the density to propagate

by assimilating new observations. This type of filter-

ing was popularized by [14], where particle filters

were employed to track objects through cluttered

scenes.

The drawback to most of these algorithms is that in

most cases the models do not incorporate appearance

information into the system, relying strictly on kinematic

data (position and velocity of the detections). How-

ever, there are many examples where a tracker that

could take advantage of appearance information

would significantly increase the tracking performance,

for instance when tracking a person wearing a red shirt

walking in front of a white wall. The next category of

trackers addresses this type of tracking.
Target Representation and Localization

Target representation and localization tracking frame-

works initially extract an appearance model of the

target object from the first image, and then search a

series of candidate locations in the next image to find

the best matching candidate. Unlike the data associa-

tion and filtering methods, this category of tracking

algorithms is mostly a bottom-up process, and essen-

tially performs detection in each frame. The algorithms

must be able to handle appearance changes of the

target over time as it is being tracked.

Popular features used for target representation incl-

ude color histograms, image gradients, and covariance

matrices (of features) within an image patch contain-

ing the target object. Localization techniques varying
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from global exhaustive search to local heuristic opti-

mizations have been employed to search for the target

locations in subsequent image frames. Many localiza-

tion algorithms benefit from exploiting a spatio-

temporal locality constraint, which assumes that the

location of the object from one frame to the next

changes gradually. This constraint helps reduce the

target search space and can thus result in faster, real-

time tracking algorithms.

Mean shift, a nonparametric density gradient esti-

mator [15], is a common method used to track objects

by finding the mode (peak) of the similarity surface

generated by comparing the object appearance model

(e.g., color histogram) with the target candidates. Sim-

ilarity is evaluated as the Bhattacharyya coefficient

between the model and candidate distributions. This

algorithm performs a local optimization on the search

surface starting from the previously known object lo-

cation and is well known for its computational effi-

ciency (real-time frame rates can be obtained). Robust

tracking results are obtained under variable environ-

mental (illumination, occlusions), object (articulate,

nonlinear motion), and camera (static, moving, jitter)

configurations.

The use of covariance features for the target repre-

sentation was proposed by [3]. The covariance matrix

of features (e.g., position, intensity, color, gradients)

extracted from an image patch enables a compact

representation of both the spatial and the statistical

properties of the object. The tracker performs a search

in the image by comparing the given covariance model

with the covariance matrix at each possible location

using an appropriately defined distance metric. The

location which is most similar to the target model is

assigned to be the new target position in the image.
Summary

Human detection algorithms detect the presence of

people in imagery and must accommodate all of the

appearance variations while not selecting non‐human

entities. Human tracking temporally associates the

human detections within video sequences to generate

trajectories, and is complicated by short- and long-

term occlusions. By providing information regarding

the location and movement of humans in the scene,

human detection and tracking algorithms enable

applications such as remote biometrics and video

surveillance.
Related Entries

▶ Image Pattern Recognition
References

1. Oren, M., Papageorgiou, C., Sinha, P., Osuma, E., Poggio, T.:

Pedestrian detection using wavelet templates. In: Proceedings of

Computer Vision and Pattern Recognition (1997)

2. Dalal, N., Triggs, B., Schmid, C.: Human detection using orien-

ted histograms of flow and appearance. In: Proceedings of

European Conference on Computer Vision (2006)

3. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification

on riemannian manifolds. In: Proceedings of Computer Vision

and Pattern Recognition (2007)

4. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using

patterns of motion and appearance. In: Proceedings of

International Conference Computer Vision (2003)

5. Wu, Y., Yu, T.: A field model for human detection and

tracking. IEEE Trans. Patt. Analy. and Mach. Intell. 28(5),

753–765 (2006)

6. Ramanan, D., Forsyth, D., Zisserman, A.: Strike a pose: Tracking

people by finding stylized poses. In: Proceedings of Computer

Vision and Pattern Recognition (2005)

7. Lee, S., Liu, Y., Collins, R.: Shape variation-based frieze pattern

for robust gait recognition. In: Proceedings of Computer Vision

and Pattern Recognition (2007)

8. Sharma, V., Davis, J.: Integrating appearance and motion cues

for simultaneous detection and segmentation of pedestrians. In:

Proceedings of International Conference Computer Vision (2007)

9. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in

crowded scenes. In: Proceedings of Computer Vision and Pat-

tern Recognition (2005)

10. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM

Comput. Surv. 38(4) (2006)

11. Rangarajan, K., Shah, M.: Establishing motion correspondence.

Comp. Vis. Graph. Img. Proc. 54(1), 56–73 (1991)

12. Kalman, R.: A new approach to linear filtering and prediction

problems. Trans. ASME-J. Basic Eng. 82, 35–45 (1960)

13. Julier, S., Uhlmann, J.: A new extension to the kalman filter

to nonlinear systems. In: SPIE AeroSense Symposium (1997)

14. Isard, M., Blake, A.: Condensation – conditional density

propagation for visual tracking. Int. J. Comp. Vis. 29(1),

5–28 (1998)

15. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object

tracking. IEEE Trans. Patt. Analy. and Mach. Intell. 25(5),

564–577 (2003)
Human Factors
▶Ergonomic Design for Biometric Systems
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Human Movement, Psychology
Synonyms

Action Categorization; Action Understanding
H

Definition

The psychology of human movement is a broad rang-

ing field that includes both how the motor control

system produces movements, and how the sensory

system perceives these movements itself and from

others. Since both the structure of the body and the

strategy for producing movements are unique they

provide constraints that are potentially important for

the sensory interpretation of movement. Applied areas

of study in the psychology of human movement in-

clude sports psychology and social psychology, partic-

ularly when it applies to nonverbal communication

interpretation of visual information from movements

such as gait is of particular interest for biometrics.

In the domain of visual perception, the psychology

of human movement perception is becoming an

increasingly important example of how the visual sys-

tem processes a complex signal changing over time and

attaches meaning and social significance to this signal.

▶Psychology of Gait and Action Recognition
Human-Biometric Sensor Interaction
(HBSI)
▶Ergonomic Design for Biometric Systems
Human–Computer Interaction (HCI)
and User Interfaces
Human–Computer interaction is the command and

information flow that streams between the user and
the computer. It is usually characterized in terms of

speed, reliability, consistency, portability, naturalness,

and users’ subjective satisfaction. Human–computer in-

terface (or simply ‘‘user interface’’) is a software applica-

tion, a system that realizes human–computer interaction.

▶Biometric System Ergonomic Design

▶ Facial Expression Recognition
Human-Interpretable Fingerprint
Classes
Fingerprints are grouped based on some visual char-

acteristics of fingerprint images determined by human

experts. Such groups are called human-interpretable

fingerprint classes. An excellent example of human-

interpretable fingerprint classes is the well-known

Galton–Henry classification scheme proposed by Sir

Francis Galton and Edward Henry. The five most com-

mon Galton–Henry classes are called arch, tented arch,

left loop, right loop, and whorl, which are easy to be

understood even by ordinary people.

▶ Fingerprint Classification
Hypothesis Test
Hypothesis testing refers to the process of using statis-

tical analysis to determine if the observed differences

between two or more samples are due to random

chance (as stated in the background hypothesis) or

true differences in the samples (as stated in the target

hypothesis).

▶Universal Background Models
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ICP Algorithm
Iterative Closest Point (ICP) algorithm developed by

Besl and Mckay, is a well-known method to align 3D

shapes. However ICP requires that every point in one

set have a corresponding point on the other set. This

cannot be guaranteed in practice. As a result modified

ICP algorithms exist in the literature.

▶Ear Biometrics, 3D
ID Photograph
▶Photography for Face Image Data
Identification
Biometric identification is a process that ranks the

biometric references in the enrolment database in

order of decreasing similarity against a recognition

biometric sample and then makes a decision, based

on the similarity scores, about the identity w.r.t. to

the references.

▶Verification/Identification/Authentication/Recogni-

tion: The Terminology
Identity Level in the Speech Signal
Speech production is an extremely complex process,

whose result depends on many variables at different
# 2009 Springer Science+Business Media, LLC
levels, including sociolinguistic factors (e.g., level of

education, linguistic context, and dialectal differences)

and morphological issues (e.g., vocal tract length

and shape or the dynamic configuration of the articu-

latory organs). These multiple influences will be

simultaneously present in each speech act and some

or all of them will contain specificities of the speaker.

Hence, it is needed to clarify and clearly distinguish

the different levels and sources of speaker infor-

mation that should be extracted to model speaker

individualities.

▶ Speaker Features
Identity Theft Reduction
▶ Fraud Reduction, Overview
Illumination
Ambient light sources may affect the appearance of a

biometric image (such as face, fingerprint, or iris). The

intensity and direction of these light sources can im-

pact the performance of image-based biometric recog-

nition algorithms.

▶Biometrics, Overview

▶ Face Recognition, Near-Infrared

▶ Face Tracking

▶ Illumination Compensation

▶Photography for Face Image Data



716I Illumination Compensation
Illumination Compensation

XUDONG XIE
1, KIN-MAN LAM

2, QIONGHAI DAI
1

1Automation Department, Tsinghua University,

Beijing, China
2Department of Electronic and Information

Engineering, The Hong Kong Polytechnic University,

Hong Kong, China
Synonyms

Lighting compensation; Illumination normalization
Definition

Due to difficulty in controlling the lighting conditions

in practical applications, variable illumination is one

of the most challenging tasks in face recognition. Prior

to face recognition, illumination compensation has to

be performed, whereby the uneven illumination of

human faces is compensated and face images in normal

lighting conditions are reconstructed. The recon-

structed face images are then used for classification.

An illumination compensation scheme includes the

following modules: lighting category evaluation, shape

normalization, and lighting compensation.
Introduction

Human face recognition, one of the most successful

applications of image analysis and understanding, has

received significant attention in the last decade. Howev-

er, due to difficulty in controlling the lighting conditions

in practical applications, variable illumination is one of

the most daunting challenges in face recognition. As

stated by Adini et al. [1], ‘‘The variations between the
Illumination Compensation. Figure 1 Samples of cropped fa

lighting of images from left to right column are: 0�, 0�, 20�, 3
elevation angles are: 20�, 90�, �40�, 65�, �35�, �40� and 45�
images of the same face due to illumination and view-

ing direction are almost always larger than image var-

iations due to change in face identity’’. Most of the

available methods for face recognition, such as the

Principal Component Analysis (PCA) [2], and the In-

dependent Component Analysis (ICA) [3], encounter

difficulties under varying lighting conditions. Some

images under varying illuminations presented Fig. 1,

all images are from the YaleB database [4]. It can be

seen that although all these images are of the same per-

son, due to the effect of uneven lighting, they look quite

different. Therefore, when the images are under varying

illumination, illumination compensation should be

performed before face recognition. Here, ‘‘illumination

compensation’’means compensation for the uneven illu-

minations on human faces and reconstruction of face

images in normal lighting conditions, then the recon-

structed face images are used for classification.

Some algorithms have been proposed to reduce the

effect of uneven lighting from an image processing

point of view. Histogram equalization (HE) is a com-

monly used method to convert an image so that it has a

uniform histogram, which is considered to produce an

‘‘optimal’’ overall contrast in the image. However, after

being processed by HE, the lighting condition of

an image under uneven illumination may sometimes

become even more uneven. Adaptive histogram equal-

ization (AHE) [5] computes the histogram of a local

image region centered at a given pixel to determine the

mapped value for that pixel leading to local contrast

enhancement. However, the enhancement often leads

to noise amplification in ‘‘flat’’ regions, and ‘‘ring’’

artifacts at strong edges. In addition, this technique is

computationally intensive. Zhu et al. [6] proposed an

illumination correction method, which uses an

affine transformation lighting model based on a local

estimation of the background and the illumination

gain. However, the method is useful only when

the images are under slowly varying illumination. The
ces under varying illuminations. The azimuth angles of the

5�, 70�, �50� and �70�, respectively. The corresponding

, respectively.
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Block-based Histogram Equalization (BHE) method [7]

divides an image into a number of small blocks, and

histogram equalization is performed within each of

the image blocks. The BHE is simple, and the compu-

tation required is for less than that for AHE. However,

as in the case of the AHE, noises are also enhanced

after being processed by the BHE. The main idea

of Local Normalization (LN) [8] is to split the face

region into a set of triangular facets, and then the

intensity values within each facet are normalized to be

of zero mean and unit variance. This method is very

fast, but it is also sensitive to variations caused by

local shape distortions, such as expression variations.

On the basis of a model-based method, [7] the general

procedure for illumination compensation can be

understood.
Human Face Model and
Lighting Model

A face image is assumed to be a ▶ Lambertian surface,

which can be described by the product of the albedo

and the cosine angle between the point light source and

the surface normal as follows:

I x; yð Þ ¼ r x; yð Þn x; yð Þ � s; ð1Þ
where I(x, y) is the intensity value observed of the

pixel at (x, y) in the image, 0 � r(x, y) � 1 is the

corresponding albedo, n(x, y) is the surface normal

direction, s is the light source direction, and its magni-

tude is the light source intensity. Suppose I(x, y) and

I0(x, y) represent the pixel intensity values at (x, y) of

the image under normal lighting conditions and the

image under a certain kind of illumination, and s and

s0 are the corresponding light source directions, then

the corresponding illumination ratio image [9] can be

given as follows:

Riðx; yÞ ¼ I 0ðx; yÞ=Iðx; yÞ
¼ ðrðx; yÞnðx; yÞ � s0Þ=ðrðx; yÞnðx; yÞ � sÞ
¼ ðnðx; yÞ � s0Þ=ðnðx; yÞ � sÞ
¼ Aðx; yÞ; ð2Þ

where A(x, y) is determined by the surface normal

direction n(x, y) and the kind of illumination con-

cerned. From (2), the following can be obtained:

I 0 x; yð Þ ¼ A x; yð Þ � I x; yð Þ: ð3Þ
If the effect of additive noise at each point (x, y) is

considered, the illumination model in (3) can be ex-

tended to the following:

I 0 x; yð Þ ¼ A x; yð Þ � I x; yð Þ þ B x; yð Þ; ð4Þ

where A(x, y) and B(x, y) denote the multiplicative

noise and the additive noise for the pixel (x, y),

respectively.

From (2) and (4), it can be seen that A(x, y) and

B(x, y) are only determined by the shape information

of a human face and the lighting condition, which

hints us that if the shapes of identities are normalized

to be the same, the values of A(x, y) and B(x, y) are

invariant for different persons under the same lighting

conditions. Therefore, after performing shape normal-

ization, the values of A(x, y) and B(x, y) can be com-

puted point by point for a certain illumination. Then

these values can be used to undertake illumination

compensation.

According to the illumination categories used

in the YaleB database [4], the lighting conditions

are divided into 65 categories. Each of the categories

has different azimuth angles and elevation angles of

the lighting. The azimuth angles in the database vary

from �130� to þ130�, and the elevation angle ranges

from �40� to þ90�. If both the azimuth angle and the

elevation angle are equal to 0�, it can be said that the

subject is under normal illumination.
Shape Normalization and Lighting
Compensation

Suppose that the pixel-wise correspondence between an

input image and a reference face image is known, which

can be determined by facial feature detection. The

input image can be separated into texture and shape

using a 2D face shape model [10]. The shape of a face is

coded as the displacement field from the reference

image, and the texture denotes an intensity map,

which is produced by mapping the original image on

to the reference image. All texture images have the

same shape as the reference image. According to the

authors, uneven illumination compensation is done on

the texture image in order to avoid disturbing the

shape information on the original image, i.e., in (1),

all identities have the same surface normal direction

distribution n. After illumination compensation, the
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compensated texture and the original shape are com-

bined to obtain the reconstructed image.

It is a challenge to find the pixel-wise correspon-

dence between two pictures, especially when they

are under uneven lighting conditions. Here, the posi-

tion of some facial feature points, such as the eyebrows,

eyes, nose, and mouth, are first determined manually

(Fig. 2). The displacements of these key points between

a facial image and the reference image are subsequen-

tly computed. The reference shape is obtained from

the average 10 size-normalized and aligned images

from the YaleB database. Using a triangle-based

cubic interpolation method [11], the input image

is mapped to the reference shape model. After proces-

sing the mapped texture, it can be mapped

backwards from the reference shape to that of the

original shape.

Lighting compensation is performed based on the

mapped texture, which has a normal shape. From (4),

the following is obtained

I x; yð Þ ¼ I 0 x; yð Þ � B x; yð Þ
A x; yð Þ : ð5Þ

In order to avoid overflowing, all the intensity values

of I(x, y) are restricted to the range of [0, 255], so (5)

can be rewritten as follows.
Illumination Compensation. Figure 2 Facial feature

points that are used to build a pixel-wise correspondence.
Iðx; yÞ ¼
0; Iðx; yÞ < 0;
255; Iðx; yÞ > 255;

I 0ðx; yÞ � Bðx; yÞ
Aðx; yÞ ; otherwise:

8>><
>>:

ð6Þ

Therefore, for an input image, if the illumination cate-

gory is determined and the corresponding values of

A(x, y) and B(x, y) are precomputed, (6) can be used

to calculate the reconstructed image, which is under

normal lighting conditions.

Besides the effect of illumination on appearance, face

images of distinct subjects actually look quite different.

This is because the appearance of a human face is also

dependent on other factors, such as gender, race, and

makeup. In order to accurately estimate the light source

category, the distinctive elements of a person’s appear-

ance have to be eliminated to the extent possible while

keeping the illumination information unchanged. Then,

the illumination map is used to determine the illumina-

tion category. An image processed by the BHE [7] is

considered as a reference image. The BHE processed

image is then compared to the same image processed

by the HE to obtain a pixel-wise difference between the

two images. This difference image, which is called an

illumination map, reflects the effect of the light source

on different parts of the face image, and can be used to

estimate the illumination category.

The determination of the illumination category

is done by (LDA) ▶ Linear Discriminant Analysis [12].

The training images are divided into 65 different

categories on the basis of their lighting conditions,

and each category includes nine images that are under

the same lighting condition and that belong to differ-

ent people in the YaleB database.

Based on the training images in the YaleB database,

the optimal values for Ai(x, y) and Bi(x, y) for each

illumination category can be estimated by means of the

least-squared method. For each illumination category

i, suppose that the number of training samples equals

m, then (4) can be rewritten as follows:

I 01ðx; yÞ
..
.

I 0kðx; yÞ
..
.

I 0mðx; yÞ

2
666666664

3
777777775
¼

I1ðx; yÞ 1

..

. ..
.

Ikðx; yÞ 1

..

. ..
.

Imðx; yÞ 1

2
666666664

3
777777775

Aiðx; yÞ
Biðx; yÞ

� �
;

where i ¼ 1; . . . ; 65 and k ¼ 1; . . . ;m:

ð7Þ
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Let F 0 ¼ ½I 01ðx; yÞ � � � I 0kðx; yÞ � � � I 0mðx; yÞ�T ; where T

represents the transpose, I 0k x; yð Þ is the kth subject

under the ith lighting category in the training set, and

F ¼

I1ðx; yÞ 1

: :

Ikðx; yÞ 1

: :

Imðx; yÞ 1

2
6666664

3
7777775
;

where Ik(x, y) represents the face of the kth subject in

the training set under normal lighting conditions.

Then (7) can be written as follows:

F 0 ¼ F
Aiðx; yÞ
Biðx; yÞ
� �

; i ¼ 1; . . . ; 65: ð8Þ

As the images in the different row of F, i.e., Ik(x, y), are

images of different people, they are independent of

each other. The least-squared solution to (8) can be

calculated as follows:

Aiðx; yÞ
Biðx; yÞ
� �

¼ FTF
� ��1

FTF 0; i ¼ 1; . . . ; 65: ð9Þ

Using (9), the optimal value of Ai(x, y) and Bi(x, y) for

the ith lighting category can be computed, and Ai(x, y)
Illumination Compensation. Figure 3 Some experimental re

(b) images processed by the HE, (c) images processed by the
and Bi(x, y) are called A-map and B-map, respectively.

(For more detailed descriptions, refer to Xie and

Lam [7]).
Experimental Results

The training of the illumination compensation algo-

rithm is based on the YaleB database. Therefore, the

performance of the algorithm can be evaluated by

utilizing other databases such as the Yale face database,

[13] the YaleB face database, and the AR face data-

base [14]. For each database, only images with an

upright frontal view and a neutral expression are se-

lected. The original images in the databases are shown

in the first row of Figs. 3–5, images processed by the

HE in the second row, those processed by the BHE in

the third row, and images processed by the introduced

algorithm in the fourth row.

After illumination compensation, the recon-

structed images are used for face recognition. The

PCA is used to measure the recognition rates after

processing the images by different illumination com-

pensation techniques. In each database, one image for

each subject with normal illumination is selected as a
sults based on the YaleB database. (a) original images,

BHE, (d) images processed by the introduced algorithm.



Illumination Compensation. Figure 4 Some experimental results based on the yale database. (a) original images,

(b) images processed by the HE, (c) images processed by the BHE, (d) images processed by the introduced algorithm.

Illumination Compensation. Figure 5 Some experimental results based on the AR database. (a) original images,

(b) images processed by the HE, (c) images processed by the BHE, (d) images processed by the introduced algorithm.
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training sample, and others form the testing set. The

respective recognition rates based on the different

databases are presented in Table 1. From the experi-

mental results, it can be seen that:
1. When the testing image set includes images under

varying illumination, the HE can be utilized to

improve the recognition performance as compared

to that without using any preprocessing procedure.



Illumination Compensation. Table 1 Face recognition

results using deferent preprocessing methods

Recognition
rate (%) None HE BHE

The introduced
method

YaleB 43.4 61.4 77.5 99.5

Yale 36.7 36.7 80.0 90.0

AR 25.9 37.7 71.3 81.8

Combined 30.1 32.2 60.0 92.7
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However, the improvement is very slight in some

cases, e.g., for the Yale database.

2. The BHE or the introduced algorithm can improve

the recognition rates significantly. The BHE leads

to an improvement varying from 29.9 to 45.4%,

and in the case of the introduced algorithm it varies

from 53.3 to 62.6%. In other words, these two

methods are both useful in eliminating the effect

of uneven illumination on face recognition. In

addition, the introduced algorithm can achieve

the best performance level of all the methods used

in the experiment.

3. The BHE method is very simple and does not

require any prior knowledge. Compared to the

traditional local contrast enhancement methods

[5], its computational burden is for less. The

main reason for this is that all the pixels within a

block are equalized in the process, rather than just a

single pixel, as in the adaptive block enhancement

method. Nevertheless, as in the case of the tradi-

tional local contrast enhancement methods, noise

is amplified after this process.

4. If the images processed by the HE are adopted

to estimate the illumination category, the cor-

responding recognition rates using the different

databases will be lowered. This is because variations

between the images are affected not only by the

illumination, but also by other factors, such as

age, gender, race, and makeup. The illumination

map can eliminate the distinctive personal infor-

mation to the extent possible, while keeping the

illumination information unchanged. Therefore,

the illumination category can be estimated more

accurately, and a more suitable illumination mode

is selected.

The reconstructed facial images using the intro-

duced algorithm appear to be very natural, and display

great visual improvement and lighting smoothness.

The effect of uneven lighting, including shadows, is
almost eliminated. However, if there are glasses or a

mustache, which are not Lambertian surface, in an

image, some side effects may be seen under some

special light source models. For instance, the glasses

may disappear or the mustache may become faint.
Summary

This essay discussed a model-based method, which can

be used for illumination compensation in face recog-

nition. For a query image, the illumination category is

first evaluated, followed by shape normalization, then

the corresponding lighting model is used to compen-

sate for uneven illumination. Next, the reconstructed

texture is mapped backwards from the reference

shape to that of the original shape in order to build

an image under normal illumination. This lighting com-

pensation approach is not only useful for face recogni-

tion when the faces are under varying illumination,

but can also be used for face reconstruction. More im-

portantly, the images of a query input are not required

for training. In the introduced algorithm, 2D face shape

model is adopted in order to address the effect of differ-

ent geometries or shapes of human faces. Therefore, a

more reliable and exact reconstruction of the human

face is possible, and the reconstructed face is under

normal illumination and appears more natural visually.

Experimental results revealed that preprocessing the

faces using the lighting compensation algorithm greatly

improves the recognition rate.
Related Entries

▶ Face Recognition, Overview
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Illumination Normalization
▶ Illumination Compensation
Image Acquisition
▶ Image Formation
Image Capture
▶Biometric Sample Acquisition
Image Classification
▶ Image Pattern Recognition
Image Enhancement
The use of computer algorithms to improve the quality

of an image by giving it higher contrast or making it

less blurred or less noisy.

▶ Fingerprint Recognition, Overview

▶ Skull, Forensic Evidence of
Image Formation

XIAOMING PENG

College of Automation, University of Electronic

Science and Technology of China, Chengdu,

Sichuan, China
Synonym

Image acquisition
Definition

Image formation is the process in which three-

dimensional (3D) scene points are projected into

two-dimensional (2D) image plane locations, both

geometrically and optically. It involves two parts. The

first part is the geometry (derived from camera models

assumed in the imaging process) that determines

where in the image plane the projection of a scene

point will be located. The other part of image forma-

tion, related with radiometry, measures the brightness

of a point in the image plane as a function of illumina-

tion and surface properties.
Introduction

Common visual images result from light intensity var-

iations across a two-dimensional plane. However, light

is not the only source used in imaging. To understand

how vision might be modeled computationally and

replicated on a computer, it is important to under-

stand the image acquisition process. Also, understand-

ing image formation is a prerequisite before one could

solve some complex computer vision tasks, such as

http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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▶ camera, ▶ calibration and shape from shading. There

are many types of imaging devices, ranging from

biological vision systems (e.g., animal eyes) to video

cameras and medical imaging machines (e.g., a Magnet-

ic Resonance Imaging (MRI) scanner). Generally, the

mechanisms of image creation vary across different

imaging systems and as a result, it is not possible for

this entry to cover all these mechanisms. In fact, the

author confines the discussion of image formation pro-

cess to a widely-used type of camera, the television

camera in the visual spectrum. The reader, who is

interested in image formation of other types of imaging

devices might be referred to [1] for medical image

formation, [2] for synthetic aperture radar (SAR)

image formation, [3] for infrared image formation,

and [4] for acoustic image formation. The image for-

mation process of a television camera involves two

parts. The first part is the camera geometry that deter-

mines where the projection of a scene point in the

image plane will be located; the other part measures

the amount of received light energy in individual pixels
Image Formation. Figure 1 The perspective projection cam
as the result of interaction among various scene surface

material and light sources.
The Perspective Projection Camera
Geometry

Some commonly-used geometric camera models

include the perspective camera model, the weak-

perspective camera model, the affine camera model,

and the orthographic camera model. Among them, the

perspective camera model is the most popular. In par-

ticular, an idealized model that defines perspective

projection is the pinhole camera model, in which rays

of light pass through a ‘‘pinhole’’ and form an inverted

image of the object on the image plane. The geometry

of the device is depicted in Fig. 1.

In Fig. 1, the optical center C coincides with the

pinhole; the dotted vertical line perpendicular to the

image plane is the optical axis; the intersection of

the optical axis with the image plane is the principal
era geometry.
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point U0; the focal length f is the distance between

the optical center C and the principal point U0. (It is

assumed that the camera is focused at infinity.) The

projection is formed by an optical ray, which is reflected

from a 3D scene point X ¼ ðx; y; zÞT (where T denotes

transpose) and passes through the optical center C and

hits the 2D image plane at the point U ¼ ðu; vÞT . Note
that three coordinate systems are used in Fig. 1. The

scene point X is expressed in the world coordinate

system, which generally is not coincident with the

camera coordinate system. The latter has the optical

center C as its origin and its Z-axis is aligned with the

optical axis. The alignment of these two coordinate

systems can be performed by an Euclidean transforma-

tion consisting of a 3� 3 rotation matrix R and a 3� 1

translation vector, t. The projected point U on the

image plane can be expressed in pixels in the image

plane coordinate system, whose origin is assumed as

the lower left corner of the image plane. Expressing

X ¼ ðx; y; zÞT in the homogeneous form as ~X ¼
ðx; y; z; 1ÞT , the coordinates of U are given as [5]

u ¼ m1�~X
m3�~X

u ¼ m2�~X
m3�~X

(
ð1Þ

where m1, m2, and m3 are the three transposed rows

of the 3 � 4 perspective projection matrix, and

M ¼ KðR=TÞ where ‘‘�’’ denotes the dot product

operation.

The 3 � 3 matrix K in the perspective projec-

tion matrix M contains the intrinsic parameters of

the camera and can be expressed as

K ¼
a �a cot y u0
0 b

sin y v0
0 0 1

2
4

3
5; ð2Þ

where a and b are the scale factors of the image plane

(in units of the focal length f ), y is the skew (it is the

angle between the two image axis), and (u0, v0)
T are

the coordinates of the principal point. These five

intrinsic parameters can be obtained through camera

calibration.

It is worth pointing out that although the pinhole

camera model is mathematically convenient, it is not

the case with real cameras that are equipped with real

lenses. The more realistic model of real lenses includes

the radial distortion, a type of aberration that bends

the light ray more or less than in the ideal case.

As a consequence, the image formed is more or less
distorted. Once the image is undistorted, the camera

projection can be formulated as a projective projection.
The Radiometric Aspects that
Determine the Brightness of an
Image Point

A television camera measures the amount of received

light energy in individual pixels as the result of inter-

action among various materials and various sources.

The value measured is informally called brightness (or

gray level). Radiometry is a branch of physics that deals

with the measurement of the flow and transfer of

radiant energy. It is an useful tool to establish the

relationship between the brightness of a point in the

image plane and the radiant energy the point received.

Two definitions in radiometry, the radiance and irradi-

ance, will be useful in the following explanations. Radi-

ance is defined as the power of light that is emitted from

an unit surface area into some spatial angle. The unit

of radiance is Wm�2 sr�1(watts per square meter per

steradian). Irradiance is defined as the amount of en-

ergy that an image-capturing device gets per unit of an

efficient area of the camera. Gray-level of image pixels

are quantized estimates of image irradiance. The unit

of irradiance is Wm�2 (watts per square meter).

Consider the relationship between the irradiance E

measured in an infinitesimal image patch DI and the

radiance L produced by an infinitesimal scene patch

DO (Fig. 2). In Fig. 2, a lens with focal length f is placed

at the coordinate origin and the infinitesimal scene

patch DO is at distance z from the lens. The off-axis

angle spans between the optical axis and the line con-

necting DO with DI. As given in [6],

E ¼ L
p
4

d

f

� �2

cos4 a; ð3Þ

where d is the diameter of the lens. Equation (3) shows

that the image irradiance is proportional to the scene

radiance.

As the image irradiance is a result of light reflection

from scene objects, the ability of different materials to

reflect light needs to be described. The most general

model for this purpose is the bi-directional reflectance

distribution function (BRDF), which describes the

brightness of an elementary surface patch for a specific

material, light source, and viewer directions. For most

practically applicable surfaces, the BRDF remains



Image Formation. Figure 2 The relationship between image irradiance E and scene radiance L.
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constant if the elementary surface patch rotates along

its surface normal. For a Lambertian surface (also

called ideal diffuse surface), which reflects light energy

in all directions (and the radiance is constant in all

directions) the BRDF is given as r/p, where r is the

albedo of the surface.
Summary

Mechanisms of image formation vary across different

types of imaging devices. The image formation process

is explained both geometrically and optically of the

television camera. The projected location of a 3D

scene point onto the 2D image plane is dependent on

the camera geometry, and the brightness of an image

pixel is determined by the interaction among various

material and various sources.
Related Entries

▶Camera models

▶Radiometric calibration
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Image Formation Process
▶ Face Sample Synthesis
Image Morphology
Morphological image processing is a theoretical model

for digital image processing built upon lattice theory

and topology. Morphological operators or filters rely

only on the relative ordering of pixel values, not on

their numerical values, and are suited especially to the

processing of binary and grayscale images.

▶ Footwear Recognition
Image Pattern Classification
▶ Image Pattern Recognition
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Synonyms

Image classification; Image pattern classification;

Image recognition
Definition

Image pattern recognition is the problem of exploring

how to recognize image patterns. An image pattern

recognition system generally consists of four parts: a

camera that acquires the image samples to be classified,

an image preprocessor that improves the qualities of

images, a feature extraction mechanism that gains dis-

criminative features from images for recognition, and a

classification scheme that classifies the image samples

based on the extracted features.
Introduction

Image is the most important pattern perceived everyday.

A lot of biometric patterns, such as faces, fingerprints,

palmprints, hands, iris, ears, are all shown in images.

Image pattern recognition, therefore, the fundamental

problem in pattern recognition area, particularly in

biometrics. The process of an image pattern recognition

task generally includes four steps: image acquisition,

image preprocessing, image feature extraction and clas-

sification, as shown in Fig. 1.

Image acquisition is the process of acquiring digital

images from devices (e.g., digital cameras, scanners, or

video frame grabbers) that are primarily used to cap-

ture still images. It is the elementary step of an image

pattern recognition task. The quality of images

acquired essentially affects the performance of the

whole image pattern recognition system.

Image preprocessing is a common term for opera-

tions on images at the lowest level of abstraction. The
Image Pattern Recognition. Figure 1 The general process o
objective is to improve the image data by removing the

unwanted areas from the original image or enhancing

some image features important for further processing.

For biometric image recognition, image preprocessing

generally involves two important aspects: image crop-

ping and image enhancement.

Image feature extraction is the core problem of

image pattern recognition, since finding most discrim-

inative features of images is a key to solving pattern

classification problems. Actually, our visual system has

the special power of finding the most discriminative

features. Given an image, its most important features

can be obtained in a glance. Only based on these

few features, the image can be immediately recognized

next time. Note that for image pattern recognition,

a direct way is to match two images based on pixel

values. This method uses pixel values of an image as

features, without a process of feature extraction. Gen-

erally speaking, this method has three weaknesses

since image pattern is generally high-dimensional:

first, it takes more time for classification; second, it

increases the storage requirement of the recognition

system; third, it may cause the so-called ‘‘curse of

dimensionality’’ and achieve unsatisfactory recogni-

tion performance.

Classification is the task of classifying the image

samples based on the extracted features and then

providing the class label for images. A classifier needs

to be designed or trained to do this task. There are a

number of existing classifiers available for use. The

choice of classifiers, however, is a difficult problem in

practice. A more reliable way is to perform classifier

combination, that is, to combine several classifiers to

achieve a good, robust performance.
Image Preprocessing

In the context of biometrics, two image preprocessing

steps deserve particular concern. One is image cropping

and the other is image enhancement. Image crop-

ping refers to the removal of the unwanted areas of

an image to accentuate subject matter. For biometric

images, the subject matter is the biometric object itself.

For example, given a face image as shown in Fig. 2, the

only concern is the face, since other parts, such as
f image pattern recognition.



Image Pattern Recognition. Figure 2 Image cropping and histogram equalization.
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clothes and background, are of little use face recogni-

tion. By proper cropping, the face is preserved for

recognition. Figure 2 shows an example of image crop-

ping. Image cropping can be done manually or auto-

matically. Automatic image cropping is generally

performed by virtue of an object detection algorithm,

which is designed particularly for finding the object of

interest.

Image enhancement is the improvement of digi-

tal image quality for visual inspection or for machine

analysis, without knowing about the source of degra-

dation. For biometric recognition, a primary role of

image enhancement is to alleviate the effects of illumi-

nation. Image enhancement techniques can be divided

into two broad categories: spatial domain methods

which operate directly on pixels and frequency domain

methods which operate on the ▶ Fourier transform of

an image. A widely-used spatial domain method is

▶ histogram equalization, which aims to enhance the

contrast of an image by using the normalized cumula-

tive histogram as the grey scale mapping function [1].

Figure 2 shows a result of an image after histogram

equalization. It should be noted that many image en-

hancement methods are problem-oriented: a method

that works fine in one case may be completely inade-

quate for another case. For biometrics applications, an

advantage for choosing image enhancement methods

is that these methods can ultimately improve the rec-

ognition performance.
Image Feature Extraction

Broadly speaking, there are two categories of features

to be extracted from an image: holistic features and

local features. Image feature extraction generally
involves a transformation from the input image space

to the feature space. Holistic features are extracted

through a holistic transformation, while the local fea-

tures are derived via a local transformation.

Principal component analysis (PCA) and Fisher

linear discriminant analysis (LDA) are two classical

holistic transformation techniques. Both methods

are widely applied to biometrics [2, 3]. However,

PCA and LDA are essentially 1D vector pattern based

techniques. Before applying PCA and LDA to 2D

image patterns, the 2D image matrices must be

mapped into 1D pattern vectors by concatenating

their columns or rows. The pattern vectors generally

lead to a high-dimensional space. For example, an

image with a spatial resolution of 128 � 128 results

in a 16,384-dimensional vector space. In such a high-

dimensional vector space, computing the Eigenvectors

of the covariance matrix is very time-consuming. Al-

though the singular value decomposition (SVD) tech-

nique [2] is effective for reducing computations when

the training sample size is much smaller than the

dimensionality of the images, it does not help much

when the training sample size becomes large.

Compared with PCA, the two-dimensional PCA

method (2DPCA) [4] is a more efficient technique

for dealing with 2D image pattern, as 2DPCA works

on matrices rather than on vectors. Therefore, 2DPCA

does not transform an image into a vector, but rather,

it constructs an image covariance matrix directly from

the original image matrices. In contrast to the covari-

ance matrix of PCA, the size of the image covariance

matrix of 2DPCA is much smaller. For example, if the

image size is 128� 128, the image covariance matrix of

2DPCA is still 128 � 128, regardless of the training

sample size. As a result, 2DPCA has a remarkable

computational advantage over PCA. In addition,



Image Pattern Recognition. Figure 3 Illustration of the

horizontal 2DPCA transform, the vertical 2DPCA transform,

and the 2DPCA transform in both directions.
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2DPCA can be performed on images horizontally and

vertically. The horizontal 2DPCA is invariant to verti-

cal image translations and vertical mirror imaging, and

the vertical 2DPCA is invariant to horizontal image

translations and horizontal mirror imaging. 2DPCA is

therefore less sensitive to imprecise object detection

and image cropping, and can improve the performance

of PCA for image recognition [5]. Following the deri-

vation of 2DPCA, some two-dimensional LDA

(2DLDA) versions were developed and used for

image feature extraction [6, 7] (Fig. 3).

Gabor wavelet transformation [8] and local binary

patterns (LBP) [9] are two representative local trans-

formation techniques. A Gabor wavelet (filter) is de-

fined by a two-dimensional Gabor function, which was

proposed by Daugman to model the spatial summa-

tion properties of the receptive fields of simple cells in

the visual cortex [8]. A bank of Gabor filters with

various scales and rotations are convolved with an

image, resulting in a set of Gabor features of the

image. Gabor features were demonstrated very effec-

tive for biometric image recognition due to their in-

sensitivity to illumination variations. However, Gabor

feature space is generally very high-dimensional, since

multiple scales and rotations generate many filters.

A feature extraction method, for example PCA or

LDA, is usually followed to further reduce the dimen-

sion of the original Gabor feature space. In contrast to

Gabor wavelet transformation, LBP is a relative new

local descriptor method. This method commonly com-

bines with a spatially enhanced histogram for image

feature extraction [10].
Classification

After image feature extraction, one (or multiple) classi-

fier for classification needs to be designed or chosen.
The nearest neighbor (1-NN) classifier is one of the

most widely-used classifiers due to its simplicity and

effectiveness. Cover and Hart laid the theoretical foun-

dation of 1-NN classifier and showed in 1967 [11]

that when the training sample size approaches to infin-

ity, the error rate of the NN classifier is bounded above

by twice the Bayes error rate. As a generalization of

1-NN classifier, K-NN classifier was presented subse-

quently [12]. In practice, the performance of the

NN-classifier depends on the representational capacity

of prototypes as well as on how many prototypes are

available. To enhance the representational capacity

of the available limited prototypes, a nearest feature

line classifier was proposed and applied to face

biometrics [13].

Support vector machine (SVM) [14] is very popu-

lar as a classification method over the last decade. An

SVM seeks to construct a separating hyperplane that

maximizes the margin between the two classes of data

sets. The margin is the perpendicular distance between

the two parallel hyperplanes, each of which is deter-

mined by the class sample points closest to the separ-

ating hyperplane (these sample points are called

support vectors). Intuitively, the larger the margin

the better the ▶ generalization error of the classifier.

No classifier is perfect; each classifier has its advan-

tages and weaknesses. To achieve a good, robust classi-

fication performance, multiple classifiers can be

combined in practice. If the set of classifiers is deter-

mined, the remaining problem is to design or choose a

proper combination scheme. A large number of classi-

fier combination schemes (including voting, sum rule,

bagging, boasting, etc.) have been proposed and sum-

marized in the literature [15].
Summary

This entry provides a general view of image pattern

recognition. The process of image pattern recognition

includes four steps: image acquisition, image preproces-

sing, image feature extraction and classification. For

image preprocessing, more attention is given to image

cropping and image enhancement, which are two im-

portant steps in dealing with biometric images.

For image feature extraction, holistic and local feature

extraction methods are outlined, with an emphasis

on the 2DPCA method which was designed to fit

the two-dimensional image patterns. For classification,
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the nearest neighbor classifier, support vector ma-

chine, and classifier combination methods have been

introduced.
Related Entries

▶Dimensionality Reduction

▶ Feature Extraction

▶ Image Formation

▶ Local Feature Filters
I
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Image Recognition
▶ Image Pattern Recognition
Image Regeneration from Templates
▶Template Security
Image Resolution
Image resolution describes the detail an image holds.

Higher resolution means more image detail. When

applied to digital images, this term usually means

pixel resolution, which is a pixel count in digital

imaging.

▶ Skin Texture
Image Segmentation
Image segmentation is a technique that partitions a

given input image into several different regions, and

each region shares common features, like similar tex-

ture, similar colors or semantically reasonable object.

The goal of image segmentation is to map every pixel of

image to a group that is meaningful to human. Image

segmentation is, most of the time, used to locate the

object of interest, and find boundaries between objects.

http://en.wikipedia.org/wiki/Generalization_error
http://en.wikipedia.org/wiki/Generalization_error
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The partitioning of pixels in an image into sets

based on a common characteristics.

▶Deformable Models

▶Gait Recognition, Silhouette-Based

▶Hand shape

▶ Iris Super-Resolution
Image Warping
The process of manipulating an image is such

that the pixels of the original image are moved

to new locations, without changing their color and

intensity. In face processing, images are sometimes

warped such that their shape is normalized, i.e., all

warped images have the same width, height, eye loca-

tion, etc.

▶ Face Alignment

▶ Face Device

▶ Face Tracking

▶ Face Recognition, Component-Based
Imaging Spectroscopy
▶Multispectral and Hyperspectral Biometrics
Imaging Volume
The width of the imaging volume is defined by the field

of view of the imaging system, and the depth of the

imaging volume is defined by the depth of field of the

imaging system.

▶Wavefront Coding for Enhancing the Imaging

Volume in Iris Recognition
Implementation Under Test (IUT)
The implementation under test is that which imple-

ments the base standard(s) being tested. Depending on

the conformance requirements of the base standard,

this may simply be a set of biometric data interchange

records (BDIRs) or it may be a computer algorithm or

other product that creates the BDIRs and/or uses the

data contained in the BDIRs.

▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of
Impostor
A generic term for a person unknown by a biometric

system who wishes to obtain the privileges of a client

by claiming her/his identity.

▶ Liveness Detection: Iris

▶Multiple Experts
Imposter Distribution
The probability distribution of the match score of a

biometric for cases where two instances of biometric

templates that are derived from different individuals

are compared.

▶ Iris on the Move™
Impostor Match
Imposter match is the match between a pair of

biometrics from two different persons.

▶ Fingerprint Matching, Automatic

▶ Individuality of Fingerprints
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Imprecise Localization
The fiducial points on the face (such as eye corners, eye

centers, eyebrows) cannot always be manually marked

or automatically detected with pixel precision. This is

generally due to the ambiguous nature of the gray or

color patterns at these positions. Also, changes in illu-

mination and pose, effect the perception of image

rendering of such fiducials.

▶ Face Misalignment Problem

▶ Face Recognition, Component-Based
I
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Synonyms

Adaptive learning; Online learning; Transfer learning
Definition

Incremental learning is a machine learning paradigm

where the learning process takes place whenever new

example(s) emerge and adjusts what has been learned

according to the new example(s). The most prominent

difference of incremental learning from traditional

machine learning is that it does not assume the avail-

ability of a sufficient training set before the learning

process, but the training examples appear over time.
Introduction

For a long time in the history of machine leaning, there

has been an implicit assumption that a ‘‘good’’ training

set in a domain is available a priori. The training set is

so ‘‘good’’ that it contains all necessary knowledge that

once learned, can be reliably applied to any new exam-

ples in the domain. Consequently, emphasis is put on

learning as much as possible from a fixed training set.

Unfortunately, many real-world applications cannot
match this ideal case, such as in dynamic control

systems, web mining, and time series analysis, where

the training examples are often fed to the learning

algorithms over time, i.e., the learning process is incre-

mental. There are several reasons for the need for

incremental learning:

1. It might be infeasible in time, storage, or other costs

to obtain a sufficiently large number of representa-

tive examples before the learning process.

2. Even when ▶ training data, sufficiency can be

obtained before learning, the learning algorithm

might get computationally intractable if directly

applied to all the available training data, or the

whole training set cannot be loaded into the main

memory.

3. When new examples become available, learning

from scratch might waste time and computation

resource. Instead, modifying learned knowledge

according to the new examples might be a better

choice, especially for those applications requiring

real-time response.

4. If the example generation itself is time-dependent,

e.g., ▶ time series data, then it inherently suits an

incremental style of learning.

5. Nonstationary environments might change the tar-

get concept over time (▶ concept drift). In such

case, the learner should be able to self-adapt to

the changing environments.

In actual fact, incremental learning is quite com-

mon in reality. Some researchers even claim that incre-

mentality is rather ubiquitous in learning [1], which

can be evidenced by the way humans acquire knowl-

edge over time. Although in some cases, such as

theory refinement [2], all of the ‘‘teachable’’ knowledge

may be available a priori, most learning tasks are

inherently incremental. Interestingly, sometimes learn-

ing is only possible when data is presented incremen-

tally. For example, Elman [3] ever gave an example of

learning grammar with a recurrent network, where

‘‘the network fails to learn the task when the entire

data set is presented all at once, but succeeds when the

data are presented incrementally.’’

Considering the purpose of dealing with incremen-

tality, several terms other than ‘‘incremental learning’’

has been used for the similar meanings. Some research-

ers [4] named the algorithms which can learn from

increasing training examples as online learning



Incremental Learning. Figure 1 A typical example of

incremental learning curve.
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algorithms. The algorithms attempting to solve the

concept drift problem are sometimes called adaptive

learning algorithms [5], and some others are called

transfer learning algorithms [6].

The possibly earliest incremental learning algo-

rithm is the nearest neighbor classification method

[7], although the term ‘‘incremental learning’’ was

not explicitly proposed then. Most work on incremental

learning starts from late 1980s. For example, Schlimmer

and Fisher [8] proposed an algorithm named ID4

which incrementally generated a decision tree by

updating the splits that were no longer the best given

new examples. Aha et al. [9] proposed a framework

called instance-based learning to solve incremental

learning tasks using only specific instances. Syed et al.

[10] found that the support vectors in SVM could form

a succinct and sufficient training set for incremen-

tal learning. Ross et al. [11] proposed an incremental

learning algorithm for visual tracking based on a low-

dimensional subspace representation, which can well

handle changes in the appearance of the target.
Evaluation Criteria

Same with traditional machine learning methods,

many incremental learning algorithms were evaluated

by the prediction accuracy on some benchmark data

sets. Additional to this general criterion, researchers

also proposed other more specific criteria according to

the characteristics of incremental learning.

Schlimmer and Granger [12] proposed three cri-

teria to measure the usefulness and effectiveness of an

incremental learning method: (1) the number of obser-

vations (examples) needed to obtain a ‘stable’ concept

description, (2) the cost of updating memory, and

(3) the quality of learned concept descriptions. These

measures are specifically designed for online algo-

rithms trained on time-based examples.

More generally, Syed et al. [10] claimed that in

order to measure an incremental learning algorithm,

two new questions need to be answered: (1) How

much better is a learned model at step n þ i than

another model obtained after step n? (2) Can an incre-

mental algorithm recover in the next incremental

step(s), if it goes drastically off the ‘‘actual’’ concept at

any stage? Consequently, they proposed three criteria

for evaluation of the robustness of incremental learning

algorithms: (1) Stability – the prediction accuracy on
the test set should not vary wildly at every incremental

learning step; (2) Improvement – there should be im-

provement in the prediction accuracy as the training

progresses and the learning algorithm sees more train-

ing examples; and (3) Recoverability – the learning

method should be able to recover from its errors, i.e.,

even if the performance drops at a certain learning

step, the algorithm should be able to recover to the

previous best performance.

Another often used criterion is the learning curve.

An incremental algorithm may start learning from

scratch and gradually obtain knowledge with an increas-

ing amount of training examples. Consequently, the

quality of the learned model (usually measured by pre-

diction accuracy) displays a gradually improving curve

over time, which is called a learning curve. A typical

example of the learning curve of an incremental learning

algorithm is shown in Fig. 1. Usually the learned model

is not very reliable at the early stage of the curve.

Decisions can be made according to the learning

curve on how valuable the output of the incremental

learner might be at a certain stage. However, in prac-

tice, it is often difficult to determine the point at which

the model has learned ‘‘enough’’ to be reliable. Gener-

ally, a typical ‘‘good’’ learning curve should increase

rapidly to a relatively steady high level.
Incremental Learning Tasks and
Algorithms

The term incremental has been applied to both

learning tasks and learning algorithms. Giraud–Carrier
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[1] gave definition of incremental learning tasks and

algorithms as follows:

Definition 1: A learning task is incremental if the

training examples used to solve it become available

over time, usually one at a time.

Definition 2: A learning algorithm is incremental if,

for any given training sample e1, . . .,en, it produces a

sequence of hypotheses h0,h1, . . .,hn, such that hiþ1
depends only on hi and the current example ei.

This definition is based on the incrementality of

training examples. Zhou and Chen [13] later extended

this definition by distinguishing three different kinds

of incremental tasks:

1. Example-Incremental Learning Tasks (E-IL Tasks):

New training examples are provided after a learning

system is trained. For example, a face recognition

system can gradually improve its accuracy by incor-

porating new face images of the registered users

when they use it without reconfiguring and/or

retraining the entire system. The description of the

E-IL tasks is similar to Definition 1.

2. Class-Incremental Learning Tasks (C-IL Tasks): New

output classes are provided after a learning system

is trained. For example, if a new user is added into

the registered user group in the aforementioned

face recognition system, the system should be able

to recognize the new user without reconfiguring

and/or retraining the entire system.

3. Attribute-Incremental Learning Tasks (A-IL Tasks):

New input attributes are provided after a learning

system is trained. For example, if the camera used

in the aforementioned face recognition system is

changed from gray-scale camera to color camera,

the system should be able to utilize the additional

color features without reconfiguring and/or retrain-

ing the entire system.

While this taxonomy provides more insights into incre-

mental learning, the definition based on incremental
Incremental Learning. Figure 2 Relationship between incre

(a) application matrix and (b) utility matrix.
training examples has been widely accepted. In fact,

new classes and new attributes are regarded as possible

changes of the new examples, then C-IL and A-IL

tasks can also be regarded as E-IL tasks. This is why we

still use the incrementality of training examples to give

definition of incremental learning at the beginning of

this essay.

The relationship between incremental/nonincremen-

tal tasks and learners is described by two matrices in [1]:

the application matrix and the utility matrix, as shown

in Fig. 2. The application matrix indicates whether a

particular learner can be applied to a particular task,

while the utility matrix indicates whether a particular

match of learner and task is of high utility. From the

definitions of incremental learning task and algo-

rithm (learner), it is natural to expect high utility of

applying incremental learners to incremental tasks and

nonincremental learners to nonincremental tasks. The

off-diagonal match in the application matrix (incre-

mental learner to nonincremental task, and nonincre-

mental learner to incremental task) is also possible, but

of low utility.

On the one hand, incremental learners can be

applied to nonincremental tasks if taking the train-

ing examples one by one, although all of the training

examples are available a priori. However, since incre-

mental learners can only make use of current hypo-

thesis and example, its ‘‘vision’’ is inherently local.

In this case, the global information contained in the

entire training set of the nonincremental task might be

ignored by the incremental learner.

On the other hand, nonincremental learners

can be applied to incremental tasks if retraining the

system whenever a new example is available. This

brute-force way is certainly inefficient or sometimes

infeasible in terms of memory requirement (for the

storage of all previous training samples) and computa-

tional resources. Moreover, in cases where concept

drift occurs, the most recent examples provide most

information for the new concept. Thus retraining on
mental/nonincremental tasks and learners [1]:
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the entire training set might not be able to perceive the

changes of the target concept.

Even when applied to incremental tasks, the suit-

able incremental learning algorithm must be carefully

designed. In cases where the target concept is relatively

stable or gradually changes, the new examples help to

refine the existing learned concept model. In cases

where the concept changes are substantial, the system

might need to discount or even ‘‘forget’’ the old exam-

ples, and adjust what has been induced from them.

In some applications, the incremental learning algo-

rithms even have to automatically distinguish the above

two cases and take actions to either improve the current

concept representation as more supportive examples

become available, or respond to suspected changes in

the definition of the target concept when the incoming

examples become inconsistent with the learned concept.
Applications

With increasing demands from real applications for

machine learning algorithms to be more adaptive,

scalable, robust, and responsive, incremental learning

has been successfully applied to solve a wide range of

real-world problems. Generally speaking, incremental

learning is most suitable for the following three kinds

of applications:

1. Applications where the target concepts change over

time.
Examples:

(a) Robotics. The environment around a robot is

often changing and unpredictable. In order

to accomplish the assigned missions, a robot

must be able to adapt to the new environment

and react properly, which is naturally an incre-

mental learning process.

(b) Intelligent agent. An intelligent agent is an

entity which can observe and act upon an

environment and direct its activity towards

achieving goals. Incremental learning can help

an intelligent agent to perceive changes of the

environment and accordingly adjust its strategy

to achieve goals.

2. Applications where the ‘‘sufficient training sets’’ are

too big.
Examples:

(a) Content based image retrieval (CBIR). CBIR is

the problem of searching for digital images in
large databases or from the internet based on

analysis of the actual contents of the images. In

order to learn sufficient concepts for retrieval

purpose, usually a large amount of images

should be included in the training set. The

size of the training set could even be infinite

in the case of online image retrieval. Incremen-

tal learning can be used to solve the problem of

shortage in computation and storage resources.

Also it can help to implement an ‘‘improve

while using’’ system by gradually improving

accuracy whenever new examples emerge dur-

ing the use of the system.

(b) Face recognition. The main challenge of auto-

matic face recognition is that face images could

present changes in various aspects, such as pose,

illumination, expression, and occlusion. Taking

all of these affective factors into consideration

consequently requires a huge training set.

Similarly, incremental learning techniques can

help to realize a face recognition system which

learns while in use, i.e., every time a user uses

the system, a new face image is provided to the

system for incremental learning.

3. Applications where the training examples are

obtained over time (time series data).
Examples:

(a) Visual object tracking. During visual tracking,

the appearance of the target object is usually

highly variable (e.g., pose variation, shape de-

formation, illumination changes, etc.) in dif-

ferent video frames over time. Incremental

learning techniques can be adopted to update

the internal representation of the target object

in realtime for constantly and efficiently track-

ing the object.

(b) Software project estimation. Estimating the cost

and duration of a software project is very im-

portant for project management. However,

useful information about a project becomes

available over time while the project progresses.

Thus software project estimation is inherently

an incremental learning task.
Summary

Incrementality is part of the nature of learning. Com-

pared with traditional machine learning which requires
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a training set beforehand, incremental learning shows

several advantages: (1) It does not require a sufficient

training set before learning; (2) It can continuously

learn to improve when the system is running; (3) It

can adapt to changes of the target concept; (4) It

requires less computation and storage resources than

learning from scratch; (5) It naturally matches the

applications depending on time series. Nevertheless,

incremental learning is not suitable for many non-

incremental learning tasks due to the fact that it is

inherently ‘‘myopic’’ and tends to ignore the global

information in the entire training set.
I

Related Entries

▶Machine-Learning
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Synonyms

Blind source separation; Independent factor analysis
Definition

Independent component analysis (ICA) is a statistical

method, the goal of which is to decompose multivari-

ate data into a linear sum of non-orthogonal basis

vectors with coefficients (encoding variables, latent

variables, hidden variables) being statistically indepen-

dent. ICA generalizes a widely-used subspace analysis

method such as principal component analysis (PCA)

and factor analysis, allowing latent variables to be non-

Gaussian and basis vectors to be non-orthogonal in

general. Thus, ICA is a density estimation method

where a linear model is learnt such that the probability

distribution of the observed data is best captured,

while factor analysis aims at best modeling the covari-

ance structure of the observed data.
Introduction

Linear latent variablemodel assumes thatm-dimensional

observed data xt 2 Rm is generated by

xt ¼ a1s1;t þ a2s2;tþ � � � ansn;t þ Et ; ð1Þ
where ai 2 Rm are basis vectors and si,t are latent

variables (hidden variables, coefficients, encoding

variables) which are introduced for parsimonious

representation (n � m). Modeling uncertainty or

noise is absorbed in Et 2 Rm. Neglecting the uncertainty

Et in (1), the linear latent variable model is nothing but
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linear transformation. For example, if ai are chosen

as Fourier or Wavelet basis vectors, then si,t are asso-

ciated Fourier or Wavelet coefficients that are served

as features in pattern recognition. In the case where

ai are orthonormal, it is referred to as orthogonal

transformation. Subspace analysis methods that are

popular in pattern recognition also considers the linear

model (1), assuming Gaussian factors si,t and (isotro-

pic) independent Gaussian noise Et. In such a case,

model parameters such as ai and diagonal covariance

matrix of Et are estimated by expectation maximiza-

tion algorithms [1].

The simplest form of independent component

analysis (ICA) considers a noise-free linear latent vari-

able model with assuming m ¼ n, where observed

variables xt 2 Rn is assumed to be generated by

xt ¼
Xn
i¼1

aisi;t ¼ Ast ; ð2Þ

where A ¼ ½a1; . . . ; an� 2 Rm�n is referred to asmixing

matrix and st ¼ ½s1;t ; . . . ; sn;t �> 2 Rn are constrained

to have independent components. ICA generalizes PCA

in the sense that latent variables (components) are

non-Gaussian and A is allowed to be non-orthogonal

transformation, whereas PCA considers only orthogo-

nal transformation and implicitly assumes Gaussian

components. Fig. 1 shows a simple example, emphasiz-

ing the main difference between PCA and ICA.
Independent Component Analysis. Figure 1 Two-dimensio

basis vectors: (a) PCA makes the implicit assumption that the

optimal basis vectors that are orthogonal, which are not effic

does not require that the basis vectors be orthogonal and con

fitting more general types of distributions.
Exemplary basis face images learned by PCA and ICA

are shown in Fig. 2.
Methods

The task of ICA is to estimate the mixing matrix A or

its inverse W ¼ A�1 (referred to as dexming matrix)

such that elements of the estimate y t ¼ A�1xt ¼ Wxt
are as independent as possible. A variety of methods

for ICA have been developed so far. The following

books are good resources for comprehensive under-

standing on ICA: Lee [2] where a unified view of several

different principles, including ▶mutual information

minimization, information maximization, maximum

likelihood estimation, and negentropy maximization

are found; Hyvärinen et al. [3] where many useful

fundamental background on ICA and FastICA algo-

rithms are found; Cichocki and Amari [4] where vari-

ous methods of source separation in the perspective of

signal processing can be found. In addition to these

books, several tutorial or review papers are also avail-

able [5, 6].

Methods for ICA can be categorized into two

groups:

� Unsupervised learning methods: Factorial coding

is a primary principle for efficient information

representation and is closely related to
nal data with two main arms are fitted by two different

data have a Gaussian distribution and determines the

ient at representing non-orthogonal distributions; (b) ICA

siders non-Gaussian distributions, which is more suitable in



Independent Component Analysis. Figure 2 Sample face images from Yale DB are shown in (a). First 20 basis images

determined by: (b) PCA; (c) ICA. A first application of ICA to face recognition is found in [25].
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redundancy reduction that provides a principled

method for unsupervised learning [7]. It is also

related to ICA, aiming at a linear data representa-

tion that best model the probability distribution of

the data, so higher-order statistical structure is

incorporated.
– Maximum likelihood estimation (Kullback

matching): It is well known that maximum

likelihood estimation is equivalent to Kullback

matching where the optimal model is esti-

mated by minimizing Kullback-Leibler (KL)

divergence between empirical distribution and

model distribution. We consider KL divergence

from the empirical distribution ~pðxÞ to the

model distribution py(x)

KL½~pðxÞjjpyðxÞ� ¼
Z

~pðxÞ log ~pðxÞ
pyðxÞ

dx

¼ �Hð~pÞ �
Z

~pðxÞ log pyðxÞdx;
ð3Þ

where Hð~pÞ ¼ � R ~pðxÞ log ~pðxÞdx is the entropy

of ~p. Given a set of data points, fx1; . . . ; xNg drawn
from the underlying distribution p(x), the empiri-

cal distribution ~pðxÞ puts probability 1
N

on each

data point, leading to

~pðxÞ ¼ 1

N

XN
t¼1

dðx � xtÞ: ð4Þ

It follows from (3) that

argu minKL½~pðxÞjjpyðxÞ� 	 argu max log pyðxÞh i~p; ð5Þ
where �h i~p represents the expectation with respect

to the distribution ~p. Plugging (4) into the right-

hand side of (3), leads to

log pyðxÞh i~p ¼
1

N

Z X
t¼1

Ndðx � xt Þ log pyðxÞdx

¼ 1

N

XN
t¼1

log pyðxtÞ:
ð6Þ

Apart from the scaling factor 1
N
, this is just the

log-likelihood function. In other words, maximum

likelihood estimation is obtained from the minimi-

zation of (3).

– Mutual informationminimization:Mutual infor-

mation is a measure for statistical independence.

Demixing matrix W is learned such that the

mutual information of y ¼ Wx is minimized,

leading to the following objective function:
J mi ¼
Z

pðyÞ log pðyÞ
Qn
i¼1

piðyiÞ

2
664

3
775dy

¼� HðyÞ �
Xn
i¼1

log piðyiÞ
* +

:

ð7Þ

Note that pðyÞ ¼ pðxÞ
j detW j . Thus, the objective func-

tion (7) is given by

J mi ¼ � log j detW j �
Xn
i¼1

log piðyiÞ
� 	

; ð8Þ

where hlogp(x)i is left out since it does not depend
on parameters W.

– Information maximization: Infomax [8] involves

the maximization of the output entropy z ¼ g(y)

where y ¼ Wx and g(�) is a squashing function
(e.g., giðyiÞ ¼ 1

1þe�yi ). It was shown that info-

max contrast maximization is equivalent to the

minimization of KL divergence between the

distribution of y ¼ Wx and the distribution

pðsÞ ¼ Q
n

i¼1
piðsiÞ. In fact, infomax is nothing

but mutual information minimization in ICA

framework.

– Negentropy maximization: Negative entropy or

negentropy is a measure of distance to Gaus-

sianity, yielding the larger value for random

variable whose distribution is far from Gauss-

ian. Negentropy is always nonnegative and

vanishes if and only if the random variable is

Gaussian. Negnetropy is defined as

JðyÞ ¼ HðyGÞ � HðyÞ; ð9Þ

where yG is a Gaussian random vector whose

mean vector and covariance matrix are the same

as y. It is shown that the negentropy maximization

is equivalent to the mutual information minimiza-

tion [2].
� Algebraic methods: Algebraic methods have been de-

velopedmainly for blind source separation (BSS), the

task of which is to restore unknown sources s without

the knowledge of A, given the observed data x.

They, in general, are based on eigen-decomposition

of certain statistical information matrix such as

covariance matrix (or correlation matrix), higher-

order moment matrix, or cumulant matrix.
– Generalized eigenvalue decomposition: Simulta-

neous diagonalization of two covariancematrices
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with distinct eigenvalues achieves BSS. Earlier

work includes FOBI [9] and AMUSE [10].

– Joint approximate diagonalization: Statistical

efficiency increases when several covariance

matrices or cumulant matrices are considered

for joint approximate diagonalization. JADE

[11] considers 4th-order cumulant matrices,

SOBI [12] uses time-delayed correlation matri-

ces, and SEONS [13] incorporates time-varying

correlation matrices. All these methods use

Jacobi rotation to jointly diagonalize the matri-

ces considered. On the other hand, correlation

matching is an alternative method, which is

solved by least squares technique [14, 15].
I

Algorithms

Latent variables si or their estimates yi are assumed

to be statistically independent, i.e., the joint dis-

tribution is factored into the product of marginal

distributions

pðsÞ ¼
Yn
i¼1

piðsiÞ; or pðyÞ ¼
Yn
i¼1

piðyiÞ: ð10Þ

It follows from the relation pðxÞ ¼ pðsÞ=j detAj that
the single factor of log-likelihood is given by

log pyðxÞ ¼ � log j detAj þ
Xn
i¼1

log piðsiÞ: ð11Þ

Then the objective function for on-line learning is

given by

J ¼ � log pyðxÞ ¼ log j detAj �
Xn
i¼1

log piðsiÞ; ð12Þ

which is equivalent to (8) that is used for mutual

information minimization.

The gradient descent method gives a learning algo-

rithm for A that has the form

DA ¼ �� @J
@A
¼ ��A�> I � ’ðsÞs>
 �

; ð13Þ

where � > 0 is the learning rate and ’(s) is the negative

score function whose ith element ’i(si) is given by

’iðsiÞ ¼ �
d log piðsiÞ

dsi
: ð14Þ
Employing the natural gradient [16], we have

DA ¼ ��AA> @L

@A
¼ ��A I � ’ðsÞs>
 �

: ð15Þ

At each iteration, latent variables s are computed by

s ¼ A�1x using the current estimate of A. Then the

value of A is updated by (15). This procedure is repeat-

ed until A converges.

The function ’i(si) depends on the prior pi(si) that

has to be specified in advance. Depending to the choice

of prior, we have different data representation. In

the case of Laplacian prior, the function ’i(si) has the

form

’iðsiÞ ¼ sgnðsiÞ; ð16Þ
where sgn(�) is the signum function. Sparseness con-

straint was shown to be useful to describe the receptive

field characteristics of simple cells in primary visual cor-

tex [17]. Generalized Gaussian prior for si is useful in

approximating most of uni-modal distributions [18].

Alternatively, it is possible to learn A�1 instead of A.

The A�1 coincides with the ICA filter [8]. If we define

W ¼ A�1, then the natural gradient learning algo-

rithm for W is given by

DW ¼ � I � ’ðyÞy>
 �
W : ð17Þ

This is a well-known ICA algorithm [19].
Softwares

We briefly introduce several ICA softwares so that one

can immediately play with these MATALB codes or

toolboxes to see how they are working on data sets.

ICA Central (URL: http://www.tsi.enst.fr/icacentral/)

was created in 1999 to promote research on ICA

and blind source separation by means of public mail-

ing lists, a repository of data sets, a repository of

ICA/BSS algorithms, and so on. ICA Central might

be the first place where you can find data sets and

ICA algorithms. In addition, several widely-used soft-

wares include

1. ICALAB Toolboxes (http://www.bsp.brain.riken.go.

jp/ICALAB/): ICALAB is an ICA Matlab software

toolbox developed in laboratory for Advanced

Brain Signal Processing in RIKEN Brain Science

Institute, Japan. It consists of two independent

packages: ICALAB for signal processing and

http://www.tsi.enst.fr/icacentral/
http://www.bsp.brain.riken.go.jp/ICALAB/
http://www.bsp.brain.riken.go.jp/ICALAB/
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ICALAB for image processing and each package

contains a variety of algorithms.

2. FastICA (http://www.cis.hut.fi/projects/ica/fastica/):

It is the FastICA Matlab package that implements

fast fixed-point algorithms for non-Gaussianity

maximization [3]. It was developed in Helsinki

University of Technology, Finland and other envir-

onments (R, C++, Physon) are also available.

3. Infomax ICA (http://www.cnl.salk.edu/
tewon/
ica_cnl.html): Matlab and C codes for Bell and

Sejnowski’s Infomax algorithm [8] and extended

infomax [2] where, a parametric density model is

incorporated into Infomax to handle both super-

Gaussian and sub-Gaussian sources.

4. EEGLAB (http://sccn.ucsd.edu/eeglab/): EEGLAB

is an interactive Matlab toolbox for processing

continuous and event-related EEG, MEG and

other electrophysiological data using ICA, time/

frequency analysis, artifact rejection, and several

modes of data visualization.

5. ICA: DTU Toolbox (http://isp.imm.dtu.dk/toolbox/

ica/): ‘ICA: DTU Toolbox’ is a collection of ICA

algorithms that includes: (1) ‘icaML’ which is an

efficient implementation of Infomax; (2) ‘icaMF’

which is an iterative algorithm that offers a variety

of possible source priors and mixing matrix con-

straints (e.g., positivity) and can also handle over

and under-complete mixing; (3) ‘icaMS’ which is

an ‘one shot’ fast algorithm that requires time cor-

relation between samples.
Further Issues

1. Overcomplete representation: Overcomplete represen-

tation enforces the latent space dimension n to be

greater than the data dimensionm in the linearmodel

(1). Sparseness constraints on latent variables are

necessary to learn fruitful representation [20].

2. Bayesian ICA: In contrast to the simple ICA model

(2), Bayesian ICA incorporates uncertainty and

prior distributions of latent variables into the

model (1). Independent factor analysis [21] is a

pioneering work along this direction. EM algo-

rithm for ICAwas developed in [22] and full Bayes-

ian learning was adopted [23].

3. Kernel ICA: Kernel methods were introduced to

consider statistical independence in reproducing

kernel Hilbert space [24], developing kernel ICA.
4. Nonnegative ICA: Nonnegativity constraints were

imposed on latent variables, yielding nonnegative

ICA [25]. Rectified Gaussian prior can also be used

in Bayesian ICA to handle nonnegative latent vari-

ables. It was successfully applied in medical imag-

ing [26].

5. Nonstationarity: Nonstationary characteristics was

used in developing second-order source separation

methods [27, 28].

6. Sparseness: Sparse component analysis is one of hot

issues [29].

7. Beyond ICA: Independent subspace analysis [30]

and tree-dependent component analysis [31] gen-

eralizes ICA, allowing intra-dependence structure

in feature subspaces or clusters.
Summary

ICA has been successfully applied to various applications

of pattern recognition. We have presented a brief over-

view of ICA, starting from the fundamental idea on

learning a linear latent variable model for parsimonious

representation. Natural gradient ICA algorithms were

derived in the framework of maximum likelihood esti-

mation or Kullbackmatching. Various softwares for ICA

were introduced, so that one could easily apply ICA tohis

or her own applications. Further issues were also briefly

mentioned so that readers could follow the status ICA.
References

1. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic

principal component analyzers. Neural Comput. 11(2),

443–482 (1999)

2. Lee, T.W.: Independent Component Analysis: Theory and Appli-

cations. Kluwer Academic: Boston (1998)

3. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component

Analysis. Wiley: New York (2001)

4. Cichocki, A., Amari, S.: Adaptive Blind Signal and

Image Processing: Learning Algorithms and Applications.

Wiley: West Sussex, England (2002)

5. Hyvärinen, A.: Survey on independent component analysis.

Neural Computing Surveys 2, 94–128 (1999)

6. Choi, S., Cichocki, A., Park, H.M., Lee, S.Y.: Blind source sepa-

ration and independent component analysis. A review. Neural

Information Processing - Letters and Review 6(1), 1–57 (2005)

7. Barlow, H.B.: Unsupervised learning. Neural Computation 1,

295–311 (1989)

8. Bell, A., Sejnowski, T.: An information maximisation approach

to blind separation and blind deconvolution. Neural Comput. 7,

1129–1159 (1995)

http://www.cis.hut.fi/projects/ica/fastica/
http://www.cnl.salk.edu/~tewon/ica\_cnl.html
http://www.cnl.salk.edu/~tewon/ica\_cnl.html
http://www.cnl.salk.edu/~tewon/ica\_cnl.html
http://sccn.ucsd.edu/eeglab/
http://isp.imm.dtu.dk/toolbox/ica/
http://isp.imm.dtu.dk/toolbox/ica/


Individuality of Fingerprints I 741

I

9. Cardoso, J.F.: Source separation using higher-order moments.

In: Proceedings of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing (1989)

10. Tong, L., Soon, V.C., Huang, Y.F., Liu, R.: AMUSE: a new blind

identification alogrithm. In: Proceedings of the IEEE Internation-

al Symposium on Circuits and Systems, pp. 1784–1787 (1990)

11. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non

Gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)

12. Belouchrani, A., Abed-Merain, K., Cardoso, J.F., Moulines, E.:

A blind source separation technique using second order statis-

tics. IEEE Trans. Signal Processing 45, 434–444 (1997)

13. Choi, S., Cichocki, A., Belouchrani, A.: Second order nonsta-

tionary source separation. J. VLST Signal Process Syst. Signal

Image Video Technol. 32, 93–104 (2002)

14. Choi, S., Cichocki, A., Belouchrani, A.: Blind separation of

second-order nonstationary and temporally colored sources.

In: Proceedings of IEEE Workshop on Statistical Signal Proces-

sing, pp. 444–447. Singapore (2001)

15. Choi, S., Cichocki, A.: Correlation matching approach to source

sepration in the presence of spatially correlated noise. In: Pro-

ceedings of the IEEE International Symposium on Signal Proces-

sing and Applications. Kuala-Lumpur, Malaysia (2001)

16. Amari, S.: Natural gradient works efficiently in learning. Neural

Comput. 10(2), 251–276 (1998)

17. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive

field properties by learning a sparse code for natural images.

Nature 381, 607–609 (1996)

18. Choi, S., Cichocki, A., Amari, S.: Flexible independent compo-

nent analysis. J. VLST Signal Process Syst. Signal Image Video

Technol. 26(1/2), 25–38 (2000)

19. Amari, S., Chen, T.P., Cichocki, A.: Stability analysis of learning

algorithms for blind source separation. Neural Netw. 10(8),

1345–1351 (1997)

20. Lewicki, M.S., Sejnowski, T.: Learning overcomplete representa-

tion. Neural Comput. 12(2), 337–365 (2000)

21. Attias, H.: Independent factor analysis. Neural Comput. 11,

803–851 (1999)

22. Welling, M., Weber, M.: A constrained EM algorithm for inde-

pendent component analysis. Neural Comput. 13, 677–689

(2001)

23. Miskin, J.W., MacKay, D.J.C.: Ensemble learning for blind source

separation. In: S. Roberts, R. Everson (eds.) Independent

Component Analysis: Principles and Practice, pp. 209–233.

Cambridge University Press (2001)

24. Bach, F., Jordan, M.I.: Kernel independent component analysis.

J. Mach Learn Res. 3, 1–48 (2002)

25. Plumbley, M.D.: Algorithms for nonnegative independent

component anlaysis. IEEE Trans. Neural Netw. 14(3), 534–543

(2003)

26. Lee, B.I., Lee, J.S., Lee, D.S., Kang, W.J., Lee, J.J., Choi, S.:

A clinical application of ensemble ICA to the quantification of

myocardial blood flow in dynamic PET. J. VLST Signal Process

Syst. Signal Image Video Technol. 49, 233–241 (2007)

27. Matsuoka, K., Ohya, M., Kawamoto, M.: A neural net for blind

separation of nonstationary signals. Neural Netw. 8(3), 411–419

(1995)

28. Choi, S., Cichocki, A., Amari, S.: Equivariant nonstationary

source separation. Neural Netw. 15(1), 121–130 (2002)
29. Li, Y., Cichocki, A., Amari, S.: Blind estimation of channel

parameters and source components for EEG signals: A sparse

factorization approach. IEEE Trans. Neural Netw. 17(2),

419–431 (2006)

30. Hyvärinen, A., Hoyer, P.: Emergence of phase- and shift-

invariant features by decomposition of natural images into

independent feature subspaces. Neural Comput. 12(7),

1705–1720 (2000)

31. Bach, F.R., Jordan, M.I.: Beyond independent components: Trees

and clusters. J Mach Learn Res. 4, 1205–1233 (2003)
Independent Factor Analysis
▶ Independent Component Analysis
Indexing
▶Biometric Algorithms
Individuality of Biometric Traits
▶ Individuality of Fingerprints
Individuality of Fingerprints

SARAT C. DASS
1, S. PANKANTI

2, S. PRABHAKAR
3,

Y. ZHU
4

1Michigan State University, East Lansing, MI, USA
2IBM T.J. Watson Research Center, Hawthorne,

NY, USA
3DigitalPersona, Redwood City, CA, USA
4Discover Financial Services, Riverwoods, IL, USA
Synonyms

Fingerprint individuality; Fingerprint, Forensic Evi-

dence of; Individuality of biometric traits



742I Individuality of Fingerprints
Definition

Fingerprint individuality is the study of the extent of

uniqueness of fingerprints. It is the most important

measure to be ascertained when fingerprint evidence is

presented in court by experts. A measure of fingerprint

individuality reflects the amount of uncertainty asso-

ciated with the experts’ decision, which arises primarily

due to the variability of feature characteristics in a pair

of fingerprints. This inherent variability can cause ran-

dom matching between the pair of fingerprints even

if they are not from the same person. Fingerprint indi-

viduality aims to characterize this randomness inmatch-

ing them quantitatively in terms of statistical models.
Introduction

The two fundamental premises on which fingerprint

identification is based are: (1) fingerprint details are

permanent, and (2) fingerprints of an individual are

unique. The validity of the first premise has been

established by empirical observations as well as based

on the anatomy and morphogenesis of friction ridge

skin. It is the second premise that is being challenged in

recent court cases. The notion of ▶fingerprint indi-

viduality has been widely accepted based on a manual

inspection (by experts) of millions of fingerprints.

Based on this notion, expert testimony is delivered in

a courtroom by comparing salient features of a latent

print lifted from a crime scene with those taken from

the defendant. A reasonably high degree of match

between the salient features leads the experts to testify

irrefutably that the owner of the latent print and the

defendant are one and the same person. For decades,

the testimony of forensic fingerprint experts was

almost never excluded from these cases, and on cross-

examination, the foundations and basis of this testi-

mony were rarely questioned. Central to establishing

an identity based on fingerprint evidence is the as-

sumption of discernible uniqueness; salient features

of fingerprints of different individuals are observably

different, and therefore, when two prints share many

common features, the experts conclude that the own-

ers of the two different prints are one and the same

person. The assumption of discernible uniqueness,

although lacking sound theoretical and empirical fou-

ndations, allows forensic experts to offer an unques-

tionable proof toward the defendant’s guilt.
A significant event that questioned this trend oc-

curred in 1993 in the case of Daubert v. Merrell Dow

Pharmaceuticals [1], where the U.S. Supreme Court

ruled that in order for an expert forensic testimony to

be allowed in courts, it had to be subject to five main

criteria of scientific validation, that is, whether (1) the

particular technique or methodology has been sub-

jected to statistical hypothesis testing, (2) its error

rates has been established, (3) standards controlling

the technique’s operation exist and have been main-

tained, (4) it has been peer reviewed, and (5) it has a

general widespread acceptance [2]. Forensic evidence

based on fingerprints was first challenged in the 1999

case of USA v. Byron Mitchell [3] under Daubert’s

ruling, stating that the fundamental premise for assert-

ing the uniqueness of fingerprints had not been objec-

tively tested and its potential matching error rates

were unknown. After USA versus Byron Mitchell,

fingerprint-based identification has been challenged

in more than 20 court cases in the U.S.

The main issue with the admissibility of finger-

print evidence is that the underlying scientific basis

of fingerprint individuality has not been rigorously

studied or tested. In particular, the central question

is: What is the uncertainty associated with the ex-

perts’ judgment? How likely can an erroneous deci-

sion be made for the given latent print? In March

2000, the U.S. Department of Justice admitted that no

such testing has been done and acknowledged the

need for such a study [4]. In response to this, the

National Institute of Justice issued a formal solicitation

for ‘‘Forensic Friction Ridge (Fingerprint) Examina-

tion Validation Studies,’’ whose goal is to conduct

‘‘basic research to determine the scientific validity of

individuality in friction ridge examination based on

measurement of features, quantification, and statistical

analysis’’ [4]. The two main topics of basic research

under this solicitation include: (1) the amount of detail

in a single fingerprint that is available for comparison,

and (2) the amount of detail in correspondence be-

tween two fingerprints.

This article gives an overview of the problem of

fingerprint individuality, the challenges faced and the

models and methods that have been developed to

study the extent of uniqueness of a finger. Interest

in the fingerprint individuality problem is twofold.

First, a scientific basis (a reliable statistical estimate

of the matching error) for fingerprint comparison

can determine the admissibility of fingerprint
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identification in the courts of law as an evidence of

identity. Secondly, it can establish an upper bound on

the performance of automatic fingerprint verification

systems.

The main challenge in assessing fingerprint indi-

viduality is to elicit models that can capture the varia-

bility of fingerprint features in a population of

individuals. Fingerprints are represented by a large

number of features, including the overall ridge flow

pattern, ridge frequency, location and position of sin-

gular points (core(s) and delta(s)), type, direction, and

location of minutiae points, ridge counts between pairs

of minutiae, and location of pores. These features are

also used by forensic experts to establish an identity,

and therefore, contribute to the assessment of finger-

print individuality. Developing statistical models on

complex feature spaces is difficult albeit necessary.

In this chapter, minutiae have been used as the finger-

print feature of choice to keep the problem tractable

and as a first step. There are several reasons for

this choice: Minutiae is utilized by forensic experts,

it has been demonstrated to be relatively stable, and

it has been adopted by most of the commonly available

automatic fingerprint matching systems. In principal,

the assessment of fingerprint individuality can be

carried out for any particular matching mode, such

as by human experts or by automatic systems, as long

as appropriate statistical models are developed on

the relevant feature space used in the matching. Thus,

the framework also extends to the case where matching

is performed based on an automatic system.

Even for the simpler fingerprint feature, namely

minutiae, capturing its variability in a population of

fingerprints is challenging. For example, it is known

that fingerprint minutiae tend to form clusters [5, 6],

minutiae information tend to be missed in poor

quality images and minutiae location and direction

information tend to be highly dependent on one

another. All these characteristics of minutiae variabil-

ity, in turn, affect the chance that two arbitrary finger-

prints will match. For example, if the fingerprint pair

have minutiae that are clustered in the same region of

space, there is a high chance that minutiae in the

clustered region will randomly match one another. In

this case, the matches are spurious, or false, and statis-

tical models for fingerprint individuality should be

able to quantify the likelihood of spurious matches.

To summarize, candidate models for assessing finger-

print individuality must meet two important
requirements: (1) flexibility, that is, the model can

represent the observed distributions of the minutiae

features in fingerprint images over different databases,

and (2) associated measures of fingerprint individuali-

ty can be easily obtained from these models.

Several works have been reported in the literature

on fingerprint individuality. The reader is referred to

the overview by Pankanti et al. [2] on this subject. This

article focuses on two recent works of fingerprint indi-

viduality where statistical models have been developed

for minutiae to address the question of fingerprint

individuality. These two works are (1) Pankanti et al.

[2], and (2) Zhu et al. [7].
The Statistical Test of Biometric
Recognition

Fingerprint based recognition, and more generally bio-

metric recognition, can be described in terms of a test

of statistical hypotheses. Suppose a query image, Q,

corresponding to an unknown identity, It, is acquired,

fingerprint experts claim that Q belongs to individual

Ic, say. This is done by retrieving information of a

template image T of Ic and matching T with Q. The

two competing expert decision can be stated in terms

of two competing hypotheses: The null hypothesis, H0,

states that Ic is not the owner of the fingerprint Q (i.e.,

Q is an impostor impression of Ic), and the alternative

hypothesis,H1, states that Ic is the owner of Q (i.e., Q is

a genuine impression of Ic). The hypotheses testing

scenario is

H0 : I t 6¼ I c versus H1 : I t ¼ I c : ð1Þ
Forensic experts match Q and T based on their

degree of similarity (see Fig. 1). For the present sce-

nario, it will be assumed that the degree of similarity

is given by the number of matched minutiae pairs,

S(Q,T), between Q and T. Large (respectively, small)

values of S(Q,T) indicate that T and Q are similar to

(respectively, dissimilar to) each other. If S(Q,T) is

lower (respectively, higher) than a prespecified thresh-

old l, it leads to rejection (respectively, acceptance) of

H0. Since noise factors distort information in the

prints, two types of errors can be made: False match,

which is also called the Type I error in statistics (since

H0 is rejected when it is true.) (FM) and false non-

match, also known as the Type II error in statistics

(since H0 is accepted when H0 is false.) False match



Individuality of Fingerprints. Figure 1 Illustrating genuine and impostor minutiae matching (taken from [2]). (a) Two

impressions of the same finger are matched; 39 minutiae were detected in input (left), 42 in template (right), and 36 ‘‘true’’

correspondences were found. (b) Two different fingers are matched; 64 minutiae were detected in input (left), 65 in

template (right), and 25 ‘‘false’’ correspondences were found. � 2002 IEEE.
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occurs when an expert incorrectly accepts an impostor

print as a match whereas false nonmatch occurs when

the expert incorrectly rejects a genuine fingerprint as a

nonmatch. The false match and nonmatch rates (FMR

and FNMR, respectively), are the probability of FM

and FNM. The formulae for FMR and FNMR are:

FMRðlÞ ¼ PðSðQ;TÞ > l j I t 6¼ I cÞ;
FNMRðlÞ ¼ PðSðQ;TÞ � l j I t ¼ I cÞ: ð2Þ

In case there is no external noise factors that affect the

acquisition of Q and T, it can decided without error

whether Q belongs to Ic or not based on the premise of

the uniqueness of fingerprints. However, the process

of fingerprint acquisition is prone to many sources of

external noise factors that distort the true information

present in Q (as well as T). For example, there can be

variability due to the placement of the finger on the

sensing plane, smudges and partial prints in the latent

that is lifted from the crime scene, nonlinear distortion

due to the finger skin elasticity, poor quality image due

to dryness of the skin, and many other factors. These

noise factors cause information in Q to be distorted,

for example, true minutiae points may be missed and

spurious minutiae points can be generated, which in

turn affects the uncertainty associated with rejecting or

accepting H0.

The different noise factors can be grouped into

twomajor sources of variability: (1) inter- and (2) intra-

class fingerprint variability. Intraclass variability

refers to the fact that fingerprints from the same

finger look different from one another. As mentioned

earlier, sources for this variability includes nonlinear

deformation due to skin elasticity, partial print, non-

uniform fingertip pressure, poor finger-condition
(e.g., dry finger), noisy environment, etc. Interclass

variability refers to the fact that fingerprints from

different individuals look very similar. Unlike intra-

class variability, the cause of interclass variability is

intrinsic to the target population. Panels (b) of Fig. 1

show an example of interclass variability for two dif-

ferent fingerprint images. Both intra- and interclass

variability need to be accounted for, when determining

whether Q and T match or not. It is easy to see that

fingerprint experts will be able to make more reli-

able decisions if the inter-class fingerprint variability

is large and the intra-class fingerprint variability is

small. However, less reliable decisions will be made

if the reverse happens, that is, when intraclass varia-

bility is large and interclass variability is small. In

other words, the study of fingerprint individuality

is the study of quantification of inter- and intraclass

variability in Q and T, as well as to what extent these

sources of variability affect the fingerprint expert’s

decision.
Statistical Models for Fingerprint
Individuality

The study and quantification of inter- and intraclass

variability can be done by eliciting appropriate sto-

chastic (or, statistical) models on fingerprint minutiae.

Figure 2 shows two examples of minutiae (ending and

bifurcation) and the corresponding location and direc-

tion information. Two such approaches are described

in this section, namely, the work done by Pankanti

et al. [2] and the subsequent model that was proposed

by Zhu et al. [7]. Both works focus on modeling the



Individuality of Fingerprints. Figure 2 Minutiae features consisting of the location, s, and direction, y, for a typical

fingerprint image (b): The top (respectively, bottom) panel in (a) shows s and y for a ridge bifurcation (respectively,

ending). The top (respectively, bottom) panel in (a) shows two subregions in which orientations of minutiae points that

are spatially close tend to be very similar. � 2007 IEEE.
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interclass fingerprint variability, that is, the variability

inherent in fingerprint minutiae of different fingers in

a population.
Individuality of Fingerprints. Figure 3 Identifying the

matching region for a query minutiae (image taken from

[2] and [7]). � 2002 IEEE.
Pankanti’s Fingerprint Individuality
Model

The set up of Pankanti et al. [2] is as follows: Suppose

the query fingerprint Q has n minutiae and the tem-

plate T has m minutiae denoted by the sets

MQ 	 ffSQ1 ;DQ
1 g; fSQ2 ;DQ

2 g; ::::; fSQn ;DQ
n gg ð3Þ

MT 	 ffST1 ;DT
1 g; fST2 ;DT

2 g; ::::; fSTm;DT
mgg; ð4Þ

where in (3) and (4), S and D refer to a generic

minutiae location and direction pair. To assess a

measure of fingerprint individuality, it is first necessary

to define a minutiae correspondence between Q and T.

A minutiae in Q, (SQ,DQ), is said to match (or, corre-

spond) to a minutiae in T, (ST,DT), if for fixed positive

numbers r0 and d0, the following inequalities are valid:

jSQ � ST js � r0 and jDQ � DT jd � d0; ð5Þ
where

jSQ � ST js 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxQ � xT Þ2 þ ðyQ � yT Þ

q
ð6Þ

is the Euclidean distance between the minutiae loca-

tions SQ 	 (xQ, yQ) and ST 	 (xT, yT), and
jDQ � DT jd 	 minðjDQ � DT j; 2p� jDQ � DT jÞ
ð7Þ

is the angular distance between the minutiae directions

DQ and DT. The choice of parameters r0 and d0 defines

a tolerance region (see Fig. 3), which is critical in

determining a match according to (5). Large (respec-

tively, small) values of the pair (r0,d0) will lead to
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spurious (missed) minutiae matches. Thus, it is neces-

sary to select (r0,d0) judiciously so that both kinds of

matching errors are minimized. A discussion on how

to select (r0,d0) is given subsequently.

In [2], fingerprint individuality was measured in

terms of the probability of random correspondence

(PRC). The PRC of w matches is the probability that

two arbitrary fingerprints from a target population

have at least w pairs of minutiae correpondences be-

tween them. Recall the hypothesis testing scenario of

(1) for biometric authentication. When the similarity

measure S(Q,T) is above the threshold l, the claimed

identity (Ic) is accepted as true identity. Based on the

statistical hypothesis in (1), the PRC is actually the

false match rate, FMR, given by

PRCðwÞ ¼ PðSðQ;TÞ � w j I c 6¼ I tÞ ð8Þ
evaluated at l ¼ w.

To estimate the PRC, the following assumptions

were made in [2]: (1) Only minutiae ending and bifur-

cation are considered as salient fingerprint features for

matching. Other types of minutiae, such as islands,

spur, crossover, lake, etc., rarely appear and can be

thought of as combination of endings and bifurcations.

(2) Minutiae location and direction are uniformly

distributed and independent of each other. Further,

minutiae locations cannot occur very close to each

other. (3) Different minutiae correspondences between

Q and T are independent of each other, and any two

correspondences are equally important. (4) All minu-

tiae are assumed true, that is there are no missed or

spurious minutiae. (5) Ridge width is unchanged

across the whole fingerprint. (6) Alignment between

Q and T exists, and can be uniquely determined.

Based on the above assumptions, Pankanti et al.

were able to come up with the uniform distribution as

the statistical model for fingerprint individuality. The

probability of matching wminutiae in both position as

well as direction is given by

pðM ;m; n;wÞ ¼

Xminðm;nÞ

r¼w

m

r

 !
M �m

n� r

 !

M

n

 ! � r

w

 !
lð Þw 1� lð Þr�w

0
BBBB@

1
CCCCA
;

ð9Þ
where M ¼ A ∕C with A and C defined, respectively,

as the area of overlap between Q and T and C ¼ pr0
2 is
the area of the circle with radius r0. Pankanti et al.

further improved their model based on several con-

siderations of the occurrence of minutiae. The ridges

occupy approximately A
2 of the total area with the

other half occupied by the valleys. Assuming that the

number (or the area) of ridges across all fingerprint

types is the same and that the minutiae can lie only on

ridges, i.e., along a curve of length A
o ; where o is

the ridge period, the value of M in (9) is changed

from M ¼ A ∕C to

M ¼ A=o
2r0

; ð10Þ

where 2r0 is the length tolerance in minutiae location.

Parameters (r0,d0) determine the minutiae match-

ing region. In the ideal situation, a genuine pair of

matching minutiae in the query and template will

correspond exactly, which leads to the choice of

(r0, d0) as (0,0). However, intraclass variability factors

such as skin elasticity and nonuniform fingertip pres-

sure can cause the minutiae pair that is supposed to

perfectly match, to slightly deviate from one another.

To avoid rejecting such pairs as nonmatches, nonzero

values of r0 and d0 need to be specified for matching

pairs of genuine minutiae. The value of r0 is deter-

mined based on the distribution of the Euclidean dis-

tance between every pair of matched minutiae in the

genuine case. To find the corresponding pairs of min-

utiae, pairs of genuine fingerprints were aligned, and

Euclidean distance between each of the genuine min-

utiae pairs was then calculated. The value of r0 was

selected so that only the upper 5% of the genuine

matching distances (corresponding to large values of r)

were rejected. In a similar fashion, the value of d0 was

determined to be the 95th percentile of this distribu-

tion (i.e., the upper 5% of the ▶ genuine matching

angular distances were rejected).

To find the actual r0 and d0, Pankanti et al. used a

database of 450 mated fingerprint pairs from IBM

ground truth database (see [2] for details). The true

minutiae locations in this database and the minutiae

correspondences between each pair of genuine finger-

prints in the database were determined by a fingerprint

expert. Using the ground truth correspondences, r0
and d0 were estimated to be 15 and 22.5, respectively.

These values will be used to estimate the PRC in the

experiments presented in this paper.

Pankanti et al. [2] were the first to attempt in

quantifying a measure of fingerprint individuality
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based on statistical models. However, the proposed

uniform model does have some drawbacks. Compari-

son between model prediction and empirical observa-

tions showed that the corrected uniform model grossly

underestimated the matching probabilities. The inher-

ent drawbacks of the uniform model motivated the

research by Zhu et al. [7] to propose statistical distri-

butions that can better represent minutiae variability

in fingerprints.
I

Mixture Models for Fingerprint
Features

Zhu et al. [7] proposed a mixture model to model the

minutiae variability of a finger by improving Assump-

tion (2) of [2]. A joint distribution model for the

k pairs of minutiae features {(Sj, Dj), j ¼ 1, 2, . . . k}

is proposed to account for (1) clustering tendencies

(i.e., nonuniformity) of minutiae, and (2) dependence

between minutiae location (Sj) and direction (Dj) in

different regions of the fingerprint. The mixture model

on (S,D) is given by

f ð s;y jYGÞ¼
XG
g¼1

tg f
S
g ðs jmg ; SgÞ � f Dg ðy jng ; kgÞ; ð11Þ

where G is the total number of mixture components,

fg
S(�) is the bivariate Gaussian density with mean mg

and covariance matrix Sg, and

f Dg ðy jng ;kg ; pg Þ¼
pg vðyÞ if 0� y< p

ð1�pg Þvðy�pÞ if p� y< 2p;

(
ð12Þ
Individuality of Fingerprints. Figure 4 All (S,D) realizations

distribution (c) for the original image in (a). The true minutiae l

from [7]. � 2007 IEEE.
where v(y) is the Von-Mises distribution for the min-

utiae direction given by

vðyÞ	 vðy jng ; kg Þ¼ 2

I0ðkg Þ expfkg cos2ðy� ng Þg ð13Þ

with I0(kg) defined as

I0ðkgÞ¼
Z 2p

0

expfkg cosðy� ngÞgdy: ð14Þ

In (13), ng and kg represent the mean angle and the

precision (inverse of the variance) of the Von-Mises

distribution, respectively (see [7] for details). The dis-

tribution fg
D in (12) can be interpreted in the following

way: The ridge flow orientation, o, is assumed to follow

the Von-Mises distribution in (13) with mean ng and
precision kg. Subsequently, minutiae arising from the

gth component have directions that are either o or

oþp with probabilities pg and 1�pg, respectively.
The model described by (11) has three distinct

advantages over the uniform model: (1) it allows for

different clustering tendencies in minutiae locations

and directions via G different clusters, (2) it incorpo-

rates dependence between minutiae location and di-

rection since, if S is known to come from the gth

component, the direction D also comes from the

gth component, and (3) it is flexible in that it can fit

a variety of observed minutiae distributions adequ-

ately. The estimation of the unknown parameters in

(11) has been described in details in [7].

The effectiveness of the mixture models can also be

shown by simulating from the fitted models and check-

ing to see if a similar pattern of minutiae is obtained as

observed. Figure 4a shows a fingerprint whose
from the fitted mixture model (b), and from the uniform

ocations and directions are marked in (a). Images are taken
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minutiae features were fitted with the mixture distri-

bution in (11). Figure 4c shows a simulated realization

when each S and D is assumed to be uniformly

distributed independent of each other. Note that

there is a good agreement, in the distributional sense,

between the observed (Fig. 4a) and simulated minutiae

locations and directions from the fitted mixture model

(Fig. 4b), but no such agreement exists for the uniform

model.

Zhu et al. [7] obtains a closed form expression for

the PRC corresponding to w matches under similar

assumptions of Pankanti et al. [2] (barring Assu-

mption (2)). The probability of obtaining exactly

w matches given there are m and n minutiae in Q

and T, respectively, is given by the expression

p�ðw ; Q;TÞ ¼ e�lðQ;TÞ lðQ;TÞw
w!

ð15Þ

for large m and n; (15) corresponds to the Poisson

probability mass function with mean l(Q, T) given by

lðQ;TÞ ¼ mnpðQ;TÞ; ð16Þ
where

pðQ;TÞ ¼ PðjSQ � ST js � r0 and jDQ � DT ja � d0Þ
ð17Þ

denotes the probability of a match when (SQ, DQ) and

(ST,DT) are random minutiae from the mixture dis-

tributions fitted to Q and T, respectively. The mean

parameter l(Q, T) can be interpreted as the expected

number of matches from the total number of mn

possible pairings between m minutiae in Q and n

minutiae points in T with the probability of each

match being p(Q, T).
Incorporating Interclass Variability Via
Clustering

The above PRC was obtained for a single query and

template fingerprint pair. An important difference be-

tween the proposed methodology and previous work is

that mixture models are fitted to each finger, whereas

previous studies assumed a common distribution for

all fingers/impressions. Assuming a common minutiae

distribution for all fingerprint impressions has a serious

drawback, namely, that the true distribution of minu-

tiae may not be modeled well and important cluster

information may be smoothed out. Zhu et al. [7] adopt
an agglomerative hierarchical clustering procedure on

the space of all fitted mixture models to obtain a

reliable representation of the minutiae in all finger-

prints in a population as well as to reduce computa-

tional time to obtain the PRC estimates. In this

framework, the probability of obtaining exactly u

matches corresponding to clusters Ci and Cj is given by

p�ðu ; Ci;CjÞ ¼ e�lðCi ;CjÞ lðCi;CjÞu
u!

; ð18Þ

where l(Ci,Cj) is interpreted as the mean number of

matches between any Q arising from Ci and T arising

from Cj, and is calculated based on the mean (average)

mixture densities in clusters Ci and Cj. The overall

probability of exactly u matches is

p��ðuÞ ¼
P

i�j jCij jCj j p� ðu ; Ci;CjÞP
i�j
jCij jCj j; ð19Þ

where jCk j is the total number of mixtures in cluster

Ck. The overall PRC corresponding to w matches is

given by

PRC ¼
X1
u¼w

p�� ðuÞ: ð20Þ

To remove the effect of very high or very low PRCs,

the 100(1�a)% trimmed mean is used instead of

the ordinary mean as in (19). The lower and upper

100a ∕2th percentiles of {p∗(u ;Ci,Cj), 1 � i, j � N∗}

are denoted by pC
∗(u;a ∕2) and pC

∗(u;1�a ∕2). Also,
define the set of all trimmed p∗(u ;Ci,Cj) probabili-

ties as T 	 fði; jÞ : p�Cðu; a=2Þ � p�ðu ;Ci;CjÞ �
p�Cðu; 1� a=2Þg. Then, the 100(1�a)% trimmed

mean PRC is

PRCa ¼
X1
u¼w

p��T ðuÞ; ð21Þ

where

p��T ðuÞ ¼
P
ði;jÞ2T jCij jCj j p� ðu ; Ci;CjÞP

ði;jÞ2T
jCij jCj j : ð22Þ

In the next section, the trimmed mean is with a¼0.05.
Experimental Results

The results in this section are taken from Zhu et al. [7];

the interested reader is referred to more details
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I

discussed in the chapter. The methodology for asses-

sing the individuality of fingerprints are validated on

three target populations, namely, the NIST Special

Database 4 [8], FVC2002 DB1 and FVC2002 DB2 [9]

fingerprint databases. The NIST fingerprint database

[8] is publicly available and contains 2,000 8-bit gray

scale fingerprint image pairs of size 512 � 512 pixels.

Because of the relative large size of the images in the

NIST database, the first image of each pair is used

for statistical modeling. Minutiae could not be auto-

matically extracted from two images of the NIST data-

base due to poor quality. Thus, the total number of

NIST fingerprints used in the authors’ experiments is

F ¼ 1,998.

For the FVC2002 database, also available in the pub-

lic domain, two of its subsets DB1 and DB2 is used. The

DB1 impressions (images size¼ 388� 374) are acquired

using the optical sensor ‘‘TouchView II’’ by Identix,

while the DB2 impressions (image size ¼ 296 � 560)

are acquired using the optical sensor ‘‘FX2000’’ by

Biometrika. Each database consists of F ¼ 100 different

fingers with eight impressions (L ¼ 8) per finger.

Because of the small size of the DB1 and DB2 data-

bases, a minutiae consolidation procedure was adopted

to obtain a master (see [7] for the details). The mixture

models were subsequently fitted to each master.

Zhu et al. developed a measure of goodness of fit of

hypothesized distributions to the observed minutiae

based on a chi-square type criteria. Two tests were

considered, namely, the Freeman–Tukey and Chi-

square tests. The results for the goodness of fit for

two hypothesized distributions, namely, mixture and
Individuality of Fingerprints. Table 1 Results from the Freem

fit of the mixture and uniform models

Mixture model

Freeman–Tu

p-value NIST (1,998) DB1 (10

p-value>0.01 (mixture accepted) 1,864 71

p-value�0.01 (mixture rejected) 134 29

Uniform model

Freeman–Tu

p-value NIST (1,998) DB1 (10

p-value>0.01 (uniform accepted) 550 1

p-value�0.01 (uniform rejected) 1,448 99

Entries correspond to the number of fingerprints in each database wit

in each database is indicated in parenthesis. Table entries are taken f
uniform models are reported in Table 1. For all the

three databases, the number of fingerprint images

with p-values above (corresponding to accepting the

hypothesized distribution) and below the thres-

hold 0.01 (corresponding to rejecting the hypothesized

distribution) were obtained. Note that the entries

in Table 1 imply that the mixture model is generally

a better fit to the observed minutiae compared to

the uniform; for example, the mixture model is a good

fit to 1,666 images from the NIST database (corres-

ponding to p-values above 0.01) based on the Freeman–

Tukey test. For the Chi-square test, this number is

1,784. In comparison, the uniform model is a good

fit to only 905 and 762 images, respectively.

Zhu et al. compared the PRC obtained by [7] with

those of Pankanti et al. [2]. The query and template

fingerprints in the NIST and FVC databases are first

aligned using the matcher described in [10], and an

overlapping area between the two fingerprints are

determined. To compute the PRCs, the mixture models

are restricted onto overlapping area (see [7] for more

details). Table 2 gives the mean m, mean n, mean

overlapping area and M (see equation (10)) for the

NIST and Fvc databses, whereas Table 3 gives the

corresponding PRCs. The empirical PRC is computed

as the proportion of impostor pairs with 12 or greater

matches among all pairs withm and n values within 5

of the mean in the overlapping area. The empirical

probabilities of at least w matches are obtained by

counting the number of fingerprint pairs with 12 or

more matches divided by the total number of pairs.

Thus, one should note that the empirical probability is
an–Tukey and Chi-square tests for testing the goodness of

key Chi-square

0) DB2 (100) NIST (1,998) DB1 (100) DB2 (100)

67 1,569 65 52

33 429 35 48

key Chi-square

0) DB2 (100) NIST (1,998) DB1 (100) DB2 (100)

0 309 1 0

100 1,689 99 100

h p-values above and below 0.01. The total number of fingerprints

rom [7]



Individuality of Fingerprints. Table 3 A comparison between fingerprint individuality estimates using the (a) Poisson

and mixture models, and (b) Pankanti et al. [2]

Database (m,n,w) Empirical Mixture Pankanti

Mean no. of matches PRC Mean l PRC Mean l PRC

NIST (52,52,12) 7.1 3.9 � 10�3 3.1 4.4 � 10�3 1.2 4.3 � 10�8

FVC2002 DB1 (51,51,12) 8.0 2.9 � 10�2 4.9 1.1 � 10�2 2.4 4.1 � 10�6

FVC2002 DB2 (63,63,12) 8.6 6.5 � 10�2 5.9 1.1 � 10�2 2.5 4.3 � 10�6

Individuality of Fingerprints. Table 2 Table giving the mean m and n in the overlapping area, the mean overlapping

area and the value of M for each database [7]

Database (m,n) Mean overlapping area (pixel2) M

NIST (52,52) 112,840 413

FVC2002 DB1 (51,51) 71,000 259

FVC2002 DB2 (63,63) 110,470 405

750I Individuality of Fingerprints
matcher dependent. Since fingerprint individuality is

assessed based on minutiae location and direction

only, the matcher of [10] was used which depends

only on minutiae information.

Note that as m or n or both increase, the values of

PRCs for both the models become large as it becomes

much easier to obtain spurious matches for larger m

and n values. Additionally, Table 3 illustrates an impor-

tant fact: The PRCs based on the mixture models are

orders of magnitude larger compared to Pankanti’s

model and closer to the empirical probability of at

least w matches. Note also that the mean of ls (the

theoretical mean number of matches) are closer to

the empirical counterpart (mean number of observed

matches) compared to Pankanti’s model. This demon-

strates the adequateness of the mixture models for

the assessment of fingerprint individuality. While the

mixture models is more adequate at representing min-

utiae variability, the PRCs obtained are far too large

indicating a large amount of uncertainty in declaring a

match between a fingerprint pair. One way to reduce

the PRC is to add more fingerprint features when

performing the identification. Fingerprint individuali-

ty assessment can then be made by developing appro-

priate statistical models for these features.
Summary and Future Work

In this chapter, an overview of the challenges involved

in assessing the individuality of fingerprints is
presented. Two works have been discussed. Pankanti’s

model is the first attempt at modeling the observed

minutiae distribution via statistical models, whereas

Zhu et al. developed more flexible models that ade-

quately describe all minutiae characteristics. There are

many open problems that still remain unsolved. Both

works have only addressed the issue of interclass min-

utiae variability. Appropriate statistical models for

modeling the intraclass minutiae variability are still

very few in the literature. A very important source of

intraclass variability is the quality of the query and

template images, and work still needs to be done to

investigate how PRCs change with quality of the fin-

gerprint image. It is also important to develop statisti-

cal models for more complex fingerprint features. In

this case, one can use more useful matching criteria

that utilize richer fingerprint features.

In this chapter, the PRCs have been related to the

false match rates. Another measure of fingerprint indi-

viduality should be related to the false nonmatch rates.

Eventually, a measure of fingerprint individuality should

be a optimal combination of the two measures of errors.
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Synonym

Influencing factors
Definition

Factors that influence biometric performance. They

can be discussed from the following viewpoints: char-

acteristics of users (including the definition of im-

postors) and restrictions that come from practical

situations in which that biometric modality is used in

applications.
Introduction

When evaluating performance of biometric systems,

factors that influence performance (‘‘influencing fac-

tors’’) should be identified and analyzed because per-

formance is greatly affected by a wide variety of

influencing factors. The same biometric device may

generate different test results if these influencing factors

differ. Controlling, recording, and reporting factors are

indispensable for executing repeatable performance

tests and predicting operational performance [1–3].
Influencing Factors

Identifying influencing factors: the following factors

should be considered at a minimum (see also Annex

C of [1]):

1. Biometric sensor quality and characteristics

2. Biological or behavioral characteristics of the sub-

ject relevant to data collection (essential historical

or demographic data):

a. Invariable: Gender, ethnic origin

b. Variable:
� Biological: age, body dimensions/anthropo-

metric data (height, weight, etc. . .), muscu-

loskeletal disorders

http://www.forensic-evidence.com/site/ID/IDfpValidation.html
http://www.forensic-evidence.com/site/ID/IDfpValidation.html
http://www.nist.gov/srd/nistsd4.htm
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� Habitual/Social factors: smoking preference,

hairstyle, makeup, eyewear (glasses, con-

tacts, etc. . .), clothing

� Occupation
3. Environmental factors applicable to the biometric

device, sensor, or application such as:

a. Temperature

b. Humidity

c. Illumination
� Type (standard incandescent, fluorescent,

tungsten halogen, reflector lamps, light

emitting diodes (LEDs), sunlight, etc. . .)

d. Noise

e. Position of sensor with regards to the user

4. Temporal change of the biometric features

5. Impact of ▶ forgery attempts on false acceptance,

particularly in behavioral modalities

6. Differences between the data capture and signal

processing subsystems used in the enrolment phase

and those used in the verification/identification

phase. (This text taken ISO/IEC TR 19795-3:2007

Information technology – Biometric performance

testing and reporting – Part 3: Modality-specific

testing is reproduced with the permission of the

International Organization for Standardization,

ISO. This standard can be obtained from any ISO

member and from the Web site of the ISO Central

Secretariat at the following address: www.iso.org.

Copyright remains with ISO).

In addition, the characteristics that affect performance

can be discussed from the following aspects:

1. The definition of impostors

2. Restrictions that come from practical situations in

which that biometricmodality is used in applications
Characteristics of Impostors

There are two factors to consider the definition of

impostors:

1. Multiple biometric data from one person

2. Impostor attempts for behavior-based modalities,

such as voice or signature

For modalities in which multiple biometric data can be

collected from one person, e.g., finger (10 fingerprints

from one person) and iris (2 iris-images from one
person), a rule for permitting or prohibiting the use

of these data as impostor attempts should be clearly

defined in performance testing.

In the case of behavior-based modalities, testing

results regarding impostor attempts (FMR or FAR)

may be influenced depending on whether (or how

much) an impostor tries to imitate an authorized

user’s behavior. For instance, the case in which an

impostor physically traces an authorized user’s signa-

ture that the impostor obtained differs significantly in

FMR or FAR from the case, where the impostor only

looks at the signature and imitates it. For these

modalities, a criterion regarding impostor attempts

should be defined in performance testing.
Characteristics of Modality Specific to
Applications

In general, almost all modalities of biometrics are

used for user authentication, but some modalities are

expected to be used in different classes of applications,

for example, face-based identification is widely used in

surveillance applications. While a user’s cooperation

can be expected in the former, it cannot be expected in

the latter case. Thus, variation of performance testing

should be considered depending on the way the mo-

dality is used in real applications.

These restrictions can be divided into two

classifications:

1. Factors relating to users, such as facial expressions

that affect the countenance of the face, wearing

eye-glasses or contact lenses for the iris, etc.

2. Factors relating to external environments that are

uncontrollable by the algorithm or system, such as

illumination change for face or background noise

for voice

These factors naturally affect the performance, and the

types and number of factors are different in each mo-

dality. These modality-dependent variations should be

considered in performance testing. In addition, a con-

cept of ▶ robustness test should be introduced to eval-

uate the sensitivity or robustness of the technology

toward environmental factors, in case the variation

of the factors strongly influences the observed

performance.
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▶Performance Testing Methodology, Standardization
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Information Content of Iris Images
▶ Iris Image Quality
Information Fusion
Information fusion is the merging of disparate informa-

tion, usually from different sources, which is combined

in order to achieve a wider perspective on a problem

than is possible if only one type of information were

considered. In the context of multimodal biometric

authentication, the term is used to describe how infor-

mation from different biometric modalities, for exam-

ple a facial image and a voice sample, can be combined

to make a better decision on whether the person seek-

ing to be authenticated is who he or she claims to be.

Depending on where in the system the information

from the two modalities is combined, one can distin-

guish between feature fusion, score fusion, and decision

fusion. Feature fusion is also known as early fusion,

while the latter two fusion types are known collectively

as late fusion. Feature fusion is a method, by which the

features from the different modalities are fused into

combined feature vectors after the feature extraction
stage, but before the pattern recognition stage of the

authentication system. The pattern recognition process

then proceeds on the basis of the combined feature

vectors. Score fusion is a method, by which a separate

authentication system for each modality calculates a

mathematical likelihood or distance score between the

feature and the client model or template in that mo-

dality. The score fusion algorithm then combines the

two modality scores by means of a suitable formula,

such as the arithmetic mean of the two scores, and the

final accept–reject decision is made on the basis of the

combined score. Decision fusion is a method, by which

each modality has its own independent authentication

process – from feature extraction through score calcu-

lation to final accept–reject decision for that modality.

The overall accept–reject decision by the system is then

made through a simple logical combination of the two

modality decisions. Two decision fusion paradigms are

possible in a bimodal system: a strict system requires

an ‘‘accept’’ from both modalities for an overall accept

decision, while a generous system only requires an

‘‘accept’’ from either modality for an overall accept

decision. A system, which is to detect synchrony be-

tween the audio and video signals from a speaking face,

requires early fusion, while late fusion is sometimes

used when two off-the-shelf commercial authentica-

tion systems are combined and the user has no access

to the internal feature vectors of the two systems.

▶ Liveness Assurance in Face Authentication
Intelligent Agents
Software (sub-)systems that may act autonomously on

behalf of users of the system.

▶Biometric Systems, Agent-Based
Interaction
The result an individual, using a biometric sensor,

creates by presenting biometric characteristics to a
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sensor. In terms of the general biometric model, this

occurs in the data capture silo. During an individual’s

interaction, the biometric sensor or device acquires an

image or signal of biometric characteristics of a person.

The goal of the presentation is for an individual to

present the biometric characteristics of high quality to

the sensor in a repeatable and consistent manner, so

that the subsequent signal processing sub-processes of

segmentation, feature extraction, and quality control

can successfully occur. See also attempt, presentation,

transaction, and general biometric model.

▶Ergonomic Design for Biometric Systems
Interactive Voice Response (IVR)
Interactive voice response (IVR) is an automated, ‘‘self

service’’ telephony technology that interacts with a

caller to gather and dispense information, perform

transactions, or route the call to the appropriate recip-

ient. IVR systems can accept touchtone (DTMF),

spoken (speech recognition) input, or a combination

of the two modalities.

▶Remote Authentication

▶ Speaker Recognition, Standardization
Interest Point, Region, Local Feature
In a way, the ideal local feature is a point as defined in

geometry: having a location in space but no spatial

extent. In practice however, images are discrete with

the smallest spatial unit being a pixel and discretization

effects playing an important role. To localize features in

images, a local neighborhood of pixels need to be

analyzed, giving all local features some implicit spatial

extent. For some applications (e.g., camera calibration

or 3D reconstruction), this spatial extent is completely

ignored in further processing, and only the location

derived from the feature extraction process is used. In

those cases, one typically uses the term interest point.

However, in most applications those features also need
to be described, such that they can be identified and

matched, and this again calls for a local neighborhood

of pixels. Often, this neighborhood is taken equal to

the neighborhood used to localize the feature, but this

need not be the case. In this context, one typically uses

the term region instead of interest point. However,

beware: when a local neighborhood of pixels is used

to describe an interest point, the feature extraction

process has to determine not only the location of the

interest point, but also the size and possibly the shape

of this local neighborhood. Especially in case of geo-

metric deformations, this significantly complicates the

process, as the size and shape have to be determined in

an invariant (covariant) way.

▶ Local Image Features
Interest Points
▶ Local Image Features
Interface
▶User Interface, System Design
Intermediate Biometrics
▶Biometric Sample Synthesis
Internal Identification
Identification of a victim based on medical findings by

an autopsy, such as implants, and missing organs.

▶Dental Biometrics
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International Association for
Identification
▶ Fingerprint, Forensic Evidence of
Interoperability
I

Interoperability in biometrics can be defined as the

capability of a recognition system to operate with

data from different sources (e.g., data acquired using

different sensors or features extracted using systems

from different vendors). Most biometric systems are

designed under the assumption that the data to be

compared with are obtained from a unique source

and are restricted in their ability to match or compare

with biometric data originated from different sources.

As a result, changing the source may affect the perfor-

mance of the system.

▶ Fingerprint Databases and Evaluation

▶ Iris Device
Interoperable Performance

PATRICK GROTHER

National Institute of Standards and Technology,

MD, USA
Definition

Accuracy of a biometric system that includes standar-

dized components from several suppliers.

In applications where components conform to

standardized interfaces and functional specifications,

it is possible to replace one component with another

from a different manufacturer. Although conformity

to specifications is a necessary condition for interoper-

ability, it is often not sufficient, because the internal

algorithmic action of the component is usually not

regulated by the standard. Thus, a biometric detection

algorithm might underperform some others despite
being in conformity with the requirements. This arti-

cle suggests that the appropriate means of quantifying

biometric interoperability are to identify relevant per-

formance metrics, to measure them, and to certify

against them. For biometric sensors and also for detec-

tion, segmentation, and matching algorithms, these

metrics will be usually be failure-to-acquire and enroll

rates, and Type I and II recognition error rates.
Introduction

Biometric recognition is explicitly a two-phase opera-

tion: In verification, a first-encounter enrollment sam-

ple is compared with a second-encounter verification

sample. Similarly in identification, a new sample is

searched against a set of prior enrollments. If the sam-

ples are not captured and processed using the same

hardware and software, identically configured, the

issue of whether the various components are interop-

erable arises. While interoperability is a desirable and

necessary aspect of applications in which multiple

vendors sell equipment for capture, processing, and

matching, it rests on the availability of well-crafted

standards, and specifically, conformity to the various

components to those standards. Therefore, sensors

might have to conform to imaging specifications,

their outputs to image exchange standards, and their

transmission might require equipment implementing

standardized interfaces. The hazard in biometric appli-

cations is that a weak specification or a lack of confor-

mity to a specification might undermine the accuracy

of the whole recognition system.

Figure 1 depicts a general interoperable applica-

tions. It shows N different biometric capture devices

(BCDs) being used to acquire sample data that are then

converted from its raw captured biometric data block

(cBDB) format into a standardized biometric data block

(sBDB) format for enrollment. This is done by any of I

template generators. Later, these will be compared by

any ofK comparison subsystems against verification (or

identification) records (sBDBs, in this case) produced

from any of J generators processing the output of M

BCDs.

This formalism is notional; it defines a five-

dimensional component space the last of which is

the comparison engine whose outputs support mea-

surements of accuracy. Thus, any combination of five

different products can be tested. An interoperable
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component is then one that can be used in combina-

tion with others. Note that this defines biometric inter-

operability differently than in some other domains

where strict conformance guarantees performance.

For example, while a nonconforming implementa-

tion of the PGP message standard [1] is likely to

give a deterministic and catastrophic failure, a set of

fingerprint minutiae automatically extracted from a

digital image of an analog trait (i.e., the finger) may

well give lower accuracy than those marked by a fin-

gerprint examiner.

This article gives an overview of the biometric

interoperability problem and introduces the notion

that interoperability should properly be quantified

in terms of some relevant performance metrics. It

proceeds with examples of interoperability challenges,

which motivates the subsequent contribution on inter-

operability testing.
Interoperability Challenges

Successful recognition depends on the interoperability

of all pieces of equipment used in generating both the

enrolled and recognition data records. This begins with

the acquisition process, and the primary requirement

is that the sensors are interoperable. This typically

means that the conversion of the analog human trait

into the digital sample produces a defined or com-

monly understood representation of the original. The

following paragraphs give examples that undermine

interoperability of the three most common modalities.

Fingerprints: It is common in large-scale identity

management applications to acquire flat impressions

of a subject’s fingers, to associate those with a creden-

tial, and to verify against one or more of those fingers.
While the fingerprint data can be stored in conformity

to, for example, the ISO/IEC 19794-4 finger image or

19794-2 finger minutiae standards, subsequent verifi-

cation attempts depend on the interoperability of the

capture devices with the original optical scanner. This

is one of the few areas of biometrics where sensors are

standardized: The U.S. Federal Bureau of Investigation

established a physical imaging specification for optical

fingerprint sensors. Known as Appendix F [2], this

document regulates the imaging capabilities of the

acquisition devices such that the representation of

the fingerprint ridge structure is accurately represented

in the output image, and that the image is defensible in

criminal law enforcement. The specification imposes

limits on parameters such as the optical resolution of

the device, the amount of geometric distortion, the

imaging area, and spatial uniformity.

Face: A face image collected at a distance of 30cm

is unlikely to be interoperable with another acquired at

1m because of the presence of geometric ‘‘fish-eye’’

distortion. This would affect face recognition systems

whose internal representation of the face depends on

the relative spatial locations of the various anatomical

features. Although a nonlinear re-sampling of the

image could correct such distortion, the resulting spa-

tially varying resolution might undermine accuracy.

Another possible solution would be to formulate a

mathematical representation that is invariant to this

kind of distortion. The actual approach from the com-

mercial and user communities has been to regulate the

acquisition process via a formal technical standard.

This standard ISO/IEC 19794-5:2005 Face Image Data

requires distortion to be absent, and the amendment

ISO/IEC 19794-5/Amd. 1 Conditions for Taking Photo-

graphs for Face Image Data requires the subject to be

positioned at least 0.7m from the camera.
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Iris: The interoperability of three iris cameras was

measured in the 2005 ITIRT trial [3]. The results of

cross-matching images using a single iris recognition

package showed that cross-camera accuracy was general-

ly worse than that for single-camera matching. Possible

causes for this, which was not asserted in the report,

might be the differences in the spectra of the infra-

red illuminants and in the compression applied post

capture.
I

Interoperable Data Formats

▶Biometric data interchange standards have been

developed to advance interoperability of most of the

main biometric modalities. Standards exist for both

images and signals, and for ‘‘raw’’ sample data and

for processed data. The major extant internationally

standardized records are tabulated in Table 1. The

standards define a syntactic representation of the data

in question. These are usually compact binary encod-

ings of the data suitable for storage on a smartcard or

for transmission across a bandwidth-limited commu-

nications channel.

Any interoperability problems that could arise

from different implementations of the standards might

not be revealed until a test is run or a deployment occurs.

Although the possible problems are very specific to the

standards, the general case is that problems can be

expected when two very different sensors are used. For

example, in DNA typing, problems would occur if

the two sets of loci were disjoint. To avoid such effects,

the standards variously regulate the biometric acqui-

sition process.
Interoperable Performance. Table 1 Biometric data intercha

Standard Modality

19794-2:2005 Fingerprint minutiae

19794-4:2005 Fingerprint

19794-5:2005 Face

19794-6:2005 Iris

19794-7:2007 Signature time series

19794-8:2006 Fingerprint skeleton

19794-9:2006 Vascular

19794-10:2007 Hand geometry

19794-13:2010 (est) Voice

19794-14:2010 (est) DNA
Interoperability Testing

As various interoperability tests were staged around

the world [5, 3, 4], the Working Group 5 of ISO/IEC

JTC 1’s Subcommittee 37 on Biometrics, which stan-

dardizes biometric performance tests, started work on

interoperability testing. This culminated in 2007, in

ISO/IEC 19795-4 Interoperability Performance Testing

[6], which establishes procedures for the conduct of

tests such as those listed.

The standard requires a testing lab to establish

and identify one or more application specific figures

of merit, such as false non-match and false match

rates, and to report them in the manner presented in

Table 2. This shows the interoperability of INCITS

378 fingerprint minutia template [7] generators and

matchers. It assumes an enrollment template generated

by equipment identified by the row label is later ver-

ified against a template generated and matched by

equipment from the supplier identified in the

column headings. (Please note: The notable results

here are that the lowest false non-match error rates

are lowest when a single company executes all three

functions. That this ‘‘native mode’’ gives better perfor-

mance than the interoperable cases off the diagonal has

been attributed to idiosyncratic minutia placement

and selection strategies present in minutia detection

algorithms.)

The standard also establishes procedures for how

a certification body could use mutually low error

rates in an interoperability test as a criterion to identify

a core group of interoperable products. The standard

then addresses how to maintain a certification program

in which products are tested in regular ongoing testing
nge standards for various modalities

Processing

Template

Raw Image

Raw or Normalized 2D Image

Raw or Polar Image

Multivariate signal

Processed image

Raw Image

Binary silhouette Image

Raw Signal

Type Signal
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campaigns spanning perhaps several years, and in

which there might be systematic changes in the diffi-

culty of the test (due to environment, for example).
Sufficiency of a Biometric Data
Interchange Standard

Biometric data interchange standards support inter-

operability by allowing developers to implement pro-

ducts producing and processing records conforming to

a known format. Such standards define the syntactic

and semantic representations of the data. For example,

a depth value in a 3D face image might be encoded

as unsigned integer, but the precision might be com-

mercially important; if one supplier can accurately

determine depth to within 0.1 mm, then they would
Interoperable Performance. Table 2 Cross-vendor interoper

algorithms evaluated in NIST’s MINEX [4] minutia interoperabi

false match rate of 0.01, for single finger verification on a larg

V

A

Provider of enrollment template A 0.0136 0.0

B 0.0218 0.0

C 0.0357 0.0

D 0.0207 0.0

E 0.0236 0.0

G 0.0300 0.0

Interoperable Performance. Figure 2 Testing the sufficiceny

corpus are converted to both proprietary and standardized b

then these are recognized by comparison subsystems from th
lose accuracy if the standard provides only for depth

resolutions of 0.5 mm.

Together, the consensus specifications established

in a data interchange format standard might offer

less accuracy than a totally unconstrained repre-

sentation of the biometric data, and the quantifi-

cation of such a loss goes to the sufficiency of a

biometric data interchange standard. A point to be

noted here is this terminology is that adopted in the

international biometric interoperability performance

testing standard [6] by answering the question, ’’does

standardized data offer accuracies approaching that of

unconstrained, nonstandard representations?’’.

Figure 2 depicts an offline testing methodology

for sufficiency. The MINEX I study [4] quantified

sufficiency for the (x, y, y, type) encoding of the min-

utiae defined in INCITS 378 [7]. The excerpted results
ability for a subset of the minutia detection and matching

lity baseline. The values are false non-match rates at a fixed

e offline database

erification template and matcher provider

B C D E G

549 0.0458 0.0225 0.0641 0.0417

251 0.0385 0.0173 0.0402 0.0192

428 0.0225 0.0204 0.0519 0.0348

357 0.0301 0.0140 0.0485 0.0316

365 0.0340 0.0225 0.0301 0.0286

291 0.0447 0.0205 0.0390 0.0129

of a data interchnage standard. The samples from a fixed

iometric data blocks (pBDBs and sBDBs, repsectively) and

e same suppliers.



Interoperable Performance. Table 3 False non-match rates at fixed rate of 0.01 for fingerprint verification algorithms

using fully proprietary and formally standardized templates. The proprietary accuracies would only be available in an

interoperable application if the images were exchanged

Kind of template

Provider of template generator + matching algorithm

A B D E G

Proprietary 0.0089 0.0189 0.0089 0.0251 0.0047

Standard 0.0136 0.0251 0.0140 0.0301 0.0129
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of Table 3 show that proprietary implementations out-

perform the standard representation by less than the

variation between interoperable pairs observed in

Table 2.
I

Summary

Although interoperability can be supported by plac-

ing appropriate specifications on the various com-

ponents, particularly sensors, biometric recognition

performance tests are sometimes the only means of

quantifying interoperability. More importantly, accu-

racy testing is the most operationally relevant measure

of interoperability.
Related Entries
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▶Performance Testing

▶ Standards
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Intraclass
Intraclass refers to different instances of the same sub-

ject seen under different viewing conditions, illumina-

tions, etc. Ideally, the extracted features should be

similar for different instances of the same subject.

▶On-Card Matching
Intricated
Intricated is having many complexly arranged ele-

ments. A secret key and fingerprint minutia are intri-

cated into a template so that it is not possible to get the

key or the minutiae from the template.

▶ Fingerprints Hashing
Intricated Biometrics
▶ Fingerprints Hashing
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Intrinsic Dimensionality of a
Manifold
Intrinsic dimensionality of a manifold is the minimum

number of parameters necessary to parameterize a

manifold.

▶Manifold Learning
Intrinsic Direction of Fingerprint
A unique direction that is defined by the global direc-

tion variations of a fingerprint itself. It should be

possible to compute it from different fingerprints of

the same finger.

▶ Fingerprint Features
Intrinsic Distance
Intrinsic distance is the length of geodesic between two

points on a manifold. It is also referred to as geodesic

distance.

▶Manifold Learning
Intrinsic Failure
Intrinsic failure is the security lapse due to an incorrect

decision made by the biometric system. A biometric

verification system can make two types of errors in

decision making, namely, false accept and false reject.

A genuine (legitimate) user may be falsely rejected by

the biometric system due to the large differences in the

users’ stored template and input biometric feature sets.

These intra-user variations may be due to incorrect

interaction by the user with the biometric system

(e.g., changes in pose and expression in a face image)

or due to the noise introduced at the sensor (e.g.,

residual prints left on a fingerprint sensor). False
accepts are usually caused by lack of individuality or

uniqueness in the biometric trait, which can lead to

large similarity between feature sets of different users

(e.g., similarity in the face images of twins or siblings).

Both intra-user variations and inter-user similarity

may also be caused by the use of non-salient features

and non-robust matchers.

▶ Security Issues, System Design
Invariant–Covariant
A function is invariant under a certain family of trans-

formations if its value does not change when a trans-

formation from this family is applied to its argument.

A function is covariant when it commutes with the

transformation, i.e., applying the transformation to the

argument of the function has the same effect as apply-

ing the transformation to the output of the function.

A few examples may help to explain the difference. The

area of a 2D surface is invariant under 2D rotations,

since rotating a 2D surface does not make it any smal-

ler or bigger. But the orientation of the major axis of

inertia of the surface is covariant under the same

family of transformations, since rotating a 2D surface

will affect the orientation of its major axis in exactly

the same way. Based on these definitions, it is clear that

the so-called local scale and/or affine invariant features

are in fact only covariant. The descriptors derived from

them, on the other hand, are usually invariant due to a

normalization step.

▶ Local Image Features
Iris
The iris consists of muscle tissue that comprises of a

sphincter muscle that causes the pupil to contract and a

group of dilator muscles that cause the pupil to dilate.

The back surface is covered by a layer of pigmented

epithelial tissue. The outer edge is attached to the sclera.

▶Anatomy of Eyes

▶ Iris Image Data Interchange Formats, Standardization

▶Template Protection
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Definition

An iris acquisition device is a device that acquires an iris

image and compares and matches it to a collection of

other iris images. Consumer enthusiasm and technolo-

gical advancement have fostered the creation of many

types of iris acquisition devices that vary in many

dimensions. The following essay, surveys and reports

iris acquisition devices that exist in the market today.
Introduction

Today, the popularity of iris acquisition devices is

gaining momentum mainly due to the fact that they

are considered perhaps the most accurate way to iden-

tify a human. In addition, iris acquisition devices have

the ability to accommodate a large group size, return

responses faster than any other security metric, and

adapt and utilize a range of advancing technological

resources.

Many factors help determine the performance and

popularity of an iris acquisition device. The heart of a

device is represented by the ▶ iris recognition algo-

rithm, and the resulting accuracy is evaluated with a

combination of performance metrics, including false

acceptance rate (FAR) and false rejection rate (FRR).

The most popular algorithm in use today was invented

by iris recognition pioneer John Daugman [1]. The

response time of an algorithm is also an important

factor in determining the overall popularity of such

systems.

Like any young technological product, iris recogni-

tion systems have been drastically evolving, driven

both by consumer demands and technological
improvements. Today, a differentiating factor amongst

iris recognition systems is the variance in the product

form.

Current iris recognition systems vary in terms of

size, weight, ▶ focal distance, and hardware and soft-

ware portability. The advancement of technology has

dramatically impacted iris recognition systems, pro-

viding the opportunity to create smaller, more portable

autonomous systems. However, the need for larger and

more powerful traditional systems still exists. For ex-

ample, in an airport setting where space and power are

not limitations, the primary objective is having the

most secure system possible.

The current deployment of iris recognition systems

ranges from government to industrial to even private

use. Other uses are automated international border

crossing, airport and aviation security, database and

computer access, hospital access, and countless other

private industrial settings. For example, in the UK, five

airports are currently using iris recognition systems for

security. In the United Arab Emirates, the largest sys-

tem is employed to prevent deportees from re-entering

the country illegally, with over ten billion iris compar-

isons performed daily. An in-depth list of deployments

is given by Daugman [2].

This chapter summarizes the key aspects of the iris

recognition systems that are deployed or available for

deployment at the present time. The objective here is

not to perform a rigorous performance analysis of

current iris recognition systems, but to survey and

report on information that is publicly available.

When specific information is not available, comments

are made on the highlights of each iris recognition

system. In particular, sufficient information was not

always available to report system performance. Addi-

tionally, knowledge of the recognition algorithm that is

employed by the iris system is not always available.

Besides commenting on the key aspects, the current

deployment of each iris system, including a represen-

tative quotation when appropriate is also highlighted.
Iris Acquisition Devices

The following list of iris acquisition devices is in alpha-

betical order. Table 1 lists the iris products while giving

brief comments about each one. To our knowledge,

this information is comprehensive; however there

may be some products that are inadvertently not listed

below.
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Product About

Authenticam™
DT120

Highly accurate, portable, affordable, designed for PC authentication purposes, utilizes the
Daugman recognition algorithm

BM-ET200 Unit works in standalone mode or can be networked with other security devices, recognition
results in 0.3 s, utilizes the Daugman recognition algorithm

BM-ET330 Portable, 5 lbs, 150–183 cm focal distance, dual eye, recognition in less than 1 s provides voice
guidance, utilizes the Daugman recognition algorithm

HIIDE™ Series 4 World’s first hand-held, small and lightweight 2 lbs, 3 ounces, 8’’-10’’ focal distance, multi-modal
enrollment and recognition device, stand-alone or with a PC, utilizes the Daugman recognition
algorithm

Iris642 DSP processor based embedded system, small and lightweight for versatile use

Iris on the Move™ Walk-through portal, extremely low false match rate, ability to identify up to 20 moving subjects
per minute, fewer constraints on users than any other iris recognition system

IrisAccess 4000 Intuitive visual user interface; both eyes are captured virtually simultaneously; multi-factor
authentication, utilizes the Daugman recognition algorithm

iCAM 4000/4010 Compact, 5 lbs, 10.2–14.2 in. focal distance, low profile, designed with architectural aesthetics in
mind, utilizes the Daugman recognition algorithm

iCAM 4100/4110 Compact, 5 lbs, 10.2–14.2 in. focal distance, includes a keypad accepting up to 10 digit PINs
affording an additional level of two factor authentication, utilizes the Daugman recognition
algorithm

IrisGuard IG-H100 Handheld iris recognition camera with USB interface, 750 g, 12–30 cm focal distance, versatile
design, utilizes the Daugman recognition algorithm

IRISPASS-M Designed to be connected to a PC, 11 lbs, fully automatic, 2-eye, 10–24 in. focal distance, intuitive
user interface, voice guidance, identification is complete in less than 1 s after image acquisition,
utilizes the Daugman recognition algorithm

I SCAN 2 Durable and compact, held directly to eyes, 1 lb, compatible with known iris matching algorithms

HBOX Embedded in ‘‘through-put environments,’’ IR based, unobtrusive, real time, recognizes at a
distance of 1–2 m and in motion at up to 3 m/s

JPC1000 Snaps to your computer, focal distance 15 cm, 80 g

JPC1500 Desktop device, focal distance 30 cm, 400 g

Mobile-Eyes Hand-held tethered dual-iris capture device, weighs 2.8 lbs, held directly to eyes

Neoris 2000 Standard camera system which incorporates the company’s unique stereo camera technology that
captures iris and face images at the same time

PIER-T™ Rugged handheld device that allows the operator to both enroll and identify individuals tethered
to a host PC or laptop, 12 ounces, utilizes the Daugman recognition algorithm

PIER™ 2.3 Rugged hand-held device, 16.5 ounces, 4–6 in. focal distance, enrollment and identification
performed on handheld, utilizes the Daugman recognition algorithm
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Authenticam™

The Panasonic ‘‘Authenticam™’’ DT120 is an iris rec-

ognition system that is lightweight, compact, and has

an iris capture distance of 19–21 in. An example is

illustrated in Fig. 1. It utilizes a version of the Daugman

[1] recognition algorithm to make this system highly

accurate. It is designed to work with a host PC, pre-

venting unauthorized access using what is called

‘‘▶Private ID™’’ recognition software.
‘‘The Panasonic Authenticam addresses the core

issues of helping an organization diminish or eliminate

the costs of password management, reduce the risks of

privilege and policy management, and increase the

security of a private key. In addition to providing

security for information access applications, the iris

recognition system camera can be used for video con-

ferencing and online collaboration.’’ [3]

There are multiple product offerings with the

base BM [4] Authenticam™ name. The BM-ET200



Iris Acquisition Device. Figure 1 An example of the

Panasonic Authenticam DT120 iris recognition

system (from http://www.eyenetwatch.com/iris/

panasonic-authenticam.htm).

Iris Acquisition Device. Figure 2 An example of

the Panasonic BM-ET 330 (from http://panasonic.co.jp/pss/

bmet330/en/).
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[4] unit works in standalone mode or can be net-

worked with other security devices. The claim is that

the BM-ET200 has recognition results in 0.3 s. A dif-

ferent model, the BM-ET330, shown in Fig. 2, also

provides recognition in less than 1 s while providing

voice guidance. The BM-ET330 captures both eyes

simultaneously. It can accommodate a range from

150 to 183 cm and weighs approximately 5 lbs. Both

models utilize the Daugman [1] recognition algorithm.

The performance is scientifically evaluated in an inde-

pendent study performed by the International Biomet-

ric Group [5].
HIIDE™ Series

The HIIDE™ [6] is known as the world’s first multi-

modal hand-held enrollment and recognition device.

Illustrated in Fig. 3 is the small and lightweight

HIIDE™ Series 4. The Series 4 model weighs only

2 lbs, 3 ounces and the focal distance is 8–10 in. It

employs the highly accurate Daugman 2Pi algorithm

[1]. Because this series was first designed for the US

Department of Defense, it can enroll up to 10,000

biometric portfolios. The HIIDE™ can operate while

connected to a PC. It can also operate fully in
stand-alone mode, therefore not requiring processing

power from a PC. Additionally, it has the ability to

connect to USB devices, including live-scan devices,

passport or card readers or an external keyboard

and mouse.

‘‘The device can operate in extreme and rugged

mobile environments, as well as on a desktop con-

nected to a host personal computer or network. This

makes it ideal for mobile identification of individuals

on the battlefield, at border checkpoints, in airports, in

detention centers, and for checking individuals against

known watch lists in addition to naval and coast guard

applications.’’ [6]
Iris

The Iris642 [7] is the only known DSP processor based

embedded system. Because of its embedded nature, it

is small, lightweight, and versatile. This system is com-

patible with third party cameras and can also work in a

networked LAN. The Iris642, although a small device,

has the ability to do face and iris recognition together.

The Iris642 employs a sophisticated algorithm that has

resulted in very good recognition scores.

‘‘IriTech uses a variable multi-sector analytic meth-

od that selectively utilizes only the good portions of the

captured image. Even if the image of the eye is adversely

http://panasonic.co.jp/pss/bmet330/en/
http://panasonic.co.jp/pss/bmet330/en/
http://www.eyenetwatch.com/iris/panasonic-authenticam.htm
http://www.eyenetwatch.com/iris/panasonic-authenticam.htm


Iris Acquisition Device. Figure 3 An example of the L-1 HIDE Series 4 (from http://www.llid.com/images/stories/

solutions/hiide_product_sheet.pdf).
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affected by eye glasses, contact lenses, tears, eyelids, or

eyelashes, IriTech’s technology can operate with no

discernible performance degradation as long as at

least 50% of the image sectors are good at the time

of registration and at least 25% are good at the time of

identification. Our tests show that the FAR and FRR do

not change in any significant way.’’ [7]
Iris Acquisition Device. Figure 4 An example of the

Iris on the Move™ (from http://www.sarnoff.com/

products/iris-on-the-move).
Iris on the Move™

As the name indicates, Iris on the Move™ (IOM) [8]

provides iris detection and recognition at the ‘‘speed of

life.’’ Physically, the system permits a person to walk

through a portal (shown in Fig. 4), with normal walk-

ing speed, for iris detection and capture. It does not

require people to stop or to remove their glasses.

In addition to being the system with the least con-

straints, IOM claims to be an extremely good perform-

er with low false match rates and has the ability to

capture 20 moving subjects per minute. It also captures

and performs recognition on both eyes simultaneously.

IOM has many foreseeable applications.

‘‘IOM provides a practical and valuable solution to

a critical need for security. Transportation facilities can

depend on IOM to expedite safe and secure travel,

while secure facilities such as government buildings,

courthouses, or power plants can count on its reliable

access control to safeguard occupants. From entertain-

ment venues to office buildings, IOM’s fusion of secu-

rity and convenience ensures that the right people are

in the right place.’’ [8]
IrisAccess

The IrisAccess product line has been in existence since

the late 1990s. All IrisAccess [9] products employ the
Daugman [1] recognition algorithm. Specifically, the

IrisAccess 2200 series has been designed for high secu-

rity server rooms, safety deposit boxes, and other top

security areas. As for the level of security, it was pur-

ported to be the best at the time of its release. However,

the IrisAccess 2200 is no longer serviced, and its suc-

cessor is the IrisAccess 3000. The performance of the

IrisAccess 3000 is scientifically evaluated in an inde-

pendent study conducted by the International Biomet-

ric Group [5]. It is currently deployed by the Albany

International Airport.

‘‘After a comprehensive review of existing biomet-

ric solutions, the LG 3000 software and hardware plat-

form were chosen for its proven positive identification

and authentication of individuals gaining access to

secure areas. The technology provides ease-of-use and

an accurate audit trail of ‘who’ opens the doors, not

http://www.llid.com/images/stories/solutions/hiide_product_sheet.pdf
http://www.llid.com/images/stories/solutions/hiide_product_sheet.pdf
http://www.sarnoff.com/products/iris-on-the-move
http://www.sarnoff.com/products/iris-on-the-move


Iris Acquisition Device. Figure 5 An example of the IrisAccess 4000 (from http://www.lgiris.com/ps/products/

irisaccess4000.htm).
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just what card was used to open the doors. The LG Iris

solution has been easily integrated into our access

control system which handles over 1,000 employees

and its performance has promoted [sic] us to

explore increasing the use of the LG iris identification

solution.’’ [9]

The latest and greatest system in this product

line is the IrisAccess 4000, illustrated in Fig. 5. The

key accessories of the recent release of the 4000

include application versatility, integration flexibility,

and enrollment speed. It also captures and recognizes

both eyes simultaneously. As with any product chain

development, the feature set has become more user-

friendly.

‘‘Intuitive visual user interface enables users to

quickly position themselves for enrollment or recogni-

tion as images of both eyes are captured virtually

simultaneously. Audio prompts improve speed

of enrollment and recognition performance while a

motor-driven auto-tilt mechanism makes adjusting

the camera for proper height a simple ‘one touch of a

finger’ proposition.’’ [9]

Included in the IrisAccess 4000 product line is

the iCAM series. The iCAM4000/4010 is designed to

be compact, weighing less than 5 lbs, and the 4010

model can embed a smartcard. The iCAM4000 is ideal

for wall-mount, as it includes a motorized height adjust

and face-badging camera. The operating distance

is between 10.2 and 14.2 in. The iCAM4100/4110, in
addition to the previous features mentioned, also come

available with a keypad and LCD display for real-time

communication.

‘‘Multifactor authentication can also be delivered

by the 16-element keypad that comes standard on the

iCAM4100 unit. The authentication options afforded

by being able to configure iris authentication by left,

right, either or both eyes plus a smartcard token, and

in the case of the iCAM4100, a keypad, are simply

unmatched by any other iris recognition offering on

the market.’’ [9]
IrisGuard

The IrisGuard IG-H100 [10] (see Fig. 6) is a versatile

handheld iris recognition camera that provides a USB

interface, weighing only 750 g. The focal distance is

between 12 and 30 cm. It utilizes the highly accurate

Daugman recognition algorithm [1]. It is amenable to

accessories that make it ideal for kiosk or wall mount

applications. The IrisGuard IG-H100 is utilized

around the world in many high-level security venues

including the United Arab Emirates (UAE).

‘‘The UAE interior ministry has claimed continuing

success for its nation-wide iris-recognition network,

which includes the country’s airports in its coverage.

The system, which uses a single-eye H-100 camera

supplied by a UK-based company IrisGuard, was

http://www.lgiris.com/ps/products/irisaccess4000.htm
http://www.lgiris.com/ps/products/irisaccess4000.htm
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introduced in 2003 and has since expanded to include

140 iris-recognition stations in 22 enrollment centers

and 35 land, sea and air border points across the UAE.

The nationwide system has 1.1 million irises stored

in its database, according to the interior ministry, and

has performed 21 million iris searches for 10.5 million

persons over the past 3 years, which makes it the

largest search iris database in the world. Using this

information, the UAE identified 124,435 individuals
Iris Acquisition Device. Figure 6 An example of the

IRISGUARD IGH100 (from http://www.irisguard.com/

pages.php?menu_id=29&local_type=0).

Iris Acquisition Device. Figure 7 An example of the IRISPAS

html).
who were trying to return to the country illegally

with forged documents after deportation.’’ [10]
IRISPASS

The IRISPASS-M [11] (see Fig. 7), in similar fashion

to its competitors, provides responses in less than 1 s.

It employs the highly accurate Daugman recognition

algorithm [1]. The performance of the IRISPASS-WG

is scientifically evaluated in an independent study per-

formed by the International Biometric Group [5]. The

operational range is approximately 1–2 feet while ex-

amining at a height of 57—78 in., and the system

weighs 11 lbs. The interface is intuitive as it provides

voice guidance. The default model is designed to be

connected to a host PC, and accompanying software

is available. In the product line are IRISPASS models

that connect to mobile phones and personal digital

assistants. Like other devices, the IRISPASS-M is

employed in law enforcement, border control arenas,

and banks.

‘‘Oki Electric Industry Co., Ltd. announced its

delivery of IRISPASS1-M iris recognition cameras

to Pictet & Cie Bank, a private bank in Geneva,

Switzerland. Pictet chose IRISPASS-M to bring the

highest level of security at the entrances of high pro-

tection room in its newly constructed headquarter

office buildings.’’ [11]
ISCAN

ISCAN 2 [12] is a durable (shown in Fig. 8) and

compact dual iris capture scanner, weighing just over

1 pound. It is designed for both military and civilian
S-M (from http://www.oki.com/jp/FSC/iris/en/m_features.

http://www.irisguard.com/pages.php?menu_id=29&local_type=0
http://www.irisguard.com/pages.php?menu_id=29&local_type=0
http://www.oki.com/jp/FSC/iris/en/m_features.html
http://www.oki.com/jp/FSC/iris/en/m_features.html
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security programs. Software support is available to

provide active mobile enrollment. It is also compatible

with many known iris matching algorithms. The scan-

ner is ANSI INCITS 379–2004 and ISO/IEC 19794–6

compliant. The ISCAN technology is also embedded

into multi-modal offerings.

‘‘Cross Match will display several other offerings

from its comprehensive product portfolio at the BCC,

such as its ▶Multimodal Jump Kits incorporating

the ISCAN 2. Jump Kits are used by the military,

law enforcement, and other first responders for rapid

enrollment as well as for local or remote identifica-

tion.’’ [12]
I

HBOX

The HBOX [13] is a revolutionary device that supports

a continuous flow of 30 people a minute at up to

3 m per second through a portal like structure. It is

multi-modal by recognizing both face and iris. It

allows a person to walk through an area while captur-

ing their iris at a distance of 1–2 m. It is a compact

device that is 48 � 12 � 12 in., and can be mounted

anywhere. An illustration is provided in Fig. 9.
Iris Acquisition Device. Figure 9 An example of the

HBOX (from www.hoyosgroup.com).
JPC

The Jiris JPC1000 [14] advertises a capability to recog-

nize an eye signature in 1 s and includes software to

encrypt or decrypt data. The focal distance is approxi-

mately 15 cm and it weights approximately 80 g. The

device snaps onto the top of a PC, as illustrated in
Iris Acquisition Device. Figure 8 An example

of the ISCAN2 (from http://www.crossmatch.com/

I_SCAN_2.html).
Fig. 10. The desktop model, the Jiris JPC1500 [14]

weights approximately 400 g and has a focal distance

of 30 cm.
Mobile-Eyes

Mobile-eyes [15] [16] is a hand-held tethered dual-iris

capture device illustrated in Fig. 11. The device weighs

2.8 lbs and incorporates proprietary software.
Iris Acquisition Device. Figure 10 An example of

the JIRIS1000 (from http://www.engadget.com/2006/03/

06/jiris-jpc1000-brings-iris-scanning-home/).

http://www.crossmatch.com/I_SCAN_2.html
http://www.crossmatch.com/I_SCAN_2.html
http://www.engadget.com/2006/03/06/jiris-jpc1000-brings-iris-scanning-home/
http://www.engadget.com/2006/03/06/jiris-jpc1000-brings-iris-scanning-home/


Iris Acquisition Device. Figure 11 An example of the

MobileEyes (from www.retica.com).

Iris Acquisition Device. Figure 12 An example of the

PIER 2.3 (from http://www.securimetrics.com/solutions/

pier.html).

768I Iris Acquisition Device
‘‘They employed new developments in opto-

electronics and digital signal processing to create an

unprecedented eye biometric system that successfully

exploits the full potential of the eye into a four-

phase solution that captures, collects, stores, and

identifies biometric information. As a transitional or

augmented security option, the Retica system integra-

tes iris information into a multi-modal solution that

co-manages sequential, tightly-coupled retinal and iris

data. Retica’s unique patented technology fuses together

the images of the retina and the iris, thus significantly

facilitating data collection and resulting in higher

accuracy.’’ [15]
Neoris

The Neoris 2000 [17] uniquely captures both iris and

face images simultaneously with its standard camera

system. The uniqueness is provided by its face posi-

tioning technology and large focal depth. It is easy to

use, and the resulting images are of high quality.

The module is based on IriTech proprietary high-

performance real-time image capture algorithm.

‘‘Virginia-IriTech, Inc. announced that the com-

pany has successfully completed the National Institute

of Science and Technology (NIST) independent Iris

Challenge Evaluation (ICE) 2006 with excellent results.

The NIST ICE tests grant strong independent third

party validation to IriTech core iris identification tech-

nology. Recently the Neoris 2000 was certified by the

Chinese government for sale in China. The Chinese

government test required a FAR of less than or equal to

0.0001%, an FRR less than or equal to 0.05% and an
enrollment error rate of 0.000%. The NEORIS 2000,

running on IriTech algorithms, easily passed these

tests, achieving an FAR, FRR, and enrollment error

rate of 0.000%. IriTech is the first iris identification

company to achieve this Chinese certification.’’ [17]
PIER™

The PIER™-T [18] is a ‘‘rugged’’ hand-held device

providing both enrollment and identification func-

tions. Operating tethered to a PC, the device is capable

of storing dual iris information for up to 200,000

individuals. The system weighs only 12 ounces, while

incorporating state-of-the-art lenses, dual-band illu-

mination, a high-resolution video sensor, and a liquid

crystal display screen. The PIER™ performs an image

check, and forwards high-quality images to the host

PC for recognition. The recognition software employs

the industry leading Daugman 2Pi algorithm [1]. This

popular and capable system is employed in a wide

range of locations, including the Department

of Defense (DOD), Biometric Fusion Center (BFC),

the Office of Law Enforcement Technology Commer-

cialization (OLETC), and the Space and Naval Warfare

Systems Command (SPAWAR).

The PIER™ 2.3, illustrated in Fig. 12, handles iris

recognition on the handheld unit. The system weighs

http://www.retica.com
http://www.securimetrics.com/solutions/pier.html
http://www.securimetrics.com/solutions/pier.html
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only 16.5 ounces with a focal distance of 4–6 in. It has

also been utilized for security purposes.

‘‘The PIER™ 2.3 has been incorporated into

the Biometric Application Toolset (BAT), a multi-

biometric security platform developed by the US Army,

Battle Command Lab. The BAT is being distributed to

the Navy, Marines, Army, and other DOD and non DOD

agencies. The PIER™ 2.3 is also a critical component in

the Rapid Deployment Force ‘‘Jump Kit.’’ [18]
I

Conclusions

Iris acquisition devices continue to grow in popularity,

driven mainly by their extraordinarily high accuracy.

While the companies that produce these systems have

adapted to the desires of their consumers, the ever-

changing marketplace has caused these companies to

produce a wide range of products that vary in many

dimensions. As can be seen with the list above, current

iris recognition systems vary in terms of accuracy,

size, weight, focal distance, form factors, hardware

and software portability, and most importantly, cur-

rent deployment. As computer and camera technology

continues to improve and consumer demand con-

tinues to evolve, it is expected that future iris recog-

nition systems will become more accurate, smaller,

and more portable causing a large increase in future

deployment.
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Definition

An iris database is a collection of images that contain,

at a minimum, the iris region of the eye. The images

are typically collected by sensors that operate in

the ▶ visible spectrum, 380–750 nm, or the near infra-

red spectrum (NIR), 700–900 nm. The visible spec-

trum image can be stored as a color image or as an

intensity image. The NIR image is always stored as an

intensity image.
Iris Databases. Figure 1 Example images from CASIA

V1.0 and CASIA-IrisV3 ‘‘Interval’’ databases. (a) An image

from CASIA v1.0 (b) An image from CASIA-IrisV3.
Introduction

Successful biometric research requires the analysis of

human data. For biometric researchers to demonstrate

the effectiveness of proposed iris segmentation/

recognition techniques and allow fair comparisons

with existing methods, publicly available iris databases

are required. The perfect iris-image database should be

sufficiently large, consist of images collected from a

large and heterogeneous group of subjects, and contain

images that depict noise factors typically encountered

in real world applications. In the following sections,

several publicly and freely available iris-image data-

bases are described.
CASIA V1.0, V2.0, IrisV3 Databases

The CASIA Iris Image databases were collected by the

Institute of Automation at the Chinese Academy of

Sciences. The original CASIA database (CASIA V1.0)

is one of the oldest publicly available systems for eval-

uation of the iris biometric modality; hence, CASIA

V1.0 has been widely used for research and evaluation.

The database [1] consists of 756 320 � 280 intensity

iris images of 108 eyes captured using a sensor devel-

oped in-house. The images are stored as 8 bit gray-level

JPEG files. Seven images are captured from each eye

during two sessions, three during the first session and

four during the second. The data acquisition environ-

ment was highly constrained which limited the noise

types present in the image to iris occlusion from eye-

lids and eye lashes. It was determined that the iris

images of the CASIA V1.0 database had been photo-

graphically edited by replacing the pupil region with a

circular region of uniform intensity [2], which is illu-

strated in Fig. 1. Therefore, this version of CASIA

should not be used for algorithm development or

evaluation.

The CASIA V2.0 database was released later and

contains 2,400 images collected from 60 eyes. Twenty

images per eye were collected using two different sen-

sors, the in-house sensor and the OKI Iris Pass system.

In order to receive copy of CASIA V2.0, CASIA V1.0

must be downloaded first.

The CASIA-IrisV3 database consists of 22,051

images captured from 1,500 eyes of more than 700

subjects, organized three separate databases of dis-

joint subject groups [3]. The ‘‘Interval’’ subset contains

2,655 images captured from 396 eyes of 249 subjects.

The 320 � 280 intensity images were captured indoors

using a self-developed sensor that was used in CASIA

V1.0 during two acquisition sessions over at least a
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1 month time. Included in the ‘‘Interval’’ database is an

unedited – the pupil region was not replaced to mask

the NIR illumination pattern – superset of the CASIA

V1.0 database. An example of the unedited image can

be found in Fig. 1(b).

The ‘‘Lamp’’ database contains 16,213 images cap-

tured from 819 eyes of 411 subjects. The 640 � 480

grayscale images were captured indoors with varying

illumination with the OKI IRISPASS-h sensor during a

single acquisition session. The ‘‘Twins’’ database con-

tains 3,183 images captured from 400 eyes of 200

subjects. The 640� 480 intensity images were captured

outdoors using the OKI IRISPASS-h sensor during a

single acquisition session.
I

UPOL Database

The UPOL iris-image database was constructed at the

University of Palackého and Olomouc in the Czech

Republic [4, 5]. The database contains 384 768 � 576

color images captured from 128 eyes of 64 subjects

(three images per left and right eye). The images are

stored as 24-bit color images in the PNG image format.

Unlike the other iris-image databases, the UPOL data-

base was acquired using an optometric sensor (TOP-

CON TRC50IA optical device connected to a SONY

DXC-950P camera). As a result, the images are of

very high quality and are practically noiseless, as

shown in Fig. 2.
BATH Database

The University of Bath, UK, iris-image database is

composed mainly of images captured from its ethni-

cally diverse staff and students [6]. The database
Iris Databases. Figure 2 Example images from UPOL iris

image database.
contains over 16,000 1280 � 960 iris images collected

from each eye of 800 subjects. A commercial version of

this database claims to be twice as large. The sensor

used for data collection was the ISG LightWise LW-1.3-

S-1394. Illumination was provided using an array of

infrared LEDs positioned such that reflections were

confined to the pupil area within the image, which is

illustrated in Fig. 2. An infrared pass filter was used to

reduce environmental light reflections. The researchers

were able to achieve high quality images using this

framework. The main sources of noise within the

images are due to the occlusion of the iris by eyelids

and eye lashes (Fig. 3).
ICE2005 and ICE2006 Databases

The Iris Challenge Evaluation (ICE) was conducted and

managed by the National Institute of Standards and

Technology (NIST) and consisted of an iris recognition

challenge problem distributed to various participating

universities, government agencies, and biometric tech-

nology companies [7]. The broad goals of ICE were

to facilitate the development of iris recognition tech-

nology along with assessing the state of iris recognition

systems.

The ICE2005 database consists of 2,953 640 � 480

intensity images with varying numbers of images ac-

quired from each subject [8]. The images are 8-bit gray-

level in the TIFF image format. Exactly 1,425 images
Iris Databases. Figure 3 Image from the Bath iris-image

database demonstrating the illumination array centered

in the pupil [6].
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were captured from the right eye of 124 subjects and

1,528 images were captured from the left eye of 120

subjects. Images of both eyes of 112 subjects were

collected resulting in 132 total subjects used to con-

struct the database. Images were collected using an LG

Iris Access 2200 iris camera. There are representations

of various types of image noise within the database

such as iris occlusion, poor focus, and partially cap-

tured eyes as illustrated in Fig. 4. A larger database of

over 65,000 images captured from 356 subjects in

planned for release. The new database is a superset of

the ICE2005 database and the later constructed

ICE2006 database.
MMU1 and MMU2 Databases

The Multimedia University constructed a relatively

small data set of 450 320 � 240 grayscale iris images

designated as MMU1 [9]. These images were captured

using the LG IrisAccess 2200 camera. Examples images

are shown in Fig. 5. Information regarding the number

of eyes and subjects used to construct this database is

not provided.

A new database of 995 iris images captured from

100 subjects from Asia, Middle East, Africa, and
Iris Databases. Figure 4 Example images from ICE iris

database.

Iris Databases. Figure 5 Example images from MMU1 iris

database.
Europe, using the Panasonic BM-ET100US Authenti-

cam. Five images were taken from each of the subjects’

eyes. Five left eye images were discarded due to a

subject’s diagnosis of cataract disease. As with many

of the previous databases, noise present in the images

was mainly due to iris occlusion.
WVU Non-Ideal Iris and Off Axis/Angle
Databases

The West Virginia University constructed two iris-

image databases [10, 11]. The iris portion of the data-

base consists of 3,099 480 � 640 grayscale iris images

captured from 244 subjects. The images were captured

during a single session using the OKI IrisPass-H sen-

sor. The number of images from each eye varies

between three and six. This database was constructed

as a non-ideal iris-image database, and therefore, con-

tains a considerable number of images that depict

various types of noise, which could be encountered

in a real world scenario. Noise types include iris occlu-

sions, varying illumination, poor focus, and off-angled

images. An example image from this database is shown

in Fig. 6(a).

Most iris databases are composed of frontal view

iris images. The second WVU iris database is com-

posed of images of irises taken at various angles. The

database was captured using two sensors. The first set

of images was captured using the Sony Cyber Shot

DSC F717 camera used in infrared mode. There are

268 2560 � 1920 RGB images captured from 19 sub-

jects during a single acquisition session. During data

collection the camera was positioned at the angles of

0, 15, and 30 degrees. The second set of images for this

database was captured using a monochrome camera.
Iris Databases. Figure 6 Example images from WVU

non-ideal iris image and off-axis/angle iris image

databases. (a) Non-ideal iris image example (b) Off-angle

iris image example.
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There are 597 720 � 480 intensity images captured

from 73 subjects during a single acquisition session.

As with the other image set, the camera was positioned

at the angles of 0, 15, and 30 degrees during data

collection. An example iris image captured at 15

degrees off-angle is shown in Fig. 6(b).
I

UBIRIS.v1 and UBIRIS.v2 Database

In order for researchers to test the robustness of

iris segmentation/recognition algorithms when using

noisy images, University of Beira Interior constructed

an iris database of noisy iris images [12, 13]. The

images were captured using the Nikon E5700 camera.

There are 1,877 2560 � 1704 RGB images captured

from 241 subjects during two acquisition sessions. To

introduce noise to the process, the location of the

acquisition session was changed to facilitate changes

in natural luminosity, contrast, reflections, and focus,

as shown in Fig. 7.

Recently, the University of Beira Interior made

available a second version of the UBIRIS database,

UBIRIS.v2, which currently consists of 11,000 images

and is only available to participants in the ▶Noisy Iris

Challenge Evaluation (NICE) Part I contest [14].
Summary

Iris-image databases are crucial to the development

and advancement of iris-based biometrics. These data-

bases along with prescribed evaluation methodologies

allows for direct comparison of iris segmentation/rec-

ognition algorithm performance. The databases will

increase in size and complexity of iris-image until all

algorithmic problems, inefficiencies, and shortcomings

have been fully addressed.
Iris Databases. Figure 7 Example images from UBIRIS.v1

iris database [12].
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Synonyms

Iris camera; Iris image capture device; Iris reader; Iris

camera; Iris scanner
Definition

An iris device is a device that acquires images of the iris

for use in biometric recognition. More commonly re-

ferred to as iris cameras, readers or scanners, these

devices typically include some form of active ▶ near

infrared illumination (NIR), since the current iris rec-

ognition algorithms were designed for NIR images of

the eye. In addition, the device may include features to

aid subjects in properly aligning their eyes in the field

of view, spoofing countermeasures, and on board pro-

cessing of the acquired images.
Introduction

Iris recognition is one of the strongest biometrics

available [1–4]. Iris recognition is a strong biometric

because: (1) the human iris is a complex structure with

a high degree of randomness; (2) the iris is protected;

(3) the iris is accessible; and (4) the structures of the

iris that are used for iris recognition are stable, from

early childhood on – in the absence of illness or injury

that disrupts the iris tissue.

The first mention of iris patterns as a biometric was

likely a paper by Bertillon [5]; several others subse-

quently suggested iris patterns as a biometric and the

idea was a plot element in the 1983 James Bond film

Never Say Never Again [6]. However, it was not until

the early 1990’s that John Daugman developed a prac-

tical algorithm for iris recognition based on Gabor

wavelets [7]. Minor variants on the Daugman algo-

rithm remain the dominant algorithms in commercial

iris recognition systems as of 2008, though there are

vigorous research efforts into alternative algorithms
[8]. The commonly used name for the Daugman algo-

rithms in current use is ▶ iris2pi.

Further discussion of algorithms may be found in

other entries that cover the algorithmic aspects of iris

recognition in detail. This entry is concerned with

devices that can acquire images suitable for iris recog-

nition. The reader may well ask, ‘‘What is a suitable

image?’’ That question depends on the algorithms used

for recognition, and the determination of the mini-

mum quality image for a given application is still a

matter for research. However, ▶ANSI and ▶ ISO have

published standards [9] for iris image quality that are

generally accepted for commercial applications. From

the standpoint of iris image capture device design, the

most important of these image quality metrics are

� ▶Resolution: 100–200 ▶ pixels across the iris

� Signal to noise ratio: 40 dB, 100:1. For 8 bit pixels

exercised over the full dynamic range, the noise

would be 
  2 digital numbers (DN). Equiva-

lently, 7 bits should be meaningful.

� ▶Contrast: For 8 bit pixels, 90 gray levels of sepa-

ration between the iris and sclera and a 50 gray

levels of separation between iris and pupil

� Operating ▶wavelength: 700–900 nm
Brief History of Iris Image Acquisition
Devices

The first commercial iris image acquisition device was

the System 2000 from IrisScan [10] in 1995. In the past

decade numerous iris image acquisition devices have

been introduced, as can be seen from the partial listing

in Table 1. To the author’s knowledge, there has not yet

been a comprehensive, publicly available evaluation of

the relative merits of these devices. One of the most

comprehensive tests to date was conducted by the

International Biometrics Group (IBG) for the US

government. There have also been tests of iris recogni-

tion algorithms – rather than the acquisition devices –

such as the Iris Challenge Evaluation (ICE) competi-

tion sponsored by the NIST.

The IBG study compared one product each

from Panasonic, OKI and LG. A subsequent IBG

study [11] reported on the IrisGuard H100. The lack

of more comprehensive iris device evaluations is

understandable. Iris recognition works quite well;

its failure rates are low. Hence, statistically significant



Iris Device. Table 1 Partial List of Iris Image Acquisition Devices

Vendor Model Year introduced

IrisScan System 2000 1995

OKI IrisPass1-S 1998

LG 2200 1999

Sensar R1 1999

Iridian Authenticam™ 2000

Panasonic BM-ET-100 – Authenticam™ 2001

LG 3000 2002

OKI IrisPass1-WG 2002

Panasonic BM-ET-500 2002

IrisGuard H-100 2003

Securimetrics Pier™ 2.2 2003

Securimetrics Pier™ 2.3 2003

OKI IrisPass-H 2004

Panasonic BM-ET-300 2004

LG 4000 2005

OKI IrisPass1-M 2005

Sarnoff Corporation Iris On the Move™ 2005

Securimetrics HIIDE™ 2005

IriTech Neoris 2000 2006

Jiris JCP1000 2006

Panasonic BM-ET-330 2006

Hoyos Hbox™ 2007

Panasonic BM-ET-200 2007

IrisGuard AD-100 2008
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probes of the false match, false non-match, failure to

enroll and failure to acquire rates require many indi-

vidual trials, making such tests difficult and expensive.

The addition of evaluations of ease of use and suitabil-

ity for various scenarios only compounds the problem.

Another non-technical issue is also important: the

iris recognition marketplace is intensely competitive –

so much that some of the rivals have had protracted

legal battles in the courts. Under these conditions,

convincing a vendor to participate in a public test

whose results might show that their product is in

some way inferior to a competitor’s product can

be far more difficult than any technical challenge.

There have been unpublished evaluations of iris

devices by government and private industry – some

of which may be obtained by request to the device

manufacturers.

This entry will trace the operation of a generic

iris image acquisition device – from ▶ photons to
identity – and discuss the metrics that are important

for evaluation of such devices in generic deployment

scenarios.
Photons to Iris Image

Iris recognition starts with photons of light from am-

bient illumination or from an active illuminator within

the iris recognition system. The photons impinge upon

the subject iris and are partially reflected. The reflected

photons fall into two categories, specular ▶ reflection

and diffuse reflection. The specular reflection is due to

the impedance mismatch between eye tissue and air;

the physics is the same as that for the reflections that

you see in a piece of otherwise clear window glass or a

bathroom mirror. Since the eye is curved, it acts as a

convex mirror and reduces the apparent size of objects

seen in its specular reflections (Some automobile rear
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view mirrors are convex and carry the warning

‘‘Objects may be closer than they seem’’).

The diffusely reflected fraction is the ▶ albedo of

the iris and is of the order of 10% in the near infrared

(NIR). The diffusely reflected fraction varies across the

iris – that is what gives rise to the patterns seen in an

iris image. The diffusely reflected photons are scattered

in all directions. The lens of the iris camera will inter-

cept a small fraction of the scattered photons; the

fraction is, to first order, the area of the lens divided

by the area of a half-sphere centered on the subject

with a radius equal to the camera-to-subject▶ standoff

distance. Mathematically, the fraction is

1

2

rlens

xcamera�subject

� �2

;

where r is the lens radius and x is the camera to subject

distance. A lens 1 cm in diameter at a distance of 10 cm

will capture approximately 0.1% of the light diffusely

scattered from an iris (or any other object).

The lens will focus an image of the iris, and the

variation of its diffuse reflection, onto an imaging

sensor. The sensor could be a piece of photographic

film. In practice, for iris imaging devices it is almost

always a piece of silicon in the form of either a ▶CCD

imager or a ▶CMOS imager. The most important

characteristics of the imager are its pixel size, the num-

ber of pixels, and the ▶ quantum efficiency (QE) of

the pixels.

The pixel size of the imager sets the ▶ focal length

of the lens. The iris is approximately 1 cm across for

most of the population. ANSI standards require 100 to

200 pixels across the iris; this corresponds to a pixel

size at the iris of the order of 100 microns. The pixel

size at the imager is of the order of 10 microns. Hence,

the lens system of the camera must magnify (minify)

the iris by a factor of approximately 0.1. A desired

resolution at the iris and a known imager pixel size

define the ▶magnification required. The magnifica-

tion and the camera-to-subject standoff distance then

specify the focal length of the camera lens through the

simple lens equation

M ¼ q

p

1

f
¼ 1

p
þ 1

q
;

where M is the magnification, f is the focal length, and

p and q are the subject-to-lens and lens-to-sensor dis-

tances respectively. For a magnification of 0.1 and a

standoff distance of 2 meters, the lens will have a focal

length of ~200 mm. Note that the smallest possible

lens-to-sensor distance, q, is f. Hence these considera-

tions also drive the minimum size of the camera/lens

package.

The number of pixels in the imager sets the field of

view of the imager. For 100 pixels across the iris, the

minimum is 100 pixels across the imager – assuming

perfect alignment of the subject iris with the camera. In

practice, rather more is required. Cameras designed for

200 pixels across iris frequently use imagers that are

640 � 480 – well more than twice the minimum

number of pixels. Cameras designed for large stand-

offs, such as the Iris on the Move™ system, use much

larger (2048 � 2048) imagers to relieve the alignment

requirements on both the subject and the system.

The quantum efficiency of the sensor is the fraction

of photons that are converted into electrons. More

electrons give a larger signal and better ▶ signal to

noise ratio (SNR). The number of electrons is just the

quantum efficiency times the number of photons de-

livered to the sensor pixel. The primary noise sources

for sensors used in iris systems are ▶ read noise and

▶ shot noise. Read noise is introduced each time a

pixel is read; the read noise power is to first order

constant for a given camera configuration. Shot noise

is the result of electron/photon statistics – the random-

ness with which photons arrive and are converted to

electrons. Shot noise is proportional to the square root

of the number of electrons. Iris sensors normally oper-

ate in a shot noise dominated regime, so doubling the

quantum efficiency of the sensor will improve the SNR

by the square root of 2, rather than 2. The number of

photons depends on both the rate of delivery and the

shutter time of the camera. Matey et al published an

analysis of the tradeoffs between SNR and other sys-

tems design decisions [12].

If there were no concern about the safety of the

subject, the SNR of the system could be made arbi-

trarily large by simply increasing the illumination level

on the subject iris. However, the eye is sensitive to

illumination – even illumination that it cannot see.

The American Conference of Governmental Industrial

Hygienists (ACGIH) provides guidelines, ▶ threshold

limit values (TLVs), for acceptable exposures to
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infrared illumination [13]. The guidelines cover both

the irradiance (W/cm2) at the eye as well as the radi-

ance (W/sr-cm2) of the source. Any iris imaging system

needs to take these guidelines as well as the various

national and international safety standards and regula-

tions into account.

In summary, photons travel from the illuminator

to the eye and are reflected, specularly and diffusely, to

the camera lens. The camera lens focuses the photons

onto the camera sensor; the sensor converts the

photons to electrons; the number of electrons is

measured and the measurement is converted to a digi-

tal signal that is then assembled into a digital image for

subsequent processing by a biometric recognition al-

gorithm that can determine if the eye in front of the

camera has previously been enrolled in the database

against which current eye is being compared.
Iris Image Acquisition Device System
Metrics

Resolution, SNR, contrast and operating wavelength

and the resulting image quality are crucial metrics for

the iris images, as noted in the introduction. However,

iris image acquisition devices must fit into systems

deployed in the real world – and in the real world,

those metrics are not enough.

Ease of use, robustness, reliability, ▶ interoperabil-

ity and cost are several of the real world systems

metrics that are important considerations for iris ac-

quisition devices. Each of these could be the topic of an

entry on its own. The article now briefly discusses ease

of use.

In the author’s opinion, the primary factors for

ease of use are ▶ capture volume, ▶ residence time

and subject motion. Capture volume is the volume

over which a good quality iris image can be reliably

captured. Small volumesmake it difficult for subjects to

present their irises to the system. Residence time is

the length of time that a subject must hold their iris

within the capture volume. Small volumes with long

residence times are particularly difficult. Large volumes

with short residence times are almost always better.

Subject motion is complicated. How much motion

is tolerable depends on direction, longitudinal or trans-

verse to the camera line of sight. Tolerance to motion

can be improved by using short shutter times, at the
expense of SNR. In general, systems that allow for

subject motion are easier for the subjects to use.

Ease of use can be traded off in some circum-

stances. If the users of a system are well trained and

habituated, the system can be successful, even if it is

very difficult for a first time user.
Related Entries

▶Biometric Data Interchange Format, Standardization

▶Biometric System Design

▶ Iris Encoding and Recognition

▶ Iris Image Quality

▶ Iris Recognition, Overview
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Definition

Iris digital watermarking is a specific type of ▶ digital

watermarking that involves the imperceptible embed-

ding of data (the watermark) in iris images (the host)

in order to impart additional security to an iris bio-

metric system. The watermark data can be strings of

random digits; system specific identifiers, such as or-

ganization names and file creation dates; or biometric

feature vectors. The additional security offered by the

watermark may result from using it as a mechanism for

proving the authenticity of the host image, tracking the

chain of custody, or incorporating a multimodal bio-

metric option. Iris digital watermarking or ▶ biomet-

ric watermarking, in general, is typically used in

tandem with ▶ cryptography, and importantly, pro-

vides a layer of security that remains intact after the

decryption process. A functional iris digital watermark

should not degrade the performance of the host bio-

metric system it protects.
Introduction

Coined by Tirkel et al. [1], the term ‘‘digital water-

mark’’ originated in 1993. Unlike their physical pre-

decessors (i.e., currency, copyright marks, etc.), digital

watermarks are usually imperceptible to the human

eye, requiring the use of machines for detection and

extraction from the host media in which they are

embedded. Digital watermarking is closely related to

the field of ▶ steganography where secret messages are

clandestinely embedded in larger, unrelated messages

[2]. The benefits of digital watermarking are somewhat

broad and can fall under one or more areas of interest.

Traditionally, digital watermarking has been employed

as a form of copyright protection that allows an
individual to prove (or disprove) ownership by embed-

ding and extracting data suitable for verification. Ad-

ditionally, digital watermarking can be applied to

verify the authenticity of digital media, provide copy-

right protection or reproduction management, and

offer another mechanism for content description [3,

4]. Biometric watermarking is a particular case of

digital watermarking where the content of the water-

mark or the host data (or both) are biometric entities.

This imparts an additional layer of authentication to

the underlying system. Figure 1 shows examples of the

four main classes of digital watermarking.

A digital watermark can be characterized using attri-

butes such as visibility, blindess, and symmetry. Kutter

provides a comprehensive description of these attri-

butes athttp://www.watermarkingworld.org/. Forma-

lized definitions of these attributes are outlined in

Table 1. The issue of visibility or perceptibility relates

to whether or not the watermark is noticeable by

humans. The issue of blindness indicates whether or

not the process of detection and extraction of the

watermark relies on the original host data or other

auxiliary data. Auxiliary data in semiblind systems

can include information dealing with encoding mod-

ule input parameters, encoding locations, or any other

information used to assist in the detection and or

extraction processes. Finally, watermarking systems

must make use of keys, either private similar to sym-

metric cryptographic systems or public key pairs akin

to asymmetric cryptosystems. Although biometric

watermarking system characterized by any combina-

tion of these attributes is plausible, an invisible, blind,

and asymmetric system is arguably the most difficult to

conceive.

The quality of a biometric watermarking system

can be evaluated based on five measures: impercept-

ibility, robustness, fragility, capacity, and performabil-

ity. Table 2 describes each of these five measures in

depth. Although the characteristics imperceptibility,

robustness, fragility, and capacity apply to digital

watermarking, performability is specific to biometric

watermarking.
Algorithms

Overview

A generalized iris digital watermarking framework can

be broken into three main operating modules:

http://www.watermarkingworld.org/


Iris Digital Watermarking. Table 1 Description of digital watermarking types applicable to biometric watermarking

Type Description

Visible The embedded information is noticeable by humans, either visually in pictures or
audibly in sound files

Invisible The embedded information is either completely imperceptible or not easily
noticeable by humans without the assistance of machines

Public (blind) The original host file is not required to detect/extract the embedded watermark

Semiblind The embedded watermark is detected with additional information
relative to the watermark encoding scheme, but does not require the
entire original host file

Private (nonblind) The embedded watermark can only be detected/extracted with both the watermarked
image and the original host file

Symmetric (Private Key) A secret / private key is utilized to encode the watermark in the
host image. This requires communication of the secret key between the
sender and the receiver

Asymmetric (Public Key) A public–private key pair is used to encode the watermark in the host file.
The use of a public key pair prevents the need to communicate a secret key
between sender and the receiver, as only the public portions of the key pairs
need to be available. Optionally, this method can ensure image integrity and
nonrepudiation of origin

Iris Digital Watermarking. Figure 1 The four classes of digital watermarking (a) Biometric watermark embedded in

biometric host data; (b) Biometric watermark embedded in nonbiometric host data; (c) Nonbiometric watermark

embedded in biometric host data; (d) Nonbiometric watermark embedded in nonbiometric host data. Cases (a)–(c) are

examples of biometric watermarking. The images of Lena and the Mandrill are reproduced from the USC-SIPI Image

Database.
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encoding, decoding, and authentication (see Figure 2).

The first operating module, the watermark encoder,

embeds the watermark into the host data. The water-

mark can range from a random binary bit sequence to

biometric eigen-face coefficients utilized for face recog-

nition. Additionally, the encoding module may embed a

secret key that enables the system to determine the

embedding location of the watermark in the host data.

The second operating module, the watermark decoder,

takes the watermarked host data as input and processes

them to extract the watermark. If a secret embedding
Iris Digital Watermarking. Table 2 Characteristics of biome

Characteristic

Imperceptibility The degree to which the host image is visi
watermark. Watermarked images that bear
said to contain imperceptible watermarks.
scope of human perception. In these cases
reveal that an image contains a watermark
to the original host image)

Robustness The ability of the watermark to be detecte
subjected to any variety of transformations

Fragility The ability to detect any file transformation
an inability to extract the watermark or fro

Capacity The amount of information that can be emb
function of the type and size of the host da
watermarking system in terms of detectab

Performability The degree to which the watermark affects
a minimum, biometric watermarks should
biometric system(s) that they protect. Here
quality, efficiency of computation time, etc
affect the performance of the biometric sy

Iris Digital Watermarking. Figure 2 Generalized block diagr

indicate the main watermarking modules, while dashed block

algorithm specific.
key was used during the encoding module, then the

same key is required for the decoding process. Depend-

ing on the algorithm employed, the original host data

may also be used explicitly to extract the watermark.

The final module, authentication, compares the recov-

ered watermark with the original watermark to estimate

the similarity between the two sets. If the watermark is

biometric in nature, then this biometric data can be

optionally used by the authentication system.

Watermark encoding and decoding techniques fall

into two categories: spatial and transform domain
tric watermarking systems

Description

bly altered or distorted due to the presence of the
no visible difference from their original host image are
Rarely, this characteristic may be evaluated beyond the
, a question is raised as to whether or not it is possible to
through the aid of a machine or program (without access

d and extracted after the watermarked image has been
(i.e., compression, filters, affine transformations, etc.)

by way of the watermark. The detection might result from
m an extracted watermark that in not intact

edded in the host data of a watermarking system. This is a
ta that are being watermarked and the robustness of the
ility and extractability

the performance of the biometric system(s) in question. At
not have an adverse affect on the performance of the
, performance can entail matching error rates, image
. Some biometric watermarking schemes may positively
stem

am of an iris digital watermarking process. Shaded blocks

s/lines indicate optional areas of processing that are
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techniques. Each category has specific advantages

and disadvantages, but in general, spatial domain tech-

niques have lower complexity and offer higher robust-

ness to biometric replacement attacks in which the

host biometric region is replaced by an imposter’s

biometric data. On the other hand, transform domain

techniques are of higher complexity, but are more

robust to geometrical attacks such as rotation, scaling,

and translation.

A number of studies have investigated different

approaches to biometric watermarking. Ratha et al.

[5] propose an algorithm for biometric watermarking

to counter replay attacks in on-line fingerprint authen-

tication systems. The authors modify the least signifi-

cant bit (LSB) of the indices obtained as a result of

applying wavelet scale quantization (WSQ) compres-

sion. The indices are chosen based on an embedding

key that is used as a seed for a random number gener-

ator. Similarly, Noore et al. [6], utilize the Discrete

Wavelet Transform (DWT) to watermark fingerprint

images with face and demographic text data. In [7],

Low et al. watermark a nonbiometric host image with

off-line handwritten signature in the form of a discre-

tized bit string. They experiment with three water-

marking techniques: LSB, Code Division Multiple

Access (CDMA) spread spectrum in the spatial domain,

and CMDA spread spectrum in a transform domain

such as the DWT. Their experiments show that CMDA

in the wavelet domain provides the most robust results

with respect to jpeg compression and image quality. In

[8], a Quantization Index Modulation (QIM) water-

marking technique is utilized to encode dynamic and

static handwriting signature features into the host sig-

nature from which the features are extracted. Embed-

ding locations are chosen based on the analysis of the

signature in two transform domains: Ridglet and

Radon-DCT (Discrete Cosine Transform). The authors

conclude that although the static and dynamic fea-

tures by themselves provide modest levels of security,

fusion of both feature types improves security and

performance.
Watermark Encoding and Decoding

The encoding portion of an iris digital watermarking

scheme involves embedding the watermark in the orig-

inal host data. The decoding portion, on the other

hand,involves extracting the watermark from the host
image. Bartlow et al. [9] present a watermarking tech-

nique modified from [10], based on amplitude modu-

lation in the spatial domain to protect iris biometric

systems. In the work, iris images are watermarked with

simulated voice feature vectors. Equations 1, 2, and 3

correspond to the amplitude modulation scheme pre-

sented by Kutter in [10]. Equation 4 represents the

adaptation required to watermark iris biometric data

as presented in [9].

� Encoding- Amplitude modulation encodes the bits

of the watermark bymodifying pixel intensities in

images. Pixel intensities are modified bychanging

values Bij, in the blue channel of the RGB spectrum.

These modifications occurmultiple times over the

extent of the image and are either additive orsub-

tractive, depending on the value of the bit, s,and its

proportionality to the luminance, Lij, as seen in

Equation 1.

Bij Bijþð2s�1ÞLijq

Bij 2 embedding
locations

s2bit
Lij 2Luminance

q2Encoding strength

8>>>><
>>>>:

ð1Þ

� Decoding- The decoding process estimates the

pixel value in the ‘‘encoded’’image by considering

a linear combination of the pixels in a cross-shaped

neighborhood around the encoded bit as seen in

Equation 2.

Bij ¼ 1

4c
ð
Xc

k¼�c
Biþk;j

þ
Xc

k¼�c
Bi;jþk � 2BijÞ c 2 neighbor sizef

ð2Þ

After decoding and arriving at an estimated pixel Bij
value, the difference between the estimated and water-

marked pixelsis averaged over all embedding locations

for that bit. Finally, thesign of this value indicates the

bit (if positive = 1, if negative = 0). However, to

attenuate robustness to compression, cropping, and

affine transformations, an adaptive thresholding meth-

od is introduced: two bits, 0 and 1, are appended to

every bit stream as seen in Equation 3.

bit¼ 1;db>
d0þd1

2
0;otherwise:

 d0average diff of all 0 reference bits
d1average diff of all 1 reference bits
dbaverage diff of current bit

8<
:

ð3Þ
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� Adaptation to Iris Biometric Data- Iris images for

use in biometric systems are usually captured in the

grayscale format. The encoding process has to be

modified to take this into consideration. For exam-

ple, [11] modifies the encoding equation to take in

local image information such as gradient, PGM, and

standard deviation, PSD, of the cross-shaped neigh-

borhood to adjust the watermarking strength.

Parameters A and B aid in adjusting the strength

of the standard deviation and gradient while mod-

ulating the bits to be encoded (for all experiments

A ¼ 100, B ¼ 1,000). The following equation

represents this adaptation.

PWMði; jÞ ¼ Pði; jÞ þ ð2s � 1ÞPAV ði; jÞq

1þ PSDði; jÞ
A

� �
1þ PGMði; jÞ

B

� � ð4Þ

PAV represents the average pixels in a 5 � 5 cross-

shaped neighborhood centered around i, j. Finally,

the reconstructed image can be calculated by replacing

the watermarked bit with the pixel value obtained from

Equation 2.

A crucial issue while encoding the watermark in the

host image relates to the degree to which it affects

the matching performance of the host biometric. The

algorithm in [9] further extends [11] by including a

parameter that indicates the proportion of the water-

mark encoded in the iris region of the image. Figure 3

visualizes the variation of this parameter by examining

two extreme cases: the top row shows the most percep-

tible case and the bottom row shows the least percepti-

ble case tested in the work. This location-specific

encoding option may be beneficial not only to iris

digital watermarking but also to biometric watermark-

ing in general.
Application Scenarios and Attacks

Depending on the intended use, iris digital water-

marking systems are vulnerable to a series of applica-

tion scenarios and attacks. Application scenarios can

be thought of as normal usage patterns that a water-

marking system should realistically be expected to

withstand without serious side effects on the perfor-

mance of any of the characteristics outlined in Table 2.

Examples of application scenarios can include, but

are not limited to database (re)compression, partial
progressive decoding, and noisy channel transmission.

Each of these scenarios can have an effect on one or

more characteristics of a biometric watermarking sys-

tem. For instance, a highly compressed watermarked

image may lead to difficulties in the watermark extrac-

tion process, as a compression algorithm often signifi-

cantly alters an image, which in turn alters the

watermark itself. Occasionally, operational environ-

ments supporting slow data transmission speeds may

force a system to progressively decode portions of an

image as it becomes available. This type of application

scenario can have an effect on the robustness of the

extraction process, the performance of the biometric

system(s) in question, and potentially the impercept-

ibility of the watermark. In [9], the authors study the

robustness of the decoder after the application of these

three scenarios. Figure 4 shows the performance of the

decoder as measured by the mean percentage bit error

considering 27 different parameter combinations of

the watermarking system (parameters are specifically

outlined in Table 3).

The graphs demonstrate the ability of the tech-

nique to tolerate the application scenarios, and in

many cases, with little or no effect on the extraction

process. Although this is just one example, many tech-

niques such as those described in [3] are capable of

tolerating scenarios similar to these. However, the

expected application environment should be consid-

ered while selecting a specific watermarking technique,

since a given technique may be well-suited for one

application scenario but ill-suited for another [3].

Perhaps the most notable difference between the

general field of digital watermarking and biometric

watermarking is its relationship to the measure of per-

formability. For obvious reasons, a biometric water-

marking system must minimize the effect it has on the

biometric system it protects. Issues such as matching

performance, image quality, computational efficiency,

and even legal repercussions must not be ignored. A

biometric watermarking system should not negatively

impact on the main modules of the biometric system(s)

in question, viz., the feature extraction and matching

modules. It should be noted that this effect could po-

tentially propagate itself in two ways. Perhaps, the most

obvious effect is when the host data are used in a

biometric system; here, the presence of the watermark

may impede the feature extraction process by adding

noise to the image. Naturally this can lead to inaccura-

cies in the matching module. A less obvious effect is
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Iris Digital Watermarking. Figure 4 Robustness of the decoder in three application scenarios: (a) Varying levels of

J2K compression (measured in bits per pixel (bpp); (b) J2K compression + varying levels of zero mean white Gaussian

noise (variances shown in legend); and (c) J2K compression + varying levels of partial progressive decoding

(% decoded shown in legend).
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Iris Digital Watermarking. Table 3 Watermarking parameter combinations examined in [9]. The first item of the 3-tuple

represents the degree of pixel modulation; second item represents the number of times the watermark is embedded in

the image; the third item represents the proportion of the watermark embedded in the iris portion of the host image.

Further explanations can be found in [9]

1

0.10-
60-
0.67 2

0.10-
60-
0.33 3

0.10-
60-
0.00 4

0.10-
40-
0.67 5

0.10-
40-
0.33 6

0.10-
40-
0.00 7

0.10-
20-
0.67 8

0.10-
20-
0.33 9

0.10-
20-
0.00

10 0.06-
60-0.67

11 0.06-
60-0.33

12 0.06-
60-0.00

13 0.06-
40-0.67

14 0.06-
40-0.33

15 0.06-
40-0.00

16 0.06-
20-0.67

17 0.06-
20-0.33

18 0.06-
20-0.00

19 0.04-
60-0.67

20 0.04-
60-0.33

21 0.04-
60-0.00

22 0.04-
40-0.67

23 0.04-
40-0.33

24 0.04-
40-0.00

25 0.04-
20-0.67

26 0.04-
20-0.33

27 0.04-
20-0.00
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when a biometric feature vector serves as a watermark

and is also used in the authentication stage. In this

scenario, accurate extraction of the watermark is of

utmost importance as small changes in the values of

feature vectors can lead to significant changes in authen-

tication results. Although little or no work exists study-

ing the latter of the two effects, we once again refer

to [9] where the effect of an amplitude modulation

watermarking system on biometric image quality

and matching performance is studied. Figure 5 shows

the effect on image quality and matching performance

of the underlying iris biometric system. The graphs

compare the quality and matching results from the

original host images with the images resulting after

watermark extraction and image reconstruction, and

the tables provide averaged results across the entire

dataset.

Much like the three application scenarios men-

tioned earlier, these results provide one example of a

biometric watermarking system that does not produce

unwanted side effects. In particular, image quality is

seldom affected with any level of significance and

matching rates also do not suffer from performance

degradation.

Application scenarios aside, biometric watermark-

ing systems must also deal with attacks or malicious

attempts to subvert a system. Such attacks may involve

removal, alteration, or replacement of the embedded

watermark found in an image. Although some of these

may fall in the application scenarios described earlier,

examples of attacks include rotation, scaling, transla-

tion, cropping, masking, and (re)watermarking. As in

the case of application scenarios, different biometric

watermarking techniques can handle different attacks

with varying degrees of success. Although not specific
to biometric watermarking, Zheng et al. provide an

excellent description of so-called RST (rotation, scal-

ing, translation) invariant watermarking algorithms

in [3]. Often the ability to handle a given attack lies

in the domain in which a biometric watermarking

technique operates. For instance, rotation attacks are

handled with greater ease by watermarking techniques

that operate in transform domains (i.e., Fourier, DCT,

wavelet, etc.). This type of attack is arguably more

difficult to handle by techniques that operate in the

spatial domain. Conversely, techniques in the spatial

domain are more likely to handle biometric replace-

ment attacks (i.e., replacing the watermarked iris or

face region of an image), as the biometric ROI can be

easily located in the spatial domain, but more difficult

to localize in a transform domain.
Patents, Tools, and Commercial
Products

Searching the United States Patent Office (USPO) for

‘‘Biometric Watermarking’’ yields well over 100 entries

of varying relevance to the field. The most notable is

titled ‘‘Biometric Watermarks’’ and was issued in 2001

to GTE Service Corporation [12]. This patent outlines

the general schematic for a biometric watermarking

system. A more recent patent issued to Canon by

the USPO relates specifically to iris digital watermark-

ing and includes an embedded watermarking system

in a camera with the intended purpose of associating

a photographers biometric information with images

taken by the camera [13]. There are a few freely

available tools related to digital watermarking and

biometric watermarking exist. For example, Stirmark



Iris Digital Watermarking. Figure 5 Effect of watermarking on biometric performability: (a) Compares the quality of 200

original host data images vs. the reconstructed images after watermark extraction; (b) Compares the EER across 100

users before watermarking and after image reconstruction; (c) Average image quality before watermarking and after

reconstruction; (d) Average EER (%) before watermarking and after reconstruction across 100 subjects.
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Benchmark 4.0 is a software tool designed to perform

robustness testing of image watermarking algorithms

[14]. Another tool, Checkmark, also provides a bed

of attacks to evaluate the robustness of a watermark-

ing system [15]. Many commercial entities offer a

broad range of digital watermarking solutions that

can potentially fall under the category of biometric

watermarking. Perhaps the most widely known of

such companies is DigiMarc Corporation based in

Oregon, US.
Summary

Iris digital watermarking is a technique utilized in

tandem with cryptographic systems to protect iris bio-

metric images. The watermarking scheme can be used

as a mechanism for proving file authenticity, tracking

chain of custody and data reproduction, or affording

a multimodal biometric option, thereby offering an

additional layer of security after data decryption.

A wide range of watermarking systems exist that
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operate in any one of several domains (spatial, Fourier,

DCT, wavelet, etc.). A system’s expected application

profile and threat model will dictate the choice of

watermarking algorithm, the nature of the watermark

to utilize, and a viable set of algorithmic parameters.

Carefully making these decisions will result in a formi-

dable layer of postdecryption protection without

compromising on the performance aspects of the un-

derlying biometric system(s).
Related Entries

▶Binding of Biometric and User Data

▶Biometric Encryption

▶Biometric System Design
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Gabor Wavelets
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Synonyms

Daugman algorithm; IrisCode; Iris2pi
Definition

The method of encoding iris patterns that is used in all

current public deployments of iris recognition technol-

ogy is based on a set of mathematical functions called

▶Gabor wavelets that analyze and extract the unique

texture of an iris. They encode it in terms of its phase

structure at multiple scales of analysis. When this

phase information is coarsely quantized, it creates a

random bit stream that is sufficiently stable for a given

eye, yet random and diverse for different eyes, that iris

patterns can be recognized very rapidly and reliably

over large databases by a simple test of statistical inde-

pendence. The success of this biometric algorithm may

be attributed in part to certain important properties of

the Gabor wavelets as encoders, and to the simplicity

http: //doi.acm.org/10.1145/357744.357902
http: //doi.acm.org/10.1145/357744.357902
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and efficiency of searches for matches when pattern

information is represented in terms of such phase bit

strings.
Introduction

Different biometric modalities use diverse methods for

encoding the features on which they depend. The over-

all goal in designing biometric encoders is always the

same – maximizing between-class variation while

minimizing within-class variation – but very different

strategies have been developed for representing the

chosen features and their random variation. Even with-

in a single modality, such as fingerprint recognition,

some methods compile lists of discrete minutiae coor-

dinates and angles, while other methods encode global

ridge-flow descriptions. Facial representations may

be two-dimensional (‘‘appearance-based’’) or three-

dimensional ‘‘model-based’’); may try to achieve some

degree of pose-invariance, illumination-invariance,

or expression-invariance; and the scale of analysis may

be global (e.g., eigenface decompositions) or focused

on local, high-resolution, detail (e.g., skin texture anal-

ysis). In the case of iris patterns, one does not find any

easily enumerated lists of distinct features like the fin-

gerprint minutiae, nor indeed any sets of features that

even possess established names. Rather, one finds a

plethora of textures spanning many scales of analysis,

a wide spatial frequency range, and which might be

described using many candidate image statistics.

Whereas a natural feature to mark in a fingerprint is

a ridge ending or a bifurcation, in the case of iris

patterns we find random features with no simple geo-

metric or graph-like structure, that adhere to no taxon-

omy, and that are defined across many different size

ranges. We need a language rich enough to capture

subtleties like ‘‘mottling’’ and ‘‘modulation,’’ yet simple

enough that all instances are commensurable, and pow-

erful enough to deliver extremely rapid and confident

recognition decisions. What might be such a language?

Most naturally occurring textures lend themselves

well to mathematical description in terms of both

spectral (Fourier-based) and spatially localized proper-

ties. The spectral language captures predominant

undulations and quasi-coherences that are the essence

of texture, whose interwoven appearance reveals why

this word shares a root with ‘‘textile:’’ texere – ‘‘to

weave.’’ But at the same time, spatial variation in the
undulations destroys any simple coherence, and breaks

symmetries. To describe natural textures effectively

and efficiently, for example in order to build a biomet-

ric recognition system based on iris textures, we need

a language that is able to specify both the spatial and

the spectral properties well.

The upper panels of Fig. 1 illustrate two human iris

patterns, Caucasian on the left, oriental on the right.

They reveal rich and unique textural structure, and

also characteristic ethnic differences in their appear-

ance. For example, the Caucasian iris has finer detail

and longer radial correlations, whereas the oriental

iris has somewhat coarser and more isotropic (less

elongated) features, which are also more concentrated

near the pupil. All of these general aspects of iris

patterns – their undulatory textures, their spatial vari-

ation, their statistical structure in correlation distances,

and, above all, their rich randomness, motivated the

author nearly two decades ago to develop a method for

encoding and recognizing iris patterns using a particu-

lar mathematical family of localized undulations called

▶Gabor wavelets. Today, that algorithm [1, 2] remains

the method used in all public deployments of iris

recognition. This chapter reviews some of the essential

aspects of this approach to image analysis, encoding,

and pattern recognition.
Gabor Wavelets as a Complete
Image Basis

Classical signal processing divided broadly into analy-

sis performed in the signal domain (time in the case of

time-varying signals like sound waveforms, or space in

the case of images), versus analysis performed in the

Fourier domain in which the signal is represented as a

linear combination, or superposition, of global sinu-

soids. Although a bedrock of signal processing, Fourier

analysis is hampered by its excessively global perspec-

tive: in the Fourier domain, every coefficient associated

with a particular frequency component summarizes

the presence of that frequency component over the

entire extent of the signal. Similarly, every local point

in the signal has an influence on every coefficient in the

Fourier domain (i.e., on every frequency component).

This extreme, reciprocal, mapping ‘‘from local to global’’

and ‘‘from global to local’’ across the two domains

is reflected in the fact that their respective independent

variables are themselves reciprocals: time versus



Iris Encoding and Recognition using Gabor Wavelets. Figure 1 The upper two panels illustrate the rich textures

found in the iris, and also some typical ethnic differences: on the left is a Caucasian iris, and on the right an oriental iris.

Some significant differences include the longer radial correlation distances and finer detail in (especially blue-eyed)

Caucasians, and the tendency of oriental eyes to have more of their iris texture near the pupil. The lower two panels

show reconstructions of the upper two images using only a sparse discrete set of 2D Gabor wavelets, incorporating

just six spatial frequencies (one octave apart) and six orientations, as seen in Fig. 2.
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(temporal) frequency, as Hertz (1/s); and for images,

space versus spatial frequency (cycles per degree).

In the 1980s a number of mathematicians, most of

them Francophone, began to formulate a new synthesis

of these two domains based on a kind of compromise

between the global (spectral) and local (punctate) per-

spectives. It came to be called wavelet theory (translated

from a French neologism “ondelette’’ – a small wave).

The key insight of wavelet theorists like Yves Meyer [3]

and Ingrid Daubechies [4] was that it was possible to

construct complete representations of functions by

superposition of a set of universal elementary
functions all of which were dilates and translates of a

single shape on finite support, forming a dyadic set.

Typically the successive dilation (stretching) factors

were powers of 2, and the translation intervals scaled

reciprocally, so that self-similarity was preserved across

all scales. Originally there were five requirements for

such sets of basis functions to be deemed wavelets: they

must all be (1) dilates and (2) translates of each other;

they must have (3) strictly compact support; (4) all of

their derivatives must exist; and (5) they must be

mutually orthogonal (i.e., have zero inner products

with each other). These constraints and admissibility
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Figure 2 Visual library of real and imaginary parts of

the 2D Gabor wavelets, defined in six discrete

orientations and in six discrete frequencies that differ

from each other in one octave steps (i.e., by successive

factors of two). The lowest of the six frequencies is not

included here as it fills the entire image. This discrete set of

wavelets is the set that was used to synthesize the two iris

images as shown in the lower two panels of Fig. 1,

reconstructing the original natural images seen in the

upper two panels.
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conditions have varied over the years. But perhaps the

main legacy of this development of what is also called

multiresolution analysis was the unification of the local

and the spectral perspectives into a single framework:

as the name ‘‘wavelet’’ implies, the terms of analysis

became simultaneously local, yet frequency-specific.

One important practical manifestation of these theo-

retical developments is found in JPEG-2000 compres-

sive image encoding, which is based on a class of

wavelets developed by Ingrid Daubechies [4].

But as early as 1946 a class of wavelet-like elemen-

tary functions named logons (from the Greek word for

‘‘order’’) had been proposed by the Hungarian physi-

cist Denis Gabor [5], who also invented holography

and won the Nobel Prize in 1971. Although these

functions lack some of the stricter requirements on

wavelets, they satisfy more lax definitions and they

have certain advantages including being expressible in

closed analytic form (i.e., they can be defined in terms

of classical functions). They take the form of complex

exponentials (i.e., Fourier components) multiplied

by Gaussian envelopes, which localize them and specify

their scale. Whether or not their parameters are con-

strained to maintain self-similar profiles at all scales

(a configuration not anticipated by Gabor), these

wavelets can form a ‘‘frame’’ and can be used as a

basis for complete expansions: any signal or image

can be constructed as a linear combination, or super-

position, of such wavelets. This is illustrated in the

lower two panels of Fig. 1: those two reconstructions

were synthesized entirely from a discrete dyadic set

of self-similar complex Gabor wavelets using only six

frequencies and six orientations, as shown in Fig. 2.

The library of self-similar Gabor wavelets whose

real and imaginary parts are portrayed pictorially in

Fig. 2 differ from each other in frequency by steps of

one octave (successively doubling in frequency, while

their Gaussian widths are successively halved). They

are defined in each of six orientations. Being complex

functions, their parts have two phases: cosine (even-

symmetric) and sine (odd-symmetric). This library

emulates the architecture found in the brain’s visual

cortex, whose neural receptive fields are structured for

sequential orientation selectivity [6], size or spatial

frequency selectivity with roughly one octave half-

bandwidth and receptive field profiles [7] whose

excitatory/inhibitory inputs resemble the structures

seen in Fig. 2 with quadrature (90∘) phase-tuned

elements arranged in sine/cosine pairs [8]. Taken
together, these empirical neurophysiological observa-

tions support the ‘‘2D Gabor model’’ [9] of image

representation in the brain’s visual cortex, but practical

engineering implementation of it is complicated by the

fact that these wavelets constitute a nonorthogonal set.

Their lack of mutual independence (their nonzero

inner product) has the consequence that the coeffi-

cients needed for image expansion or reconstruction

are not the same as the coefficients obtained simply by

projecting the image onto the wavelets; they cannot be

obtained merely by filtering or convolution with the

image. A solution for finding correct expansion coeffi-

cients so that the wavelets can be used as a complete

image basis is a ‘‘relaxation network’’ [10]. This meth-

od is how the synthetic iris images in the lower panels

of Fig. 1 were constructed, using only the discrete set

of wavelets seen in Fig. 2 having six frequencies, one

octave apart (the lowest frequency wavelet being omit-

ted as it fills the entire image) and six orientations. It is
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clear that the superposition, or linear combination, of

these discrete wavelets using appropriately computed

coefficients converges faithfully to the original images

in the upper panels, up to the resolution determined by

the highest frequency wavelet used. Thus the discrete

ensemble of computed wavelet coefficients, which may

be called a complete discrete 2D ▶Gabor Transform

[10], capture all the information in the original images

and, more importantly, constitute an extremely useful

representation of it.
I

Gabor Wavelets and the Uncertainty
Principle

The evident richness of natural iris textures, as

illustrated in Fig. 1, invites description that is specific

both in spectral terms (the frequencies and orienta-

tions of interwoven undulations), and in spatially

localized terms. Yet these two goals are in mutual

conflict, because of a fundamental Uncertainty Princi-

ple [5, 9] that makes the resolution of either type of

information possible only at the expense of resolution

for the other. The Uncertainty Principle is a funda-

mental law of mathematics, not simply an empirical

problem; it can be derived as a general relationship

constraining functions and their Fourier transforms.

One particular instantiation of it is the familiar

Heisenberg Uncertainty Principle in quantum physics:

the position and the momentum of a particle cannot

be known with simultaneously unlimited accuracy,

given that its momentum is interpretable as wave-

length and therefore has spectral specificity. The

abstract form of the Uncertainty Principle asserts a

lower bound on the product of the ‘‘effective width’’

of any function and that of its Fourier transform. The

functions that uniquely achieve this lower bound, and

therefore achieve maximal specificity or localizability

in both domains at once, are the (complex-valued)

Gabor wavelets [5].

Defined in two dimensions with (x,y) interpretable

as image coordinates, these wavelets have the following

parameterized functional form [9]:

f ðx; yÞ ¼ e� ðx�x0Þ
2=a2þðy�y0Þ2=b2½ �ei u0ðx�x0Þþv0ðy�y0Þ½ �;

ð1Þ
where (x0,y0) specify the wavelet’s center position in

the image, (a,b) specify its effective width and length,
and (u0,v0) specify its modulation, which has spatial

frequency o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 þ v20

p
and orientation y0¼arctan

(v0 ∕u0). (A further degree-of-freedom not included

above is the relative orientation of the elliptic Gaussian

envelope, which creates cross-terms in xy.) The 2D

Fourier transform F(u,v) of a 2D Gabor wavelet has

exactly the same functional form, with parameters just

interchanged or inverted:

Fðu; vÞ ¼ e� ðu�u0Þ
2a2þðv�v0Þ2b2½ �e�i x0ðu�u0Þþy0ðv�v0Þ½ �

ð2Þ
Thus Gabor wavelets are self-Fourier, since f(x,y) has

the same form as F(u,v). The modulation parameters

(u0,v0) in the image domain play the role of location

parameters in the Fourier domain, specifying a wave-

let’s peak frequency and orientation sensitivity if used

as a filter. The width and length parameters a and b
which set the effective size of the Gaussian envelopes

play reciprocal roles in the two domains: the larger a

wavelet is in one domain, the smaller it is in the other,

as dictated by the Uncertainty Principle. Finally, some

further interesting properties of Gabor wavelets be-

sides their completeness (ability to be an expansion

basis for other functions, like the iris images in Fig. 1)

and their self-Fourier property, are that as a family of

functions they are closed under multiplication and

under convolution: the product of any two Gabor

wavelets is just another Gabor wavelet; and indeed

the convolution of any two Gabor wavelets is also just

another Gabor wavelet. For our present purposes, their

most useful property besides their optimal joint speci-

ficity in both spatial and spectral terms is their utility

for analyzing image structure, including defining the

phase of any element of an image since the wavelets are

complex-valued, and the utility of such descriptions

for pattern recognition.
Gabor Wavelets and the Calculus

It is clear from the functional form defining f (x,y)

above that Gabor wavelets reduce to pure Fourier

components when the Gaussian space constants (a,b)
become large. Then the use of these functions for

image analysis becomes equivalent to Fourier analysis:

the Fourier transform is just a special case of a Gabor

transform. At the other extreme, in the limit that (a,b)
become small, the functions reduce to delta functions,
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Figure 3 Analyzing and encoding signals or data using

Gabor wavelets with narrow Gaussians corresponds to

estimating a signal’s first- and second-derivatives (or finite

differences). These are approximated by convolving the

signal with the imaginary and real parts, respectively, of a

complex Gabor wavelet as shown in the right column.

Such operations correspond simply to weighting adjacent

samples algebraically (left column) with weights such as

[�1, +1] or [�1, +2, �1] as noted in 1671 by Isaac Newton

[11] in his theory of Fluxions.
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simply sampling particular points in the image. Thus,

the Gaussian scale parameter essentially creates a con-

tinuum that bridges the dichotomy between local

(point sampling) and global (Fourier) analysis, em-

bracing those classical approaches as the endpoints of

the continuum. At points between those two extremes,

the wavelets enable a kind of local spectral analysis to

be performed, extracting Fourier-like information

(e.g., phase and frequency descriptions) but in a local

region-specific fashion.

When Gabor wavelets are used as filters to convolve

with a signal, their effect depends of course on the

values chosen for their parameters. If the size of the

Gaussian is large compared with the modulation wave-

length, allowing several cycles of oscillation before

attenuation, then the complex wavelet becomes a nar-

rowband filter that allows a well-defined phase to be

assigned to each point in the output signal. Specifically,

the phase assigned to a point is the arctangent of the

ratio of the imaginary part to the real part of

the complex-valued result of the convolution with the

signal at that point. But for smaller Gaussian space

constants that allow only one or two cycles of oscilla-

tion before attenuation, the wavelets behave instead

like approximate first- and second-order differential

operators.

Figure 3 illustrates (for the one-dimensional case)

how convolution with such wavelets approximates tak-

ing the first or second derivative of a signal. The real

and imaginary parts of a Gabor wavelet having such a

parameterisation are plotted in the first and third

panels. The second panel plots the second finite differ-

ence kernel, which is the discrete filter that should be

convolved with a discrete signal (a signal defined only

on a discrete domain, such as the integers or a regular

sampling lattice) in order to obtain the discrete ap-

proximation to a second derivative. There is an obvi-

ous resemblance between the continuous and the

discrete functions plotted in the first and second

panels. Likewise, the fourth panel plots the discrete

approximation for a first-derivative operator, called

the first finite difference kernel, which resembles the

imaginary part of a Gabor wavelet (third panel). The

definitions of the finite difference approximations

provided on the left in this Figure correspond to

Isaac Newton’s [11] formulae for estimating the first

or second derivatives (“Fluxions’’) of functions by

combining adjacent sample values on regular unit

sampling intervals, using weighting coefficients such
as [�1, +2, �1]. In summary, the information extrac-

ted by convolving a signal with Gabor wavelets having

parameterizations as indicated in Fig. 3 is closely

related to the information obtained when the machin-

ery of the Calculus is used to extract the first and

second derivatives of a function. These properties con-

tribute to the richness of the repertoire deployed by

using complex-valued Gabor wavelets for image cod-

ing and analysis.
Gabor Wavelets for Iris Recognition

The goals of pattern recognition are, of course, rather

different from those of image encoding or analysis

perse. However, when designing a pattern recognition

system, it is nice to know that the image representation

chosen is in principle complete, meaning that all in-

formation is available in the encoding as demonstrated

by reconstructibility (Fig. 1), and also that interesting

operations are implementable in the encoding such as

extracting phase structure or derivatives (Fig. 3).
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Figure 4 Constructing an IrisCode from phase analysis of

iris texture. The two surfaces plotted are the real and

imaginary parts of one 2D Gabor wavelet. Projecting a local

area of the iris image onto these functions and integrating

their products produces a complex number, whose real and

imaginary parts specify a phasor in the complex plane as

illustrated. Phase angle can be quantized at a chosen

resolution accuracy (in this diagram, two bits for four

quadrants) to create a phase-based IrisCode. The four

equations give the projection integrals that specify the bits.
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Interest in phase structure and in the zero-crossings

of bandpass signals was invigorated three decades ago

by some surprising proofs and critical demonstrations

of complete signal reconstructibility from either type

of information alone [12]. Phase and zero-crossings

information are closely related: when a signal has been

bandpass-filtered (so that it has zero mean) and digi-

tized, then the most-significant-bit (MSB) of its sam-

ples corresponds to the most fundamental phase

information, the sign bit; and of course this bit tracks

the signal’s zero-crossings. In order to conjoin such

signal descriptions with representations on which

decisions about pattern identity can be made, we

need a kind of conceptual signal-to-symbol converter.

One very efficient way to bridge this gap is to deploy

the multi-scale Gabor wavelets as ▶ logico-linear

operators, constructing bit streams from the quantiza-

tion of the phase information that the wavelets extract.

In the case of iris recognition, such a bit stream is

called an ▶ IrisCode, and it allows identification

decisions to be based on a simple test of statistical

independence [1].

Figure 4 illustrates how the paired real and imagi-

nary parts of 2D Gabor wavelets can be used to con-

struct a phase demodulation code. Local patches of the

image are projected onto both parts of the complex-

valued wavelets, and each pair of resulting inner pro-

ducts constitute the real and imaginary parts of a

complex number. Such a number has a phase and

a modulus corresponding to its polar components in

the complex plane, as portrayed in the phasor diagram.

If one chose to resolve phase angles to an accuracy of

only four quadrants as shown, then one would be

extracting just two bits of phase information per wave-

let. How finely should phase be quantized when

encoded? How spatially fine in size (how high in fre-

quency) should the discrete set of wavelets get? Both of

these questions relate to the number of degrees-of-

freedom one wishes to encode, and to how accurately

one can realign encodings of subsequent images of the

same iris in correspondence with an earlier image of it.

Sharpening the finest scale of detail extracted makes

the code for a given iris more detailed and more

unique (thereby further decreasing the likelihood of

False Matches), but by increasing the amount of min-

ute detail that must be matched, such a strategy also

increases the odds of failures-to-match (False non-

Matches) due to uncertainties or inadequacy in regis-

tration and alignment.
Code design issues also involve other aspects of the

Gabor wavelet parameterization, including their band-

width, which is determined by the effective number of

oscillatory cycles contained within the Gaussian enve-

lope before attenuation. More cycles cause narrower

bandwidth: filters that are more sharply tuned. Related

to this issue is the presence of a DC term (nonzero

area or volume in the integral) in the real part of a

Gabor wavelet if its bandwidth is broad (has only

few cycles within the Gaussian); this is undesirable

because it introduces code bit dependence on the

overall brightness of the image, which ought to be

irrelevant. However, the DC term can be nulled to

zero when determining the sampling rate of the dis-

crete taps which discretize the continuous wavelet, or

alternatively by tiny adjustments in the discrete taps
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themselves. A more fundamental issue when specifying

code design is the phase coherence introduced by the

wavelets if their bandwidth is narrow, because this

reduces the randomness among the bits extracted by

the code.
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IrisCodes constructed from narrowband wavelets containing

quadrature pair components of a wavelet ensures that corres

(upper panel), they show strong correlation when the two bit

amount corresponding to p ∕2 in wavelet phase (lower panel).

both quadrature components if the wavelets selected are nar
This issue is illustrated in Fig. 5, whose panels show

the relationship between the real and imaginary parts

of an IrisCode. Any bit of an IrisCode has equal a priori

probabilities of being set or clear (ignoring the detec-

tion and masking of eyelids, eyelashes, reflections, or
re 5 Correlations between the real and imaginary parts of

several cycles. Although orthogonality of the two

ponding real and imaginary bit pairs are independent

streams are simply shifted relative to each other by an

This means that little additional entropy is gained by using

rowband.
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other corruptions), and one should expect the real and

imaginary bit pairs to be independent because of the

orthogonality of the corresponding parts of the Gabor

wavelets. Therefore, as with any sequence of ‘‘tosses’’

from two independent and fair ‘‘coins,’’ one should

expect a 50%-50% level of agreement between the

bits just by chance. For quadrature IrisCode bit pairs,

this is confirmed in the upper panel of Fig. 5, showing

the frequency with which different ▶Hamming Dis-

tances (proportion of disagreeing bits) were observed

between the corresponding real and imaginary parts of

545 IrisCodes, computed over all pairs of {Re, Im}

corresponding bits. With a mean Hamming Distance

of 0.501 0.011, the expected finding of independence

between such equiprobable bits is clearly observed.

However, because the wavelets used to compute these

IrisCodes had relatively narrow bandwidths, a strong

degree of phase coherence is present in their outputs.

The consequence of such phase coherence is that the

real and imaginary parts become highly correlated

under a shift.

The lower panel of Fig. 5 plots a histogram of

Hamming Distances observed between the real and

imaginary bit streams after one stream has been shifted

by p ∕2 relative to the other. Now we see that these bit

streams are far from independent. Instead, with an

average probability of 0.912, they are simply comple-

ments of each other. The cause of this effect is clear

from the fact that narrowband wavelets (encompassing

many cycles) are almost equivalent to each other, or

negatively so, when shifted by  p ∕2. In the case

illustrated by Fig. 5, the negative correlation is so

strong that there is little justification for using both

sets of bits if they are computed using relatively nar-

rowband wavelets; almost no additional entropy (or

information) is gained. Of course, this does not apply

to wavelets having broader bandwidth, when, as noted

in Fig. 3, the relationship is more like that between the

first and second derivatives. In that case, if one were

forced to choose one over the other, the second deriv-

ative (corresponding to the real part of a Gabor wave-

let) would be the better choice, because the first

derivative is sensitive to gradients of illumination, as

may often occur in iris recognition systems using off-

axis illumination.

In the version of this algorithm that is currently

used in all public deployments of iris recognition

worldwide, the wavelet parameters were chosen to

optimize operation in identification mode, which

requires exhaustive search through enrolled databases
without succumbing to False Matches despite the large

numbers of possibilities. The benefit of operating

in this mode is that users need not assert their iden-

tities, as would be required by operation in verification

mode in which only a one-to-one comparison is done

against a single identity asserted by, for example, a

token or card. But successful operation in identifica-

tion mode requires that the distribution of similarity

scores obtained when different irises are compared

must be confined by rapidly attenuating tails, since

that distribution is effectively being sampled a large

number N times when searching a database where

the number N of stored IrisCodes might correspond

to the size of a nation’s population. The larger the

number of samples N, the greater the likelihood of

finding a sample far out along the tail and thus a

possible False Match. Figure 6 shows the result of

200 billion iris cross-comparisons obtained from one

such national border-crossing deployment at all air,

land, and seaports of entry into the United Arab Emi-

rates. Since comparisons between different persons

never generate Hamming Distance (dissimilarity frac-

tion) scores smaller than about 0.25, at least among

these 200 billion such comparisons, we see that suc-

cessful recognition using this biometric requires only

that different images of a given iris are of sufficient

quality that no more than about 25% of their com-

puted IrisCode bits disagree. Under reasonable image

acquisition conditions, this is easily achieved.
Gabor Wavelets in Other Biometrics

A powerful advantage of the Gabor wavelet approach

to iris encoding and recognition is its great speed. The

complete execution time for all aspects of the image

processing, starting with a raw image, including the

localisation of the iris, detection of all boundaries

including eyelids and their exclusion, detection and

removal of eyelashes and other noise, normalization

in a dimensionless coordinate system, and demodula-

tion and compilation of the IrisCode with its masking

bits, is less than 30 ms on a 3 GHz processor. This

speed means that more than 30 complete image frames

can be fully processed per second, and so the process

can operate at the same rate as the video frame rate

itself. Of the 30 ms consumed per image frame, the vast

majority of processing time is spent on localization,

segmentation, and normalization operations; less than

1 ms is consumed by demodulation with the Gabor



Iris Encoding and Recognition using Gabor Wavelets. Figure 6 Distribution of Hamming Distance scores (fraction of

disagreeing bits) obtained in 200 billion cross-comparisons among 632,500 different iris patterns enrolled in the

United Arab Emirates border-crossing deployment. The rapid attenuation of the left tail means that False Matches are

avoided even in exhaustive searches through national databases, provided that the decision policy allows no more than

about 25% of the bits to disagree (HD < 0.25) when declaring a match.
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wavelets and creation of the IrisCode. Once an Iris-

Code has been computed, the simplicity of the com-

parison process and decision algorithm allows

databases to be searched at the speed of about 1 million

IrisCodes/second per 3 GHz processor.

Since these execution speeds for image processing

and for matching are very favorable compared to those

of other biometrics, efforts have been made to adapt

these methods for the other modalities as well. Notable

among these are face [13], fingerprint [14], and palm-

print [15] recognition. Besides the speed advantage, and

the design benefits of formulating a biometric recogni-

tion task as a test of statistical independence on the

outputs of logico-linear operators, the mathematical

merits of Gabor wavelets as reviewed in this chapter

also contribute fundamentally to the success of this

framework for image coding and pattern recognition.
Related Entries

▶Active Contours in Iris Recognition

▶ Iris-on-the-Move™
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Figure 1 Iris image.
Definition

Iris recognition is a biometric technology that uses the

unique, stable, and repeatable texture patterns ob-

served within the iris of the human eye, the colored

annular ring that surrounds the pupil. Iris recognition

systems typically consist of specialized cameras and

software that processes images of the eye to extract

and encode iris features in a template, and match the

presented iris templates to those in a database to iden-

tify the individual. Applications include controlled
access to buildings, border security, trusted traveler

programs, and authentication of emergency aid, enti-

tlement, and citizen benefit recipients. Iris image inter-

change standards have been developed to facilitate

the exchange of iris image data among diverse cameras,

processing algorithms, and biometric databases. Exist-

ing standards include ANSI INCITS 379 Iris Image

Interchange Format and ISO/IEC 19794-6 Information

technology: Biometric data interchange formats –

Part 6: Iris image data.
Introduction

The human ▶ iris is a colored annular ring that sur-

rounds the ▶ pupil, a variable aperture that admits

light to form an image on the ▶ retina, the light-sensi-

tive surface in the back of the eye. The iris is a muscular

structure that contains a variety of texture features,

including pits, furrows, and radial striations (Fig. 1).

The rich and unique texture of the iris has long been

recognized, and a number of biometric systems based

on the iris have been described [1–4]. Particular algo-

rithmic approaches to the extraction, encoding, and

matching of iris texture features have also been pub-

lished [5–8].

With the advent of multiple vendors of iris cameras

and systems, and various algorithmic approaches to
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Figure 2 Iris image data record.

798I Iris Image Data Interchange Formats, Standardization
iris-based recognition, it became clear that the devel-

opment of data interchange standards for iris images

would (1) facilitate the exchange of iris images

among multiple vendors, applications, and algorithms,

(2) enable the compilation of iris image databases for

comparative testing and evaluation of multiple algo-

rithms, and (3) support the evolutionary development

of new iris algorithms by preserving existing enroll-

ment databases in the form of reusable images.

The development of iris standards has been a col-

laborative effort of a number of biometric vendors,

government agencies, and academic institutions, and

has resulted in both a US standard, ANSI INCITS 379

Iris Image Interchange Format [9], and an interna-

tional standard, ISO/IEC 19794-6 Information tech-

nology: Biometric data interchange formats – Part 6:

Iris image data [10]. The ANSI standard was developed

first and became the basis for the international stan-

dard; as a result the two are virtually identical.

The iris standards support two different data for-

mats, a ▶ rectilinear format in which the iris image

is represented in standard Cartesian (x � y) coordi-

nates, and a ▶ polar format, in which the (approxi-

mately) circular iris is represented in polar (r � y)
coordinates. The rectilinear format provides the high-

est interoperability, while the polar format retains

only the area of specific interest, the iris, and thus

provides a more compact representation. The stan-

dard allows a number of different image intensity

representations (color, monochrome, etc.), compres-

sion schemes, and geometric orientations. Finally, an

appendix to the standard contains a set of recommenda-

tions for iris image capture, addressing quality metrics,

resolution, illumination, distortion, noise, orientation,

and other properties.
Data Formats

The iris image record is a nested structure that contains

several headers and one or more images (Fig. 2). The

overall structure consists of a CBEFF header [11], the

Biometric Data Block (BDB), and a Security Block

(SB). The CBEFF header contains information about

image quality, the origin of the BDB format used, and

information about the type of biometric contained in

the data record. The BDB contains an Iris Record

Header, one or two Feature Headers, and one or
more images, each preceded by an Image Header. The

Record Header contains information and parameters

specifying the format of all of the images in the record,

such as geometric format (rectilinear or polar), orien-

tation, dimensions, number of intensity levels, number

of intensity bands (i.e., monochrome, color, etc.), and

compression methods. The Feature Header indicates

which eye was imaged (left or right), if known, and the

number of images recorded for that eye. Finally the

Image Header contains an image sequence number,

image quality value, size of the image data, and infor-

mation about the rotational position of the iris, if

known.

The rectilinear image format is a conventional

image composed of rows and columns where each

entry corresponds to one pixel (picture element) pro-

duced by the image sensor. If the image contains mul-

tiple color bands, such as red-green-blue, each pixel is

recorded as three sequential values.

An image in polar format is produced by proces-

sing the rectilinear image to find the iris center, pupil

boundary, and outer iris boundary or ▶ limbus. The

portion of the image containing the iris is then sam-

pled along radial lines emanating from the iris center

and extending from the pupil boundary to the iris

boundary at particular angles. The result is an image

in polar coordinates. It is stored as a matrix in which

each column corresponds to one angular orientation

y and each row corresponds to a particular radial

distance r. Interoperability of polar images may be

limited by the accuracy and consistency with which
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the pupil and iris boundaries are determined. Their

advantage is very compact iris data representation,

since no image information within the pupil or outside

the iris is included.
I

Image Properties

The properties recorded for rectilinear and polar

images differ to some extent. The properties are as

follows, with these differences noted:

Image orientation – the images may be recorded in

‘‘canonical’’ form, in which the top of the eye is at the

top (first row) of the image and, for a right eye, the

nasal side of the eye (that closest to the nose) is on

the right side of the image. Alternatively, the image

may be flipped vertically or horizontally. For polar

images the orientation refers to the rectilinear image

used to produce the polar image.

Scan type – the images may have been collected

using progressive scanning, in which each row is cap-

tured in sequence, or interlaced scanning, in which all

odd rows are captured followed by all even rows. Note

that in the latter case the image is still stored in strict

row sequence.

Data format – the images may be uncompressed (or

‘‘raw’’) or compressed; they may be color or mono-

chrome, and if compressed the applicable compression

standard is referenced.

Image size – the image dimensions are recorded as

width and height, recognizing that for polar format the

width corresponds to angular samples and the height

to radial samples. The number of bits allocated to each

intensity value is also recorded.

Rotation angle – relative rotation between enroll-

ment and recognition images must be either corrected

or accommodated in the match process by searching

over a range of rotations [5, 7] or using templates

based on rotation-invariant features [3]. Some cameras

are capable of approximating the ▶ rotation angle by

capturing both eyes simultaneously and calculating the

angle of the interpupillary line with a horizontal refer-

ence. This angle information may be recorded.

Camera information – space is allocated in the

image properties to record a unique identifier for the

camera and the date and time of capture.

Occlusion marking – local areas of the iris may be

occluded by reflections, eyelids, or eyelashes and
therefore, should not be used to generate template

information. The standard includes fields for recording

whether occlusions have been detected, and if so how

they are marked in the image data (usually as a re-

served intensity value).
Image Quality

The iris standard allows the originator of an iris image

to indicate the quality of the image on a scale from 1 to

100. The interpretation of the quality score is at the

discretion of the originator, but the following general

quality interpretations are recommended:

1–25 – unacceptable quality

26–50 – low quality, suitable for verification in low-

cost systems

51–75 – medium quality, suitable for verification iden-

tification (one to many matching) in medium se-

curity applications

76–100 – highest quality images, suitable for

enrollment
Image Capture Recommendations

Appendix A of the standard provides specific recom-

mendations on capture of iris images, based on vendor

experience in commercial deployments of iris recogni-

tion. These recommendations include the following:

Resolution

Grayscale range

Illumination wavelength

Contrast

Iris visibility

Pixel aspect ratio

Image scale

Optical distortion

Noise content

Image orientation

Subject presentation
ANSI and ISO Differences

Although the American National standard and the

international standard are more or less identical there
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interchange standards

Attribute ANSI INCITS 379 ISO/IEC 19794-6

Image quality field
description

Described as 4 categories with numerical range
1–100

Described as value with numerical range
1–100

Second level header title Feature Header Biometric Subtype Header

CBEFF Product Identifier Contained in Iris Record Header Contained in CBEFF Header

User Identification No. Contained in Iris Record Header Contained in CBEFF Header
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are also a number of minor differences. These are

summarized in Table 1.
Iris Standards Adoption

A number of national and international governments

and organizations have officially adopted iris image

data standards for current and planned programs.

Within the US Department of Homeland Security the

Transportation Security Agency (TSA) has adopted

ISO/IEC 19794-6, in addition to ANSI INCITS stan-

dards for Finger Minutiae, Face Recognition, and the

Common Biometric Exchange Formats Framework

(CBEFF) for its Registered Traveler program. In this

program the iris rectilinear format is used for trans-

mission of enrollment images to a central data center,

and polar format is used for storage of iris image data

on the registered traveler card. The International Civil

Aviation Organization (ICAO) has adopted ISO/IEC

standards for face, finger, and iris biometrics, in addi-

tion to the ISO/IEC CBEFF standard, for its Machine

Readable Travel Documents (MRTDs).
Current Iris Standards Activity

Current standards activities related to the iris image

standards include development of conformance

test standards, development of revisions of the current

standards, and adoption of the international ISO/IEC

standard by various national standards organizations.

Conformance testing is intended to assess commer-

cial products that claim to support the iris standard.

Developers of software applications and biometric

products may interpret the standard differently from

one another, and as a result their implementations of

the specification may differ and not interoperate. Con-

formance to the standard is a necessary prerequisite for
achieving interoperability among implementations;

therefore, there is a need for a standardized, gener-

ally accepted, conformance testing methodology that

would allow implementation of a set of test tools

realizing this methodology. The conformance test stan-

dards are applicable to the development and use of

conformity test method specifications, conformity

test suites for Iris Image Data Record requirements as

specified the ANSI and ISO standards, and confor-

mance testing programs for conforming products.

They are intended primarily for use by testing organi-

zations, but may be applied by developers and users

of test method specifications and test method

implementations.

The international biometric standards committee

ISO/IEC JTC1 SC37 is currently developing a revised

version of ISO/IEC 19794-6 to address needed clarifi-

cation of the original standard, incorporate certain

technology innovations, and respond to new customer

requirements. In particular, SC37 is considering both

removal of the requirement for mandatory embedding

of the iris image record within a CBEFF data structure

and elimination of the polar image format.

International standards such as ISO/IEC 19794-6

may be adopted by national standards bodies for use as

national standards. The U.S. has adopted the interna-

tional iris standard as a US standard, and has with-

drawn ANSI INCITS 379, cancelling the revision

project for this standard and the conformance testing

methodology standard project.
Summary

The published ANSI INCITS and ISO/IEC standards for

iris image data interchange were developed in a cooper-

ative, collaborative process with participants from nu-

merous commercial entities, government agencies, and
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academic institutions from the US and other countries.

The standards have been successfully adopted by a num-

ber of US and international organizations that desire to

use iris recognition in operational deployments. The

standards are sufficiently flexible to accommodate the

products of diverse commercial vendors and user orga-

nizations. Ongoing standards development work will

result in more flexible and interoperable standards and

conformance test suites that may be used to effectively

test the compatibility of various products with the

standards.
I

Related Entries

▶Biometric Sample Quality, Standardization

▶Biometric Technical Interface, Standardization

▶Common Biometric Exchange Framework Formats,

Standardization

▶Conformance Testing Methodologies for Biometric

Data Interchange Formats, Standardization of

▶Data Interchange Format, Standardization

▶ Iris Image Quality

▶ Iris Recognition, Overview
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Iris Image Enhancement by
Super-Resolution Method
▶ Iris Super-Resolution
Iris Image Quality

NATALIA A. SCHMID

West Virginia University, Morgantown, USA
Synonyms

Information content of iris images; Iris quality metrics
Definition

Iris image quality evaluation is a procedure of measur-

ing information content of iris imagery at the stage of

iris acquisition or at early processing stage. The infor-

mation content may be decided to be insufficient to be

used for iris identification based on a single image. In

this case, the image may be discarded, or combined

with other imagery to improve recognition capabilities

of an iris system. Evaluated quality metrics would be

the guidelines in making decisions regarding further

steps with respect to acquired imagery.
Introduction

Iris image quality assessment is an important research

thrust recently identified in the field of iris biometrics

[1–3]. This research is tightly related to the research on
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▶ nonideal iris. Its major role is to determine, at the

stage of data acquisition or at the early stage of proces-

sing, what the amount of information for the purposes

of processing, recognition, and fusion this imagery

contains. Is it informative enough for performing fur-

ther processing steps or should be discarded? Is it

informative enough for being combined with other

images and result in improved recognition perfor-

mance? The quality metrics play an important role in

automated biometric systems for three reasons: (1)

system performance (segmentation and recognition),

(2) interoperability, and (3) data enhancement.

The quality metrics play an important role in auto-

mated biometric systems for two reasons: (1) system

performance (segmentation and recognition), and (2)

interoperability.

A traditional approach in evaluating iris image

quality is to identify a single or a sequence of physical

phenomena that influences formation of query iris

imagery at the image acquisition stage (see the entry

on Image Acquisition). The distortions that identified

physical phenomena introduced are then modeled

mathematically. To evaluate the level of distortion pres-

ent in an iris image, a single or a set of metrics or quality

measures is specified. The metrics can be absolute

measures or relative measures. The absolute metrics

do not assume comparison of query image with a

reference image. The relative metric measures the pres-

ence of some distortions with respect to a specified

reference image.

The following sections provide a short survey of the

literature on iris image quality, introduce a set of iris

quality measures and suggest a number of techniques

to combine individual quality measures in a single

score.
Survey of Iris Quality Metrics

Previous work on iris image quality can be placed in two

categories: local and global analysis. Zhu et al., [4] evalu-

ate quality by analyzing the coefficients of particular areas

of iris’s texture by employing discrete wavelet decompo-

sition. Chen et al., [5] classify iris quality by measuring

the energy of concentric iris bands obtained from 2-D

wavelets. Ma et al., [6] analyze the Fourier spectra of

local iris regions to characterize out-of-focus and mo-

tion blur and occlusions. Zhang and Salganicaff [7]

examine the sharpness of the region between the pupil
and the iris. Daugman [8] and Kang and Park [9]

characterize quality by quantifying the energy of high

spatial frequencies over the entire image region.

Belcher and Du [10] propose a clarity measure by

comparing the sharpness loss within various iris

image regions against the blurred version of the same

regions. The major feature of these approaches is that

the evaluation of iris image quality is reduced to the

estimation of a single [5, 7, 8, 9] or a pair of factors [6],

such as out-of-focus blur, motion blur, and occlusion.

A broader range of physical phenomena that can be

observed in nonideal iris imagery was characterized

by Kalka et al., [11, 12]. The proposed factors include

out-of-focus and motion blur, occlusion, specular re-

flection, illumination, off-angle, and pixel count. The

strength of the phenomena and its influence was eval-

uated through modified or newly designed iris quality

metrics. These factors based on the extensive analysis

carried out by the authors affect the segmentation and

ultimately recognition performance of iris recognition

systems. An example of two iris images from ICE

dataset [13] and their corresponding pentagram plots

are displayed in Figure 1 and Figure 2. In a pentagram,

each axis represents a quality metric. The quality score

is normalized to take values between zero and one. The

value one corresponds to the lowest quality, the value

zero is the highest quality.

Since most of quality metrics contain some com-

mon information (for example, motion and out-of-

focus blurs are physically related; occlusion and pixel

counts usually contain redundant information; illumi-

nation and contrast are also related), they have to be

estimated jointly. However, all recently designed qua-

lity assessing algorithms treat individual quality metrics

as independent and thus evaluate them separately.

While any processing reduces information content

of quality metrics, in some applications it is beneficial

to have a single quality score that characterizes the

overall image quality. In this case we would appeal to

rules of combining scores.
Rules of Combination

The quality factors (metrics) can be used individually

or combined into a single score through a simple

static or an adaptive rule. Among static rules the sim-

ple sum rule is a computationally efficient method.

More complex (adaptive) rules such as Bayesian,
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Iris Image Quality. Figure 1 Sample images from ICE dataset. (a) Good quality image. (b) Poor quality image.
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Dempster-Shafer, weighted Sum, or any previously

designed fusion strategy to combine classifiers can

also be used to combine quality metrics into a single

score. These rules are more fundamental and flexible,

but require intensive computations.
Relevance to Recognition
Performance

It is well understood that the capabilities of various

designed metrics to evaluate the quality of iris images

has to be related to their capabilities to predict recog-

nition performance by quickly analyzing the quality of

imagery. Since in most analyzed cases recognition per-

formance is nonlinearly related to quality metrics, it is

hard to evaluate precision with which quality metrics

and recognition performance are related. It is because

of this reason most of the designed quality metrics are

not highly correlated with one another.
Figure 3 demonstrates the relationship between

the iris quality metrics evaluated by following the

procedure in Kalka et al., and combined through app-

lication of Dempster-Shafer rule and the recognition

performance. The results are obtained using images

from ICE dataset [13]. To obtain the plots in Figure 3,

each image undergoes quality evaluation. The images

are ranked based on their quality score. The receiver

operating curves are plotted for three cases. In the first

case, the entire dataset is used. In the second case, the

images with the quality above the score 0.75 are select-

ed. In the last case, the images with the quality above

the score 0.85 are selected. Note that here the score

value one corresponds to the highest quality. From

Figure 3, the combined metric predicts recognition

performance relatively well.

This indicates that the information extracted fro-

miris imagery is correlated to some degree with the

recognition performance. The question that remains to

be addresses if it is possible to establish an explicit
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between estimated quality metrics and verification

performance of an iris recognition system. The results are

based on applications of a Gabor-filter based encoding

algorithm to iris images from ICE dataset.
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relationship between quality metrics and recognition

(verification) performance.

In practice most of metrics are designed to measure

signal-to-noise ratio, ratio of powers, directional

power, sharpness of edges, ratio of pixels, empirical

entropy and relative entropy. These metrics are not

explicitly related to probability of recognition error

or receiver operating characteristic (ROC) curve, two

traditional measures of recognition and verification

performance. Furthermore, the degree of nonlinearity

and nonlinear model relating the quality metrics and

recognition performance are hard to evaluate.

The conclusions above are supported by the results

of an extensive research published in the literature on

the topic of feature selection. The problem of feature

selection can be briefly summarized as follows. Due to

suboptimality of an image/signal encoding procedure

(feature extraction procedure) templates contain a cer-

tain number of noisy components or components un-

informative for pattern recognition. Removal of these

components, therefore, often leads to improved recog-

nition performance. In the past, some substantial

efforts have been made to find an information measure

that would be capable of evaluating the information

content of a feature and, at the same time, would be

able to predict changes in recognition performance due

to removal of a feature [14, 15]. In spite of long term

efforts, the final conclusions may not look worth of

these efforts: (1) there is a single family of statistical

models (Gaussian family) that allows establishing an
explicit (exponential) relationship between the infor-

mation content of a feature and the recognition per-

formance. Unfortunately for biometrics, only few

types of biometric templates (encoded data) can be

modeled as being Gaussian distributed. (2) The tradi-

tional measures of information such as signal-to-

noise-ratio, entropy, relative entropy, and mutual

information, are only asymptotically related to proba-

bility of recognition error [16]. When these measures

are adapted to the problem of empirical evaluation of

the information content of a feature, the relationship

between the empirically evaluated measures and the

probability of recognition error can be established only

under the condition that an increasing amount of data

can be used to evaluate information in features and

provided that the empirical information measures

converge in some sense to the true measures.
Summary

Iris images quality metrics provide us with a fast

way to predict information content of biometric data.

Current quality metrics are designed to evaluate qua-

lity factors individually, that is, separately. These quality

factors may further be combined by invoking static

or adaptive rules applied to individual scores. Since

various quality factors contain redundant infor-

mation about one another, a more optimal solution

to the problem of evaluation of iris image quality

would be to evaluate the quality factors jointly. Also,

identifying the most important quality factors that

influence the recognition performance remains an

open problem.
Related Entries

▶ Iris Segmentation

▶ Iris Recognition

▶ Score Fusion and Normalization Rules
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Iris Interchange Format Standards
▶ Iris Image Data Interchange Formats,

Standardization
Iris Localization
Iris localization is one important stage in iris recogni-

tion system. The goal of iris localization is to find the
boundary between iris and sclera and between iris and

pupil. Because the shape of pupil and the shape of iris

look very close to a circle, most of the iris localization

algorithm tries to perform circle fitting on the eye

image. In this way, the results of iris localization can

be expressed as two circles.

▶Automatic Classification of Left/Right Iris Image

▶ Iris Super-Resolution
Iris on the Move™

JAMES R. MATEY

Electrical and Computer Engineering Department,

US Naval Academy, Annapolis, MD, USA
Synonyms

Drive-up; Iris at a glance; Minimal constraint iris

recognition; Portal; Walk-through; Walk-up
Definition

Iris on the Move™, commonly referred to as IOM, is

an approach to acquiring iris images suitable for iris

recognition while minimizing the constraints that need

to be placed on the subject. Sarnoff Corporation

developed IOM under contract to the United States

Government: NMA401-02-9-2001.

Multiple implementations of IOM have been

demonstrated; they include: a portal walk-through

system, an on-the-wall walk-up system, an over-the-

door walk-through system and a roadside drive-up

system. The key features of the IOM systems are large

▶ capture volume, large ▶ standoff distances and the

capability of capturing recognition quality iris images

while the subject is in motion [1].

The Panasonic ‘‘Iris at a Glance’’ systems and

the H-box™ from the Hoyos Group are examples of

related technologies.
Introduction

Iris recognition is one of the strongest biometric avail-

able [2–4]. Iris recognition is a strong biometric

https://eidr.wvu.edu/files/4447/Kalka_Nathan_thesis.pdf
https://eidr.wvu.edu/files/4447/Kalka_Nathan_thesis.pdf


Iris on the Move™. Figure 1 An enrollment quality iris

image capture device, the LG IrisAccess 3000. (Photo

provided courtesy of Mohammed Murad of LG Electronics

USA Inc., Iris Technology Division.)
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because: (1) the human iris is a complex structure with

a high degree of randomness; (2) the iris is protected;

(3) the iris is accessible; and (4) the structures of the

iris that are used for iris recognition are stable, from

early childhood – in the absence of illness or injury that

disrupts the iris tissue.

The first mention of iris patterns as a biometric was

likely a paper by Bertillon [5]; several others subse-

quently suggested iris patterns as a biometric and the

idea was a plot element in the 1983 James Bond film

Never Say Never Again [6]. However, it was not until

the early 1990s that John Daugman developed a prac-

tical algorithm for iris recognition based on Gabor

wavelets [7]. Minor variants on the Daugman algo-

rithm remain the dominant algorithms in commercial

iris recognition systems as of 2007, though there are

vigorous research efforts into alternative algorithms

[8]. The commonly used name for the Daugman algo-

rithms in current use is iris2pi.

The capability of providing extremely low ▶ false

match rates is one of the great strengths of iris2pi.

Daugman has published credible evidence that iris2pi

can support false match rates of the order of a part in a

trillion [9]. However, the quality of the iris images

required for such results is high. The standards for

iris images published by the ISO [10] call for 100–

200 pixels across the iris and 40 dB signal-to-noise-

ratio (SNR). In the decade following the development

of the Daugman algorithm, Iridian, IrisGuard, LG,

OKI, Panasonic, and Securimetrics all brought iris

recognition cameras to market that could provide

such high quality iris images. Figure 1 is an example

of one of these cameras that provides the full 200 pixels

across the iris.

All these systems require substantial cooperation

from the subjects and impose significant constraints

on them. In general, imposing constraints and requir-

ing cooperation reduces the ease of use of any biomet-

ric system. This may not be a significant issue for

▶ habituated subjects, but it is a concern for nonhabi-

tuated subjects – subjects who do not use the system

on a routine basis.

Iris on the Move™ was developed to relax subject

constraints and make it possible for subjects to use an

iris recognition system with little instruction. The con-

straints of greatest interest are capture volume, stand-

off, ▶ residence time, subject motion, effects of

ambient illumination, and overall ease of use. Capture

volume is the three dimensional volume throughout

which the iris camera is capable of acquiring an
acceptable image. Standoff is the distance from the

camera to the subject; in some systems there may be

two standoff distances – subject to camera and subject

to illumination. Residence time is the length of time

that a subject must stay within the capture volume to

enable collection of an acceptable image. Subject mo-

tion within the capture volume can be characterized in

terms of a velocity – the maximum velocity at which a

subject can move during collection of an acceptable

image. Overall ease of use can be characterized in terms

of the complexity of the instructions that must be

provided to an uninitiated subject to insure acceptable

iris image collection on their first use of a system.

The reader may well ask, ‘‘What is an acceptable iris

image?’’. Operationally an acceptable image is a recog-

nition image that matches well against an enrollment

image taken under ideal circumstances – the enrollment

image meets ISO standards, highly constrained subject,

no time limit, repeated trials available to obtain opti-

mum quality image, and close supervision of the enroll-

ment process by a well trained operator. It is important

to note that iris2pi looks at the local phase of the

iris image in predefined spatial frequency bands (see

the entry on Gabor wavelet iris encoding). Hence, the
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image quality metrics that are used for assessing the

visual quality of images in daily life do not map directly

to the quality metrics for an image used for iris recogni-

tionwith iris2pi. For example, a reduction in the contrast

of a properly adjusted television display will almost

always reduce its visual quality – while a reduction in

the contrast of a good quality iris image may have little

impact on its match score against another good image of

the same iris. This can be understood in mathematical

terms: phase and amplitude are orthogonal/independent

coordinates. Human vision is more sensitive to ampli-

tude than phase; iris2pi is more sensitive to phase than

amplitude.
I
IOM Design Considerations

The single most important IOM design consideration

is the exploitation of asymmetries between enrollment

and recognition. As Daugman points out [9], the

number of degrees of freedom (as measured by the

number of valid bits in an iris2pi template) in an iris

template can vary depending on the quality of under-

lying image. Fewer degrees of freedom translate to a

broader ▶ imposter distribution. This broadening is

taken into account in many systems by adjusting the

Hamming distance of a match based on the number

valid bits compared between two templates to maintain

a constant false match rate for a fixed match criterion in

the presence of such variation. At enrollment, significant

effort can be expended, once per subject, to capture a

pristine image of the iris. Pristine enrollment images

enable us to purge the database of duplicates – even

when the database is large. They also ensure that maxi-

mal use is made of the degrees of freedom available in a

lower quality recognition image.

If there is high quality enrollment, at recognition,

it can afford a reduction in the quality of the image.

The ▶ authentics distribution will be dominated by

the quality of the recognition images. Reduction

in the quality of the recognition images will broaden

the authentics distribution and increase the ▶ false

non-match rate (FNMR). However, it is possible to

adjust for the increase in the single attempt FNMR

through use of multiple attempts.

IOM systems use high quality images from iris

cameras equivalent to that in Fig. 1 to build a strong

iris database. At each recognition attempt IOM sys-

tems take multiple, lower quality images of the subject

iris and compare them against the database. Let FMR
(1) be the false match rate for a recognition attempt

where only one image is collected, and FNMR(1)

corresponding false non-match rate. Ignoring correla-

tions and some other statistical niceties, the first

order effect of testing N images at each recognition

attempt is to change the performance of the system to

FMR(N) 
 N*FMR(1) and FNMR(N) 
 FNMR(1)N.

The important point is that FMR(N) increases slowly

(linearly) with N, whereas the FNMR(N) decreases

much more rapidly (exponentially).

Current implementations of iris2pi can generally

provide a better FMR than is necessary in most recog-

nition applications. Hence, a slightly higher FMR(N)

can be a trade-off for a much lower FNMR(N). This

enables us to use lower quality recognition images.

Lower quality on the recognition image can then

be converted into larger standoffs and larger capture

volumes for a fixed system cost. IOM systems can be

designed to operate at the bottom end of the image

quality standards set by the ISO. In particular

the systems can be designed for 
100 pixels across

the iris and somewhat less than 40 dB SNR.

The essay now considers each of the system para-

meters in turn and discusses the relevant tradeoffs.
Capture Volume

Capture volume is the product of two factors: field of

view (an area) and ▶ depth of field (a distance). The

field of view is product of the width and height of

the region in focus for the imager. Field of view is

determined by the pixel count of the camera sensor.

A 2048 � 2048 pixel camera will give a field of view of

20.48 � 20.48 cm at a subject iris resolution of 100

pixels/cm. IOM systems achieve a large field of view by

accepting an iris resolution of only 100 pixels/cm and

by using cameras with high pixel counts.

Depth of field is the distance along the axis con-

necting the subject and the camera over which the iris

is in focus – without additional adjustment of the lens.

Depth of field is a characteristic of the lens system and

is discussed in detail elsewhere [11]. Depth of field

increases with increasing F# of the lens, which in turn

reduces the amount of light that gets through the lens

and the SNR of the image. IOM systems achieve effec-

tive depth of fields of the order of 10 cm at standoffs of

2–3 m by providing sufficiently bright illumination

to enable use of higher F#’s while still maintaining a

good signal-to-noise-ratio.
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Standoff

Once the pixel size of the imager and subject resolution

are chosen, the magnification of the lens system is

determined by the rules of geometrical optics. The

magnification combined with the camera standoff

determines the focal length of the lens through the

lens equation 1/f = 1/p + 1/q where f is the focal length,

p is the subject distance, and q is the image distance.

The magnification links p and q: M = q/p.

IOM systems achieve camera standoffs of 2 m or

more by using long focal length lenses (
200 mm)

with F#’s determined by ▶ diffraction limits and

depth of field considerations.

Iris recognition systems almost always use some

form of active near IR illumination. Both, the illumi-

nation and the camera have standoffs. IOM systems

achieve illumination standoffs of 1–2 m by using arrays

of powerful near IR LEDs to deliver irradiance of the

order of 2 mW/cm2 to the subject. The irradiance at

the subject is limited by safety considerations. The

▶ threshold limit values (TLV) for near IR irradiation

are published by the ACGIH [12]. The TLVs limit both

the subject irradiance (W/cm2) and the source radi-

ance (W/cm2-sr), which is a characteristic of the LEDs

used in the illuminator.
Residence Time

The product of residence time and the image capture

rate (frame rate) of the camera gives the number of

images captured during a recognition attempt. This

must exceed one – preferably more than one to get

advantage from the multiple attempt tradeoff de-

scribed above.

IOM system use relatively high frame rate cameras

(15–60 fps) to minimize residence time while still

getting enough images to reliably perform recognition.
Subject Motion

Subject motion can be divided into two types: longitu-

dinal motion, along the camera axis, and transverse

motion, perpendicular to the camera axis. Subject mo-

tion has two primary effects on image capture: (1) it

limits the residence time within the capture volume
and (2) it introduces motion blur, which effectively

degrades the image resolution.

If the capture volume is 10 cm thick – set by the

depth of field – and the subject is walking through the

volume with a longitudinal velocity of 1 m/s, he will

transit the volume in 0.1 s; his residence time is 0.1 s.

The product of his residence time and the image cap-

ture rate must be greater than 1, as noted above.

A rough measure of motion blur is the amount of

motion, in pixels, that occurs during the acquisition of

an image. To maintain the resolution of the system this

needs to be less than 1 pixel. Longitudinal velocity, vL
has a blurring effect that is the result of magnification

change as the subject approaches the camera. The size

of the change is approximately the ratio of the distance

moved to the camera standoff. Since the iris is 
100
pixels across, the magnification change must be kept

below 
0.01. If the shutter time of the camera is t, and

the camera standoff is dc, then 0.01 > vL t /dc. For a

1 ms shutter, and 2 m standoff, the longitudinal veloc-

ity must be less than 20 m/s – about twice as fast at the

world record (
10 s) in the 100 m dash. Hence, the

maximum longitudinal velocity is set by required resi-

dence time, rather than motion blur.

Transverse velocity is a much bigger issue. Motion

perpendicular to the camera subject axis simply moves

the pixels at the iris as much as the motion. For a tran-

sverse velocity vT, a shutter time, t, and a subject reso-

lution, ds (m/pixel) vT t< ds is required. For 100 pixels/
cm and a shutter time of 1 ms, vT < 0.1 m/s – much

smaller than the longitudinal velocity limit.

The IOM systems use shuttered cameras and

strobed illumination to freeze the subject motion.

However, 1 ms is, at present, a practical limit on the

strobes and shutters. The IOM systems use human

factors engineering to minimize the transverse motion

of the subject as they move toward the camera. The

subject is given a target to walk towards and is

instructed to walk in a straight line.

The strobe and shutter control the amount of light

that reaches the camera sensor. Shorter strobes/shut-

ters at the same peak irradiance reduce the number of

photons reaching the sensor and reduce the SNR. It is

possible to increase the light intensity during the strobe

to recover part of this, but there are limitations im-

posed by the maximum current that can be used to

drive the LEDs and maximum safe radiance and irra-

diance set by the TLVs.
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Ambient Light

Ambient light can interfere with iris recognition sys-

tems in various ways. Bright ambient lights can cause

extreme pupil constriction and can cause subjects to

squint; both of these effects can cause difficulty in

generating a good quality iris template from the

image. However, short of reducing the ambient, there

is little that can be done to ameliorate these physiolog-

ical responses. Bright ambient lights can also cause

specularities on the iris that interfere with the genera-

tion of iris templates. This factor can be ameliorated by

using narrow band illumination with narrow band

filtering on the camera. It can also be ameliorated

with the strobed illumination and shuttered camera

used for blur reduction.

IOM systems reduce the effect of ambient illumi-

nation by using optical filters that block a large fraction

of the ambient light while passing the active illumina-

tion and by using strobed illumination and opening

the shutter only during the strobe, thereby rejecting the

ambient light that impinges on the subject during the

time the strobe is off.
Ease of Use

The IOM systems use human factors designed to max-

imize ease of use. People find it relatively easy to walk

down the center of a portal, to walk along a line

painted on the floor, or to walk directly toward a

target from a given starting point. The fields of view

of the IOM systems have been chosen to insure that a

person carrying out such a task will, as a matter of

course, pass their eyes through the capture volume of

the system.

The IOM systems have been designed to take ad-

vantage of the motion of the subject toward the cam-

era, to avoid the need for the subjects to position

themselves at the focus of the system – they will walk

through it naturally as shown in Fig. 2. The instruc-

tions for a subject about to use an IOM portal for the

first time are:

1. Open your eyes

2. Look straight ahead at your reflection in the camera

cover

3. Walk down the center of the portal at amoderate pace

4. Try to be recognized
System Approach

In the world of software engineering, a ‘‘spaghetti

design’’ is anathema – modularity is the mantra –

with each module distinct and independent. In the

IOM systems, photons thread essentially all of the

hardware components. Modularity, in one sense, is

not possible. Changes in the camera sensor will have

unavoidable repercussions for the illumination. The

key to designing an IOM system is to recognize the

need for system wide optimization.
Future Work

Researchers at numerous institutions are working to

expand capture volumes, extend standoff distances,

reduce residence times and decrease the cost of iris

recognition systems. They are also working to reduce

constraints on subject pose, a topic not covered here.

The development of higher resolution camera sensors

with higher sensitivity and higher frame rates and the

development of higher output near IR LEDs will

enable these improvements.

Alternative iris recognition algorithms are also

being developed, as noted above. It is conceivable

that a new algorithm may enable interesting new tra-

deoffs in the design of iris cameras that will help us

further extend the ease of use of iris recognition.
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Iris Biometric
Definition

Iris recognition emerges as one of the most useful

modalities for biometrics recognition in last few dec-

ades. The goal of iris recognition is to recognize human

identity through the textural characteristics of one’s

iris muscular patterns. The procedures for iris recogni-

tion usually consist of four stages: image acquisition,

iris segmentation, feature extraction, and pattern

matching. The iris recognition has been acknowledged

as one of the most accurate biometric modalities

because of its high recognition rate. It has been applied

in the field of border control and national security.

More and more countries and private companies

have shown interests to use the technique of iris recog-

nition. Large scale application of iris recognition in

daily life is just a matter of time.
Introduction

The goal of biometric recognition is to recognize

human identity by comparing the features of their

physiological or behavioral characteristics. There are

dozens of such characteristics that can be found and

used for such purpose. Among them, fingerprint, face,

and voice are most familiar to most people. However,

http://iris.nist.gov/
http://iris.nist.gov/
http://en.wikipedia.org/wiki/Depth_of_field
http://en.wikipedia.org/wiki/Depth_of_field
http://www.acgih.org
http://www.acgih.org


Iris Recognition, Overview. Figure 2 Flow chart of a

typical iris recognition system.

Iris Recognition, Overview. Figure 1 Illustration of the

areas of pupil, iris and sclera.
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the performance (in terms of the recognition rates) for

all the above modalities is not good enough for the

purpose of applications that require high level of

security.

Not very long ago, identity recognition based on

iris texture patterns is proposed as another modality

for biometric recognition [1–3]. Iris is the area that

appears as an annular shape between the pupil and the

sclera, as illustrated in Fig. 1. There are many advan-

tages of using iris as the modality of biometric recog-

nition. For example, iris pattern is developed and

becoming stable after the eighth month of gestation.

Besides, iris is well-protected by cornea, not easily

changed by external factors. Therefore, iris patterns

are very stable, relative to other modalities such as

face or voice, and very suitable to be used as a unique

feature for identity recognition. Another advantage is

that randomness of the muscle of the iris region makes

possibility of sharing exactly the same iris pattern

among different persons very low, which provides

high discriminability for this feature.

A typical iris recognition system consists of the

following stages: iris image acquisition, iris segmen-

tation, feature extraction, and pattern matching, as

illustrated in Fig. 2. Image acquisition is of vital

importance in iris recognition performance because

the better the image quality, the more accurate result

the system can achieve. After iris image is acquired, the

next step is to locate the position of the iris and pupil.

Several techniques have been proposed and most of

them are based on image gradient and edge detection.

After iris has been located, features of the iris textures

can be extracted. What feature to extract and how to

extract them is also important issue in iris recognition.

Good features give high inter-class variation and low

within-class variation, which is desired in common

biometric recognition system. Finally, one should be

able to compare features from different irises and ob-

tain a score of similarity which tells how similar these

two irises are (or a score of distance, which tells how

much different they are). Decision of classifying test

image as authentic or imposter is made by comparing

the similarity score with a given threshold.
Iris Image Acquisition

The area of iris is very small compared with the area of

the whole face. Therefore, it is not a trivial task to take
a clear iris image with high quality. On the other hand,

user-friendliness is also an important factor which

has to be considered in the process of iris image

acquisition. According to the user-friendliness and

the image quality, iris image acquisition device can be

categorized into three different groups. They are tradi-

tional iris acquisition device, middle distance iris ac-

quisition device, and long distance iris acquisition

device. Each of them is introduced in the following

paragraphs.

For traditional iris acquisition devices, in order to

take iris images that contain enough useful detailed
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information, people usually use cameras which

has specialized lens set up on a fixed stand. At the

same time, there is also a fixed stand for subjects to

lean their heads against. In this way, the system mini-

mized the possibility of subtle movement of subject’s

head during the iris image acquisition stage, and max-

imized the quality of the acquired iris image. Exemplar

images of traditional iris acquisition device are

shown in Fig. 3.

Traditional iris acquisition devices are good for

capturing high quality iris image, but extremely inflex-

ible and not user-friendly. It requires high level of user-

cooperation to successfully acquire iris image. Is it

possible to lower the level of required user-cooperation

and at the same time, maintain the high quality of the

eye image? Recently, progress of innovation in iris

acquisition device has made it possible to lessen the

requirement of user-cooperation while maintaining

high quality iris images. They can be categorized as

middle distance iris acquisition devices because they

can capture users’ iris images even when users stand at

a distance of 50–100 cm away from the camera. Users

are not required to put their heads against a rack.
Iris Recognition, Overview. Figure 3 (a) Example of traditio

how to use it.

Iris Recognition, Overview. Figure 4 (a) LG iCAM4000 iris ca
Therefore, it is more user-friendly and convenient for

general public.

One of examples of middle distance iris acquisition

devices is the LG iCAM4000. The functional unit of LG

iCAM4000 is shown in Fig. 4, and an example picture

is shown when it is used to acquire a user’s iris image.

Long distance iris acquisition devices are able to

capture iris images even when users are standing at a

further distance, or even when they are moving. One

example of this kind of devices is the iris-on-the-move™

(IOM) manufactured by Sarnoff Corporation. The sys-

tem provides a portal which subjects are expected to

walk through. At the end of the walking aisle, four

high resolution infrared (IR) cameras are placed inside

a cabinet. During the time subjects are walking in the

portal, IR illuminators located at the wall of the portal

radiate IR light, at the same time, high resolution

cameras which tuned to sync with the illuminators

take continuous shots of the subjects. Then a face and

eye detector is applied on the image to find the loca-

tion of the eyes. The whole iris acquisition process is

fully automated and it only requires subjects to walk

through the portal, without standing still or placing
nal iris acquisition device (b) Example picture to illustrate

mera (b) Example picture to show how to use it.
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their heads at a fixed position. In this way, the system

alleviates the inconvenience of the traditional iris

acquisition devices while being able to maintain a

reasonable quality of the eye pictures.

Figure 5 shows pictures of IOM system.

It is very intuitive that the system which requires

least user cooperation (more user-friendly) has the

highest probability of getting eye images of lowest

quality. For example, the IOM system is very user-

friendly. It does not require users to stand still at a

particular point to get their iris images. However, the

eye images taken from IOM are very easy to be blurred

or out of focus. This is because the images may be

taken when the subjects are walking in a region which

is outside of the depth of the field of the cameras.

Recently, a new camera system design has been

proposed to address this issue. Dowski and Johnson

proposed a low cost imaging system which combines

the nonrotationally symmetric aspheric optical ele-

ments and digital signal processing in a fundamen-

tal manner to vastly extend the depth of field of
Iris Recognition, Overview. Figure 5 (a) IOM system. Camera

subject. (b) Example picture of subject walking through the p

Iris Recognition, Overview. Figure 6 Block diagram of Wave
the imaging systems [4]. It is called ‘‘Wavefront Cod-

ing’’ imaging system. The block diagram of the Wave-

front Coding system is shown in Fig. 6. The optical

section is modified by adding a generalized aspheric

Wavefront Coding optical element near the aperture

stop. This will make the images formed on CCD to

have a specially well-defined blur that is insensitive to

misfocus. Digital image processing technique is ap-

plied to the blurred image to reproduce the sharp

and clear image. Optical systems aided with Wavefront

Coding are able to reproduce a clear and focused image

even when the subject is standing at the out of focus

zone. For more details, please refer to [4].
Iris Segmentation

No matter which kind of iris acquisition device is

used, the eye image taken usually looks like the one

in Fig. 1. Therefore, it is necessary to locate the iris

region in this image and focus our future process
cabinet is on the left; the portal is on the right, behind the

ortal.

front Coding imaging system.
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(feature extraction and pattern matching) on this re-

gion alone. The process of locating iris region is called

iris segmentation.

As stated above, iris region is of annular shape.

Therefore, it is intuitive to segment iris with two

circles: one circle indicates the boundary between

iris and pupil, and the other indicates the boundary

between iris and sclera. The texture in the region

between these two circles is exactly what we need for

further process.

There exist different algorithms which serve the

same goal of iris segmentation. One of the most popu-

lar algorithms is proposed byWildes [5]. There are two

steps in this algorithm. The first step is to apply a

gradient-based edge detector on the whole eye image

to generate an edge-map. The edge-map tells us the

position where strong edges exist (strong differences in

pixel values). Intuitively, those positions are possible

candidates of the iris boundaries since the two bound-

aries of iris, both inner and outer, are the positions

where high pixel contrast takes place. The second step

is to find the exact two boundaries from this edge-

map. The method Wildes used is a voting scheme.

Every circle on a 2D plane can be described by three

parameters, coordinate in x and y axis, and the radius r.

Therefore, one can construct a three-dimensional

(3D) space, where each dimension represents one
Iris Recognition, Overview. Figure 7 (a) A raw eye image wi

image after masking out unuseful region (c) illustration of the

polar coordinate.
parameter. Every positive pixel on the edge-map can

vote to the point (x, y, r) in the 3D parameter space as

long as this positive pixel is on the perimeter of the

circle which is parameterized as (x, y, r). Since different

circles can pass through the same point, it is possible

for 1 pixel on the edge-map to vote to multiple points

in 3D parameter space. At last, the point which has the

highest accumulated votes represents the most likely

circle in the original eye image. An example of iris

segmentation is shown in Fig. 7a.

Daugman proposed another segmentation scheme

[6, 7] which is different from what Wildes proposed.

He suggested computing the argument which maxi-

mizes the result of an integrodifferential operator on

the original image. It is described in the following

equation:

max
ðr;x0;y0Þ

Gs� @

@r

þ

r;x0;y0

Iðx; yÞ
2pr

ds

�������

�������
: ð1Þ

The triple (r, x0, y0) which satisfied Eq. 1 is the best

candidate parameter for a circle in the original image.

By applying Eq. 1 twice, we will be able to locate the

boundaries for both iris and pupil. To locate the eyelid

boundary, one only needs to change the form of inte-

grodifferential operator in Eq. 1 from circular to
th iris boundaries identified as red circles (b) segmented iris

meaning of parameter R and y (d) unwrapped iris image in
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arcuate, with spline parameters, because the shape of

eyelid is most likely to be arcuate.

After observing large number of iris images, one

sooner or later discovers that in fact, the boundaries

of iris and pupil are not exactly circular. They appear as

circular images of low resolution. However, for images

of higher resolution, it is easy to see that using a circular

boundary to describe them is not very accurate.

Therefore, Daugman, in his later work [8], pro-

posed a new segmentation method. He proposed to

use a more flexible model to represent both bound-

aries. This method is called ‘‘active contour,’’ or

‘‘snakes.’’ By using snakes, the boundary of the pupil

and iris is not bounded to circular. They can be of any

shape. Therefore, the discovered boundaries can fit to

the real data more closely, and bring performance

enhancement in the pattern matching stage. The points

of snakes are initialized at the points from sampling N

regularly spaced angular samples of radial gradient

edge data. We have to first estimate the Fourier series

expansion of those samples of radial gradient edge

data, as described in the following equation:

Ck ¼
XN�1

y¼0
rye
�2piky=N ; ð2Þ

where {ry} is the radial gradient edge data, y = 0
N–1.
We compute Ck from k = 0 to k = M�1. Then we

compute an approximation of the iris boundary {Ry}

for y = 0
(N–1), as described below:

Ry ¼ 1

N

XM�1

y¼0
Cke

2piky=N : ð3Þ

The number of M controls the smoothness of the

curve. The larger the M, the more flexible the curve is;

and the smaller the M, the less flexible the curve. By

choosing M carefully one can make the discovered

boundaries fit the data more closely and not being

affected by the noises (eyelid or eyelashes).

Most of the time, after iris localization, we would

like to do an image coordinate transformation on the

iris image. The goal of coordinate transformation is to

transform the annular-shaped iris region into rectan-

gular shape, by mapping pixel values from Cartesian

coordinate to polar coordinate. The process is illu-

strated in Fig. 7. In Fig. 7b, the region which is unim-

portant for iris recognition is masked out, leaving

only iris texture visible. This iris image is displayed in

Cartesian coordinate. If we pick the center of the pupil

as the origin, and the horizontal line as x-axis, every
point on iris region can be indexed by another coordi-

nate, which is polar coordinate. Polar coordinate is

parameterized with two parameters: R and y, and

the computation of R and y is illustrated in Fig. 7c. If

we take out every pixel in iris region in Fig. 7c and

replot them according to the coordinate (R, y), we will
get Fig. 7d, which is the iris texture map in polar

coordinate.

There are two advantages of coordinate transfor-

mation. First, the size of the pupil area is not always the

same. It contracts when the ambient lighting is strong

and dilates when the ambient lighting is weak. There-

fore, if we would like to take the iris image in Cartesian

coordinate to perform pattern matching, one problem

is the nonlinear deformation of the pattern, which

require much more complex technique to solve. In-

stead, if we perform coordinate transformation for

every iris texture, no matter how much pupil contracts

or dilates, the resulting iris texture map in polar coor-

dinate will remain the same. This saves us a lot of

trouble during the later matching stage.

The second problem is, when we take pictures of

eyes, if we are not using traditional iris acquisition

device, it is highly possible that the position of our

camera has relative rotational shift to the subject’s

head. It is very likely to happen because users can freely

move their head in any direction, as long as the eye

images can be captured. If there is indeed relative rota-

tional shift between cameras and the eyes, this is going

to cause another trouble during later matching stage.

This is because matching two patterns with potential

rotational shift is a difficult problem in pattern recog-

nition field. Instead, if the iris image is unwrapped

to polar coordinate before feature extraction and

matching stage, rotational shift in Cartesian coordi-

nate becomes translational shift in horizontal direc-

tion (y axis). Therefore, all we need to do is simply

shift the pattern horizontally in different step sizes

and perform matching again to get correct matching

result.
Feature Extraction

After iris region has been identified and cropped out,

the next step is to perform feature extraction on the

iris texture. The goal of feature extraction is to extract

the discriminative characteristic of the iris texture and

store it in a more compact way so that it is more

effective to perform pattern matching in a later stage.



Iris Recognition, Overview. Figure 8 Examples of two filters which can be used for iris feature extraction. (a) Directional

Gaussian derivative filter, in 2D view (b) Directional Gaussian derivative filter, in 3D view (c) Gabor filter, in 2D view

(d) Gabor filter, in 3D view.

Iris Recognition, Overview. Figure 9 Illustration of

Daugman’s phase-quadrant demodulation scheme.

According to the quadrant each complex number falls in,

the angle of the phasor is quantized to one of the four

quadrants, setting two bits of phase information. This

process is repeated across all the iris with many wavelet

sizes, frequencies, and orientations.

816I Iris Recognition, Overview
Most of the time, in the field of image processing

and pattern recognition, the feature extraction is ac-

complished by applying filters on the input images.

In literature, the filters which have been used exten-

sively in iris recognition, are Gabor filters, proposed

by J. Daugman [2, 6, 9, 10, 7]. Gabor filters can be seen

as complex sinusoids modulated by Gaussian envelope.

They can be expressed as the following equation:

Cðx; yÞ ¼ A � e �
1
2

x2

s2x
þy2

s2y

� �
�joðcos yÞx�joðsin yÞy

h i
; ð4Þ

where, by convention, the standard deviations of the

envelope are inversely proportional to frequency o:

sx ¼ kx
2p
o

sy ¼ ky
2p
o

:

ð5Þ

We can generate multiple Gabor filters of different

sizes, orientation, or frequency by substituting differ-

ent parameters in Eq. 4. Gabor filters of different

orientation and frequency can capture different texture

details in iris texture. An example of Gabor filter as well

as Gaussian derivative filter are shown in Fig. 8.

We get a two-dimensional (2D) complex-valued

plane after applying each Gabor filter on iris texture.

Daugman proposed a ▶ phase-quadrant quantization

scheme to further quantize the 2D complex-valued

plane. Because amplitude information depends on ex-

traneous factors such as imaging contrast, illumina-

tion, and camera gain, it is not very discriminating. On

the contrary, phase information on a complex-valued

filter response plane has been shown to have much

more discriminative information in biometric recog-

nition [7, 11]. Therefore, performing phase quantiza-

tion would discard useless information and at the same

time, make feature representation more compact and

easy to handle.
The phase-quadrant quantization scheme amounts

to a patch-wise phase quantization of the iris pattern, by

identifying inwhich quadrant of the complex plane each

resultant phasor lies. For every location on the complex

plane, the sign of real and imaginary part jointly defines

in which quadrant the phasor lies. Two bitcodes are used

to encode the four possible quadrants. The phase-quad-

rant quantization scheme is illustrated in Fig. 9.

The phase-quadrant demodulation process is re-

peated across all the plane of the response of the filters,

with many different wavelet sizes, frequencies, and

orientations to extract totally 2048 bits. Figure 10

shows the raw eye image, unwrapped iris texture in

polar coordinate, and the iris code after feature

extraction.

Besides Gabor filters, there are also other type of 2D

filters that can be used in iris feature extraction. Zhu
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unwrapped iris image in polar coordinate (c) iris code computed by applying Gabor filters on (b) then perform

bit-wise quantization.
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et al. proposed to use 2D wavelet transform to perform

feature extraction [12]. By applying 2D wavelet trans-

form on an iris texture map, one can get a set of sub-

images of different resolution levels. They proposed to

use the mean and variance (or standard deviation) of

each wavelet sub-images to be the features.

Ma et al. proposed to use circular symmetric filters

to perform iris feature extraction [13, 14]. The kernels

of circular symmetric filters can be defined as follows:

Gðx; y; f Þ ¼ 1

2pdxdy
exp � 1

2

x2

d2x
þ y2

d2y

 !" #
Mðx; y; f Þ

Mðx; y; f Þ ¼ cos 2pf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �h i
; ð6Þ

where f is the frequency of the modulating sinusoidal

function, dx and dy are the space constants of the

Gaussian envelope along the x and y axis, respectively.

The difference between circular symmetric filters and

Gabor filters is that Gabor filter of a fixed parameter

focus only on information obtained from a specific

orientation; while circular symmetric filters extract

information from all orientation. Circular symmetric

filters can also put more emphasis on a particular

orientation, by changing the parameter dx and dy.
After iris texture has been convolved with circular

symmetric filters, they proposed to extract the mean

and the average absolute deviation of the magnitude of

local patches (of size 8 � 8) of the convolved image as

feature vectors. Finally, Fisher linear Discriminant

analysis was applied to reduce the dimensionality of

the feature vectors.

One last thing to note is that, very often, iris texture

is occluded by other objects, for example, eye lashes,

eye lids, or specular reflection from eye glasses, it is not

that every point on the iris texture map is useful for
pattern matching. Therefore, it is necessary to compute

an iris mask, which is exactly the same size as iris

texture, to indicate which part of the map is really

iris texture, and which part is not. This mask will be

used in the stage of pattern matching, as described in

the next section.
Pattern Matching

After iris code and its mask have been computed, the

next step is to match two irises to see if they are coming

from the same class. Obviously, to complete the task,

the only thing one has to do is to count how many bits

of these two irises share the same value. One thing to

note is that when we compare the differences of each

bit, we must not count the bit which belongs to the

region that is not iris texture. Therefore, we have to

mask out non-iris region before we compute the

matching score.

Another thing to note is that since we already

quantize the feature of iris texture into binary values,

there are only two possible values for each location on

iris map (1 or 0). There exists one operation which can

be executed extremely fast to compare if 2 bits share

the same value, which is the exclusive-or operation

(XOR). XOR returns zeros if both bits are the same

(both of them are zeros or ones), ones if they are

different (one of them is 0 and the other is 1). There-

fore, by performing bit-wise XOR operation, one can

compute the distance score for two irises in extremely

high efficiency.

To summarize, suppose we want to compare the

distance between iris A and B, whose two phase code

bit vectors are denoted {code_A, code_B} and whose
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mask bit vectors are denoted {mask_A, mask_B}, it can

be computed simply by following equation:

HD ¼ ðcode A� code BÞ \mask A \mask Bk k
mask A \mask Bk k ;

ð7Þ
where

N
denotes bit-wise_ XOR operation, \ denotes

bit-wise AND operation, and �k k denotes the norms of

the resultant bit.

The computed score is a metric of ‘‘distance,’’

indicating how different these two irises are. It is

called ‘‘Hamming Distance’’ (HD). As one can see

from Eq. 7, Hamming Distance is normalized by the

norm of the effective region. Therefore, it will always

have values between 0 and 1, where 0 indicates if iris

A and B are exactly the same and 1 indicates if they are

completely opposite.

Ideally, if two irises are from the same class, the

Hamming Distance between them should be close to 0.

On the other hand, if two irises are from different

classes, due to the property of statistical independence,

the probability for each bit of one iris to match the

same bit of another iris should be 50%. Therefore, the

expected Hamming Distance for two irises which come

from different classes should be 0.5. In practice, the

values of Hamming Distance will not be exactly 0 or

0.5. The distribution of the value of Hamming Dis-

tance for authentic comparison will be a Gaussian

distribution, centered at 0, and the distribution of the

value of Hamming Distance for imposter comparison

will be another Gaussian distribution, centered at 0.5.

If the quality of the input iris image is high enough, in

most cases, these two Gaussians would not intersect

with each other, or they only intersect with each other

in tiny portion. Therefore, a proper threshold can be

chosen to minimize both the ▶ False Positive Rate and

▶ False Negative Rate.
Summary

Iris recognition is an emerging field for biometric

recognition. Substantial research efforts have been

involved in this field to push the performance of iris

recognition to the limit. Literature has shown that it is

one of the biometric modality that has high perfor-

mance, high universality, high distinctiveness, high

permanence, and low chances of circumvention [15].

As the technological innovation of iris acquisition
keeps advancing, it is becoming more user-friendly

and more popular. As the computational power of

hardware grows exponentially and the size of chip

keeps decreasing, iris segmentation, feature extraction,

and matching can all be executed faster in much smal-

ler devices. In the near future, it is very promising that

iris recognition system will be widely accepted, not

only in the application at national security level, but

also in private companies, public services, and private

residency.
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Iris Recognition Algorithms
I
An iris recognition algorithm is a method of matching

an iris image to a collection of iris images that exist in a

database. There are many iris recognition algorithms

that employ different mathematical ways to perform

recognition. Breakthrough work by John Daugman

led to the most popular algorithm based on Gabor

wavelets.

▶ Iris Acquisition Device
Iris Recognition at Airports and
Border-Crossings

JOHN DAUGMAN

Computer Laboratory University of Cambridge,

Cambridge, UK
Synonyms

CANPASS; CLEAR; Iris recognition immigration sys-

tem (IRIS); NEXUS; Privium; RAIC
Definition

As case illustrations of generic biometric applications,

there are at least five different modes in which auto-

mated personal identification by iris recognition is

used at airports: (1) international arriving passengers

can clear Immigration control at iris-automated gates

without passport or other identity assertion if they
have been enrolled in a preapproved iris database;

(2) departing passengers can receive expedited security

screening and check-in as low-risk travelers if enrolled

in an iris database following background checks;

(3) airline crew members use iris recognition for con-

trolled access to the secure air-side; (4) airport employ-

ees gain access to restricted areas within airports such

as maintenance facilities, baggage handling, and the

tarmac; and (5) arriving passengers may be screened

against a watch-list database recording the irises of

persons deemed dangerous, or of expellees excluded

from entering a country. All such existing programs

use the Daugman algorithms for iris encoding and

recognition because of the need to process iris images

fully at the speed of the video frame rate (30frames/s)

and to search databases at speeds of about a million

IrisCodes per second, and the need for robustness

against making False Matches in large database

searches despite so many opportunities. However,

the threat models posed for the different applications

are distinctive, depending on whether an attacker’s

goal is a False non-Match (a concealment attack, e.g.,

in a watch-list application) or a False Match (an

impersonation attack, e.g., to be taken for a registered

traveler in an expedited Immigration control or

trusted-traveler deployment). Likewise, the business

models vary for these different uses, depending

on whether the traveler pays for the convenience of

expedited processing, or an airport owner pays for

the facility’s enhanced security and productivity, or a

government funds such a technology deployment both

to improve process efficiency and to achieve national

security goals.
Introduction

Most deployments of biometric systems have as their

main purpose either enhancing the security and reliabil-

ity, or enhancing the convenience and efficiency, of an

identification process. In some applications either secu-

rity or efficiency dominates the requirement, while the

other is less important. For example, in identifying

theme park visitors biometrically in lieu of ticketing,

efficiency is muchmore important than security; where-

as for biometric applications within prisons or detention

centers, just the opposite is the case. In airports, how-

ever, both of these objectives are paramount, and neither

can be compromised. Excelling simultaneously at both
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objectives creates special challenges for biometric sys-

tems, because the design strategies and indeed the

core technology choices that may maximize through-

put volumes are not necessarily the same as those

that maximize identification accuracy. This article

reviews five ways in which automated iris recognition

[1] is used within airports and at border-crossings,

with special attention to those trade-offs and design

issues.
Arriving International Passengers:
Iris Recognition Instead of Passport
Presentation at Immigration Control

The use of biometrics as living passports, removing the

need for actual passport presentation at Immigration

control, was pioneered in the UK in 2002. A 6-month

trial of the EyeTicket JetStream system allowed a total of

2,000 frequent travelers from North American to Lon-

don Heathrow Airport to enroll their ▶ IrisCodes and

thereby to bypass Immigration control upon arrival,

passing instead through an automated iris recognition

gate. The trial was deemed fully successful and led

eventually to a large-scale system deployed by the UK

Home Office, called IRIS: Iris Recognition Immigration

System [2]. Based on the same core Daugman algo-

rithms [1] but with a more user-friendly interface, the

IRIS system is today deployed at most major UK air-

ports, including all five terminals at Heathrow. The
Iris Recognition at Airports and Border-Crossings. Figure 1

a million registered travelers to enter the country via several

identification, in lieu of passport presentation or any other m
architecture incorporates a centralized database of en-

rolled IrisCodes so that travelers can use the system

regardless of their airport or terminal, although this

also makes the system vulnerable to interruptions in

communications links or reductions in bandwidth.

Such network failures in the first year of deployment

occasionally interrupted the service. Nonetheless, as of

May 2008, the UK Border Agency announced that

more than one million passengers had successfully

used the system, with enrollments increasing by

about 2,000 per week, and with the system handling

about 15,000 arrivals per week. By substituting for

passport presentation, the system replaces long queues

at arrivals with an expedited automated clearance at

iris camera gates within a matter of seconds (Fig. 1).

A crucial aspect of the IRIS system is that it oper-

ates in identification mode to determine a passenger’s

identity, not in a mere verification mode in which an

identity is first asserted (for example by presenting a

token, passport, or smartcard) that is then simply

verified. The requirements of biometric operation in

identification mode by exhaustively searching a large

database are vastly more demanding than one-to-one

verification mode in which only a single yes/no com-

parison with one nominated template is required. If P1
is the False Match probability for single one-to-one

verification trials, then (1�P1) is the probability of

not making a False Match in single comparisons. The

likelihood of successfully avoiding any in each of N

independent attempts is therefore (1�P1)N, and so PN,
The UK Government’s IRIS program has enabled more than

British airports using only automatic iris recognition for

eans of asserting an identity.
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the probability of making at least one False Match

when searching a database containing N different pat-

terns, is

PN ¼ 1� ð1� P1ÞN ð1Þ
Observing the approximation that PN � NP1 for

small P1 << 1
N
<< 1, when searching a database of

size N an identifier needs to be roughly N times better

than a verifier to achieve comparable odds against

making False Matches. In effect, as the database grows

larger and larger, the chance probability of making a False

Match also grows almost in proportion. Obviously the

frequency of False Matches over time also increases

with the frequency of independent searches that are con-

ducted against the database. These considerationsmake it

vital that such identification applications operating by

exhaustive search use a biometric modality and algo-

rithms that generate score distributions with extremely

rapidly attenuating tails, when different persons are com-

pared. (These issues are discussed and documented in

more detail in the article Score Normalization Rules in

Iris Recognition.) In the absence of such rapidly attenu-

ating distribution tails, the system would drown in

False Matches when the search databases become

large. In this connection, it is noteworthy that in the

UK where the IRIS program optionally replaces pass-

port presentation, the Border Control Development
Iris Recognition at Airports and Border-Crossings. Figure 2

has a membership of about 40,000 frequent travelers. They p

automated gates, thereby avoiding the queues at Immigratio
and Strategy Group forecasts that by 2015, the number

of international passengers entering the UK annually

will exceed 150 million.

Several other countries are also deploying the same

iris recognition algorithms as a substitute for passport

presentation. One of these is The Netherlands, where

iris-based border-crossing has been used since 2003 for

frequent travelers into Amsterdam Schiphol Airport;

members of the Privium program pay an annual fee

to be able to use automated iris gates for clearing

Immigration, in lieu of waiting in queues for passport

presentation. Another country with a similar but

larger deployment is Canada, where the CANPASS

program operates in all the eight international airports

(Edmonton, Winnipeg, Calgary, Halifax, Ottawa,

Montreal, Toronto, andVancouver)with about 40 kiosks

at each [3]. Both US and Canadian citizens or perma-

nent residents are entitled to enroll in this iris-based

system for entering Canada. In addition, the NEXUS

program operated jointly by the USA and Canada

allows border-crossing in both directions across their

shared border using iris recognition for preapproved

travelers (Fig. 2).

Finally, motorcyclists who commute daily across

the border between Malaysia and Singapore for work

use iris recognition to avoid the long queues for check-

ing passports and ID papers. The Singapore Iris Border
At Schiphol Airport (Amsterdam NL), the Privium Program

ay an annual fee to use the iris recognition system at

n for passport presentation.
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Control for Motorcycles allows 3,000 commuters to cross

the border efficiently using ‘‘registered iris’’ lanes with

automated gates, as may be seen in an on-line video

[4]. The motorcyclists in these lanes remain on their

bikes; the gate is equipped from the side with iris

cameras, including one for a passenger on the bike.

Riders must stop and remove their helmets, but they

do not assert their identity. Rather, identification is

performed by exhaustive search of the enrolled iris

database linked to the fully automated gates. The sys-

tem also maintains a watch-list that is checked.
Departing Passengers: Expedited Check-
in, Security Screening, and Border
Controls

The US Transportation Security Administration (TSA)

and Department of Homeland Security (DHS) in 2005

began a public/private partnership known as the

Registered Traveler (RT) Program to make airport se-

curity procedures more efficient for departing passen-

gers deemed to be trusted. Under this program, dozens

of US airports have deployed iris and fingerprint recog-

nition systems to confirm the identity of ‘‘trusted tra-

velers’’ who have been vetted by the TSA and approved

for expedited security screening. Bypassing the long

lines that have become a feature of airport security

checkpoints since September 2001 is a benefit for fre-

quent travelers, who pay an annual fee of about $100 for

this privilege. It is also an enhancement for TSA security

processes which can become more focused and can take

advantage of the background vetting that was done

when a person was enrolled in the scheme by virtue of

being deemed a minimum security risk.

Although baggage X-ray and metal detection

checks remain universal, enrollees in these systems

face less intrusive screening (e.g., they can keep their

coats and shoes on and laptops in their bags), and they

enjoy access to a reserved fastlane with shorter delays.

These privileges are asserted by presenting a smartcard

credential that contains their biometric data as well as

other information, all under two layers of encryption

and readable only by TSA card-readers. Biometric

kiosks in the departure fastlanes read the cards and

confirm passengers’ identity with iris cameras or finger-

print readers. The network is interoperable across some

30 US airports, and the list is steadily expanding [5].

Beginning with Orlando Airport in July 2005, some of
the major participating US airports today include JFK,

LaGuardia, Newark, Dulles, Regan, Denver, and San

Francisco International Airports. The largest such pro-

gram is called CLEAR, operated by Verified Identity

Pass, which had 175,000 enrolled members as of July

2008 [5]. Additional newer participants in the

Registered Traveler public/private partnership with the

TSA include FLO, Unisys, and Vigilant.

In Europe, for travelers who are nationals of the

25 EU countries that have entered into the Schengen

Agreement for harmonized border control, the iden-

tification formalities for crossing into and out of the

Schengen Zone are done by iris recognition at kiosks

in certain airports. The first such deployment was

at Frankfurt/Main Airport and is known as the

Automated and Biometrics-based Border Checks

(ABG) initiative. This multinational project is led by

Germany’s Federal Ministry of the Interior and Federal

Border Police. The stated objectives of the scheme are

to eliminate the use of fraudulent travel documents

and multiple identities, to speed trusted travelers

across borders, and to allow greater productivity for

border officials.

Iris recognition is also used for other, nonsecurity

related enhancements for departing passengers at air-

ports such as Milan’s Malpensa and Tokyo’s Narita

Airport. Under the Simplifying Passenger Travel scheme

implemented by the Ministry of Justice in Japan, the

JAL Group offers streamlined procedures for passenger

check-in and boarding pass issuance, as well as immi-

gration control at departure and certain ‘‘e-airport’’

utilities and facilities. These services are provided at

iris-enabled automated kiosks and gates in departure

areas, as illustrated in Fig. 3.
Airport Employees: Access Control to
the Tarmac, Aircraft, and Restricted
Areas

Probably the most traditional use of biometric recog-

nition is for physical access control, to ensure that

only authorized persons enter restricted facilities.

This classical mode of biometric deployment is found

at many airports, controlling access to aircraft mainte-

nance facilities, baggage handling areas, the tarmac and

other secure zones.

The Canadian Air Transport Security Authority

uses iris recognition to verify the identities of airport
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recognition is used for expedited check-in of departing passengers. In dozens of US airports, Registered Travelers

approved by the Transportation Security Administration receive expedited security screening once their identities are

proved by fingerprint or iris recognition.
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workers at all the 29 major airports in Canada. Iris

biometric data are embedded within an ID card called

RAIC: Restricted Area Identification Card. Workers

must present this card and verify their identities at

iris cameras controlling automated portals. Similar

systems are deployed at Schiphol Airport (Amsterdam)

for 30,000 airport employees; at Albany Airport for

baggage handlers; and at New York JFK Airport

for access to the tarmac at two terminals. Some air-

ports such as Douglas International (Charlotte) have

also deployed iris recognition gates specifically for

pilots and other airline crew members to reach air-

side more efficiently.

Finally, it is noteworthy that an International Stan-

dard specifically related to biometric identification of

airport employees was published in 2008. The ISO/IEC

24713-2 Standard gives normative requirements on

Biometric Profiles for Interoperability and Data Inter-

change: Physical Access Control for Employees at Airports

[6]. The scope of this Standard includes recommended

practices for enrollment, watch-list screening, preven-

tion of duplicate token issuance, and employee identity

verification. It also describes architectures and business

processes appropriate to token-based identity manage-

ment within the secure environment of an airport.
Watch-list Screening of Arriving
Travelers

The rapid search capabilities of iris recognition, and its

robustness against making False Matches despite the

fact that large search databases create many opportu-

nities for such errors, have led to the deployment of

this technology for watch-list screening. The largest

such deployment is in the United Arab Emirates,

where visa-bearing travelers arriving at any of the

32 air, land, and sea ports of entry are processed with

iris recognition cameras as illustrated in Fig. 4.

Known as the Expellee Tracking and Border Security

Iris System, the scheme was launched in 2001 by the

UAE Ministry of Interior. A noteworthy aspect of the

UAE is that among its 5.4 million residents, about 85%

are foreign nationals [7] on work permits. Because of

this large foreign labor force drawn by economic

opportunities much better than elsewhere in the Mid-

dle East and South Asia, men outnumber women by a

factor of 2.74 among persons in the 15–65 age group

[7], and the border-crossing volume of migrant work-

ers whose homeland roots are elsewhere is very high

(some 12,000 per day). In 2001 an amnesty was

granted to all foreign nationals who had overstayed
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recognition at all the 32 air, land, and sea ports, travelers are screened against a watch-list of expellees, or persons

deemed to be a security risk, before being allowed to enter the Emirates.
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their work permits or committed other visa violations,

but a condition of the amnesty waiver of penalties was

that such persons were expelled from the Emirates for

some period of time, and their iris patterns were

registered in a database. This action enabled enforce-

ment of the ban on re-entry and defeated thousands of

attempts to return under false identities and with fake

travel documents. Over the period 2001–2007 the da-

tabase of expellees’ IrisCodes was enlarged with Iris-

Code databases of foreign nationals who had been

imprisoned for crimes such as prostitution or drugs

trafficking, and of persons deemed to be security risks

or unwelcome for other reasons.

Today this iris watch-list contains 1.2 million Iris-

Codes from persons of 156 nationalities. All travelers

seeking visa entry into the UAE via any port have their

iris images acquired by cameras as shown in Fig. 4, so

that their IrisCodes can be computed and matched

exhaustively against the full database. Since on average

some 12,000 such persons arrive at the UAE each day,

about 14 billion IrisCode comparisons are performed

daily across a dedicated network. The IrisFarm archi-

tecture is a distributed host/client system with a single

central database maintained by the Abu Dhabi Police,

linked over a network of communication channels to

clients that send IrisCode queries to it from all ports

of entry. The average turn-around time is about 2s.

Because every query IrisCode is compared exhaustively
with all on the watch-list, the total volume of such iris

comparisons performed over the years of operation

now number in many trillions [8]. Tens of thousands

of persons have been caught trying to re-enter the UAE

under false identities, who are turned away but who

often make repeated attempts, and the UAE Ministry

of Interior hails the system as a huge success. The

system is now expanding into neighboring Gulf States

including Jordan and Oman, and it will be linked with

an iris-based national identity and border-crossing

system being procured in the Kingdom of Saudi

Arabia.
System Design Contrasts and
Vulnerabilities

The most important differences among the various

systems reviewed in this article are (1) whether they

operate in identification mode, in which no identity is

asserted but identity is determined by searching a

database, versus verification mode in which a token

like a smartcard is used to assert a particular identity

that is then simply verified one-to-one; and (2) whether

the objectives of a valid user or an attacker are to be

matched to an identity on a database, or not.

Identification is vastly more demanding than one-

to-one verification, both in terms of search space and
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comparison speeds, and in terms of the requirement to

avoid any False Matches despite what may be a huge

number of opportunities to make them if the database

is large. If a weak biometric system such as face recog-

nition is used, an attacker would have an excellent

chance to be matched just by chance against at least

one person in a trusted traveler database, if that were

the only test and if the database were larger than a few

hundred or perhaps a thousand. For this reason,

weaker biometrics rely on smartcards or other tokens

to assert a particular identity, so that only one com-

parison must be executed successfully. But presenta-

tion of a token makes the process more cumbersome,

and in any case it has no value for watch-list screening.

Nearly all deployments of iris recognition operate

in identification mode by exhaustive search of a data-

base, because the technology’s speed and accuracy

allow it. The exceptions to this mode are (1) the Pri-

vium system because Dutch law forbids the storage by

the State of personal data like biometrics, and so the

citizens alone retain it; and (2) the CLEAR program

because a smartcard is used for several other purposes

in the transaction anyhow. In both of these cases the

use of a storage token makes it unnecessary to perform

identification by searching a database.

In identification systems operating by database

search, it is necessary to combat the inevitable net

increase in the likelihood of chance False Matches as

the size of the search databases grow. This form of

probability summation is the same phenomenon as

arises when playing the game of Russian Roulette an

increasing number of times. In the case of the iris

recognition algorithms [1, 8] used in all current iris

deployments, combatting this is accomplished by min-

ute adjustments in the decision threshold with search

database growth, keeping the net False Match proba-

bility minuscule. Further details about these processes

are given in the accompanying article, Score Normali-

zation Rules in Iris Recognition.

In a trusted traveler scheme (CLEAR, IRIS, Pri-

vium, etc.), the objective of an attacker is to imperson-

ate another person – either a particular person, or

anyone at random just by accident – who is registered

in the trusted database. The likelihood of success by

blind chance (a ‘‘zero effort attack’’) is minuscule in

the case of iris, but much higher if a printed contact

lens can be produced to mimic a particular target

individual’s iris. In a watch-list deployment such as

the UAE one, the objective of an attacker is simply to

look like anybody other than himself (or anyone else
registered in the watch-list). Such a ‘‘concealment at-

tack’’ by means of printed contact lenses is easier than

an ‘‘impersonation attack,’’ and indeed it can even be

attempted simply by being uncooperative. Therefore,

these border security systems incorporate tests for the

vitality, or ‘‘liveness,’’ of iris patterns including their

motion and deformation with changes in the pupil

size, which obviously does not occur if printed on a

contact lens. Similarly, the standard algorithms per-

form biometric quality assessments to detect extremely

dilated pupils or excessively closed eyelids, as indica-

tors of possible attacks. However, the struggle between

countermeasure and new counter-countermeasure

continues and escalates relentlessly.
Related Entries

▶ Iris Encoding and Recognition Using Gabor

Wavelets

▶ Score Normalization Rules in Iris Recognition
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Iris Recognition Operational Range
The maximal transversal region along the optical axis

of an imaging system within which an iris recognition

algorithm provides accurate identification. Typically,

iris recognition operational range is significantly af-

fected by the system’s depth of field.

▶Wavefront Coded1 Iris Biometric Systems
Iris Recognition Performance
Under Extreme Image Compression

JOHN DAUGMAN, CATHRYN DOWNING

Computer Laboratory, Cambridge University,

Cambridge, UK
Definition

The compressibility of images is usually gauged by their

subjective appearance and by metrics for the amount

of distortion that can be tolerated. In the context of

biometrics, compressibility can be gauged objectively

by measuring the impact of compression schemes on

recognition performance compared to baseline perfor-

mance. Standard biometric methodologies such as

Receiver Operating Characteristic (ROC) curves are

perfectly suited for measuring the impact of compres-

sion on performance. It is possible for performance

actually to benefit from slight image compression, as

has been seen both with fingerprint and iris recogni-

tion, because high frequency noise is the first thing lost;

but at more severe levels, compression must become

detrimental. For iris recognition, it is possible to com-

press images to as little as 2,000 bytes through a combi-

nation ofmethods including cropping, region-of-interest

(ROI) isolation and JPEG2000 wavelet coding, while

suffering only a little reduction in recognition perfor-

mance. This is important because Governments and

Standards organizations prefer that biometric data be

stored in a relatively raw, unprocessed form in order to

remain algorithm-neutral and future-proof. It is also
mathematically important because of insights from

information theory and complexity theory related to

minimal description length, entropy, compressibility,

and discriminability.
Introduction

Awatershed event in biometric informatics occurred in

1993 when the FBI digitized a vast library of fingerprint

cards that had been stored in acres of filing cabinets

and adopted the Wavelet Scalar Quantization (WSQ)

protocol [1] to compress these images, achieving com-

pression ratios in the range of 10:1 or 15:1 without

detectable loss of detail. Compressibility is a fundamen-

tal issue for biometrics, not only for mundane practical

reasons related to storage requirements and data trans-

mission times, but also for abstract mathematical rea-

sons related to information content and pattern

recognition. Governments, regulatory bodies, and inter-

national standards organizations often mandate the

storage of relatively raw data rather than processed

biometric templates, hoping thereby to preserve inter-

operability and to keep biometric data ‘‘vendor-neutral

and future-proof’’ while the algorithms for pattern de-

scription and recognition inevitably evolve and im-

prove. But raw images as data objects are almost a

thousand times larger than the biometric templates

ultimately computed from them. Hence, the conflicting

goals of reducing the size yet preserving the information

content of biometric data make it important to under-

stand how various possible compression schemes im-

pact on biometric recognition performance. This article

studies these questions in the context of iris recognition,

and reviews data [2] showing that it is possible to

compress iris images to within about a factor of two

of the standard iris biometric template sizes with al-

most no impact on recognition performance.
Information Theory and Data
Compressibility

Data compression is one of several disciplines rooted

in information theory having relevance to biometric

technologies for identifying persons, and its signi-

ficance extends beyond the practical matters of storage

requirements and data transmission times. One

of Shannon’s fundamental insights in formulating



Iris Recognition Performance Under Extreme Image Compression I 827

I

information theory [3] was that the entropy of a ran-

dom variable measures simultaneously its information

content (expressed in bits) and its compressibility with-

out loss (to the same number of bits). This link between

entropy, informativeness, and compressibility extends

also to other measures that apply to biometrics. For

example, the relative entropy between two distributions

is one way to measure how well a biometric technique

separates samples from same versus different persons.

The amount of variability in a given biometric system

across a population, or in different samples from the

same source, is also captured by conditional entropies,

with larger entropy signifying greater randomness. Fi-

nally, the similarity between pairs of biometric tem-

plates is reflected by their mutual information: the

extent to which knowledge of one sample predicts the

other. All of these properties are deeply connected with

the compressibility of biometric data.

An extreme variant of Shannon’s insight was

expressed by Kolmogorov [4] in his notion of minimal

description length, which defined the complexity of a

string of data as the length of the shortest binary

program that could generate the data. Creating that

program ‘‘compresses’’ the data; executing that pro-

gram ‘‘decompresses’’ (generates) the data. Fractal

image compression is based on this idea; and a data

string is said to be Kolmogorov incompressible if the

shortest program that can generate it is essentially a

data statement containing it, so the data are then their

own shortest possible description. Within biometrics,

this notion has appeared implicitly under a different

rubric in work on synthetic biometrics, seeking methods

for artificially synthesizing a biometric image that is

indistinguishable in practice from some actual biomet-

ric image. Pioneering work in this direction was done

by Terzopoulos and Waters [5] for facial images and

sequences, by Cappelli et al. [6] for fingerprints, and by

Cui et al. [7] and by Zuo et al. [8] for iris images. In

future, such programs for generating particular bio-

metric images might therefore serve as ways to ‘‘com-

press’’ them in Kolmogorov’s sense; and one might

even anticipate biometric recognition by comparison

of the synthesizing programs. The present article

explores a combination of image compression meth-

ods applied to iris images, specifically probing the

question of how aggressively they can be compressed

without impairing iris recognition. A convergence be-

tween compressed image size and biometric descrip-

tion length begins to emerge.
Schemes for Iris Image Compression

Iris templates (e.g., ▶ IrisCodes) are usually computed

from a polar or pseudo-polar coordinate mapping of

the iris, after locating its inner and outer boundaries

[9, 10, 11]. However, if simple circular boundary mod-

els are imposed, polar mappings depend strongly upon

the choice of origin of coordinates which may be prone

to error, uncertainty, or inconsistency, especially since

the true iris boundaries are often not actually circular.

Unlike rectilinear coordinates, for which a shift error

has no more effect than a shift, in polar coordinate

mappings a shift error in the choice of coordinate

origin can cause large distortions in the mapped data,

with no way to recover from the deformed sampling.

A pioneering study of iris compressibility was

undertaken by Rakshit and Monro [11] showing that

if segmented and normalized iris data were extracted in

polar form, this ‘‘unwrapped’’ polar data structure

could be compressed to 2,560 bytes or even less with-

out impairing recognition performance. However, be-

cause this approach stores the iris image in polar form,

it is not robust against errors in assigning the origin of

coordinates or the loss of iris data when circular bor-

ders are inappropriately enforced. It also suffers from

making the accurate detection of eyelid boundaries for

exclusion of eyelid regions very difficult, since the

available pixel data is tightly cropped around the iris

and ignores valuable shape-constraining data from the

boundary between sclera and eyelid. Finally, the polar

unwrapping has the consequence of highly nonuni-

form sampling, with pixels near the outer perimeter

of the iris sampled with a density 2.5 times lower than

those near the pupil. Preservation of the original recti-

linear format of an iris image is more veridical than

polar unwrapping methods because pixels retain con-

stant size and spacing.

Avoiding the problems introduced by polar unwrap-

pings of iris images, the authors [2] investigated three

compression schemes that retain the native rectilinear

image array format but compress it to as little as

2,000 bytes while still allowing very good recognition

performance on the difficult Iris Challenge Evaluation

(ICE-1) iris database available from the National Insti-

tute of Standards and Technology (NIST) [12] which

includes many poor quality images. Interoperability

was documented between those images when subjected

to the three compression regimes and their uncom-

pressed form, and it was found that on average only
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2–3% of the bits within the computed IrisCodes are

affected even when the net image data reduction factor

reaches 150:1.
Tools for Iris Image Compression:
JPEG, JPEG2000, Region-of-Interest
Extraction

Clearly, a first step in image data reduction is to crop

the iris images from the standard format of 640 � 480

pixels with 8 bits grayscale data per pixel, consuming

307,200 bytes, to a smaller region of 320 � 320 pixels

centred on the iris. This was done by running the eye-

finding part of the standard algorithms [10] that are

used in all current public deployments of iris recogni-

tion, on all images in the publicly available NIST [12]

ICE1Exp1 database, which contains 1,425 iris images

from 124 Subjects with ‘‘ground-truth’’ information

given about which images were taken from the same

iris. The algorithms correctly localized the iris in all

images and produced from each one a new cropped

image of 320� 320 pixels with the iris centred in it. For

those NIST images in which the iris was partly outside

of the original image frame, the missing pixels were

automatically replaced with black ones. For those in

which the algorithms detected that the gaze was direct-

ed away from the camera, as gauged by projective

deformation of the eye shape, a corrective affine trans-

formation was automatically applied which effectively

‘‘rotated’’ the eye in its socket into orthographic per-

spective on-axis with the camera. The first column of

Fig.1 shows three examples of iris images cropped as

described earlier.

This new gallery of simply cropped images was

subjected to three different compression schemes: (1)

▶ JPEG compression with quality factors (QF) of 70,

30, and 20; (2) JPEG compression with the same QFs

but after ▶Region-of-Interest (ROI) segmentation;

and (3) ▶ JPEG2000 compression after ROI segmenta-

tion with compression factors (CF) of 20, 50, and 60, as

illustrated in the second column of Fig.1 for the case of

CF¼50.
The use of cropping and JPEG compression alone

(with QFs of 70, 30, and 20) produced image file sizes

averaging 12,400, 5,700, and 4,200 bytes, respectively,

but with large variability around these means. Includ-

ing the initial threefold reduction in file size due merely

to cropping the images to 320 � 320 pixels, these net

data reduction factors relative to the original full-size
images therefore average 25:1, 54:1, and 72:1, respec-

tively. But further significant reductions in image data

size can be achieved through the use of ROI segmenta-

tion of the iris image.

The standard lossy JPEG coding scheme [13, 14]

effectively allocates bytes on an ‘‘as needed’’ basis,

meaning that the cost of encoding uniform regions of

an image is almost nil, whereas image areas containing

busy textures such as eyelashes may consume much of

the available information budget. In uniform regions,

the only nonzero DCT (discrete cosine transform)

coefficient in each block of 64 frequency components

that encode an 8� 8 pixel block (a data unit) is the DC

coefficient specifying their average gray value; all other

coefficients are 0 if the data unit is a truly uniform

region, or else become 0 after coarse quantization, and

so their cost in the zeroes run-length coding stage is

essentially nil. Therefore JPEG encoding of iris images

can be made much more efficient if all noniris parts of

the image are replaced with a uniform gray value. This

was accomplished for the image gallery automatically

using the standard algorithms [10] for eyelids detec-

tion and fitting, and iris boundary localization, as seen

in the second column of Fig.1.

JPEG coding schemes lend themselves well to ROI

differential assignment of the coding budget. Indeed

the JPEG2000 standard [15, 16, 17] and even the Part 3

extension of the old JPEG standard [13, 14], support

variable quantization for explicitly specifying different

quality levels for different image regions. In JPEG2000,

the MAXSHIFT tool allows specification of an ROI of

arbitrary shape. This utility was explored for biometric

face recognition by Hsu and Griffin [18] who demon-

strated that recognition performance was degraded by

no more than 2% for file sizes compressed to the range

of 10,000–20,000 bytes with ROI control.

In the approach to ROI segmentation presented

here, noniris regions are encoded in a way that distin-

guishes sclera from eyelids or eyelashes regions, so that

postcompression algorithms can still determine both

types of iris boundaries. Therefore two different sub-

stitution gray levels are used: a darker one signifying

eyelids, and a brighter one for the sclera, computed as

an average of actual sclera pixels and blending into

actual sclera pixels near the iris outer boundary. Since

the substitution gray levels are uniform, their coding

cost is minimal and could be further reduced by using

larger data units. JPEG compression of such ROI seg-

mented iris images typically yields a further twofold

reduction in file size for each of the QFs studied, while



Iris Recognition Performance Under Extreme Image Compression. Figure 1 Cropping of iris images (first column),

followed by region-of-interest isolation of the iris (second column) to achieve greater compressibility while retaining a

rectilinear image array format. Substitution of noniris regions by uniform gray levels prevents wasting wavelet coding

budgets on costly irrelevant structures such as eyelashes. All images in the second column have been JPEG2000

compressed to a data size of only 2,000 bytes.
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maintaining a simple rectilinear image format and easy

localization of eyelid boundaries in later stages.

In 2000 a more powerful version of JPEG coding

offering more flexible modes of use, and achieving

typically a further 20–30% compression at any given

image quality, was adopted as the JPEG2000 Stan-

dard [16, 17]. Mathematically based on a Discrete

Wavelet Transform (DWT) onto Daubechies wavelets

rather than the Discrete Cosine Transform (DCT),

JPEG2000 does not suffer as badly from the block

quantization artifacts that bedevil JPEG at low bit-

rates, which are due to the fact that the DCT simply

chops cosine waves inside box windows with obvious
truncation consequences when they are sparse and

incomplete. Moreover, the different levels within the

multiresolution DWT wavelet decomposition allow

local areas within each image data unit to be encoded

using different subbands of coefficients [17] as needed.

The net superiority of JPEG2000 over JPEG in terms of

image quality is especially pronounced at very low bit-

rates corresponding to severe compression, as investi-

gated here, in the range of 0.15 bits/pixel (bpp).

Several mechanisms exist within JPEG2000 for het-

erogeneous allocation of the coding budget, including

tile (data unit) definition, code-block selection allow-

ing different DWT resolution levels in different tiles,
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and DWT coefficient scaling. In the work presented

here those explicit control mechanisms such as the

MAXSHIFT tool were not used, but rather the same

pixel substitution method as described earlier for ROI

was used, for comparison purposes. Three JPEG2000

compression factors (CF) of 20, 50, and 60 were cho-

sen, which yielded file sizes of 5,100, 2,000, and 1,700

bytes, respectively. The three images in the second

column of Fig.1 were created with a JPEG2000 CF of

50 and thus have a file size of only about 2,000 bytes.

Whereas JPEG generates widely varying file sizes to

deliver any given QF, JPEG2000 creates file sizes that

are closely predictable from the specified CF. In the

authors’ experience of compressing several thousand
Iris Recognition Performance Under Extreme Image Compr

for iris image compression, for images all severely compressed

image 239230; second column uses NIST image 239343. Top r

images. Middle row: JPEG compression of the cropped image

of the cropped and ROI-isolated images. At severe compressi
iris images with JPEG2000, the standard deviation of

the distribution of resulting file sizes was usually only

about 1.6% of the mean [2], for any given CF. Predict-

able file size is an important benefit for fixed payload

applications [19].

Finally, it is interesting to compare visually some

examples of the iris images after compression to a

constant data size of 2,000 bytes using each of the

three different schemes for image compression that

have been discussed here. In Fig.2, each column is

from the same NIST iris image; the rows represent

the different schemes. The top row is a simple JPEG

compression of a cropped (320 � 320) image but

without ROI isolation. Most of the 2,000 byte budget
ession. Figure 2 Visual comparison of three schemes

to the same data size of 2,000 bytes. First column uses NIST

ow: simple JPEG compression of the cropped (320 � 320)

s after ROI isolation. Bottom row: JPEG2000 compression

on levels, JPEG2000 is vastly superior to JPEG.
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is wasted trying to encode eyelashes, and the cost on

iris texture is horrendous. The middle row shows im-

provement after ROI isolation, so most of the JPEG

budget is allocated to the iris, but the result is still very

poor. The bottom row shows the result of combining

the cropping, ROI isolation, and JPEG2000 compres-

sion for the same iris images. The improvement is

visually remarkable, and it is confirmed by very good

iris recognition performance as summarized by the

purple ROC curve (CF = 50) in Fig.5 in the next

section.
I

Tools for Evaluating the Effects of Iris
Image Compression

Biometric recognition performance is usually measu-

red by generating Receiver Operating Characteristic

(ROC) curves, which plot the trade-off between two
Iris Recognition Performance Under Extreme Image Compr

coordinates for the NIST [12] ICE1Exp1 iris database, showing

performance. Black curve shows baseline performance on the

effect of simple cropping to 320 � 320 pixels after automatic

compression at QF¼70. Blue and green curves show the effect
error rates (False Accept and False Reject Rates, FAR

and FRR) as the decision threshold for similarity

scores is varied from conservative to liberal. It is com-

mon to tabulate specific points on such trade-off

curves, such as the FRR when the decision threshold

causes an FAR of 1 in 1,000 or of 1 in 10,000, and the

point at which the two error rates are equal, FRR =

FAR = EER, the Equal Error Rate. Such ROC curves

and tabulations are presented in Fig.3 for the NIST

[12] ICE-1 gallery, both for baseline performance (un-

compressed and uncropped: black curve), and for the

three QF quality factors (coloured curves) used with

the simplest JPEG compression approach described

earlier. The coordinates of the ROC curves are semi-

logarithmic: the ordinate plots 1-FRR linearly, over

just the upper 5% of its possible range, while the

abscissa logarithmically spans many factors of 10 in

FAR, to nearly as low as 1 in a million. The number of

images and the mix of Subjects in this NIST iris
ession. Figure 3 ROC curves in semi-logarithmic

the impact of simple data reduction methods on

original database of full-size images. Red curve shows the

ally locating and centering each iris, followed by JPEG

s of more severe JPEG compression at QF¼30 and QF¼20.
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database allows 12,214 same eye matches to be tested,

and it allows 1,002,386 different eye comparisons to be

done, which means that one cannot measure a False

Match Rate (or FAR) between 0 and 1 in a million; this

determines the limit of the ROC curves on the left

extreme of these graphs.

The red ROC curve in Fig.3 shows that at a JPEG

quality factor of 70 and an overall data reduction factor

of 25:1, no performance loss relative to the baseline

(black) ROC curve is detectable. (Indeed there is even

some suggestion of a small benefit from compression,

possibly due to de-noising.) The blue and green ROC

curves show that for this scheme based only on image

cropping and JPEG compression, using a QF in the

range of 20–30 produces image file sizes in the range of

5,000 bytes but at the cost of roughly doubling the

FRRs and EER compared to the error rates for uncom-

pressed images.
Iris Recognition Performance Under Extreme Image Compr

showing the consequences of ROI isolation prior to JPEG ima

is allocated almost entirely to the iris texture itself. The same

curves of Fig.3, and the recognition performance is generally

in each case are twice as great.
The additional impact of the ROI isolation (JPEG +

ROI) on iris recognition performance is gauged by the

ROC curves in Fig.4. These show that for each QF

studied, iris recognition performance remained about

the same as before the ROI isolation (Fig.3), but with

the achievement of a further twofold reduction in

image data size, even down to the range of just

2,000–3,000 bytes per image.

Figure 5 presents the ROC curves generated by the

JPEG2000 + ROI compression scheme, together for

comparison with the black ROC curve for the baseline

gallery (uncropped, uncompressed, not ROI-isolated).

It is clear that compression as severe as 0.156 bpp

(CF = 50, file size 2.0 KB, purple curve) still allows

remarkably good iris recognition performance. For

example, the FRR remains below 1% at an FAR of 1

in 100,000. It seems extraordinary that image arrays

recovered from as little as 2,000 bytes of data are still so
ession. Figure 4 ROC curves and data size statistics

ge compression, so that the available information budget

quality factors were specified as in the corresponding

comparable, but now the data reduction factors achieved
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showing iris recognition performance when the cropped and ROI-isolated images are compressed using JPEG2000 at

various compression factors. Performance with file sizes of merely 2,000 bytes (CF¼50, purple curve) remains remarkably

unimpaired compared to baseline (black curve); but further compression begins to exact a high toll (blue-green curve).
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serviceable for iris recognition. It is possible that part

of the explanation lies in the similarity between the

Daubechies wavelets used for the DWT in JPEG2000

coding, and the Gabor wavelets used in the creation

[10] of the IrisCode itself, so that information lost in

such severe compression is not used in the IrisCode

anyway. However, a watershed seems to exist at 2,000

bytes, since a pronounced degradation becomes evi-

dent when images are further compressed to 1,700

bytes (CF = 60, blue-green ROC curve in Fig.5).

As with all biometrics, ROC curves as plotted in

Figs.3–5 reflect the overlapping tails of the two distri-

butions of similarity scores computed for images from

same or different eyes. For the present work, the simi-

larity score is a normalized Hamming Distance (HD),

which is the fraction of bits disagreeing between two

IrisCodes among the bits compared [10]. It is also

informative to see the full distributions of HD scores,

which are presented in Fig.6 for two of the compres-

sion schemes. In each panel, two different ordinate axis
scales are used to facilitate visualization since there

are 1,002,386 counts in the ‘‘all against all other’’ dis-

tribution (magenta) created by comparing different

eyes, but only 12,214 counts in the distribution

(olive) made by all same eye comparisons across the

database. The upper panel shows the distributions

obtained with ROI+JPEG compression at QF¼70,
which created an average file size of 5,700 bytes. The

recognition performance obtained with that compres-

sion scheme was almost indistinguishable from the

baseline performance (black ROC curve: no compres-

sion, ROI, or cropping). The lower panel shows the

distributions obtained with ROI+JPEG2000 compres-

sion at CF = 60, which created an average file size of

just 1,700 bytes and generated the blue–green ROC

curve in Fig.5. It is remarkable that such extremes

of compression do not have catastrophic effects on

the separability of the pair of distributions. Instead,

as seen in Fig.6, the distribution obtained from differ-

ent eyes (magenta) is virtually unchanged, whereas the



Iris Recognition Performance Under Extreme Image Compression. Figure 6 Distributions of Hamming Distance scores

comparing same and different eyes in the NIST database, for two of the image compression schemes bracketing the

range of schemes studied. Even in the most severe case (lower panel) using images compressed to only 1,700 bytes, the

dual distributions have little overlap and so decisions about identity remain robust.
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distribution obtained from same eye images (olive) is

shifted to the right by a small amount, corresponding

to an increase in the mean HD score from 0.1080 to

0.1424 as indicated by the two dots and a projected

vertical line for comparison.

Information theory provides certain metrics for

defining the ‘‘distance’’ between two random variables

in terms of their entire probability distributions. When

both random variables are distributed over the same set

of possible outcomes, such as the HD scores that were
tallied in the histograms for same and for different eyes

in Fig.6, then the relative entropy or Kullback–Leibler

distance is a natural way to measure the overall dis-

tance between the two distributions. As a measure of

separation, it is also called the ‘‘information for dis-

crimination.’’ Unfortunately, this measure becomes

undefined if there are some values that only one ran-

dom variable can have while other values are accessible

only to the other random variable. Since the distribu-

tions of HD scores obtained from comparisons



Iris Recognition Performance Under Extreme Image Compression I 835

I

between different eyes in Fig.6 vanish for scores smal-

ler than about 0.3, and likewise the score distributions

for same eyes attenuate to zero over much of the other

distribution, the calculated Kullback–Leibler distance

between these distributions is infinite and meaningless,

unless based on nonvanishing theoretical models for

them or by adding arbitrary quantities that then be-

come decisive for this metric. An alternative family of

distance metrics, encompassing the Fisher ratio and

Z-scores, define distance in terms of the difference be-

tween themeans of the two distributions, normalized by

some function of their standard deviations. One such is

the d0 metric of decidability in signal detection theory,

defined as d0 ¼ jm1 � m2j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðs21 þ s22Þ

q
, where m1 and

m2 are the means and s1 and s2 are the standard

deviations. A limitation of this metric is that by con-

sidering only the first two moments of the distribu-

tions, it makes no explicit use of skew, kurtosis, and

higher moments that are more sensitive to mass in the

tails. Thus d0 might be said to take a ‘‘Gaussian view’’

of the world, whereas the skewed distributions in Fig.6

are clearly not Gaussian. Nonetheless, the d0 scores for
each underlying pair of distributions obtained with

each of the compression schemes studied here have

been included within the ROC graphs in Figs.3–5.

They show a small but systematic trend of deteriora-

tion with more aggressive levels of image compression.

But as is clear from the two bracketing extremes pre-

sented in Fig.6, the separability of the two underlying
Iris Recognition Performance Under Extreme Image Comp

resulting file sizes, and their effects on computed IrisCodes, ex

bits that were changed from those computed for the origina

Strategy
Compression
parameter

Cropping (320�320) þ JPEG
compression

QF¼70
QF¼30
QF¼20

Cropping + ROI + JPEG compression QF¼70
QF¼30
QF¼20

Cropping + ROI + JPEG2000
compression

CF = 20

CF = 50

CF = 60
distributions remains remarkable, despite the massive

compression factor reaching 180:1 reduction from the

original images.

Another metric system often used in decision the-

ory to summarize overall performance by a single

scalar statistic is the area under the ROC curve. Clearly

a value of 1.0 represents perfection since it arises only

from the complete absence of overlap between the two

distributions. The ten different ROC curves plotted in

Figs.3–5 appear to have significant amounts of missing

area, but this is an illusion due to the logarithmic

abscissa and the magnified ordinate ranging just be-

tween 0.95 and 1.00. In fact the area under the baseline

black ROC curve (present in all three figures) is

0.999985, and the areas under most of the other nine

curves are reduced from this value in only the sixth

decimal place.
Summary

From studying the effects of three schemes for image

compression on iris recognition performance, one is

drawn to the surprising conclusion that even images

compressed as severely as 150:1 from their original full-

size formats, to just 2,000 bytes, remain very service-

able. It is important to use region-of-interest isolation

of the iris within the image so that the coding budget is

allocated almost entirely to the iris texture rather than

to costly irrelevant structures such as eyelashes; and it
ression. Table 1. Summary of the compression schemes,

pressed as entropy per code bit and as the fraction (HD) of

l full-size images

Average image
size

Entropy/code
bit

Interoperability
HD

12.4 KB 0.053 bit 0.006

5.7 KB 0.087 bit 0.011

4.2 KB 0.147 bit 0.021

5.7 KB 0.112 bit 0.015

2.7 KB 0.147 bit 0.021

2.1 KB 0.199 bit 0.031

5.1 KB 0.130 bit 0.018

2.0 KB 0.179 bit 0.027

1.7 KB 0.219 bit 0.035
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is important to use JPEG2000 instead of JPEG as the

compression protocol. Advantages of this overall ap-

proach from the perspective of Standards bodies and

interoperability consortia are that the compact image

data (when decompressed) are a native rectilinear

arrays; no proprietary methods are required; and the

distortions that can arise from alternative coordinate

transformation methods such as polar unwrapping or

polar sampling are avoided.

As concluding measures, the IrisCodes genera-

ted under each scheme were compared with those

generated for the corresponding original uncom-

pressed images. The entropy H ¼ �P
i

pi log2 pið Þ or
uncertainty per code bit caused by each compression

scheme is tabulated in Table 1. For reference, the en-

tropy associated with the states of bits in IrisCodes

calculated from different images of the same eye, due

merely to variation in image capture, is typically 0.506

bit; Table 1 shows that the corrupting effect of the

image compression schemes is much less than this

native uncertainty in the bits of IrisCodes for a given

eye. The final column of Table 1 tabulates, as interop-

erability scores, the average HD (fraction of disagree-

ing bits) between the IrisCodes obtained before and

after image compression for each scheme and for each

compression parameter. They indicate that only about

2–3% of the IrisCode bits change as a consequence of

image compression even as severe as to 2,000 bytes.

When considered in the context of Fig.6 showing the

HD distributions for same and different eyes, it is clear

that an increment of 0.02–0.03 in HD score is a negli-

gible impact indeed. In conclusion, it appears that

rough convergence between data length and standard

description length for this biometric system is possible.

These observations appear to vindicate the applica-

bility to biometrics of the fundamental insights of

Shannon [3] and Kolmogorov [4] and the relevance

of their analyses of asymptotic compressibility.
Related Entries

▶ Iris Encoding and Recognition Using GaborWavelets
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Definition

Algorithms for iris recognition usually consist of apply-

ing feature extraction on raw iris pattern, then match-

ing against features.However, two important techniques

in machine learning and pattern recognition, namely

probabilistic graphical model, and advanced correla-

tion filters, have not been used for iris recognition. By

using probabilistic graphical models for iris texture

deformation, with the observation being the correla-

tion output derived from applying correlation filters

to local iris regions, problems of iris pattern local

deformations and occlusions can be handled and
Iris Recognition Using Correlation Filters. Figure 1 Exampl

(a) original iris texture (b) iris texture after local deformation. T

Every anchor point is marked with a white star, and local anc

deformations are irregular with different direction in different

global transformation.
recognition performance can be improved over that of

the conventional iris recognition algorithms.
Introduction

In the past two decades, iris recognition has emerged

as one of the most promising modalities for biometric

recognition. Many algorithms have been proposed

to improve the recognition performance of iris recog-

nition. However, there are still some obstacles which

keep us from achieving near-perfect recognition

results. Those obstacles include:

1. Local deformation in iris texture: iris texture may

deform locally because of the dilation, contraction,

or motion of the pupil, as shown in Fig. 1. Note

that these deformations appear locally, not globally.

Therefore, a simple image global transformation

can not solve this problem. A more advanced mod-

eling technique is needed.

2. Occlusion: very often, iris texture is occluded by

many different objects, for example, eyelid, eye-

lashes, or eye glasses. Proper estimation of occluded

region is important for achieving high recognition

rate iris recognition.

The problem of deformation and occlusion estimation

is seldom addressed in iris recognition literature.

In this article, this problem is addressed by two advanced

techniques in the field of pattern recognition and
e images to show local deformation of iris texture.

here are four regions where local deformation is observed.

hor points are connected with white lines. Note that the

region. Therefore, it cannot be solved by a simple image
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machine learning: probabilistic graphical models and

advanced correlation filters. Interested readers are re-

ferred to the original publication for more details [1–3].
Data Preprocessing

Iris images have to be preprocessed before going into

the framework of deformation and occlusion estima-

tion. The stage of data preprocessing includes iris

segmentation and coordinate transformation, as de-

scribed in the entry ‘‘Iris Overview.’’ After preproces-

sing, the iris texture map is transformed to the polar

coordinate plane, as shown in Fig. 2.
Deformation and Occlusion
Estimation

We can model the deformation and occlusion in iris

pattern with a probabilistic graphical grid, as shown in

Fig. 3. In Fig. 3a, an iris texture image is shown. The

iris texture is dissected into smaller patches in order to

observe the local deformation in more detail. In

Fig. 3b, another iris texture image from the same

class, is compared with Fig. 3a. The comparison is

done in a patch-wise fashion. Every local patch is

compared against the patch in the same location in

the other image. The vectors in the center of each

patch show how much and in what direction the

patch is deformed. In Fig. 3b, we can see that the

distance and the direction of the deformation vector

is distributed randomly, and there is no global con-

sistency among them.

In order to model such local deformation and

occlusion, a probabilistic graphical model, arranged

in a grid structure, is proposed, as shown in Fig. 3c.
Iris Recognition Using Correlation Filters. Figure 2 The data

boundary. Second row: the iris texture map after segmentatio
Suppose the number of patches in an iris image is Ns.

Each node di in the model, i ¼ 1, . . ., Ns, represents

a 2-D discrete-valued shift vector, the true value of

which is hidden. The components of di are the vertical

and horizontal shifts (in pixels) of the template region

relative to the corresponding query region. The nodes

oi are hidden binary-valued occlusion variables, where

=0 and =1 denote that the region is occluded and

un-occluded by the eyelid, respectively. Nodes Oi

represent the observations, which include the match

score of each local patch, and the occlusion statistics pi.
Match Score Computed from
Correlation Filters

Computation of the match score has to be robust to

the noise. At the same time, since we are estimating

local deformation (relative shift) of each patch,

it would be even better if the match score itself

incorporates the information about the relative

in-plane translation of the compared pattern.

Advanced correlation filter is one of the techniques

in pattern recognition field that can meet such

requirement.

Theories of advanced correlation filters have been

developed in the last two decades and they have

been successfully applied in the field of biometrics

[4–6]. There are many different versions of correlation

filters and each of them is designed according to dif-

ferent criteria [7–11]. The one which is introduced

in this article is the Optimal Trade-off Synthetic

Discriminant Function (OTSDF), one of the most

robust correlation filters [12]. The process of creating

and using OTSDF is illustrated in Fig. 4. During train-

ing stage (i.e., creation of OTSDF), a few training

images are given. From those training images,
preprocessing stage. First row: the raw eye images with iris

n and coordinate transformation.
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Iris Recognition Using Correlation Filters. Figure 3

Probabilistic graphical model for deformation and

occlusion estimation. (a) the iris pattern dissected into

patches (b) another iris pattern of the same class, dissected

into patches. The vectors in the centers of the patches

indicate the relative deformation of that patch. (c) the

graphical model used for deformation and occlusion

estimation.

Iris Recognition Using Correlation Filters I 839

I

OTSDF can be computed using a closed form expres-

sion in 2D Fourier domain. The expression is designed

to minimize both the ▶ average correlation energy

(ACE) and the ▶ output noise variance (ONV), but

at the same time, make the output of the peak to be

the preset value if the test image is one of the training

images itself. Let h represent a vectorized form (e.g., by

lexicographic scanning of the array into a column

vector) of the correlation filter H(u, v), xi represent

the vectorized form of the ▶ Fourier transform of

training image i, D represent a diagonal matrix

with the average squared magnitude of all xi along its

diagonal, and N is the power spectral density of the

input noise lexicographically re-ordered along its diag-

onal. The ACE and ONV can be represented as

ACE ¼ hþDh

ONV ¼ hþNh
ð1Þ

where + denotes complex conjugate transpose.

As stated above, the criteria of the filter design is to

minimize both ACE and ONV subject to the linear

peak constraints for the input training images. This is

equivalent to minimizing a linear combination of the

two terms (determined by a parameter a), subject to
the same linear constraints. Lagrange optimization

yields a closed from solution

h ¼ A�1XðXþA�1XÞ�1u ð2Þ
where

A ¼ aNþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

D ð3Þ
training stage of OTSDF; Right: the testing stage of OTSDF.
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Matrix X contains {xi} in its columns, and vector

u contains the peak constraints (1 for authentics,

0 for impostors).

The OTSDF filter accomplishes two goals: it pro-

duces sharp peaks for training images, by reducing

ACE, and it achieves tolerance to additive white

noise, by reducing ONV in Eq. (1). The resulting filter

gives good discrimination between authentic and

impostor patterns, even when the authentic patterns

are noisy.
Occlusion Metric

We need to have a metric for each local patch to

evaluate the probability of this local patch belonging

to an occluded region or a true iris pattern. We call

this metric as ‘‘occlusion metric’’. For every local pixel

x in a normalized iris map, we denote p(x) as the

occlusion metric.

There are some intuitive observations for estimat-

ing the occlusion metric for a particular patch.

For example, if we observe the second row of Fig. 2

(the normalized iris map), we will see that in most

cases, occlusion caused by eyelid happens in three

regions: upper-left corner, upper-center region and

the upper-right corner. Therefore, if the location of a

point is close to these three regions, first, it is more

likely to be an occluded region. Second, an occluded

region caused by eyelids usually has higher value of

pixel intensity. This is because in most cases eyelids

look brighter than iris texture. Third, if we observe

the occluded region in Fig. 3a and b, we would find

that usually the eyelid region contains textures of

irregular eyelashes. The line style of eyelashes in Carte-

sian coordinate is irregular. Some are straight, others

are curved. After unwrapping them into polar coordi-

nate, the shape of eyelashes become even more irregu-

lar. Therefore, they create irregular patterns on top of

the eyelids. One special thing about eyelashes is their

intensity is usually lower than iris texture. Therefore,

eyelashes on top of eyelids lead to a large standard

deviation of pixel intensity value in local region. This,

too, can be used as one feature to distinguish occlusion

from iris texture.

Based on the three observations mentioned above,

we compute four features for every pixel on a normal-

ized iris map. They are: (1) the mean intensity value

on a local patch, centered around that pixel; (2) the
standard deviation of the intensity value in that local

patch; (3) the percentage of pixels whose intensity is

greater than one standard deviation above the mean of

the entire iris plane; (4) the shortest Euclidean distance

from that pixel to one of the three ‘‘easily-occluded-

region’’. After computing these features, we train a

Fisher linear discriminant analysis (FLDA) model to

compute a single value to represent the probability of

this pixel being occluded. This FLDA model is trained

by using 30 iris texture maps whose occluded regions

are manually labeled.
Probabilistic Graphical Model

We have described the proposed probabilistic graphical

model in previous section. Now, let us think about how

to model the potential function of the nodes and

between those nodes in Fig. 3c. As described earlier,

for each patch, we have variables di and oi, to model

the local shift and the occlusion, respectively. We can

combine the both into one variable, say hi ¼ di;oi½ �T ,
and hi is a vector in three-dimensional space. For any

pair of neighboring vectors hi and hj , we can model

the possibility of observing them Ci;jðhi; hjÞ with the

following equation:

Ci;jðhi; hjÞ ¼ Cd;i;jðdi; djÞ �Co;i;jðoi;ojÞ ð4Þ
The reason that we can decompose Ci;jðhi; hjÞ is

that we assume the local shift of the patch and

occlusion are statistically independent events. We can

further model Cd;i;jðdi; djÞ and Co;i;jðoi;ojÞ with the

following equation:

Cd;i;jðdi; djÞ ¼ e �
1
2
a dik kþa djk kþb di�djk kð Þf g ð5Þ

Co;i;jðoi;ojÞ ¼
a0;oi ¼ oj ¼ 0

a1;oi ¼ oj ¼ 1

a2;oi 6¼ oj

8<
: ð6Þ

Basically, Eq. (5) is assuming that the length of local

shift vector should be small, the larger the length of

the shift vector is, the smaller probability that it has.

Besides this, the neighboring patches should have

similar (if not exactly the same) local shift vector, so

the probability is inversely proportional to the differ-

ence between the two local shift vectors. Equation (6)

is to estimate the joint probability of the neighboring

patches to be both occluded, both un-occluded, or one

is occluded but not the other. These parameters can be

trained by using a small portion of any iris database.
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The next quantity we have to model is the potential

function Ciðhi;OiÞ which is the probability of observ-

ing Oi when status of the node is hi . Obviously,

Ciðhi;OiÞ must depend on oi because if a region is

occluded then definitely it would affect the observation

Oi . Let us define the distribution F(s) as the probability

of having observed at least the true match score s, and

F(p) as the probability of having observed at least

the true occlusion metrics p. Then Ciðhi;OiÞ can be

expressed as:

Ciðhi;OiÞ ¼ FsðmðdiÞÞ;oi ¼ 0

FpðpiÞ;oi ¼ 1


ð7Þ

Where mðdiÞdenotes the match score when the given

shift vector is di . Since F(s) is the probability of having

observed at least the true match score s, it can

be modeled as the cumulative distribution function

(cdfs) of s and same thing applies to F(p). Therefore,
F(s) and F(p) can be expressed as:

FsðSÞ ¼ Pðs < SÞ ¼
ðS
�1

Nðs; ms; s2s Þds ð8Þ

FpðPÞ ¼ Pðp < PÞ ¼
ðP
�1

Nðp; mp; s2pÞdp ð9Þ

Where s represents the match score observed at the

unknown true shifts for given un-occluded iris region,

and p represents the occlusion metrics observed at the

unknown true shift for given occluded iris region.

Usually the distribution P(s) and P(p) are assumed to

be normally distributed, as in Eqs. (8) and (9).
Final Score Computation

The equations we mentioned in last section are all

about estimating probability distribution for each

sub-region (patch). In order to generate a single

value score for comparing two different irises, we

have to combine scores from all sub-regions. We define

the final Score M as:

M ¼
PNs

i¼1
biMi

PNs

i¼1
bi

ð10Þ

Where Mi is the score from each sub-region, and bi is
the weighting coefficient defined as the probability of

sub-region i to be un-occluded, given the observation:
bi ¼ P̂ðoi ¼ 0jOÞ ð11Þ
The score of a single sub-region Mi is also com-

puted based on a probabilistic point of view. Since

we have estimated the joint probability distribution

of the model parameter hi and the observation Oi ,

we should be able to compute the posterior probability

distribution P̂ðdi ¼ djOÞ. So Mi can be computed as

follows:

Mi ¼
X
d

miðdÞP̂ðdi ¼ djOÞ ð12Þ

Specifically speaking, the posterior probability

P̂ðdi ¼ djOÞ can be estimated from P̂ðdijOÞ, as

shown in the following:

P̂ðdijOÞ ¼
X
oj

P̂ðhijOÞ ð13Þ

If we view Fig. 3(c) as a Markov Random Field [13],

with the potential function specified in previous sec-

tion, we can use Loopy Belief Propagation [14] to

estimate the conditional probability P̂ðhijOÞ. Assume

dij!kðhkÞ is the message passing from node j to neigh-

boring node k at the ith iteration. Then we can com-

pute as shown below:

dij!kðhkÞ ¼
X
hj

Cjðhj ;OjÞ �Cj;kðhj ; hkÞ

� P
l2NðjÞ�k

di�1l!jðhjÞ
ð14Þ

Where Cjðhj ;OjÞ and Cj;kðhj ; hkÞ are defined in Eqs.

(7) and (6), respectively, and N(j) denotes the set of all

neighboring nodes for j in the graphical model.

After i iterations, the conditional probability

P̂ðhj jOÞ can be computed as follows:

P̂ðhj jOÞ ¼ 1

zj
Cjðhj ;OjÞ P

k2NðjÞ
dik!jðhjÞ ð15Þ

where the normalizing coefficient zj is given by

zj ¼
X
hj

Cjðhj ;OjÞ P
k2NðjÞ

dik!jðhjÞ ð16Þ

Result

The framework of iris deformation and estimation has

been tested on ICE database [16]. For ICE database,

there are two sub-sets. The first one, ICE Experiment 1

contains 1425 images of right irises from 124 users,
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resulting in 12214 authentic comparison and 1002386

imposter comparisons. ICE Experiment 2 contains

1528 images of left irises from 120 users resulting in

14653 authentic comparison and 1151975 imposter

comparisons.

The proposed algorithm is compared against a

baseline algorithm, which does not contain the proba-

bilistic framework for iris deformation. This model

assumes that there is only a possible global shift in

iris image. And the match score between two irises

can be computed with the following equation:

mðxÞ ¼ 1

stj j
X
y2st

cTt ðyÞcqðy � xÞ ð17Þ

where x is the global shift vector, ctðyÞ and cqðyÞ
denotes the unshifted template and query iris codes,

respectively, st is the support of the template iris code

and stj j is the total number of element in template.

This method is similar to the method that Daugman

proposed.

For each experiment, we computed the False Reject

Rate (FRR) at different levels of False Accept Rate (FAR).

Specifically, FRR is measured at FAR equals to 1%, 0.1%

0.01%, and 0.001%. The results are shown in Table 1.

From Table 1, we can see that the proposed frame-

work of iris deformation and estimation has a much

better performance than the baseline, which has the
Iris Recognition Using Correlation Filters. Table 1 False

reject rates (FRRs) of the proposed algorithm and

baseline algorithm in two iris database

Methods

CASIA

FAR = 1% 0.1% 0.01% 0.001%

Baseline 1.0% 2.3% 4.8% 9.6%

With deformation
model

0% 0.1% 0.7% 1.9%

Methods ICE Experiment 1

FAR = 1% 0.1% 0.01% 0.001%

Baseline 2.35% 3.45% 4.82% 6.26%

With deformation
model

0.17% 0.33% 0.82% 1.56%

Methods ICE Experiment 2

FAR = 1% 0.1% 0.01% 0.001%

Baseline 2.16% 3.02% 3.92% 5.25%

With deformation
model

0.64% 0.94% 1.26% 1.91%
same power as the Daugman’s algorithm. It shows that

proposed framework is indeed effective and very useful

in iris recognition problems.
Summary

Iris pattern deformations and occlusions are two most

prominent problems in the field of iris recognition. In

the past, some methods have been proposed for the

problem of occlusion detection, however, few have

addressed the problem of local deformation of iris tex-

tures. In this article, we introduce one novel technique

which combines the most advanced theories in machine

learning and pattern recognition to solve this problem.

By the framework of deformation and occlusion esti-

mation, two iris images (from the same class) can be

matched successfully even when one or both of them

suffers the in-plane, local deformation. Experimental

results have shown the power of the novel framework.

From the point of view of computational efficiency,

the proposed framework only requires a few iterations

of probability estimation, which consists of operations

of simple addition and multiplication for a few vari-

ables. It does not take much longer time than

the conventional iris recognition algorithm, which

makes it suitable for iris recognition system running

in real-time.
Related Entries

▶ Identification and Authentication

▶ Iris Encoding and Recognition

▶ Iris Recognition, Overview
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Iris Recognition with Deformation
and Occlusion Estimation
▶ Iris Recognition Using Correlation Filters
Iris Retina Biometric Fusion
▶ Simultaneous Capture of Iris and Retina for

Recognition
Iris Sample Synthesis
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Synonym

Synthetic iris images
Definition

Iris image synthesis is a process of creating images of

an iris by means of statistical and stochastic models,

computer graphic tools or through manipulating,

modifying or transforming parts or complete images

collected from real irises. Since the size of synthesized

datasets can be made arbitrary large, these data are

suggested to be used for the purpose of extensive

testing of the performance and efficiency of newly

designed iris recognition algorithms.
Introduction

Iris as a biometric has been known for a long time.

However, only in the recent years it has gained a sub-

stantial attention of both the research community and

governmental organizations resulting in the develop-

ment of a large number of new iris encoding and proces-

sing algorithms. Most of the designed systems and

algorithms are claimed to have exclusively high recogni-

tion performance. However, since there are no publicly

available large-scale and evenmedium-size datasets, only

very few newly designed algorithms have undergone

extensive testing. There are several datasets of frontal

view iris images presently available for public use. A

brief summary of these databases is provided in Table 1.

With the lack of data, two major solutions to the

problem of algorithm testing are possible: (1) physically

collecting a large number of iris images or (2) syntheti-

cally generating a ▶ large scale dataset of iris images.

This article addresses the second approach. The

following sections summarize a number of techniques

to synthesize iris images and characterize methods to

evaluate the performance of generated images.

http://iris.nist.gov/ICE/
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Database
name

Database
size

# of
classes

# of
Images per

class

Color or
gray
scale

CASIA-I 756 108 7 gray

CASIA-III-
device1

1,200 60 20 Gray

CASIA-III-
device2

1,200 60 20 Gray

CASIA-III-
Interval

2,655 396 NA Gray

CASIA-III-
Lamp

16,213 819 NA Gray

CASIA-III-
Twins

3,183 400 NA Gray

WVU-off-
angle

560 140 4 Gray

WVU 2453 359 NA Gray

UBIRIS 1,877 241 NA Color

UPOL 384 128 3 Color

BATH 1,000 50 20 Gray
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The purpose of a synthesized dataset is to provide an

option to compare efficiency, limitations, and capabil-

ities of newly designed iris recognition algorithms

through their testing on a large scale dataset of generated

irises. Although adding synthetic data to the test set, or

adding artificial noise to data for a scenario testing may

introduce a▶ performance bias (see recommendations

by Mansfield and Wayman [5]), when used with cau-

tion, a large synthesized dataset may evaluate efficiency

and point to drawbacks of testing algorithms.
Available Models

The first methodology for generating synthetic iris

images has been proposed by Cui et al. [1], where a

sequence of small patches from a set of iris images

was collected and encoded by applying Principal

Component Analysis (PCA) method. Principal compo-

nents were further used to generate a number of low

resolution iris images from the same iris class. The low

resolution images were combined in a single high reso-

lution iris image using a superresolution method. A

small set of random parameters was used for the gener-

ation of images belonging to different iris classes.

Another method for the generation of synthetic iris

images based on the application of Markov Random

Field (MRF) has been recently developed by Makthal,
Shah, and Ross [4, 6]. The generation technique relies

on texture primitives to synthesize new iris images.

Texture primitives are small portions of iris texture

selected from a host iris image. The generation tech-

nique is deterministic in the sense that it regenerates

texture primitives locally, but positions them at loca-

tions specified by a frequency of their occurrence

map. The map specifies the probability of occurrence

of a texture primitive at various locations in a generated

image. Thus generated image globally exhibits a differ-

ent structure compared to host images. A few images

generated using this approach are shown in Fig. 1.

Lefohn et al. [3] developed an ocularist’s approach

using the computer vision technology for the purpose

of both the ocular prosthetics and entertainment

industries. In their work, a set of textured layers was

used to render each iris.

Wecker et al. [7] combined characteristics of real

irises to augment existing real iris databases. In their

work a multiresolution technique known as reverse sub-

divisionwas used to capture the necessary characteristics.

Zuo et al. [8, 2] took a model based, anatomy based

approach for the generation of iris images. The work

makes a number of observations on common visual

characteristics of irises such as (1) radial fibers, radially

arranged iris vessels, constitute the basis for iris tissues

and dominate the structure information; (2) a large

part of iris is covered by a semitransparent layer with a

bumpy look and few furrows which are caused by

retractor muscles; (3) the irregular edge of the top

layer contributes to the iris pattern; (4) the collarette

part is raised due to the overlap of sphincter and

dilator muscles. Thus, the main frame of the iris pattern

in this work is formed by the radial fibers, the raised

collarette, and the partially covered semitransparent

layer with the irregular edge. At the same time, the

difference of pixel values in an infrared iris image is

not only the result of the iris structure information.

It is also related to the type of muscles, vessels,

and cells that the iris is composed of, surface color,

and lighting conditions. Involving all those visual and

anatomical characteristics makes each synthetic iris look

similar to a real iris.

To simulate the stochastic nature of individual iris

patterns, the process of iris image generation is reduced

to the generation of a dense fiber structure controlled

by a set of random parameters and postprocessed using

a variety of image processing techniques. The influ-

ence of controlled parameters is carefully researched

and the operational range of parameters is evaluated.
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The value of each parameter is limited to a certain

range to keep the common iris features. However, with-

in the range it is allowed to vary maximally to increase

the randomness of the iris pattern. A four step proce-

dure for the generation of iris images was developed:

(1) The generation of a continuous fiber structure in

a cylindrical coordinate system; (2) Projection of the

three-dimensional structure onto a two-dimensional
Iris Sample Synthesis. Figure 1 A gallery of synthetic iris im

imposed by MRF is smoothed by incorporating additional syn

line integral convolution (Published with approval of S. Shah

Iris Sample Synthesis. Figure 2 An example of a three-dime

described in Zuo et al. [2].
image space based on the depth of fibers in the structure;

(3) Modeling and blurring the top layer; and (4) Adding

visual effects adherent to various parts of the iris. An

example of a three-dimensional fiber structure is dis-

played in Fig. 2. The results of the procedures described

in steps 2–4 are demonstrated in Fig. 3. A small gallery

of generated iris images synthesized by following the

approach by Zuo et al. is displayed in Fig. 4.
ages generated using MRF approach. The regular structure

thesized features such as furrows and crypts through a

and A. Ross).

nsional fiber structure generated using the methodology

I



Iris Sample Synthesis. Figure 3 Shown are the steps 2–4 of iris image generation.

Iris Sample Synthesis. Figure 4 A gallery of synthetic iris images generated using model based, anatomy based

approach. Iris 4 is a real iris image, a sample from CASIA dataset.
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Quantifying Performance

When generating synthetic iris images, the problem

that one faces is to define a measure of ‘‘realism.’’
What is the set of requirements that a synthetic iris has

to satisfy to be recognized and treated as a physically

collected iris image? One can make various conclusions:

(1) it should look like a real iris. (2) it should have
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the statistical characteristics of a real iris. Real iris

patterns are so anatomically complex that it is nearly

impossible to mathematically describe any particular

one. Thus, standards of realism will be limited to some

degree.

The approaches that various research groups took

in order to prove the validity of generated data varied

substantially. For example, Makthal and Ross com-

pared generated iris patterns against nonstochastic nat-

ural patterns from Brodatz library by invoking k-mean

clustering technique. The data were clustered in two

groups, iris and non-iris based on four distinct features

associated with texture analysis and derived from

the spatial grey level co-occurrence matrix, a second

order statistics of images. Zuo et al. analyzed the verifi-

cation performance of generated iris images by extra-

polating the tails of genuine and imposter probability

density functions fitted into genuine and imposter

histograms of generated and real iris images. They

also performed ▶ sensitivity analysis to conclude on

importance of various parameters involved in generat-

ing iris images.

The common feature of all approaches to evaluating

performance of generated iris data is that they focus on

evaluating the similarity between real and synthetic iris

images at three different levels: (1) global layout,

(2) features of fine iris texture and (3) recognition

performance.
Summary

Multiple approaches to generating sample iris images

exist in the literature. These approaches vary in terms

of tools and models used to synthesize images. Since

synthetic data are known to introduce a bias that is

impossible to predict, the data have to be used with

caution. However, in the absence of a large- or even

medium-scale dataset of real iris images, the generated

data provide an option to compare efficiency, limita-

tions, and capabilities of newly designed iris recogni-

tion algorithms through their testing on a large scale

dataset of generated irises.
Related Entries

▶ Face Sample Synthesis

▶ Fingerprint Sample Synthesis
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Iris Scan
▶Biometric Sample Acquisition
Iris Scanner
▶ Iris Acquisition Device

▶ Iris Device
Iris Segmentation
Iris segmentation involves finding the pupillary and

limbic boundaries of the iris within the image allowing

http://www.cesg.gov.uk/site/ast/biometrics/media/BestPractice.pdf
http://www.cesg.gov.uk/site/ast/biometrics/media/BestPractice.pdf
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the iris region to be separated from the rest of the iris

image. This step is necessary prior to the creation of an

iris template and has significant impact on iris recog-

nition performance.

▶ Iris Databases
Iris Segmentation Using Active
Contours

SUNG W. PARK, MARIOS SAVVIDES

Carnegie Mellon University, Pittsburgh, PA, USA
Synonym

Iris segmentation using snakes
Definition

Iris segmentation using active contours is finding an

iris region in an image using snakes which are curves

such as inner and outer boundaries at pupil and sclera.

Iris segmentation is a key task for iris recognition.

However, it is challenging to detect and exclude the

true inner and outer boundaries of an iris. First of all,

the occlusion caused by lower and upper eyelids and

eyelashes makes it difficult to detect the iris region.

Even though eyelids and eyelashes make no occlusion,

the inner and outer boundaries are not exact circles, so

circle detection such as the Hough transform is not

enough to be applied. To obtain the iris boundaries,

snakes have been successfully applied in literature.

Snakes are energy-minimizing parametric closed curves

guided by external forces.
Introduction

Among various biometric techniques, iris recognition

can provide stable and accurate recognition rates, since

irises have highly unique pattern consisting of complex

tissue [1]. Also, iris pattern forms early, and remains

the same throughout life, so iris recognition does

not have aging or wearing problems unlike face or
fingerprint recognition. However, for iris recognition,

it is required to segment iris regions successfully, and

moreover, iris segmentation is challenging in many

reasons. First of all, the different lighting conditions

often give shadows and specular reflections, and also,

the radius of the pupil changes because of pupil dila-

tion and contraction. Thus, we need an iris segmenta-

tion method robust on these changes in iris images.

Moreover, unfortunately, we often have troubles to

obtain a whole iris region because of the occlusion by

eyelids and eyelashes. In particular, the upper outer

boundaries are often partly or severely occluded by

upper eyelids and eyelashes.

To get successful results of iris recognition in spite

of these occlusion problems, the occlusion regions

should be detected and excluded during segmentation.

Active contours [2, 3] have been successfully applied to

detect true iris regions by detecting the boundaries

created by both an iris and occlusion.
Snakes for Curve Detection

In computer vision, edges or curves in an image are

commonly used as features, since features give a strong

presence in the images. For the low-level ▶ feature

detection, the art of feature detection has been much

studied, such as image filtering by digital convolution

and simple thresholds. However, the results of these

image filters dramatically change by thresholds, so

more robust ways are required for reliable feature

detection. To overcome these limitations of previous

feature detectors, active shape modes with a variety of

forms, principally snakes [3], have been proposed [4–7].

Snakes are energy-minimizing parametric closed curves

guided by external forces. The aim of the snake is to find

a location that minimizes energy for curve detection.

Iris segmentation is dramatically enhanced by active

contours, because active contours can fit noncircular

boundaries in an iterative way. The basic concept

of the snake algorithm is briefly summarized in this

section.

Using snakes, an active contour is an ordered col-

lection of points in an image:

P ¼ fp1; p2; � � � ; png; ð1Þ
where pi ¼ (xi,yi) is a point in the contour. The snake

method enables the points in the contour to approach
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the boundary of an object iteratively through energy

minimization. For each point in the neighborhood of

pi, an energy function is computed:

E ¼ Eint þ Eext ; ð2Þ
where Eint is the internal energy formed by the snake

configuration, and Eext is the external energy formed

by external forces affecting the snake. First, Eint is

dependent on the shape of the contour, and it is the

sum of the contour continuity energy Econt and the

contour curvature energy Ecurv . Next, Eext is dependent

on the image properties, such as the gradient, and is

the sum of the image energy Eimg and the energy of

additional constraints Econ. a and b are constants

providing the relative weighting of the two energy

terms.

Generally, regardless of a variant of external con-

straint described in [3], the energy at every point can

be written as

Ei ¼ aEcont ;i þ bEcurv;i þ gEimg ;i ð3Þ
where a, b, and g are the weights of every kind of

energy. The full snake energy is the sum of all the

points. As a is bigger, snake points are more evenly

spaced. Also, as b for a certain point increases, the angle
Iris Segmentation Using Active Contours. Figure 1 Snakes

points; (b) K = 1; (c) K = 2; (d) K = 5; (e) K = 12; (f) K = 30.
between snake edges becomes more obtuse. Lastly, g
is responsible for making the snake point more sensi-

tive to the image energy, rather than to continuity or

curvature.

Figures 1 and 2 show two sets of points in the

outer and inner boundaries. The initial points in

Figs. 1a and 2a are set in the circles detected by a circle

detector [7]. The snake algorithm updates the points

iteratively and approach the boundaries. Commonly,

a boundary is easier to be detected than an outer

boundary, since the latter is often occluded more by

eyelids or eyelashes than the former. So, the initial

points in an outer boundary are selected in a more

advanced way than those in an inner boundary. As

shown in Fig. 2a, the initial points in an inner bound-

ary are uniformly selected in the circle detected at

pupil. On the other hand, the initial points in an

outer boundary in Fig. 1(a) can be generated in either

of the two ways shown in Fig. 3. The two rows in Fig. 3

provide two different templates for outer boundary

detection. The first row in Fig. 3b shows the template

when outstanding horizontal edges are detected

around the upper region of the iris by the Sobel edge

detector. In this case, we assume that an upper eyelid

occludes the iris partially, and initializes the snake
at Kth iteration for detecting an outer boundary. (a) initial



Iris Segmentation Using Active Contours. Figure 3 Segment an outer boundary at sclera. (a) the results of circle

detection; (b) two templates of outer boundaries; (c) initial points generated by either of the two templates; (d) final

results of snakes.

Iris Segmentation Using Active Contours. Figure 2 Snakes at Kth iteration for detecting an inner boundary. (a) initial

points; (b) K = 1; (c) K = 2; (d) K = 5; (e) K = 12; (f) K = 30.
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points in the lines connecting the detected edges. Oth-

erwise, we let the initial points lie in the detected

circle. In both cases, the snake points are initialized

densely in the solid lines but sparsely in the dashed

lines in the templates in Fig. 3; we assume that the

outer boundaries around the solid lines, i.e., the

left and right sides of the outer boundaries are more
robust on the occlusion by eyelids. As shown in

the final configuration of snakes in Fig. 3d, the

snake points lie in the boundary almost uniformly in

the end.

S ¼ s2x sxy
sxy s2y

� �
¼ 2 0:5

0:5 1

� �
ð4Þ
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Segmentation Results

Figure 4 shows the results of iris segmentation pro-

posed in this chapter. For experiments, the NIST ICE-1

database, which was constructed for NIST Iris Chal-

lenge Evaluation [8], is used. The segmentation results

demonstrate that the proposed method using snakes

produces reliable results in various cases. In particular,

the segmentation results show that the proposed

method is powerful to detect outer boundaries even
Iris Segmentation Using Active Contours. Figure 4 Exampl

Iris Segmentation Using Active Contours. Figure 5 Segmen

snakes; (b) Smooth the boundary connecting the snake point
when upper eyelids and eyelashes make severe occlu-

sions inside iris regions. By active contours, the eyelids

are excluded and the noncircular boundaries are

detected successfully as shown in Fig. 4.

After the snake points converge, we can estimate

the iris boundaries roughly. Next, we obtain more

reliable boundaries by connecting the final snake

points in an outer or inner boundary into a closed

line, and smoothing the connected line as shown in

Fig. 5.
es of iris boundary detection using snakes.

t a true iris region after applying snakes. (a) final results of

s; (c) final iris region.

I
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Summary

For successful iris recognition, it is indispensable to

segment the true iris region from an image. So, as a

reliable iris recognition technique is demanded, the

demand for robust iris segmentation also increases.

However, iris segmentation is challenging in that

upper and lower eyelids and eyelashes often make

occlusion which is difficult to be detected by previous

edge detectors or circle detectors. To improve the

results of iris segmentation, active contours called

snakes have been applied to iris boundary detection.

In particular, snakes provide a powerful segmentation

ability to detect and remove the occlusion by an upper

eyelid which has been one of the most significant

obstacles for reliable iris segmentation.
Related Entries

▶ Iris Recognition
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Synonym

Iris standards evolution
Definition

Iris standards are used to provide a set of guidelines for

iris system implementation, design, and interopera-

bility. Both published and emerging standards for

iris-based systems include recommendations for inter-

operability, data formats, conformance, compression,

and quality.

There are two Technical Committees that create

standards for the United States (U.S.) and internatio-

nal communities which solely concern biometrics. The

American National Standards Institute (ANSI) Inter-

National Committee for Information Technology

Standards (INCITS) M1 Technical Committee creates

U.S. national standards. This same group is the U.S.

Technical Advisory Group for the International Orga-

nization for Standardization (ISO) and the Inter-

national Electrotechnical Commission (IEC) Joint

Technical Committee 1, Subcommittee 37 (SC37),

which creates biometric international standards

[1, 2]. Both ANSI/INCITS and ISO/IEC standards

bodies ultimately publish the iris standards that are

discussed within this chapter.
Introduction

Biometric standards development began in November

2001 with the creation of M1 in the United States.

http://iris.nist.gov/ice/
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Shortly thereafter, the international community began

developing biometric standards with the creation of

SC37 in June 2002. Each technical committee is broken

into separate subcommittees. The overall structure of

both organizations is similar with only the subcom-

mittee names being different, as shown below:

� M1.1/WG1 – Task Group on Biometric Vocabulary

� M1.2/WG2 – Task Group on Biometric Technical

Interfaces

� M1.3/WG3 – Task Group on Biometric Data Inter-

change Formats

� M1.4/WG4 – Task Group on Biometric Profiles

� M1.5/WG5 – Task Group on Biometric Perfor-

mance Testing and Reporting

� M1.6/WG6 – Task Group on Cross Jurisdictional

and Societal Issues

These subcommittees have created several standards

governing the adoption of biometric technology

throughout the industry. However, there are a few

standards that specifically involve iris technology.

These standards have either been published, or are

emerging documents about to be published. The cur-

rent versions are as follows:

� ANSI INCITS 379-2004 American National Stan-

dard for Information technology – Iris Interchange

Format

� ANSI INCITS 1749-D: Part 6 -Conformance

Testing Methodology for INCITS 379, Iris Image

Interchange Format

� ISO/IEC 19794-6 Information Technology –

Biometric Data Interchange Format – Part 6: Iris

Image Data

� ISO/IEC 29109-6 (Base Document) Information

Technology – Conformance Testing Methodology

for Biometric Data Interchange Records as defined

in ISO/IEC 19794 Biometric Data Interchange

Format Standard – Part 6: Iris Image Data

The following sections will provide details concerning

the specific standards that have been drafted and the

evolution of standards development planned for the

years to come.
Data Format Standards

Currently, data format standards are the only two

standards published by both national and international
bodies. They are the ANSI INCITS 379 Iris Image Inter-

change Format and the ISO/IEC 19794-6 Information

Technology –BiometricData Interchange Format – Part 6:

Iris Image Data. Both of these standards are used to

provide manufacturers an accepted data format to

increase interoperability between multiple iris systems.

These standards identify two image interchange

formats for biometric authentication systems that uti-

lize the biometric iris modality. The first is▶ rectilinear,

consisting of a raw image, or a compressed image using

the JPEG compression standard. The second is the

▶ polarized format, which requires pre-processing

and image segmentation.

In addition to the interchange formats there are

some specifications identified that are consistent

throughout both standards. The following section out-

lines these specifications in detail.
Data Format Specifications

Each record obtained must have an iris record header

which contains information about the image capture

device and conditions by which the image was cap-

tured. The header will identify the number of

features recorded, each iris as captured from the left

or right, and the number of images captured from each

eye. Each iris record should also contain an image

sequence number with information about the quality

and rotation of the image. An iris image data record

will contain either rectilinear or polar format images

and should not be mixed.

All images should have a 256 gray level range,

allocating at least one byte per intensity value and

provide at least 7 bits of useful intensity information.

If ▶ specularity reflections from the illumination

source occur, their intensity should be set to the satu-

ration level or to a gray value of zero.

The eye should be illuminated by using near-infrared

wavelengths of approximately 700 and 900 nm. The

angle between a line extending from the center of

the illumination source to the center of the pupil,

and the optical axis of the iris camera should be at

least 5� to prevent ‘‘red-eye’’ effect.

The iris image should have a minimum of 70 gray

levels of separation between the iris and the sclera, and

a minimum of 50 gray levels of separation between

the iris and the pupil for any eye color. A minimum

of 70% of the iris should be visible and not obscured by
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specular reflections or any other obstructions. Table 1

outlines the quality recommendations by both the

standards bodies while Table 2 discusses the definition

of minimum requirement, medium quality, and high

quality iris data records.
Conformance Standards

In accordance with the data format standards

published, both M1 and SC37 are rapidly developing

the conformance testing standards that will show com-

pliance with the existing published standards. The

standards are in their final development stages and

are planned to be completed in 2008 [1, 2].

The conformance tests, in accordance with stan-

dards, produce verifiable results that a given manu-

facturer has designed a system capable of being

interoperable with other iris systems available on the

market. Such standards have also identified require-

ments for testing to maintain consistency.
Iris Standards Progression. Table 1 Quality recommendatio

Image
Quality
level

Image
Quality
value

Expected iris
diameter, pixels

Minimum
resolution

per m

poor 0–25 � �

low 26–50 100–149 8,3

medium 51–75 150–199 12,

high 76–100 200 or more 16,

Iris Standards Progression. Table 2 Minimum, Medium, and

Quality

Minimum
Requirement

Image quality values between 0 and 25
minimum quality standards
Images identified as being low quality us
at 60% or higher contrast, and pixel reso

Medium Quality Image quality values in the range of 51–
Images identified as being medium qua
3.0 lp/mm at 60% or higher contrast, an
object plane [3, 4]

High Quality Image quality values in the range of 76–
cameras which have a spatial resolution
The pixel resolution should be at least 1
Current Standard Bodies
Developments

Like any emerging technology, new developments

in the field of iris recognition are constantly being

discovered, which have had direct effects on the stan-

dards community. In May 2007, the University of

Cambridge released a technical report titled Effect of

severe image compression on iris recognition perfor-

mance [5]. This report documented three compression

methods that retained rectilinear image formats com-

pressing to as little as 2,000 bytes while still allowing

quality recognition performance on publicly available

iris image databases. The compression methods are as

follows:

The first method reduced the size of the standar-

dized iris image format by cropping the image and

then compressed the cropped image into the JPEG

format. ‘‘The standardized format is 640 by 480 pixels

with 8 bits grayscale data per pixel, which uses approx-

imately 307,200 bytes. Results show that a reduction
ns outlined in standards

pixel
, pixels
m

Optical resolution at 60%
modulation, lp/mm Comment

� Unacceptable
quality

2,0 Marginal
quality

5 3,0 Acceptable
quality

7 4,0 Good quality

High Quality Defined

Definition

and are used to indicate the image does not meet the

e cameras with a minimum spatial resolution of 2.0 lp/mm
lution at least 8.3 pixels per mm at the object plane [3, 4]

75 are considered to be of medium quality
lity use cameras with a spatial resolution of at least
d pixel resolution of at least 12.5 pixels per mm at the

100 are considered to be of high quality and should use
of at least 4.0 lp/mm at 60% or higher contrast
6.7 pixels per mm at the object plane [3, 4]
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factor of 72:1 increased the Equal Error Rate (EER) by

a factor of .0013.’’

The second method reduced the size of the image

to an allocated Region of Interest (ROI). ‘‘This is done

by substituting all non-iris parts of the image with a

uniform grayscale; darker gray is used to signify

eyelashes and lighter gray is used to signify the sclera.

Highlighting the ROI at every Quality Factor has

proven to be beneficial.’’

The third method reduced the data size using

JPEG2000 compression. ‘‘This method is similar to

the JPEG compression, but compresses the image

further by a factor of 20–30%. JPEG2000 also allows

use of a mask to specify an arbitrary shape (ROI) to

control the allocation of the encoding budget. Results

showed that a reduction factor of 180:1 using

JPEG2000 compression and locating the ROI simulta-

neously increased the EER by .0016.’’

Publishing the technical report, moved SC37 WG3,

at the Berlin meeting in June 2007, to propose the

removal of the polar image format from the ISO/IEC

standard because of defects caused by polar image

distortion. M1 representatives were concerned about

the impact the change would cause in the U.S. national

biometric community. They recommended waiting

until additional research and analysis was complete

before making a final decision regarding removal of

the polar format. The Department of Homeland

Security (DHS) backed this decision by submitting a
Iris Standards Progression. Table 3 Other organizations affe

Organization name

X9F4 (Financial) The Accredited Standa
establish, maintain, an
order to facilitate deliv

International Labour Organization –
ILO

The International Labo
brings together gover
common action to pro

Institute of Electrical and Electronics
Engineers – IEEE

The IEEE promotes the
sharing, and applying
and sciences for the b

National Institute of Standards and
Technology – NIST

Founded in 1901, NIST
Commerce Departmen
develop and promote
productivity, facilitate

National Physical Laboratory – NPL The National Physical
Institute and is a world
the most accurate me
Position Paper in support of retaining the Iris Polar

Image Data Format to M1 [6]. The paper outlined the

effects on DHS’s Registered Traveler (RT) program and

general concerns with the technical report. As of

December 3 2007 M1 representatives will submit

their ballots, determining the acceptance or withdraw-

al of Project 1576-D – revision of INCITS 379–2004.
Future Standards

In addition to ANSI and ISO, there are other organiza-

tions that are concerned with biometric implemen-

tations both nationally and internationally. These

organizations have created overall specifications and

best practice documents that discuss biometrics as a

whole. In some cases, these groups work with M1 and

SC37 to establish future standards that meet the

requirements of cross functional organizations outside

the biometric industry mainstream. Table 3 identifies

few of these organizations.
Summary

During the last six years, biometric standards have

progressed rapidly compared with similar technology

related industries from 6 in 2004 to the current 53 pub-

lished standards. The current emerging and published
ction standards bodies

Brief overview

rds Committee X9 (ASC X9) has the mission to develop,
d promote standards for the Financial Services Industry in
ery of financial services and products

ur Organization (ILO) is the tripartite UN agency that
nments, employers, and workers of its member states in
mote decent work throughout the world

engineering process of creating, developing, integrating,
knowledge about electro and information technologies
enefit of humanity and the profession

is a non-regulatory federal agency within the U.S.
t’s Technology Administration. NIST’s mission is to
measurement, standards, and technology to enhance
trade, and improve the quality of life

Laboratory (NPL) is the UK’s National Measurement
-leading centre of excellence in developing and applying
asurement standards, science and technology
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standards are proving to be only the beginning in

the development of standards. Memberships in both

groups are continuing to grow and future standards

development is imminent.
Related Entries

▶Biometrics System Design

▶ Interoperable Performance

▶ Iris Device

▶ Iris Encoding and Recognition

▶ Iris Image Quality

▶Performance Evaluation, Overview
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Synonyms

Iris image enhancement by Super-Resolution method;

Super-Resolution for iris
Iris Super-Resolution. Figure 1 Two iris images of the

same eye, shown in polar coordinate. Upper: iris image

taken from a long distance. Therefore, the image resolution

and quality is not very high. Lower: iris image taken from a

close camera, which contains much more details.
Definition

Super-Resolution is an image processing technique

which takes input of a single or multiple low-resolution
images and produces a single or multiple high-resolution

images. By Super-Resolution processing, the quality

of images can be enhanced and the follow-up stage of

image processing (e.g., segmentation, object recogni-

tion, object tracking, or biometric identification) can

achieve a higher success rate. The goal of iris Super-

Resolution is to apply Super-Resolution technique in

the specific domain as in iris image in order to en-

hance the quality of iris image. The iris image of

better quality will result in a higher verification/rec-

ognition rate in iris recognition systems.
Introduction

Image resolution is a fundamental factor for the suc-

cess of all kinds of image processing techniques, rang-

ing from ▶ image segmentation, ▶ object recognition,

tracking, 3D shape estimation, and reconstruction and

biometric recognition. The higher resolution the input

image has, the more accurate the output will be.

Figure 1 shows the two iris images (in polar coordi-

nate) which are taken from the same eye. The upper

one is taken with a long distance camera. Because

the distance between the eye and the camera is far,

the resolution and the quality of the image is not very

good. Therefore, many of the iris details cannot be

shown in this picture. On the other hand, the lower

image is taken with a high-resolution camera, placed

closer to the eye. Comparing the image quality among

these two pictures, one can clearly see that there are

much more details in the second picture. When these

two pictures are used as input to iris recognition sys-

tem, the lower one will give a more reasonable score.

Although the maximal resolution of digital cameras

has continually increased and the prices of them are

http://isotc.iso.org
http://m1.incits.org
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continually decreasing, there are still times that the re-

gion of object of interest in a picture is very small, and

the resolution of the object is not high enough. In

such circumstances, in order to enhance the object of

interest and make the image of the object clearer,

image processing technique needs to be applied to

achieve this goal. Typically, in the field of image pro-

cessing, those technique which takes input of one or

multiple low-resolution images and output one or mul-

tiple high-resolution images are called image Super-

Resolution.

Another problem that people have in their photos

very often is the blurring of the images. The blur of the

images might result from two reasons. One of them is

the relative motion between the camera and the object.

This is called motion blur. The other is the object is

out of focus of the camera during image acquisition

process. This is called focus blur. Besides image blur,

another problem we need to overcome in order to have

high quality image is the noise. Strictly speaking, the

problems of image blur and image noises are different

than the goal of Super-Resolution problem, however, in

the literature, in order for Super-Resolution algorithm

to be robust in real application, algorithm designers

need to take into account the problem of image blur

and image noises too.
Super-Resolution

Algorithms for Super-Resolution image can be categor-

ized into two different types. The first is reconstruction-

based algorithms [1–5]. In general, this type of

Super-Resolution algorithm formulates the problem

of Super-Resolution as a matrix inversion problem.

Because digitized images consist of pixels, a digitalized

image can be treated as a huge matrix, where each pixel

associates with a real number value in a limited range.

Therefore, a high-resolution image can be treated as a

matrix of large size, while a low-resolution image can

be treated as a matrix of small size.

A matrix can be converted to a vector, simply by

concatenating all the columns (or rows) into a long

vector. If we denote vector of the high-resolution

image as X and the low-resolution image as Y, Super-

Resolution problem can be simply formulated as

Y ¼ MX þ V

where M is a transformation matrix that represents

the effect of imaging system and V is another column
vector of the same size of Y, which represents

the random noise inherent to any imaging system.

M can be further decomposed into several factors to

model different effects an imaging system produced

to the original high-resolution image; those effects

may include: relative motion between object and cam-

era, camera blur effect, color filter effect, and down-

sampling process.

The goal is to estimate the high-resolution image X

from observed low-resolution image Y. This goal can

be achieved by means of optimization. There are many

different goals that can be chosen to be optimized;

one of the most common ways is to minimize the

▶ L2 norm of the residual vector, which gives us the

following equation:

X̂ ¼ arg min
X

Y �MXk k22:

Different algorithms give different ways and different

constraints to this optimization problem, and therefore,

result in different solutions. In summary, reconstruc-

tion-based Super-Resolution algorithms formulate the

problem as a matrix inversion problem and solve it by

various optimization methods.

Second type of Super-Resolution algorithms is prob-

ability-based algorithms [6–10]. In this type of algo-

rithm, the problem of reconstructing high-resolution

image from low-resolution ones is modeled by a Bayes-

ian approach. By Bayes’ rule, the probability of Super-

Resolution images given low-resolution ones Pr[Su|

Loi] can be decomposed into:

Pr SujLoi½ � ¼ Pr LoijSu½ � � Pr Su½ �
Pr Loi½ � :

Since Pr[Loi] is a constant and logarithm function is

a monotonically increasing function, the goal of Super-

Resolution can be achieved by this equation:

argmax
Su

Pr½SujLoi� ¼ argmax
Su

ð� ln Pr½LoijSu� � ln Pr½Su �Þ

Different algorithms are trying to learn Pr[Loi|Su]

from training data with different methods, and

integrated with different ways. But overall, the pro-

bability-based Super-Resolution algorithm is model-

ing the problem with a Bayesian approach and

solves it with the ▶maximum a posteriori (MAP)

estimation.
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Iris Super-Resolution

Iris Super-Resolution is a very new topic in field of

image processing and biometric recognition. There is

no relevant information found in the literature. In the

following sections, a rough idea of how to do iris

Super-Resolution is introduced to suggest a possible

way of enhancing iris image quality by fusing informa-

tion from multiple low-resolution images.

Information fusion can be thought of as a problem

in creating a high-resolution iris image from multiple

low-resolution images. Each one of the low-resolution

images has part of information that is needed, and the

goal is trying to extract those information needed and

put them at the right position on two-dimensional

space and finally create a pattern which gives an iris

image of higher resolution.

The process of painting can be used as a metaphor

to illustrate the process of iris Super-Resolution.

When a very high-resolution painting is to be painted

by first looking at a few low-resolution images and fill

in more local details, the first thing is to select one

best image from the given low-resolution image. Let it

be called template image, and all other low-resolution

image are scene images. Secondly, the template image

is interpolated with zeros in order to enlarge to a

bigger size. The new size of the is a parameter which

can be fine tuned later. After the process of enlarging

the image, zero-value pixel will spread evenly in entire

image. They are called holes.

After the bigger image with holes is created, next

step is trying to fill up every hole with appropriate

numerical values, which are derived from combining

useful information from other low-resolution images.

In most cases, the appropriate numerical values for a

hole can be inferred from the regions that surround it,

and inside this region, the farther the points are away

from this hole, the smaller impact they have toward this

hole. Therefore, it is better to use a locality-based algo-

rithm to solve this problem. One way of processing

image locally is to cut the whole image plane into

smaller blocks. For example, if an iris image is of

size 30 � 360, and is cut into blocks of size 10 � 10,

there will be 3 � 36 ¼ 108 small blocks totally. Those

blocks are called ‘‘patches.’’ Processing image in patch-

based algorithms has been widely used in variety of

image processing field, such as texture analysis, edge

and boundary detection, image segmentation, object
recognition, biometric recognition, and generic image

Super-Resolution.

The patch-based Super-Resolution algorithm is

quite intuitive. The first step is to cut every scene

image into smaller patches. The second step is that

for every location, align the local patch of every scene

image with the template image. This step is important

because iris images usually suffer from image deforma-

tion problem. This is especially true for segmented iris

images since the pupil of an eye dilates when there is

strong ambient lighting, and contracts when ambient

lighting is weak. Therefore, it cannot be naively as-

sumed that every patch from different images corre-

sponds to exactly the same position on iris surface.

Patches from different images have to be aligned, so

that every pixel on the scene patch can be mapped

correctly to the template image in the corresponding

location.

After patches are locally aligned with each other,

the third step is to combine information about nu-

merical value for each pixel from scene patches and

fill the holes on template patches with new value. If

this process is illustrated with the metaphor of paint-

ing, this step is to draw details at the blank region on

the template image. There are dozens of different

algorithm to fuse information. One of the easiest

ways is the method of linear combination. Suppose

there are n numerical values from n different

scene patches to fill one blank hole, the process of

linear combination can be expressed as the following

equation:

Y ¼ a1x1 þ a2x2 þ � � � þ anxn ¼
Xn

k¼1
akxk

where xi is the numerical value of the ith scene

patch, ai is the coefficients of linear combination, and

Y is the numerical value of the pixel after linear

combination.

After all the blank holes are filled with the new

values, the last step is to perform image smoothing

across the boundaries of the patches. There are many

existing smoothing algorithms. Linear, quadratic, or

cubic interpolation can be used to achieve this goal.

After the interpolation, the high-resolution image can

be used or it can be down-sampled to make the final

image the same size as the scene image but with much

more detailed texture within. Figure 2 illustrates the

flow chart of iris Super-Resolution algorithm.
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Summary

Image Super-Resolution is an important topic in image

processing and has been extensively used in many app-

lications, including quality enhancement for images

and video, video surveillance, and biometric recogni-

tion. Super-Resolution for iris image is a very new topic.

The technique can be applied to both iris synthesis and

iris recognition. Not many detailed research results have

been reported. In this section, one iris Super-Resolution

algorithm is simply introduced by pixel-level informa-

tion fusion from multiple low-resolution images. By

performing Super-Resolution on iris image, the recog-

nition rate of iris recognition system can be improved,

and therefore, making the biometric system even more

accurate and suitable for many real-life situations where

high security issue is the top priority.
Related Entries

▶ Iris Image Quality

▶ Iris on the Move

▶ Iris Recognition, Overview

▶ Iris Sample Synthesis
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Synonyms

Bit fragility; Bit inconsistency; Fragile bits
Definition

The characteristic of iris code bits values being incon-

sistent (also referred to as fragile) across different

images of the same iris was explored by Hollingsworth

et al. [1]. The notion of fragile bits was first suggested
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by Bolle et al. [2] when it was observed that the empir-

ical false reject rate (FRR) was significantly better than

predicted by their theoretical model. This fact implied

that the bits of an iris code are not equally susceptible

to ‘‘flip’’, given different environmental conditions that

affect the quality of the captured iris images. Hollings-

worth et al. demonstrated that by eliminating (mask-

ing) inconsistent bits, one could dramatically improve

the FRR of an iris template.

Although the work of Hollingsworth et al. improves

the FRR by identifying and removing fragile bits, our

preliminary results show that it may be possible, based

on bit instability, to further reduce the number of iris

code bits needed for recognition. Our results show that

this can also be done without an increase in the false

accept rate (FAR). By using GRIT (Genetically Refined

Iris Templates), iris code templates can be refined and

transformed into templates that use a significantly

smaller number of iris code bits for iris recognition.

GRIT is a system that uses the concepts of bit inconsis-

tency [1] and simulated evolution [3–6] in an effort to

evolve iris code templates that use fewer iris code bits.
Bit Inconsistency

In [1], Hollingsworth et al. selected a dataset of 1251

images that were mostly unoccluded by eyelids or

lashes. If an individual iris code bit was mostly one

particular bit value and ‘‘flipped’’ to the other bit value

some threshold percentage of the time, the bit was

considered fragile (inconsistent). For their analysis, a

bit was considered fragile if it flipped more than 40%

of the time. Their results indicated that on average,

15% of the bits had probability greater than 40% of

flipping and 85% of the bits had probability less than

40% of flipping. The implication of these rates indi-

cates that the FRR of systems using Daugman-style [7]

iris recognition systems could be dramatically reduced

by focusing only on consistent bits. With this modified

strategy, iris images would be analyzed to create an iris

template that would mask out inconsistent bits. This

mask would be combined with the typical masks used

to eliminate eyelids and eyelashes.
Iris Template Extraction Via Bit Inconsistency and GRIT.

Figure 1 The GRIT Preprocessor.
Genetically Refined Iris Templates
(GRIT)

GRIT is a system for evolving iris templates that have a

decreased FRR; use a smaller number of iris code bits;
and do not have an increased FAR. GRIT is composed

of two components: a preprocessor and a Genetic

Algorithm (GA) [3–6]. The GRIT preprocessor uses

the concept of bit instability to eliminate fragile bits as

well as develop a probability distribution function to

be used by the GA to further reduce the number of iris

code bits needed for recognition. GAs belong to a class

of search techniques based on simulated evolution [5]

and have been successfully used to solve a wide range

of complex real-world search, optimization, and

machine-learning problems.
The GRIT Preprocessor

In order to describe the GRIT preprocessor, let I = {i0,

i1, . . ., in�1} and M = {m0, m1, . . ., mn�1} be sets of iris
codes along with their associated bit masks. The pre-

processor, as shown in Fig. 1, works as follows. Given a

set of iris codes and masks it sets i to the first iris code,

i0, in the set of iris codes and m to the associated mask

of i0, m0. Next a hyper iris code and a hyper mask are

created. The hyper iris code, v, simply records the

number of iris codes in I that have the same value for

each corresponding bit in i. The hyper mask, w,

records the number of iris codes in I (along with

their masks in M) that used a particular mask bit

(associated with the best offset resulting in the best

hamming ratio [7]) when comparing those iris codes

with i, given m.
Given v and w, the relative worth of flipping a bit in

i can be computed. The hyper gain, g, represents the

number of iris codes in I that i will become closer to
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(with respect to hamming ratio) by flipping a particu-

lar bit. Those bits in i that have an associated positive

gain can be flipped, because they will make the result-

ing iris template, i0, closer to a greater number of iris

codes in I. Those bits in i that have an associated gain

of zero represent bits that have a 50% inconsistency

rate, and therefore, can be ‘‘turned off 0 ’’ (or masked)

by setting the associated bit in m to zero. The GRIT

preprocessor returns a modified iris code, i0, and mask,

m0, that has a lower FRR with respect to I than the iris

template consisting of i and m. The hyper gain, g, is also
returned and used as a probability distribution func-

tion (heuristic) to guide the mutation operator of the

GRIT genetic search method. Figure 1 provides a pseu-

do-code example of the GRIT preprocessor.
Iris Template Extraction Via Bit Inconsistency and GRIT.

Figure 2 GRIT (Genetically Refined Iris

Templates).

I

The GRIT GA

The GRIT GA takes as input i0, m0, g, I, M, and d,
where d represents the number of bits to mutate in

creating an offspring template. The GRIT GA begins

by creating P-1 mutants of m0, where P represents the

population size of the GA. These mutants along with i0

make up the initial population of candidate bit masks.

In creating the initial population, each of the mutants

is created by mutating 100d bits of m0 as follows. Two
bit positions are selected at random and their asso-

ciated gains (using g) are compared. The bit that has

the highest gain is then mutated (flipped). This is how

the Mutate method of the GRIT GA operates.

Each candidate bit mask in the initial population is

evaluated using the following evaluation function:

Fði0; cmask; I ;M ; tÞ ¼
X
j

bði0; cmask; ij ; mj ; tÞ

þ Rði0; cmask; I ;M ; tÞ;

where cmask represents a candidate mask,

bði0; cmask; ij ; mj ; tÞ represents the number of iris code

bits used in the comparison between the candidate

iris template and the jth iris code in I, and

Rði0; cmask; I ;M ; tÞ represents the penalty if any of the

iris codes in I is rejected by the template, (i0, cmask), by

have a hamming ratio greater than a user-specified

threshold, t. The penalty is simply the summation of

the amount by which the rejected iris codes exceed the

threshold plus a constant value, a.
After each candidate mask has been evaluated and

assigned a fitness by the evaluation function F, the
counter, t, is set to |P| and the GA begins its evolution-

ary process. When the user-specified number of iris

template evaluations has not been reached, the GA

creates an offspring iris template mask by (1) selecting

two individuals from the current population as par-

ents; (2) crossing over [8] the parents to form an

‘‘embryo’’ by taking 50% of the bits from one parent

and 50% of the bits from the other parent; and

(3) mutating the ‘‘embryo’’. The offspring is then eval-

uated and replaces the worst-fit individual in the pop-

ulation (regardless of whether the worst-fit individual

has a better fitness than the offspring). This process is

repeated until the user-specified number of evaluations

(Max_Evaluations) has been met. After the evolution-

ary process, the iris template with the lowest fitness in

the population is then returned as the best solution

evolved by the GA. Figure 2 provides a pseudo-code

version of the GRIT GA.

The parent selection method works as follows:

(1) randomly select two individuals from the popula-

tion (excluding the worst-fit individual) and return the

individual with the lower fitness as the first parent

(mom); (2) repeat this process to get a second parent

(dad). This parent selection method is commonly re-

ferred to as tournament selection [5].
Preliminary Results

For this work, the iris images were segmented using the

algorithm proposed by Thornton et al. [9], which finds
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Subject Hyper Gain

4

5

38

51

67

75

93
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Subject Hyper Gain

4

5

38

51

67

75

93
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nonconcentric circles for both pupil and iris bound-

aries with high accuracy. Eyelids and eyelashes were

manually segmented. Given the iris images with occlu-

sion masks, iris codes are generated by convolving

them with a one-dimensional log Gabor filter row by

row. As in the Daugman’s algorithm [7, 10], the phase

information at each pixel is quantized into two bits,

and then Hamming distances are calculated by com-

paring these bits.

GRIT was used to develop iris templates for a total

of seven subjects taken from the ICE 2006 dataset [11]:
4, 5, 38, 51, 67, 75, and 93. For these subjects, the first

10 iris codes in their respective sets were used to

develop an iris template. The other 20 iris codes were

used as a FRR test set. Each resulting iris template was

checked with all of the other instances of the ICE 2006

dataset to determine its FAR.

The GRIT GA used a population size of 20 candi-

date bit masks and evolved an additional 4820 while

keeping the best 19 candidate bit masks ever found at

all times. The value of d, the number of bits to mutate

in creating an offspring, was set to 100, and the penalty
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Subject Mask Type FRR Bits Used Visualized Masks

4 Original 0.0 (0.07) 31196

GRIT-PP 0.0 (0.07) 30545

GRIT-GA 0.0 (0.03) 20382

5 Original 0.0 (0.00) 32250

GRIT-PP 0.0 (0.00) 31635

GRIT-GA 0.0 (0.00) 21200

38 Original 0.6 (0.67) 30371

GRIT-PP 0.0 (0.00) 29667

GRIT-GA 0.0 (0.00) 19173

51 Original 0.2 (0.13) 31456

GRIT-PP 0.0 (0.00) 30743

GRIT-GA 0.0 (0.00) 20169

67 Original 0.1 (0.03) 31206

GRIT-PP 0.0 (0.00) 30455

GRIT-GA 0.0 (0.00) 19766

75 Original 0.4 (0.37) 32724

GRIT-PP 0.0 (0.03) 31831

GRIT-GA 0.0 (0.03) 21759

93 Original 0.0 (0.07) 33070

GRIT-PP 0.0 (0.00) 32365

GRIT-GA 0.0 (0.00) 21728

864I Iris Template Extraction Via Bit Inconsistency and GRIT
constant, a, used in the penalty function, R, was set to

43,920, because the dimensions of the iris codes and

masks used were 61�360�2 bits.

Table 1 presents the hyper gains developed by the

GRIT preprocessor for each of the seven subjects.

In Table 1, for each visualization, the values associated

with higher magnitudes (farthest away from zero) are

more consistent (less fragile) than those bits with lower

magnitudes. The red areas of a given subject represent

the bits of the initial iris code template that were

flipped in an effort to reduce the FRR of the 10 training
instances. The green areas in the hyper gains represent

those bits of the iris code mask that have been removed

(‘‘turned off ’’). The larger solid green regions that

appear at the top of each of the hyper gains in Table 1

represent the initial masked bits. Table 2 presents the

hyper gains after the iris template, (i m), has been

revised to form (i0 m0). Notice that the visualizations

show that there are a number of bits with hyper gain

values close to zero that may be removed.

In Table 3, a comparison of the original masks, the

masks developed by the GRIT preprocessor, and the
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masks evolved by the GRITGA are compared for each of

the seven subjects. For each of the masks, the FRR on the

training set of 10 instances is presented. For each of the

masks, the number in parenthesis represents the FRR of

the templates, comparedwith the 30 instances of I. In the

next column, the average number of bits used in the

comparisons with instances in the ICE dataset is pre-

sented. The final column in Table 3 shows a visualiza-

tion of the original mask, the modified mask developed

by the GRIT preprocessor, and the mask evolved by the

GRIT GA. The FARs for all of the templates were zero.

In Table 3, notice that except for Subjects 4 and 75,

the GRIT preprocessor was able to develop a modified

iris code template and mask that reduced the FRR

to zero. For Subject 4, the GRIT GA was able to reduce

the FRR on the test set. This suggests that long runs

of the GA may reduce the test set FRR further.

Also, notice in Table 3 that the GRIT preprocessor is

able to reduce the number of iris code bits needed to be

used for recognition; however, the GRIT GA is able to

reduce this number even further. The resulting iris codes

bits needed are reduced by approximately 30% for each of

the seven subjects.
Summary

In this article, GRIT, a novel approach toward devel-

oping iris templates, has been described. GRITuses the

concepts of bit inconsistency and genetic search to

evolve iris templates that use a reduced number of

iris code bits for iris recognition. The preliminary

results show that the combination of bit inconsistency

and genetic search provides a powerful hybrid for

developing iris templates. Our results show that the

reduction in the iris code bits needed does not result in

an increase in FRR and FAR.
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Definition

▶Template protection is a crucial requirement when

designing a biometric based authentication system. It

refers to techniques used to make the stored template

unaccessible to unauthorized users. From a template,

information about the user can be revealed. Moreover,

identity theft can occur. Therefore, it is of dramatic

importance, if a template is compromised, to cancel,

to revoke, or to renew it. Template protection can be

performed using ▶ template distortion techniques,

http://iris.nist.gov/ICE/
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▶ biometric cryptosystems, and ▶ data hiding techni-

ques. Template protection techniques specifically

designed and applied to ▶ iris images are hereafter

summarized.
Introduction

Template protection is a key issue that has to be

addressed when a biometric based authentication sys-

tem is designed. It is highly desirable to keep secret a

template both for security and for privacy reasons, and

in case a template is compromised it is necessary to

revoke, to cancel, or to renew it. Also, it is highly

recommended to obtain from the same biometric dif-

ferent templates in order to avoid unauthorized track-

ing across different databases. In the recent past several

techniques have been proposed to secure biometric

templates and to provide the desirable cancelability

and renewability properties. In the following limi-

tations of classical cryptography, when applied within

the biometric framework, are highlighted. Moreover,

recently introduced techniques like template distor-

tions, biometric cryptosystems, and data hiding tech-

niques are briefly discussed first in general and later

with specific application to iris template protection.

Cryptography [1] allows secure transmission of

data over a reliable but insecure channel. The privacy

of the message and its integrity are ensured, and the

authenticity of the sender is guaranteed. However,

cryptographic systems rely on the use of keys which

must be stored and released on a password based

authentication protocol. Therefore, the security of a

cryptographic system relies on how robust is the pass-

word storage system to brute force attacks. However,

template encryption cannot solve the biometric tem-

plate protection problem. In fact, at the authentication

stage, when a genuine biometrics is presented to the

system, the match must be performed in the template

domain, after decryption. However, this implies that

there is no more security on the biometric templates.

The match in the encrypted domain could solve this

problem. However, because of the intrinsic noisy na-

ture of biometric data, the match in the encrypted

domain would inevitably bring to a failure because

small differences between data would bring to sig-

nificant differences between their encrypted versions.

Some activities are flourishing to define signal

processing operations in the encrypted domain,
which could allow, for example, to perform operations

on encrypted biometric templates on not trusted

machines. However, this activity is still in its infancy

and does not provide tools within the biometric frame-

work yet.

Among the possible approaches recently proposed

to address the issue of template protection, techniques

based on intentional template distortions on the origi-

nal biometrics have been introduced in [2]. Specifical-

ly, the distortion can take place either in the biometric

domain, that is, before feature extraction or in the

feature domain. Moroever, the distortion can be per-

formed using either an invertible or a non invertible

transform on the base of a user key which must be

known at the authentication stage. Only the distorted

data are stored in the database. This implies that, even

if the database is compromised, the biometric data

cannot be retrieved unless, when dealing with invert-

ible transforms, user dependent keys are revealed.

Moreover, different templates can be generated from

the same original data, simply by changing the para-

meters of the employed transforms. The described

technique allows obtaining both cancelability and

renewability.

In the recent past, some efforts have been devoted

to design biometric cryptosystems (see [3] for a review)

where a classical password based authentication ap-

proach is replaced by biometric based authentica-

tion. Biometric cryptosystems can be used for either

securing the keys obtained when using traditional

cryptographic schemes or for providing the whole

authentication system. A possible classification of the

operating modes of a biometric cryptosystem is given

in [3] where key release, key binding, and key generation

modes are identified. Specifically, in the key release

mode the cryptographic key is stored together with

the biometric template and the other necessary infor-

mation about the user. After a successful biometric

matching, the key is released. However, this approach

has several drawbacks, since it requires access to the

stored template and then the one bit output of the

biometric matcher can be overridden by using Trojan

horse attacks. In the key bindingmode the key is bound

to the biometric template in such a way that both of

them are inaccessible to an attacker and the key is

released when a valid biometric is presented. It is

worth pointing out that no match between the tem-

plates needs to be performed. Among the key binding

approaches it is worth citing the fuzzy commitment
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and the fuzzy vault scheme. In the key generationmode

the key is obtained from the biometric data and no

other user intervention besides the donation of the

required biometrics is needed. Both the key binding

and the key generation modes are more secure than

the key release mode. However, they are more difficult

to implement because of the variability of the biomet-

ric data.

Data hiding techniques [4] complement encryp-

tion. In fact, encryption can be applied to ensure

privacy, to protect the integrity, and to authenticate a

biometric template. However, among the possible

drawbacks, encryption does not provide any protec-

tion once the content is decrypted. On the other hand,

data hiding techniques can be used to insert additional

information, namely the watermark, into a digital ob-

ject. Within the biometric framework, data hiding can

be applied for copy protection, fingerprinting, data

authentication, and timestamping in such a way that

after the expiration date the template is useless. It is

worth pointing out that some security requirements

are also needed when dealing with data hiding techni-

ques. In fact, according to the application, we should

be able to face unauthorized embedding, unauthorized

extraction, and unauthorized removal of the watermark.

Recently some efforts are being devoted to the integra-

tion between watermarking and cryptography. Howev-

er, much more research activity is still needed before

deployment. In the following, after a quick overview

on iris template generation, the most significant

approaches for iris template protection are discribed.
Iris Template Generation

An iris image is preprocessed to select the actual iris

region to use for feature extraction, thus removing
Iris Template Protection. Figure 1 S-Iris Encoding scheme [
unwanted elements such as eyelid, eyelashes, pupil,

reflections, and all the other noise components. Then

an iris normalization process takes place, since the

extracted iris regions, both from different people and

from the same people, can differ because illumination

changes, variation of the eye-camera distance, elastic

deformations in the iris texture, and similar. These

effects can generate matching problems. In some

approaches a scale-invariant transform like the Four-

ier-Mellin is used. In some others, a mapping of the iris

image from raw cartesian coordinates to non concen-

tric polar coordinate system is used. After the normali-

zation stage, the features extraction procedure takes

place. This task can be accomplished using different

approaches such as multi-scale Gabor wavelet filtering

and its variants, singular value decomposition, principal

component analysis, and so on.
Cancelable Iris Template

A cancelable iris biometric approach, namely S-Iris

Encoding, is proposed in [5]. The method is roughly

sketched in Fig. 1 and briefly summarized in the fol-

lowing. Iris preprocessing is performed first. Specifi-

cally iris segmentation by means of the Canny edge

detector, to find the edge map, followed by the Circular

Hough Transform, to detect the iris and pupils bound-

aries are carried out. Linear Hough transform is used

to discard eyelids and eyelashes. The normalization is

performed using the Daugman’s rubber sheet model

[6]. The iris feature extraction is performed by con-

volving the normalized 2D pattern rows, each

corresponding to a circular ring of the iris region, by

using 1D Log-Gabor filter. The magnitude of the so

obtained complex features are then collected in a vec-

tor w that is further processed to obtain the S-Iris code
5].
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as described in the next steps. A set of m orthonormal

pseudorandom vectors fr?;ig, with i ¼ 1; 2; � � � ;m, are

then generated using a token. The inner products

ai ¼ <w; r?;i>, with i ¼ 1; 2; � � � ;m, are then evalu-

ated. The m bits of the S-Iris code

s ¼ fsi j i ¼ 1; � � � ;mg are computed as

si ¼ 0 if ai < mi � si; ai> mi þ si
1 if mi � si � ai � mi þ si;



where mi and si are the average and standard deviation

of ai respectively. This approach allows to discard those
inner products which are numerically small and which

therefore must be excluded in order to improve the

verification rate. The authors of [5] point out that the

system authentication performance have a significant

improvement over the solely biometric system.
Iris Template Protection using
Cryptosystems

Among the methods which can be classified as key

binding based approaches [3] we can cite the fuzzy

commitment scheme [7], based on the use of error

correction codes and the fuzzy vault scheme [8],

based on polynomial based secret sharing.

Specifically, the fuzzy commitment scheme is

depicted in Fig. 2 in its general form. In the enrollment

stage, the biometric template x is used to derive some

side information s which is stored to be used in the

authentication stage. Then a randomly chosen code-

word c is generated on the base of a token k. The
Iris Template Protection. Figure 2 Fuzzy Commitment sche
binding between the biometric measurement x and

the codeword c is obtained as y ¼ x � c. Both y and

a hashed version of the token k are eventually stored. In

the authentication stage, the side information s is re-

trieved and, together with the actual biometric mea-

surement, it is used to obtain the biometric template

xa. This latter usually differs from the template

obtained in the enrollment stage because of the intrin-

sic variability of biometrics. Then the codeword ca is

obtained as ca ¼ xa � y. Finally ka is obtained by

decoding xa . Its hashed version hðkaÞ is obtained and

compared with the stored hðkÞ. If the obtained values

are identical, the authentication is successful. It is

worth pointing out that this scheme provides both

template protection, since from the stored information

ðs; y; hðkÞÞ it is not possible to retrieve the template,

and template renewability, since by changing the token

k the template representation changes.

In [9] the fuzzy commitment scheme here de-

scribed is applied to iris protection. Iris preprocessing

consists in the edge map extraction followed by Circu-

lar Hough Transform to detect the iris and pupils

boundaries followed by Linear Hough transform to

discard eyelids and eyelashes. The normalization is

performed using the Daugman’s rubber sheet model.

The iris feature extraction is performed by convolving

the rows of the normalized 2D pattern by using 1D

Log-Gabor filter. The phase information from both

the real and the imaginary part is eventually quantized.

A reliable bits selection is then performed according

to the assumption that the more reliable bits are those

coming from the pixels closer to the pupil center,
me.
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where eyelid and eyelashes are not likely to be found.

With respect to the general scheme in Figure 2, in [9],

the feature vector x is split into two feature vectors x1
and x2 of the same length and two BCH encoder are

used. Specifically, two tokens k1 and k2 are employed

to generate two codewords c1 and c2 obtained each

from one of the two employed BCH encoders. Eventu-

ally the secret data y
1
¼ x1 � c1 and y

2
¼ x2 � c2 are

obtained. Therefore the stored information will be

given by ðs; y
1
; y

2
; hðk1Þ; hðk2ÞÞ. The authentication

step is dual with respect to the enrolment stage. The

authors of [9] point out that the division strategy is

needed to balance the desired verification accuracy and

the BCH code error correction capability.

In [10] the authors use the fuzzy commitment

scheme for the protection of binary iris template,

namely the iriscode [6], by employing a cascade of

Reed Solomon codes and Hadamard codes to handle

the intra-variability of the biometric templates. This

choice has been driven by an exhaustive study of the

error patterns which can be encountered employing

iris codes. The authors propose a fuzzy commitment

architecture, where a two-layer error correction

method is performed. The outer layer uses a Hada-

mard code to correct random errors at the binary level

which are generated by CCD camera pixel noise, iris

distortion, or other image-capture effects which can

not be corrected by the initial preprocessing. The inner

layer uses a Reed Solomon code to correct burst errors

in the iriscode, due to undetected artefact like eyelashes

or specular reflections in the iris image. The proposed

architecture is tested on a proprietary database with

700 iris samples from 70 different eyes, with 10 samples

from each eye. It has been found out that an error

free key can be reproduced from an actual iriscode

with a 99:5% success rate. Iris orientation is of big

concern when unlocking the key in the fuzzy commit-

ment scheme. Multiple attempts have to be performed,

shifting the observed iris code by octect-bits, being

impossible to cyclically scroll the iris sample as in the

unprotected approach.

In [11] the application of the fuzzy commitment

scheme, for the protection of biometric data, is dis-

cussed. Specifically, a method for finding an upper

bound on the underlying error correction capability,

when using a fuzzy commitment scheme is provided.

The analysis is conducted by introducing a model for

the recognition process, composed of two binary sym-

metric channels, the matching and the non matching
channel. Specifically, the first is used to model the

errors coming from the matching between templates

belonging to the same user. The latter is used to model

the errors coming from the matching between tem-

plates belonging to different users. An erasure mecha-

nism is introduced in the matching channel to manage

the template dimension variability due for example to

occlusions. Moreover, a practical implementation of

the fuzzy commitment for iris template protection is

proposed, employing as error correcting codes the

product of two Reed Muller codes, together with a

specific decoding process, derived from the min-sum

decoding algorithm. The proposed protection scheme

is tested on a public iris database. The authors show

that correction performance close to the theoretical

optimal decoding rate are obtained.

The fuzzy vault cryptographic scheme [8] consists

in placing a secret S in a vault and in securing it by

using a set of unordered data A ¼ fa1; a2; � � � ; aNg,
which in our biometric context represents the biomet-

ric template. Specifically, a polynomial pðxÞ, whose
coefficients are given by the secret S, is generated

and the polynomial projections pðaiÞ, for all the

elements belonging to A, are evaluated. Then a

large number of chaff points, which do not lie on

the polynomial pðxÞ, are arbitarily chosen. Specifically,
M unique points fc1; c2; � � � ; cMg are randomly set

with the constraint that cj 6¼ ai , for j ¼ 1; 2; � � � ;M
and i ¼ 1; 2; � � � ;N . Then, another set of M ran-

dom points fd1; d2; � � � ; dMg, such that dj 6¼ pðcjÞ,
j ¼ 1; 2; � � � ;M , is chosen. The concatenation of the

two sets fða1; pða1ÞÞ; ða2; pða2ÞÞ; � � � ; ðaN ; pðaN ÞÞg
and fðc1; d1Þ; ðc2; d2Þ; � � � ; ðcM ; dM Þg represents the

vault V which secures both the secret and the template.

When a user tries to unlock the vault, another set of

unordered data A
0
can be used. If the set A

0
substan-

tially overlaps with the set A then the user can identify

many points of the vault lying on the polynomial. If the

overlapping point number is sufficient, the polynomial

can be identified by using Lagrange interpolation, thus

identifying the secret. If the two sets are significantly

different, the polynomial reconstruction is unfeasible.

Many implementations of the general principle here

sketched have been proposed in literature.

In [12], iris data are used for securing the vault. The

method is depicted in Fig. 3. Specifically, the feature

extraction is performed as follows. After having loca-

lized the iris region, it is transformed into a polar

coordinate image and two regions not occluded by
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eyelids and eyelashes are selected. From each selected

region, eight iris blocks are derived and transformed

using Independent Component Analysis thus obtain-

ing 16 feature vectors. In order to take into account

the intra-class variations, the blocks extracted from

each image are clustered, employing a K-means algo-

rithm, thus generating an iris code of sixteen 8-bit

symbols, which represents the elements of the locking

set A. The vault locking is performed as sketched in

Figure 3 and uses the general principle of the fuzzy

vault scheme. However, in the implementation

proposed in [12], the locking set A is also encoded

using Reed Solomon codes, thus obtaining a set

R which is stored together with the set V obtained

by concatenating the genuine points at v obtained

concatenation G ¼ fða1; pða1ÞÞ; ða2; pða2ÞÞ; � � � ; ðaN ;
pðaN ÞÞg, coming from the polynomial pðxÞ, and the

set c derived from the chaff point set C ¼ fðc1; d1Þ;
ðc2; d2Þ; � � � ; ðcM ; dM Þg. The set R is employed during

authentication to correct potential errors, due to intra-

class variations, in the query iriscode. When the query

iris image is analyzed during authentication, the iris

blocks are extracted, compared with the cluster maps

thus generating a new iris code, which is corrected using

the stored Reed Solomon redundancy set and employed

to unlock the vault. The secret key is thus revealed.

In [13] an iris cryptosystem relying on an invertible

transform, followed by fuzzy vault locking has been
proposed to secure the iriscode [6]. The scheme is

given in Fig. 4. More in detail the proposed iris cryp-

tosystem is a two step process. In the first step, an

invertible transform F1, chosen on the base of a ran-

domly generated transformation key k1, is applied to

the iriscode I . In the second step, the fuzzy vault

scheme, with key k2, is applied to secure the transfor-

mation key k1, thus giving the vault V . Both the trans-

formed iriscode and the vault, which locks the

transformation key k1, are eventually stored. In the

authentication stage, the inverse transformation F�11

is applied to the transformed iris code template using

the query iriscode Ia, thus obtaining the transforma-

tion key k
0
1. Then the transformation key k

0
1 is used to

decode the vault V . If the vault key k2 is successfully

recovered this implies that there is a match between the

iriscode template I and the iriscode used in the authen-

tication stage Ia. The author of [13] points out that

both the invertible transform and the fuzzy vault intro-

duce error correction, therefore the proposed crypto-

system is able to manage a higher intra class variation.

The protection of iris templates is also discussed in

[14], where a trade-off between the authentication

performances and the security of key binding schemes,

is discussed from an information theoretic perspective.

A practical cryptosystem for iris templates, based on

Low Density Parity Codes (LDPC) and belief propaga-

tion, is also proposed. The pre-processing of the iris
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images is performed according to [6], thus obtaining a

binary sequence m. The bits corresponding to unreli-

able positions, identified during training, are discar-

ded from m. The obtained binary vector z is then

mapped into the secure biometric S by computing

the syndrome of z with respect to a low density parity

check code, whose parity check matrix H is randomly

chosen. When a user claims his identity, the realiable

feature vector z
0
is computed and a belief propaga-

tion algorithm is applied to retrieve the sequence

whose syndrome is S. The trade-off between the False

Rejection Rate and the security of the proposed
Iris Template Protection. Figure 4 Iris cryptosystem [13].

Iris Template Protection. Figure 5 Chaos based data hiding
implementation is discussed, while the False Accep-

tance Rate is not taken into account.
Iris Template Protection using Data
Hiding

In [15] a steganagraphic technique for covert commu-

nication of biometric data using chaos theory is pro-

posed with application to irisdata. The proposed data

hiding scheme is sketched in Fig. 5. Specifically, the iris

template, namely the iriscode, is extracted using the
scheme [15].

I
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method in [6]. Then two chaotic maps are used for

encrypting the iris template. The first map is used to

generate a 1D sequence of real numbers used as a

sequence key. A biometric generated key, the biokey,

is used to set the initial condition and the parameters

of the chaotic map. Then, the so obtained 1D sequence

is used as the sequence key of a different chaotic map

which is used to encrypt the template. The authors of

[15] point out that this approach assures robustness

against different kind of attacks. After encryption, the

template is embedded into the cover image by using a

discrete wavelet transform (DWT) decomposition. The

template extraction and decryption is made on the

authentication side by performing dual operations

with respect to the ones done at the embedding side.

The authors highlights that their method offers better

performance than those given by using only one cha-

otic map.
Summary

Template protection is a key requirement when de-

signing a biometric based authentication system. A

brief overview of the main approaches based on the

use of transforms, biometric cryptosystems, and data

hiding techniques, either specifically tailored or simply

applied to iris template protection have been here

outlined.
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Iris Template Security
▶ Iris Template Protection
Iris2pi
This is a most widely used iris recognition algorithm as

of 2008. This is a version of the Daugman algorithm.

It differs from an earlier version, ‘‘bowtie,’’ in the way

it handles eyelid (and other) occlusions. The bowtie
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algorithm analyzed a bowtie shaped section of the iris –

two triangular wedges extending to the left and right –

that avoided most eyelid occlusion at the expense of

throwing away information for eyes that are wide

open. Iris2pi attempts to analyze all the iris that can

be seen – a full 2p radians if possible. Iris2pi note

regions that are occluded or otherwise invalid for bio-

metric identification; it records that information in the

biometric template. When two templates are com-

pared, the algorithm only compares regions that have

valid data.

▶ Iris Device

▶ Iris Encoding and Recognition using Gabor Wavelets
I

IrisCode
IrisCode is a digitized, normalized, compact encoding

of the unique texture visible in the iris of an eye, for

purposes of automated biometric identification. The

IrisCode is mapped between the inner and outer

boundaries of the iris, so it is size-invariant, distance-

invariant, and also invariant to changes in pupil

dilation. This intrinsic normalization facilitates the

searching and matching operations. In the standard

format (called ‘‘iris2pi’’) used in public deployments
of iris recognition, the IrisCode is based on a phase

encoding by Gabor wavelets, and it also incorporates

masking bits signifying the detection of eyelids, eye-

lashes, reflections, or other noise. Standard code

lengths are 512 or 1,024 bytes. The IrisCode enables

simple parallel logical operators XOR (Exclusive-OR)

and AND to generate Hamming Distance scores

for similarity between IrisCodes, at speeds of typically

1 million complete IrisCode comparisons per second.

▶ Iris Encoding and Recognition using Gabor

Wavelets

▶ Iris Recognition at Airports and Border-Crossings

▶ Score Normalization Rules in Iris Recognition

▶Wavefront Coding for Enhancing the Imaging

Volume in Iris Recognition
ISO
ISO is an acronym referring to International Standard

Organization, an international entity responsible for

defining standards and providing certifications of

compliance.

▶Biometric Sensor and Device, Overview
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JPEG and JPEG2000 Image
Compression
Images can be encoded much more efficiently than by

pixel arrays if local regions are represented as combi-

nations of elementary functions. Computing the coef-

ficients on those elementary functions such that their

linear combination becomes equivalent to, or closely

approximates, the original image is the same operation

as computing a transform. Each local image region is

multiplied by each of several such elementary func-

tions and integrated to obtain each such coefficient.

The resulting coefficients usually have lower entropy

than the original pixel distribution, enabling more

compact coding; in addition, their values can be

coarsely quantized without detrimental effect. An

image is recovered from the coded coefficients by es-

sentially an inverse transform. The most ubiquitous

image compression protocol is JPEG, defined by ISO
# 2009 Springer Science+Business Media, LLC
Standard 10918. It applies the Discrete Cosine Trans-

form (DCT) to local square tiles of an image (typically

8 � 8 pixels), but the abrupt truncation of each cosine

wave causes ‘‘block quantization’’ artifacts which be-

come noticeable when only subsets of cosine waves are

used in order to achieve compression ratios above

about 30:1. JPEG2000 overcomes this problem by

replacing the block DCT cosine waves with Daubechies

wavelets which are smoothly attenuated instead of

chopped; the resulting Discrete Wavelet Transform

(DWT) is the core of JPEG2000 ISO Standard 15444.

JPEG2000 also has other advanced features to allocate

the coding budget inhomogeneously across an image if

needed. Both protocols allow control over the com-

pression factor (CF for JPEG2000; quality factor QF

for JPEG). Despite its superior mathematical basis and

performance, JPEG2000 is not as widely used as JPEG

nor as freely available.

▶ Iris Recognition Performance Under Extreme Image

Compression
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Kernel
A kernel k is a function that for all x, z 2 X: satisfies

kðx; zÞ ¼ FðxÞ � FðzÞ, where F is a mapping from

the input space X to the feature space H ,

i.e., F : x 7! FðxÞ 2 H . A kernel function can also

be characterized as follows: Let X be the input space.

A function k: X � X: 7! R (or C) is kernel if and

only if for any M 2 N and any finite data set

fx1; � � � ; xMg � X, the associated Gram matrix is

positive semi-definite.

▶Non-linear Techniques for Dimension Reduction
Key Binding
▶Biometric and User Data, Binding of
Keypoints
▶ Local Image Features
Keystroke Dynamics
▶Keystroke Recognition
# 2009 Springer Science+Business Media, LLC
Keystroke Pattern Classification
▶Keystroke Recognition
Keystroke Recognition

NICK BARTLOW

West Virginia University, Morgantown, WV, USA
Synonyms

Behavioral biometrics; Keystroke dynamics; Keystroke

pattern classification
Definition

Keystroke recognition is a ▶ behavioral biometric

which utilizes the unique manner in which a person

types to verify the identity of an individual. Typing

patterns are predominantly extracted from computer

keyboards, but the information can potentially be

gathered from any input device having traditional

keys with tactile response (i.e., cellular phones, PDA’s,

etc). Although other measurements are conceivable,

patterns used in keystroke dynamics are derived

mainly from the two events that make up a keystroke:

the Key-Down and Key-Up. The Key-Down event takes

place at the initial depression of a key and the Key-Up

occurs at the subsequent release of that key. Various

unique features are then calculated based on the intra-

key and inter-key timing variations between these

events. After feature extraction, a wide range of algo-

rithms can be employed to establish whether the

unique pattern confirms or denies the claimed identity.
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Introduction

The earliest form of keystroke recognition emerged

in the early 1900s during the days of World War I.

During the war, the French used listening posts in

which operators were able to recognize the ‘‘fist’’ of

enemy radio operators communicating in Morse code.

These trained individuals would learn to recognize

operators by differing lengths of pauses, dots and

slashes, and varying transmission speeds. This intelli-

gence subsequently allowed the French to establish the

identity of entities such as enemy battalions. Far more

sophisticated than electromechanical telegraphs used

to transmit Morse code, keyboards of today offer many

more opportunities to establish the unique manner in

which one types. Intuitively, coarse level differentiation

can be achieved by investigating typing speeds. For

instance, a professional typist who averages 90 or

more words per minute would be easily distinguished

from a ‘‘hunt and peck’’ amateur who averages only

20–25 words per minute. That said, this feature only

goes so far as many people type at similar speeds and

the average speed that an individual types can vary

significantly depending on many factors. The time it

takes an individual to locate a key (sometimes referred

to as ‘‘seek-time’’) also varies from key to key. For

instance, left-handed individuals may have quicker

seek-times for keys on the left side of the keyboard

and vice versa [1]. Along those same lines, use of the

shift keys to modify characters can also vary from

individual based on handedness and typing skill.

Trained professionals will always modify characters

on the right side of the keyboard with the left shift

key while amateurs may continually use the right shift

key to do so [2]. Language undoubtedly plays a large

role in the individuality of a typing signature. Given

that a person speaks English, commonly used words

like {the, and, you, are} are often ‘‘programmed’’ in

one’s mind and typed quickly as opposed to an indi-

vidual of a different native language. Additionally,

individuals typically exhibit a consistent pattern of

errors including replacements, reversals, and extrane-

ous hits. In an extreme case, the consistent lack of

errors is a pattern in itself.
Keyboard Technology and Semantics

There are four different kinds of switch technology

used in keyboards today; pure mechanical, foam
element, rubber dome, and membrane [3]. Each switch

type has various characteristics such as feel, durability,

price, etc. No matter the key switch technology chosen,

when a key is depressed, a degree of ‘‘bounce’’ is pres-

ent. Bounce can be defined as the effect when the

contact device rapidly engages and disengages over an

extremely short period of time [3]. Keyboards, either

external to desktop PCs or internal to laptops and

other devices are computers in their own right as

they contain a microprocessor, RAM, and sometimes

ROM. Using their processors and controllers, they

filter out the difference between bounce and two suc-

cessive keystrokes. Each stroke therefore consists of two

events, when the plates are engaged and when the

engagement is released or disengaged. Scan codes

resulting from these events are sent from the controller

in the keyboard to the event handler in the BIOS of the

device in question (usually a PC) [3]. Scan codes are

recorded by the processor based on a matrix composed

of all the keys on the keyboard. The keyboard matrix

operates on a buffer that allows for the processing of

simultaneous keystroke events. As mentioned before,

when a key is pressed down, the plates become en-

gaged. It is at this point that the keyboard processor

sends a ‘‘make code’’ encoded as a hex value to the

device. The make code can be thought of as including

both the key engaged and various other state flags

indicating if/how the key was modified by any of the

various control keys such as shift, alt, etc. Once the key

disengages, a corresponding ‘‘break code’’ is sent to the

PC [3]. These ideas form the basis of keyboard tech-

nology at its lowest-level.

Using this background as a foundation, the upper

level semantics of keyboard operation can be defined.

The basis of all features included in keystroke recogni-

tion is founded on the keystroke event and the associated

make code or break code correlation described previ-

ously. Instead of dealing with terms like ‘‘make code,’’

‘‘disengagement,’’ etc., researchers usually yield to

the more intuitive, higher level definitions below.

1. Key-down. The event that fires when a key is pressed

down. This corresponds to the event of the key-

board processor sending the device (usually a PC) a

‘‘make code.’’ It should be noted that this event will

continually fire until the key being depressed is

released. The speed at which the Key-down event

fires while a key is depressed is referred as the

‘‘repeat rate.’’ This is a user customizable property

in virtually all operating systems.
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2. Key-up. The event that fires when a currently de-

pressed key is subsequently released.

3. Keystroke. The combination of an initial Key-down

event and the corresponding Key-up event.

4. Hold time. The length of time between an initial

Key-down event and the corresponding Key-up

event. Hold time is sometimes referred to as

‘‘dwell time.’’

5. Delay. The length of time between two successive

keystrokes. It should be noted that this time can be

positive or negative (overlapping strokes). Some

works refer to delay as ‘‘latency’’ or ‘‘flight.’’

Some highly specialized keyboards can record other

information such as the pressure of key strikes, but

the foundation of the technology is based on the events

defined above.
K
Feature Representation and
Classification

A wide variety of algorithmic approaches have been

explored as suitable candidates for the task of keystroke

recognition. The problem of keystroke recognition fits

well within the general fields of pattern recognition and

machine learning; the two main tasks involved in solv-

ing problems within these fields are to define the repre-

sentation of the feature space and the algorithm used to

predict the class of samples. As mentioned in previous

sections, the features in keystroke recognition are pri-

marily derived from the elements that make up a key-

stroke. Most algorithms utilize first order statistics such

as minimum, maximum, mean, median, and standard

deviation of hold times and latencies [2, 4–8] for feature

representation. Here, hold times are for individual keys

whereas latencies are measured between two keystrokes

often defined as ‘‘digraphs.’’ Using these statistics, one

can either calculate fixed length feature vectors as out-

lined in [2] or variable length feature vectors as outline

in [9]. Fixed length or static size feature vectors will

always have a predetermined length despite the length

of the input sequence. The size of variable length or of

dynamic feature vectors will depend on the size of the

input sequence. Although the vast majority of key-

stroke recognition systems rely on single key hold

times and digraph latencies, some approaches define

other feature sets including trigraph durations, order-

ing of keystrokes (when shift-key modification is re-

quired), etc. [9].
Beyond feature representation, a keystroke recogni-

tion system must employ an algorithm to predict the

class of incoming samples. In general, the approaches

can be broken down into two sections: distance metric

based approaches and machine learning approaches.

After calculating the feature vector for an incoming

sample, the chosen algorithm must predict the class

of the sample (genuine or imposter). Many approaches

will do so by comparing the incoming sample to one or

more reference samples in a template database through

a distance metric. Popular distance metrics include:

Euclidean, Mahalanobis, Manhattan, Chebyshev, and

Hamming. When distance metrics are employed to

compare two samples, the smaller the score the closer

the two samples are to each other. Gaines and Lisowski

[4], Garcia [10], Young and Hammon [11], and Joyce

and Gupta [5] are all examples of algorithms that

utilize one or more of these distance metrics as classi-

fication schemes. Table 1 provides an overview of se-

lected work in keystroke recognition including the

works listed above. The table includes the features/

algorithm used, input requirements, the scope, and

performance. Under the performance column the raw

totals in terms of FAR and FRR are presented within

parentheses when listed in the work.

As the field has matured, many other machine

learning approaches have emerged as viable solutions

for prediction mechanisms in keystroke recognition.

Neural networks have widely been employed with

works by Obaidat et al. [6, 7], Brown et al. [12], and

Maisuria et al. [13]. Cho and Yu have applied Support

Vector Machines (SVM’s) to the problem extensively

[14, 15]. Additionally, Bartlow and Cukic explored the

decision tree approach of Random Forests [2] (see

Table 1 for more information on listed works).
Applications and Challenges

In application, the uses of keystroke recognition

can range anywhere from stand-alone biometric

systems to augmenting general computer security sys-

tems.Depending onvarious system specific security char-

acteristics such as database size and operational risks,

keystroke recognition is suitable as a stand-alone biomet-

ric. Although not on the level of physiological biometrics

such as iris, fingerprint, and face, many works in the

literature indicate that the attainable performance rates

are within the scope of what some operational profiles

would require. Much like the physiological biometrics,
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Work Feature(s)/Algorithm Input Scope Performance

Gaines and
Lisowski
(1980) [4]

Latency between 87 lowercase digraphs using
sample t-tests

300–400 word
passage 2 times

7 secretaries FAR 0% (0/55)
FRR 4% (2/55)

Garcia
(1986) [10]

Latency between 87 lowercase digraphs and
space key and complex discrimination using
Mahalanobis distance function

Individual’s name
and 1000 common
words 10 times each

(N/A) FAR 0.01%
(N/A) FRR 50%
(N/A)

Young and
Hammon (1989)
[11]

Plurality of features including: digraph
latencies, time to enter selected number
of keystrokes and common words using
Euclidean distance

(N/A) (N/A) (N/A)

Joyce and Gupta
(1990) [5]

Digraph latencies between reference strings
using mean and standard deviation of latency
distance vectors

Username, password,
first name, last name
8 times each

33 users of
varying
ability

FAR 0.25%
(2/810) FRR
16.36%
(27/165)

Brown and
Rogers
(1993) [12]

Latencies and hold times using Euclidean
distance and neural networks

Usernames, 15–16
character avg. �
1,000 sequences
tested

21 and V 25
users

FAR 4.2%–
11.5% (N/A)
FRR (N/A)

Obaidat and
Macchiarolo
(1993) [6]

Digraph latencies between reference strings
using neural networks

15 character phrase
20 times each

6 users 97% overall
accuracy

Obaidat and
Sadoun
(1997) [7]

Digraph latencies and key hold times using
multiple machine learning algorithms

Username 225 times/
day for 8 weeks

15 users FAR 0% (N/A)
FRR 0% (N/A)

Monrose and
Rubin (1997) [1]

Latencies and durations with normalized
Euclidean distance and weighted/
nonweighted maximum probability

Passages of text over
7 weeks

(N/A) Identification
framework

Maisuria and
Ong and Lai
(1999) [13]

Digraph latencies with neural networks
(multi-layer perceptron)

passwords 60 times
over 3 periods

20 users FAR � 30%
(N/A) FRR
� 15% (N/A)

Monrose, Weiter,
and Wetzel
(2001) [8]

Digraph latencies and key hold times,
algorithm employed is unclear

8 character password 20 users FAR % (N/A)
FRR 45% (N/A)

Bergadano,
Gunetti, and
Picardi (2002) [9]

Trigraph duration using degree of disorder 683 character text
5 times

44 users FAR 0.04%
(1/10,000) FRR
4% (N/A)

Yu and Cho
(2004) [14]

GA-SVM’s and wrapper FSS on hold times and
digraph intervals

6–10 character
passwords 150–400
gen/user and 75 imp

21 users FAR 0% (N/A)
FRR 3.69%
(N/A)

Bartlow and
Cukic (2006) [2]

Random Forests on digraph latencies and
hold times digraph latencies

usernames + 8 and 12
char passwords
� 9,000 sequences

41 users FAR 2% (N/A)
FRR 2% (N/A)

Sung and Cho
(2006) [15]

GA-SVM’s and wrapper FSS on hold times and
digraph intervals

6–10 character
passwords 150–400/
user and 75 imposter

21 users FAR 3.85%
(N/A) FRR
13.10% (N/A)
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performance is typically measured by conventional error

measures such as False Accept Rate (FAR), False Reject

Rate (FRR), and Equal Error Rate (EER). In terms of

EER, many of the previously cited works achieve
performance �5% (see Table 1). Naturally, FAR and

FRR’s can be tailored based on where one wishes to

fall on a traditional Receiver Operating Characteristic

(ROC) curve. It is important to note that the literature
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has not firmly established whether the technology is

sufficient for biometric systems operating in identifi-

cation mode as the focus of past research is almost

exclusively tailored to verification based systems. It is

also important to note the trend of decreasing data

requirements as earlier works required extremely long

passages of text whereas most recent works require

only usernames, passwords, or both. Related to this

trend, keystroke dynamics need not be applied only at

the time of login, which may lead to time-of-check-

time-of-use vulnerabilities. Instead, they can be ap-

plied transparently throughout the span of a period

of use. This feature can allow systems to continually

check for the presence of insider threat where an

authorized user may login to a system and subsequent-

ly allow an unauthorized user access. If a system does

not require a continual verification environment, key-

stroke recognition is also very suitable for a ▶ chal-

lenge response type framework where the user is

periodically authenticated.

Besides stand-alone biometric systems, keystroke

recognition can be used as an augment to traditional

username/password systems. This process is often

called ▶ credential hardening or password hardening.

Monrose et al. first proposed the idea [8] and Bartlow

et al. also explored the concept [2]. Both works show

how the addition of keystroke recognition to tradi-

tional authentication mechanisms can drastically

reduce the penetration rate of these systems. Works

of this nature may also bode well in online authentica-

tion environments such as banking and e-commerce

websites which now commonly require secondary

verification layers.

Either as a stand-alone biometric or an augment

to a traditional username/password scheme, key-

stroke dynamics are arguably more cancelable or re-

placeable than physiological biometrics. The idea

of cancellable biometrics touches on the fact that

the threat of biometric compromise exists and is

often realized. With fingerprint, face, iris, etc., it is

often difficult to reissue a biometric authentication

mechanism as fingers, faces, and irises are not easily

removed and replaced in humans. In keystroke recog-

nition however, the behavior which induces the bio-

metric can be changed. In other words, if a user’s

keystroke recognition template is compromised, the

data in which the template is based (i.e., password/

passphrase) can simply be changed which will result

in a new biometric template. For obvious reasons, this
is seen as a very attractive feature of keystroke

recognition.

Beyond the scope of academic research, many

patents have been issued in the field including:

Garcia (4,621,334 - 1986) [10], Young and Hammon

(4,805,222 - 1989) [11], Brown and Rogers (5,557,686 -

1996), and Bender and Postley (7,206,938 - 2007). In

addition to patents, there are many commercial offer-

ings of keystroke recognition systems. Two popular sys-

tems are BioPassword�(http://www.biopassword.com/)

and iMagic Software �(http://www.imagicsoftware.

com). Systems such as these are attractive as the over-

head of keystroke recognition in terms of hardware

deployment and seamless integration into currently

existing authentication systems is typically much less

than that associated with physiological biometrics such

as fingerprint, iris, and face.

Despite the maturity of the field over the last

30 years, there are still many challenges that are yet to

be solved. Three main challenges are associated with

the data required to train keystroke recognition sys-

tems. First, few works have formally set out to deter-

mine the amount of sequences required to sufficiently

establish a typing signature ready for operational

deployment. For a system to be deployable, it must

have a realistic training requirement that the users are

willing to incur. It seems that repeatedly typing a

username and password combination 50 or more

times would be unacceptable in the eyes of most

users, yet five may be insufficient in terms of meeting

established security goals. Second, as passwords need

to be replaced or reissued, the problem of retraining

needs to be addressed. Once again, these retraining

requirements are yet to be firmly established. Third,

the behavioral nature of this keystroke recognition

requires a slightly more involved data collection pro-

cess than what is typical in conventional physiological

biometric systems. Most notably, one cannot simply

compare genuine input of one user to genuine input

of another user in order to establish an instance of

imposter input as the data is often different for every

user (i.e., usernames/passwords). As a result, most

academic research will have users type the credentials

or data associated with other users to arrive

at imposter sequences for training. Clearly this is not

feasible in operational systems as passwords are fre-

quently reset. Therefore, the issue of automatic gener-

ation of imposter data is an area that needs to

be explored.

http://www.biopassword.com/
http://www.imagicsoftware.com
http://www.imagicsoftware.com
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Summary

Keystroke recognition is a behavioral biometric which

authenticates an individual not on the basis of what is

typed but the nature of how it is typed. A large base of

research has accumulated in the field over the last

30 years establishing its potential both as a stand-

alone biometric and an augment to traditional

username/password authentication schemes. Due to

its transparent nature, low cost of deployment, and

seamless fit into currently existing commercial and

governmental applications, it is an excellent candidate

for increasing the security of authentication systems.
Related Entries

▶Biometric Encryption

▶Cancelable Biometrics

▶Verification
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Kinematic Body Model
Virtual skeleton structure comprising a fixed number

of joints with specified angular degrees-of-freedom.

The values assigned to these joint angles define the

3D pose of the body.

▶Markerless 3D Human Motion Capture from

Images
Kinematics
The description of object motion over time, generally

expressed in terms of position, velocity, and

acceleration.

▶Human Detection and Tracking
Knowledge-based Gait Recognition
▶Gait Recognition, Model-Based
Known Traveler
▶Registered Traveler
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L2 norm
L2 norm is a standard method to compute the length

of a vector in Euclidean space. Given x = [x1 x2 . . . xn]
T,

L2 norm of x is defined as the square root of the sum of

the squares of the values in each dimension.

▶ Iris Super-Resolution
Lambertian Law
Lamberts cosine law states that the reflected or trans-

mitted luminous intensity in any direction from an

element of a perfectly diffusing surface varies as the

cosine of the angle between that direction and the

normal vector of the surface.

▶ Face Recognition, Near-infrared

▶Heterogeneous Face Biometrics
Lambertian Surface
Lambertian surface is a technique used to light partic-

ular surfaces of virtual objects within a scene, which

causes all closed polygons to reflect light equally in all

directions. This means that the surface brightness to an

observer is the same regardless of the observer’s angle

of view.

▶ Face Sample Quality

▶ Illumination Compensation
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Large Scale Biometric Database
Based on their size all biometric datasets are classified

into three (some sources indicate four) categories:

small size, medium size, large scale, and very large

scale data bases. The size of datasets is determined by

the number of participating users. A small size data-

base can contain biometric data of up to 1,000 users.

A medium size database accounts for 10,000–100,000

users. A large (and very large) scale datasets include

biometric data of more than 1,000,000 users. Since

each user can be represented by two or more classes

in a database, some references indicate the size of

datasets in classes rather than in users.

▶ Face Databases and Evaluation

▶ Iris Sample Synthesis

▶ Large Scale System Design
Large Scale Biometric System Design
▶ Large Scale System Design
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Definition

A large scale biometric system is a system involving

the authentication of a huge number of users via the

biometric features. A Large Scale▶Biometric Database

is generally designed for civilian applications and is not

merely the increased size of database compared to the

personal use system. In the case of a large scale system,

there is greater emphasis on the issues of system reli-

ability and flexibility. To meet the requirements of

public use, the system must have a high enrollment

rate and adapt to environmental variations. Security is

another issue in designing such a system due to the

large number of users enrolled. A one-to-many match-

ing may sometimes lead to system breakdown, thus

other authentication policies may be applied to com-

plement the one-to-many matching to enhance system

reliability, such as cross validation of multiple biomet-

ric features.
Introduction

There is a long history of fingerprint verification/identifi-

cation in law enforcement, a large scale biometric system

which is primarily used for determining the identity of a

suspect or a dead person. In the early stage, fingerprint

verification is achieved by an expert who must visually

match the▶minutiae of different fingerprints, which is

undoubtedly a tedious and time consuming task. In

recent years, due to advances in computer recognition

techniques and the extensive development of biometric

sensor devices, the identity of an individual can be

authenticated through biometric features fully auto-

matically by computers. A biometric system has the

distinct advantages of high security and convenience,

thus theoretically it can find many applications where

the users need to prove the claimed identity to access

the required services. However, due to the issue of

human rights (it is unfortunate that a fingerprint is

always associated with crime), many people are unwill-

ing to provide their biometric features in public sys-

tems, thus most biometric applications are at present

restricted to personal use such as notebook or mobile

phone login. After 9/11 attacks, many people have

realized the importance of security and this has pushed

the government to initiate many large scale biometric

systems to enhance the security for access in the gov-

ernment’s facilities and information systems. In fact,
a biometric system is not merely used for preventing

terrorist attacks. Many government provision such as

welfare disbursement, driver license application, and

voter registration can benefit from the construction of

a nationwide biometric system. For example, many

airports have installed a biometric authentication sys-

tem to expedite the procedure of visa and passport

examination. The United States government has

launched a Personal Identity Verification (PIV) pro-

gram [1] to manage the authentication of federal

employees and contractors for access to federal facil-

ities and information systems. It is obvious that in the

future more and more large scale biometric systems

will be developed. This essay outlines some issues

that should be considered in designing a large scale

biometric system and lists some of the applications

of a system.
Operation of a Large Scale Biometric
System

Typically, there are two authentication modes for a

biometric system: verification (one-to-one matching)

and identification (one-to-many matching). Verifica-

tion is a procedure for comparing a biometric feature

set against a template with claimed identity. For a large

scale system, the enrolled template can be stored in

a centralized database, a set of distributed databases

(sometimes at distant places), or a user carried medi-

um such as an IC card, depending on the requirements

of applications. Different arrangements have their own

advantages and disadvantages. For instance, in the PIV

program, the biometric templates are distributed to

the user’s PIV card, thus saving effort in managing

the huge number of records of biometric data. How-

ever, the data stored in the card must be carefully

protected so as to prevent an impostor replacing or

stealing the biometric data to crack the system. Usually,

the protection mechanism is achieved by a Public Key

Infrastructure (PKI).

Identification is a procedure for comparing a bio-

metric feature set against all templates in the database

to determine the correct identity. Generally, if a biomet-

ric system cannot achieve a sufficient low FalseMatching

Rate (FMR), it is not recommended to use the one-to-

many matching to guard access to some services

or resources since it will greatly reduce the security

level and result in a long matching time. However,
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identification is at times necessary for some applications

such as detecting multiple enrollments in a system. If an

application requires identification in a large scale bio-

metric system, some strategiesmust be applied to reduce

the searching size so as to enhance security as well as to

expedite the matching process. An enrollment process

for a large scale systemwith the functionality of detecting

duplicate enrollments is presented in Fig.1. To reduce

the number of matchings, some reliable information

about the applicant can be used to filter out incorrect

biometric templates. For example, it is possible to cut

out a large portion of templates to be matched by

the sex of the applicant. If other information such as

the applicant’s eye color can also be used to reliably

classify the users, the search size can be further

reduced. Normally, a biometric classification mecha-

nism can also be included in the system to accelerate

the identification process. For instance, a fingerprint

can be categorized on the basis of the ridge pattern into

arch, right loop, left loop, whorl, etc. Typically, if a

classification system cannot achieve a sufficiently high

level of accuracy to effectively cut out the templates

to be matched, classification is just a re-ordering of the

templates that increases the probability of matching

the biometric templates from the same individual

as soon as possible. This implies that a classification
system can efficiently detect duplicate enrollments if

the applicant has enrolled in this system previously,

but for a new applicant, re-ordering of matching tem-

plates has no benefit to the system since the biometric

template of the applicant is not in the database.
Some Issues for Designing a Large Scale
Biometric System

In general, designing a large scale biometric system is

different from personal use systems. Some issues

should be carefully considered.

1. Cross-sensor problem and the development of stan-

dards: For a personal use biometric system, the

biometric features for enrollment and verification

are usually acquired from the same biometric sensor.

This obviously rules out the problem of cross-sensor

matching which sometimes leads to performance

degradation due to sensor discrepancy. However,

cross-sensor matching is quite common in a large

scale system where the enrollment and verification

sensors are typically different. Sensor discrepancy

is due to several factors such as the manufacturing

process, sensors developed by different vendors, and

even the different sensor design methodologies
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such as optical-based and chip-based fingerprint

sensors. One way of solving the problem of cross-

sensor matching is to establish a standard to regulate

the quality of captured biometric data such as the

FBI’s fingerprint image quality specification [2].

Biometric standards, however, are not restricted to

the area of defining the quality of biometric data.

The standards for the format of biometric template

and the ▶ application programming interface

(API) have also been developed. Not only, finger-

print image quality standard has been established,

but also biometric API has been developed such as

BioAPI [3]. In fact, many standards for the security

industry, such as the interface of access control,

audio verification, and control panels, have also

been developed. The Open Systems Integration

and Performance Standards (OSIPS) of the Securi-

ty Industry Association (SIA) [4] is a well-known

program for the development of security standards.

Under the OSIPS, a series of standards have been

published to meet the requirements of emerging

IT products and services in the security industry.

These standards allow different manufacturers to

cooperate for designing very large scale biometric

systems and create more business benefit from

security applications. It is likely that in the future

only those biometric products that comply with

these standards may be accepted by the market.

2. Poor biometric quality in the case of specific users: It

has been known that the quality of biometric features

of some specific users is very poor, especially those

engaged in particular occupations. For instance, the

fingerprints of some porters are generally worn to

such an extent that it is quite difficult to recognize

their fingerprints. Because a large scale biometric

system is generally designed for public use, it cannot

reject those users with poor biometric quality or

those with biometric deficiency. In addition to non-

technique complement schemes, a biometric system

should further improve their performance, including

biometric feature enhancement as well as matching

algorithm, to accommodate those users with poor

biometric features. This system should generate high

quality biometric data or templates for a very large

proportion of the user population.

3. Environmental variations: Environmental variations

such as illumination or temperature variations

sometimes lead to performance degradation of

a biometric system because of unequal sensor
conditions of the captured biometric templates

to be matched. For instance, face recognition is typi-

cally quite sensitive to ambient illumination varia-

tions. For a personal use biometric system, biometric

sensors are generally set up in an indoor and control-

lable situation so as to minimize environmental var-

iations. However, for a public use biometric system,

sensors may be set up outdoors, thus any biometric

quality degradation that may be due to environmen-

tal variations should be taken into account when

designing a large scale biometric system. A large

scale system is expected to generate high quality bio-

metric data across the full range of environmental

variations for the intended applications.

4. Performance degradation for one-to-many match-

ing: As outlined previously, one-to-many matching

may have performance degradation. For example, if

a biometric system has 0.0001 false matching rate

(FMR) and there are 10,000 biometric templates in

the database, then a one-to-many matching against

this database will always produce a successful

matching with a statistical probability of 1. Thus,

when applying a one-to-many matching in a large

scale system, systemdesignermust carefully compute

the resulting error rate and check whether it satisfies

the demand of the intended application. If a one-

to-many matching is inevitable for a large scale

application, several mechanisms can be included in

the system to enhance the security level. For instance,

it is possible to reduce the probability for false

alarm matching by cross validation of multiple bio-

metric features. Multiple biometric features may be

obtained from the same biometric type such as fin-

gerprints of different fingers, or from different types

such as face, voice, fingerprint, and hand geometry

etc. Regardless of which biometric features are used

for cross validation, the resulting security level

should be carefully calculated to ensure that it

meets the security requirements. Beside a degraded

error rate for one-to-many matching, the increased

matching time may at times become a design issue

for a large scale system. If cost is not a critical factor,

the matching time can be greatly reduced by distri-

buting the matching task into several matching

machines. An efficient classification scheme can

also be used to reduce the matching time. If a classi-

fication algorithm can effectively filter out the un-

necessary templates to be matched, it can also

improve the error rate of one-to-many matching.
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The PIV Program of the United
States Government

The PIV program of the United States government is

a large scale biometric authentication project intended

to control the federal employees and contractors for

access to federal facilities and information systems.

Under this program, every applicant is issued a PIV

card on which two types of biometric information are

recorded: one is the photograph of the applicant which

is printed on the card and the other is the applicant’s

fingerprint template which is stored in the card mem-

ory. The photograph of the applicant is used for visual-

based authentication which serves as the lowest level

of identity assurance. This visual-based authentication

is necessary in situations where electronic biometric

authentication is not workable, e.g., the PIV card read-

ers cannot be installed on the site. In other situations,

authentication is automatically achieved by comparing
Large Scale System Design. Figure 2 The system notional m

Verification (PIV) of Federal Employee and Contractors, Feder
the cardholder’s fingerprint against the template stored

in the card. The system notional model of the PIV

program and its conceptual operation are summarized

in Fig.2.

The PIV program is open to biometric manufac-

turers worldwide, thus any biometric vendor whose

techniques comply with the requirements of the PIV

can join this program. For this purpose, the Depart-

ment of Commerce and the National Institute of Stan-

dard and Technology (NIST) have published a series of

standards to regulate the biometric techniques. The

NIST has also designed a performance evaluation test

to cross verify the fingerprint verification techniques

developed by different manufacturers [5]. In this test,

the entire process of fingerprint verification is divided

into two phases: feature extraction and template

matching. The goal of this test is to ensure the reliabil-

ity of extracted fingerprint features and the capability

of fingerprint matching algorithm. The false matching
odel of the PIV program. (Reprinted from Personal Identity

al Information Processing Standards Publication).

L
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rate (FMR) and the false non-matching rate (FNMR)

for pairs of feature extraction module and fingerprint

matching algorithm from different vendors are evalu-

ated to check whether they can achieve the desired

security level. This test does not only examine the

compatibility of biometric techniques developed by

different vendors but also checks the fingerprint recog-

nition accuracy of the vendors. Only those biometric

manufacturers who pass the test can serve as the bio-

metric techniques providers for the PIV program.
Web Service Authentication (WSA)

With advances in internet technology, a biometric au-

thentication system can also be applied to the browser

to replace the traditional password-based login system

(i.e., a web service biometric authentication), leading

to a more convenient and secured biometric solution

on the internet. This web service authentication is not

limited to biometric applications of personal use but

can be extended to a large scale biometric system such as

a web-based time-attendance system for a global com-

pany with a number of branches around the world. Each

employee can register his/her attendance time via this

web service authentication system even when he/she

is in a remote branch. Typically, there are three compo-

nents of a web service authentication system as illu-

strated in Fig.3. The terminal of End User is usually

a browser with some plugins (ActiveX in IE or Java

applet for other platforms) in charge of connecting the
Large Scale System Design. Figure 3 The three component

Startek).
biometric sensor and sending the extracted biometric

template to the Web Server. The Web Server is respon-

sible for managing the biometric templates and send-

ing the templates to be matched to the Matching

Server. The Matching Server deals with the requests

from different Web Servers (which may be devised for

various functions and applications) and respond with

the authentication results. All the communication data

between servers and browsers are transmitted via a secure

channel which is typically achieved by a data encryption

scheme. In this framework, each component has its

distinct functionality and role, thus the overall system

is easy to manage and maintain. In addition, since the

plugins can be installed directly by the internet, setting

up a web service authentication system is fairly simple.

A biometric reader installed on a computer with web-

access functionality is sufficient for completing the sys-

tem. Amore general framework is depicted in Fig.4. The

matching servers can be extended to a matching array

thus significantly enhancing the matching efficiency. In

short, this web service authentication scheme is easy to

install, easy to manage and maintain, platform inde-

pendant, flexible function extension, and easy to inte-

grate to other systems, thus it is likely to be widely used

in the area of biometric recognition on the internet.
Summary

This essay presents a brief description of the operation

of a large scale biometric system and highlights several
s for a web service authentication scheme (Data Source:
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issues in designing such a system. It discusses a large

biometric project, the PIV program of the United States

government, and also examines a framework for bio-

metric application on the internet. Besides, it enumer-

ates the advantages of such a biometric network

application. The authors of this contribution aims to

provide a simple view to those who seek an initial

understanding of the design of a large scale biometric

system.
Related Entries

▶Authentication

▶Automated Fingerprint Identification System

▶Biometric

▶Enrollment

▶ Identification

▶Verification
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Large-Scale Evaluation
Large-scale evaluation is the evaluation that involves

testing on significant amounts of data, that is, Large

Scale Biometric Databases. It normally provides results

using the statistical measurements, such as average FAR,

FRR and/or ROC, and CMC curves.

▶ Face Databases and Evaluation
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Latent Fingerprint
A fingerprint left on an object by touching it. Example

objects are glasses, doors, and tables.

▶Biometric Identification

▶ Fingerprint Features

▶ Latent Fingerprint Experts

▶ Law Enforcement Agency

▶ Liveness Detection: Fingerprint

▶ Security and Liveness, Overview

▶Universal Latent Workstation
Latent Fingerprint Experts
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Synonym

Latent fingerprint recognition
Definitions

Cognitive processing is the term given to mental effort

directed toward a particular problem. Cognitive science

is an umbrella term given to all disciplines that focus on

intelligent systems; research psychologists traditionally

focus on human performance. The field of cognitive

science includes mathematicians, computer scientists,

research psychologists, biologists, and philosophers.

Cognitive processing is closely linked to perceptual pro-

cessing and decision making, both of which are involved

in latent print examinations. As part of the science,

researchers typically collect data from experts and

novices to document how and when expertise develops.

▶ Latent fingerprint examiners are practitioners

who are trained to individualize or exclude latent

prints and prints from known sources (e.g., 10-print
cards). These practitioners often work with automated

databases such as IAFIS, which provide candidate

prints from known sources.
Introduction

Engineers attempt to solve a biometric problem by

isolating features or dimensions that they believe are

diagnostic, or use machine learning procedures to

identify a feature set that might be useful. Cognitive

scientists take the opposite approach. They use testing

procedures designed to infer the brain processes that

underlie performance in human experts. Under the

assumption that humans have the most flexible infor-

mation processing system and can use different levels

of information, this reverse engineering approach

holds the promise of improved quantitative analyses

of fingerprints. This entry summarizes the work that

has characterized performance in latent print exami-

ners, and describes how cognitive and vision scientists

design experiments to reveal the mechanisms under-

ling human latent print identification.

The study of expertise in latent print examiners is a

relatively new field, and only a few group has published

on the topic. However, there is a great deal of research

in related fields, and this research is described where it

applies to latent print examinations.
Empirical Evidence

Research on ▶ perceptual expertise in human experts

proceeds much in the same way that an engineer would

evaluate the performance of a biometric system.

Researchers generate candidate mechanisms that de-

scribe how an expert would accomplish a particular

task. These candidate hypotheses are based on an anal-

ysis of the information available, along with known

perceptual and memory constraints of humans. The

‘‘system’’ (in this case the human) is tested with a

recognition ormemory task and performancemeasures

such as false match rate and false non-match rate can be

computed. Because the difficulty of a particular task

depends on the choice of materials, researchers often

compare performance from human experts against

those of human novices. Busey and Vanderkolk [1]

tested experts and novices in a fingerprint fragment
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matching task that was one of the first major studies of

expertise in latent print examiners. Described below

are the details of this study, which not only illustrates

how experts differ from novices but provides an illus-

tration of how research questions are developed and

answered in Cognitive Science.

Stimuli such as those shown in Fig. 1 were pre-

sented briefly to expert latent print examiners and

novices. A single print would be shown for 1/5th of a

second, followed by a pattern mask for either 200 ms or
Latent Fingerprint Experts. Figure 1 Panel A: Stimuli used t

Empirical data demonstrating improved performance overall

configural processing (see text for details).
5 s. Then two prints would be shown, one of which

exactly matched the studied print fragment. The test

prints could either be whole or partially masked to

simulate a latent print, and could be presented with

or without noise (which simulates the fact that some

latent prints are recovered on textured or marked

surfaces which adds visual noise).

The data in Panel B of Fig. 1 illustrates several

factors. First, experts perform better than novices, a

difference that is even more pronounced at longer
o test novices and latent print examiners [1]. Panel B:

for experts, better performance in noise, and evidence for

L
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delays (not shown). This demonstrates that experts

may have better visual memories or the ability to

re-code visual information into verbal descriptions

which survive for longer intervals. Second, the struc-

ture of the design allows an investigation of ▶ config-

ural processing. The partially masked prints have

exactly half of the information in the full prints. Per-

formance from the partially masked prints can there-

fore be used to predict what performance should be in

the full print condition, using a model called probabil-

ity summation. The dashed lines show the prediction of

the probability summation model, and demonstrate

that experts exceed that prediction for the prints in

noise. This illustrates that experts are gathering more

information from the second half of the print once it is

added to the first half than one would have expected

based on their performance on the first half. Another

way to view this is that for experts, the whole is greater

than the sum of the parts. One interpretation of these

results is that experts use the information from one

half to make better use of the information from the

second half when both are present.

Converging evidence for configural processing was

found using brain recording in a second experiment.

When visual stimuli are presented, neurons in the brain

fire and give off electrical activity than can be recorded

by placing electrodes on the surface of the scalp. This

form of electroencephalography (EEG) allows research-

ers to monitor the ongoing brain activity that is elicited
Latent Fingerprint Experts. Figure 2 Electrophysiological da

fingerprints and faces [1]. Light curves come from faces, while
by a visual stimulus. While this technique has only

coarse spatial resolution due to the spreading nature

of electrical charges, it has excellent temporal resolu-

tion, on the order of millisecond accuracy.

Researchers using this particular technology have

noted that stimuli that are known to be processed

using configural or holistic mechanisms such as faces

and similar trained stimuli provide a signature of

this configural processing [2]. Voltage recorded from

the head and averaged over lots of trials provides

the event-related potential (ERP), and faces produce

a very distinctive feature over the left and right parie-

tal regions of the brain. This feature is a downward-

trending component that has an inflection at about

170 ms after stimulus onset. Figure 2 illustrates this

feature, which has been termed the N170. When the

stimulus is inverted, which has the effect of reducing or

eliminating configural processing, the N170 is delayed

and slightly more negative-going.

This signature of configural processing provides a

means to test whether experts process fingerprints con-

figurally. Experts and novices were shown upright and

inverted faces and fingerprints. As expected, both

experts and novices show differences between upright

and inverted faces. However, only experts showed a simi-

lar pattern for fingerprints as they showed for faces: The

N170 for inverted fingerprints was significantly delayed

relative to upright fingerprints, but only in experts.

The dark curves in Fig. 2 illustrate this effect. These
ta from Novices and Experts with upright and inverted

dark curves are from fingerprints (see text for details).
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findings are important because not only do they illus-

trate demonstrably different patterns of brain activity

in experts and novices, but the time course of the

differences are consistent with processing that happens

relatively early in visual processing. Thus these exam-

iners are experiencing relatively low-level changes in

their visual system that improve the quality of the

information and the way they interpret this perceptual

information.

In summary, the behavioral and electrophysiologi-

cal evidence from latent print examiners supports the

view that experts have better recognition overall for

fingerprints, they have better visual memories for fin-

gerprint information, and they process fingerprint

information in qualitatively different ways using con-

figural processing mechanisms.
L

Perceptual Expertise

While little research has focused specifically on latent

print examiners and the changes that develop as a result

of their expertise, candidate mechanisms that have been

previously discovered by cognitive scientists using

related materials can be extended. For example, the

idea of configural (using relational information between

parts) and/or holistic (obligatory processing of all the

parts of an object) processing has become a consistent

theme throughout the literature and many researchers

argue that it is a signature of expertise [3]. Specifically,

researchers studying perceptual expertise have devel-

oped paradigms that test for and illustrate a shift from

a feature-based system of object recognition (seeing

individual parts of an objects) to the use of holistic

and/or configural mechanisms [3]. These effects are

often illustrated in behavioral tasks that train subjects

on a specific stimulus type and then test these subjects

on either the studied or transformed configuration or

isolated parts. Post-training performance is often com-

pared with either their pre-training performance or

with novices (those who receive no training). The un-

derlying theme that results from these research para-

digms is that experts develop a holistic system which

causes them to be more sensitive to configurations and

be unable to ignore distractor parts of the stimulus.

Apart from establishing configural and/or holistic

mechanisms, another key issue in expertise studies is

showing how experience with a domain causes a reor-

ganization of the visual recognition hierarchy away from
the basic level and to the subordinate level. In general

terms, subjects more readily identify items based on the

basic level category membership (e.g., bird, table) rather

than their subordinate membership (e.g., robin, coffee

table) [4]. This hierarchy is structured to reflect the

prominent use of basic-level information over the sub-

ordinate level information. However, a series of experi-

ments has shown that the development of expertise

results in enhanced subordinate level identification

[5]. It has been proposed that (1) expertise causes a

shift in the hierarchy to the subordinate level rather

than the basic level, (2) experts make identifications

based on this subordinate level information, and

(3) their expertise allows them to be equally proficient

in making identification on the subordinate and basic

level. The proficiency in which experts use this subor-

dinate level information has been reliably replicated

and has been argued to be a signature of expertise.

Other studies have researched differences between

experts and novices in terms of how expertise impacts

▶ visual memory, the ability to use verbal redescrip-

tions, and attention to particular features. For exam-

ple, previous studies on expertise have implicated

enhanced visual memory for expertise items, and

showed that chess masters were able to accurately

reproduce VALID board configurations after viewing

them for only 5 s [6]. This is arguably due to their

extensive knowledge of specific patterns that results

with expertise in the domain. Such an idea can be

applied to latent print examiners and has also been

reported for experts in other domains such as bridge

players [7], music students [8], and electronics techni-

cians [9]. In addition, this idea can be extended into

the category learning literature by a finding that shows

increases in memory sensitivity account for the ability

to learn to uniquely identify similar objects [10].

This enhanced memory ability could also be linked to

an enhanced ability to fixate on features that are the

most informative for future identification, an idea that

is also supported in the category learning literature [11].

In addition to visual memory, research in the per-

ceptual categorization literature argue that experts de-

velop a more robust storage, such as implicit verbal

redescriptions, in the process of specializing in a cate-

gory. Specifically, experts appear to garner more verbal

knowledge about a domain but make categorizations

without explicit deliberations [12].

Research with radiologists suggests that expertise

may alter what types of perceptual information are
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allowed for consideration. Specifically, experts argu-

ably attenuate to specific task relevant dimensions

[13]. More generally, this idea has also been founded

in the category learning literature by showing that

category learning includes learning how to optimally

allocate attention to those features relative to the cate-

gory and/or task and discard unrelated features [11].
Decision Making and Decision Biases

Expertise brings special abilities, but it also can lead

to special vulnerabilities. Several studies conducted

by Itiel Dror and co-workers illustrate the role that

context plays in decisions about fingerprint individua-

lizations. This can bring about ▶ contextual biases.

The difficulty with latent print examinations is that

the judgment that two prints come from the same

source is essentially based on similarity. Even if one

source (say a fingerprint) maintains a persistent struc-

ture over time, the way that print is laid down can

greatly affect its appearance. Thus no two impressions

of a single source will look identical. Clear prints

might look very similar, but in the end individualization

essentially comes down to a judgment that two prints

look more similar than any close non-match that

the examiner has seen. Such a task has three possible

decisions (individualization, exclusion, or insufficient

detail to make a determination). A particular pair of

prints will produce some amount of evidence for each

of these decisions, but whether the evidence exceeds

some internal threshold depends on the individual

examiner. Dror et al. explored the possibility that

the details of the case (the context) might affect the

decision process.

In the first study [14], non-experts where shown

pairs of fingerprints and given additional (fictitious)

details about the case. When the prints were shown

with a highly emotional context such as an accident

scene picture or a murder victim, the stimulus affected

the decision made by subjects. Subjects were more

likely to report a matching fingerprint pair when the

context was emotional. This suggests that contextual

information beyond the particular fingerprint percep-

tual information plays a role in latent print examina-

tions, at least with novices.

To extend this to experts, two additional studies

used covert measures to assess the role of context with

examiners during their normal workflow [15, 16].
To highlight the importance of this work, consider

the task of an examiner. He or she must evaluate the

perceptual evidence and decide whether there is suffi-

cient evidence to make a decision. What constitutes

‘‘sufficient’’ is of course of primary importance. Re-

search psychologists refer to this task as a criterion-

based (as opposed to a criterion free) judgment, since

the decision outcome is based in part on the criterion

that the examiner establishes. If the examiner allows

additional details about the case that are irrelevant to

the particular identification at hand to influence their

criterion, they reduce value and independence of the

latent print examination.

In this particular set of studies, latent prints

from closed casework were given again to the same

experts under the guise of a new case. These prints

had previously been matched or excluded by the

examiners. Dror and his colleagues found that 8 out

of 11 experts made a decision that was inconsistent with

their previous decisions on the identical pairs of prints.

Most of the switched decisions occurred with difficult

prints that were previously judged as identifications,

although some of these easy identifications also had

changed answers. The details of these experiments

are complex, and the reader is referred to the ori-

ginal sources for full details [17], but the implications

are clear: context can play a role in the decision that

an examiner makes, and care must be taken not

to allow external influence to affect the perceptual

judgment.
Summary

Research on latent print examiners has demonstrated

increased recognition of latent prints and the flexibility

to rely on different levels of print information. These

differences are supported by superior visual memory

and different styles of process. The EEG data suggest

that training and experience are causing changes in

relatively early and low-level areas of the visual system

that improve the quality of the perceptual information.

A host of related studies suggest that experts may learn

to re-code visual information into verbal descriptions,

and learn to attend to the most relevant and diagnostic

regions of a print. However, with these increased abil-

ities may come increased vulnerabilities such as con-

textual biases that may affect the interpretation of a

fingerprint pair.
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Law Enforcement
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Synonyms

Criminal law enforcement; Law enforcement agency;

Police law enforcement
Definition

Law enforcement systems record information about

individuals, both biometric data and demographic

data, that is used for quickly identifying criminals

and their acts.
Introduction

The identification of criminals and repeat offenders

has been one of the primary missions of police agencies

since their creation in the nineteenth century. The

industrial revolution led to mass migration to cities

where anonymity gave safe harbor to lawbreakers.

Newspapers fanned both real and perceived threats to

public safety and placed persistant demands upon the

police to solve crimes. Laws were enacted that dealt the
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harshest penalties to repeat offenders encouraging law-

breakers to adopt a different name (known as an alias)

with each new arrest.

Answering the call for effective systems of identifi-

cation, law enforcement agencies initiated various sys-

tems to maintain records at the end of the nineteenth

century. One of the earliest techniques utilized the new

science of photography to take pictures or mug shots at

the time of arrest. These mugs shots were organized

into albums, called Rogues Galleries. The method of

recording these photographs was adopted and standar-

dized worldwide to include a front and profile view of

the subject. General physical descriptions, including

scars, marks, and tattoos accompanied the photographs.

Today, Rogues Galleries have evolved into large digitized

databases of mug shots from which investigators can

select possible suspects based on victims’ descriptions,
Law Enforcement. Figure 1 Early police biometrics circa. 19
or compile ‘‘six packs’’ of persons sharing similar

descriptions for use in photo line-ups [1]. Automated

facial recognition would be a natural extension of the

mug shot systems, and research is underway to build

that capability into the system that would be most

valuable in video surveillance cases.

In 1880, Alphonse Bertillon, a clerk in the Paris

police, devised an anthropomorphic system of identi-

fication based upon 18 body measurements utilizing

specialized rulers and calipers for precision. From these

measurements, Bertillon derived a numeric value or

‘‘portrait parle,’’ that was supposedly unique to each

person. Bertillon’s Portrait Parle met with great success

in identifying repeat offenders regardless of what

names they had assumed at the time of arrest. Within

a decade, this manual biometric system was in use in

police agencies worldwide (Fig. 1).
06 Bertillon ‘‘Portrait Parle’’ record.
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During this period, a new type of biometric

was being explored by William Herschel in India and

Dr. Henry Faulds in Japan. In 1892, Francis Galton,

the nephew of Charles Darwin, published Finger

Prints [2], a book that became the standard reference

on the subject. Sir Edward Henry, police commissioner

in Bengal India, devised a classification system that

allowed for easy search and retrieval of fingerprints.

The Henry System was later adapted by Scotland

Yard in 1901. For several years, police agencies around

the world utilized both the Bertillon Portrait Parle

and fingerprinting systems side by side until finger-

prints won out and Portrait Parle was largely aban-

doned. Fingerprints proved easier to record, file, and

retrieve, and they could be used to solve crimes when

they were inadvertently left by criminals at the scene of

crime [3].

Today, as with mug shots, fingerprints are usually

digitally recorded, stored, and automatically searched

by Automated Fingerprint Identification Systems

(AFIS) [4]. AFIS has become the backbone of criminal

identification and is the most widely used biometric

system in the world. Standards have been adopted

for the digital storage and transmission of fingerprint

images [5].

In Finger Prints, Galton highlighted a number of

characteristics of each fingerprint that are used to

uniquely identify it. Modern automated systems use

some of these Galton characteristics in extracting in-

formation from the print (Fig. 2).
Law Enforcement. Figure 2 Computer plotting of minutiae
Fingerprint Functions in Law
Enforcement

Law enforcement AFIS systems are composed of two

interdependent subsystems: the tenprint or criminal

ID subsystem, and the latent or criminal investigation

subsystem. Each subsystem operates with a consider-

able amount of autonomy, and both are vital to public

safety.

The Tenprint subsystem is tasked with identifying

sets of inked or scanned fingerprints incident to an

arrest or citation or as part of the applicant process to

determine whether or not the person has an existing

record. An automated tenprint search usually involves

a search of only two or four fingers. Submitted finger-

prints by and large have sufficient clarity and detail to

make searching of more than two fingers redundant. At

present the AFIS can return a search of one million

records in under a minute.

The latent print or criminal investigation subsys-

tem is tasked with solving crimes through the identifi-

cation of latent prints developed from the scene of

crime. Terminals used within the latent subsystem

are often specialized to accommodate the capture

and digital enhancement of individual latent prints

(Fig. 3).

The search of a latent print is more tedious and

time consuming than a tenprint search. Latent prints

are often fragmentary and of poor image quality.

Minutiae features must be reviewed by a latent print
or Galton details from a fingerprint.
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examiner one by one before the search even begins.

Once the search is launched, the AFIS searches the

database and returns a respondent list of the closest

matches [6–8]. The fingerprint examiner then com-

pares each candidate against the search print.

The identification of latent fingerprints from the

scenes of crime has been a tremendous boon to law

enforcement agencies. AFIS identifications, or hits, are

responsible for solving hundreds of thousands

of crimes each year throughout the world. In 2005,

in the United States alone, 50,000 cases were cleared

by AFIS hits.
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Law Enforcement Agency
▶ Law Enforcement
LBP (Local Binary Pattern)
▶ Local Image Filters
LCN DNA/Low Template Level
Low template level or as formally referred to as Low

Copy Number (LCN) DNA refers to the analysis of

trace amounts of DNA (typically less than 100 pg). As

LCN is an ultrasensitive technique, there are artefacts

that one must be aware (allele drop-in and drop-out).

It requires careful interpretation and very strict proto-

cols to avoid contamination.

▶ Forensic DNA Evidence
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LDA (Linear Discriminant Analysis)
Linear discriminant analysis is defined as an orthogo-

nal linear transformation that best separate two or

more classes of objects. It finds the set of the projection

vectors which maximize the ratio of between-class

scatter against within-class scatter. The resulting com-

bination may be used for classification.

▶ Face Variation

▶ Illumination Compensation

▶ Linear Dimension Reduction
LED (Light Emission Diode)
L

LED refers to an electronic component, Light Emission

Diode, which emits light when traversed by a current

of certain entity.

A light-emitting diode, also called an LED, is a

semiconductor diode that converts electric energy into

electromagnetic radiation at a visible and near infrared

frequencies when its p–n junction is forward biased.

▶Biometric Sensor and Device, Overview

▶ Face Recognition, Near-infrared
Lighting Compensation
▶ Illumination Compensation
Lighting Model
The realism of a computer generated visual scene

depends on the extent to which lighting phenomena

are mimicked by the lighting model used. In Computer

Graphics, the lighting model refers to the choice of

reflectance function used. However, in Computer Vi-

sion, it may also include the type of light source(s) and

of normals used, as these have a considerable effect on
the synthesis and on the analysis by synthesis results. A

reflectance function is a mathematical function that

describes how light is reflected from an object.

▶ Face Sample Synthesis
Likelihood Ratio Test
The likelihood ratio test results from simplifying the

ratio between the probability that the sensor’s observa-

tion resulted from the positive hypothesis (genuine

user) divided by the probability that the sensor’s ob-

servation resulted from the negative hypothesis (im-

poster). The objective is to improve the ratio by

making the probability distributions separate as

much as possible. If the distributions are far apart,

the probability that the observation came from the

genuine user increases, and the probability that the

observation came from the imposter decreases. This

increases the ratio improving the test.

▶ Fusion, Decision Level
Limbus
The limbus is the outer boundary of the annular iris

structure, where the iris meets the white portion of the

eye, the sclera.

▶ Iris Image Data Interchange Formats, Standardization
Linear Dimension Reduction

WEI-SHI ZHENG
1, J. H. LAI

1, PONG C. YUEN
2

1Sun Yat-sen University, Guangzhou, P.R. China
2Hong Kong Baptist University, Hong Kong, China
Synonym

Linear feature extraction
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Definition

Linear dimension reduction technique reduces the di-

mension of biometric data using a linear transform. The

linear transform is always learned by optimization of a

criterion. Biometric data are then projected on to the

range space of this transform. Subsequent processing is

then performed in that lower-dimensional space.
Introduction

In biometrics, data are invariably represented in vectors

and the dimensionality is consistently very high. It would

be computationally expensive to process them directly by

using many algorithms. Moreover, it is sometimes desir-

able to exact robust, informative or discriminative facts

contained in the data. For these reasons, a lower dimen-

sional subspace is found such that the most important

part of the data is retained for linear representation.

Among the techniques for learning such subspace, linear

dimension reduction methods are popular.

Given a set ofN data samples {x1, . . . , xN}, where xi
2<n. Linear dimension reduction technique finds a

linear transform matrix W ¼ (w1, . . . , wℓ) such that

data are projected on to the range space span{w1, . . . ,

wℓ} by

yi ¼ WTxi; ð1Þ

where T denotes the transpose and yi is the representa-

tion of xi in the lower-dimensional space.

The linear dimension reduction technique is equal

to extraction of linear features w1, . . . ,wℓ. Different

linear dimension reduction techniques lie in different

goals of the information retained by these linear fea-

tures. Generally, they can be categorized into three

classes, which address the linear dimension problem

in the ▶ unsupervised, ▶ supervised, and ▶ semi-

supervised cases respectively. Some representative

algorithms of these classes are described here.

When biometric data are represented in a matrix

form, linear dimension reduction techniques can also

be extended. This kind of extension is called the two-

dimensional linear dimension reduction technique.
Unsupervised Linear Dimension
Reduction

Unsupervised linear dimension reduction aims at the

extraction of reconstructive features. Biometric data are
then linearly approximated in a lower-dimensional sub-

space spanned by the reconstructive features. Among the

popular linear algorithms used in biometrics for dimen-

sion reduction, thePrincipalComponentAnalysis (PCA)

[1] is the most representative one. The PCA finds a

lower-dimensional space that preserves the greatest

variations of data, that is, an optimal transform is

learned by maximization of the following criterion:

Wopt ¼ arg max
WTW¼I

traceðWTCtWÞ; ð2Þ

where Ct is the total-class covariance matrix defined by

Ct ¼ 1

N

XN
i¼1

ðxi � uÞðxi � uÞT ; u ¼ 1

N

XN
i¼1

xi: ð3Þ

Eigen-decomposition is used to find w1, . . . ,wℓ, which

are eigenvectors corresponding to the largest ℓ eigen-

values. However, preserving the largest eigenvectors

may not be the best strategy for other applications of

the PCA, such as recognition and clustering. In these

cases, the selection of proper principal components

may be useful.

Features extracted by the PCA are statistically

uncorrelated, but they are not ensured to be statistically

independent. If it is assumed that data are approximately

linear representations of some independent sources,

then it is useful to find these independent components

for representation of data in an intrinsic subspace. The

Independent Component Analysis (ICA) [2] pursues

features in this aspect. Let X ¼ [x1, . . . , xN] be the

data matrix. In the ICA, data matrix X is approximated

by a multiplication of mixing matrix A and matrix S

which consists of independent components as follows

X � AS: ð4Þ
Several approaches have been proposed for the estima-

tion of the ICA and the most popular of these is

FastICA [2].

In biometric learning, especially facial image anal-

ysis, has been experimentally demonstrated that the

extraction of localized features is useful for recognition

and for the interpretation and understanding of the

structure of data as well. Unlike the PCA and the ICA,

non-negative matrix factorization (NMF) [3] is a novel

technique for this purpose. In the NMF, data are

approximated only by additive combination of non-

negative components. The NMF, therefore, finds two

non-negative matrices, namely, the component matrix

Wopt and the coefficient matrix Hopt, which are mini-

mums of the following criterion
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ðWopt ;Hopt Þ ¼ arg min
ðW;HÞ

jjX�WHjj2F ;

s:t : W � 0 & H � 0:

ð5Þ

where j j � j jF is the Frobenius norm. Other than using

the Euclidean distance, the following criterion based

on the generalized Kullback-Leibler divergence that is

lower bounded by Zoro is also popular

ðWopt ;Hopt Þ ¼ arg min
ðW;HÞ

X
i;j

Xij log
Xij

ðWHÞij
� Xij

þ ðWHÞij ; s:t : W � 0 & H � 0:

ð6Þ

Closed forms ofWopt and Hopt in the NMF are difficult

to obtain. At present, the multiplicative update method

[4] has been widely used for finding a locally optimal

solution.

The former three methods do not take the geomet-

ric relationship between data into account. Assume

data are actually distributed on a manifold, it is natural

that the neighboring data in the input space would also

be close to each other when they are represented in the

lower rank subspace. The locality preserving projection

(LPP) [5] is a typical algorithm developed for this

purpose. It learns an optimal transform Wopt such

that the locality relationship between data in the

input data space are preserved after dimension reduc-

tion. The cost function of a transform W for locality

preserving is modeled by

1

2

X
i;j

g ij jjyi � yj jj2 ¼
1

2
traceðWT

X
i;j

g ij � ðxi � xjÞðxi � xjÞTWÞ;

where gij the affinity between samples xi and xj is

defined by

g ij ¼
1 if xi 2 N sðxjÞ or xj 2 N sðxiÞ;
0 otherwise;

�
ð7Þ

and N sðxiÞ is the set of s nearest neighbors of data xi.
Then the optimal transform explored by the LPP is

learned as follows

Wopt ¼ arg min
wT

i
XDXTwi¼1

traceðWTSpWÞ; ð8Þ

where D¼diag(∑j g1j, . . . ,∑j gNj), Sp ¼ XLXT and L is

termed the Laplacian matrix (He and Niyogi [5]) for-

mulated by

L ¼ D� G; Gij ¼ g ij : ð9Þ
Supervised Linear Dimension
Reduction

PCA, the ICA, the NMF and the LPP are methods for

learning unlabeled data. Since the features extracted

by these methods are not discriminative, they may not

be useful for recognition. When class labels of data

are known, supervised techniques for dimension re-

duction can be developed by additionally using label

information. Suppose data x1, . . . , xN are drawn from

L classes, namely, classes C1, . . . ,CL, and Nk be the

number of samples of class Ck, the supervised dimen-

sion reduction technique then finds a transform such

that data of the same class are close to each other

while data of different classes are scattered as far as

possible. A popular and widely applied technique is

(Generalized) Fisher’s linear discriminant analysis

(LDA) [6]. The LDA finds a lower-dimensional sub-

space in which the ratio between between-class vari-

ance and within-class variance is maximized. That is, a

discriminative linear transform Wopt is the maximum

of the following criterion

Wopt ¼ argmax
W

traceðWTSbWÞ
traceðWTSwWÞ ; ð10Þ

where Sb and Sw are between-class and within-class

covariance matrices respectively, which are defined as

follows:

Sw ¼ 1

N

XL

k¼1

X
xi2Ck

ðxi � ukÞðxi � ukÞT ; uk ¼ 1

Nk

X
xi2Ck

xi;

Sb ¼ 1

N

XL

k¼1

Nkðuk � uÞðuk � uÞT :

To obtain the optimum of a criterion [10], the

eigenvectors of Sw
�1Sb have to be determined. As

dimensionality of data is high and training samples

are in invariably limited in biometric learning, with-

in-class covariance matrix Sw will be singular. This

kind of singularity problem is referred to as the small

sample size problem in the LDA. Techniques used to

address this problem include, PCA+LDA [7], the Null-

space LDA (N-LDA) (Chen et al. [8]), and the regular-

ized LDA [9]. In the PCA+LDA, LDA is performed in a

principal component subspace in which within-class

covariance matrix is of full rank. In the N-LDA, the

nullspace of within-class covariance matrix Sw is first

learned; then data are projected on to that subspace;

finally the discriminant transform is found for
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maximization of the variance of between-class data.

Though both the PCA+LDA and the N-LDA are

lower-rank methods that first project data onto a

lower-dimensional subspace before implementation

of any discriminant processing, they are different in

that Sw in the PCA+LDA will be of full rank after

dimension reduction by the PCA while trace

(WTSwW) ¼ 0 after dimension reduction in the N-

LDA. Unlike the lower-rank approach, in the regular-

ized LDA (R-LDA), a regularized term, such as aI
where a > 0, is added to matrix Sw in Eq. (10),

so that Fisher criterion is well-conditioned. Regu-

larization is a straightforward way to solve this

singularity problem, but the regularized parameter

will have a significant impact on the performance

of the R-LDA.

An alternative way to maximize between-class var-

iance as well as minimize within-class variance can be

modeled as follows:

Wopt ¼ argmax
W

traceðWTSbWÞ � l � traceðWTSwWÞ;
ð11Þ

where l > 0. The advantage of using this model is that

computation of the inverse of Sw is not required, but

how to determine the importance weight l could be a

problem. This criterion is known as the maximum

margin criterion [10] when l ¼ 1.

At times, unsupervised linear dimension reduction

techniques can be used as a preprocessing step before

applying supervised techniques. Methods driven in

this way are two-step dimension reduction techniques.

The PCA+LDA is typically in line with this approach.

In addition, though supervised methods are always

preferred for recognition, it is difficult to ascertain

which kind of linear dimension reduction technique

is the best. For example, the PCA may be better than

the LDA for face recognition if the number of training

samples for each class is small [11].
Semi-Supervised Linear Dimension
Reduction

Linear dimension reduction for partially labeled data

would be highly demanded for large scale problems,

since labeling data is an expensive task. Therefore, it is

desirable to utilize unlabeled data for extraction of
supervised features for dimension reduction. Among

the developed techniques to achieve this goal, a special

regularized LDA for performing linear dimension re-

duction on partially labeled data can be formulated as

follows [12]:

Wopt ¼ argmax
W

traceðWTSbWÞ
traceðWT ðSt þ bSpÞWÞ ; ð12Þ

where St ¼ Sw þ Sb and b> 0. In this criterion, labeled

data are used to estimate supervised class covariance

information, and the effect of unlabeled data is

reflected by the Laplacian term Sp. The underusing

idea is that labeled data are separated in the same

way as done in the LDA while the neighboring data

including unlabeled data are nearby after dimension

reduction.
Two-Dimensional Linear Dimension
Reduction Techniques

Many well-known linear dimension reduction techni-

ques assume that input patterns are represented in vec-

tors. However, biometric data are captured in images,

and the dimensionality is very high when they are

reshaped into vectors. Unlike traditional techniques,

some linear dimension reduction techniques are devel-

oped by performing linear transformation directly

on matrix form data, such as image matrices. This is

advantageous in tackling large scale problems. Suppose

X1, . . . , XN are the corresponding matrix representa-

tions of vector form data x1, . . . ,xN, then a transform

W for dimension reduction of Xi would perform as

follows
Yi ¼ WTXi; ð13Þ

where Yi is the representation after dimension reduc-

tion. Among the developed techniques are two repre-

sentative algorithms: two-dimensional principal

component analysis (2D-PCA) [13] and two-dimen-

sional linear discriminant analysis (2D-LDA) [14]. The

vector-based PCA and LDA are also referred to as the

1D-PCA and 1D-LDA respectively.

The main difference between 2D-PCA and 1D-PCA

as well as between 2D-LDA and 1D-LDA lies in their

different means of covariance matrix estimation. In

two-dimensional linear reduction techniques, the co-

variance matrices are calculated directly based on data

represented in matrix form. Apart from this, the main
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ideas of 2D-PCA and 2D-LDA are almost similar to

those of 1D-PCA and 1D-LDA respectively. More spe-

cifically, 2D-PCA learns the optimal transform via the

following criterion

W2d
opt ¼ arg max

WTW¼I
traceðWTC2d

t WÞ; ð14Þ

where

C2d
t ¼ 1

N

XN
i¼1

ðXi � UÞðXi � UÞT ; U ¼ 1

N

XN
i¼1

Xi:

For 2D-LDA, the criterion is modified in a similar

manner as follows:

W2d
opt ¼ argmax

W

traceðWTS2db WÞ
traceðWTS2dw WÞ ; ð15Þ

where

S2dw ¼ 1

N

XL

k¼1

X
Xi2Ck

ðXi � UkÞðXi � UkÞT ;

Uk ¼ 1

Nk

X
Xi2Ck

Xi:

S2db ¼
XL

k¼1

Nk

N
ðUk � UÞðUk � UÞT :

The above 2D-PCA and 2D-LDA are unilateral,

which means only one transform matrix multiplied

on one side of the data matrix is available. To overcome

this limitation, there are generalizations such as bilat-

eral 2D-PCA [15] and bilateral 2D-LDA [16], which

learn transform matrices Wl and Wr on both sides of

the data matrix and perform dimension reduction for

data Xi as follows

Yi ¼ WT
l XiWr : ð16Þ

However, it would be difficult to obtain a closed solu-

tion for bilateral techniques, and alternating

optimization methods are used for finding a locally

optimized solution.

In general, two-dimensional linear dimension re-

duction techniques gain lower cost of computation,

and 2D-LDA in particular avoids the small sample

size problem. However, it is cannot be definitely said

that two-dimensional techniques are better. An in-

sightful analysis and extensive comparisons between

2D-LDA and 1D-LDA have been made by [17]. Besides

the theoretical comparisons, Zheng et al. noted that
2D-LDA is not always better than 1D-LDA when the

number of training samples for each class or the num-

ber of extracted features is small.
Summary

Linear dimension reduction is an important step for

processing of biometric data. It is equal to extraction

of a set of linear feature vectors, which span a lower-

dimensional subspace. Linear techniques for finding

the most robust, informative and discriminative

information are fundamental technologies in pattern

recognition. Besides, the development of new linear

techniques for large scale problems in biometric learning

is an important topic.
Related Entries

▶ Feature Extraction

▶Kernel Methods

▶ LDA (Linear Discriminant Analysis)

▶Manifold Learning

▶PCA (Principal Component Analysis)
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Linear Feature Extraction
▶ Linear Dimension Reduction
Linearly Symmetric Image
An image described by f(x, y) is linearly symmetric if its

isocurves have a common direction, i.e., there exists a

1D function h(t) such that f(x, y) = h(kxx + kyy) for a

certain (constant) direction vector k = (kx, ky)T.

▶ Fingerprint Features
Lip Movement Recognition

PETAR S. ALEKSIC

Google Inc., New York, NY, USA
Synonyms

Audio–visual-dynamic speaker recognition; Visual-

dynamic speaker recognition
Definition

Lip movement recognition is a speaker recognition

technique, where the identity of a speaker is deter-

mined/verified by exploiting information contained in

dynamics of changes of visual features extracted from

the mouth region. The visual features usually consist of

appropriate representations of the mouth appearance

and/or shape. This dynamic visual information can

also be used in addition to the acoustic information

in order to improve the performance of audio-only

speaker recognition systems and increase their resil-

ience to spoofing, therefore giving rise to audio–visual-

dynamic speaker recognition systems.
Introduction

Speech contains information about identity, emotion,

location, as well as linguistic information, and plays a

significant role in the development of human computer

interaction (HCI) systems, including speaker recogni-

tion systems. However, audio-only systems can per-

form poorly even at typical acoustic background

signal-to-noise ratio levels (�10 to 20 dB). In addition,

they can be sensitive to microphone types (desktop,

telephone, etc.), acoustic environment (car, plane,

factory, babble, etc.), channel noise (telephone lines,

VoIP, etc.), or complexity of the scenario (speech under

stress, Lombard speech, whispered speech).

Similarly, the visual modality can be exploited to

improve HCI [1, 2]. Visual facial features extracted

from the mouth region are both correlated to the

produced audio signal [3] and also contain comple-

mentary information to it [4]. Lip movement recogni-

tion systems, also known as visual-dynamic speaker
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recognition systems, exploit information contained in

dynamics of changes of visual features extracted from

video sequences of themouth area (see Fig. 1). Although

speaker recognition systems that utilize only visual-

dynamic information can achieve high recognition

rates, visual-dynamic information is typically utilized

together with acoustic information to improve speaker

recognition performance, resulting in audio–visual-

dynamic speaker recognition systems (see Fig. 1).

There is a number of audio–visual fusion techniques

[5], that combine audio and visual information to

achieve higher recognition performance than both

audio-only and visual-only systems. The use of visual

information improves speaker recognition perfor-

mance even in noise-free environments [5, 6]. The

potential for such improvements is even greater in

acoustically noisy environments, since visual features

are typically much less affected by acoustic noise than

the acoustic features. In addition, audio-only, as well as

static-image-based (face recognition) person recogni-

tion systems are vulnerable to impostor attacks (spoof-

ing), if the impostor possesses a photograph and/or

speech recordings of the client. However, it is signifi-

cantly more difficult for an impostor to impersonate

both acoustic and dynamical-visual (lip movements)

information simultaneously. The main advantage of
Lip Movement Recognition. Figure 2 Block diagram of a vis

Lip Movement Recognition. Figure 1 Speaker recognition s
audio–visual-dynamic speaker recognition systems

lies in their robustness, since each modality can pro-

vide independent and complementary information

and therefore prevent performance degradation due

to the noise present in one or both of the modalities,

as well as increase resilience to spoofing. Another ad-

vantage of audio–visual speaker recognition systems is

that they use unobtrusive and low-cost methods for

extracting biometric features, thus enabling natural

speaker recognition and reducing inconvenience.
Operation of a Lip-Movement
Recognition System

The block diagram of a visual-dynamic speaker recog-

nition system is shown in Fig. 2. It consists of three

main blocks, corresponding to preprocessing, visual

feature extraction, and classification phases.

In the preprocessing phase, detection and tracking of

the face and the important facial features in the input

video are performed. These tasks represent challenging

problems, especially in cases where the background,

head pose, and lighting are varying [7]. The most com-

monly used face detection techniques use statistical

modeling of the face appearance to obtain a classification
ual-dynamic speaker recognition system.

ystems.
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of image regions into face and non face classes. These

regions are typically represented as vectors of grayscale

or color image pixel intensities. They are often projected

onto lower dimensional spaces, and are defined over a

number of possible locations, scales, and orientations in

the video frame. One or more techniques, such as artifi-

cial neural networks (ANNs), support vector machines

(SVMs), Gaussian mixture models (GMMs), clustering

algorithms, and linear discriminants, are usually utilized

to classify these regions. Typically, face detection goes

hand-in-hand with tracking in which the temporal cor-

relation is taken into account.

After successful face detection, facial features, such as

mouth corners, eyes, nostrils, and chin, are detected by

utilizing prior knowledge of their relative position on the

face to simplify the search. If color information is avail-

able, it can be utilized to detect certain facial features

(especially lips). Subsequently, the mouth region-of-

interest (ROI), containing useful visual information is

extracted. The ROI is typically a rectangle containing

the mouth, possibly including larger parts of the lower

face, such as the jaw and cheeks (see Fig. 3). The nor-

malization is usually performed with respect to head-

pose information and lighting. The ROI can also be

extended into a three-dimensional rectangle, contain-

ing adjacent frame ROIs, thus capturing dynamic

visual information.

In the visual feature extraction phase, relevant visual

features from the ROI are extracted. Investigating choice

of visual features for speaker recognition is a relatively
Lip Movement Recognition. Figure 3 Various visual facial fe
new research topic. The various sets of the choice facial

features proposed in the literature are generally grouped

into three categories [8]: (1) appearance-based features;

(2) shape-based features; and (3) features that are a

combination of both appearance and shape features

[5]. The appearance-based visual features are extracted

from the ROI using image transforms, such as princi-

pal component analysis (PCA,) generating ‘‘eigenlips’’

[9], the discrete cosine transform (DCT) [10], the

discrete wavelet transform (DWT) [10], linear discrim-

inant analysis (LDA) [2, 5, 11], Fisher linear discrimi-

nant (FLD), etc. (see Fig. 3). These transforms are

applied on a feature vector, created by ordering the

grayscale pixel values inside the ROI, and are com-

monly applied in series to cope with the ‘‘curse of

dimensionality’’ problem.

Shape-based visual mouth features are divided into

geometric, parametric, and statistical (see Fig. 3). With

shape-based features it is assumed that most of the

information is contained in the shape of the speaker’s

lips [5, 12]. Hence, such features achieve a compact

representation of mouth images using low-dimen-

sional vectors. Geometric features, such as the height,

width, perimeter of the mouth, etc., are meaningful to

humans and can be readily extracted from the mouth

images. Alternatively, model-based visual features are

typically obtained in conjunction with a parametric or

statistical facial feature extraction algorithm. With

model-based approaches, the model parameters are

directly used as visual features [5, 12]. Examples of
atures divided into appearance- and shape-based features.
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statistical models are active shape and active appear-

ance models [13].

The combination of appearance- and shape-based

visual features has also been utilized in expectation of

improving the performance of the recognition system,

since they contain respectively low- and high-

level information about the person’s lip movements.

Appearance- and shape-based features are usually just

concatenated, or a single model of face shape and

appearance is created [13]. The dynamics of the

changes of visual features are usually captured by aug-

menting the visual feature vector by its first- and

second-order time derivatives, computed over a short

temporal window centered at the current video frame.

Finally, in the classification phase, a number of

classifiers can be used to model prior knowledge of

how the visual features are generated by each speaker.

They are usually statistical in nature and utilize ANNs,

SVMs, GMMs, HMMs, etc. The parameters of the

prior model are estimated during training. During

testing, based on the trained model the posterior prob-

ability is maximized, and identification/verification

decision is made.
Summary

Lip movement recognition and audio–visual-dynamic

speaker recognition are speaker recognition technolo-

gies that are user-friendly, low-cost, and resilient to

spoofing. There are many biometric applications,

such as, sport venue entrance check, access to desktop,

building access, etc., in which it is very important to

use unobtrusive methods for extracting biometric fea-

tures, thus enabling natural person recognition and

reducing inconvenience. Low cost of audio and video

biometric sensors and the ease of acquiring audio and

video signals (even without assistance from the client),

makes biometric technology more socially acceptable

and accelerates its integration into every day life.
Related Entries

▶ Face Recognition

▶ Face Tracking

▶Multibiometrics

▶Multibiometrics and Data Fusion
▶Multimodal Systems

▶ Speaker Matching

▶ Session Effects on Speaker Modeling

▶ Speaker Recognition, Overview

▶ Speech Analysis

▶ Speech Production

▶ Spoofing
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Lip-Radiation Effect
The lip-radiation effect corresponds to changing the

volume velocity waveform at the lips to a speech pressure

signal in a free field at a certain distance from the speaker.

▶ Speech Production
Liquid Crystal Displays (LCD)
Liquid crystal display (LCD) is a digital display that

uses liquid crystal cells whose reflectivity varies accord-

ing to the voltage applied to them. Liquid crystal is a

substance that flows like liquid but maintains some of

the ordered structure characteristic of the crystals.

▶Digitizing Tablet
Liveness Detection
▶ Fingerprint Fake Detection

▶ Liveness Iris
Liveness Assurance in Face
Authentication

MICHAEL WAGNER, GIRIJA CHETTY

School of Information Sciences, University of

Canberra, Australia
Synonyms

Face authentication; Face recognition; Face verification
Definition

The process of verifying whether the face image pre-

sented to an authentication system is real (i.e., alive),

or whether it is reproduced or synthetic, and thus
fraudulent. When a face authentication system is to

recognize the face of a person by means of an electronic

camera and associated image recognition software, it is

important to be sure that the person seeking the au-

thentication actually presents his or her face to the

camera at the time and place of the authentication

request. The face is presented live as on live television

as distinct from a movie or cartoon programme. In

contrast, an impostor could try to present a photo-

graph, or a video recording, of a legitimate client to the

camera in order to be falsely authenticated by the

system as that client. That kind of threat to authenti-

cation systems is known generally as▶ replay attack. In

turn, liveness assurance uses a range of measures to

reduce the vulnerability of face authentication systems

to the threats of replay attack.
Introduction

The primary design objective for a face recognition

system is its ability to distinguish, as clearly as possible,

between different persons on the basis of their facial

images. As is described in detail in sections ▶ Face

Recognition, Overview, a good face recognition

system utilizes a suitable feature set, employs sophisti-

cated pattern recognition algorithms and sets decision

thresholds appropriate for the specific application

context. Nevertheless, current face recognition tech-

nology is vulnerable on several fronts: on one hand,

different persons like twins, especially identical twins,

other siblings, parents and children can have quite

similar facial appearance, while on the other hand the

same person can appear quite dissimilar at different

times owing to facial hair and hairstyle, make-up,

cosmetic surgery, eye glasses, and even just due to

their physical or emotional state. Figure 1 shows an

example of the faces of two identical twins being almost

indistinguishable and Fig. 2, in contrast, shows the

large difference between two images of the same person

who changed his facial appearance drastically. Face

recognition also has robustness issues unless environ-

ment variables such as lighting of the face and pose

with respect to the camera are controlled meticulously.

In addition, face authentication systems are vulner-

able to impostors who present a photograph of a

legitimate client to the system camera and may be

falsely accepted as that client by the system [1]. Gener-

ally, such an attack on a biometric authentication



Liveness Assurance in Face Authentication. Figure 2 Dissimilarity of two facial images of the same person

(downloaded from http://news.bbc.co.uk).

Liveness Assurance in Face Authentication. Figure 1 Similarity of the facial images of two different persons

(downloaded from http://www.mary-kateandashley.com).
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system is known as a replay attack. Replay attacks can

be carried out by presenting a printed photograph to

the system camera or by holding a computer screen

showing a photo or video recording in front of the

camera. However, replay attacks are also possible by
injecting a suitable recorded signal or data file at other

points within the authentication system. All replay

attacks have in common that, at the time of the au-

thentication they play back to the system a signal that

was recorded from the client at an earlier time.

http://news.bbc.co.uk
http://www.mary-kateandashley.com
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Closely related to the replay attack is another form

of attack on a face authentication system, namely

the ▶ synthesis attack. A synthesis attack does not use

a pre-recorded signal, such as a photograph or video of

a client, directly. Instead, it uses known client data to

build a client model, for example a three-dimensional

shape and texture model of the client’s head. From

such a model, entirely artificial photographs or video

sequences with or without speech sounds can be synthe-

sized, which can closely resemble the actual client.
Replay Attack

The different points at which a face recognition system

is vulnerable to replay attacks are shown in Fig. 3.

An attacker can present a photograph or play back a

video of the face of a true client to the sensor, or

electronic camera, of the authentication system as

shown in Fig. 3(a). This point is the most vulnerable

in the authentication system because in a fully auto-

mated system, the possibility of presenting a photograph

is always available to an attacker unless the physical

space in front of the camera is supervised by a human

observer or by a second biometric modality in addition

to the facial image camera. If an attacker can gain access

to the inside of the camera or to the connection between

the camera and the back end of the system, as shown as

in Fig. 3(b), the attacker does not need to ‘‘show’’ a

physical photograph or video to the camera, but can

inject a suitable electronic signal that corresponds to the

facial image of the client into the system directly.
Liveness Assurance in Face Authentication. Figure 3 Poten

(a) replay or synthesize the client facial image into the input

image into vulnerable system-internal points; (c) override det

(d) override the client at vulnerable system-internal points; (e

system-internal points.
Since a face authentication systemwill invariably be

implemented as software running on a computer or

network of computers, such a system would be open to

the same threats as any other software, particularly

if it is connected to the Internet. The vulnerabilities

of computer systems to a range of threats, including

viruses, worms, Trojan Horses, or even more simply,

the disclosure or easy guess of passwords, are

well known and any biometric system is subject to

those same threats. Accordingly, if an attacker can

gain access to the face authentication system at or

beyond the feature extraction stage, as shown as in

Fig. 3c, the attacker can bypass the input of a facial

image altogether and present the system with the

fake features of a client face. An attacker who is

able to access the stored client models of the system,

shown in Fig. 3d, will achieve the ultimate identity

theft by replacing the model of a real client with the

model of an impostor. This will have the effect that

forthwith the impostor will be falsely accepted by the

system as the client since the impostors face will,

of course, now be compared with the impostor’s own

facial model, which has been substituted for the model

of the real client.

The ultimate success for an attack of the face

authentication system lies in the attacker being able

to access the Comparison Module of the system, as

shown in Fig. 3e, since a breach of the system at that

point will enable the attacker to override the system

with his own accept or reject decision irrespective

of the face shown to the camera or the client model

that the face is compared with.
tial points of vulnerability of a face authentication system:

sensor; (b) insert the replayed or synthesized client facial

ected features at vulnerable system-internal points;

) override the accept/reject decision at vulnerable
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Liveness Assurance for Face
Authentication: Visual Sensors Only

Additional Infrared or Ultraviolet Sensors

Depending on the nature of the replay attack, different

methods of liveness assurance can be used. A still

photograph or a video presented to the system camera

as a paper print or on a computer screen will always

reflect the spectral sensitivity of the recording device.

Therefore, a system camera, which has a different spec-

tral sensitivity from that of an ordinary camera, for

example extending into either the infrared or ultravio-

let range of the spectrum, is able to distinguish a live

face from a photo or video recorded with an ordinary

camera. An infrared or ultraviolet camera can also be

employed as a secondary input device in addition to an

ordinary-spectrum camera [2]. Such secondary sen-

sors, which, for example, could show the temperature

profile of the face or the vein pattern underneath the

skin, are excellent liveness detectors, provided that

the training of the client models is undertaken with

the same sensor arrangement that is later used for

client authentication. However, the disadvantage of

such a sensor arrangement is that infrared and ultra-

violet sensors are expensive. Moreover, such sensors

cannot be used where the authentication system has

to rely on ordinary cameras such as webcams or

mobile phone cameras in a distributed authentication

system.
Detection of 3D Head Movement

Another method of distinguishing a live face from a

photograph or video is to ascertain that the face as it is

presented to the camera moves in a manner consistent

with the three-dimensional shape of the human head.

A rotation of a real human head in front of a camera

will reveal parts of the head that were obscured prior to

the rotation, while at the same time obscuring other

parts that were previously visible. This effect distin-

guishes the rotation of a real human head from the

rotation of a photograph or image on a computer

screen. More generally, the positions of facial ‘‘land-

marks,’’ such as pupils, nose tip, or mouth corners of a

three-dimensional head – and hence the distances

between such landmarks – will follow the rules of

three-dimensional trigonometry and as such can
be distinguished clearly from rotations of a two-

dimensional photograph or computer screen.

The detection of a three-dimensional head can be

achieved either by utilising a stereo camera – or several

cameras looking at the head from different directions –

or by taking a sequence of images of the moving

head through a single camera. In the first case, the

presentation of a two-dimensional photograph or

computer screen is immediately obvious, while in

the second case the system can either make use

of inadvertent small rotations of the client’s head or

explicitly ask clients to rotate their heads in a pre-

scribed manner.

An example of a system, which uses an image

sequence collected by a single camera in order to detect

three-dimensional head movements, is described by

Kollreider et al. [3]. The system is based on the obser-

vation that the two-dimensional image of a head ro-

tating around its vertical axis shows significant lateral

movement in the centre of the face while the ears,

forehead, and chin move mostly in directions perpen-

dicular to the projection. Optical flow estimation

▶ Face Recognition, 3D-Based and face part detection

are used to measure and compare the movements of

the nose and the ears, respectively, across an image

sequence of a rotating head. If the lateral movement

of the nose over the time span of the image sequence

is larger than the lateral movement of the ears, it is

assumed that a real head is rotating in three dimen-

sions rather than a two-dimensional image being

turned in front of the camera. By an appropriate

threshold on the difference of the horizontal pixel

velocities between the nose region and the ear

regions, video sequences of a three-dimensional rotat-

ing human head are distinguished from those of a

two-dimensional rotated photograph. Figure 4a

shows three frames of a head rotation sequence, and

Fig . 4(b) shows the corresponding optical flow

diagram.
Detection of Facial Micro-Movement

Another possibility to distinguish a live face from a

photograph is based on the assumption that an image

sequence of a live face will invariably show some varia-

tion of facial features. This is obviously the case when

the person is speaking and there is facial variation,

mainly in the mouth region, which corresponds to



Liveness Assurance in Face Authentication. Figure 5 (a)

Five consecutive video frames of eye regions from still

photos; (b) five consecutive video frames of eye regions

from live faces. Pixels are 1-bit quantized to black or white

([4] Courtesy World Academy of Science, Engineering

and Technology.)

Liveness Assurance in Face Authentication. Figure 4 (a) Image sequence of rotating head; (b) horizontal optical

flow magnitude showing higher pixel velocities (white) for the central area and lower pixel velocities for the peripheral

areas of the face. ([3] � 2005 IEEE.)
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the speech sounds being produced. Under an assump-

tion that a person will always exhibit some eye move-

ment over time, it is possible to distinguish a live face

from a photograph by comparing the eye regions be-

tween consecutive frames of a video sequence. A sys-

tem, which utilizes inadvertent eye movements to

distinguish between a live face and a photograph is

proposed by Jee et al. [4]. The system uses five sequen-

tial face images, then detects the centre points of both

eyes in order to extract the two eye regions. For each

of the eye regions, the 20 � 10 pixels of that region are

1-bit quantized to be either black or white and

Hamming distances are calculated between the five con-

secutive images of each eye region. Figure 5(a) shows the

sequences of five black and white frames for the eye

regions of still photographs, while Fig. 5(b) shows

frame sequences of the eye regions of live faces.

The figure clearly shows a larger variation of the eye

regions of the live faces than of the still photos. Accord-

ing to Jee et al. [4], live images can be distinguished

from photographs because the average Hamming dis-

tance between the five images of a sequence is always

larger for a live face than for a still photograph pre-

sented to the camera.
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Challenge-Response Paradigm

In addition, it is possible for the authentication system

to issue a ‘‘challenge’’ to the persons seeking authenti-

cation by asking them to perform some specific pre-

scribed movement, for example ‘‘tilt head to the left’’

or ‘‘blink with your right eye’’ as proposed in the Facial

Liveness Assessment System [2]. Such system requests

are akin to the prompted-text paradigm in speaker

recognition (▶ Liveness Assurance in Voice Authenti-

cation). They provide a good defence against replay

attack, but on the system side it is necessary to design

and implement an automatic mechanism, which is able

to reliably confirm the correctness of the client’s re-

sponse to the system prompt.
L

Vulnerability to Replayed Video
Recordings

The above liveness assurance methods provide protec-

tion against forms of replay attack that present a

recorded image of a client’s face to the system camera.

If the attacker uses printed photographs or photo-

graphs displayed on a computer screen, particularly

on the display of an easily portable notebook computer,

all of these methods provide good distinction between

a replay attack and a client face that is presented live to

the camera. However, an attacker who is able to pres-

ent a client photograph to the system on a notebook

screen, is also likely to be capable of replaying a

recorded video sequence on such a notebook. In this

case, the single-camera 3D detection method will fail

to detect a replay attack because the recorded video

sequence has the same three-dimensional rotation

characteristic as a human head rotated live in front of

the system camera. Similarly, the detection of micro-

movements would fail because the video recording

contains the same facial micro-movements of the

lip and eye regions as a human face presented live

to the camera. The only system architecture that is

capable – without the presence of a human supervisor –

of distinguishing between a two-dimensional video

presentation and a three-dimensional live presentation

of a human face, is one that has a three-dimensional

sensor arrangement with a set of cameras surrounding

the head of the client and/or obtaining a wide-angle

view of the scene, and as such is able to ‘‘look behind’’
a two-dimensional printed photograph or notebook

computer held before the cameras.
Multimodal Liveness Assurance

While it is feasible to deceive a single-camera system by

replaying a video recording on a notebook, held in

front of the camera, it is far more difficult to use the

same notebook to deceive an acoustic speaker recogni-

tion system by replaying a sound recording through

the notebook’s in-built speakers or another small loud-

speaker. From the point of view of attackers, there are

several obstacles: firstly they must not be detected

holding a computer screen in front of the camera;

secondly they must provide a high-quality loud-

speaker, which is usually bulky and not normally

found in notebook computers; and thirdly they have

to play back a recorded video with perfectly synchro-

nous facial images and speech sounds. Therefore, a

multimodal approach to liveness assurance has been

proposed, which combines the recognition of a client’s

face with the recognition of the client’s voice [5]. In a

combined face-voice authentication system it is possi-

ble to verify not just that there are some – random –

micro-movements in the lip area of the face, but that

those lip movements correspond precisely to the

speech sounds that are heard simultaneously by the

system microphone. For example, the labial consonant

/p/ in ‘‘Paris’’ would correspond to a closing followed

by an opening of the lips, while the rounded vowels /u/

in ‘‘Toulouse’’ would correspond to a rounded lip

configuration.

More generally, the assurance of liveness in a bi-

modal face-voice authentication system is based on the

fact that the articulator movements, mainly of the lips,

but also of the tip of the tongue, jaw, and cheeks are

mostly observable and correspond closely to the par-

ticular speech sounds produced. Therefore it is possi-

ble when observing a bimodal audio-video signal of

the speaking face to ascertain whether the facial dy-

namics and the sequence of speech sounds are mutu-

ally compatible and synchronous. Human observers

are finely tuned to the synchrony of acoustic and visual

signal and it is quite disconcerting when one or the

other is delayed or there is no apparent match, for

example, with an out-of-sync television signal or with

a static facial image when the speaker is heard saying
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something, but the lips are not seen to be moving.

In the field of audiovisual speech recognition, the

term ‘‘viseme’’ has been coined as the visual counter-

part of the ‘‘phoneme,’’ which denotes a single speech

sound ▶ Speaker Recognition, Overview. This is illu-

strated in Fig. 6, which shows a set of corresponding

phonemes and visemes of English. The visemes /m/,

/u/, and /d/ (as in the word ‘‘mood’’), for example, first

show the speaker’s lips spread and closed (for /m/),

then protruded and rounded (for /u/), and finally

spread and slightly open (for /d/). It is therefore possi-

ble to detect whether corresponding sequences of

visemes and phonemes of an utterance are observed

in a bimodal audio-video signal and whether the
Liveness Assurance in Face Authentication. Figure 6

Visemes and their corresponding phones.
observed viseme and phoneme sequences are

synchronous.

In order for the synchrony of the audio and video

streams to be ascertained, the two modalities must be

combined appropriately. Multimodal authentication

systems employ different paradigms to combine, or

‘‘fuse,’’ information from the different modalities. Mo-

dality fusion can happen at different stages of the

authentication process. Fusing the features of the dif-

ferent channels immediately after the feature extrac-

tion phase is known as ‘‘feature fusion’’ or ‘‘early

fusion.’’ In this paradigm, all comparisons between

the unknown sample and the client model as well as

the decision making are based on the combined feature

vectors. The other possibility is to fuse information

from the two modalities after independent compari-

sons have been made for each modality.

For liveness assurance by means of bimodal face-

voice authentication, it is necessary to apply an early

fusion stratagem, i.e., to fuse the two modalities at the

feature level [6]. If the two modalities were to be fused

late, i.e., at the score or decision level, analysis of the

video of the speaking face would yield one decision on

the speaker’s identity and analysis of the audio of the

utterance would yield another decision on the speaker’s

identity. The two processes would run independently of

each other with no connection between them that

would allow the checking for the correspondence and

synchrony of visemes and phonemes [7].

Therefore, the features that are extracted from the

audio signal on a frame-by-frame basis – usually at an

audio frame rate of about 40–100 frames per second –

must be combined with the features that are extracted

from the video signal – usually at the video frame rate of

25 or 30 frames per second. An example of how the

differing frame rates for the audio and video signals can

be accommodated is shown in Fig. 7, where the audio

frame rate is 50 frames per second, the video frame rate

is 25 frames per second, and the combined audiovisual

feature vector comprises the audio feature vectors of

two consecutive audio frames, combined with the sin-

gle video vector of the synchronous video frame.

The combined audiovisual feature vectors will then

reveal whether the audio and video streams are syn-

chronous, for example when the combined audiovisual

feature vectors contain the sequence of visemes /m/,

/u/, and /d/ and likewise the sequence of phonemes /m/,

/u/, and /d/. In contrast, if one of the combined audio-

visual feature vectors were to contain the visual infor-

mation for the viseme /m/ and at the same time the
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Feature fusion of two consecutive 20 ms audio feature

vectors with the corresponding 40 ms video feature

vector. Before fusion, the audio vectors have been reduced

to 8 dimensions each, and the video vector has been

reduced to 20 dimensions. The combined feature vector

has 36 dimensions [5].
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audio information for the phoneme /u/, that combined

feature vector would indicate that the audio and video

streams do not represent a corresponding synchronous

representation of any speech sound.

The proper sequencing of visemes and phonemes is

usually ascertained by representing the audiovisual

speech by Hidden Markov Models (HMM), which

establish the likelihoods of the different combined

audiovisual vectors and their sequences over time [8].

It is therefore possible to ascertain whether the audio

and video components of a combined audio-video

stream represent a likely live utterance. Therefore, an

attacker who attempts to impersonate a target speaker

by means of a recorded speech utterance and a still

photograph of the target speaker will be thwarted

because the system will recognize the failure of the

face to form the corresponding visemes that should

be observed synchronously with the phonemes of the

utterance. Similarly, such a system will thwart an attack

by an audiovisual speech synthesis system, unless the

synthesizer can generate the synthetic face and the

synthetic voice in nearly perfect synchrony.

The combination of face authentication with voice

authentication has a number of advantages beyond the

assurance of the liveness of the face-voice samples.

Firstly, the method is well supported by telecommuni-

cation devices, which are increasingly equipped with

image and sound sensors that are capable of delivering
facial images and voice samples suitable for remote

client authentication. Secondly, the combination of

two largely – but not completely! – independent

biometrics has an advantage in terms of error rates

compared with either modality employed singly.

And thirdly, the utilisation of combined image and

sound signals has a distinct advantage in robustness

when the environmental conditions are adverse to

either the face recognition system or the speaker rec-

ognition system, for example when lighting conditions

are not conducive to successful face recognition, or

when a passing train makes speaker recognition all

but impossible.
Related Entries
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Synonyms

One-to-One Speaker recognition; Speaker verification;

Voice authentication; Voice verification
Definition

The process of verifying whether the voice sample

presented to an authentication system is real (i.e.,

alive), or whether it is replayed or synthetic, and thus

fraudulent. When authentication through a ▶ voice

authentication system is requested, it is important to

be sure that the person seeking the authentication

actually provides the required voice sample at the

time and place of the authentication request. The

voice is presented live like that of a radio presenter

during a live broadcast as distinct from a recorded

audio tape. In contrast, an impostor who seeks authen-

tication fraudulently could try to play an audio record-

ing of a legitimate client or synthesized speech that is

manufactured to resemble the speech of a legitimate

client. Such threats to the system are known as▶ replay

attack and ▶ synthesis attack, respectively. ▶ Liveness

assurance uses a range of measures to reduce the vul-

nerability of a voice authentication system to the

threats of replay and synthesis attack.
Liveness Assurance in Voice Authentication. Figure 1

Prerecording of client voice either for later replay or for

generating a client model, which can be used later to

synthesize the client’s voice.
Introduction

The security of a voice authentication system depends

on several factors ▶Voice Authentication. Primarily it

is important that the system is capable of distinguish-

ing people by their voices, so that a clients who are

enrolled in, say, a telephone banking system are admit-

ted to their account reliably, while an ‘‘impostor’’ who

attempts to access the same account is rejected equally

reliably. A good voice authentication system will

thwart an impostor irrespective of whether the access

to the other person’s account is inadvertent or deliber-

ate and irrespective of whether the impostors use their
natural voice or try to improve their chances by mim-

icking the voice of the client.

However, one vulnerability common to all voice

authentication systems is the possibility that attackers,

instead of speaking to the system directly and with

their own voice, fraudulently use the recorded voice

of a true client in order to be admitted by the system.

In principle, such a ‘‘replay attack’’ can be carried out

by means of any sound recording device, analogue or

digital, through which the recorded voice of the client

is played back to the system, say, to a microphone at a

system access point or remotely into a telephone hand-

set connected to the authentication system. The secu-

rity issue in this case is that the voice used for

authentication is not the ‘‘live’’ voice of the person,

who is seeking access to the system, at the time and

place of the access request.

A technically sophisticated attacker may also use suit-

able computer hardware and software to create a simile of

the client’s voice by means of speech synthesis without

having to record specific voice samples of the client. Such

an attack will be referred to as a ‘‘synthesis attack’’ in the

following. Figure 1 shows how replayed or synthesized

voice signals can be substituted for the live voice of a

client at the sensor input of the authentication system.
Replay Attack

Since voice authentication is always implemented

within the context of a computer system, it is



Liveness Assurance in Voice Authentication. Figure 2 Potential points of vulnerability of a voice biometric

authentication system: (a) replay or synthesize the client voice into the input sensor; (b) insert the replayed or synthesized

client voice into vulnerable system-internal points; (c) override detected features at vulnerable system-internal points;

(d) override the client at vulnerable system-internal points; (e) override the accept/reject decision at vulnerable

system-internal points.
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important to consider the vulnerabilities of the

entire system generally (▶ Security and Liveness,

Overview). Figure 2 shows the structure of a typical

voice authentication system. During the enrolment or

training phase, the client’s voice is captured by the

microphone, salient features are extracted from the

speech signals and finally a statistical ‘‘client model’’

or template is computed, which represents the client-

specific voice characteristics according to the speech

data collected during enrolment. During the opera-

tional or testing phase when the system needs to

decide whether a speech sample belongs to the

client, the signal is also captured by the sensor and

features are extracted in the same way as they are in the

enrolment phase. Then, the features of the unknown

speech sample are compared statistically with the

model of the client that was established during enrol-

ment. Depending on how close the unknown sample

is to the client model, the system will issue either an

‘‘accept’’ or a ‘‘reject’’ decision: the person providing

the voice sample is either authenticated or considered

an impostor.

Figure 2 shows various ways in which attackers

could manipulate the outcome of the authentication,

if any of the software or hardware components of an

insecure computer system could be accessed. If it were

possible, for example, to manipulate the database of

client models, attackers could potentially replace the

voice model of a client with their own voice model and

subsequently gain fraudulent access to the system by

having substituted their own identity for that of the

client. Or, even more simply, if it were possible to
manipulate the decision module of the system, an

attacker could essentially bypass the entire authentica-

tion process and manufacture an ‘‘accept’’ decision of

the system without having provided any matching

voice data. Such considerations fall into the domain

of the system engineer who needs to ensure, much as

with any other secure system, that there are no bugs,

trap doors, or entry points for Trojan Horses, which

could allow an attacker to manipulate or bypass the

authentication mechanisms of the system. Since such

vulnerabilities are not specific to voice authentication

systems, they are not dealt with in this essay (▶Bio-

metric Vulnerabilities: Overview).

The remainder of this article discusses how a secure

voice authentication system can provide the assurance

that the voice used for an access request to the system is

‘‘live’’ at the time and place of the access request and is

neither a playback of a voice recording nor a synthe-

sized simile of a client voice. Hence, liveness assurance

is an essential aspect of the security of any voice au-

thentication system.
Liveness Assurance for Different
Authentication Protocols

Voice authentication systems operate under different

protocols and assurance of liveness is affected differ-

ently by the various authentication protocols. The three

main protocols used for voice authentication are

text-dependent speaker verification, text-independent

speaker verification, and text-prompted speaker
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verification, as shown in Fig. 3. The earliest authenti-

cation protocol were text-dependent [1]. In this pro-

tocol, the client uses a fixed authentication phrase,

which is repeated several times during enrolment. The

repetitions are necessary so that the system ‘‘learns’’

about the range of pronunciation of the authentication

phrase by the client. Generally, speaker verification

works best if the natural variation of a speaker’s voice

is well captured during enrolment. Hence, ideally, en-

rolment should be distributed over several recording

sessions that may be spread over several days or even

weeks. The same phrase, for example, a sequence of

digits (‘‘three-five-seven-nine’’), or a password or
Liveness Assurance in Voice Authentication. Figure 3 (a) T

the client repeats the authentication phrase several times; (V)

phrase. (b) Text-independent voice authentication: (E) at enro

(V) for verification any utterance can be used by the client. (c

client reads a 2–3-min phonetically rich text; (V) for verificatio

verified both for the correct content and for the client’s voice
passphrase (‘‘Open Sesame’’) is then used again by the

client during the operational phase in order to be

authenticated by the system.

Text-dependent systems have the advantage that

the client model only needs to represent the acoustic

information related to the relatively few speech sounds

of the passphrase. Enrolment, therefore, is shorter

and quicker than for other protocols, which typically

require the representation of the entire collection of

speech sounds that the client could possibly produce.

However, the text-dependent protocol has the distinct

disadvantage that clients will repeat the same phrase

every time while using the system. Consequently, there
ext-dependent voice authentication: (E) at enrolment

for verification the client speaks the same authentication

lment the client reads a 2–3-min phonetically-rich text;

) Text-prompted voice authentication: (E) at enrolment the

n the client is prompted to say a given phrase, which is

characteristics.
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may be ample opportunity for an attacker, especially if

the system microphone is situated in a public area, to

plan and carry out a surreptitious recording of the pass-

phrase, uttered by the client, and to replay the recorded

client passphrase fraudulently in order to be authorized

by the system.

In contrast, text-independent voice authentication

systems [2] will authenticate a client – and reject an

impostor – irrespective of any particular utterance

used during enrolment. Client enrolment for text-

independent systems invariably takes longer than en-

rolment for a text-dependent system and usually

involves a judiciously designed enrolment text, which

contains all, or at least most, of the speech sounds of

the language. This will ensure that the client models,

which are constructed from the enrolment speech data,

will represent to the largest extent possible the idio-

syncrasies of the client when an arbitrary sentence or

other utterance is provided for authentication later.

Text-independent protocols offer the advantage that

authentication can be carried out without the need

for a particular passphrase, for example, as part of an

ordinary interaction between a client and a customer-

service agent or automated call centre agent, as shown

in this fictitious dialog:

Client phones XYZ Bank.

Agent: Good morning, this is XYZ Bank. How can I

help you?

Client: I would like to enquire about my account

balance.

Agent: What is your account number?

Client: It’s 123-4567-89

Agent: Good morning, Ms Applegate, the balance

of your account number 123-4567-89 is $765.43. Is

there anything else. . .?

The example shows a system,which combines speech

recognition with voice authentication. The speech rec-

ognizer understands what the customer wants to know

and recognizes the account number, while the authenti-

cation systems uses the text-independent protocol to

ascertain the identity of the client from the first two

responses the client gives over the telephone. These

responses would not normally have been encountered

by the system during enrolment, but the coverage of the

different speech sounds during enrolment would be

sufficient for the authentication system to verify the

client from the new phrases. The text-independent pro-

tocol offers an attacker the opportunity to record any

client utterances either in the context of the client
using the authentication system or elsewhere, and to

replay the recorded client speech in order to fraudu-

lently achieve authentication by the system.

A more secure variant of the text-independent pro-

tocol is the text-prompted protocol [3]. Enrolment

under this protocol is similar to the text-independent

protocol in that it aims to achieve a comprehensive

coverage of the different possible speech sounds of

a client so that later on any utterance can be used

for client authentication. However, during authenti-

cation the text-prompted protocol asks the user to

say a specific, randomly chosen phrase, for example,

by prompting the user ‘‘please say the number se-

quence ‘two-four-six’’’. When the client repeats the

prompted text, the system uses automatic speech rec-

ognition to verify that the client has spoken the correct

phrase. At the same time it verifies the client’s voice by

means of the text-independent voice authentication

paradigm. The text-prompted protocol makes a replay

attack more difficult because an attacker would

be unlikely to have all possible prompted texts from

the client recorded in advance. However, such

an attack would still be feasible for an attacker with

a digital playback device that could construct the

prompted text at the press of a button. For example,

an attacker who has managed surreptitiously to record

the ten digits ‘‘zero’’ to ‘‘nine’’ from a client – either on

a single occasion or on several separate occasions –

could store those recorded digits on a notebook com-

puter and then combine them to any prompted digit

sequence by simply pressing buttons on the computer.
Synthesis Attack

Even a text-prompted authentication system is vulner-

able to an attacker who uses a text-to-speech (TTS)

synthesizer. A TTS system allows a user to input any

desired text, for example, by means of a computer

keyboard, and to have that text rendered automatically

into a spoken utterance and output through a loud-

speaker or another analog or digital output channel.

The basic principle is that an attacker would program a

TTS synthesizer in such a way that it produces similar

speech patterns as the target speaker. If that is achieved,

the attacker would only need to type the text that is

required or prompted by the authentication system in

order for the TTS synthesizer to play the equivalent

synthetic utterance to the authentication system in the
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voice of the target speaker. In practice, however, cur-

rent state-of-the-art text-to-speech synthesis is not

quite capable of producing such natural sounding

utterances. In other words, synthetic speech produced

by current TTS systems still sounds far from natural

and is easily distinguished from genuine human speech

by the human ear. Does this mean, however, that TTS

speech could not deceive an authentication system

based on automatic speaker recognition? To answer

this question, it needs to be examined how different

speaker recognition systems actually work.

As shown in Table 1, there are three types of speaker

recognition systems that are distinct by the types of

speech patterns each examines in order to determine

the similarity of the unknown speech and the target

speech. The most common type of speaker recognition

system looks at speaker differences at the individual

sound level. A second type of speaker recognition

system examines the sequences of speech sounds,

which form words, and a third type also analyzes

higher-level information such as intonation, choice

of words, choice of sentence structure or even semantic

or pragmatic content of the utterances in question [4].

Speech processing invariably segments a speech

signal into small chunks, or ‘‘frames’’, which corre-

spond in duration roughly to short speech sounds,

say about 10–30 ms. For each frame, features are

extracted from the speech signal, such as a spectrum

or a cepstrum or a mel-frequency cepstrum (MFC) [5].

These extracted features serve as the basis for the

comparison between the unknown speech and the
Liveness Assurance in Voice Authentication. Table 1 Types

Type of speaker
recognition system Training/Enrolment

Recognizes
individual speech
sounds (context-
free)

A set of speech sounds typical for
the target speaker is collected and
becomes the ‘‘model’’ for the target
speaker

E
c
‘‘m

Recognizes
sequences of
speech sounds
(context-sensitive)

In addition to the individual
sounds, the speaker model
represents the sequences of speech
sounds that are typical for the
target speaker

T
w
b
se

Recognizes higher-
level features
(intonation, word
choice, syntax etc.)

In addition to sound sequences, the
speaker model represents words,
sentence structures and intonation
patterns typical for the target
speaker

S
se
si
in
target speech. The first type of speaker recognit-

ion system independently compares the features of

each frame of the unknown speech signal with

the model of the target speaker. This is done indepen-

dently for each frame and without considering the

speech sounds immediately preceding or succeeding

the given frame.

The second type of speaker recognition system

takes into account the likelihood of sequences of speech

sounds, rather than individual speech sounds, when

comparing the unknown speech signal with the model

of the target speaker. For example, the sound sequence

/the/ would be more likely for a speaker of English than

the sound sequence /eth/. The third type of system

takes into account higher-level features, i.e., the varia-

tion of features over time such as the intonation

pattern of a sentence, as it manifests itself through

the functions of loudness and pitch over time. Such

authentication systems typically operate on much lon-

ger passages of speech, for example, to segment a two-

way telephone conversation or the proceedings in a

court of law into the turns belonging to the different

speakers. Figure 4 shows an example of two speakers

pronouncing the same sentence with quite different

intonation.

It is easy to see that a context-free authentication

system is prone to be attacked successfully by a very

simple synthesizer, namely one that produces a few

seconds of only a single speech sound. For example,

an attacker could reproduce a single frame of, say, the

sound ‘‘a’’ of the target speaker and play this frame
of speaker authentication methods

Testing Typical method

ach speech sound is individually
ompared with the target speaker
odel’’

Gaussian
MixtureModel (GMM)

he entire utterance is compared
ith the target speaker model for
oth individual sounds and sound
quences

Hidden Markov Model
(HMM)

imilarity of sounds and sound
quences is combined with
milarity of word sequences and
tonation patterns

Information fusion of
GMM and/or HMM
with higher-level
information sources



Liveness Assurance in Voice Authentication. Figure 4 Two male speakers from the Australian National Database of

Spoken Language (ANDOSL), speaking the same sentence with distinctly different intonation: audio signal, and

power and fundamental frequency (F0) contours. Speaker S017 produced the word John with falling F0, while Speaker

S029 produced the same with rising F0.
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repeatedly for a second or two in order to ‘‘convince’’

an authentication system of this type that the

‘‘aaaaaaa. . .’’ sound represents the natural voice of the

target speaker. This is because each frame is assessed

independently as being similar to the ‘‘a’’ sound of the

target speaker, irrespective of the fact that the sequence

of ‘‘a’’ sounds does not represent a likely speech pattern

of the target voice.

A context-sensitive authentication system, on the

other hand, requires a speech synthesizer to reproduce

entire sound sequences that are sufficiently similar to

sound sequences produced by the target speaker. This

means that the individual sounds, produced by the

synthesizer, must be similar to sounds of the target

speaker and the sound sequences must be structured

in a similar way to those of the target speaker. This is a

proposition that is far more difficult, although not

impossible, to achieve with current-state-of-the-art

speech synthesizers. Furthermore, if the speaker au-

thentication system also considers the intonation pat-

tern and higher-level features such as choice of words

and grammatical constructs, an attacker who tries to

impersonate a target speaker using a TTS synthesizer,

would require a system that is beyond the capabilities

of the technology at the time of writing.
Multimodal Liveness Assurance

The assurance that a voice biometric is delivered live at

the time and place of authentication can be enhanced

considerably by complementing the voice modality

with a second modality. In the simplest case, this

could be the visual modality provided by a human

observer who can assure that the voice biometric is

actually provided by the person seeking authentication

and that person is not using any device to play back a

recorded or synthesized voice sample.

In an automatic voice authentication system, simi-

lar assurance of liveness can be achieved by combining

the voice modality with a face recognition system. Such

a system has a number of advantages. Firstly, the bi-

modal face-voice approach to authentication provides

two largely independent feature sets, which, when

combined appropriately, can be expected to yield bet-

ter authentication than either of the two modalities by

itself. Secondly, the bimodal approach will add robust-

ness to the system when either modality is affected by
difficult environmental conditions. In the case of bi-

modal face-voice authentication, it is particularly use-

ful to fall back on the complementary face recognition

facility when the voice recognition modality breaks

down due to high levels of surrounding noise, compet-

ing speakers or channel variability such as that caused

by weak cell phone reception. In such situations, the

face recognition modality will be able to take over and

hence provide enhanced robustness for the combined

system.

A similar consideration applies, of course, when the

combined face-voice authentication system is viewed

from the perspective of the face recognition modality,

which may equally break down in difficult environ-

mental conditions such as adverse lighting. In this case,

too, the overall robustness of the authentication system

is preserved by the combination of the two modalities

voice and face, each of which is affected differently and

largely independently by environmental factors.

However, the most important advantage of a bi-

modal face-voice authentication system for the assur-

ance of liveness is the fact that the articulator

movements, mainly of the lips, but also of the tip of

the tongue, jaw, and cheeks are mostly observable and

correspond closely to the particular speech sounds

produced. Therefore, it is possible when observing a

bimodal audio-video signal of the speaking face to

ascertain whether the facial dynamics and the sequence

of speech sounds are mutually compatible and

synchronous. To a human observer it is quite discon-

certing when this is not the case, for example, with an

out-of-sync television signal or with a static facial

image when the speaker is heard saying something,

but the lips are not seen to be moving. In the field of

audiovisual speech recognition, the term ‘‘viseme’’ has

been coined as the visual counterpart of the ‘‘▶ pho-

neme’’, which denotes a single speech sound. The

visemes /m/, /u/, and /d/ (as in the word ‘‘mood’’),

for example, first show the speaker’s lips spread and

closed (for /m/), then protruded and rounded (for /u/),

and finally spread and slightly open (for /d/). It is

therefore possible to detect whether the corresponding

sequences of visemes and phonemes of an utterance

are observed in a bimodal audio-video signal and

whether the observed viseme and phoneme sequences

are synchronous.

In order for the synchrony of the audio and video

streams to be ascertained, the two modalities must be

combined appropriately. Multimodal authentication
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Feature fusion of two consecutive 20ms audio feature

vectors with the corresponding 40ms video feature vector.

Before fusion, the audio vectors have been reduced to

8 dimensions each, and the video vector has been reduced

to 20 dimensions. The combined feature vector has

36 dimensions.
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systems employ different paradigms to combine, or

‘‘fuse’’, information from the different modalities. Mo-

dality fusion can happen at different stages of the

authentication process. Fusing the features of the dif-

ferent channels immediately after the feature extrac-

tion phase is known as ‘‘feature fusion’’ or ‘‘early

fusion’’. In this paradigm, all comparisons between

the unknown sample and the client model as well as

the decision making are based on the combined feature

vectors. The other possibility is to fuse information

from the two modalities after independent compari-

sons have been made for each modality. Such para-

digms are known as ▶ score fusion, ▶ decision fusion

or ▶ late fusion.

For liveness assurance by means of bimodal face-

voice authentication, it is necessary to apply an early

fusion stratagem, i.e., to fuse the two modalities at the

feature level [6]. If the two modalities were fused late,

i.e., at the score or decision level, analysis of the video of

the speaking face would yield one decision on the speak-

er’s identity and analysis of the audio of the utterance

would yield another decision on the speaker’s identity.

The two processes would run independently of each

other with no connection between them that would

allow the checking for the correspondence and syn-

chrony of visemes and phonemes [7].

Therefore, the features that are extracted from the

audio signal on a frame-by-frame basis – usually at an

audio frame rate of about 40–100 frames per second –

must be combined with the features that are extracted

from the video signal – usually at the video frame rate

of 25 or 30 frames per second. An example of how the

differing frame rates for the audio and video signals

can be accommodated is shown in Fig. 5, where the

audio frame rate is 50 frames per second, the video frame

rate is 25 frames per second, and the combined audiovi-

sual feature vector comprises the audio feature vectors of

two consecutive audio frames, combined with the single

video vector of the synchronous video frame.

The combined audiovisual feature vectors will then

reveal whether the audio and video streams are synchro-

nous, for example, when the combined audiovisual

feature vectors contain the sequence of visemes /m/,

/u/, and /d/ and likewise the sequence of phonemes

/m/, /u/, and /d/. In contrast, if one of the combined

audiovisual feature vectors were to contain the visual

information for the viseme /m/ and at the same

time the audio information for the phoneme /u/, the

combined feature vector would indicate that the audio
and video streams do not represent a corresponding

synchronous representation of any speech sound.

The proper sequencing of visemes and phonemes

is usually ascertained by representing the audio-

visual speech by Hidden Markov Models (HMM),

which establish the likelihoods of the different com-

bined audiovisual vectors and their sequences over

time [8]. It is therefore possible to ascertain whether

the audio and video components of a combined

audio-video stream represent a likely live utterance.

Therefore, an attacker who attempts to impersonate

a target speaker by means of a recorded speech utter-

ance and a still photograph of the target speaker will

be thwarted because the system will recognize the fail-

ure of the face to form the corresponding visemes that

should be observed synchronously with the phonemes

of the utterance. Similarly, such a system will thwart an

attack by an audiovisual speech synthesis system, un-

less the synthesizer can generate the synthetic face and

the synthetic voice in nearly perfect synchrony.
Related Entries
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▶ Security and Liveness, Overview
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Liveness Detection
Liveness detection is a functionality that determines

whether the presented biometric sample (e.g., finger,

hand, or iris) is originated from a live body. This func-

tionality is considered to be one of the key security

measures that improve the reliability of a biometric sys-

tem because it enables the system to reject artifacts to be

enrolled and ensure that no forged sample is accepted.

▶ Finger Vein Reader
Liveness Detection
In biometric systems, the goal of liveness testing is to

determine if the biometric being captured is an actual

measurement from the authorized, live person who is

present at the time of capture. While biometric systems

may have an excellent performance and improve secu-

rity, previous studies have shown it is not difficult to

spoof biometric devices through fake fingers, high

resolution images or video, contact lenses, etc. Even

though biometric devices use physiologic information

for identification/verification purposes, these measure-

ments rarely indicate liveness. Liveness detection

reduces the risk of spoofing by requiring a liveness

signature in addition to matched biometric informa-

tion. Methods can include medical measurements such

as pulse oximetry, electrocardiogram, or odor. In a few

cases, liveness information is inherent to the biometric

itself, i.e., the biometric cannot be captured unless the

user is live, e.g., electrocardiogram as a biometric.

While liveness algorithm makes spoofing more diffi-

cult, they need to be considered as components of a

biometric system which bring with it performance

characteristics, as well as factors such as ease of use,

collectability, user acceptance, universality, spoof-abil-

ity, permanence, and, in some cases, even uniqueness.

No system is perfect in its ability to prevent spoof-

attacks. However, liveness algorithms can reduce this

vulnerability to minimize the risk of spoofing.

▶Anti-spoofing

▶ Liveness Detection: Fingerprints

▶ Liveness Detection: Iris

▶ Liveness Detection: Fingerprint
Liveness Detection: Fingerprint

STEPHANIE A. C. SCHUCKERS
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Synonyms
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Definition

In biometric systems, the goal of liveness testing is

to determine if the biometric being captured is an

actual measurement from the authorized, live person

who is present at the time of capture. While fingerprint

systems may have an excellent performance and im-

prove security. Previous studies have shown it is not

difficult to make molds of latent fingerprints left

by legitimate users and to create fake fingers made

from Play-Doh, gelatin, and silicone materials to fool

a variety of fingerprint scanners, termed spoofing.

Liveness detection reduces the risk of spoofing by

requiring a liveness signature, in addition to matched

biometric information. Methods can be divided into

hardware and software categories. Hardware methods

include measurements like pulse oximetry, electrocar-

diogram, or odor, while software based measurements

use additional processing of the biometric information

itself to isolate liveness signatures like perspiration and

deformation. While liveness algorithm makes spoofing

more difficult, they need to be considered as compo-

nents of a biometric system, which bring with it per-

formance characteristics along with factors such as

ease of use, collectability, universality, spoof-ability,

permanence, and in some cases, even uniqueness. No

system is perfect in its ability to prevent spoof-attacks.

However, liveness algorithms can reduce this vulnera-

bility to minimize the risk of spoofing.

Fingerprints are graphical ridge-valley patterns from

human fingers. Fingerprint recognition is a widely

used and efficient technique for biometric authentica-

tion. While fingerprint systems may have excellent per-

formance and improve security, previous studies have

shown it is not difficult to make molds of latent finger-

prints left by legitimate users and to create fake fingers

made from Play-Doh, gelatin and silicone materials to

fool a variety of fingerprint scanners [1, 2]. The most

famous of which is the work by Matsumoto and collea-

gues. In the reports, two different techniques were used

to create a mold. The first technique directly used a

subject’s finger to create themold in freemolding plastic,

whereas the second technique involved making a mold

from a latent fingerprint image. Casts were made of

gelatin material and termed ‘gummy fingers’. Verifica-

tion rates of gummyfingers ranged from68 to 100%. For

method of creating a cast from residual fingerprints, all

fingerprint systems were able to enroll the spoof finger

and verifymore than 67%of the attempts. Similar results
have been obtained on subsequent studies with various

materials including silicon, clay, and Play-Doh [1, 2],

and one study which looked at cadaver fingers [2].

Currently, International Biometric Group with spon-

sorship from Financial Services Technology Consor-

tium (FSTC) is hosting an effort to conduct spoof

trials with vendor volunteers called SPOOF 2007.

It should be noted that vulnerability to spoofing is

not assessed as part of the false accept ratio, a typical

assessment measure of biometric devices. A false accept

is when a submitted sample is incorrectly matched to

a template enrolled by another user. This only refers

to a zero-effort attempt, i.e., an unauthorized user

making an attempt with their own biometric to gain

access to a system. If the false accept ratio is kept low,

then the probability of specific user with criminal in-

tent matching another template is very low. The false

accept ratio does not give information on the vulnera-

bility of a system to spoof attacks.

Even though biometric devices use physiologic

information for identification/verification purposes,

these measurements rarely indicate liveness. The goal

of liveness testing is to determine if the biometric being

captured is an actual measurement from the author-

ized, live person who is present at the time of capture.

Overview of liveness approaches are described in

[2–5]. Performance of fingerprint liveness to separate

live and spoof fingers is measured by live false reject

rate and spoof false accept rate. Equal error rate

between these two measures and receiver operating

characteristic curves can also be used as described in

Biometric Security Overview. Marcialis et al., provides

a table which compares datasets used for testing and

performance of liveness approaches.

Methods to measure liveness fall into several cate-

gories. In 2007 [6], a taxonomy is presented whereby

methods are divided into software and hardware-

based. A similar division is suggested, but also consider

an additional category where liveness is inherent to the

biometric, i.e., it must be present in order to capture

the biometric [2]. In the first liveness is captured

through additional hardware integrated with the fin-

gerprint sensor. For first category software-based tech-

niques, involves further processing of the biometric

signature to obtain liveness information. For example,

this may mean extracting perspiration information

from fingerprint image. The second software based

approach is where liveness is an inherent part of the

biometric, in other words, the biometric cannot be
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captured unless the subject is alive. An example for this

category is the electrocardiogram, which has been sug-

gested as a biometric [7] and where liveness is inherent

to collection of this biometric. Liveness in most cases is

not inherent to be able to measure a fingerprint bio-

metric. Most systems that consider liveness in finger-

print do so through additional software or hardware

processing. Electrocardiogram might be considered a

special case as it has been suggested as an additional

measurement to fingerprint recognition so it can be

considered as hardware liveness approach and it may

be potentially inherent to the biometric if the electro-

cardiogram is used as a biometric.
Hardware

The first method uses extra hardware to acquire life

signs. Previously developed approaches measure finger-

tip temperature, pulse, pulse oximetry, blood pressure,

electric resistance, odor, multi-spectral information, or

electrocardiogram (e.g., [8, 7, 9, 10]). These methods

require dedicated hardware integrated with the finger-

print system. Electrocardiogram is the electrical mea-

surement of the heart collected through electrodes

on two skin contact points on the body which need

to be on opposite sides of the heart (e.g., two hands,

hand and foot). Pulse oximetry is the measurement

of the oxygen content of the blood through the com-

parison of the absorption of two wavelengths of

light by the blood. This measurement requires a LED

and photodetector on opposite sides of the finger

and typically needs to be shielded from ambient light.

This absorption also varies as the heart beats and

can be a measure of pulse, and therefore may require

a few seconds to compute to record one or two com-

plete heart beat cycles. A critical component to hard-

ware-based approaches is how the additional hardware

is integrated with the fingerprint sensor. It should be

integrated in such a way that it cannot be spoofed with

any live finger in combination with a spoof.

The following paragraph describes two fingerprint

sensors, multispectral and ultrasound, which naturally

capture liveness information. They are placed here in

the hardware category, because these approaches, while

commercially viable, require purchase of a specific

scanner and are not applicable to standard fingerprint

readers. One commercially available fingerprint sensor
(Lumidigm, USA) uses a multispectral sensor, from

which multiple wavelengths of light and different

polarizations allow new data to be captured, which is

unavailable from a conventional optical fingerprint

reader. Based on the multiple spectral images, they

have developed a spoof detection method [10]. Simi-

larly, ultrasound measurements have been suggested as

a way to measure fingerprint images (Optel, Poland).

While fingerprint measured by ultrasound might be

able to image a spoof or cadaver fingerprint itself,

using additional information from the ultrasound

measurement would likely be capable of separating

live from spoof images. Both approaches most likely

need additional processing from the fingerprint image

itself to determine liveness.
Software

The second method uses the information already pres-

ent in the fingerprint image to detect life signs, for

example, skin deformation, pores, power spectrum,

or perspiration pattern.

Skin deformation and elasticity. Skin deformation

technique uses the information regarding how the

fingertip’s skin deforms when pressed against the scan-

ner surface [11–14]. The studies show that when a real

finger moves on a scanner surface, it produces a signif-

icant amount of non linear distortion. However, fake

fingers are more rigid than skin and the deformation is

lower even if they are made of highly elastic materials.

One approach quantifies this considering multiple

frames of clockwise motion of the finger [12]. The

performance of this method has an equal error rate

of 11.24% using 45 live subjects and 40 fake fingers.

A study by Zhang et al. [14] uses a thin-plate spline

distortion model over multiple frames, while the finger

is moved and resulted 4.5% EER in a dataset of 120

fake fingerprints from silicon from 20 individuals.

Another method considers the deformation in a single

image compared to a template [11]. This study

achieved 82% for a small dataset.

Perspiration pattern. Previously, our laboratory has

demonstrated that perspiration can be used as a mea-

sure of liveness detection for fingerprint biometric

systems. Unlike spoof and cadaver fingers, live fingers

demonstrate a distinctive spatial moisture pattern

when in physical contact with the capturing surface



Liveness Detection: Fingerprint. Table 1 Liveness

algorithm types and factorsa

Hardware/
Software

Multiple/
Single

Binary/
User

specific
User

training

Perspiration S M/Si B/US None

Pulse
oximetry

H – B None

Multi-
spectral

H Si B/US None

Deformation S M/Si B UT or
none

ECG H – B/US UT

aH Hardware; S Software; M Multiple; Si Single; B Binary; US User

Specific; UT User Training; – indicates not applicable
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of the fingerprint scanner. The pattern in fingerprint

images begins as ‘patchy’ areas of moisture around the

pores spreading across the ridges over time. Image/

signal processing and pattern recognition algorithms

have been developed to quantify this phenomenon

using wavelet and statistical approaches [15–17].

These approaches require two time-series images,

which might not be convenient for the users. Other

methods to quantify this phenomenon have been de-

veloped for a single image [18]. Performance has

achieved approximately 10% live/spoof EER for earlier

papers on a dataset of 80 spoof, 25 cadaver, and 58 live

images to perfect separation in later papers on this

small dataset [16].

Characteristics of spoof and live images. A natural

extension to the specific categories above is to begin to

assess the characteristics that define live and spoof

fingers, which cover a broad range [5, 13, 19–21].

These include image power spectrum that reveals stamp

fabrication process [5], noise residue in the valleys

due to spoof material [19, 21], and combinations of

multiple factors, for example, fusion of perspiration

and deformation features [13].

Image power spectrum has been considered as an

effective feature for vitality detection [5, 20]. The dif-

ference between live and spoof images is mainly

due to the stamp fabrication process, which causes an

alteration of frequency details between ridge and

valleys. The Fourier transform feature can quantify

the difference in terms of high frequency informa-

tion loss for fake fingers. This approach is tested for

a single scanner and silicone spoof material with

average spoof/live EER of 2.4% on a dataset of

720 fake and 720 live images from 36 individuals [6]

and for gelatin and silicon with an average of 23%

EER for a dataset of 900 fake and 450 live images

from 30 individuals [20].

In other study [13], a sequence of images is used

to measure skin elasticity, but some of the measures

may be capturing perspiration information as de-

scribed above. No special motion is required for

the finger. They achieve results of 4.78% on a dataset

of 470 spoof images from 47 spoof casts and 300

live images from 15 individuals. In a second study,

fusion of multiple features, two based on perspiration

signal and two based on skin elasticity, was performed

in 2007 [22]. Result showed 4.49% EER on the

same dataset.
Liveness Algorithm Framework

Fingerprint liveness algorithms can fall into types de-

scribed above (hardware, software, and inherent).

Other factors that separate liveness algorithms include

(1) dynamic/static, (2) user training, and (3) binary/

user specific. Table 1 compares five fingerprint liveness

algorithms within the context of this framework.

� Dynamic or static: Liveness algorithms may require

only one frame or rely on multiple frames to

measure the dynamic nature of the system to de-

tect liveness [5]. For example, many of the per-

spiration proposed approaches require more than

one image [15], although recent work has used one

image [18]. Other dynamic approaches are related

to deformation [12–14]. Note that pulse oximetry

do not require multiple fingerprint image frames,

however, they may require more time to record one

or more full heart cycles.

� User training: Some liveness algorithms rely on

specific user actions to determine liveness. This

may include a procedure (deformation changes

due to rotating the finger), which require user

training [12, 14].

� Binary (live/spoof) versus user specific: Liveness

algorithms can be made general across all subjects,

that is, the same algorithm is used for all subjects to

determine liveness producing a binary result: live

or non live (Fig. 1). Other approaches can be made

subject specific, that is, a liveness algorithm is
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imbedded as part of the biometric template. For

example, work has been shown for storing a perspi-

ration pattern specific to an individual [23]. While

not specifically mentioned for the multi-spectral
Liveness Detection: Fingerprint. Figure 1 Example of

live and non-live fingerprints captured by Capacitive DC

scanner: (a) live finger; (b) spoof finger made from Play-

Doh; (c) spoof finger made from gelatin; (d) cadaver finger.

Liveness Detection: Fingerprint. Figure 2 Perspiration patte

right. The perspiration pattern is the reconstruction of the iso

images in time, by the algorithm described [4].
fingerprint scanner (Lumidigm, USA), it is possi-

ble that a medical spectroscopy-based liveness

approach could be user specific. Electrocardiogram

can also be user-specific, that is, used as a biometric

[7] (Fig. 2).

Other characteristics for evaluating biometrics systems,

such as ease of use, collectability, user acceptance, uni-

versality, uniqueness, permanence, and spoof-ability,

need to be considered before implementing a liveness

algorithm. These were described in the Biometric Secu-

rity Overview chapter. Table 2 considers the same live-

ness algorithms from Table 1 within the context of

this framework.

� Ease of use: Some liveness approaches may be easier

to use. For example, fingerprint deformation ap-

proach that requires a specific rotation procedure

may be considered more difficult to use [12, 13].

Lumidigm approach for spectroscopy where live-

ness is collected as part of the biometric collection

itself may be considered easier to use.

� Collectability: The hardware, equipment setup, and

relationship to the user impacts the collectability

of the liveness algorithm. For example, approaches

that may be more difficult to collect include the

electrocardiogram, which requires two points of

contact on opposite sides of the body or pulse

oximetry, where the finger must be enclosed

to protect from ambient light. In comparison,

approaches that use the traditional biometric
rns. Spoof, live, and cadaver patterns are shown from left to

lated wavelet coefficients obtained from two fingerprint
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equipment for measurement of liveness might be

considered easier to collect.

� User acceptance: For fingerprint liveness, approaches

with low user acceptance are ones that aremore likely

to be linked with medical conditions due to privacy

concerns (electrocardiogram, pulse oximetry, and

multi-spectral) (Fig. 3).

� Universality: Obviously all authorized users

should be live when presenting their biometric;

however, the liveness signature may be difficult

to measure in some subjects. For example, perspi-

ration in fingerprint images may be difficult to

measure in individuals with very dry skin, which

is also a problem with measuring the fingerprint

image itself.

� Uniqueness: For liveness approaches, which are

inherent to the biometric, this factor is critical.

However, as mentioned above, electrocardiogram

in combination with fingerprint would not need

uniqueness as a characteristic, whereas, the
Liveness Detection: Fingerprint. Table 2 Liveness algorithm

Ease of use Collectability
User

acceptance U

Perspiration H H H M

Pulse
oximetry

L L L H

Multi-
spectral

H H M H

Deformation L L H M

ECG L L L H

aH High; M Medium; L Low; –indicates not applicable

Liveness Detection: Fingerprint. Figure 3 Spectral image o

frequency analysis from [20].
electrocardiogram alone may need further research

to address uniqueness [7].

� Permanence: Permanence typically refers to perma-

nence of the specific biometric pattern over time.

Similar to above, this more directly applies to live-

ness approaches, which are inherent to the biomet-

ric, where the biometric/liveness signature may

vary over time. For example, in the initial work

introducing perspiration patterns as a unique

liveness pattern, only 3 months were considered

[23]. It is unknown if these patterns persist beyond

that period. Electrocardiogram may also have diffi-

culties with permanence as the electrocardiogram is

impacted by health conditions [7].

� Spoof-ability: Spoof-ability considers the possibility

that the liveness mechanism which is put in place to

protect the system from spoofing can be spoofed.

For example, in the case of pulse oximetry, it may

be possible to spoof with a clear spoof, which

allows transmission of the light needed to make
characteristicsa

niversality Uniqueness Permanence Spoof-ability

L M M

– – H

– – L

– – M

L H H

f the fingerprint, the ring pattern, and the band-selected

L
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the pulse oximetry measurement. This goes beyond

the performance of the liveness algorithm de-

scribed above, because it requires assessment of

spoofing approaches that have yet to be replicated

in the database used to test the liveness algorithm.
Summary

In summary, liveness systems are being suggested to

reduce the vulnerability due to spoofing. Liveness

measures have an inherent performance, that is, abil-

ity to separate spoof and live attempts. In addition,

liveness algorithms have other factors and considera-

tions including ease of use, collectability, user accep-

tance, universality, uniqueness, permanence, and

spoof-ability. One factor, which is difficult to mea-

sure is spoof-ability, the possibility that the liveness

measure can be spoofed. In this chapter, the term

liveness is used, fully acknowledging that it is not a

perfect system and that it is not possible to recreate all

possible spoof attempts for a system. Furthermore,

there may be measurements, which rule out specific

spoofs but cannot be shown to absolutely measure

liveness. For example, algorithms may be designed

which may readily detect silicon, but not gelatin,

spoof images. In summary, it is unlikely that any

system will perfectly measure liveness and be spoof-

proof. Liveness may be boiled down to an attempt to

stay one step ahead of those intending to defeat the

system through spoof attacks. Methods such as live-

ness or antispoofing are critical to the security and

credibility of biometric systems to protect them from

security vulnerabilities to the degree needed for a

particular application.
Related Entries
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Synonyms

Anti-spoofing; Spoofing countermeasures; Spoof-

resistance; Vitality tests
Definition

Iris liveness detection techniques are designed to coun-

teract physical ▶ spoofing attacks launched against iris

recognition systems. Such attacks include the use of

photographs, video recordings, printed contact lenses

etc. Iris liveness detection mechanisms aim to ascertain

that iris images acquired were acquired from a live and

authorized user present at the time of transaction.
Introduction

Iris recognition systems are among the most accurate

biometric systems available today. Additionally, the iris
is an internal organ which makes it more robust to

spoofing attacks when compared to some of the other

biometric technologies, especially fingerprinting. This

is mainly due to two reasons. First, unlike DNA and

fingerprints, individuals do not leave traces of their

irises behind which could be lifted and copied. Second,

it is more difficult to manipulate an internal organ

than to disguise an external body part such as

the face. Nevertheless, all technologies have inherent

weaknesses which can be exploited, including iris

recognition.

On the one hand, privacy experts argue that bio-

metric information is private. Additionally, the grow-

ing uptake of large-scale biometric systems worldwide

intensifies the fear of hackers stealing biometric infor-

mation from centralized databases. On the other hand,

it is a fact that the acquisition of biometric information

is much easier than breaking databases. Facial images

are being taken via public and private CCTV systems

day and night: think of ATMs, petrol stations, banks,

and airports just to name a few places were camera

surveillance systems are usually in 24/7 operation. The

situation is similar for most other biometric traits: we

leave our fingerprints and DNA behind on every sur-

face we touch and phone-based service providers usu-

ally record our voices during phone calls [1]. In the

case of iris recognition, a high resolution image of

someone’s eye can be sufficient to make the technology

work. CCTV image quality might often be too poor

to extract iris images of sufficient quality but this is

merely a hardware question.

We have to accept that our facial and eye images,

voice patterns, fingerprints, and DNA etc. are publicly

available. It has already been shown, through various

experiments that many if not all biometric technolo-

gies including iris recognition are susceptible to spoof-

ing attacks: biometric identifiers can be copied

and used to create some ▶ artifacts that can deceive

several biometric devices available today (▶ Security

and Liveness, Overview).

Therefore, the question is not whether biometrics

can be copied and forged but rather whether devices

can perform accurate liveness testing. The aim of live-

ness testing is to determine if the biometric data

is being captured from a legitimate, live user who is

physically present at the point of acquisition. This

is especially crucial for remote authentication services

performed over open networks where neither the end

user’s terminal nor the data transmission channels can
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be controlled by system operators. An increasing num-

ber of vendors are implementing liveness testing into

their biometric devices, to guard against the threat

of spoofing attacks. However, spoofing-related issues

remain unknown to many [2].
Risks of Biometric Spoofing

In order to understand security mechanisms such as

liveness detection, it is important to analyze the inher-

ent risks and weaknesses first. Like any other security

technology, biometrics also have inherent weaknesses

that can potentially lead to security breaches. Suscepti-

bility to spoofing attacks is just one possible weakness

inherent to biometric readers (▶Biometrics Vulner-

abilities: Overview).

Biometric spoofing attacks can be either digital or

physical. Digital attacks are defended against by

authenticating the biometric reader sending the data

and eliminating vulnerable data paths; liveness testing

methods are not applicable in this case. Hence this type

of vulnerability is not being discussed any further in this

article. Physical spoofing of a biometric credential refers

to the attack whereby an adversary copies a legitimate

biometric to generate a fake artifact and tries to gain

access to the system using this artifact. Spoofing attacks

may be undertaken with the cooperation of the legiti-

mate user, in an effort to delegate access rights, or

without user knowledge by collecting iris pictures from

iris recognition systems and infrared cameras, or facial

images from camera and surveillance equipment [2].

A biometric system can be used in an access control

scenario, either logical or physical, or as a watch list

application to detect and identify particular ‘‘wanted’’

individuals. In each case, the purpose of the system and

the risks of spoofing are different:

1. In an access control scenario, the system keeps a

register of authorized users. An example of such a

system is the voluntary, fully-automated immigra-

tion control system, IRIS, which operates at several

major airports in the UK. In such a scenario, fake

iris artifacts could be used to:

a. Mount attacks against existing enrolments in

order to gain unauthorized access – either logi-

cal or physical – to the resources protected by

the iris recognition system and/or to fraudu-

lently associate an audit trail with an unwitting

individual
b. Enroll into the iris system and then delegate

these artifacts across multiple individuals,

undermining the integrity of the system

c. Additionally, a legitimate user could try to re-

pudiate transactions associated with his account

or enrolment, claiming instead that they are the

result of attacks, due to the inability of the

biometric system to ensure liveness

2. In a watch list application, the system keeps a

record of people who are being sought by the

authorities or who are to be unequivocally denied

access to the assets or facilities protected by the

biometric device. An example of such a system is

the iris-based border control system operated by

United Arab Emirates’ authorities. In such a setup,

it is of course preferable from a registered person’s

point of view not to be recognized by the system. In

connection to the watch lists, an iris artifact could

be used to:

a. A bogus enrolment record can be created so that

the wanted/unauthorized person could contin-

ue to use the system with his real irises without

being detected

b. A wanted person’s iris patterns can be imitated

to lead authorities to think (even just temporar-

ily) that someone from the watch list had been

caught

c. A wanted person’s iris patterns can be disguised

(which had been previously registered in the

system) avoid identification and/or gain unau-

thorized access.

Note that the goals of the ▶ impostor are different

in these two scenarios: for access lists, it’s about imper-

sonating a legitimate user, while for the watch lists, it’s

about disguising one’s identity. The latter is believed to

be a much easier task, i.e., it is easier to disguise one’s

iris patterns so that they cannot be recognized anymore

than to imitate someone else’s iris patterns so closely

that a match is achieved.
Spoof-resistance Testing

Governments, academics and an increasing number of

industry players are active in the space of testing the

resilience of biometric systems against spoofing. While

vendors and governments tend to keep their results

secret, several test methods and results were published

in recent years by the academics and consultants.
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In 2002, a report was published by the German

Fraunhofer Research Institute, detailing results of

much earlier spoofing experiments on face, finger,

and iris systems which they carried out in cooperation

with the German Federal Institute for Information

security (BSI) [3]. This report was among the first to

raise a few eyebrows about the security of biometric

systems available at that time.

A 2002 issue of c’t magazine [4] followed by the

description of further attacks. Alongside several other

biometric technologies, the authors were able to spoof

a low-cost iris recognition device using high-resolution

eye images with cut out holes for the pupil which they

placed in front of a real eye.

Awell-known authority in spoofing, Professor Tsu-

tomu Matsumoto of Yokohama National University in

Japan, has published the results of two iris spoofing

rounds so far. In 2004, he spoofed three iris recognition

cameras with high-resolution photographs with cut

out holes for the pupil placed in front of a real eye

[5]. Only one of the iris systems did not accept the

fake iris for enrolment, but all devices could be spoofed

during verification. In 2007, Professor Matsumoto

presented another spoofing method using metallic riv-

ets with shiny black rounds heads and printed iris

images [6, 7].

Much research has gone into analyzing the effec-

tiveness of spoofing of contact lenses with printed or

hand-painted iris patterns as well. In addition to

printed photographs and printed/painted contact

lenses, other artifacts which could be used to physically

spoof iris devices include screen images, video record-

ings, and artificial eyes (glass, plastic etc.).
Liveness Detection Mechanisms

Biometric experts have been actively researching meth-

ods to counter the threat of physical spoofing of bio-

metric samples for more than a decade now. In

particular, various liveness detection methods have

been conceived and indeed implemented in some

devices. However, as every man-made solution can be

defeated, efforts are ongoing in this area.

System supervision is the first line of defense

against spoofing. The use of several types of spoofing

artifacts becomes inconvenient if not impossible,

if a human supervisor is present at the point of iris

image acquisition. Such examples include the use of
photographs or video recordings. Human operators

can also detect printed or painted lenses but the costs

and inconvenience of such a process make its day-to-

day use prohibitive. Additionally, human performance

is affected by many factors including tiredness, moti-

vation, sickness etc.

Automated liveness detection can be performed in

a biometric device either at the acquisition or proces-

sing stage. It usually involves enhancements to soft-

ware and/or hardware. The presented set of methods is

not an exclusive list; however, examples are given for

each iris liveness detection category. Automated live-

ness detection techniques measure and analyze one of

the following three characteristics [8].
Intrinsic properties of a living body

Methods belonging in this category, analyze static

characteristics of the material presented to the biomet-

ric reader. Such characteristics include density and

elasticity (physical properties), capacitance, resistance

and permittivity (electrical properties), reflectance and

absorbance (spectral properties), color and opacity

(visual properties), and chemical content analysis

in fluids.

Spectrographic properties of tissue, fat, blood, and

pigment can be used to test for liveness in irises.

Figure 1 shows that different components of living

tissue have distinctive spectrographic signatures. Com-

paring the fractions of light reflected in 300–1000 nm

bandwidth can reveal these spectrographic signatures

[9]. If the iris presented to the system is a glass eye, a

photograph, or dead tissue, spectrographic analyses

could help in detecting the spoofing attack. In fact,

ink and paper used to create photographic printouts

are often completely ineffective in near-infrared

light, which is used during the acquisition of iris

images [11].

Retinal light reflections commonly known as the

‘‘red-eye effect’’ can also be used to detect liveness of

the eye. Essentially, light entering the eye is reflected

back to the light source by the retina; this effect can be

captured by a camera. Functional eye cavity optics

make the eye to appear red of the pigment (called

retinal or visual purple) in the photoreceptors

of the retina (Fig. 2). Red-eye effect will occur if the

angle between light source, eye and camera is smaller

than 2.5� [10].



Liveness Detection: Iris. Figure 1 Light-reflecting properties of different components of living tissue can help to detect

iris-spoofing attempts [2, 9, 10].

Liveness Detection: Iris. Figure 2 The ‘‘red-eye effect’’ – the retina reflects the light entering the eye back to the light

source [10].

Liveness Detection: Iris. Figure 3 Contact lenses with

fake iris patterns float over the curved external surface of

the eye whereas the iris is lying in an internal plane inside

the eye.
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The iris is a relatively flat internal organ, located

behind the cornea and in front of the lens. When a

printed or hand-painted contact lens is placed over the

eye, the fake ‘‘iris’’ is floating over an external, round

surface, the cornea (Fig. 3). Therefore, another intrinsic

property for which iris devices can scan is the 3D nature

of the layer containing the iris patterns acquired.

In a natural eye, four optical surfaces reflect light:

the front and back surfaces of the cornea as well as the

front and back surfaces of the lens (Fig. 4). These

reflections are also referred to as Purkinje reflections

or images, named after a Czech physiologist. The front

surface of the cornea produces the brightest reflection

while the back of the lens produces the weakest one.

The position of the reflected light determines the posi-

tion of the reflections – another intrinsic property

which can be used to distinguish between natural
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eyes and fake artifacts. A change in the location of the

light source should therefore even screen out photo-

graphs displaying Purkinje reflections [11]. It might be

difficult to capture all four Purkinje reflections at all

times due to their varying strength; however, it could

be sufficient to analyze the strongest reflections coming

from the outer layer of the cornea. Varying positions of
Liveness Detection: Iris. Figure 4 A picture of a natural

eye displaying Purkinje reflections.

Liveness Detection: Iris. Figure 5 2D Fourier analysis extrac
near-infrared light diodes used during image acquisi-

tion could also be used to analyze this property of the

living eye.

John Daugman, the inventor of iris recognition,

has also pointed out that the printing process itself

can leave detectable traces on spoofing lenses [11].

A 2D Fourier analysis of the acquired image can show

off traces of printing, as demonstrated in Fig. 5. Pacut

and Czajka have developed automated methods

to analyze artificial frequencies in printed iris images.

One great advantage of this method is that, it does

not require any additional hardware; it merely analyzes

the iris image already captured. However, according

to Shanon’s theory, the method has a drawback:

it fails once the resolution of the printing device

is higher than twice the resolution of the analysis

camera [12].
L

Involuntary signals of a living body

Living tissue involuntarily displays dynamic signals

which are measurable. These signals can be attributed
ts remnants of the printing process on a contact lens.



Liveness Detection: Iris. Figure 6 Spontaneous pupil size variations with (square dotted line) and without (round dotted

line) any changes in lighting levels [2, 12].
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to the nervous system and include pulse, blood pres-

sure, pupillary unrest (hippus), perspiration, blood

flow, brain wave signals (EEG), and electrical heart

signals (ECG or EKG).

Daugman mentioned the idea of using involuntary

signals of the body to measure liveness detection in

iris recognition schemes in several of his papers.

A very interesting yet little known involuntary signal

generated by the human body is the hippus, which is

a pupillary steady-state oscillation at about 0.5 Hz,

occurring in eyes without any changes in illuminat-

ion. The coefficient of variation is at least 3% [11],

although it declines with advancing age. This liven-

ess detection technique can effectively be used

to screen out prosthetic eyes, high-resolution

photographs, or dead tissue. The upper graph (with

round dots) in Fig. 6 shows involuntary changes in

pupil size.

▶ Iris recognition algorithms need to track the

inner and outer boundaries of the iris anyway as part

of the extraction process so tracking the changes of

pupil size as well as eyelid movements are relatively

easy liveness detection methods to implement.
Bodily responses to external stimuli

Finally, it is possible to measure dynamic bodily

responses to external stimuli. These liveness detection

methods are challenge-response techniques that either

look for voluntary (behavioral) responses or involun-

tary (reflexive) ones.

Behavioral challenge-response methods require

user cooperation. As an example, the spoofing resis-

tance of iris recognition products can be enhanced by

prompting the user to blink or look left and right, and

up and down. If the signal presented to the system is a

photograph or video recording, the system is likely to

recognize these as fakes.

For iris recognition, an involuntary reflex of the body

canbe easily triggeredbychanging illumination levels. The

pupil can be driven larger or smaller by changes in lighting

conditions, with a response time constant of about

250 ms for constriction and about 400 ms for dilation

[11]. The lower graph (with square dots) in Fig. 6 shows

the pupillary reflex as a diode is switched on and off.

Another interesting effect which can be observed

when the pupil size changes is the nonelastic distortion
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of the iris tissue itself. Contact lenses or photographs

won’t be able to imitate this process.
The Effectiveness of Liveness Testing
Methods

Some of the above presented methods have been tested

independently with very promising results [3]. How-

ever, there is a need for a consistent testing framework

to assess the effectiveness of liveness testing methods

and market iris products on an ongoing basis. Schemes

have been proposed by both the academia and industry

[3, 7, 13, 14] but there is still no consensus over

an internationally standardized spoof-resistance test-

ing methodology.
L

The Trade-off between Security and
Convenience

Biometric devices should only be spoof-protected to a

level corresponding to the nature of operations (i.e.,

depending on whether operations are mainly security-

or convenience-focussed) due to the following limita-

tions of liveness detection methods [2]:

� Firstly, there is a conjecture that for all biometrics,

the problem of confirming the vitality of a sample
Liveness Detection: Iris. Table 1 Overview of discussed

indication of their effectiveness

Category Countermeasure

Extraction of intrinsic
properties (static)

Spectrographic analysis

Near-infrared illumination

Red-eye effect

3D curvature of iris surface

Purkinje reflections

Frequency spectrum analysis

Analysis of involuntary
signals (dynamic)

Pupillary unrest (hippus)

Eyelid movements

Challenge-response
methods (dynamic)

Eye movements (blinking, look
various directions)

Pupillary light reflex

Nonelastic distortion of iris tiss
(‘‘liveness testing’’) is more difficult than to make

decisions about matches between templates. The

two distributions of similarity generated by ‘‘genu-

ine’’ and ‘‘spoof ’’ samples for the same person are

likely to be closer and to have more overlap in the

vitality test than the two distributions that are

generated in a template matching test by ‘‘same’’

and ‘‘different’’ persons without any spoofing effort

[9]. In other words, liveness testing can adversely

affect recognition performance (‘‘Security and

Liveness, Overview’’).

� Secondly, liveness tests have the propensity to in-

crease the time to acquire the biometric sample,

thus reducing user convenience.

� Finally, the incorporation of liveness tests into a

device usually also means increasing hardware/

software costs.
Summary

Spoofing is a real concern with regards to the security

of biometric systems. More and more successful spoof-

ing attempts are being published and even though the

sophistication of these attacks is on the rise, spoofing is

still in its infancy. In particular, contact lenses with

hand-painted and printed iris patterns are expected
liveness detection methods for iris recognition with an

Targeted artifacts

All

All involving inks and dyes

All except patterned contact lenses

Patterned contact lenses

All except patterned contact lenses

Printed artifacts

All except patterned contact lenses which only
party cover the real iris

All except patterned contact lenses

ing in All except patterned contact lenses

All except patterned contact lenses which only
party cover the real iris

ue All
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to pose an increasing threat due to enhancements of

ink quality and printing technologies. Furthermore,

patterned lenses are relatively difficult to detect when

compared to some of the other spoofing methods.

Both the industry and academia are focusing their

efforts to make biometric devices more robust but

every countermeasure can eventually be circumvented.

Thus research and development efforts must be

ongoing.

This article illustrates that it is possible to combat

physical spoofing attacks with liveness testing (Table 1)

but all of these countermeasures come at a certain

price, often affecting user convenience, system prices,

or matching accuracy. Therefore, it is crucial to select a

device that incorporates spoofing countermeasures to

a level of sophistication and effectiveness that matches

the requirements of the application.

As spoofing techniques are swiftly evolving and

countermeasures have only a limited life cycle, in addi-

tion to the necessary research and development efforts

it is of great importance to perform standardized,

vendor-independent tests of robustness and to assess

on a regular basis the overall level of security provided

by biometric systems.
Related Entries

▶Anti-spoofing

▶ Liveness Detection

▶ Spoofing; Biometric Vulnerabilities
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Live-Scan Furrow Device
It refers to a device, able to read the ridge-valley pat-

tern present on finger tips, palms, and foot soles. It can

be considered as a generic name grouping all the fin-

gerprint, palmprint, handprint, and soleprint devices.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Live-Scan Sensor
A live-scan sensor is a sensor that allows to capture and

digitize biometric data in real time. As opposed to live-

scan acquisition, in off-line acquisition, data is not

digitized in real time (e.g., a fingerprint image is first

obtained by smearing ink on the fingertip and creating
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an inked impression on paper, and the inked impres-

sion is digitized by scanning the paper).

▶ Fingerprint Databases and Evaluation
Local Adaptive Thresholding
L

Local adaptive thresholding is used to convert an

image consisting of gray scale pixels to just black and

white scale pixels. Usually a pixel value of 0 represents

white and the value 255 represents black with the

numbers from 1 to 254 representing different gray

levels. Unlike the global thresholding technique, local

adaptive thresholding chooses different threshold

values for every pixel in the image based on an analysis

of its neighboring pixels. This is to allow images with

varying contrast levels where a global thresholding

technique will not work satisfactorily. There are a

number of different forms of adaptive thresholding

algorithm reported in the image processing literature.

▶Hand Vein
Local Descriptors
▶ Local Image Features
Local Fusion
Local fusion in the framework or multi-biometric

score fusion refers to user-specific score fusion techni-

ques in which each fusion function is trained based

exclusively on data associated with the claimed user

(both genuine and impostor scores).

▶ Fusion, User-Specific
Local Image Features
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Synonyms

Interest points; Keypoints; Local descriptors
Definition

A▶ local feature is an image pattern which differs from

its immediate neighborhood. It is usually associated

with a change of an image property or several proper-

ties simultaneously, though it is not necessarily loca-

lized exactly on this change. The image properties

commonly considered are intensity, color, and texture.

Figure 1 shows some examples of local features in a

contour image (left) as well as in a grayvalue image

(right). Local features can be points, but also edgels or

small image patches. Typically, some measurements are

taken from a ▶ region centered on a local feature and

converted into descriptors. The descriptors can then be

used for various applications. Three broad categories

of feature ▶ detectors can be distinguished based on

their possible usage. It is not exhaustive or the only way

of categorizing the features but it emphasizes different

properties required by the usage scenarios. First, one

might be interested in a specific type of local features,

as they may have a specific semantic interpretation in

the limited context of a certain application. For in-

stance, edges detected in aerial images often corre-

spond to roads; blob detection can be used to

identify impurities in some inspection task; etc. These

were the first applications for which local feature

detectors have been proposed. Second, one might be

interested in local features since they provide a limited

set of well localized and individually identifiable an-

chor points. What the features actually represent is not

really relevant, as long as their location can be deter-

mined accurately and in a stable manner over time.

This is for instance the situation in most matching

or tracking applications, and especially for camera
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calibration or 3D reconstruction. Other application

domains include pose estimation, image alignment,

or mosaicing. A typical example here is the features

used in the KLT tracker [1]. Finally, a set of local

features can be used as a robust image representation,

that allows to recognize objects or scenes without the

need for segmentation. Here again, it does not really

matter what the features actually represent. They do

not even have to be localized precisely, since the goal is

not to match them on an individual basis, but rather to

analyze their statistics. This way of exploiting local

features was first reported in the seminal work of [2]

and soon became very popular, especially in the con-

text of object recognition (both for specific objects as

well as for category-level recognition). Other applica-

tion domains include scene classification, texture anal-

ysis, image retrieval, and video mining.
Introduction

The first publication on local features appeared after

the observation on the importance of corners and

junctions in visual recognition [3] (see Fig. 1). Since

then a large number of algorithms have been suggested

for extracting ▶ interest points at the extrema of vari-

ous functions computed on the digital shape. Also, it

has been understood early on in the image processing

and visual pattern recognition field that intersections

of straight lines and straight corners are strong indica-

tions of man made structures. Such features have been
Local Image Features. Figure 1 Illustration of local features
used in the first series of applications from line draw-

ing images [4] and photomosaics [5]. First mono-

graphs on digital image processing [6, 7] and later

editions served to establish the field on a sound theo-

retical foundation. Several survey articles on local fea-

tures appeared recently [8–10].

Interest points are now the preferred strategy for

solving a wide variety of problems, from wide baseline

matching and the recognition of specific objects to the

recognition of object classes. Additionally, similar ideas

have been applied to texture recognition, scene classi-

fication, robot navigation, visual data mining, and

symmetry detection, to name just a few application

domains.

Local ▶ invariant features not only allow to find

correspondences, in spite of large changes in viewing

conditions, occlusions, and image clutter (wide base-

line matching), but also yield an interesting descrip-

tion of the image content for image retrieval and object

or scene recognition tasks (both for specific objects as

well as categories). To put this into context, some

alternative strategies are briefly summarized, including

global features, image segments, and exhaustive and

random sampling of features.
Global Features

In the field of image retrieval, many global features

have been proposed to describe the image content,

with color histograms and variations thereof as a
in line drawing images and a grayvalue image.
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L

typical example [11]. This approach works surprisingly

well, at least for images with distinctive colors, as long

as it is the overall composition of the image as a whole

that the user is interested in, rather than the fore-

ground object. Indeed, global features cannot distin-

guish foreground from background, and mix

information from both parts together.

Global features have also been used for object rec-

ognition, resulting in the first appearance-based

approaches to tackle this challenging problem. [12]

and later [13] proposed to compute a principal com-

ponent analysis of a set of model images and to use the

projections onto the first few principal components as

descriptors. Compared to the purely geometry-based

approaches tried before, the results of the novel ap-

pearance-based approach were striking. A whole new

range of natural objects could suddenly be recognized.

However, being based on a global description, image

clutter and occlusions again form a major problem,

limiting the usefulness of the system to cases with clean

backgrounds or where the object can be segmented

out, e.g., relying on motion information.
Image Segments

An approach to overcome the limitations of the global

features is to segment the image in a limited number

of regions or segments, with each such region

corresponding to a single object or a part thereof.

However, this raises a chicken-and-egg problem as

image segmentation is a very challenging problem in

itself, which in general requires a high-level under-

standing of the image content. For generic objects,

color and texture cues are insufficient to obtain mean-

ingful segmentations.
Sampled Features

A way to deal with the problems encountered with

global features or image segmentation is to exhaustively

sample different subparts of the image at each location

and scale. For each such image subpart, global features

can then be computed. This approach is also referred

to as a sliding window based approach. It has been

especially popular in the context of face detection,

but has also been applied for the recognition of specific

objects or particular object classes such as pedestrians

or cars.
By focusing on subparts of the image, these meth-

ods are able to find similarities between the queries and

the models in spite of changing backgrounds, even if

the object covers only a small percentage of the total

image area. In the bottom, they still do not manage to

cope with partial occlusions, and the allowed shape

variability is smaller than what is feasible with a local

feature based approach. However, by far the biggest

drawback is the inefficiency of this approach. Each and

every subpart of the image must be analyzed, resulting

in thousands or even millions of features per image.

This requires extremely efficient methods which signif-

icantly limits the scope of possible applications. To

overcome the complexity problems sparser fixed grid

sampling of image patches can be used. It is however

difficult to achieve invariance to geometric deforma-

tions for such features. The approach can tolerate some

deformations due to dense sampling over possible

locations, scales, poses etc. but the individual features

are not invariant. As a result, sampled features cannot

be used when the goal is to find precise corres-

pondences between images. However, for some app-

lications such as scene classification or texture

recognition, they may well be sufficient.

In a similar vein, rather than using a fixed grid of

patches, a random sampling of image patches can also

be used. This gives a larger flexibility in the number of

patches, the range of scales or shapes, and their spatial

distribution. Random patches are in fact a subset of the

dense patches, and are used mostly to reduce the com-

plexity. Their repeatability is poor hence they work

better as an addition to the regular features rather

than as a stand alone method.

Finally, to overcome the complexity problems

while still providing a large number of features with

better than random localization one can sample fea-

tures uniformly from edges. This proved useful for

dealing with wiry objects well represented by edges

and curves.
Properties of the Ideal Local Feature

Local features typically have a spatial extent, i.e., the

local neighborhood of pixels mentioned above. In con-

trast to classical segmentation, this can be any subset of

an image. The region boundaries do not have to corre-

spond to the changes in image appearance such as

color or texture. Also, multiple regions may overlap,
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and ‘‘uninteresting’’ parts of the image such as homo-

geneous areas can remain uncovered.

Ideally, one would like such local features to corre-

spond to semantically meaningful object parts. In

practice, however, this is unfeasible, as this would

require high-level interpretation of the scene content,

which is not available at this early stage. Instead, detec-

tors select local features directly based on the underly-

ing intensity patterns.

Good features should have the following

properties:

� Repeatability: Given two images of the same object

or scene, taken under different viewing conditions,

a high percentage of the features detected on the

scene part visible in both images should be found

in both images.

� Distinctiveness/informativeness: The intensity pat-

terns underlying the detected features should

show a lot of variation, such that features can be

distinguished and matched.

� Locality: The features should be local, so as to

reduce the probability of occlusion and to allow

simple model approximations of the geometric and

photometric deformations between two images

taken under different viewing conditions (e.g.,

based on a local planarity assumption).

� Quantity: The number of detected features should

be sufficiently large, such that a reasonable number

of features are detected even on small objects. How-

ever, the optimal number of features depends on

the application. Ideally, the number of detected

features should be controllable over a large range

by a simple and intuitive threshold. The density

of features should reflect the information con-

tent of the image to provide a compact image

representation.

� Accuracy: The detected features should be accu-

rately localized, in both image location, with re-

spect to scale and possibly shape.

� Efficiency: Preferably, the detection of features

in a new image should allow for time-critical

applications.
Repeatability, arguably the most important

property of all, can be achieved in two different

ways: either by invariance or by robustness.

� Invariance: When large deformations are to be

expected, the preferred approach is to model these

mathematically if possible, and then develop
methods for feature detection that are unaffected

by these mathematical transformations.

� Robustness: In case of relatively small deformations,

it often suffices to make feature detection methods

less sensitive to such deformations, i.e., the accu-

racy of the detection may decrease, but not drasti-

cally. Typical deformations that are tackled using

robustness are image noise, discretization effects,

compression artifacts, blur, etc. Also geometric and

photometric deviations from the mathematical

model used to obtain invariance are often over-

come by including more robustness.

Clearly, the importance of these different properties

depends on the actual application and settings, and

compromises need to be made.

Repeatability is required in all application scenarios

and it directly depends on the other properties like

invariance, robustness, quantity etc. Depending on

the application, increasing or decreasing them may

result in higher repeatability.

Distinctiveness and locality are competing proper-

ties and cannot be fulfilled simultaneously: the more

local a feature, the less information is available in

the underlying intensity pattern and the harder it

becomes to match it correctly, especially in database

applications where there are many candidate features

to match to. On the other hand, in case of planar

objects and/or purely rotating cameras (e.g., in image

mosaicing applications), images are related by a global

homography, and there are no problems with occlu-

sions or depth discontinuities. Under these conditions,

the size of the local features can be increased without

problems, resulting in a higher distinctiveness.

Similarly, an increased level of invariance typically

leads to a reduced distinctiveness, as some of the image

measurements are used to lift the degrees of freedom of

the transformation. A similar rule holds for robustness

versus distinctiveness, as typically some information is

disregarded (considered as noise) to achieve robust-

ness. As a result, it is important to have a clear idea on

the required level of invariance or robustness for a

given application. It is hard to achieve high invariance

and robustness at the same time and invariance, which

is not adapted to the application, may have a negative

impact on the results.

Accuracy is especially important in wide baseline

matching, registration, and structure from motion

applications, where precise correspondences are
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needed to, e.g., estimate the epipolar geometry or to

calibrate the camera setup.

Quantity is particularly useful in some class-level

object or scene recognition methods, where it is vital to

densely cover the object of interest. On the other hand,

a high number of features have in most cases a negative

impact on the computation time and it should be kept

within limits. Also robustness is essential for object

class recognition, as it is impossible to model the

intra-class variations mathematically, so full invariance

is impossible. For these applications, an accurate local-

ization is less important. The effect of inaccurate

localization of a feature detector can be countered, up

to some point, by having an extra robust descriptor,

which yields a feature vector that is not affected by

small localization errors.
L

Related Entries

▶Gabor filter

▶ Image descriptors

▶ Local binary pattern

▶ Local Feature Filters

▶Matching

▶Registration
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Local Image Filters

ABDENOUR HADID, MATTI PIETIKÄINEN

Machine Vision Group, Department of Electrical and

Information Engineering, University of Oulu, Finland
Synonyms

Gabor features; LBP features
Definition

Local feature filters can be defined as operators (or

filters) which are applied to an image in order to

extract local characteristics describing (some) impor-

tant information in the image. For instance, these

characteristics (or ▶ features) can be used to detect,

recognize, and analyze the objects in the image. They

can also facilitate the interpretation or further proces-

sing of the image. In contrast to global features which

describe the overall content and shape of the objects in

the image, local features define specific information in

local regions. Among the most effective operators for

feature extraction are Gabor filter and local binary

pattern (LBP). Gabor filters are linear bandpass filters

computed for images at different orientations and

scales. The impulse response of a Gabor filter is defined

by a harmonic function multiplied by a Gaussian func-

tion. Local binary pattern is a nonlinear operator

which labels the pixels of an image by thresholding

the neighborhood of each pixel with the value of the

center pixel and considers the result as a binary num-

ber. LBP labels can be regarded as local primitives such

as curved edges, spots, flat areas, etc. The histogram of
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the labels can be then used as a feature vector (or image

representation). Gabor filtering and LBP operator are

powerful means of analyzing biometric data such faces,

irises, fingerprints, palmprints, etc.
Introduction

Typically, biometric systems operate by acquiring bio-

metric data from which features are extracted and

matched against those of the templates which are

stored in the database [1]. This involves two crucial

aspects: feature extraction and classifier design. The

aim of feature extraction is to find good descriptors

which are easy to compute and have high ▶ extra-class

variance (i.e., between different persons) and low

▶ intra-class variance, which means that the descriptor

should be robust with respect to aging of the subjects,

alternating illumination and other factors. Obviously,

if inadequate features are adopted, even the most so-

phisticated classifiers (i.e., comparison schemes) will

fail to accomplish the given recognition task. There-

fore, feature extraction is a very important task in any

biometric system.

Different global (or holistic) methods such as Prin-

cipal Component Analysis (PCA) have been widely

studied and applied to biometrics but lately local

features have gained more attention due to their ro-

bustness to challenges such as pose and illumination

changes. In this context, feature extraction using

Gabor filtering or LBP has gained increasing attention

in various biometric applications. A notable example

is iris recognition, in which approaches based on

multichannel Gabor filtering have been highly success-

ful. Gabor filters have also been widely used, e.g., in

fingerprint [2] and palmprint analysis [3]. Also, the

well-known Elastic Bunch Graph Matching (EBGM)

method is based on Gabor filter responses at certain

fiducial points to recognize faces [4]. More recently,

LBP features have provided excellent results in various

biometric applications [5, 6, 7, 8]. Perhaps the most

important property of the LBP operator in real-world

applications is its robustness to monotonic gray-scale

changes caused, for example, by illumination varia-

tions. Another important property is its computation-

al simplicity, which makes it possible to analyze

biometric data in challenging real-time settings.

The Gabor and LBP methods provide complemen-

tary information for analysis: LBP captures small
and fine details (or micro features) while Gabor filters

encode appearance information over a broader range

of scales (macro features).
Gabor Filters

The theory behindGabor filters started from the original

work of Dennis Gabor who proposed in 1946 to repre-

sent signals as a combination of elementary functions

[9]. Those particular elementary functions are now

known as Gabor elementary functions (GEF). How-

ever, the use of Gabor filters in image processing

started from the work of Granlund who extended the

elementary 1-d Gabor functions to 2-d elementary

functions and used them in the development of a

general picture processing operator [10]. Later, Daug-

man proposed the generalization of 1-d gabor func-

tions to two dimensions and importantly showed the

equivalence between a structure based on the 2-d

Gabor functions and the organization and the charac-

teristics of the mammalian visual system [11]. These

physiological findings are undoubtedly behind the

great impact of Gabor research especially in image

processing.

Roughly speaking, Gabor filtering in image proces-

sing consists of applying a set of 2-d Gabor elementary

functions of various parameters (e.g., different dila-

tions and rotations) to an input image thus obtaining

Gabor image features (i.e., feature space). These

extracted Gabor features can be then used directly as

feature vectors for analysis (e.g., biometric recogni-

tion) or can first be transformed into new feature

vectors (e.g., [8]). So, typically, an input image I(x, y)

is convolved with a 2-d Gabor function g(x,y) to ob-

tain a Gabor feature image r(x, y) as follows:

rðx; yÞ ¼ Iðx; yÞ 	 gðx; yÞ

¼
Z Z þ1

�1
Iðdx; d�Þgðx � dx; y � d�Þ dx d�:

There are several forms of Gabor elementary functions

(GEFs) which can be designed to be highly selective in

frequency while displaying good spatial localization.

GEFs can be also seen as bandpass filters which can

be configured to be used for feature extraction. A GEF

is defined as a Gaussian modulated by a sinusoid

(cosine function) as follows:
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g l;y;c;s;gðx; yÞ ¼ expð� x02 þ g2 y 02

2s2
Þ

cosð2p x
0

l
þ cÞ;

where x0 ¼ x cos y þ y sin y, y 0 ¼ � x sin y þ y cos y,
l represents the wavelength of the cosine factor, y
represents the orientation of the normal to the parallel

stripes of a Gabor function, c is the phase offset,

s refers to the variance of the Gaussian function and

g is the spatial aspect ratio and specifies the ellipticity

of the support of the Gabor function. Figure 1 shows

an example of a typical 2-d Gabor filter.
L

Local Binary Patterns

The LBP texture analysis operator [12], introduced by

Ojala et al., is defined as a gray-scale invariant texture

measure, derived from a general definition of texture in

a local neighborhood. It is a powerful means of texture

description and among its properties in real-world

applications are its discriminative power, computa-

tional simplicity, and tolerance against monotonic

gray-scale changes. The original LBP operator forms

labels for the image pixels by thresholding the 3 � 3

neighborhood of each pixel with the center value and

considering the result as a binary number. The histo-

gram of these 28¼ 256 different labels can then be used

as a texture descriptor.
Local Image Filters. Figure 1 An example of a typical 2-d Ga
The operator has been extended to use neigbor-

hoods of different sizes [13]. Using a circular neighbor-

hood and bilinearly interpolating values at noninteger

pixel coordinates allows any radius and number of

pixels in the neighborhood. The notation (P, R) is

generally used for pixel neighborhoods to refer to P

sampling points on a circle of radius R. The calculation

of the LBP codes can be easily done in a single scan

through the image. See Fig. 2 for an illustration of the

basic LBP operator. The value of the LBP code of a

pixel (xc, yc) is given by LBPP;R ¼ PP�1

p¼0

s gp � gc
� �

2p,

where gc corresponds to the gray value of the center

pixel (xc, yc), gp refers to gray values of P equally spaced

pixels on a circle of radius R, and s defines a threshold-

ing function as follows:

sðxÞ ¼ 1; if x � 0;
0; otherwise:

�

Another extension to the original operator is the

definition of so called uniform patterns [13]. This ex-

tension was inspired by the fact that some binary

patterns occur more commonly in texture images

than in others. A local binary pattern is called uniform

if the binary pattern contains at most two bitwise

transitions from 0 to 1 or vice versa when the bit

pattern is traversed circularly. For example, the patterns

00000000 (0 transitions), 01110000 (2 transitions),
bor filter.
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and 11001111 (2 transitions) are uniform whereas the

patterns 11001001 (4 transitions) and 01010011

(6 transitions) are not. In the computation of the

LBP labels, uniform patterns are used so that there is

a separate label for each uniform pattern and all the

nonuniform patterns are labeled with a single label.

For example, when using (8, R) neighborhood, there

are a total of 256 patterns, 58 of which are uniform,

which yields 59 different labels. This yields the follow-

ing notation for the LBP operator: LBPP,R
U2. The sub-

script represents using the operator in a (P, R)

neighborhood. Superscript u2 stands for using only

uniform patterns and labeling all remaining patterns

with a single label. Each bin (LBP label) can be

regarded as a microtexton. Local primitives which are

codified by these bins include different types of curved

edges, spots, flat areas, etc.

The original LBP operator was defined to only deal

with spatial information. Recently, it has been extend-

ed to a spatiotemporal representation for dynamic

texture analysis. This has yielded the so called Volume

Local Binary Pattern operator (VLBP) [6]. The idea

behind VLBP consists of looking at dynamic texture as

a set of volumes in the (X,Y, T) space where X and Y

denote the spatial coordinates and T denotes the frame

index (time). The neighborhood of each pixel is thus

defined in three dimensional space. Then, similar to

LBP in spatial domain, volume textons can be defined

and extracted into histograms. Therefore, VLBP com-

bines motion and appearance together to describe

dynamic texture. Later, to make the VLBP computa-

tionally simple and easy to extend, the cooccurrences

of the LBP on three orthogonal planes (LBP-TOP)

were also introduced [6]. LBP-TOP consists then in

considering three orthogonal planes: XY , XT, and YT,

and concatenating local binary pattern cooccurrence

statistics in these three directions. The circular
neighborhoods are generalized to elliptical sampling

to fit to the space-time statistics.

In the LBP approach to texture classification [13],

the occurrences of the LBP codes in an image are

collected into a histogram. The classification is then

performed by computing simple histogram similari-

ties. However, considering a similar approach for bio-

metric (e.g., facial) image representation results in a

loss of spatial information and therefore one should

codify the texture information while retaining also

their locations. One way to achieve this goal using

texture operators is to build several local descriptions

of the face and combine them into a global description

[5, 8]. Figure 3 shows an example of an LBP based

facial representation. Such local descriptor based

methods have been gaining interest lately which is

understandable given the limitations of the holistic

representations. These local feature based methods

seem to be more robust against variations in pose or

illumination than holistic methods.
Applications

There is a considerable amount of research concerning

Gabor filtering based biometric recognition, especially

in iris, face, fingerprint, and plamprint recognition

[1, 14, 2, 15, 4, 3]. For instance, Daugman developed

the pioneering approach to iris recognition [14]. He

used 2-d Gabor filtering to extract local texture fea-

tures from iris images, resulting in an IrisCode repre-

sentation with 2,048bits. Then, the recognition was

done simply by computing the Hamming distance

between a pair of iris representations. The system was

tested on billions of iris images and the results showed

excellent recognition rates very close to 100% (only

one false acceptance in 151,000 imposter tests for one
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false rejection in 128,000 tests). Nowadays, many com-

mercial iris-recognition systems are based on Daug-

man’s algorithms.

Gabor filter based features have also been widely

applied to fingerprint recognition systems. A notable

example is the system developed by Jain [2] using a

bank of Gabor filters to capture both the global pattern

of ridges and valleys and the local characteristics

in fingerprint patterns yielding feature vectors called

FingerCodes. The fingerprint matching is based on

the Euclidean distance between two corresponding

FingerCodes. The system achieved remarkable recog-

nition rates.

In face recognition, Lades et al. developed a Gabor

based system using dynamic link architecture (DLA)

framework which recognizes faces by extracting Gabor

jets at each node of a rectangular grid over the face

image [15]. Later, Wiskott et al. extended the approach

and developed the well-known Gabor wavelet-based

elastic bunch graph matching (EBGM) method to

label and recognize faces [4]. In the EBGM algorithm,
Local Image Filters. Figure 3 Example of an LBP based facia

Local Image Filters. Figure 4 An example of facial represent
faces are represented as graphs with nodes positioned

at fiducial points (such as the eyes, the tip of the nose,

etc.) and edges labeled with distance vectors (see

Fig. 4). Each node contains a set of Gabor wavelet

coefficients, known as a jet. Thus, the geometry of the

face is encoded by the edges while the gray value

distribution (texture) is encoded by the jets. The iden-

tification of a new face consists of determining among

the constructed graphs the one which maximizes the

graph similarity function.

In palmprint recognition, for instance, Zhang et al.

[3] proposed the use of 2-d Gabor phase encoding

scheme for palmprint feature extraction and represen-

tation. First, the central areas from palmprint images

are segmented and then 2-d Gabor based features are

extracted. The recognition is performed using normal-

ized Hamming distance. Experiments on a database of

7,752 low resolution palmprint images showed good

performance. It is worth nothing that the use of Gabor

filtering in biometrics is not limited to the examples

cited earlier as many other Gabor based biometric
l representation.

ation with the elastic bunch graph principle (EBGM).

L
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systems for commercial applications have been suc-

cessfully developed. In addition, Gabor features have

also been successfully used with other biometric mod-

alities including speech, gait, ear, etc.

LBP has also been successfully used in various

biometric applications such as face, activity, iris, and

palmprint recognition. The most remarkable applica-

tion of LBP in biometrics is face analysis [5]. The idea

consists in dividing the faces into several regions (or

blocks) fromwhich the local binary pattern histograms

are computed and concatenated into a single, spatially

enhanced feature histogram (Fig. 3). In such a rep-

resentation, the texture of facial regions is encoded

by the LBP while the shape of the face is recovered by

the concatenation of different local histograms. The

LBP methodology has attained an established posi-

tion in face analysis research and several research

groups around the world have adopted similar ap-

proach to different tasks such as near-infrared based

face recognition, gender recognition, head pose esti-

mation and 3D face recognition. A bibliography of

LBP-related research in facial image analysis can be

found at http://www.ee.oulu.fi/research/imag/texture/

lbp/bibliography/.

The spatiotemporal versions of LBP (VLBP and

LBP-TOP) have also been successfully applied to per-

son analysis and identification from video sequences,

including face, facial expression, visual speech and

activity recognition. To recognize six prototypic emo-

tions (anger, disgust, fear, joy, sadness, and surprise)

from videos, Zhao et al. [6] divided the face sequences

into several overlapping block volumes, extracted LBP-

TOP (or VLBP) histograms from each block and then

concatenated them to obtain a single histogram repre-

senting the appearance and motion of the facial ex-

pression in the face sequences. This approach does not

require error-prone segmentation of lips and other

facial features and it is robust against monotonic gray

scale changes caused, for example, by illumination and

skin color variations, and errors in face alignment.

Hadid et al. [7] also adopted spatiotemporal LBP for

face recognition from videos with excellent results.

Starting from the observation that VLBP features con-

sist of both intra and extra personal information

(corresponding to both facial expression and identity),

they proposed a robust recognition system using VLBP

with AdaBoost learning. The idea was to classify the

VLBP facial information into intra and extra classes,

and then use only the ▶ extra-class VLBP features for
recognition. This was achieved by looking at a face

sequence as a selected set of rectangular prisms

(volumes) from which local histograms of extended

VLBP code occurrences are extracted. Then, a boosting

approach is used for selecting only the most discrimi-

native spatiotemporal patterns for face recognition

while discarding the patterns which may hinder the

recognition process.

There are many other very successful biometric

applications based on Gabor filtering or LBP features.

The approaches based on Gabor filtering or wavelets

measuring the frequency contents of image points or

regions at different resolutions and orientations en-

code appearance information over a broad range of

scales (macro features) while LBP operator captures

smaller and finer details (or micro features). This

makes Gabor filtering and LBP operator powerful

means for extracting complementary information. Tak-

ing this into account, one way to go ahead would be

to combine Gabor and LBP methods. Following this

direction, Zhang et al. proposed the so called Local

Gabor binary pattern histogram sequence (LGBPHS)

inwhichmultiresolution andmultiorientation descrip-

tion of an image using Gabor filters is first computed,

and then LBP histograms are computed from the

Gabor features for small nonoverlapping regions and

concatenated into a feature histogram. Excellent results

are reported [8]. Other works have also successfully

exploited the complementary of Gabor filters and

LBP features by fusing the two sets of features for

recognition (see references at http://www.ee.oulu.fi/

research/imag/texture/lbp/bibliography/).
Summary

Feature extraction is a very important and crucial task

in all biometric systems. In this context, Gabor filtering

and LBP operator are powerful means for extracting

complementary features and describing biometric data

such as faces, irises, fingerprints, palmprints, etc. This

can be attested by the large number of successful bio-

metric applications based on these features. Gabor

filters are linear bandpass filters computed for images

at different orientations and scales while LBP is a

nonlinear operator codifying the relationship between

each center pixel and its neighborhood, thus describing

a set of local primitives such as curved edges, spots, flat

areas, etc. In contrast to global features which describe

http://www.ee.oulu.fi/research/imag/texture/lbp/bibliography/
http://www.ee.oulu.fi/research/imag/texture/lbp/bibliography/
http://www.ee.oulu.fi/research/imag/texture/lbp/bibliography/
http://www.ee.oulu.fi/research/imag/texture/lbp/bibliography/


Localization L 949
the overall content and shape of the objects in the

image, local features define specific information in

local regions. The local feature based methods seem to

be more robust against variations in pose or illumina-

tion than holistic methods.
Related Entries

▶Classifier Design

▶ Face Descriptors

▶ Feature Extraction
L
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Local Surface Patch
A ‘‘local surface patch’’ (LSP) is defined as the region

consisting of a feature point P and its neighbors N. The

LSP representation includes feature point P, its surface

type, centroid of the patch, and a histogram of shape

index values vs. dot product of the surface normal at

point P and its neighbors. A local surface patch is

shown in Fig. 4. The neighbors satisfy the following

conditions,

N ¼ fpixelsN ; k N � P k
 Є1g
and a cosðnp � nn < AÞ; ð1Þ

where � denotes the dot product between the surface

normal vectors np and nn at point P and N and acos

denotes the inverse cosine function. The two para-

meters Є1 and A (Є1 = 5.8 mm, A = 0.5) are important

since they determine the descriptiveness of the local

surface patch representation. A local surface patch is

not computed at every pixel in a range image, but only

at selected feature points. The feature points are de-

fined as the local minimum and the maximum of

shape indexes, which can be calculated from principal

curvatures.

▶Ear Biometrics, 3D
Localization
▶Human Detection and Tracking
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Localization Inaccuracy
▶ Face Misalignment Problem
Logical Access Control, Client-Based
Most platforms and peripherals that come with em-

bedded fingerprint readers include software to access

the local PC and applications. These applications may

include biometric-based access to the PC, pre-boot

authentication, full disk encryption, Windows logon,

and a general password manager application to facili-

tate the use of biometric for other applications and

websites. Such a suite of applications protects the spe-

cific PC on which it is deployed and makes personal

access to data more secure, convenient, and fun. Com-

panies such as Dell, Lenovo, Microsoft, and Hewlett-

Packard ship platforms and peripherals are pre-loaded

with such capability. However, these are end-user uti-

lities with the scope of use only on the local PC. As a

result, they may be challenging and costly to manage if

deployed widely in an enterprise since each user will

need to setup, enroll her biometric, and configure the

appropriate policy, all by herself. Usually the user is

given the option to use the biometric system as a cool

individual convenience, rather than enforced by an

enterprise-wide authentication policy.

▶Access Control, Logical
Logical Access Control,
Client-Server-Based
The client-server-based logical access control solutions

typically limit the flexibility given to the end-user and

instead focus on the needs of the organization and the

system administrator to deploy, enroll users’ biometric

credentials into the enterprise directory, and centrally

configure enterprise-wide policies. An enterprise-wide
policy, however, drives stronger requirements for the

reliability, security, and interoperability of the biomet-

ric authentication. If it is a business policy that every-

one in the organization must use the biometric system

for authentication, the reliability of the biometric sys-

tem must be higher than a client-side-only solution

where the user can opt-in to use the biometric system

just for convenience. A server-based logical access con-

trol solution generally needs to be interoperable with

data coming from many different biometric readers

since not every platform in the organization will use

the same model of the biometric reader. Interoperabil-

ity can be accomplished at either the enrollment tem-

plate level or the biometric image level. Lastly, since a

server-based solution typically stores biometric cre-

dentials in a central database, the security model of

the whole chain from the reader to the server must be

considered to protect against hackers and maintain

user privacy. However, unlike government deploy-

ments that store the user’s actual biometric image(s)

for archival purposes, a biometric solution used for

enterprise authentication typically stores only the bio-

metric enrollment templates.

▶Access Control, Logical
Logico-Linear Operator
An operation in signal processing that bridges the gulf

between linear operations, such as filtering, and the

logical calculus of Boolean operators such as AND,

OR, and XOR. In doing so, a logico-linear operator

serves as a kind of signal-to-symbol converter. The input

to the operator is a continuous signal such as a sound

waveform or an image, upon which a linear operation

is performed such as computing some derivative, or

convolving with some filter. The output of the linear

operation is converted into a logical state by, for exam-

ple, comparing to a threshold, noting its sign, quantiz-

ing its phase or its modulus if complex, or some more

abstract binary classification. The resulting Boolean

quantity can be used as a logical operand for purposes

such as detecting similarity and differences (XOR),

motion between image frames (XOR), region growing

(OR), masking (AND) of some data by other data,
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descriptions of complexity or of graph structure, veto-

ing (NAND), machine learning, and so forth. Iris

encoding and recognition is performed through the

use of logico-linear operators.

▶ Iris Encoding and Recognition using Gabor

Wavelets
Logon, Password Management
▶Access Control, Logical
Luminance
In photometry, luminance is a measure of the density

of illumination describing the amount of light that

passes through or is emitted from a particular area,

and falls within a given solid angle. In the context of

color perception, luminance indicates the perceived

brightness (or lightness) of a given color. In color

spaces that separate the luminance in a separate chan-

nel (such as the Y channel in the YUV color space), the

luminance channel of an image is equivalent to a gray

level version of that image.

▶Gait Recognition, Motion Analysis for
L
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Machine-Generated Fingerprint
Classes
Fingerprints are grouped based on some similarity

criteria in the feature space. Fingerprint groups are

formed by machine learning from fingerprint samples

in an unsupervised manner such as clustering and

binning. Such fingerprint groups are called machine-

generated fingerprint classes. The goal of partitioning

the database into machine-generated fingerprint clas-

ses is to divide the fingerprint population into as many

classes as possible while maximizing the possibility of

placing the fingerprints of a same finger into a same

class in a consistent and reliable way.

▶ Fingerprint Classification
Machine-Learning
A type of algorithm that learns from past experience to

make decisions.

▶ Incremental Learning

▶Palmprint Matching
Magnification
In optical imaging, the ratio of the dimensions of the

image created by the optical system to the dimensions of

the object that is imaged. The ratio can be less than one.

▶ Iris Device
# 2009 Springer Science+Business Media, LLC
Mahalanobis Distance
The Mahalanobis distance is based on the covariance

among variables in the feature vectors which are com-

pared. It has the advantage of utilizing group means

and variances for each variable and the problems

of scale and correlation inherent in the Euclidean dis-

tance are no longer an issue. When using Euclidean

distance, the set of points equidistant from a given

location is a sphere. The Mahalanobis distance stretches

this sphere to correct the respective scales of different

variables and to account for correlation among variables.

▶Hand Shape

▶ Signature Matching
Malicious-code-free Operating
System
▶Tamper-proof Operating System
Manifold
Manifold is a non-empty subset M of RN such that the

neighborhood of every point p 2 M resembles a Eu-

clidean space. A smoothmanifold is associated with a set

of homeomorphisms thatmap points fromopen subsets

around every point p to points in open subsets in Rm,

where m is the intrinsic dimensionality of the manifold.

▶Gait Recognition, Motion Analysis for

▶Manifold Learning

▶Non-linear Techniques for Dimension Reduction
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Manifold Embedding
Any manifold is embedded in an Euclidean space, e.g.,

a sphere in the 3D world is a two-dimensional mani-

fold embedded in a three-dimensional space.

▶Gait Recognition, Motion Analysis for
Manifold Learning

PHILIPPOS MORDOHAI
1, GÉRARD MEDIONI

2

1Stevens Institute of Technology, PA, USA
2University of Southern California, Los Angeles,

CA, USA
Definition

Manifold learning is the process of estimating the

structure of a ▶manifold from a set of samples, also

referred to as observations or instances, taken from the

manifold. It is a subfield of machine learning that

operates in continuous domains and learns from

observations that are represented as points in a Euclid-

ean space, referred to as the ▶ ambient space. This type

of learning, to Mitchell, is termed instance-based or

memory-based learning [1]. The goal of such learning

is to discover the underlying relationships between

observations, on the assumption that they lie in a limited

part of the space, typically a manifold, the ▶ intrinsic

dimensionality of a manifold of which is an indication

of the degrees of freedom of the underlying system.
Introduction

Manifold learning has attracted considerable attention

of the machine learning community, due to a wide

spectrum of applications in domains such as pattern

recognition, data mining, biometrics, function approx-

imation and visualization. If the manifolds are linear,

techniques such as the Principal Component Analysis

(PCA) [2] and Multi-Dimensional Scaling (MDS) [3]

are very effective in discovering the subspace in which

the data lie. Recently, a number of new algorithms that
not only advances the state of the art, but are also

capable of learning nonlinear manifolds in spaces of

very high dimensionality have been reported in the

literature. These include locally linear embedding

(LLE) [4], Isomap [5] and the charting algorithm [6].

They aim at reducing the dimensionality of the input

space in a way that preserves certain geometric or

statistical properties of the data. Isomap, for instance,

preserves the▶ geodesic distances between all points as

the manifold is ‘‘unfolded’’ and mapped to a space of

lower dimension.

Given a set of observations, which are represented

as vectors, the typical steps of processing are as follows:

� Intrinsic dimensionality estimation

� Learning structure of the manifold

� Dimensionality reduction to remove redundant

dimensions, preserving the learned manifold

structure.

Not all algorithms perform all steps. For instance, LLE

[4] and the Laplacian eigenmaps algorithm [7] require

an estimate of the dimensionality to be provided

externally. The method proposed by Mordohai and

Medioni [8], which is based on tensor voting, does

not reduce the dimensionality of the space, but per-

forms all operations in the original ambient space.

Recent methods used for these tasks are discussed

in this essay. Dimensionality reduction is described in

conjunction with manifold learning since it is often

closely tied with the selected manifold learning algo-

rithm. In addition, research on manifold learning with

applications in biometrics is highlighted.
Intrinsic Dimensionality Estimation

Bruske and Sommer [9] who proposed an approach an

optimally topology preserving map (OTPM) is con-

structed for a subset of the data. Principal Component

Analysis (PCA) is then performed for each node of

the OTPM on the assumption that the underlying

structure of the data is locally linear. The average of

the number of significant singular values at the nodes

is the estimate of the intrinsic dimensionality.

Kégl [10] estimated the capacity dimension of

a manifold, which is equal to the topological dimen-

sion and does not depend on the distribution of

the data, using an efficient approximation based on

packing numbers. The algorithm takes into account
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dimensionality variations with scale and is based on a

geometric property of the data. This approach differs

from the PCA-related methods that employ succes-

sive projections to increasingly higher-dimensional sub-

spaces until a certain percentage of the data is explained.

Raginsky and Lazebnik [11] described a family of

dimensionality estimators based on the concept of

quantization dimension. The family is parameterized

by the distortion exponent and includes Kégl’s method

[10] when the distortion exponent tends to infinity. The

authors demonstrated that small values of the distortion

exponent yield estimators that are more robust to noise.

Costa and Hero [12] estimated the intrinsic dimen-

sion of the manifold and the entropy of the samples.

Using geodesic-minimal-spanning trees, the method,

like Isomap [5], considers global properties of the adja-

cency graph and thus produces a single global estimate.

The radius of the spheres is selected in such a way

that they contain enough points and that the density of

the data contained in them can be assumed constant.

These requirements tend to underestimate of the dimen-

sionality when it is very high.

The method proposed by Mordohai and Medioni

[14] obtains estimates of local intrinsic dimensionality

at the point level. Tensor voting enables the estimation

of the normal subspace of the most salient manifold

passing through each point. The normal subspace is

estimated locally by collecting at each point votes from

its neighbors. Tensor voting is a pairwise operation in

which all points act as voters casting votes to their

neighbors and as receivers collecting votes from their

neighbors. These votes encode geometric information

on the dimensionality and orientation of the local

subspace of the receiver on the assumption that the

voter and receiver belong to the same structure (mani-

fold). The dimensionality of the estimated normal

subspace is given by the maximum gap in the eigenva-

lues of a second order tensor that represents the accu-

mulated votes at the point. The intrinsic dimensionality

of the manifold at the point under consideration is

computed as the dimensionality of the ambient space

minus that of the normal subspace.
Manifold Learning and Dimensionality
Reduction

Schölkopf et al. [15] proposed the underlying as-

sumption of is that if the data lie on a locally linear,
low-dimensional manifold, then each point can be

reconstructed from its neighbors with appropriate

weights. These weights should be the same in a low-

dimensional space, the dimensionality ofwhich is greater

than or equal to the intrinsic dimensionality of the man-

ifold. The LLE algorithm computes the basis of such

a low-dimensional space. The dimensionality of the

embedding, however, has to be given as a parameter,

since it cannot always be estimated from the data. More-

over, the output is an embedding of the given data, but

not a mapping from the ambient to the ▶ embedding

space. The LLE is not isometric and often fails by

mapping distant points close to each other.

Isomap, an extension of the MDS, developed by

Tenenbaum et al. [5] uses geodesic instead of Euclide-

an distances and can thus be applied to nonlinear

manifolds. The geodesic distances between points are

approximated by graph distances. MDS is then applied

to the geodesic distances to compute an embedding

that preserves the property of points to be close or far

away from each other. Isomap can handle points not

in the original dataset, and perform interpolation, but

it is limited to convex datasets.

The Laplacian eigenmaps algorithm, developed by

Belkin and Niyogi [7] computes the normalized graph

Laplacian of the adjacency graph of the input data,

which is an approximation of the Laplace-Beltrami

operator, on the manifold. It exploits locality preserv-

ing properties that were first observed in the field of

clustering. The Laplacian eigenmaps algorithm can be

viewed as a generalization of LLE, since the two be-

come identical when the weights of the graph are

chosen according to the criterion of the latter. As in

the case of the LLE, the dimensionality of the manifold

also has to be provided, the computed embeddings are

not isometric and a mapping between the two spaces

is not produced.

Donoho and Grimes [16] proposed the Hessian

LLE (HLLE), an approach similar to the Laplacian

eigenmaps. It computes the Hessian instead of the

Laplacian of the graph. The authors alleged that the

Hessian is better suited than the Laplacian for detect-

ing linear patches on the manifold. The major contri-

bution of this approach is that it proposes a global,

isometric method, which, unlike the Isomap, can be

applied to non-convex datasets. The need to estimate

second derivatives from possibly noisy, discrete data

makes the algorithm more sensitive to noise than the

others approaches.
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Other related research includes the charting

algorithm of Brand [6], which computes a pseudo-

invertible mapping of the data as well as the intrinsic

dimensionality of the manifold. The dimensionality is

estimated by examining the rate of growth of the num-

ber of points contained in hyper-spheres as a function of

the radius. Linear patches, areas of curvature and noise

can be correctly classified using the proposed measure.

At a subsequent stage, a global coordinate system for

the embedding is defined. This produces a mapping

between the input space and the embedding space.

Weinberger and Saul [17] developed Semidefinite

Embedding (SDE) which addresses manifold learning

by enforcing local isometry. The lengths of the sides of

triangles formed by neighboring points are preserved

during the embedding. These constraints can be

expressed in terms of pairwise distances and the optimal

embedding can be found by semidefinite programming.

The method is computationally demanding, but can reli-

ably estimate the underlying dimensionality of the inputs

by locating the largest gap between the eigenvalues of the

Grammatrix of the outputs. As in the case of the authors’

approach, this estimate does not require a threshold.

The method for manifold learning described [8] by

Mordohai and Medioni [8] is based on inferring the

geometric properties of the manifold locally via tensor

voting. An estimate of the local tangent space allows one

to traverse the manifold estimating geodesic distances

between points and generating novel observations on the

manifold. In this method it is not necessary that the

manifold is differentiable, or even connected. It can

process data from intersecting manifolds with different

dimensionality and is very robust to outliers. Unlike

most of the other approaches, the authors did not per-

formdimensionality reduction, but conducted all opera-

tions in the ambient space instead. If dimensionality

reduction is desired for visualization or memory saving,

any technique can be applied after this.
Applications

There are two main areas of application of manifold

learning techniques in biometrics: estimation of the

degrees of freedom of the data and visualization.

Given labeled data, the degrees of freedom can be

separated into those that are related to the identity of

the subject and those that are due to other factors, such

as pose. Visualization is enabled by reducing the
dimensionality of the data to two or three to generate

datasets suitable for display. This can be achieved by

selecting the most relevant dimensions of the manifold

and mapping them to a linear 2-D or 3-D space.

An example of both visualization and estimation of

the important modes of variability of face images has

been discussed by [4]. The input is a set of images of the

face of a single person undergoing expression and view-

point changes. The images are vectorized, that is the

pixels of each 28*20 image are stacked to form a 560-D

vector, and used as observations. LLE is able to deter-

mine the two most dominant degrees of freedom which

are related to head pose and expression variations.

Embedding the manifold from the 560-D ambient

space to a 2-D space provides a visualization in which

similar images appear close to each other. Similar experi-

ments have been described in Tenenbaum et al. [5].

Prince and Elder [18] addressed the issue of face

recognition from a manifold learning perspective by

creating invariance to degrees of freedom that do not

depend on identity. They labeled these degrees of free-

dom, namely, pose and illumination, ‘‘nuisance para-

meters’’ and were able to isolate their effects using a

training dataset in which the value of the nuisance para-

meters is known and each individual has at least two

different values of each nuisance parameter. The images

are converted to 32 � 32 and subsequently to 1024-D

vectors. Varying a nuisance parameter generates a mani-

fold, which has little value for recognition. Therefore,

once these manifolds are learned, their observations are

mapped to a single point, which corresponds to the

identity of the imaged person, in a new space.

Liao and Medioni [19] studied face tracking and

expression inference from video sequences using tensor

voting to learnmanifolds that correspond to basic expres-

sions, such as smile and surprise. During training, land-

mark points are tracked in the video sequence and their

3-Dpositions are obtained using a 3-Dmodel of the head.

Facial deformation manifolds are learned from labeled

sequences of the basic expressions. A parameter that cor-

responds to the magnitude of the expression is estimated

for each frame. During testing, the observation vector is

the position of the landmarks and the goal is to jointly

estimate head pose and themagnitude of each expression.

This is accomplished by computing the probability that

the observation was generated by each manifold. The

posterior probability is inferred using a combination

model of all manifolds. Some results of deformable track-

ing and expression inference are presented in Fig. 1.



Manifold Learning. Figure 1 Top row: Some frames from test video sequences [19]. Middle row: Visualization of the

positions of the landmarks that show the estimated pose as well as the estimated deformation that corresponds to the

inferred magnitude of each expression. Bottom row: Probability of basic expressions. Since each frame corresponds to a

single expression, only one model in the mixture has a high probability.
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Summary

Manifold learning techniques have attracted consider-

able attention in the last few years, because of their

ability to untangle information in high dimensional

spaces and reveal the degrees of freedom of the under-

lying process. This essay presents an overview of the

state of the art in intrinsic dimensionality estimation

and manifold learning. These algorithms can be de-

ployed in the field of biometrics, where high dimension-

al data exist in large volumes, to discover and learn the

dimensionality and local structure of manifolds formed

by biometric measurements. Different observations on

the manifold are due to variations in identity or other

factors, which may be unimportant for many applica-

tions. Given training data, in which variations between

samples have been labeled according to the factor that

caused them, manifold learning techniques can estimate

a mapping from a measurement to identity, pose, facial

expression or any other variable of interest.
Related Entries

▶Kernel Methods

▶Machine-Learning
▶Classifier Design

▶Probability Distribution
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Manual Annotation
The manual annotation or description of an outsole

involves a trained professional assigning a number of

predefined pattern descriptors to the tread pattern.

The palette of available descriptors is usually quite

small and somewhat general or abstract in interpreta-

tion. For example, there may be descriptor terms such

as wavy, linked, curved, zig zag, circular, simple geo-

metric, and complex. This makes the annotation task

quite subjective and inconsistent and hence must be

complete by trained professionals.

▶ Footwear Recognition
Margin Classifier
▶ Support Vector Machine
Markerless 3D Human Motion
Capture from Images

P. FUA

EPFL, IC-CVLab, Lausanne, Switzerland
Synonyms

Motion recovery 3D; Video-based motion capture
Definition

Markerless human motion capture from images entails

recovering the successive 3D poses of a human body

moving in front of one or more cameras, which should

be achieved without additional sensors or markers

to be worn by the person. The 3D poses are usually

expressed in terms of the joint angles of a kinematic

model including an articulated skeleton and volumet-

ric primitives designed to approximate the body shape.

They can be used to analyze, modify, and re-synthesize

the motion. As no two people move in exactly the same

way, they also constitute a signature that can be used

for identification purposes.
Introduction

Understanding and recording human and other verte-

brate motion from images is a longstanding interest.

In its modern form, it goes back at least to Edward

Muybridge [1] and Etienne-Jules Marey [2] in the

nineteenth century. They can be considered as the pre-

cursors of human motion and animal locomotion

analysis from video. Muybridge used a battery of pho-

tographic cameras while Marey designed an early

‘‘video camera’’ to capture motions such as the one of

Fig. 1a. In addition to creating beautiful pictures, they

pioneered image-based motion capture, motion anal-

ysis, and motion measurements.

Today, more than 100 years later, automating this

process remains an elusive goal because humans

have a complex articulated geometry overlaid with

deformable tissues, skin, and loose clothing. They

move constantly, and their motion is often rapid,

complex, and self-occluding. Commercially avail-

able ▶motion capture systems are cumbersome or
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expensive or both because they rely on infra-red

or magnetic sensors, lasers, or targets that must be

worn by the subject. Furthermore, they usually work

best in controlled environments. Markerless video-

based systems have the potential to address these

problems but, until recently, they have not been reli-

able enough to be used practically. This situation

is now changing and they are fast becoming an attrac-

tive alternative.

Video-basedmotion capture is comparatively simpler

ifmultiple calibrated cameras can be used simultaneously.

In particular, if camera motion and background scenes

are controlled, it is easy to extract the body outlines.

These techniques can be very effective and commercial

systems are now available. By contrast, in natural scenes

with cluttered backgrounds and significant depth vari-

ation, the problem remains very challenging, especially

when a single camera is used. However, it is worth

addressing because solving it will result in solutions

far easier to deploy and more generally applicable

than the existing ones.

Success will make it possible to routinely use video-

based motion capture to recognize people and charac-

terize their motion for biometric purposes. It will also

make our interaction with computers, able to perceive

our gestures much more natural; allow the quantitative

analysis of the movements ranging from those of ath-

letes at sports events to those of patients whose
Markerless 3D Human Motion Capture from Images. Figure

(a) Chronophotography by Marey at the end of the nineteenth

century with background images at the top and subject’s bod

sequencewithoverlaidbodyoutlines and corresponding visual h
locomotive skills are impaired; useful to capture mo-

tion sequences outside the laboratory for realistic ani-

mation and synthesis purposes; make possible the

analysis of people’s motion in a surveillance context;

or facilitate the indexing of visual media. In short, it

has many potential mass-market applications.
Methodology

This section briefly reviews the range of techniques

that have been developed to overcome the difficulties

inherent to 3D body motion modeling from images.

This modeling is usually done by recovering the joint

angles of a ▶ kinematic model that represents the

subject’s body, as shown in Fig. 1d. The author dis-

tinguishes between multi-camera and single-camera

techniques because the former are more robust but

require much more elaborate setups, which are not

necessarily appropriate for biometrics applications.

This section also discusses the use of ▶ pose and

motion models, which have proved very effective at

disambiguating difficult situations. For all the techni-

ques introduced a few representative papers are listed.

However, the author does not attempt to be exhaustive

to prevent the reference list of this essay from contain-

ing several hundred entries. For a more extensive

analysis, please refer [3, 4].
1 Two centuries of video-based motion capture.

century [2]. (b) Multi-camera setup early in the twenty-first

y outline overlaid in white at the bottom [3]. (c) Video

ulls [3]. (d) Articulated skeletonmatched to the visual hulls [3].
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Multi-Camera Modeling

Many methods that derive the 3D pose of a person

from 3D shape sequences reconstructed from multiple

views have been proposed. A popular approach is to fit

a skeleton parameterized in terms of its joint angles to

the visual-hull derived from body outlines [3], as illu-

strated by Fig. 1b–d. In a controlled environment this

can be done in real-time but requires great care during

the imaging process to ensure that the silhouettes can

indeed be extracted reliably. An alternative is to extract

stereo data using camera pairs and fitting the body

model to the resulting 3D point cloud. In both cases,

the process can be initialized by asking the subject to

perform a sequence of known motions to estimate

body proportions and calibrate the system.

Until recently, most of these approaches relied on

deterministic gradient descent techniques combined

with the extended Kalman filter to iteratively estimate

changes in pose and motion. A common limitation

of these techniques is the use of a single pose or state

estimate which is updated at each time step. In prac-

tice, if the movement is too fast or if the image data

can be accounted for almost as well by more than

one pose, pose estimation may fail catastrophically.

Monte Carlo-based tracking techniques, such as

particle filtering [5], were introduced to deal with

such failures by simultaneously considering multiple

hypotheses in a principled way. The principal difficulty

with their application to human pose estimation is

the dimensionality of the state space. The number of

samples or particles required increases exponentially

with dimensionality. Recent work has therefore com-

bined stochastic and gradient descent search to achieve

both computational efficiency and robustness.

Techniques have also been developed to recover

not only kinematic but also morphologic models,

that account for body deformation during motion.

These rely on machine learning approaches to per-

form dimensionality reduction of human shape

variability and produce models [6] that can be fitted

to noisy image data.

These efforts have been successful to the point

where commercial systems are now becoming avail-

able. However, they usually only capture rough poses

of the torso, arms, and legs while details such as

hand-orientation or axial arm rotation are missing.

Furthermore, the pose approximations are only

dependable if the model fitted to the image data is a
reasonable initial approximation of the person’s body

shape. The commercial systems therefore commonly

assume short hair and close fitting clothing, which

limits their generality.
Single Camera Modeling

Many recent approaches are trying to overcome the

difficulties inherent to single-camera tracking. They

can be classified as follows:

1. Detect. This implies recognizing postures from a

single image by matching it against a database and

has become increasingly popular but requires very

large sets of examples to be effective. Approaches of

this kind have been successfully demonstrated for

pedestrian detection [7].

2. Track. This involves predicting the pose in a frame

given the pose in the previous frame. This requires an

initial pose and can easily fail if errors start accumu-

lating in the prediction, causing divergence in the

estimation process. As in the multi-camera case, this

can be mitigated by introducing stochastic optimi-

zation techniques that can handle multiple compet-

ing hypotheses [5]. An effective alternative is to

introduce strong dynamic motion models as priors

on the search space, as will be discussed below.

Detection and tracking are complementary in

many respects. They have been profitably combined

to track automatically multiple people in extremely

long sequences [8, 9]: Tracking takes advantage of

temporal continuity and the smoothness of human

motions to accumulate information through time,

while detection techniques are likely to be useful for

initialization of tracking and search. With suitable

dynamical models, tracking has the additional advan-

tage of providing parameter estimates that may be

directly relevant for subsequent recognition tasks

with applications to biometrics, sport training, phys-

iotherapy, or clinical diagnostics.
Motion Models

Pose and motion models may be generic or activity

specific. Many researchers adopt generic models that

encourage smoothness while obeying kinematic joint

limits. Such models are often expressed in terms of
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first- or second-order Markovmodels. Activity-specific

models more strongly constrain 3D tracking and

help resolve potential ambiguities, but at the cost of

having to infer the class of motion, and to learn the

models.

The most common approach to learning activity-

specific models of motion or pose has been to use optical

motion capture data from one or more people

performing one or more activities, such as walking, run-

ning, or jumping. Given the high-dimensionality of the

data it is natural to try embedding it in a low-dimensional

space [10]. However, the highly nonlinear nature of the

manifold of possible human poses makes it difficult.

Thus, methods for nonlinear dimensionality reduction

have gained in popularity. This approach is illustrated

by Fig. 2 in which the motion model is expressed in

terms of a Gaussian process latent variable model [11].

Instead of modeling the pose space, one might

directly model the space of human motions, in which

consecutive poses are concatenated into a global

motion vector. Motion subspace models learned from

multiple people performing the same activity have

long been used in the animation community. They

have also been successfully used for 3D people tracking

[12, 13]. For the restricted class of cyclic motions,

an automated procedure for aligning training data

as a precursor to PCA was developed [12]. Similarly,
Markerless 3D Human Motion Capture from Images. Figure

First two rows: The skeleton of the recovered 3D model is pro

rows: Volumetric primitives of the recovered 3D model projec
a related class of subspace models for walking

motions in which the temporal variations in pose is

expressed in terms of sinusoidal basis functions

has been proposed [14]. It has been shown that

three harmonics are sufficient for reliable gender

classification.
Biometric Applications

Most image-based approaches to person identification

on the basis of the way they move can be classified into

two broad categories: Appearance-based ones that deal

directly with image statistics and model-based ones

that first fit a model to the image data and then analyze

the variation of its parameters.

Until now, because the model-based approaches

have been so brittle, the majority of published

approaches fall into the first category. Some rely on

first processing each frame independently and then

using a Hidden Markov Model to model the transi-

tions from one frame to the next [15]. Others exploit

the spatio-temporal statistics of the image stream [16].

Methods that rely on dense optical flow [17] or self

similarity plots computed via correlation of pairs of

images have also been proposed. The main drawback

of these appearance-based approaches is that they are
2 Tracking of a golf swing using a single video camera.

jected into a representative subset of images. Bottom two

ted into the same views.
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usually designed only for a specific viewpoint, usually

fronto-parallel. Furthermore guaranteeing robustness

against clothing and illumination changes remains

difficult even though much effort has been expanded

to this end, for example, by using silhouettes and

binary masks rather than the image pixels gray levels

themselves.

With their increasing competence, the 3D model-

based approaches can be expected to eventually over-

come these limitations. Already some of them have

shown promise. For example, in [18], leg motion is

extracted by temporal template matching using a

model defined by forced coupled oscillators. Individ-

ual signatures are then derived by Fourier analysis.

Another recent good example of model-based gait

recognition can be found in [19]. The gait signature

is extracted by using Fourier series to describe the

motion of the upper leg and by applying temporal

evidence gathering techniques to extract the moving

model from a sequence of images. However these tech-

niques are still 2D, which means that a near fronto-

parallel view is assumed. This approach has been

extended to full 3D modeling by replacing the Fourier

analysis by fitting PCA-based motion models to the

image data [20].
Summary

In recent years, video-based human motion capture

has made very significant advances, which are driven

by demands of potential mass-market applications.

Multi-camera systems are beginning to reach a level of

maturity that makes them of practical use but are some-

what harder to deploy and calibrate than single-camera

systems. These, while still far from the robustness that

wouldmake them commercially viable, are also progres-

sing fast. In particular, they now take advantage of

sophisticated statistical learning techniques to develop

effective motion models and overcome the ambiguities

inherent to monocular 3D reconstruction.

Biometrics approaches are beginning to take advan-

tage of this increasing competence to recognize people

on the basis of how they move in 3D. This holds the

promise of techniques that will be easy to deploy be-

cause they will only require simple and cheap sensors,

such as one or more webcams, able to operate in un-

controlled environments in which the subjects can

move freely.
Related Entries

▶Deformable Models

▶Human Detection and Tracking

▶Machine-Learning

▶Gait Recognition, Motion Analysis for
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Match Score Fusion
▶ Fusion, Score-Level
M
Matcher
A biometric identification system that compares the

templates stored during user enrollment with those

extracted from the presented biometric samples and

generates a matching score. The module that generates

this matching score is referred to as matcher.

▶ Fusion, Rank-Level
Matching
▶Biometric Algorithms
Matching Score
A quantitative measure related to the similarity among

a biometric trait and a user template. From a pattern
classification point of view, matching scores are usually

related to the likelihood of a template of being from a

class. In general, given a biometric sample, the higher

the matching score, the higher is the probability that it

belongs to the claimed user. Matching scores are pro-

duced by the matcher module of a biometric system.

▶ Signature Matching
Match-On-Card
Match-on-card is a technology that enables a system to

match between the template and the sampled data on a

smart card. With this technology, templates will never

be transmitted to any other devices or storage systems,

which suppresses the risk of unauthorized template

duplication. Since the matching process is executed

by a relatively small CPU that is mounted on the

smart card, the processing time is typically longer

than other systems using common CPUs for PC.

▶ Finger Vein Reader

▶Transportable Asset Protection
Maximum A Posteriori (MAP)
Maximum A Posteriori estimation is to estimate a stoc-

hastic variable with both prior distribution and conditi-

onal likelihood function. It can be seen as a regularization

of Maximum Likelihood Estimation (MLE).

▶ Iris Super-Resolution
Maximum A-Posteriori Estimation
Method of parameter estimation in which a parameter

is estimated using the data and a prior distribution

over the parameter one wants to estimate.

▶Gaussian Mixture Models
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Maximum Likelihood Estimation
Method of parameter estimation in which a parameter

is estimated to be that value for which the data are

most likely.

▶Gaussian Mixture Models
Maximum Margin Classifier
▶ Support Vector Machine
Maximum Permissible Exposure
(MPE)
The highest exposure to which a subject may be sub-

jectedwithout adverse effect. Similar to but distinct from

threshold limit value. Similar also to PEL, permissible

exposure level, which is a legal term in some jurisdictions

that defines the legally permissible exposure limit.

▶ Iris on the Move
Mesocephalic
Mesocephalic is the head form that is intermediate

between brachycephalic and dolicocephalic forms.

▶Anatomy of Face
Metatarsal Ridge
Metatarsal ridge is defined as the leading edge of the

impression made by the ball area of the foot.

▶ Forensic Barefoot Comparisons
Microphone
▶Voice Device
Microphone Arrays
Microphone arrays are composed of severalmicrophones

located at fixed relative positions from each other. They

use knowledge of themicrophone locations to predict the

delays observed in signals coming from different direc-

tions. This allows two different possibilities: finding the

position of a sound source (for instance to aim a video-

conference camera at the speaker), and reducing the

noise of the captured signal by enhancing the sensitivity

of the microphone array in a particular direction. This is

achieved by adequately combining the signals captured

by the different microphones in the array.

▶Voice Device
Minimal Constraint Iris Recognition
▶ Iris on the Move™
Minutia
Minutia are the points in the fingerprint where the

finger ridges split (a bifurcation point) or terminate

(an ending point).

Minutia is the basis for recognizing a fingerprint in

early law enforcement applications and has gradually

become the standard of fingerprint template.

▶ Large Scale System Design
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Minutia Direction
The tangential direction of the ridge or valley at the

minutia point.

▶ Fingerprint Features
Mislabeled Iris Data Correction
▶Automatic Classification of Left/Right Iris Images
M
Mitochondrial DNA
Mitochondria are organelles in our cells that are asso-

ciated with the production of energy. Mitochondrial

DNA (mtDNA) is a circular DNA present in mitochon-

dria and not in the cell nucleus. There are on average

100–1,000 mitochondria per cell. Each mitochondrion

contains a dozen of copies of mtDNA. Therefore each

cell contains 1,000–10,000 copies of mtDNA, instead of

two for ‘‘normal’’ or nuclear DNA. mtDNA is therefore

very useful for degraded samples. It is transmitted by the

mother and its polymorphism is limited (the chance of

finding the same sequence in two unrelated individuals

is on average 1 in 1,000).

▶ Forensic DNA Evidence
Mixture Mode
▶Gaussian Mixture Models
Model-Based Biometrics
▶Biometric Sample Synthesis
Monitoring
▶ Surveillance
Monomodal/Multimodal Database
A monomodal database is a database which only has

one biometric trait sensed. A multimodal database is a

database which has more than one biometric trait from

the same individual.

▶ Fingerprint Databases and Evaluation
Morphable Models
▶Deformable Models
Mosaicing
The process of creating a composite image from over-

lapping component images is called mosaicing. In

biometrics, mosaicing techniques are used to integrate

multiple information for improving recognition

performance.

▶ Fingerprint Templates

▶ Fusion, Sensor-Level
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Motion Capture
Digitally recording motions by recovering the succes-

sive 3D joint angles that characterize them. Most cur-

rent systems rely on specialized sensors attached to the

performer’s body or on imaging markers worn by the

subject.

▶Markerless 3D Human Motion Capture from

Images
Motion Estimation
Face tracking can be looked upon as estimating the

motion of the face over subsequent video frames. This

can be the 2D motion on the image plane or the 3D

pose of the face.

▶ Face Tracking
Motion Model
Motion model describes the timing and displacement

of each structure such as limbs, head, and torso that

makes up a particular body. The motion is dependent

on the structural model. Motion displacement is nor-

mally expressed in angle or distance.

▶Gait Recognition, Model-Based
Motion Recovery, 3D
▶Markerless 3D HumanMotion Capture from Images
Moving Light Display
A technique pioneered by Johansson [1] for use in

psychological experiments to isolate a motion stimulus

by acquiring images of lights placed on the body joints.

▶Gait Recognition, Silhouette-Based
MS
MS is a qualitative and quantitative analytical tech-

nique which fragments compounds in a manner

which is characteristic of each compound. It can be

coupled with GC to produce a reliable separation and

identification tool for complex mixtures.

▶Odor Biometrics
Multi-Algorithm Systems
▶Multibiometrics
Multi-Instance Systems
▶Multibiometrics
Multi-Modal Samples
▶Multibiometrics
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Multi-Sample Systems
▶Multibiometrics
Multi-Sensor Systems
▶Multibiometrics
Multi-Unit Systems
▶Multibiometrics
M

MultiBand Biometrics
▶Multispectral and Hyperspectral Biometrics
Multibiometric Fusion,
Standardization
▶Multibiometrics and Data Fusion, Standardization
MultiBiometric Systems
The use of two or more biometrics within a biometric

system to enhance its accuracy, usability, or security.

The accuracy can be enhanced by leveraging the degree

of orthogonality of the biometric types used, to
provide an extra level of assurance the user is who he

or she claims to be. The usability aspects may be

enhanced by offering a type of biometric that is com-

mensurate with the local environment: examples of

this would be; using a silicon-based fingerprint system

in areas of high ambient lighting; or using a facial

recognition system where hands-free access is required,

such as in a medical facility. The security of a system

can be enhanced using a multi-biometric system not

only by virtue of enhanced accuracy, but also because

the use of alternate biometrics can remove the need for

a non-biometric fallback system to be used in cases

where one of the biometrics exhibits false rejections.

▶Access Control, Physical
Multibiometrics

ARUN ROSS

Lane Department of Computer Science and Electrical

Engineering, West Virginia University, Morgantown,

WV, USA
Synonym

Biometric fusion
Definition

Multibiometrics refers to the use of multiple sources

of biometric information in order to establish the

identity of an individual. Multibiometric systems

combine the biometric evidence offered by multiple

biometric sensors (e.g., 2D and 3D face sensors),

algorithms (e.g., minutia-based and ridge-based

fingerprint matchers), samples (e.g., frontal and pro-

file face images), units (e.g., left and right irises), or

traits (e.g., face and iris) to enhance the recognition

accuracy of a biometric system. Information fusion

can be accomplished at several different levels in a

biometric system, including the sensor-level, feature-

level, score-level, rank-level, or decision-level. The

challenge is to design an effective fusion scheme to

consolidate the multiple pieces of evidence to generate

a decision about an individual’s identity.
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Introduction

Most biometric systems that are presently in use, typi-

cally use a single biometric trait to establish identity

(i.e., they are unibiometric systems). Some of the

challenges commonly encountered the by biometric

systems include:

1. Noise in sensed data. The biometric data being pre-

sented to the system may be contaminated by noise

due to imperfect acquisition conditions or subtle

variations in the biometric itself.

2. Non-universality. The biometric system may not

be able to acquire meaningful biometric data from

a subset of individuals resulting in a failure-to-

enroll (FTE) error.

3. Upper bound on identification accuracy. The match-

ing performance of a unibiometric system cannot

be indefinitely improved by tuning the feature

extraction and matching modules. There is an im-

plicit upper bound on the number of distinguish-

able patterns (i.e., the number of distinct biometric

feature sets) that can be represented using a

template.

4. Spoof attacks. Behavioral traits such as voice and

signature are vulnerable to spoof attacks by an

impostor attempting to mimic the traits corres-

ponding to legitimately enrolled subjects. Physical

traits such as fingerprints can also be spoofed by

inscribing ridge-like structures on synthetic mate-

rial such as gelatine and play-doh. Targeted spoof

attacks can undermine the security afforded by the

biometric system and, consequently, mitigate its

benefits.

Some of the limitations of a unibiometric system

can be addressed by designing a system that consoli-

dates (or fuses) multiple sources of biometric informa-

tion [1, 2]. This can be accomplished by fusing, for

example, multiple traits of an individual, or multiple

feature extraction and matching algorithms operating

on the same biometric trait. Such systems, known as

multibiometric systems [3, 4], can improve the match-

ing accuracy of a biometric system while increasing

population coverage and deterring spoof attacks.

Fusion in biometrics relies on the principles in the

information fusion and multiple classifier system

(MCS) literature [5, 6].
Advantages of Multibiometric
Systems

Besides enhancing matching accuracy, the other

advantages of multibiometric systems over traditional

unibiometric systems are enumerated below [3].

1. Multibiometric systems address the issue of non-

universality (i.e., limited population coverage) en-

countered by unibiometric systems. If a subject’s

dry finger prevents her from successfully enrolling

into a fingerprint system, then the availability of

another biometric trait, say iris, can aid in the

inclusion of the individual in the biometric system.

A certain degree of flexibility is achieved when a

user enrolls into the system using several different

traits (e.g., face, voice, fingerprint, iris, hand etc.)

while only a subset of these traits (e.g., face and

voice) is requested during authentication based on

the nature of the application under consideration

and the convenience of the user.

2. Multibiometric systems can facilitate the filtering or

indexing of large-scale biometric databases. For

example, in a bimodal system consisting of face and

fingerprint, the face feature set may be used to com-

pute an index value for extracting a candidate list of

potential identities from a large database of subjects.

The fingerprint modality can then determine the

final identity from this limited candidate list.

3. It becomes increasingly difficult (if not impossible)

for an impostor to spoof multiple biometric traits

of a legitimately enrolled individual. If each sub-

system indicates the probability that a particular

trait is a ‘‘spoof ’’, then appropriate fusion schemes

can be employed to determine if the user, in fact, is

an impostor. Furthermore, by asking the user to

present a random subset of traits at the point of

acquisition, a multibiometric system facilitates a

challenge-response type of mechanism, thereby

ensuring that the system is interacting with a live

user. Note that a challenge-response mechanism

can be initiated in unibiometric systems also (e.g.,

system prompts ‘‘Please say 1-2-5-7’’, ‘‘Blink twice

and move your eyes to the right’’, ‘‘Change your

facial expression by smiling’’, etc.).

4. Multibiometric systems also effectively address the

problem of noisy data. When the biometric signal
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acquired from a single trait is corrupted with noise,

the availability of other (less noisy) traits may aid

in the reliable determination of identity. Some

systems take into account the quality of the indi-

vidual biometric signals during the fusion process.

This is especially important when recognition has

to take place in adverse conditions where certain

biometric traits cannot be reliably extracted. For

example, in the presence of ambient acoustic

noise, when an individual’s voice characteristics

cannot be accurately measured, the facial charac-

teristics may be used by the multibiometric system

to perform authentication. Estimating the quality

of the acquired data is in itself a challenging prob-

lem but, when appropriately done, can reap signifi-

cant benefits in a multibiometric system.

5. These systems also help in the continuous monitor-

ing or tracking of an individual in situations when

a single trait is not sufficient. Consider a biometric

system that uses a 2D camera to procure the face

and gait information of a person walking down a

crowded aisle. Depending upon the distance and

pose of the subject with respect to the camera, both

these characteristics may or may not be simulta-

neously available. Therefore, either (or both) of

these traits can be used depending upon the loca-

tion of the individual with respect to the acquisi-

tion system thereby permitting the continuous

monitoring of the individual.

6. A multibiometric system may also be viewed as a

fault tolerant system which continues to operate

even when certain biometric sources become unre-

liable due to sensor or software malfunction, or

deliberate user manipulation. The notion of fault

tolerance is especially useful in large-scale authen-

tication systems involving a large number of sub-

jects (such as a border control application).
Taxonomy of Multibiometric Systems

Amultibiometric system relies on the evidence presented

by multiple sources of biometric information. Based on

the nature of these sources, a multibiometric system can

be classified into one of the following six categories:

multi-sensor, multi-algorithm, multi-instance, multi-

sample, multimodal, and hybrid (see Fig. 1).
1. Multi-sensor systems. Multi-sensor systems employ

multiple sensors to capture a single biometric trait

of an individual. For example, a face recognition

system may deploy multiple 2D cameras to acquire

the face image of a subject; an infrared sensor may

be used in conjunction with a visible-light sensor to

acquire the subsurface information of a person’s

face; a multispectral camera may be used to acquire

images of the iris, face or finger; or an optical as

well as a capacitive sensor may be used to image the

fingerprint of a subject. The use of multiple sensors,

in some instances, can result in the acquisition of

complementary information that can enhance the

recognition ability of the system. For example,

based on the nature of illumination due to ambient

lighting, the infrared and visible-light images of a

person’s face can present different levels of infor-

mation resulting in enhanced matching accuracy.

Similarly, the performance of a 2D face matching

system can be improved by utilizing the shape

information presented by 3D range images.

2. Multi-algorithm systems. In some cases, invoking

multiple feature extraction and/or matching algo-

rithms on the same biometric data can result in

improved matching performance. Multi-algorithm

systems consolidate the output of multiple feature

extraction algorithms, or that of multiple matchers

operating on the same feature set. These systems do

not necessitate the deployment of new sensors and,

hence, are cost-effective compared to other types of

multibiometric systems. But on the other hand, the

introduction of new feature extraction and match-

ing modules can increase the computational com-

plexity of these systems.

3. Multi-instance systems. These systems use multiple

instances of the same body trait and have also been

referred to asmulti-unit systems in the literature. For

example, the left and right index fingers, or the left

and right irises of an individual,may be used to verify

an individual’s identity. The FBI’s IAFIS (Integrated

Automated Fingerprint Identification System) ser-

vice combines the evidence of all ten fingers to deter-

mine a matching identity in the database. These

systems can be cost-effective if a single sensor is

used to acquire the multi-unit data in a sequential

fashion. However, in some instances, it may be desir-

able to obtain the multi-unit data simultaneously
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thereby demanding the design of an effective (and

possibly more expensive) acquisition device.

4. Multi-sample systems. A single sensor may be used

to acquire multiple samples of the same biometric

trait to account for the variations that can occur in

the trait, or to obtain a more complete representa-

tion of the underlying trait. A face system, for

example, may capture (and store) the frontal pro-

file of a person’s face along with the left and right

profiles in order to account for variations in the

facial pose. Similarly, a fingerprint system equipped

with a small size sensor may acquire multiple dab

prints of an individual’s finger to obtain images of

various regions of the fingerprint. A mosaicing

scheme may then be used to stitch the multiple

impressions and create a composite image. One of

the key issues in a multi-sample system is deter-

mining the number of samples that have to be

acquired from an individual. It is important that
the procured samples represent the variability as

well as the typicality of the individual’s biome-

tric data. To this end, the desired relationship

between the samples has to be established before-

hand to optimize the benefits of the integration

strategy. For example, a face recognition system

utilizing both the frontal- and side-profile images

of an individual may stipulate that the side-profile

image should be a three-quarter view of the face.

Alternately, given a set of biometric samples, the

system should be able to automatically select

the ‘‘optimal’’ subset that would best represent the

individual’s variability.

5. Multimodal systems. Multimodal systems establish

identity based on the evidence of multiple biomet-

ric traits. For example, some of the earliest multi-

modal biometric systems utilized face and voice

features to establish the identity of an individual.

Physically uncorrelated traits (e.g., fingerprint and
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iris) are expected to result in better improvement

in performance than the correlated traits (e.g.,

voice and lip movement). The cost of deploying

these systems is substantially more due to the re-

quirement of new sensors and, consequently, the

development of appropriate user interfaces. The

identification accuracy can be significantly im-

proved by utilizing an increasing number of traits

although the ▶ curse-of-dimensionality phenome-

non would impose a bound on this number. The

number of traits used in a specific application will

also be restricted by practical considerations such

as the cost of deployment, enrollment time,

throughput time, expected error rate, user habitu-

ation issues, etc.

6. Hybrid systems. Chang et al. [7] use the term hybrid

to describe systems that integrate a subset of

the five scenarios discussed above. For example,

Brunelli et al. [8] discuss an arrangement in which

two speaker recognition algorithms are combined

with three face recognition algorithms at the match

score and rank levels via a HyperBF network. Thus,

the system is multi-algorithmic as well as multi-

modal in its design.
Levels of Fusion

Based on the type of information available in a certain

module, different levels of fusion may be defined.

Sanderson and Paliwal [9] categorize the various levels

of fusion into two broad categories: pre-classification
Multibiometrics. Figure 2 Fusion can be accomplished at va
or fusion before matching, and post-classification or

fusion after matching (see Fig. 2). Such a categoriza-

tion is necessary since the amount of information

available for fusion reduces drastically once the match-

er has been invoked. Pre-classification fusion schemes

typically require the development of new matching

techniques (since the matchers used by the individual

sources may no longer be relevant) thereby introdu-

cing additional challenges. Pre-classification schemes

include fusion at the sensor (or raw data) and the

feature levels while post-classification schemes include

fusion at the match score, rank and, decision levels.

1. Sensor-level fusion. The raw biometric data (e.g.,

a face image) acquired from an individual repre-

sents the richest source of information although it

is expected to be contaminated by noise (e.g., non-

uniform illumination, background clutter, etc.).

Sensor-level fusion refers to the consolidation of

(1) raw data obtained using multiple sensors, or

(2) multiple snapshots of a biometric using a

single sensor.

2. Feature-level fusion. In feature-level fusion, the fea-

ture sets originating from multiple biometric algo-

rithms are consolidated into a single feature set by

the application of appropriate feature normalization,

transformation, and reduction schemes. The primary

benefit of feature-level fusion is the detection of

correlated feature values generated by different bio-

metric algorithms and, in the process, identifying a

salient set of features that can improve recognition

accuracy. Eliciting this feature set typically requires
rious levels in a biometric system.
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the use of dimensionality reduction methods and,

therefore, feature-level fusion assumes the availability

of a large number of training data. Also, the feature

sets being fused are typically expected to reside in

commensurate vector space in order to permit the

application of a suitable matching technique upon

consolidating the feature sets.

3. Score-level fusion. In score-level fusion the match

scores output by multiple biometric matchers

are combined to generate a new match score (a

scalar) that can be subsequently used by the verifica-

tion or identificationmodules for rendering an iden-

tity decision. Fusion at this level is the most

commonly discussed approach in the biometric lit-

erature primarily due to the ease of accessing and

processing match scores (compared to the raw bio-

metric data or the feature set extracted from the

data). Fusion methods at this level can be broadly

classified into three categories: density-based

schemes, transformation-based schemes, and classi-

fier-based schemes.

4. Rank-level fusion. When a biometric system oper-

ates in the identification mode, the output of the

system can be viewed as a ranking of the enrolled

identities. In this case, the output indicates the set of

possible matching identities sorted in decreasing

order of confidence. The goal of rank level fusion

schemes is to consolidate the ranks output by

the individual biometric subsystems to derive a

consensus rank for each identity. Ranks provide

more insight into the decision-making process of

the matcher compared to just the identity of the

best match, but they reveal less information than

match scores. However, unlike match scores, the

rankings output by multiple biometric systems are

comparable. As a result, no normalization is needed

and this makes rank level fusion schemes simpler

to implement compared to the score level fusion

techniques.

5. Decision-level fusion. Many commercial off-the-

shelf (COTS) biometric matchers provide access

only to the final recognition decision. When such

COTS matchers are used to build a multibiometric

system, only decision level fusion is feasible. Meth-

ods proposed in the literature for decision level

fusion include ‘‘AND’’ and ‘‘OR’’ rules, majority

voting, weighted majority voting, Bayesian decision

fusion, the Dempster–Shafer theory of evidence,

and behavior knowledge space.
Summary

Multibiometric systems are expected to enhance the

recognition accuracy of a personal authentication sys-

tem by reconciling the evidence presented by multiple

sources of information. Typically, early integration

strategies (e.g., feature-level) are expected to result in

better performance than late integration (e.g., score-

level) strategies. However, it is difficult to predict the

performance gain due to each of these strategies prior to

invoking the fusion methodology. While the availability

of multiple sources of biometric information (pertain-

ing either to a single trait or to multiple traits) may

present a compelling case for fusion, the ▶ correlation

between the sources has to be examined before deter-

mining their suitability for fusion [10]. Combining

uncorrelated or negatively correlated sources is expected

to result in a better improvement in matching perfor-

mance than combining positively correlated sources

[11]. However, defining an appropriate diversity mea-

sure to predict fusion performance has been elusive

thus far. Other topics of research in multibiometrics

include (1) protecting multibiometric templates;

(2) indexing multimodal databases; (3) consolidating

biometric sources in highly unconstrained non-ideal

environments; (4) designing dynamic fusion algo-

rithms to address the problem of incomplete input

data; and (5) predicting the matching performance

of a multibiometric system.
Related Entries

▶ Fusion, Decision-Level

▶ Fusion, Feature-Level

▶ Fusion, Rank-Level

▶ Fusion, Score-Level

▶ Fusion, Sensor-Level

▶Multiple Classifier Systems

▶Multiple Experts
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Definition

Multibiometrics is the automated recognition of indi-

viduals based on their biological or behavioral charac-

teristics and involves the use of biometric fusion. Some
applications of biometrics require a level of technical

performance that is difficult to obtain with a single

biometric measure. Preventing illegitimate multiple

applications by the same individual for national iden-

tity cards and checking security for air travel are exam-

ples of such applications. In addition, provision is

needed for people who are unable to give a reliable

biometric sample for some biometric modalities. Use

of multiple biometric measurements from substan-

tially independent biometric sensors, algorithms, or

modalities typically gives improved technical perfor-

mance, increases system flexibility and reduces security

risks. This includes an improved level of performance

where not all biometric measurements are available

such that decisions can be made from any number of

biometric measurements within an overall policy on

accept/reject thresholds. At the current level of under-

standing, combining results from different biometric

sources at the matching score level typically requires

knowledge of both genuine and impostor distribu-

tions of such scores. Such distributions are highly

application-dependent and generally unknown in

any real system. Research on the methods not requir-

ing previous knowledge of the score distributions is

continuing and research on fusion at both the image

and feature levels is still progressing. Preliminary work

on ISO/IEC international standardization of multibio-

metrics has culminated in a Technical Report, while in

the United States substantial progress has been made

on standards to support multibiometrics.
Overview of Multibiometric Systems

In general, the use of the terms ▶multimodal or

▶multibiometric indicates the presence and use of

more than one ▶ biometric modality, sensor, instance,

and/or algorithm in some form of combined use for

making a specific biometric identification or verifica-

tion decision. The methods of combining multiple

samples, matching scores, or matching decisions can

be very simple or mathematically complex.

Multimodal biometrics were first proposed, imple-

mented and tested in the 1970s. Combining measures

was seen as a necessary future requirement for biomet-

ric systems. It was widely thought that combining

multiple measures could increase either security by

decreasing the false acceptance rate or user conve-

nience by decreasing the false rejection rate. These
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early systems, however, did not seem to advance into

practical applications.

The use of fusion and related methods has been a

key tool in the successful implementation of large-scale

automated fingerprint identification systems (AFISs),

starting in the 1980s. Until recently, multiple modal-

ities have not been used in AFIS; however, many meth-

ods of fusion have been successfully implemented

using fingerprints alone. Some of the ways that fusion

has been implemented in AFISs include:

1. Image (i.e., sample) fusion in creating a single

‘‘rolled’’ image from a series of plain impressions

on a livescan device.

2. Template fusion in the use of multiple feature ex-

traction algorithms on each fingerprint image.

3. Multiinstance fusion in the use of fingerprints from

all ten fingers.

4. Multipresentation fusion in the use of rolled and

slap (plain) fingerprints.

5. Algorithm fusion for the purpose of efficiency

(cost, computational complexity, and throughput

rate); generally matchers are used as a series of

filters in order of increasing computational com-

plexity. These are generally implemented as a mix

of decision- and score-level fusion.

6. Algorithm fusion for the purpose of accuracy (de-

creasing false accept rate and/or false reject rate,

lessening sensitivity to poor-quality data); matchers

are used in parallel, with fusion of resulting scores.

The use of fusion has made AFISs possible, because

of fusion’s increase in both accuracy and efficiency.

To further understand the distinction among the

multib iome tric categori es, Table 1 illustrate s the
Multibiometrics and Data Fusion, Standardization. Table 1

of using 2 of something

Category Modality Algorithm Bio

Multimodal 2 (always) 2 (always) 2 (

Multialgorithmic 1 (always) 2 (always) 1 (

Multiinstance 1 (always) 1 (always) 2 i

Multisensorial 1 (always) 1 (usually)c 1 (

Multipresentation 1 1 1

aException: a multimodal system with a single sensor used to captu

extract face and iris or face and skin texture)
bException may be the use of two individual sensors each capturing
cIt is possible that two samples from separate sensors could be proces

a common comparison algorithm, making this ‘‘1.5 algorithms,’’ or tw
basic distinctions among categories of multibiometric

implementation. The key aspect of the category that

makes it multi-‘‘something’’ is shown in boldface.

Multimodal biometric systems take input from single

or multiple sensors that capture two or more biometric

characteristics of different modalities. For example, a sin-

gle system combining face and iris information for bio-

metric recognition would be considered a ‘‘multimodal’’

system regardless of whether face and iris images were

captured by different imaging devices or the same device.

It is not required that the various measures be mathemat-

ically combined in any way. For example, a system with

fingerprint and voice recognition would be considered

‘‘multimodal’’ even if the ‘‘OR’’ rule was being applied,

allowing users to be verified using either of themodalities.

Multialgorithmic biometric systems receive a single

sample from a single sensor and process that sample

with two or more algorithms. This technique could be

applied to any modality. Maximum benefit (theoreti-

cally) would be derived from algorithms that are based

on distinctly different and independent principles

(such algorithms may be called ‘‘orthogonal’’).

Multiinstance biometric systems use one (or possi-

bly multiple) sensor(s) to capture samples of two or

more different instances of the same biometric character-

istic. For example, systems capturing images frommulti-

ple fingers are considered to bemultiinstance rather than

multimodal. However, systems capturing, for example,

sequential frames of facial or iris images are considered to

bemultipresentation rather than multiinstance.

Multisensorial biometric systems sample the same

instance of a ▶ biometric characteristic with two or

more distinctly different sensors. Processing of the

multiple samples can be done with one algorithm, or
Multibiometric categories illustrated by the simplest case

metric characteristic (e.g., body part) Sensor

always) 2 (usually)a

always) 1 (always)

nstances of 1 characteristic (always) 1 (usually)b

always, and same instance) 2 (always)

1

re two different modalities (e.g., a high resolution image used to

one instance (e.g., possibly a two-finger fingerprint sensor)

sed by separate ‘‘feature extraction’’ algorithms, and then through

o completely different algorithms
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some combination of multiple algorithms. For exam-

ple, a face recognition application could use both a

visible light camera and an infrared camera coupled

with a specific frequency (or several frequencies) of

infrared illumination.

For a specific application in an operational envi-

ronment, there are numerous system design considera-

tions, and trade-offs that must be made, among factors

such as improved performance (e.g., identification or

verification accuracy, system speed and throughput,

robustness, and resource requirements), acceptability,

ease of circumvention, ease of use, operational cost,

environmental flexibility, and population flexibility

[1]. Especially for a large-scale human identification

system, there are additional system design considera-

tions such as operation and maintenance, reliability,

system acquisition cost, life cycle cost, and planned

system response to identified susceptible means of

attack, all of which will affect the overall deployability

of the system [1].
M

Levels of Combination

As a basis for the definition of levels of combination in

multibiometric systems, Fig . 1 shows a sing le-biome tric

process. A biometric sample captured by a biometric

sensor (e.g., a fingerprint image) is fed into the feature

extraction module. Using signal processing methods,

the feature extraction module converts a sample into

features (e.g., fingerprint minutiae), which form a rep-

resentation apt for matching. Usually, multiple features

are collected into a feature vector. The matching mod-

ule takes the feature vector as input and compares it to

a stored template (a type of biometric reference, as

defined in [2]). The result is a match score, which is

used by the decisionmodule to decide (e.g., by applying

a threshold) whether the presented sample matches
Multibiometrics and Data Fusion, Standardization. Figure

Figure 2, Section 5.1 of ISO/IEC TR 24722:2007 Information te

multibiometric fusion).
with the stored template. The outcome of this decision

is a binary match or non-match. Generalizing the

above process to a multibiometric one, there are sever-

al levels at which fusion can take place: (1) decision

level; (2) match score level; (3) feature level; and (4)

sample level.

Decision-level fusion takes place only after the

results of matching from all biometric components

are available. The decision module outputs match or

non-match as a binary decision value. If a biometric

system consists of a small number of biometric com-

ponents, assigning logical values to match outcomes

allows fusion rules to be formulated as logical func-

tions. For two decision-level outputs, two most com-

monly used logical functions are logical AND and

OR. For many decision-level outputs, various voting

schemes can be used as fusion rules, the most common

of which is majority voting. The logical AND and OR

functions can be considered as voting schemes.

In score-level fusion, each system provides match-

ing scores indicating the proximity of the feature vec-

tor with the template vector. These scores can then be

combined to improve the matching performance. The

match score output by a matcher contains the richest

information about the input biometric sample in the

absence of feature-level or sensor-level information.

Furthermore, it is relatively easy to access and combine

the scores generated by several different matchers. Con-

sequently, integration of information at the match score

level is the most common approach in multimodal

biometric systems. From a theoretical point of view,

biometric processes can be combined reliably to give a

guaranteed improvement in matching performance.

Any number of suitably characterized biometric pro-

cesses can have their matching scores combined in

such a way that the multibiometric combination is

guaranteed (on average) to be no worse than the best

of the individual biometric devices. The key is to
1 Generic single-biometric process. (Reproduced from

chnology – Biometrics – Multimodal and other
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identify correctly the method which will combine these

matching scores reliably and maximize the improve-

ment in matching performance. The mechanism (for

this sort of good combination of scores within a multi-

biometric system) must follow at least two guidelines:

(1) each biometric process must produce a score and

make it available to the multibiometric combiner;

and (2) in advance of operational use, each biometric

process must make available to the multibiometric

combiner, its technical performance (such as score dis-

tributions) in the appropriate form (and with sufficient

accuracy of characterization). Both verification (1:1) and

identification (1:N) systems can support fusion at the

match score level.

In the context of verification, there are two distinct

approaches to formulate a score-level fusion problem:

(1) classification; and (2) combination [3]. In the clas-

sification approach, a feature vector is constructed

using the matching scores output by the individual

matchers; this feature vector is then classified into

one of two classes: ‘‘Accept’’ (genuine user) or ‘‘Reject’’

(impostor). Generally, the classifier used for this pur-

pose (e.g., decision tree, neural network, support vec-

tor machine, k-nearest neighbor, random forest, etc.) is

capable of learning the decision boundary, given some

training data, irrespective of how the feature vector is
Multibiometrics and Data Fusion, Standardization. Figure 2

combination approach. (Reproduced from Figure 5, Section 5

Biometrics – Multimodal and other multibiometric fusion).
generated [4]. Hence, the output scores of the different

modalities can be non-homogeneous (distance or similar-

itymetric, different numerical ranges, etc.) andnoproces-

sing is required prior to presenting them to the classifier.

In the combination approach (see Fig. 2), the individual

matching scores are combined to generate a single scalar

score,which is thenused tomake thefinal decision [5]. To

ensure a meaningful combination of the scores from

the different modalities, if necessary, the scores may be

first transformed to a common domain prior to com-

bining them. This is known as score normalization.

Score normalization methods attempt to map the

scores of each biometric process to a common domain.

Some reasons why scores need to be normalized prior to

fusion include [3]: (1) the matching scores at the output

of the individual matchers may not be homogeneous.

For example, one matcher may output a distance (dis-

similarity)measure while anothermay output a proxim-

ity (similarity)measure; (2) the outputs of the individual

matchers need not be on the same numerical scale

(range); and (3) the matching scores at the output of

the matchers may follow different statistical distribu-

tions. Some approaches are based on the Neyman-

Pearson lemma [6], with simplifying assumptions. For

example, mapping scores to likelihood ratios allows

them to be combined by multiplying under an
A framework for score-level fusion using

.3.2 of ISO/IEC TR 24722:2007 Information technology –
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independence assumption. Other approaches may be

based on modifying other statistical measures of the

match score distributions. The parameters used for

normalization can be determined using a fixed training

set or adaptively based on the current feature vector.

In feature-level fusion, biometric information is

fused after feature extraction but before matching.

The simplest form is to integrate the feature vectors

(or sets if there is no implicit correspondence) of com-

ponent biometrics and to apply feature classification

methods to the combined feature vector. Where features

from contributing multibiometrics are not indepen-

dent, good feature-level combination should, in

some circumstances, allow dependencies to be more

fully exploited than by solely using score-level combina-

tion. This should give better overall performance. How-

ever, fusion at this level is difficult to achieve in practice

because of the following reasons: (1) the feature

vectors of multiple modalities may be incompatible

(e.g., minutiae set of fingerprints and Eigen-coefficients

of face); (2) the relationship between the feature spaces

of different biometric systems may not be known;

(3) concatenating two feature vectors may result in a

feature vector with very large dimensionality leading to

the ‘‘curse of dimensionality’’; and (4) a significantly

more complex matcher might be required in order to

operate on the concatenated feature vector [7].

Notwithstanding these challenges, fusion at the

feature level has been attempted in several contexts.

Chang et al. [8] demonstrate feature-level fusion of

face and ear modalities showing significant improve-

ments in performance. Kumar et al. [9] integrate the

palm-print and hand geometry features of an individ-

ual in order to enhance matching performance. In

their experiments, fusion at the match score level was

observed to be superior to fusion at the feature level.

However, Ross and Govindarajan [2] combine the

hand and face modalities of a user (multibiometrics)

as well as the R, G, B channels of the face image

(multisensorial) of a user at the feature level and dem-

onstrate that a feature selection scheme may be neces-

sary to improve matching performance at this level.
State of International Standardization of
Multibiometrics

At the time of this writing (late 2008), no standards on

multibiometrics have been developed within ISO/IEC.
However, the ISO/IEC subcommittee on biometrics

(ISO/IEC JTC 1/SC 37) had instead produced a Technical

Report on multibiometrics [10] (hereafter referred

to as the ‘‘Technical Report’’), which contains descrip-

tions and analyses of current practices on multibio-

metric fusion and provides useful information for

future development of international standards in

this area.

According to the Technical Report, there are many

ways of combining multibiometric processing and

performing ▶ biometric fusion, not all of which can

be made part of a biometric fusion standard. It is likely

that future biometric fusion standardization activity

within ISO/IEC will be of five types:

1. Record formats: The definition and standardization

of data to be exchanged between processes and

stored on various media. The biometric data inter-

change formats specified in SC 37/WG 3 standards

are examples of this type of standard. Another

example is the Fusion Information Format national

standard developed in the US [11]

2. Interfaces: Definition of standard APIs for pro-

cesses, the record formats used by the processes,

and the initialization procedure of the processes in

a system. The BioAPI standard [12] developed in

SC 37/WG 2 is an example of this type of standard,

which might have to be modified in order to sup-

port multibiometrics and fusion data. The US ver-

sion of the BioAPI standard [13] has been amended

[14] to support biometric fusion

3. Application profile: A standard containing a list of

references to provisions of one or more other stan-

dards, which are specified as optional in those

standards but are made mandatory by this standard

in order to facilitate interoperability in a particular

set of use cases. The SC 37/WG 4 project on ILO

(International Labor Organization) Seafarer ID

profile [15] is an example of this type of standard

4. Conformance testing: A description of the criteria

and test data that allows for the assurance that

systems have complied with the standards. These

types of standards are under development in SC 37

for the biometric record formats

5. Performance testing: Online testing of biometric

systems is complicated by the implied existence of

multiple and sequential sensors. A testing protocol

that develops procedures for doing this should be

established
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The use of multibiometric systems has been consid-

ered for two major and differing use cases. The first is

high-security biometric use where the combination of

biometrics provides a stronger assurance of impostor

rejection for a relatively small, trained population.

The second is in the context of large-scale ID systems,

such as travel document systems, where the multibio-

metric combination may provide for the reduction of

rejection rates and easier system usage for a very large,

untrained population. In the context of the large-scale

ID systems, there can be many solution providers

providing components to the overall system. For ex-

ample, the creator of the electronic biometric docu-

ment may not be the same vendor that creates the

physical document, and neither may be the vendor

that performs the biometric test(s) (verification

or identification) during the document’s usage. This

situation can clearly benefit from a biometric fusion

standard when the document contains multiple

biometrics.

In the context of biometric fusion, one can propose

the following multibiometric system interoperability

requirements:

1. Standard multibiometric systems may be required

to be designed and certified (or evaluated) based on

common performance requirements. These perfor-

mance requirements should be independent of the

biometric modalities in use. This includes perfor-

mance measures such as failure to enroll, failure to

acquire, false rejection rate, false acceptance rate,

system throughput, and the resistance to active

impostor attacks

2. Standard multibiometric systems may be required

to be designed so that a single biometric subsystem

can be separately upgraded. All biometric device

characteristics change over time as research and

development improves accuracy and lowers cost.

The development of each biometric system however,

proceeds on its own timeline. Therefore only if

separate upgrading is possible it will be convenient

to upgrade a multibiometric system in the field

3. A standard multibiometric system may be required

to be able to accept historical information for a

given user, such as scores and processing times.

With this information, the system can be optimized

in both security and throughput to take advantage

of the type of biometric modality that is favored by

the particular user
4. Standard multibiometric systems may be required

to be compatible with existing standard-based sys-

tems that use a single biometric characteristic. To

achieve support of the system requirements, exist-

ing biometric technical interfaces, such as the

BioAPI standard, may need to be revised to provide

support for fusion while allowing the use of inde-

pendently developed BioAPI Biometric Service

Providers (BSPs) each implementing a single bio-

metric modality
State of Standardization of
Multibiometrics in the United States

In the United States a significant amount of work had

been done, at the time of this writing, to produce

the first two national standards on multibiometrics.

The two standards that have been developed so far are:

1. An amendment [14] to the US version of the

BioAPI standard [13] that adds support for bio-

metric fusion (published)

2. A data format carrying information in support of

score-level fusion [11] (published)

The changes made to BioAPI 1.1 to support fusion

were inspired by the Technical Report. The Technical

Report describes a multibiometric process as a combi-

nation of processes, and describes the inputs and the

outputs of each process. This general model is now

reflected in BioAPI 1.2.

In BioAPI 1.2, the concept of Biometric Informa-

tion Record (BIR) was generalized, and now includes

the following types of biometric data (sometimes

called ‘‘processed levels’’):

1. Raw biometric data (e.g., a raw image produced for

audit purposes during a capture operation)

2. Intermediate biometric data (e.g., an image ready

to be passed as input to a feature extraction process)

3. Processed data (e.g., features)

4. A matching score (as produced by some matching

algorithm)

5. A matching decision (a match/non-match output)

6. Personal data (any non-biometric data specific to

the subject that can be passed as input to a biomet-

ric operation)

Correspondingly, the BioAPI operations that handle

biometric data (either accepting one or more BIRs as
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input or producing a BIR as output) have been exten-

ded in BioAPI 1.2 to support the new types of BIRs.

For example, an important evolution was the addition

of a function similar to VerifyMatch but producing a

BIR of type ‘‘score’’ instead of the traditional ‘‘achieved

FAR’’ (a simple integer value) and ‘‘result’’ (a simple

boolean value). In BioAPI 1.2, the new Fuse function

can take as input two or more ‘‘score’’ BIRs to produce

either a new ‘‘score’’ BIR or a ‘‘decision’’ BIR (score-

level fusion); it can also take as input two or more

‘‘decision’’ BIRs to produce a new ‘‘decision’’ BIR

(decision-level fusion) or two or more ‘‘processed’’

BIRs to produce a new ‘‘processed’’ BIR (feature-level

fusion). The Fuse function can be implemented either

by a regular BSP that also performs capture and/or

matching, or by a specialized ‘‘fusion BSP.’’ The new

functions also accept as input any number of addition-

al BIRs of any type (including ‘‘personal’’) carrying

information that can be used by the BSP to increase

the quality of the output of the function.

The Fusion Information Format standard [11] spe-

cifies a container of information about the statistical

distribution of similarity scores for a particular bio-

metric technology (including a matcher). The standard

supports the representation of both genuine and im-

postor distributions, and provides four different ways

of representing those distributions: location and scale

parameters, empirical cumulative distribution func-

tion, B-spline function fit of the empirical cumulative

distribution function (CDF), and interpolant of the

CDF. This information is intended to be provided as

input to a software component that performs score-

level fusion within a multibiometric system. When

such a software component is invoked to fuse the

scores produced by two or more comparison subsys-

tems, the knowledge of the score distributions of each

comparison subsystems will allow it to correctly pro-

cess the corresponding input scores.
Summary

The building blocks for a biometric fusion standard

would be mainly of two types: data records and

processes. The three key factors driving the imple-

mentation of the fusion algorithms will be: interop-

erability, performance, and industry consensus.

Sample-, feature-, score-, and decision-level fusion

have been identified from the preliminary work on
biometric fusion standardization. However, support-

ing sample- or feature-level fusion will be a challenge.

The nature of feature-level fusion requires the defi-

nition and creation of a feature specific to a particu-

lar biometric characteristic and capture/extraction

system, as well as a matching algorithm for the

fused feature. Requiring vendors to support fea-

ture-level fusion across many biometric modalities

may not be practical, given the current level of

industry consensus reachable in today’s marketplace.

On the contrary, decision-level fusion is rather sim-

ple mathematically, so a fusion standard might not

seem to be required for this level of fusion. Yet the

initialization, security specification, and using multi-

ple biometric decisions make it an inherently compli-

cated process, and there is significant benefit to be

gained by including decision-level fusion in stan-

dards. Nonetheless, the first beneficiaries of the fusion

standardization activity are most likely score-level

fusion systems. For this reason, the ISO/IEC Techni-

cal Report provides a wealth of descriptions of score-

level fusion, and the current US multibiometrics

standardization work focuses mainly on supporting

score-level fusion.
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Multifactor
Multifactor authentication/identification solutions

consist of a combination (integrated or loosely linked)

of different categories of authentication and identifica-

tion technologies. A multifactor solution could thus be

composed of a fingerprint recognition system tied to a

proximity card reader and a PIN-based keypad system.

▶ Fraud Reduction, Overview
Multimodal
▶Multibiometrics
Multimodal Fusion
▶Multiple Experts
Multimodal Jump Kits
A compact, durable, and mobile kit that encases mul-

tiple biometric testing devices. An example kit is a

briefcase that contains digital fingerprints, voice and

iris prints, and photographs.

▶ Iris Acquisition Device
Multiple Classifier Fusion
▶ Fusion, Decision-Level
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Definition

The rationale behind the growing interest in multiple

classifier systems is the acknowledgment that the clas-

sical approach to design a pattern recognition system

that focuses on finding the best individual classifier has

some serious drawbacks. The most common type of

multiple classifier system (MCS) includes an ensemble

of classifiers and a function for parallel combination of

classifier outputs. However, a great number of methods

for creating and combining multiple classifiers have

been proposed in the last 15 years. Although reported

results showed the good performances achievable by

combining multiple classifiers, so far a designer of

pattern classification systems should regard the MCS

approach as an additional tool to be used when build-

ing a single classifier with the required performance is

very difficult, or does not allow exploiting the comple-

mentary discriminatory information that other classi-

fiers may encapsulate.
Motivations of Multiple Classifiers

The traditional approach to classifier design is based

on the ‘‘evaluation and selection’’ method. Perfor-

mances of a set of different classification algorithms

are assessed against a data set, name validation set, and

the best classifier is selected. This approach works well

when a large and representative data set is available, so

that the estimated performances allow selecting the

best classifier for future data collected during the oper-

ation of the classifier machine. However, in many real

cases where only small training sets are available, esti-

mated performances can substantially differ from the

ones that classifiers will exhibit during their operation.
This is the well-known phenomenon of the generaliza-

tion error, which can makes impossible the selection of

the best individual classifier, or cause the selection of a

classifier with a poor performance. In the worst case,

the worst classifier in the considered ensemble could

exhibit the best apparent accuracy when assessed

against a small validation set.

A first motivation for the use of multiple classifiers

comes from the intuition that instead of selecting a

single classifier, a safer option would be to use them all

and ‘‘average’’ their outputs [1, 2]. This combined

classifier might not be better than the individual best

classifier, but the combination should reduce the risk

of selecting a classifier with poor performance. Experi-

mental evidences and theoretical results support this

motivation. It has been proved that averaging the out-

puts of multiple classifiers do eliminates the risk of

selecting the worst classifier, and can provide a perfor-

mance better than the one of the best classifier under

particular conditions [3].

Dietterich suggested further reasons for the use of

a multiple classifier system (MCS) [2]. Some classifiers,

such as neural networks, are trained with algorithms

that may lead to different solutions, that is, different

classification accuracies, depending on the initial

learning conditions. Combining multiple classifiers

obtained with different initial learning conditions

(e.g., different initial weights for a neural net), reduces

the risk of selecting a classifier associated to a poor

solution of the learning algorithm (a so called ‘‘local

optimum’’). The use of MCS can simplify the problem

of choosing adequate values for some relevant para-

meters of the classification algorithm (e.g., the number

of hidden neurons in a neural net). Multiple versions

of the same classifier with different values of the para-

meters can be combined. In some practical cases with

small training sets, training and combining an ens-

emble of simple classifiers (e.g., linear classifiers) to

achieve a certain high accuracy can be easier than

training directly a complex classifier [4]. Finally, for

some applications, such as multi-modal biometrics,

the use of multiple classifiers is naturally motivated

by application requirements.

It is worth noting that the abovemotivations neither

guarantee that the combination of multiple classifiers

always performs better than the best individual classifier

in the ensemble, nor an improvement on the ensemble’s

average performance for the general case. Such guaran-

tees can be given only under particular conditions that
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classifiers and the combination function have to satisfy

[3]. However, reported experimental results and theo-

retical works developed for particular combination

functions show the good performances achievable

by combining multiple classifiers. So far a designer of

pattern classification systems should regard the MCS

approach as an additional tool to be used when build-

ing a single classifier with the required performance is

very difficult, or does not allow exploiting the comple-

mentary discriminatory information that other classi-

fiers may encapsulate.
Design of Multiple Classifier Systems

The most common type of MCS, widely used and

investigated, includes an ensemble of classifiers,

named ▶ ‘‘base’’ classifiers, and a function for parallel

combination of classifier outputs (Fig. 1). The base

classifiers are often algorithms of the same type (e.g.,

decision trees or neural networks), and statistical clas-

sifiers are the most common choice. The use of hybrid

ensembles containing different types of algorithms

has been investigated much less, as well as ensembles

of structural classifiers have not attracted much atten-

tion, though they could be important for some real

applications.

The design of a MCS involves two main phases: the

design of the classifier ensemble and the design of the

combination function [4]. Although this formulation

of the design problem leads one to think that effective

design should address both the phases, most of the

design methods described in the literature focused
Multiple Classifier Systems. Figure 1 Standard

architecture of a multiple classifier system for a

classification task with c classes. The multiple classifier

system is made up by an ensemble of N classifiers and a

function for parallel combination of classifier outputs.
on only one. Two main design approaches have been

proposed, that Ho called ‘‘coverage optimization’’ and

‘‘decision optimization’’ methods [5]. Coverage opti-

mization refers to methods that assume a fixed, usually

simple, decision combination function and aim to

generate a set of mutually complementary classifiers

that can be combined to achieve optimal accuracy.

Several techniques have been proposed for creating a

set of mutually complementary classifiers. The main

approaches are outlined in the following. However,

decision optimization methods assume a given set

of carefully designed classifiers and aim to select and

optimize the combination function. These methods fit

well with those applications where a set of classifiers

developed separately is already available (e.g., a face

and a fingerprint classifier in biometric applications)

and one is interested in combining them optimally.

A large set of combination functions of increasing

complexity is available to the designer to perform the

selection and optimization, ranging from simple vot-

ing rules through ‘‘trainable’’ combination functions.

The three main types of combination functions are

briefly explained below. There are few methods for

building a MCS that cannot be classified as either a

decision optimization or a coverage optimization

method. For example, MCS based on the mixture of

experts model trains the classifiers and the combi-

nation function simultaneously, so implementing a

sort of joint optimization [6]. In some works dealing

with real-life applications, hybrid design methods that

first generate a classifier ensemble and then select and

optimize the combination function have been also

proposed.

It is easy to see that the classifiers in a MCS should

be as accurate as possible and should not make coinci-

dent errors. Although this sounds an intuitive and

simple concept, it revealed a complex issue that was

addressed in the literature under the name of classifier

‘‘diversity’’ [1, 7]. The type of diversity required for

maximizing MCS performance obviously depends on

the combination function used. As an example, coin-

cident errors can be tolerated if the majority-voting

rule is used, but the majority of classifier decisions

should be always correct. Many diversity measures

have been proposed, and some of them have been

also used to design effective MCSs [4]. The main

approaches for creating multiple classifiers, which are

outlined in the following, aim to induce classifier di-

versity. However, so far it appeared to be difficult to
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define diversity measures that are related well to the

MCS performance, so that such performance can be

predicted by measuring the diversity of the classifiers.

Although the parallel architecture was the most

used and investigated (Fig. 1), other types of architec-

tures are also possible. For example, serial architectures

where classifiers are applied in succession, with each

classifier working on inputs, which previous classifiers

were not able to recognize with a sufficient confidence.

Such architectures could be very important for real

applications that demand for a trade-off between ac-

curacy and computational complexity. However, non-

parallel architectures have been relatively neglected.

Although some design methods proved to be very

effective and some works investigated the comparative

advantages of different methods [4, 5], clear guidelines

are not yet available for choosing the best design meth-

od for the classification task at hand. The designer of

MCS has a toolbox containing quite a lot of instru-

ments for generating and combining classifiers. She/he

may design a myriad of different MCSs by coupling

different techniques for creating classifier ensembles

with different combination functions. However, for

the general case, the best MCS can only be determined

by performance evaluation. Optimal design is possible

only under particular assumptions on the classifiers

and the combination function [3].
Creating Classifier Ensembles

Several techniques have been proposed for creating a set

of complementary classifiers. All these techniques try to

induce classifier diversity, namely, to create classifiers

that make errors on different patterns, so that they can

be combined effectively. In the following, the main

approaches to classifier ensemble generation are outlined.

Using Different Base Classifiers

A simple way for generating multiple classifiers is using

base classifiers of different types. For example, classi-

fiers based on different models (e.g., neural networks

and decision trees) or using different input informa-

tion. This simple technique may work well for applica-

tions where complementary information sources are

available (e.g., multi-sensor applications) or distinct

representations of patterns are possible (e.g., minu-

tiae-based and texture-based representations in finger-

print classification).
Injecting Randomness

Random variation of some parameters of the learning

or classification algorithm can be used to create multi-

ple classifiers. The classifier ensemble is created using

multiple versions of a certain base classifier obtained

by random variation of some parameters. For example,

training a neural network several times with different

random values of the initial weights allows generating a

network ensemble.
Manipulating Training Data

These techniques generate multiple classifiers by train-

ing a base classifier with different data sets. To this end,

the most straightforward method is the use of disjoint

training sets obtained by splitting the original training

set (this technique is called sampling without replace-

ment). A very popular technique based on training

data manipulation is Bagging (Bootstrap AGGregat-

ING) [8]. Bagging creates an ensemble made of N

classifiers trained on N bootstrap replicates of the

original training set. A bootstrap replicate consists of

a set of m patterns drawn randomly with replacement

from the original training set of m patterns. The clas-

sifiers are usually combined by majority voting rule, or

by averaging their outputs. Another popular technique

based on training data manipulation is Boosting [9].

This method incrementally builds a classifier ensemble.

The classifier that joins the ensemble at step k is forced

to learn patterns that previous classifiers have misclas-

sified. In other words, while Bagging samples each

training pattern with equal probability, Boosting fo-

cuses on those training patterns that are most often

misclassified. Essentially, a set of weights is maintained

over the training set and adaptive resampling is per-

formed, such that the weights are increased for those

patterns that are misclassified. It is worth noting that

Boosting is a complete design method, where the com-

bination function is also specified, and it is not only a

technique for generating a classifier ensemble.
Manipulating Input Features

Manual or automatic feature selection can be used for

generating multiple classifiers using different feature

sets as inputs. Ho proposed a successful technique of

this type, called Random Subspace Method [10]. Fea-

ture space is randomly sampled, such that complemen-

tary classifiers are obtained by training them with

different feature sets.
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Manipulating Output Labels

A multiclass problem can be subdivided into a set of

subproblems (e.g., two-class problems), and a classifier

can be associated to each subproblem, thereby gener-

ating an ensemble. The standard problem subdivision

is the so-called ‘‘one-per-class’’ decomposition, where

each classifier in the ensemble is associated to one of

the classes and it is aimed to discriminate such class

from the others. Dietterich and Bakiri proposed a

general method, called ECOC (error correcting output

codes) method, for generating multiple classifiers by

decomposing a multiclass task into subtasks [11].
Combining Multiple Classifiers

There are two main strategies in combining classifiers:

fusion and selection [1]. The most of the combination

functions follow one of these basic strategies, with the

majority of combinationmethods using the fusion strat-

egy. There are few combiners that use hybrid strategies,

where fusion and selection are merged. In classifier fu-

sion, each classifier contributes to the final decision for

each input pattern. In classifier selection, each classifier

is supposed to have a specific domain of competence

(e.g., a region in the feature space) and is responsible for

the classification of patterns in this domain. There are

combination functions lying between these two main

strategies. For example, the mixture of experts model

uses a combination strategy that, for each input pattern,

selects and fuses a subset of available classifiers [6]. Some

combination functions, such as the majority-voting

rule, are called ‘‘fixed’’ combiners because they do not

need training (i.e., they do not need estimation of

parameters from a training set). Other combination

functions need additional training and they are called

‘‘trainable’’ combiners. For example, the weighted

majority-voting rule needs to estimate weights that

are used to give different importance to the classifiers

in the vote. Trainable combiners can obviously outper-

form the fixed ones, supposed that a large enough and

independent validation set for training them in an

effective way is available [4]. It should be noted that

each classifier in the ensemble is often biased on the

training data, so that the combiner should not be

trained on such data. An additional data set that is

independent from the training set used for the individ-

ual classifiers should be used. In general, the complex-

ity of the combiner should be adapted to the size of the
data set available. Complex trainable combiners, that

need to estimate a lot of parameters, should be used

only when large data sets are available [1, 12].

Fusion of Multiple Classifiers

The combination functions following the fusion strat-

egy can be classified on the basis of the type of outputs

of classifiers forming the ensemble. Xu et al. distin-

guish between three types of classifier outputs [13]: (1)

Abstract-level output: Each classifier outputs a unique

class label for each input pattern; (2) Rank-level out-

put: Each classifier outputs a list of ranked class labels

for each input pattern. The class labels are ranked in

order of plausibility of being the correct class label;

(3) Measurement-level output: Each classifier outputs

a vector of continuous-valued measures that represent

estimates of class posterior probabilities or class-

related confidence values that represent the support

for the possible classification hypotheses. On the

basis of this classification, the following three classes

of fusion rules can be defined.

Abstract-Level Fusion Rules

Among the fusion rules that use only class labels

to combine classifier outputs, the most often used

rule is the majority vote that assigns the input pattern

to the majority class, that is, the pattern is assigned

to the most frequent class in the classifier outputs.

A natural variant of the majority vote, namely, the

plurality vote, is also used. The trainable version of

the majority vote rule is the weighted majority vote

that uses weights that are usually related to the classifi-

er performances. Among the trainable fusion rules of

this type, a popular rule is the Behavior Knowledge

Space (BKS) method [1]. In the BKS method, every

possible combination of abstract-level classifiers outputs

is regarded as a cell in a look-up table. The BKS table is

designed by a training set. Each cell contains the samples

of the training set characterized by a particular value of

class labels. Training samples in each cell are subdivided

per class, and the most representative class label (the

‘‘majority’’ class) is selected for each cell. For each un-

known test pattern, the classification is performed

according to the class label of the BKS cell indexed by

the classifier outputs. The BKS method requires very

large and representative data sets to work well.

Rank-Level Fusion Rules

The most commonly used rule of this type is the Borda

Count method. The Borda count method combines
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the lists of ranked class labels provided by classifiers,

and it classifies an input pattern by its overall class

rank, that is computed summing the rank values

that classifiers assigned to the pattern for each class.

The class with the maximum overall rank is the winner.

Rank-level fusion rules are suitable for problems

with many classes, where the correct class may appear

often near the top of the list, although not always at

the top.
M

Measurement-Level Fusion Rules

Examples of fixed rules that combine continuous clas-

sifier outputs are: the simple mean (average), the max-

imum, the minimum, the median, and the product of

classifier outputs [1]. Linear combiners (i.e., the aver-

age and its trainable version, the weighted average) are

used in popular ensemble learning algorithms such as

Bagging [8], the Random Subspace Method [10], and

AdaBoost [1, 9], and represent the baseline and first

choice combiner in many applications. Continuous

classifier outputs can be also regarded as a new feature

space (an intermediate feature space [1]). Another

classifier that takes classifier outputs as input and out-

puts a class label can do the combination. However,

this approach usually demands very large data sets that

allow training effectively this additional classifier. The

Decision Templates method is an interesting example

of a trainable rule for combining continuous classifier

outputs [1]. The idea behind decision templates com-

biner is to store the most typical classifier outputs

(called decision template) for each class, and then

compare it with the classifier outputs obtained for

the input pattern (called decision profile of the input

pattern) using some similarity measure.
Selection of Multiple Classifiers

In classifier selection, the role of the combiner is selecting

the classifier (or the subset of classifiers) to be used for

classifying the input pattern, under the assumption that

different classifiers (or subsets of classifiers) have different

domains of competence. Dynamic classifier selection

rules have been proposed that estimate the accuracy of

each classifier in a local region surrounding the pattern to

be classified, and select the classifier that exhibits the

maximum accuracy [14, 15]. As dynamic selection

may be too computationally demanding and require

large data sets for estimating the local classifier accura-

cy, some static selection rules have also been proposed
where the regions of competence of each classifier are

estimated before the operational phase of the MCS [1].

Classifier selection has not attracted as much atten-

tion as classifier fusion, probably due to the practical

difficulty of identifying the domains of competence

of classifiers that make possible an effective selection.
Related Entries
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▶ Fusion, Decision-Level

▶ Fusion, Rank-Level
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▶Multiple Experts
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Definition

A Biometric expert, or an expert in biometric recogni-

tion context, refers to a method that expresses an

opinion on the likelihood of an identity by analyzing

a signal that it is specialized on, e.g. a fingerprint expert

using minutiae, a lip-motion expert using statistics of

optical-flow. Accordingly, there can be several experts

associated with the same sensor data, each analyzing

the data in a different way. Alternatively, they can be
specialized on different sensor data. Multiple experts

can address the issue of how expert opinions should

be represented and reconciled to a single opinion on

the authenticity of a ▶ client identity.
Introduction

In biometric signal analysis, the fusion of multiple

experts can in practice be achieved as ▶ feature fusion

or score fusion. In addition to these, one can also

discern data fusion, e.g. stereo images of a face, and

decision fusion, e.g. the decisions of several experts

wherein each expresses either of the crisp opinions

‘‘client’’ or ‘‘▶ impostor,’’ in the taxonomy of fusion

[1]. However, one can see data fusion and decision

fusion as adding novel experts and as a special case of

score fusion, respectively. On the other hand, feature

fusion is often achieved as concatenation of feature

vectors, which is in turn modeled by an expert suitable

for the processing demands of the set of the novel

vectors. For this reason we only discuss score fusion

in this article. The initial frameworks for fusion have

been simplistic in that no knowledge on the skills of

the experts is used by the ▶ supervisor. Later efforts

to reconcile different expert opinions in a multiple

experts biometric system have been described from

a probabilistic opinion modeling [2] and a pattern

discrimination [3], view points, respectively. From

both perspectives, it can be concluded that the weight-

ed average is a good way of reconciling different

authenticity scores of individual experts to a single

opinion, under reasonable conditions. As the weights

reflect the skills of the experts, some sort of training is

needed to estimate them. Belonging to probabilistic

modeling school, respective discriminant analysis

school, Bayesian modeling [4, 5], and support vector

machines [6–8] have been utilized to fuse expert opi-

nions. An important issue for a fusion method is,

however, whether or not it has mechanisms to discern

the general skill of an expert from the quality of the

current data. We summarize the basic principles to

exemplify typical fusion approaches as follows.
Simple Fusion

This type of fusion applies a rule to input opinions

delivered by the experts. The rule is not obtained by
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training on expert opinions, but are decided by the

designer of the supervisor. Assuming that the supervi-

sor receives all expert inputs in parallel, common sim-

ple fusions include,
max

min

sum

median

Product

Maximum of the scores,

Minimum of the scores,

Arithmetic mean of the scores,

Median of the scores,

Geometric mean of the scores,

Mj ¼ maxðx1;j ; x2;j ; . . . ; xm;jÞ
Mj ¼ minðx1;j ; x2;j ; . . . ; xm;jÞ
Mj ¼ 1

m

Pm
i¼1 xi;j

Mj ¼ x mþ1
2

� �
j

Mj ¼ ðQm
i¼1 xi;jÞ

1
m

where Mj is the score output by the supervisor

at the instant of operation j, when m expert opinions,

expressed as real numbers xi, j, i : 1. . .m, are available to

it. In addition to a parallel application of a single

simple fusion to all expert opinions, one can apply

several simple fusion rules serially (one after the

other) if some expert opinions are delayed before

they are processed by the supervisor(s).
Multiple Experts. Figure 1 The component distributions

with X1 �N(0,1), X2 �N(0,1.32) and the composite

distribution M �N(0,1 ∕ (1.3�2þ1)), (1).

M

Probabilistic Fusion

Experts can express opinions in various ways. The

simplest is to give a strict decision on a claim of an

identity, ‘‘1’’ (client) or ‘‘0’’ (impostor). A more com-

mon way is to give a graded opinion, usually a real

number in [0, 1]. However, it turns out that machine

experts can benefit from a more complex representa-

tion of an opinion, an array of real variables. This is not

surprising to human experience because, a human

opinion is seldom so simple or lacks variability that it

can be described by what a single variable can afford.

A richer representation of an opinion is therefore the

use of the distribution of a score rather than a score.

Bayes theory is the natural choice in this case because it

is about how to update knowledge represented as dis-

tribution (prior) when new knowledge (likelihood)

becomes available.

Before describing a particular way of constructing a

Bayesian supervisor let us illustrate the basic mecha-

nism of Bayesian updating. Let two stochastic variables

X1, X2 represent these errors of two different measure-

ment systems measuring the same physical quantity.

We assume that these errors are independent and

are distributed normally as N(0, s1
2), N(0, s2

2), respec-

tively. Then their weighted average

M ¼ q1X1 þ q2X2; where q1 þ q2 ¼ 1 ð1Þ
is also normally distributed with N(0, q1
2s1

2 þ q2
2s2

2).

Given the variances s1
2, s2

2, if the weights q1,q2 are

chosen inversely proportional to the respective var-

iances, the variance of the new variableM (the weighted

mean) will be smallest provided that

q1 ¼
1
s21

1
s2
1

þ 1
s2
2

; q2 ¼
1
s22

1
s2
1

þ 1
s2
2

ð2Þ

where inverse-proportionality constants (the denomi-

nators) ensure q1 þ q2 ¼ 1. Notice that the composite

variable M is normally distributed always if the X1, X2

are independent but the variance is smallest only for a

particular choice, (seen earlier) yielding

varðMÞ ¼ q21s
2
1 þ q22s

2
2 ¼

1
s4

1

ð 1
s2

1

þ 1
s2

2

Þ2
s21

þ
1
s4

2

ð 1
s2

1

þ 1
s2

2

Þ2
s22 ¼

1
1
s2

1

þ 1
s2

2

�minðs21;s22Þ ð3Þ

The fact that the composite variance never exceeds the

smallest of the component variances, and that it con-

verges to the smallest of the two when either becomes

large, i.e. one distribution approaches the noninforma-

tive distribution N(0,1), can be exploited to improve

the precision of the aggregated measurements, Fig. 1.

Appropriate weighting is the main mechanism on

how knowledge as represented by distributions can be

utilized to improve biometric decision making. Bayes

theory comes handy at this point because it offers the

powerful Bayes theorem to estimate the weights for the

aggregation of the distributions, incrementally, or at one-

go as new knowledge becomes available.We follow [4] to
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exemplify the Bayesian approach. Let the following list

describe the variables representing the signals made

available by a multiexpert biometric system specialized

in making decisions. Next we will discuss the errors of

the experts on client and impostor data separately.
i:

j:

Xij:

Y j

Zij
S ij

Index of the experts. i 2 1. . .m,

Index of shots (one or more per candidate), j 2
1. . .n, nT. It is equivalent to time since an expert

has one shot per evaluation time (period). The

time n is the last instant in the training whereas

nT is the test time when the system is in

operation.

The authenticity score, i.e. the score delivered by

expert i on shot j ’s claim of being a certain client

The true authenticity score of shot j’s claim being

a certain client. This variable can take only two

numerical values corresponding to ‘‘True’’ and

‘‘False’’

The miss-identification score, that is Zij ¼ Y j�Xij

The variance of Zij as estimated by expert i
One can model the errors (not the scores) that

a specific expert makes when it encounters clients.

To this end, assume that Y i¼ 1 and that the conditional

stochastic variable Zij given its expectation value

bi is normally distributed i.e. (Zij jbi)�N(bi,sij
2). If Zij

are independent then, according to Bayes theory, the

posterior distribution (bi jzij), will also be normal

ðbijzijÞ � NðMC
i ;V

C
i Þ ð4Þ

with mean and variance

MC
i ¼

PnC

j¼1
zij
sij 2PnC

j¼1
1
sij 2

and VC
i ¼

XnC

i

1

s2ij

 !�1

ð5Þ

respectively. In this updating, we see the same pattern

as in the example, (1–3). Here C is a label that

denotes that the applicable variables relate to clients.

This distribution at hand, one can now estimate bi as

the expectation of (bi jzij) which isMi
C. This derivation

can be seen as that we updated a noninformative prior

distribution, bi 2N(0,1), i.e. ‘‘nothing is known about

bi’’ to obtain the posterior distribution (bi jZij) 2 N

(Mi
C, Vi

C). The resulting distribution is a Gaussian

function which attempts to capture the bias of each

expert, as well as the precision of each expert, which

together represent its skills.
We proceed next to use the observed knowledge

about an expert to obtain an unbiased estimate of its

score distribution at the time instant j ¼ nT. By re-

applying Bayes theorem to update the distribution

given in (4) one obtains that,

ðYnT jzi;1; zi;2; :::; zi;nC ; xi;nT Þ 2 NðM 0
i
C
;V 0

i
CÞ ð6Þ

with mean and variance

M 0
i
C ¼ xi;nT þMC

i and V 0
i
C ¼ VC

i þ s2i;nT : ð7Þ

Consider now the situation that m independent

experts have delivered their authenticity scores on

supervisor-training shots (j ¼ 1, 2, . . . ,nC) and the test

shot nT. Using the Bayesian updating again, the

posterior distribution of bi, given the scores at the

instant j ¼ nT and the earlier errors, is normal;

ðYnT jz1;1; :::; z1;nC ; x1;nT ; :::; zm;1; :::zm;nC ; xm;nT Þ
2 NðM 00

i
C
;V 00

i
CÞ

ð8Þ

where

M 00C ¼
Pm
i¼1

M 0
i
C

V 0
i
C

Pm
i¼1

1
V 0C

i

and V 00C ¼
Xm
i¼1

1

V 0
i
C

 !�1

ð9Þ

However, to compute these means and variances,

the score variances sij
2 are needed. We suppose that

these estimations are delivered by experts depending

on, e.g. the quality of the current biometric sample

underlying their scores. This is reasonable because not

all samples have the same (good) quality, influencing

the precision of the observed score xij. In case this is

not practicable for various reasons, one can assume

that xij has the same variance within an expert i (but

allow it to vary between experts). Then, the variances

of the distributions of xij need not be delivered to the

supervisor, but can be estimated by the supervisor, as

discussed in the following section. Before one can use

the distribution N(M 00C, V 00C) as a supervisor, one

needs to compare it with the distribution obtained by

an alternative aggregation.

Assume now that we perform this training with nI

impostor samples (Yj ¼ 0) i.e. that we compute the

bias distribution N(M 0
i
I, V 0

i
I) when expert i evaluates

impostors, and the final distribution N(M00I, V00I), with
I being a label denoting ‘‘Impostor.’’ We do not write

the update formulas explicitly as these are identical
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M

to (5,7,9) except that the training set consists of impos-

tors. One of the two distributions N(M 00C, V 00C), and N

(M 00I, V 00I), represents the true knowledge better than
the other at the test occasion, j ¼ nT. At this point one

can choose the distribution that achieves a resemblance

that is most bona-fide to its role, e.g.

M 00 ¼ M 00C ; if 1�M 00C � M 00I ;
M 00I ; otherwise:

�
ð10Þ

In other words if the client-supervisor has a mean

closer to its goal (one, because Y j¼ 1 represents client)

than the impostor-supervisor’s mean is to its goal

(zero) then the choice falls on the distribution coming

from the client-supervisor and vice-versa. An addi-

tional possibility is to reject to output a distribution

in case the two competing distributions overlap

more than a desired threshold. One could also think

of a hypersupervisor to reconcile the two antagonist

▶ supervisor opinions.

In practice most experts deliver scores that are

between 0 and 1. However, there is a formal incompat-

ibility of this with our assumptions because the dis-

tributions ofZijwould be limited to the interval [�1,1]

whereas the concept we discussed earlier is based on

normal distributions taking values in] �1, 1[. This

is a classical problem in statistics and is addressed

typically by remapping the scores so that one works

with ‘‘odds’’ of scores

Xij ¼ log
X

0
ij

1� X
0
ij

ð11Þ

where Xij
0 2 ]0,1[. It can be shown that the supervisor

formula (10) and its underlying updating formulas

hold for Xij
0 as well. The only difference is in the con-

ditional distributions which will be log normal yield-

ing, in particular, the expected value exp(M
00þV

00
∕2)

and the variance exp(2M
00 þ 2V

00
)�exp(2M

00 þV
00
) for

YnT , (8).

Quality estimations for Bayesian supervisors. There

are various ways to estimate the variance of a score

distribution associated with a particular biometric

sample on which an expert expresses an opinion of

authenticity. A Bayesian supervisor expects this esti-

mate because it works with distributions to represent

the knowledge/opinion concerning the current sample

as well as the past experience, not scalars. It makes

most sense that this information is delivered by the

expert or by considering the quality of the score. Next
we discuss how these can be entered into update

formulas.

One can assume that the experts give the precisions

correctly except for an individual proportionality

constant.

sij ¼ ais2ij ð12Þ

Applying the Bayes theory again, i.e. ai is first modeled

to be a distribution rather than a scalar, then the

distribution of (ai j(zi,1,si,1), . . . ,(zi,n,si,n)) can be com-

puted (it is a beta distribution under reasonable

assumptions [4]). In turn this allows one to estimate

the conditional expectation of 1
ai
, yielding a Bayesian

estimate of the score-error variances

�si;j2 ¼ Eðs2inT jsinT ; ðzi;1; si;1Þ; � � � ðzi;n; si;nÞÞ
¼ sijE

1

ai

� �
¼ sijai ¼ sij

ðGi � DiÞ
n� 3

¼ ð13Þ

with

ai ¼ E
1

ai

� �
¼ ðGi � DiÞ

n� 3
; Gi ¼

Xn
j¼1

z2ij

sij

 !
and

Di ¼
Xn
j¼1

zij

sij

� � !2 Xn
j¼1

1

sij

� � !�1

ð14Þ

Note that, n will normally represent the number of

biometric samples in the training set and equals to

either nC or nI. From this result it can also be con-

cluded that if an expert is unable to give a differen-

tiated quality estimation then its variance estimation sij
will be constant across the biometric samples it

inspects and the �s2ij will approach gracefully to the

variance of the error of the scores of the expert (not

adjusted to sample quality).

The machine expert will, in practice, be allowed to

deliver an empirical quality score pij because these are

easier to obtain than variance estimations, sij. At this

point, one can assert that these qualities are inversely

proportional to the underlying standard deviations of

the score distributions, yielding

sij ¼ 1

p2ij
ð15Þ

where pij is a quality measure of the biometric sample j

as estimated by the expert i. If it is a human expert that

estimates the quality pij it can be the length of the

interval in which she/he is willing to place the score

xij, so that even human and machine opinions can be

reconciled by using the Bayesian supervisor. In Fig. 2 (a),



Multiple Experts. Figure 2 The graphs, from [12], illustrate the recognition performance of two supervisors on the same

data-set. In a probabilistic supervisor (Bayesian) and in (b) a discrimination based supervisor (SVM) were used. The

used experts were common, F: fingerprint, and S: signature. In (b) there were two different fingerprint experts as well as

two different signature experts. Q-Fusion represents quality based fusion.

Multiple Experts. Figure 3 The graphs, adapted from

[11], illustrate the recognition performance of two (qA, B)

and three (qA, B, C) fingerprint experts combined by the

Bayesian supervisor with automatically extracted quality

measures (attached to qA).
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the performance of using this Bayes supervisor in

a recognition system relying on a fingerprint and a

signature expert is shown. The quality scores are gen-

erated by human experts independent of the experi-

ment. To automatically find quality scores pij for

biometric samples is an emerging field of study

[8–11]. The results of Bayes supervisor in connection

with machine-delivered quality scores are illustrated by

Fig. 3 where three fingerprint (machine) experts’ opi-

nions are weighted to yield the supervisor opinion. The

experts are called A, B, and C and the quality measures

used were (1) no quality used, i.e. pij ¼ 1 (2) An

automatic quality measure [10], (the method is pub-

licly made available by NIST), (3) another automatic

quality measure based on local symmetries [11], (4)

Quality measures provided by human experts. At each

experiment, one of the four quality measures is at-

tached to the scores of A (so that this expert is called

qA) in a two or three expert configurations to evaluate

the effect of using sample adaptive quality measures in

machine supervisors. As can be seen, using quality

measures does improve the recognition performance.

It is not surprising that human experts perform better

in quality estimation, as this is a very complex task in

which human experts still excel. However, the ma-

chine-delivered quality estimates are fairing quite
well, not too far away behind human assessments of

the quality. It is also worth noting that the final deci-

sions are suggested by the machine supervisor which

processed both human and machine delivered opinion

parameters transparently.



Multiple Experts. Figure 4 Illustration of two classes

(circle:client and square:impostor) that are separable by

a hyperplane with direction w. The support vectors that

define the separation hyperplane are represented by the

outlined square and the circle on dashed hyperplanes. The

width of the separation zone is 2 ∕kwk which is maximized

by SVM.
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M

Discrimination Functions Based
Fusion

Discrimination functions are frequently used in pattern

classification and can also be used to fuse decisions of

biometric experts. Discriminative statistics differs from

Bayesian approach in that distributions of random

variables are not necessary for decision making. In-

stead, modeling the decision boundaries is the focus

of attention. Here we exemplify the use of this approach

in fusion by Support Vector Machines, SVMs [3].

Assume that we are given a set of observations

fx1; y1g; fx2; y2g � � � fxn; yng ð16Þ

where xj ¼ (x1, j, . . . ,x1, j)
T is a feature vector of dimen-

sion m, and yj is the class-label of the latter (relative to

the classes, ‘‘client’’ and ‘‘impostor’’), respectively. As-

sume further that the two classes are separable by a

hyperplane. Then there is an optimal hyperplane in a

high dimensional space to which x is mapped. For

simplicity we assume that the mapping is the (trivial)

identity transformation but other tranformations

using e.g. polynomials, or radial basis functions, can

be used with little impact on the discussion that fol-

lows next [3], provided that appropriate kernel func-

tions are used whenever scalar products are utilized in

computations. The separation hyperplane

f ðxÞ ¼ w � x þ b ¼ 0 ð17Þ

can be made to have maximal distance dmax to samples

belonging to the two classes, Fig. 4. The equation

can be multiplied by a nonzero constant such that

kwk¼1 ∕dmax. We can (using this freedom) represent

thereby the two class-labels asþ1 and�1, to follow the

convention of SVM litterature. Then, we have

f ðxjÞ � 1 if yj ¼ 1

f ðxjÞ � �1 if yj ¼ �1

�
ð18Þ

Equivalently, the distance is maximized if 1
2
kwk2 is

minimized under the constraints given by (18). If we

know w and b, the function f will be a discrimination

function, e.g. f(x) � 0 prompts for a decision y ¼ 1.

The parameters w and b can be found by solving a

quadratic problem with linear constraints.

In case the classes are not separable by a hyper-

plane, slack variables xj are introduced so as to allow

a classification that makes an error, but that this error

is the smallest on the training/observation set. The
corresponding problem is still a quadratic optimiza-

tion problem

min
1

2
kwk2 þ

X
j

Cxj ð19Þ

subject to the constraints

f ðxjÞ � 1 if yj ¼ 1� xj
f ðxjÞ � �1 if yj ¼ �1þ xj

�
ð20Þ

The constant C assures that there is a limit on the

amount of change the training vectors can introduce

to the solution.

The SVM formulation allows one to construct a

supervisor that is able to assign a class label yj to the

score vector of m experts xj ¼ (x1, j, x2, j. . . xm, j)
T

(at j ¼ nT). However, such a supervisor would not be

quality adaptive yet, because the contribution of each

sample to the total cost function would be uniform

due to C ’s being a constant. This can be changed such

that the cost depends on the quality of the biometric

sample by means of a heuristically chosen function.

In the following section we follow the description

of [8] to obtain such a sample adaptation and a final

supervisor.
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Let the original quality measure delivered by the

expert i be pij 2 [0, pmax] and

qij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pij � �pi

q
ð21Þ

where �pi is the average quality measure of the signals

that expert i delivered for the training samples, which

is also in the range of [0, pmax]. Then one can train m

SVMs, each having its own discrimination function

fi, by defining the cost coefficients for the respective

function as follows.

Cij ¼ C

Q
i0 6¼iqi0;j

pm�1
max

� �g1

ð22Þ

The coefficient Cij represents now the cost of not

influencing the biometric sample j by expert i and it

is measured as the product of the quality measures of

other experts (excluding expert i) on the current sam-

ple j. The training samples of fi are xj
i, j : 1. . .n, which

equals to xj except that its component corresponding

to expert i has been removed.

x
i

j ¼ ðx1;j ; � � � ; xi�1;j ; xiþ1;j ; � � � xm;jÞT ð23Þ

Here the use i superscript is in the sense of label, not

exponent, signifies that the data of expert i is lacking.

The exponent g1 is an empirically chosen constant the

purpose of which is to adjust the overall influence of

quality based discrimination on the final decision. In a

similar fashion an additional discrimination function

f0 can be computed, except that the cost coefficients are

now defined as

Cj ¼ C

Qm
i¼1qi;j

pmmax

 !g2

ð24Þ

This represents the alternative cost of using all individ-

ual quality measures including those delivered by

expert i. The discrimination function f0 is obtained

by an SVM training on full length expert score vectors

xj, j : 1. . .n, as opposed to fi,i : 1, . . . ,mwhich trains on

xj
i, lacking the opinion of expert i. When the system is

operational at time j ¼ nT, the m quality scores qi;nT as

well as m expert scores xi;nT are available. The quality

measures qi;nT , as well as the corresponding scores qi;nT
and the discrimination functions fi, i : 1, . . . ,m, are

re-indexed such that q1;nT �� � �� qm;nT
. A final super-

visor can then be obtained by aggregating f0 with f1,. . .

fm as follows:
f Q ¼ b1
Xm�1

i¼1

biPm�1
i0¼1 bi0

f iðxinT Þ þ ð1� b1Þf 0ðxnT Þ ð25Þ

where

bi ¼
qm;nT

� qi;nT
pmax

� �a2

ð26Þ

The results of this supervisor is shown in Fig. 2 (2)

where fingerprint and signature traits are fused using

human expert opinions. Again, one can conclude that

skill and sample adaptation do help to improve the

recognition performance.
Related Entries

▶Quality Measures
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Multiple View Geometry
Multiple view geometry is the scientific field which

studies the geometric relations between images of

the same objects taken from different views. It relies

heavily on affine- and projective-geometry.

▶Palm Vein Image Sensor
M
Multispectral and Hyperspectral
Biometrics

BESMA ROUI-ABIDI, MONGI ABIDI

The University of Tennessee, Knoxville, TN, USA
Synonyms

Imaging spectroscopy; Multiband biometrics; Fusion,

Wavelet-Based
Definition

Multispectral biometrics are based on data consisting

of four to ten separate images of the same biometric

trait and representing sensors’ responses in different

wavelengths of the electromagnetic spectrum. In con-

trast to conventional images, which generally represent

an integrated response of a single sensor over a wide

range of bands in the same spectral zone, multispectral

data usually refers to multiple separate sensor(s) res-

ponses in relatively narrow spectral bands. The word

multispectral was first used in space-based imaging to

denote data acquired in the visible and infrared spec-

tra. In biometrics, the wordmultispectral has been used
to describe responses in multiple narrow bands either

all in the visible, or all in the infrared, or a mixture

of both. Even though the words hyperspectral and mul-

tispectral have often been used interchangeably, hyper-

spectral imaging usually refers to cases where the

number of bands are higher than 10 and when these

bands encompass more than one region of the electro-

magnetic spectrum, such as the visible and the infra-

red. Without lack of generality, the word multispectral

will be used in the reminder of this article to refer to

any biometric work involving more than the three

customary red, green, and blue channels.
Introduction

Multispectral imaging provides data in the form of a

three dimensional image cube, with two spatial dimen-

sions (horizontal and vertical coordinates) and one

spectral dimension. Also called imaging spectroscopy,

this type of data details the spectral content of each pixel

in the 2D image, therefore providing more than what the

human eye can capturewith its receptors in the red, green,

and blue. The separation of a pixel’s content into infor-

mation within multiple very narrow wavelengths allows

the material imaged to be identified based on its spectral

characteristics in addition to its spatial characteristics.

The high number and different characteristics of the

bands make it easier to differentiate between objects that

would look similar in regular intensity images or even in

conventional color images. In other words, a multispec-

tral dataset is a higher resolution image in the spectral

dimension that makes it possible to resolve information

and details non resolvable in conventional images.

The higher dimensionality of multispectral data

presents a desirable feature for biometric systems, i.e.,

the uniqueness of a material based on its spectral

characteristics, including material of a person’s skin,

iris, and vasculature. A conventional sensor’s response

to the combination of material and illumination is not

always most informative in the visible domain. For

instance, conditions such as night time and low inten-

sity light are better dealt within the infrared domain,

while the visible spectrum generally reveals better in-

formation in uniform well lit situations. Concealment

and disguise is another issue that is usually hard to deal

with in the visible domain alone. Figure 1 shows two

images of a person wearing sunglasses, one in the

visible light and the other in the near infrared (NIR).



Multispectral and Hyperspectral Biometrics. Figure 1 Visible and NIR images of a subject wearing sun glasses.

Images are acquired using an IR-Enabled Sony DSC-S30 Digital Camera & X-Nite780 nm filter under incandescent lighting

http://www.maxmax.com/aXRayIRExamplesSecurity.htm.
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The eyes, which are fundamental features for any face

recognition algorithm, appear completely blocked out

in the visible image, while visible in the NIR image.

Versatility, usability, and security are some of the

required characteristics of any biometric system. Such

system must have the capability to acquire and process

biometric data at different times of day and night, in a

variety of weather and environmental conditions, and

be resistant to spoofing attempts. Multispectral bio-

metrics is one of the few technologies shown to solve

many of the aforementioned issues. Multispectral anal-

ysis has been used to improve recognition rates and

detect spoofing attempts for various biometric modal-

ities, including face [1], iris [2], fingerprint [3], and

vasculature [4]. Wavelengths covering the visible spec-

trum all the way to the long wave infrared have been

used in the analysis of Biometric data. Figure 2 displays

the distribution and values of wavelengths along the

electromagnetic spectrum, with emphasis on the most

used bands in biometrics. The visible spectrum com-

prises wavelengths between 400 and 750 nm. Bands of

lengths from 750 to 1,400 nm represent the NIR, while

wavelengths between 1.4 and 3 mm are called short wave

infrared (SWIR). Bands from 3 to 8 mm are said to be

in the mid wave infrared (MWIR) and bands between

8 and 15 mm are called long wave infrared (LWIR). Mid

wave and long wave are also referred to as thermal

infrared.
Multispectral Biometric Data Acquisition

Most multispectral instruments use a 2D detector array

and are scanned over time to acquire the third dimen-

sion of the cube. Some common techniques for
acquiring multispectral data are: (1) Spatially scanning

split spectrometer, (2) wavelet tunable spectral filter,

(3) two-dimensional Fourier transform imager, or (4)

a combination of sensors with responses in different

regions of the spectrum. A number of instruments

were used in Biometrics to acquire multispectral data

of face, iris, fingerprint, and vasculature. Separate but

aligned/calibrated visible and infrared cameras were

used to obtain registered face images [5, 6]. Liquid

crystal tunable filters attached to monochromatic

video cameras were also deployed to acquire multiple

spectral bands (25 bands between 400 and 800 nm [7]

and 31 bands between 700 and 1,000 nm [8]) of face

images over time. Tunable filters allow the band to be

changed electronically and continuously with select-

able resolution and interval. A spectropolarimetric

camera was used for hyperspectral face data acquisition

in the range of 450–1,100 nm [9]. Iris images in the

visible and NIR were obtained using a multispectral

camera consisting of three charge coupled devices and

three band-pass prisms, resulting into a 4 band output

[2]. Multispectral fingerprint data has been collected

using a single placement of the finger on a sensor that

combines a conventional optical fingerprint reader and

multiple illuminators with different wavelengths, light

orientations, and polarization conditions to yield in-

formation on both the surface and subsurface region of

the finger’s skin [3].
Multispectral Face

Changes in conditions between gallery and probe ima-

ges have often resulted in major performance degrada-

tions of face recognition algorithms. Such conditions

http://www.maxmax.com/aXRayIRExamplesSecurity.htm
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include illumination, pose, time lapse, and expression

[10]. A number of studies were conducted in recent

years using multispectral face data in an attempt to

establish invariance of face biometric systems to

changes in these conditions. Researchers and scientists

addressed various multispectral aspects of face recog-

nition. These included restricting the bands to certain

zones of the spectrum, such as using just visible bands

or only infrared wavelengths, as well as combining

spectral bands from the visible, NIR, and/or thermal

infrared. Figure 3 displays a sample set of face images

acquired in different bands of the electromagnetic

spectrum.
Multispectral and Hyperspectral Biometrics. Figure 2 Band

www.itcnewsletter.com [Courtesy: Infrared Training Center].

Multispectral and Hyperspectral Biometrics. Figure 3 A set

bands of the visible spectrum, followed by the three R, G, B com

color image, a NIR, and a thermal infrared image of the same

Systems lab, University of Tennessee).
A study conducted at the University of Tennessee

used 25 bands in the visible spectrum to analyze the

effect of change in illumination conditions, especially

outdoor versus indoor lighting, on face recognition

performance. Chang et al. analyzed the multispectral

face data in light of the measured spectral distributions

of the illuminants and addressed spectral band selec-

tion as well as the fusion of multispectral data to

improve invariance to illumination [7, 11]. Fusion

methods such as averaging, Principal Components

Analysis, ▶wavelet analysis, physics based, and illumi-

nation adjustment were implemented and tested. Rank-

based decision fusion was also tested on various bands
s of the electromagnetic spectrum and their wavelengths

of multispectral face images acquired in 8 single narrow

ponents from a conventional color camera, the composite

subject- (Courtesy of Imaging, Robotics, and Intelligent

M

http://www.itcnewsletter.com
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and shown to considerably improve recognition perfor-

mance. The authors of the study demonstrated that

fused face data outperforms conventional images espe-

cially under severe changes in illumination conditions

and long time lapses between gallery and probe images.

Using a database of 200 face images spanning 31

bands of the NIR spectrum, Pan et al. demonstrated

that the subsurface information provided in these

bands can be unique to each individual, is relatively

stable over time, and invariant to pose and expression

variations [8, 12].

Other studies on face biometrics involved a combi-

nation of spectral data from different spectral zones.

One of the first studies combining visible and infrared

face images was conducted by Sokolinsky et al. [5],

who were able to show an increase in performance by

fusing visible and infrared spectral bands. Kong et al.

demonstrated that wavelet-based fusion of visible and

thermal infrared imagery considerably improved face

recognition under a variety of illumination directions

and intensities [1].

Buddharaju et al. combined data in the visible with

data in the thermal spectra and used the physiological

characteristics of the thermal face vasculature to im-

prove recognition rates [4] of face images with varying

expressions. A score level fusion approach was used.

The authors also studied the effect of change in tem-

perature and sweating on the performance of the algo-

rithm and found that extreme conditions resulted in

non linear variations in thermal data and therefore

deterioration in performance. Kakadiaris et al. com-

bined 3D face reconstructed from multiple visible sen-

sors with the texture and vasculature emanating from

a calibrated infrared camera to cancel out the effect of

expression changes on recognition performance [6].

Skin temperature was encoded in the metadata records

used for recognition and the algorithm showed a min-

imal drop in performance in the presence of changes

in facial expression compared to the baseline algori-

thms used on the Face Recognition Grand Challenge

database.
Multispectral Iris

Multispectral iris processing and recognition is a rela-

tively new area of biometrics. Early work by Imai was

conducted for a purely clinical application. It describes

experiments for the spectral characterization of the
human iris using an ophthalmic microscope, a digital

camera, and a spectroradiometer under halogen light.

The spectral bands studied were all in the visible range

from 400 to 700 nm and the study showed that the

recovered iris’ spectra of different subjects presented

clear distinctive differences. No database was built and

no biometric processing was conducted within the

study [13]. Boyer et al. acquired multispectral data of

the iris in the visible red, green, and blue and in the

NIR in an effort to demonstrate that different charac-

teristics of the iris will show in different bands based

on the color of the eye [2]. Figure 4 shows an example

of a blue eye iris in the various bands. The authors used

an adaptive color histogram equalization technique to

enhance the iris structure and reveal the needed infor-

mation in the individual channels. They then evaluated

the performance of iris recognition in the various

bands using a database of 24 subjects and 5 samples

per subject. A before and after performance evaluation

showed a substantial improvement in the blue channel.

The authors then conducted a series of experiments of

cross matching between individual channels and

showed that the performance degrades with the in-

crease in distance between the matched channels.

This indicates a decrease in correlation between the

information revealed in the more distant bands. The

study went on to show potential improvements to iris

segmentation using color based clustering.

Park and Kang processed infrared multispectral iris

data using a gradient-based fusion scheme. The purpose

of the study was to detect spoofing attempts by using

the specific complementary information contained

in the various bands of a real iris. Images with no

spectral variation (fake irises) resulted in an errone-

ous fused image that could not be matched against

actual irises [14].
Multispectral Fingerprint

Fingerprint sensors are widely used in law enfor-

cement, cyber, and physical security applications.

However, the performance of these sensors is easily

degraded by physiological and environmental condi-

tions, such as dry or wet skin, heat or cold, and ambi-

ent lighting conditions. These factors can result in

failure to enroll, a high rate of false rejection, and

dissatisfied users. Multispectral fingerprint Biometrics

is a relatively new technology aiming to solve some of



Multispectral and Hyperspectral Biometrics. Figure 5

Fingerprint scans (left) and their enhanced versions (right)

using a conventional IRT optical sensor (top) and a

multispectral sensor (bottom). The subject was asked to

apply very little pressure on the sensor [15].

Multispectral and Hyperspectral Biometrics. Figure 4 An example of a blue iris showing the false color NIR, the RGB

composite, and each individual channel [2].

Multispectral and Hyperspectral Biometrics M 997

M

the aforementioned problems. Multispectral finger-

print was first introduced by Rowe and Nixon [3],

who designed and tested a sensor able to acquire fin-

gerprint data in five visible spectral bands (445, 500,

574, 610, and 660 nm). The purpose of the effort was

to improve the usability of fingerprint biometric sys-

tems by improving the robustness of the sampling

process to physiological and environmental conditions

such as dry skin, rain, heat, lighting conditions, cold,

etc. The authors analyzed fingerprint recognition on a

number of samples from a baseline database of 4,105

samples, a cold finger study of 300 samples, and a wet

finger study of 1,186 samples using multiple sensors of

the same design. A dramatic improvement in Equal

Error Rate was achieved by using the new multispectral

acquisition technique compared to the customary

total internal reflectance technique (IRT). An example

of multispectral finger data and an IRT optical sample

of a fingerprint are shown in Fig. 5. The subject was

asked to apply too little pressure on the sensors. In

addition to a better and more successful enrollment,

the new multispectral sensor also provides information

on the subsurface of the finger and other attributes that

makes spoofing by using an artificial rubber or other

fake fingers difficult to achieve [15].

A different form of multispectral analysis called

Fourier Transform Infrared (FTIR) chemical imaging

was used in forensic studies to recover and identify

latent fingerprints from traditionally hard to analyze
backgrounds [16]. In this approach, the infrared spec-

trum of the sample is collected by passing a beam

of infrared light through the sample. A systematic

methodology is used for each surface by optimizing

the spectral resolution, number of scans, and pixel

aggregation. Examination of the transmitted light

reveals how much energy was absorbed at each wave-

length. A Fourier transform instrument measures all
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wavelengths at once. From this, a transmittance or

absorbance spectrum is produced. Analysis of these

absorption characteristics reveals details about the mo-

lecular structure of the sample. The use of this ap-

proach was shown to improve sample analysis from

polymer bank notes and aluminum drink cans. Crane

et al. used various processing techniques on FTIR

images of fingerprints on a number of challenging

porous and nonporous substrates to extract the ridge

patterns. Techniques used include basic infrared spec-

troscopic band intensities, addition and subtraction of

band intensity measurements, principal components

analysis, and calculation of second derivatives band

intensities. Trace evidence within the fingerprints

were also recovered and identified.
Related Entries

▶Biometric System

▶ Face Recognition

▶ Fingerprint Recognition

▶ Iris Recognition

▶ Liveness and Anti Spoofing

▶Near Infrared Based Face Recognition

▶ Skin Spectroscopy
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Multistage Matching
Multistage matching is a technique used in order to

simultaneously achieve high accuracy and high speed

during the matching stage: A fast initial algorithm is

used to compare the query to each template of the
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database, and a decision is made to disregard or keep

the template for the next stage. A slower, more accu-

rate, algorithm is then applied to the surviving tem-

plates, eliminating the additional database entries. This

process is repeated until the last stage, where the final

decision will be made. In multistage matching, the

slowest algorithms are applied only to a few numbers

of templates and, hence, have a small impact on the

overall matching speed.

▶Biometric Algorithms
Mutual Authentication
M

Mutual authentication or two-way authentication is

a process in which two entities in communication

authenticates each other before any application data

is transferred. This is typically achieved by exchange

of digital certificates issued by trusted entities.

Mutual authentication helps in eliminating the
man-in-the-middle attack, where an adversary estab-

lishes independent links with both the victims and

relays messages between them. The victims are led to

believe that they are in direct communication, while

infact, the entire communication between them is con-

trolled by the adversary.

▶ Security Issues, System Design
Mutual information
The mutual information I(x1; x2) of two random

variables x1 and x2 is the relative entropy between

the joint distribution p(x1, x2) and the product distri-

bution p(x1)p(x2),

Iðx1; x2Þ ¼ pðx1; x2Þ logðpðx1; x2ÞÞ
pðx1Þ pðx2Þ dx1dx

▶ Independent Component Analysis





N

NAP-SVM
The main goal of the SVM Nuisance Attribute Projec-

tion (NAP) method is to reduce the impact of channel

variations (called also session variability). It uses an

appropriate projection matrix P in the SVM super-

vector space (a supervector is obtained by concatenat-

ing the Gaussian means) to remove the subspace that

contains the session variability.

s0 ¼ P � s; ð1Þ

where, s is a GMM supervector. The projection matrix

can be written as follow:

P ¼ ðI � VVt Þ; ð2Þ

where, V ¼ ½v1; :::; vk� is a rectangular matrix of

low rank whose columns are orthonormal. The vec-

tors vk are obtained from the k eigenvectors having

the k largest eigenvalues of the following covariance

matrix:

1

S

XS
s¼1

1

ns

Xns
i¼1

ð�msi � �msiÞð�msi � �msiÞt ð3Þ

where �msi represents the GMM supervector of the ith

session of the sth speaker. S is the number of speaker in

V -Matrix training data. ns is the number of different

sessions belonging to the sth speaker. �msi is the mean

GMM supervector obtained overall the sessions be-

longing to the sth speaker:

�msi ¼
1

ns

Xns
i¼1

�msi : ð4Þ

▶ Session Effects on Speaker Modeling
# 2009 Springer Science+Business Media, LLC
National Institute for Standards and
Technology
▶ Fingerprint, Forensic Evidence of
Natural Gradient
When a parameter space has a certain underlying

structure, the ordinary gradient (partial derivative) of

a function does not represent its steepest direction.

Riemannian space is a curved manifold where, there is

no orthonormal linear coordinates. The steepest descent

direction in a Riemannian space is given by the ordinary

gradient pre-multiplied by the inverse of Riemannian

metric. Such direction is referred to as natural gradient.

▶ Independent Component Analysis
Near Field Communication
Synonym

NFC
Definition

A method of wireless communication that uses mag-

netic field induction to send data over very short dis-

tances (less than 20 cm). NFC is intended primarily

for deployment in mobile handsets.

▶Transportable Asset Protection
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Near Infrared (NIR)
Electromagnetic radiation, identical to visible light, ex-

cept at wavelengths longer than red light; the near infra-

red band (IR-A) extends from �700 to 1,400 nm, while

the whole infrared region ranges from�700 to 3,000 nm.

▶ Face Recognition, Near-infrared

▶ Finger Vein

▶ Iris Databases

▶ Iris Device

▶Palm Vein
Near-infrared Image Based Face
Recognition
▶ Face Recognition, Near-Infrared
NEXUS
▶ Iris Recognition at Airports and Border-Crossings
NIST SREs (Speaker Recognition
Evaluations)
Evaluations of speaker recognition systems coordina-

ted by the National Institute of Standards and Tech-

nology (NIST) in Gaithersburg, MD, USA, 1996–2008.

▶ Speaker Databases and Evaluation
Noisy Iris Challenge Evaluation –
Part I (NICE.I)
The Noisy Iris Challenge Evaluation – Part I (NICE.I)

began in 2007 by the University of Beira Interior.
The NICE.I contest focuses on the development of

new iris segmentation and noise detection techniques

unlike similar contest which focus more on iris

recognition performance. The iris database used for

the contest, UBIRIS.v2, consists of very noisy iris

images to simulate less constraining image capturing

conditions.

▶ Iris Databases
Nominal Identity
Nominal identity represents the name and in certain

cases the other abstract concepts associated with

a given individual (e.g. the Senator, the Principal,

the actor). Such an identity is malleable and distin-

guished from the less mutable biometric identity,

which is typically predicated on physiological or

behavioral characteristics that do not change much

over time.

▶ Fraud Reduction, Applications
Non-ideal Iris
Non-ideal iris is defined as dealing with off-angle,

occluded, blurred, noisy images of iris.

▶ Iris Image Quality
Non-linear Dimension Reduction
Methods
▶Non-linear Techniques for Dimension Reduction
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Non-linear Techniques for
Dimension Reduction

JIAN YANG, ZHONG JIN, JINGYU YANG

School of Computer Science and Technology, Nanjing

University of Science and Technology, Nanjing, Peoples

Republic of China
Synonyms

Non-linear dimension reduction methods
Definition

Dimension reduction refers to the problem of con-

structing ameaningful low-dimensional representation

of high-dimensional data. A dimension reduction tech-

nique is generally associated with a map from a high-

dimensional input space to a low-dimensional output

space. If the associated map is non-linear, the dimen-

sion reduction technique is known as a non-linear

dimension reduction technique.
N

Introduction

Dimension reduction is the construction of a

meaningful low-dimensional representation of high-

dimensional data. Since there are large volumes

of high-dimensional data (such as climate patterns,

stellar spectra, or gene distributions) in numerous

real-world applications, dimension reduction is a fun-

damental problem in many scientific fields. From the

perspective of pattern recognition, dimension reduc-

tion is an effective means of avoiding the ‘‘curse

of dimensionality’’ and improving the computational

efficiency of pattern matching.

Researchers have developed many useful dimension

reduction techniques. These techniques can be broadly

categorized into two classes: linear and non-linear.

Linear dimension reduction seeks to find a meaningful

low-dimensional subspace in a high-dimensional

input space. This subspace can provide a compact

representation of high-dimensional data when the

structure of data embedded in the input space is linear.

The principal component analysis (PCA) and Fisher

linear discriminant analysis (LDA or FLD) are two
well-known linear subspace learning methods which

have been extensively used in pattern recognition and

computer vision areas and are the most popular tech-

niques for face recognition and other biometrics.

Linear models, however, may fail to discover essen-

tial data structures that are non-linear. A number of

non-linear dimension reduction techniques have been

developed to address this problem, with two in partic-

ular attracting wide attention: ▶ kernel-based techni-

ques and ▶manifold learning related techniques. The

basic idea of kernel-based techniques is to implicitly

map observed patterns into potentially much higher

dimensional feature vectors by using non-linear

mapping determined by a kernel. This makes it possi-

ble for the non-linear structure of data in observation

space to become linear in feature space, allowing the

use of linear techniques to deal with the data. The

representative techniques are kernel principal compo-

nent analysis (KPCA) [1] and kernel Fisher discrimi-

nant analysis (KFD) [2, 3]. Both have proven to be

effective in many real-world applications.

In contrast with kernel-based techniques, the mo-

tivation of manifold learning is straightforward, as it

seeks to directly find the intrinsic low-dimensional

non-linear data structures hidden in observation

space. Over the past few years many manifold learning

algorithms for discovering intrinsic low-dimensional

embedding of data have been proposed. Among

the most well-known are isometric feature mapping

(ISOMAP) [4], local linear embedding (LLE) [5],

and Laplacian Eigenmap [6]. Some experiments

demonstrated that these methods can find perceptually

meaningful embeddings for face or digit images. They

also yielded impressive results on other artificial and

real-world data sets. Recently, Yan et al. [7] proposed a

general dimension reduction framework called graph

embedding. LLE, ISOMAP, and Laplacian Eigenmap

can all be reformulated as a unified model in this

framework.
Kernel-Based Non-Linear Dimension
Reduction Techniques

Over the last 10 years, kernel-based dimension reduc-

tion techniques, represented by kernel principal compo-

nent analysis (KPCA), and kernel Fisher discriminant

analysis (KFD), have been extensively applied to

biometrics and have been proved to be effective. The

basic idea of KPCA and KFD is as follows.
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By virtue of a non-linear mappingF, the input data
space Rn is mapped into the feature space H

_
:

F :Rn ! H:
x 7! F xð Þ ð1Þ

As a result, a pattern in the original input space Rn is

mapped into a potentially much higher dimensional

feature vector in the feature space H
_
. KPCA is to per-

form PCA in the feature space, while KFD is to perform

LDA in such a space.

This description reveals the essence of the KPCA

and KFD methods, but it does not suggest an effective

way to implement these two methods, because the

direct operation in the high-dimensional or possibly

infinite-dimensional feature space is computationally

so intensive or even becomes impossible. Fortunately,

kernel tricks can be introduced to address this prob-

lem. The algorithms of KPCA and KFD can be imple-

mented in the input space by virtue of kernel tricks. An

explicit non-linear map and any operation in the fea-

ture space are not required at all.

To explain what a kernel trick is and how it works,

B. Schölkopf [8] gave an example, as shown in Fig. 1.

In the example, the two-class data is linearly non-

separable in the two-dimensional input space. That is,

one cannot find a projection axis by using any linear

dimension reduction technique such that the projected

data is separable on this axis. To deal with this problem,

the data can be transformed into a feature space by

the map F given in Fig. 1. As a result, the data become
Non-linear Techniques for Dimension Reduction. Figure 1

separable in the input space. (b) The data is linearly separable
linear separable in the yielding three-dimensional

feature space, thereby the linear dimension reduction

technique can be applied in such a space. To imple-

ment a linear dimension reduction technique in the

feature space, one needs to calculate the inner product

as follows:

hFðxÞ; Fðx0Þi ¼ ðx21 ;
ffiffiffi
2

p
x1x2; x

2
2Þðx021 ;

ffiffiffi
2

p
x01x

0
2; x

02
1 ÞT

¼ hx; x0i2

¼ :kðx; x0Þ
Therefore, the inner product operation can be expres-

sed by a 2-order polynomial kernel function. In this

way, the operation of the inner product in the feature

space is essentially avoided, as it can be calculated in

the input space via a kernel function. In addition, one

need not construct an explicit map, since the map is

completely determined by the kernel function.

Now, KPCA and KFD can be outlined as follows.

Given a set ofM training samples x1; x2; � � � ; xM in

Rn, the covariance operator on the feature space H
_
can

be constructed by

SFt ¼
XM
j¼1

FðxjÞ �mF
0

� �
FðxjÞ �mF

0

� �T ð2Þ

where mF
0 ¼ 1

M

PM
j¼1

FðxjÞ, and F is a map into the

feature space H
_
which is determined by a kernel k. In

a finite-dimensional Hilbert space, this operator is

generally called the covariance matrix.
An example of kernel mapping. (a) The data is linearly non-

in the mapped feature space.
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It is easy to show that every eigenvector of SFt , b,

can be linearly expanded by

b ¼
XM
i¼1

aiFðxiÞ: ð3Þ

To obtain the expansion coefficients, one can con-

struct the M �M Gram matrix K with elements

Kij ¼ kðxi; xjÞ and centralize K as follows

~K ¼ ðI� DÞKðI� DÞ; where I is the

identity matrix and D ¼ ð1=MÞM�M :
ð4Þ

Calculate the orthonormal eigenvectors v1; v2; � � � ; vm
of ~K corresponding to the m largest positive eigenva-

lues l1; l2; � � � ; lm. The orthonormal eigenvectors

b1;b2; � � � ;bm of SFt corresponding to the m largest

positive eigenvalues l1; l2; � � � ; lm are

bj ¼
1ffiffiffiffi
lj

p Qvj j ¼ 1; � � � ;m

where

Q ¼ Fðx1Þ; � � � ;FðxM Þ½ � ð5Þ
After the projection of the centered, mapped sample

FðxÞ on to the eigenvector system b1;b2; � � � ;bm,

one can obtain the KPCA-transformed feature vector

y by

y ¼ ðb1;b2; � � � ;bmÞT½FðxÞ �mF
0 �

¼ L�1
2VTQT½FðxÞ �mF

0 �
¼ L�1

2VTðI� DÞðKx � KD1Þ
ð6Þ

where

L ¼ diagðl1; l2; � � � ; lmÞ; V ¼ ½v1; v2; � � � ; vm�;
and

Kx ¼ kðx1; xÞ; kðx2; xÞ; � � � ; kðxM ; xÞ½ �T

and

D1 ¼ ð1=MÞM�1:

KFD seeks a set of optimal discriminant vectors by

maximizing the Fisher criterion in the feature space.

KFD can be derived in the similar way as used in KPCA.

That is, the Fisher discriminant vector can be expanded

using Eq. (3) and then the problem is formulated in a

space spanned by all mapped training samples. (For

more details, please refer to [2, 3].) Recent works

[9, 10] revealed that KFD is equivalent to KPCA plus

LDA. Based on this result, a more transparent KFD
algorithm has been proposed. That is, KPCA is first

performed and then LDA is used for a second dimen-

sion reduction in the KPCA-transformed space.
Manifold Learning Related Non-Linear
Dimension Reduction Techniques

Of late, manifold learning has become very popular in

machine learning and pattern recognition areas. As-

sume that the data lie on a low-dimensional manifold.

The goal of manifold learning is to find a low-dimen-

sional representation of data, and to recover the struc-

ture of data in an intrinsically low-dimensional space.

To gain more insight into the concept of manifold

learning, one can begin with a fundamental problem:

how is the observation data on a manifold generated?

Suppose the data is generated by the following model:

f ðYÞ �! X; ð7Þ
where Y is the parameter set, and f can be viewed as a

non-linear map. Then, its inverse problem is: how can

one recover the parameter set without knowing the

map f ? How can one build a map f from the data

space to the parameter space? Manifold learning

seeks answers to these problems. The process of

manifold learning is illustrated in Fig . 2 ; Fig . 2 (a)

presents a general process of manifold learning [11],

and Fig . 2( b) shows an example of how to find a

one-dimensional embedding (parameter set) from

the two-dimensional data lying on a one-dimensional

manifold [12].

Many manifold learning related dimension reduc-

tion techniques have been developed over the last few

years. Among the most well-known are isometric fea-

ture mapping (ISOMAP) [4], local linear embedding

(LLE) [5], and Laplacian Eigenmap [6]. Here, LLE can

be considered as an example to introduce manifold

learning related dimension reduction techniques.

Let X ¼ fx1; x2; � � � ; xNg be a set of N points in a

high-dimensional observation space

Rn. The data points are assumed to lie on or close

to a low-dimensional manifold. LLE seeks to find a

low-dimensional embedding of X by mapping the data

into a single global coordinate system in Rd (d < n).

The corresponding set of N points in the embedding

space Rd can be denoted as Y ¼ fy1; y2; � � � ; yNg.
The LLE algorithm is outlined in the following

three steps.



Non-linear Techniques for Dimension Reduction. Figure 2 Illustration of the process of manifold learning. (a) A general

process of manifold learning [11]. (b) An example of how to derive a one-dimensional embedding from the

two-dimensional data lying on a one-dimensional manifold [12].
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Step 1: For each data point xi 2 X, find K nearest

neighbors of xi . Let Oi ¼ fjjxj belongs to the set

of K nearest neighbors of xig
Step 2: Reconstruct xi from its K nearest neighbors

identified. The reconstruction weights can be

obtained by minimizing the reconstruction error

ei ¼ xi �
X
j

wijxj

�����

�����
2

; ð8Þ
subject to
P
j

wij ¼ 1 and wij ¼ 0 for any j =2 Oi.

Suppose the optimal reconstruction weights are

w�
ijði; j ¼ 1; 2; � � � ;NÞ.
Step 3: Compute d-dimensional coordinates yi by

minimizing the embedding cost function

FðyÞ ¼
X
i

yi �
X
j

w�
ijyj

�����

�����
2

: ð9Þ
subject to the following two constraints

X
i

yi ¼ 0 and 1
N

X
i

yiy
T
i ¼ I; ð10Þ

where I is an identity matrix.
The process of LEE algorithm is illustrated in Fig. 1 of

SVM and Kernal Method by Schölkopf [8].

Although some previous experiments have demon-

strated that the LEE and ISOMAP methods can pro-

vide perceptually meaningful representation for facial

expression or pose variations, these manifold learning

methods may not be suitable for biometric recogni-

tion tasks. [13] First, the goal of these manifold
learning algorithms has no direct connections to clas-

sification. Second, these algorithms are inconvenient

to deal with new samples because the involved non-

linear map is unknown. How to model biometric

manifolds and develop effective manifold learning

algorithms for classification purposes deserve further

investigation.
Summary

Two kinds of non-linear dimension reduction techni-

ques, kernel-based methods and manifold learning

related algorithms, have been introduced here. The

mechanism of kernel methods is to increase the dimen-

sion first by an implicit non-linear map determined by

a kernel and then to reduce the dimension in the

feature space, while that of manifold learning related

algorithms is to reduce the dimension directly via a

non-linear map. Recent research on these two kinds of

dimension reduction techniques has revealed an inter-

esting result: manifold learning algorithms, such as

ISOMAP, local linear LLE, and Laplacian Eigenmap,

can be described from a kernel point of view [14].
Related Entries

▶Biometrics, Overview

▶Kernel Methods

▶ Linear Techniques for Dimension Reduction

▶Manifold Learning

▶Non-Linear Dimension Reduction Methods
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Object Recognition
Given a few training image of the same target object

(same object, but may be viewed from different angles

or position), the goal of object recognition is to retrieve

the same object in other unseen images. It is a difficult

problem because the target object in unseen image may

appear different from what it appears in the training

image, due to the variation of view points, background

clutter, ambient illumination, partially occluded by

other object or deformation of the object itself. A

good object recognition algorithm is supposed to be

able to recognize target object given all of the above

variations.

▶ Iris Super-Resolution
Observations from Speech
▶ Speaker Features
Ocular Biometrics
▶Retina Recognition
# 2009 Springer Science+Business Media, LLC
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Definition

Human odor can be differentiated among individuals

and can therefore be seen as a biometric that can be

used to identify this person. Dogs have been trained to

identify objects held by a specific person for forensic

purposes from the beginning of the twentieth century.

Advancing technology has made it possible to identify

humans based on ▶ headspace analysis of objects they

have handled, opening the route to the use of odor as a

biometric.
Introduction

From the early twentieth century, dogs have been used

to find and identify humans based on their odor. This

has originated from the capacity of dogs to follow the

track of a person, either by following the odor the

person left directly on the ground that the dog needed

to follow quite closely (‘‘tracking’’), or by following

a broader odor trail that the dogs could follow at

some distance (‘‘trailing’’). Some dogs were very
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‘‘track-sure’’: i.e., they continued to follow the specific

person in spite of changes in direction, ground sur-

face, and obstacles, in spite of other people having

crossed the path earlier or later. Such dogs could also

identify the person that had laid that track. This setup

is still followed today in the basic training of blood-

hounds all over the world. However, a more formalized

manner of working with dogs identifying human odors

has also evolved, primarily in Europe.

This formalized methodology is called ‘‘scent identi-

fication line-up,’’ or ‘‘osmology’’, and is applied as a

forensic identification tool in several European countries.

Dogs are trained to match the odor of a sample to its

counterpart in an array of odors. This can be done in

different ways [1, 2]. Generally the dog is given a scent

sample from a crime scene that presumably contains

the odor of the perpetrator. The odor of the suspect

and a number of foils, collected in a standardized

manner, are offered to the dog as the array. The dog

has to match the crime-scene related odor to that of

the suspect in the array, and indicate its choice with a

learned response. The methods and materials used to

collect human odor differ between countries; the exact

protocol for working with the dog differs; quality con-

trol measures necessary to validate the correctness of

the outcome differ; and the way in which the results are

evaluated and used during investigation and trial differ

between countries too. In spite of efforts to harmonize

these differences, they still exist since there is little

scientific evidence to select the ‘‘best’’ way: dogs per-

form best when tested in the way they were trained,

and much depends on how the dogs were selected and

trained.

From the little scientific work done using dogs

in this field, it became clear that dogs are capable of

matching odors collected from different body parts

[3, 4]. The series of experiments conducted by Schoon

and de Bruin [3], showed that trained police dogs

were capable of matching objects (stainless steel tubes)

held in the pocket or in the crook of the arm to

objects held by hand and vice versa significantly better

than chance, but that their performance was a lot better

on the comparison they trained often (pocket to hand:

58% correct in a 1 out of 6 comparison) than on a

comparison they never trained (crook elbow to hand;

hand to crook elbow: 32% correct in a 1 out of 6

comparison). Settle [4] had people scenting objects

(pieces of gauze) on numerous body parts and also

found dogs could match those that had been handled
by the same person significantly better than chance

(60% correct in a 1 out of 6 comparison). However,

the gauzes they used were stored together per person in

a glass jar prior the experiments with the dog, so they

may have all reached an equilibrium in this jar. Hepper

[5] found that dogs use odor cues that are under

genetic control more than those under environmental

control. He let dogs match the odor of T shirts of

fraternal and identical twins with identical or different

diets. When both diet and genes were identical, the

dogs could not differentiate between the twins (1 out

of 2 comparisons). When the genes were identical but

the diets differed, the dogs were able to differentiate

between the twins but they took a long time and their

choices were not very sure (83.5% correct in a 1 out of

2 comparison). When the genes were different but the

diets identical, the dogs performed best and made their

choices quickly and surely (89% correct in a 1 out of

2 comparison).

With advancing technology in the second half of

the twentieth century, an effort was made to identify

the source and composition of the body secretions that

made it possible for dogs to actually identify people

based on their odor. The human skin can be divided

into two layers: the outer layer called the epidermis and

the inner layer called the dermis. The dermis layer con-

tains most of the specialized excretory and secretory

glands. The dermis layer of the skin contains up to

5 million secretory glands including eccrine, apocrine

and sebaceous glands [6]. Bacterial breakdown of apo-

crine secretions result in a huge number of volatile

compounds in armpits [7–9], but for forensic purposes

the breakdown of sebaceous gland secretions is more

interesting since these products can be found on

crime-related objects such as guns, knives, crowbars,

gloves etc. Further study showed that trained dogs

are capable of matching objects scented by the same

person at different times but that their performance

was lower [10].
Instrumental Differentiation Body
Scent

The individual body odors of humans are determined

by several factors that are either stable over time (ge-

netic factors) or vary with environmental or internal

conditions. The authors have developed distinguishing

terminology for these factors: the ‘‘primary odor’’ of an
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individual contains constituents that come from with-

in and are stable over time regardless of diet or envi-

ronmental factors; the ‘‘secondary odor’’ contains

constituents which also come from within and are

present due to diet and environmental factors; and

the ‘‘tertiary odor’’ contains constituents which are

present because they were applied from the outside

(i.e., lotions, soaps, perfumes, etc.) [9]. There is a

limited understanding of how the body produces

the volatile organic compounds present in human

scent. Although the composition of human secre-

tions and fingerprint residues have been evaluated

for their chemical composition [6, 7], comparatively

little work has been done to determine the volatile

organic compounds present in human scent. Know-

ing the contents of human sweat may not accurately

represent the nature of what volatile compounds

are present in the headspace above such samples

which constitute the scent.

With the use of gas chromatography-mass spec-

trometry, an increasing number of volatiles were iden-

tified in the headspace of objects handled by people

[11]. Investigations into the compounds emitted by

humans that attract the Yellow Fever mosquito have

provided insight into the compounds present in

human odor. Samples were collected using glass

beads that were rolled between fingers. The beads

were then loaded into a GC and cryofocused by liquid

nitrogen at the head of the column before analysis

with ▶GC/MS. The results showed more than 300
observable compounds as components of human

skin emanations, including: acids, alcohols, aldehydes,

and alkanes. The results also showed qualitative

similarities in compounds between the individuals

studied, however, quantitative differences were also

noted [11].

Until recently, technological limitations have re-

stricted the ability of researchers to identify the chemi-

cal components that comprise human scent without

altering the sample or to use the information to chem-

ically distinguish between individuals. In addition, it

has been difficult to distinguish between primary, sec-

ondary, and tertiary odor components in a collected

human scent sample. ▶ Solid phase micro-extraction

(SPME) is a simple solvent-free headspace extraction

technique which allows for ▶ volatile organic com-

pounds (VOCs) present in the headspace (gas phase

above an item) to be sampled at room temperature.

SPME in conjunction with GC/MS has been demon-

strated to be a viable route to extract and analyze the

VOCs present in the headspace of collected human

secretions. In a recent study, the hand odor of 60

subjects were studied (30 males and 30 females) and

63 human compounds extracted, there was a high

degree of variability observed with six high frequency

compounds, seven medium frequency compounds,

and 50 low frequency compounds among the popu-

lation. The different types of compounds determined

to be present in a human hand odor profile inclu-

ded acids, alcohols, aldehydes, alkanes, esters, ketones,
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and nitrogen containing compounds. It has been

demonstrated that nonparametric methods of correla-

tion can be employed to differentiate between VOC

patterns from different individuals. In the 60 subject

study, it was shown that Spearman Rank Correlation

coefficient comparisons of human odor compounds

among individuals is a viable method of data handling

for the instrumental evaluation of the volatile organic

compounds present in collected human scent samples,

and that a high degree of distinction is possible among

the population studied [12]. Using a match/no-match

threshold of 0.9 produces a distinguished ability of

99.7% across the population. Other work also sho-

wed that multiple samples taken from the same per-

son showed that these could not be distinguished

at the sam e level. Fig ure 2 illustrate s the variation

of the VOC patterns in multiple samples from two

different males.

The genetic source of these specific human volatiles

has also been investigated. Experimental work with

dogs had already indicated a link to the genes of a

person, and work with rats and mice had located the

genes of the Major Histocompatibility Complex

(MHC) as the source of variation. The genetic basis

for individualizing body odors has been studied exten-

sively in genetically engineered mice which differ in

respect to the genes present in the MHC [13]. MHC

exhibits a remarkable genetic diversity with resulting

from a variety of characteristics including a level of

heterozygosity approaching 100% in natural popula-

tions of mice. This high level of heterozygosity seems
Odor Biometrics. Figure 2 Illustration of the variety in volatile

by GC-MS from three samples of two human subjects. Each c
to be maintained by behavioral factors including mat-

ing success and associated with olfactory cues, and

chemosensory imprinting. In humans, the MHC is

referred to as the HLA, which is a short for human

leucocyte antigen. Experiments utilizing trained rats

have shown that urine odors of defined HLA-homozy-

gous groups of humans can be distinguished [13].

Individual body scents of mice can be altered by mod-

ification of genes within the MHC. Alterations to the

individual body scents of mice result in changes in the

concentrations of the volatile components found in

the urine [14]. Using two-dimensional GC/MS Willse

et al. were able to detect differences in the several dozen

MHC compounds (including 2,5-dimethylpyrazine

and 2-sec-butyl-4,5-dihydrothiazole) found in ether-

extracted urine from two inbred groups of mice that

differed only in MHC genes.
Legal Perspectives on Human Odor for
Forensic Purposes

In Europe, scent identification lineups have been used

routinely by police forces, for example in Poland and

The Netherlands, and the results have been the subject

of discussion and different interpretations in court. In

Poland Wójcikiewicz [15] summarized a number of

court cases where dog evidence was critically reviewed.

Generally, the evidence was accepted by Polish courts

as ‘‘additional evidence,’’ thus allowing the results to be

used only if convergent with other evidence; a point
organic compounds as collected by SPME and determined

olor is a different VOC.
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of view of Wójcikiewicz, given the limited scientific

background knowledge at that time. In the Nether-

lands, scent lineup evidence has been the subject of

much debate over the years. A recent case confirmed

that results from carefully conducted scent identifica-

tion lineups can be used as an addition to other evi-

dence [16]. In the absence of the other evidence, a

positive result of such a lineup is regarded as insuffi-

cient evidence for conviction.

The twenty-first century has brought with it two

important case decisions in the United States Court

System pertaining to the use of human scent canines in

criminal prosecutions. In 2002, the U.S. Court System

decided human scent canine associations could be

utilized through the introduction of expert witness

testimony at trial if the canine teams were shown to

be reliable [17]. In 2005, a Kelley hearing in the state of

California [18] set a new precedent in the U.S. which

allowed human scent identification by canine to be

admitted as forensic evidence in court as opposed

to being presented as expert witness testimony. The

California court ruled that human scent discrimina-

tion by canine can be admitted into court as evidence

if the person utilizing the technique used the correct

scientific procedures, the training and expertise of the

dog-handler team is proven to be proficient, and

the methods used by the dog handler are reliable.

O

Summary

The scientific studies to date support the theory that

there is sufficient variability in human odor between

persons and reproducibility of primary odor com-

pounds from individuals that human odor is a viable

biometric that can be used to identify persons. The

bulk of the available literature is based on the ability of

training dogs to identify objects held by a specific

person but advancing technology has recently made it

possible to differentiate humans based on headspace

analysis of objects they have handled supporting the

results seen with dogs. With additional research and

development on training and testing protocols with

the dogs, and instrumental methods, the future of

human odor as an expanded biometric is quite

promising. In addition, unlike many other biometrics,

human scent can be detected from traces, such as skin

rafts, left by a person and can be collected in a nonin-

vasive fashion.
Related Entries
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On-card Matching
Definition

On-card matching is the process of performing com-

parison and decision making on an integrated circuit

(IC) card or smartcard where the biometric reference

data is retained on-card to enhance security and

privacy. To perform enrolment, the biometric interface

device captures the biometric presentation of the user

to create the biometric ▶ template. Then, the biomet-

ric template and user’s information are uploaded to the

card’s secure storage. To perform on-card matching,

the biometric interface device captures the biometric

presentation and creates a biometric template. The

created biometric template is then uploaded to the

card for verification. The verification process shall

be executed on-card instead of sending the enrolled

template out of the card for verification.
Introduction

The need for enhanced security persists more than ever

in a more electronically dependent and interconnected

world. The traditional authentication method, such as

PIN, is neither secure enough nor convenient for auto-

matic identification system such as border control.

Our economic and social activities in today’s electronic

age are getting more reliant to electronic transactions

that transcend geological and physical boundaries.

These activities are supported by implicitly trusting

the claimed identity – with we trusting that the party

we are transacting with is genuine and vice versa.

However, conventional password and Personal Identi-

fication Number (PIN) commonly used are insecure,

requiring the user to change the password or PIN

regularly. Biometric technology uses a person’s unique

and permanent physical or behavioral characteristics

to authenticate the identity of a person. Higher level of

security can be provided for identity authentication

than merely the commonly used PIN, password or

token. Some of the popular biometric technologies

include fingerprint, face, voice, and iris. All biometric

technologies share a common process flow as shown in

(Fig. 1) below.

Fig. 1 shows the basic architecture of biometric

authentication with a central database. In order to

use the biometric system to identify a person, he or

she will have to enroll in the system’s database. The

system has to create and maintain the biometric data-

base in a central PC or server. Even for a biometric

door access system (no matter for home use or office

use), a small biometric database is stored in the

embedded unit. Usually this is not a problem for

home use because only the owner or trusted person

can have access to the database. But what about the

other service providers? If hackers can access some of

the confidential database information of big corpora-

tions such as Bank of America, LexisNexis, T-Mobile

[1] and the security breach affecting more than 200,000

credit card holders [2] who then can the user trust?

Since biometric data is permanent and each person has

limited amount of choice (a person only has a face and

10 fingers), having the biometric database information

stolen is a serious implication to the actual owner. One

of the alternatives is to store the biometric template

into a smartcard. Smartcard is a plastic card with

microprocessor inside to handle the data storage and

has processing capability with security features. Hence,
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the combination of biometrics and smartcard offers

enhanced security for identity authentication.
O

Biometrics and Smartcard

Instead of relying on a centralized database system and

allowing individual service provider to create its own

biometric database, the biometric information can be

kept in the hand of the respective owner of the biomet-

ric data. This can be done by putting the biometric

data into a secure storage such as a smartcard. Smart-

card is a plastic card with an embedded microproces-

sor, memory and, security features. The user can

conveniently carry the smartcard, and thus it also

offers mobility to biometric data. The combination of

biometric and smartcard offers the advantages of mo-

bility, security and strong identity authentication

capability and, at the same time offers the user, a

high degree of control over who have access to that

biometric data. Hence, biometrics on the smartcard

can minimize the privacy concern. There are four

distinct approaches to combine the smartcard and

biometric technologies as follows:

1. Template-On-Card (TOC): This type of matching is

also known as off-card matching. The entire pro-

cess of biometric data acquisition, feature extrac-

tion, and matching is done at the terminal or reader

side. However, during the enrolment stage, the

original template which is constructed at the reader

is stored inside the smartcard. During matching,

the reader will request for the original template

to be released from the smartcard which is then

matched with the query template. The decision of

further accessing information from the smartcard

is made on the reader side. The smartcard itself act

as a storage device. Cryptography should be used to
mutually authenticate the card and the biometric

interface device. To protect the communication

between the biometric interface device and the

card; a secure channel should be established prior

to the transfer of any template or data. As the

biometric template and other data objects such as

passport/visa or financial account information are

stored as a separate file in the smartcard, separate

secure channels can be used for transmitting differ-

ent data object. Fig. 2 shows the basic architecture

of TOC.

2. Match-On-Card (MOC): MOC means the biomet-

ric verification is performed in the card. The pro-

cess of biometric data acquisition and feature

extraction is done at the biometric terminal. Dur-

ing the initial enrolment stage, the original tem-

plate constructed at the reader is stored inside the

smartcard. During matching, the reader will con-

struct the query template which is then sent to the

smartcard for matching. The final matching deci-

sion is computed inside the smartcard and thus the

entire original template is never released from the

smartcard. Fig. 3 shows the authentication process

of a MOC system for a simple case of border con-

trol transaction. The dotted line in the figure is the

applet firewall which restricts the access to the

matching applet to enquire the status of fingerprint

authentication. Therefore, the matching result will

be sent from the Matcher to the on-card applica-

tion by secured sharable method via smartcard

operating system. Neither the original template

nor the matching result is revealed to the outside

world. In order to protect the communication bet-

ween the biometric interface device and the card,

a secure and trusted channel is required.

3. Work-Sharing On-Card Matching: ▶Work-sharing

on-card matching is similar to on-card matching

except for extra matching procedures are involved



On-Card Matching. Figure 2 Template-on-card authentication.

On-Card Matching. Figure 3 Match-on-card authentication.
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to speed up the process. This type of matching is

designed for those cards which do not have suffi-

cient processing power and resources to execute

the biometric matching. In this case, certain parts

which are computation intensive such as template

alignment, are sent to the biometric terminal via

communication channel to perform computation.

The computed intermediate result is sent back to

the smartcard to continue with the matching pro-

cess. The final calculation of the matching score

shall be calculated inside the smartcard. Establish-

ing a secure channel is required to protect the
communication between the biometric terminal

and the smartcard. Fig. 4 shows the basic architec-

ture of work-sharing on-card matching.

4. System-On-Card (SOC): ▶ System-on-card match-

ing means the whole biometric verification process,

including the acquisition, is performed on the

smartcard. The smartcard incorporates the entire

biometric sensor, with processor and algorithm.

Therefore, the entire process of biometric data ac-

quisition, feature extraction, and matching is

done inside the smartcard itself. Both the original

template and the query template are computed
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On-Card Matching. Figure 5 System-on-card authentication.

On-Card Matching O 1017

O

in the smartcard and do not leave the card. Fig. 5

shows the general authentication process of a

SOC system.
Advantages of Match-on-Card

The level of security of a biometric system is judged by

examining where the feature extraction and matching

takes place. From the point of view of security, system-

on-card (SOC) offers the strongest security while

template-on-card (TOC) offers the weakest secure for

token based authentication [3]. It is obvious that the

SOC offers the highest security since the biometric
authentication process, including acquisition of bio-

metrics, is executed inside the smartcard itself and no

biometric data is transferred out of the smartcard. How-

ever, the cost of such smartcard will be high since the

card contains a biometric sensor and requires a powerful

processor (usually 32-bit) to meet the computational

demand of the biometric processing. Therefore, SOC is

still not practical for mass issuing and is usually suitable

for vertical market only. This means that the match-on-

card (MOC) technology which offers a higher security

than the TOC technology at reasonable price and is

a more practical solution. There are a lot of commercial

implementations for fingerprint, face, and iris. Finger-

print MOC is the most popular in market due to good
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accuracy, ease of use, affordability, and an overall com-

pact solution.

The reasons why the match-on-card (MOC) tech-

nology provides better security in comparison to

template-on-card (TOC) technology are:

1. Better Security and Privacy Protection: TOC needs

to send the enrolment template from the card to

the biometric terminal for verification. The security

is compromised due to information exposure. Even

though the template is usually encrypted, the

on-card crypto engine is usually not very strong

due to constrained hardware specification of the

smartcard’s CPU. For the MOC case, the reader

will send the query template to the smartcard for

identity verification. Therefore, the MOC technol-

ogy does not reveal the entire original biometric

template stored in the smartcard. During the

matching process, the stored original template is

always trusted since the smartcard is considered a

secure storage device. Moreover, better privacy pro-

tection can be provided by match-on-card as no

one can download the user’s enrolment fingerprint

template from the card.

2. Two Factor Authentication: MOC technology will

establish a true two-factor authentication process

for the identity authentication needs. No matter

MOC or TOC, to start communication between

smartcard and reader securely, a secure channel

shall be established with mutual authentication

before any transaction takes place. This stage is to

allow the reader and the smartcard to verify the

cryptogram from each side to ensure both reader

and smartcard are valid and genuine. However,

this stage relies on exchanging challenge code be-

tween card and reader. Once the challenge code

is stolen by Trojan, hacker may be able to access

the smartcard and continue to do further hacking

procedures. For TOC, if the first stage is cracked,

the hacker will be able to access secured informa-

tion in the card. For MOC, if the first stage is

cracked, the hacker will still need to hack the sec-

ond stage of biometric MOC stage in order to

continue to access secured information. Hence,

MOC offers true two-factor authentication which

can provide stronger security to protect against

hacking.

3. On-Card Decision Making, Stronger Software Secu-

rity: In figure 3, the on-card matcher sends the
decision to other on-card application internally

via a software firewall that is controlled by the

smartcard Operating System (OS). Such internal

decision passing via firewall is a strong security

feature and very difficult to be hacked. Note that

the installation of on-card application is usually

done in the factory (ROMmasking), in OS provider

of the smartcard or in authorized agency with

security code for installation. After installing all

necessary applications, it is possible to lock the

card forever to prevent installing other application

in the future. Each application has restriction

to access resources from other applications and

usually controlled by the smartcard OS. Among

the trusted applications, they can send and receive

information among them via the firewall with se-

curity code. Hence, it is very difficult for hacker to

upload Trojan to the card to hack the internal

invocation between applications, stealing internal

information from the card and sending fake deci-

sion from the MOC to fool other on-card applica-

tions to leak crucial information.
Implementations of Fingerprint
Match-On-Card

In recent years, there are quite a number of attempts to

design algorithm to perform fingerprint match-on-

card application. Mohamed [4] proposed a memory

efficient scheme of using line extraction of fingerprint

that could speed up the matching process. However,

this approach still needs a 32-bit DSP to process and

the computation is still relatively intensive for com-

mercial a smartcard. Vuk Krivec et al. [5] proposed a

hybrid fingerprint matcher, which combines minutiae

matcher and homogeneity structure matcher, to per-

form authentication with smartcard the system. Their

method is to perform minutiae match-on-card first.

Upon successful minutiae matching, the card delivers

rotational and translational parameters to the sys-

tem to perform second stage homogeneity structure

fingerprint matcher on the host side. However, this

hybrid approach cannot increase the accuracy signifi-

cantly compared to minutiae matcher alone but using

extra time to perform extra host side matching. Andy

Surya Rikin et al [6] proposed using minutia ridge

shape for fingerprint matching. The ridge shape infor-

mation is used during the minutiae matching to
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improve the matching accuracy. In their experiment,

only 64 bytes per template was used. They showed that

the accuracy was comparable with the conventional

matching but having a faster matching speed. The

matching time on a 16-bit smartcard was around 1.2

seconds with 18 minutiae. Mimura M. et al. [7] de-

scribed a method of designing fingerprint verification

on smartcard with encryption functions to enable ap-

plication using on-card biometrics to perform transac-

tion via Internet. Stefano Bistarelli et al. [8] proposed a

matching method using local relative information

between nearest minutiae. This method could achieve

matching time from 1 to 8 seconds with 10% ERR

on average using FVC2002 database. All the above

attempts were to implement fingerprint matching on

native smartcard or Java card in the research commu-

nity. Generally speaking, it is not easy to achieve good

accuracy with low computation requirement for on-

card fingerprint matching. Besides good matching

algorithms, software optimization is also an important

criterion to develop MOC system to achieve fast on-

card matching speed.

Of course, there are several commercial implemen-

tations for fingerprint MOC. Most of them are using

minutiae data for verification of identity. Those com-

panies usually provide the accuracy information of False

Acceptance Rate = 0.01% and False Rejection Rate =

0.1%. No further information regarding the database,

method of calculation, and other details have been

disclosed. Hence, it is not possible to tell the actual

accuracy of those commercial implementations using

their provided specification. Currently, the only reli-

able benchmarking is using common database such as

Fingerprint Verification Competition (FVC) fingerprint

database or National Institute for Standardization and

Technologies (NIST) fingerprint database to compare

the other system by using common performance indica-

tors such as False Match Rate (FMR), False Non-Match

Rate (FNMR), Equal Error Rate (ERR) and Receiver

Operation Curve (ROC) to compare the relative per-

formance among MOC implementations.
Performance of Fingerprint
Match-on-card

In 2007, NIST conducted an evaluation for the per-

formance of fingerprint match-on-card algorithms -

MINEX II Trial. The aim of MINEX II trial was to
evaluate the accuracy and speed of the match-on-card

verification algorithms on ISO/IEC 7816 smartcards.

The ISO/IEC 19794-2 compact card fingerprint minu-

tiae format was used in the test. The test was conducted

in 2 phases. Phase I was a preliminary small scale test

with release of report only to the provider. Phase II was

a large scale test for performance and interoperability.

Initially, 4 teams participated in the Phase I. In the

final Phase II test, three teams were participated in

the test. The Phase II report was published on 29th

February 2008 [9]. Some highlights of the result are

stated below:

� The most accurate match-on-card implementation

executes 50% of genuine ISO/IEC 7816 VERIFY

commands in 0.54 seconds (median) and 99%

within 0.86 seconds.

� The False Non-Match Rate (FNMR), at the indus-

trial preferred False Match Rate (FMR) = 0.01%, is

2 to 4 times higher than FMR at 1%.

� Using OR-rule fusion at a fixed operating thresh-

old, the effect of using a second finger only after a

rejection of the first, is to reduce false rejection

while increasing false acceptance.

� The most accuracy implementation satisfies only

the minimum requirements of the United States’

Government’s Personal Identity Verification (PIV)

program.

� Some cards are capable of accepting more than

60 minutiae for matching. Some cards need minu-

tiae removal for either or both of the reference and

verification templates prior to transmission to the

card. It was discovered that the use of minutiae

quality values for removal is superior to using the

radial distance alone.

In this evaluation, only 1 team can achieve the mini-

mum requirement of PIV program. Hence, compared

to off-card matching, it is necessary to further improve

the accuracy for those applications that require

PIV specification such as immigration. As the compact

card format is the quantized version of the normal

size finger minutiae format, the performance is still

unknown of using the normal format in MOC. Num-

ber of existing commercial implementations are using

fingerprint minutiae proprietary format for MOC im-

plementation. MINEX II continues the Phase III in

2008 to gauge improvements over existing implemen-

tations and to evaluate others.
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Standardization

In order to allow for better global interoperability,

several efforts to standardize the biometric match-on-

card technology are on-going. There is effort at the

international standards body ISO/IEC JTC1 SC17

WG11 to introduce the match-on-card standards. In

addition, the effort on biometrics is also on-going, such

as at the ISO/IEC JTC1 SC37 level to develop the com-

pact fingerprint template format suitable for smartcards.

In 2005, several standards for biometric data inter-

change format have been published including finger

minutiae data, finger pattern spectral data, finger image

data, face image data, iris image data, finger pattern

skeletal data etc. ISO/IEC 19794-1 [10] is intended to

describe the framework for defining biometric data

interchange formats. In ISO/IEC 19794-2 finger min-

utiae data [11], compact card format is included in the

specification to support fingerprint authentication

with smartcard. The document ISO/IEC 7816-11

[12], published in 2004, specifies basic operations for

performing personal verification through biometric

methods using smartcard. However, the above stan-

dards are not sufficient for biometric match-on-card.

A standard with more in-depth specification is

needed for deployment of match-on-card with better

interoperability.

In 2006, a new work group (WG) 11 in Sub-

Committee 17 under Joint Technical Committee 1

(JTC1) of ISO/IEC was formed. The role of WG11 is to

define the functional blocks and components for the use

of integrated circuit (IC) cards in applications where

the matching of biometric identifiers is to be performed

on-card. The document entitled ‘‘24787 Information

technology - Identification cards: On-Card matching’’

is still under committee draft stage as of February 2008.
Technical Challenges

MOC technology is challenging to develop due to the

limited resources – computational power, memory,

and power supply, in the smartcards. For example,

today’s PC has powerful specification while for smart-

card has relatively much lower processing capability.

For example, one of the high-end configurations is

only 16-bit, 25 MHz processor with 8Kb RAM and

1Mb flash memory. There are few 32-bit smartcards

but the price are quite expensive. The most widely used
smartcard is the 8-bit card due to its low cost. More-

over, applications in the smartcard have to share

resources especially the limited static memory for

runtime execution. For a contactless smartcard, avail-

ability of RF power is crucial. If the peak power

demanded by the intensive computation is not met or

that the computational duration is longer than what

the power can be sustained from the reader through

induction, then the matching process will fail. As a

consequence, the user will experience a ‘‘false rejec-

tion’’ even though the rejection is not due to the

outcome of the biometric matching. Moreover, soft-

ware optimization is very crucial for MOC implemen-

tation to achieve good matching performance. The

optimization in term of speed, resource allocation

and code size are necessary during the system design

phase. Nevertheless, fingerprint match-on-card can al-

ready be realized today on an off-the-shelf Java card

having 8-bit, 5 MHz CPU core, 5k bytes RAM and

32Kb EEPROM or better with Java OS. The following

optimization methods are commonly employed in

development of match-on-card technology:

1. Reduce the size of the template: Reduce the amount

of information to be matched during on-card

matching can reduce the overall matching time.

For example, fingerprint match-on-card can restrict

the maximum number of minutiae to less than

60 minutiae to be matched per template. However,

information reduction may degrade the accuracy of

the matcher. Developer should be aware of how

much information should be reduced to achieve

acceptable accuracy.

2. Work-sharing biometric match-on-card: Some

low-end smartcards are not able to handle the

whole biometric matching algorithm within

acceptable timing. In this case, work-sharing archi-

tecture which has been introduced previously can

be used to speed up the matching process. The idea

of work-sharing architecture is to assist the smart-

card to compute those computation intensive

functions of the matching algorithm, such as

template alignment, using the biometric terminal.

The final biometric comparison, such as the calcu-

lation of matching score, shall be computed inside

the smartcard. The smartcard can send intermedi-

ate data or information other than enrolment

template to the terminal using secure channel.

The developer should be aware of the security
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requirement to design matching algorithm using

work-sharing architecture for smartcard.

3. Biometric codeword or hashing: Some researchers

investigate algorithms to generate codeword such

as finger code [13] or biohashing [14]. In this case,

the complexity of the matching algorithm in the

smartcard can be reduced. However, the stability of

the biometric codeword is still not as robust as

fingerprint matching due to alignment and defor-

mation of the biometric presentation. Hence,

developer should be aware of whether the accuracy

is sufficient for particular application.
O

Summary

Biometric match-on-card technology holds great

promise in offering good security and privacy protec-

tion. The technology has come a long way to become

feasible today at an attractive cost and more can still

be done to make it better and cheaper. It provides a

good platform for the launch of a nation wide strong

identity authentication capability which will open up

many other new applications and business possibilities

that will provide better convenience, security and pro-

tection to the users as compared to what is being used

today. There is also a foothold of this technology in the

global push for machine readable travel documents

which hopefully will lead to a global opportunity in

biometric system level application.
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One-to-Many Identification
One-to-many matching is a process of searching a

dataset to match the target image with those of more

than one persons to identify an individual. See also

▶ Identification.

If a biometric sample is compared with n templates,

where n is a positive integer, the matching process is

http://news.zdnet.com/2100-1009-5606911.html
http://www.computerworld.com/securitytopics/security/ stor y/0,10801,101101,00.html
http://www.computerworld.com/securitytopics/security/ stor y/0,10801,101101,00.html
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referred to as a 1:n matching. In the case of n = 1, it is

equivalent to a verification process. If n > 1, it is

regarded as an identification process and sometimes

expressly described as 1:many matching.

▶Biometrics, Overview
One-to-One Verification
One-to-many matching is a process of matching the

target image against those of the claimed person to

verify an individual. See also ▶Verification.

▶Biometrics, Overview
Online Learning
▶ Incremental Learning
Open-Set Identification
It is unknown whether the subject presented to the

biometric system for recognition has enrolled in the

system or not. Therefore, the system needs to decide

whether to reject or recognize him as one of the

enrolled subject. It is the opposite of ‘‘Closed-Set

Identification.’’

▶Performance Evaluation, Overview
Operational Tests
Operational tests are those in which a biometric system

collects and processes data from actual system users in

a real field application. Operational tests differ funda-

mentally from technology and scenario tests in that the

experimenter has limited control over data collection
and processing. Because operational tests should not

interfere with or alter the operational usage being eval-

uated, it may be difficult to establish ground truth at the

subject or sample level. As a result, operational tests may

or may not be able to evaluate match or enrollment

rates, FRR, or FTE; instead they may be able to directly

measure acceptance rates (without distinction between

genuine and impostor) and operational throughput.

▶Performance Testing Methodology Standardization
Operational Times
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Synonyms

Biometric decision time, and the external operation

time; Biometric subsystem transaction time; Biometric

transaction time; External operation time; Subject in-

teraction time; Total transaction time
Definition

There are a number of associated definitions for ‘‘time’’

as they relate to an operational biometric system(s).

These ‘‘time’’ metrics include the total transaction

time, the overt biometric transaction time, the subject

interaction time, the biometric subsystem processing/

transaction time, the biometric decision time, and the

external operation time.
Introduction

One definition of time is given as ‘‘the length of time

taken to complete an activity’’ [1]. For a biometric

system, ‘‘time’’ can be segmented in alignment with a

particular activity or function. Assuming that the bio-

metric model in Fig. 1 is for an access control system,
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and that the steps of that model are shown, there are

five different types of event time. These include the

subject interaction time, the biometric subsystem pro-

cessing time, the biometric decision time, the biomet-

ric transaction time, and the total transaction time.

This document outlines the various timing metrics

that are used in biometric verification applications.

They include the overall transaction time, the subject

interaction time, the biometric subsystem processing

time, and the biometric decision time. Although the

document includes examples from a technical contribu-

tion presented to Working Group 5 in the international

biometric standards committee (ISO/IEC JTC 1 SC37)

on the developments of timing metrics in scenario test-

ing for biometric access control systems, the metrics can

be applied to generic biometric verification systems.
Total Transaction Time

The total transaction time is a sum of all the subcom-

ponent periods of time associated with the biometric

application system. For a biometric verification sys-

tem, the overall transaction time is initiated when the

user makes a claim or presents an identity (i.e., swipes

a card or enters a PIN). The overall transaction time is

completed when the last measurable component has

been satisfied, in the physical access control system

when the door strike is activated.
Biometric Transaction Time

This begins with the biometric sample presentation

and ends with the biometric decision. Therefore, this

includes the presentation of the biometric trait portion

of the subject interaction time, biometric subsystem
processing time, which includes sample acquisition

and sample processing time, and the biometric deci-

sion time.
Subject Interaction Time

Using the same access control system as described

earlier, the subject interaction time commences when

a claim of identity is made (or presented), that is,

swiping a card or entering a PIN by the user. The

time ends when the individual has presented his/her

biometric characteristic(s) and the sensor begins to

acquire the sample.
Biometric Subsystem Processing Time

The biometric subsystem processing time is the time

taken for the system to acquire the biometric sample, to

evaluate the quality of the sample, and if the quality is

satisfied, to process that sample for comparison. For the

samples of bad quality, the biometric system requests

the subject to submit the biometric trait. The biometric

subsystem processing time ends when either a compari-

son score or a request for re-submission is generated.
Biometric Decision Time

The biometric decision time is the time required by the

biometric subsystem to generate an accept or reject

response based on the comparison score and the deci-

sion logic. The decision logic could be a simple thresh-

old or a more complex methodology such as fusion

logic. In biometric identification where the biometric

subsystem generates a list of matched candidates, the

biometric decision time is the time required to search
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the subject from the database of enrolled subjects. In

this case, it depends on both the size of the database

and the strategy in search, for example, the classifica-

tion or binning of biometric samples.
External Operation Time

Provided that the biometric decision is an accept,

the external operation time is the time required to

complete the application transaction. In the physical

access control system, it is the time required by the phy-

sical electro-mechanical components to act according

to the decision of the biometric subsystem and other

access control privilege criteria to complete the access

transaction. In biometric identification, the external op-

eration time is not required because the external opera-

tion is typically a manual function.
Operational Times. Figure 2 Timeline showing total and bio

transaction.

Operational Times. Figure 3 Timeline showing total and bio

transaction with longer access control time.

Operational Times. Figure 4 Timeline showing total and bio

transaction.
Timing Illustrations

According to a Technical Contribution from the ISO/

IEC JTC 1 SC 37 WG5 Special Group on 19795–5 [2],

timing can be related to the type of testing to be

undertaken. There are three major types of testing:

technology, scenario, and operational.

For the purpose of evaluating the performance

of a biometric subsystem in a scenario evaluation, it

is appropriate to define a metric that only measures the

biometric subsystem performance and is not influ-

enced by the presence or performance of other access

control devices, policies, and functions. Thus, the dis-

tinction is made between biometric transaction time

and total transaction time. This distinction is made in

timing diagrams illustrating the components of a bio-

metric transaction and a total access control system

transaction shown in Figs. 2–4.
metric subsystem transaction times for a one-attempt

metric subsystem transaction times for a one-attempt

metric subsystem transaction times for a two-attempt
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Related Entries

▶Attempt

▶ Failure to Acquire (FTA)

▶ Failure to Enroll (FTE)

▶General Biometric Model

▶Match rates

▶Performance Testing and Evaluation – Technology,

Scenario, and Operational Testing

▶Presentation

▶Threshold

▶Transaction
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Optical Flow
 O
Optical flow is a vector field that represents the motion

of pixels between two images. A variety of algorithms

have been developed for computing optical flow. It is

commonly computed for video, in which the motion

from one frame to the next is relatively small.

▶ Face Variation

▶Gait Recognition, Silhouette-Based
Optical Target
Optical target refers to an object the optical character-

istics of which are well known. It is used to perform an

optical calibration of lenses or illuminators.

▶Biometric Sensor and Device, Overview
Optimal Hyperplane
▶ Support Vector Machine
Optimization
Given a cost function, different strategies could be used

to obtain the estimate. This is called the optimization

strategy and the solution often depends upon the exact

strategy that is used.

▶ Face Tracking
Ordinal Measure
In ordinal measure, variables are required to be mono-

tonically related so that they can be rank-ordered. In

palmprint identification, ordinal measure qualitatively

compares neighborhood image pixels or regions and

preserves their ordinal relationship. This yields a sym-

bolic representation of the relations.

▶Palmprint Features
Orthographic Scanning
The procedure of recording two-dimensional images

of an object with the goal of capturing the object’s

three-dimensional structure. In a hand-geometry de-

vice, for example, it is performed with the help of a

mirror that projects the lateral surface of the hand into

the visual field of the camera and allows it to record

both the side and top views of the hand in a single

image.

▶Hand-Geometry Device



1026O Osmology
Osmology
Osmology is the study of odors and the sense of smell;

phrase coined by the Polish Forensic Police for the field

of science where trained dogs compare scent traces that

the perpetrator of a crime leaves at the crime scene

to the odor of a person suspected of that crime in

a line-up procedure.

▶Odor Biometrics
Output Noise Variance (ONV)
The output noise variance is the variance of the noise

of a correlation plane. If the input noise is stationary

and with Gaussian distribution, the output noise

on correlation plane is also going to be stationary

and Gaussian distributed. The output noise variance

describes the output noise variance at all pixels in the

output. If we would like to see a noise-tolerant peak on

the correlation plane for the authentic comparison, it

is desirable to make the noise variance on the correla-

tion plane as small as possible on average. That is why
would like to incorporate the criteria for minimizing

ONV in the design of the correlation filters.

▶ Iris Recognition Using Correlation Filters
Outsole Pattern Matching
▶ Footwear Recognition
Overfitting
The phenomenon that the learning result performs

very good on training data but poorly on unseen new

data, which is caused by that the learning approach has

fit the training data too much, such that some malign

particularities that prevent good generalization has

also been captured by the learning result.

▶Ensemble Learning

▶Mainfold Learning
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Paleoanthropology
Paleoanthropology is the study of ancient human

beings, with the evidences such as bones, and

footprints.

▶ Skull, Forensic Evidence of
Palm Dorsal Vein
▶Hand Veins
Palm Segment
It refers to one of the three palm portions: lower palm,

upper palm, and writer palm.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Palm Vein

MASAKI WATANABE

Fujitsu Laboratories Ltd, Kawasaki, Japan
Synonyms

Palm vein authentication; Palm vein recognition
# 2009 Springer Science+Business Media, LLC
Definition

Palm vein authentication is one of a modality of

biometric authentications, and is classified as a phy-

siological biometric authentication. It uses palm vein

patterns, a vascular image of a person’s palm which can

be seen as a kind of pattern, as personal information.

The palm vein patterns are normally captured

under near-infrared illumination using the reflection

method, in which ▶ near infrared rays are emitted

from a person’s palm and the reflected light is cap-

tured. The places on the palm where veins occur are

captured as dark parts because veins absorb more near-

infrared illumination while emitting only little. With

this reflection method, a ▶ contactless type of pattern-

capturing and user identification can be realized.

Because veins are inside the human body, they are

secure and hard to be stolen or duplicated. Moreover,

because palm vein patterns are varied and complex,

they have sufficient information to identify one indi-

vidual among many people and palm vein authentica-

tion is highly accurate.

A contactless type of identification is suitable for

applications that require a high level of hygiene and

for public-use applications. Several banks in Japan

use palm vein authentication to identify customers

since July 2004. In addition, the method has been

used in a variety of applications including door secu-

rity systems of offices and condominiums, login man-

agement systems for PCs, and to identify patients

in hospitals.
Introduction

Palm vein authentication is one of the vascular pattern

authentication technologies. It uses palm vein patterns,

which are difficult to be seen by human on a person’s

palm, as personal information. Because palm vein pat-

terns are information that are found within someone’s

body, it is hard for that information to be stolen.
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This means that forgery is very difficult under usual

conditions.

Palm vein patterns are unique to each individual;

even identical twins have different palm vein patterns.

Furthermore, palm vein patterns do not change within

lifetime of a human except in certain cases of injury or

disease. Although these facts and any other influences

including physiological growth have not been medi-

cally proven, as with the fingerprints, irises, and other

internal identification methods, experimental results

based on extensive data and large-scale operational

results prove practically that palm vein authentication

has the advantages of consistency and accuracy as a

method of personal identification.

A patent for hand vein authentication was filed in

1985 by Joseph Rice in the United States [1]. The first

device for palm vein authentication was presented by

Advanced Biometrics, Inc. in the United States in 1997,

and in 2003, a remarkable contactless device was re-

leased by Fujitsu in Japan. In 2004, Japanese financial

institutions adopted Fujitsu’s technology for confirm-

ing the identification of its customers. This was the

first major application in Japan in which a private

enterprise adopted biometric authentication in a ser-

vice for the general public. Palm vein authentication

and finger vein authentication have received a great

deal of attention in Japan compared to other biometric

authentication methods such as fingerprint, iris, and

face recognition methods.

Fujitsu’s implementation of a contactless sensor

and its concept was awarded the ‘‘Wall Street Journal’s

2005 Technology Innovation Award for Security in

Networks’’ [2].
Palm Vein. Figure 1 Absorption spectra of hemoglobin.

(Adapted from Wray et al. (1988) by K. Shimizu,

Hokkaido University.)
Palm Vein

A person’s palm has a wide and complex vein pattern,

and it contains sufficient information to identify an

individual among many people. If other parts of the

hand are used for authentication, additional informa-

tion, such as the relative position of that part of the

hand relative to a vein sensor will be needed because

the vein pattern of other parts of the hand does not

contain sufficient information for identification.

Compared with the back of the hand or the back of

a finger, the palm is a good area to use because it does

not normally have any hair on it to obscure the vein

pattern.
Sensing

Vein patterns in the subcutaneous tissue of a person’s

palm are captured using near-infrared rays. This tech-

nology is called near-infrared spectroscopy (NIRS) and

imaging. This has been investigated as a technology of

in vivo measurements in the last ten or so years [3].

Hemoglobin is grouped into two types; (1) oxyge-

nated hemoglobin that is present in arteries, which

contains oxygen; and (2) deoxygenated hemoglobin

present in veins that does not contain oxygen, and in

particular it absorbs light with a wavelength of about

760 nm (Fig. 1) [4, 5]. When capturing an image of a

palm using near-infrared rays which include the wave-

length of light, the veins appear like a shadow on the

palm, seen to be darker than the surrounding area

(Fig. 2). In other experiments using near-infrared

rays with a wavelength of 880 nm, a vein with a

1 mm diameter could be seen even if it is 3 mm

below the surface of the skin [6].

Palm vein patterns are captured using a reflection

method, which illuminates a person’s palm from the

front and also captures an image from the front of the

palm. A palm image can be captured using light trans-

mission method, which illuminates the palm from the

back of the hand and captures an image from the front

[6]. While in the transmission method the illumina-

tion device and the capture device are separated facing

each other across a palm, in the reflection method,

the illumination device and the capture device can

be gathered together more compactly because the
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direction of the illumination is the same as the direc-

tion of image capturing.

In Fujitsu’s implementation [7, 8], a palm vein

authentication sensor is made in the shape of a small

box 35 mm deep � 35 mm wide � 27 mm high.

Capturing is executed in a contactless manner. Users

do not need to touch the sensor; they only have to hold

their palms above it. To obtain a clear image of the

palm vein pattern of a hand floating in the air, the

capturing is controlled according to the movement

and height of the hand above the sensor, and the

illumination is controlled according to the light

around the sensor.

In contactless manner, worries of the user regarding

their sensitiveness about hygiene or any emotional

concerns can be eliminated. It enables the identifica-

tion method to be used in environments where a high

standard of hygiene is required, such as in hospitals or

food factories. In addition, sufficient consideration is

given to individuals who are reluctant to come into

direct contact with publicly used devices.

The intensity of the near-infrared ray emitted from

the sensor is also safe. It is lessser than the intensity

specified in the ‘‘Light and Near-Infrared Radiation’’

guidelines of the American Conference of Governmen-

tal Industrial Hygienists (ACGIH).
Matching

When first matching a palm to a database of images, a

palm vein pattern is extracted from a near-infrared
image. The pattern is picked up among the dark

lines, which are obtained by morphologically tracing

valleys of brightness in the palm area in an image.

The similarity of the captured vein pattern with one

in a database is given a score to identify whether the

vein patterns that have been registered are the same as

that has been captured from a person being authenti-

cated. This rating is based on the sum of the Euclidean

distance between pixels that compose the two palm

vein patterns.

For a verification (one-to-one matching), by way

of example, the identity of the user is proved if the

similarity score is greater than or equal to a predeter-

mined threshold. Otherwise, the user is regarded as an

imposter.

For an identification (one-to-many matching),

similarity scores are calculated between the palm vein

pattern captured from the person being identified

and all or some palm vein patterns that have been

registered in a database, and the identity of the palm

vein pattern which has the maximum similarity score

is regarded as being the one of the person being

identified.
Performance

Using the data of 150,000 palms from 75,000 people

[7], it is suggested that a typical palm vein authentica-

tion system can achieve false acceptance rate of less

than 0.00008% and a false rejection rate of 0.01%,

provided that the palm is held over the sensor two

times during registration and one retry is allowed for

comparison during authentication [7]. These results

are certainly promising and confirm the individuality

of finger vein features in a large user population.

In addition, ability of the sensor to perform per-

sonal authentication was verified using the following

data: (1) data from individuals ranging from 5 to

85 years old, including people in various occupations,

in accordance with the demographics released by the

Statistics Center of the Statistics Bureau in Japan;

(2) data from foreigners living in Japan in accordance

with world demographics released by the United

Nations; (3) data that trace daily changes in the

palm vein pattern over several years; and (4) data

taken in various situations in daily life, for example

after drinking alcohol, taking a bath, going outside, or

waking up.
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Palm vein authentication technology was evaluated

in Round 6 of Comparative Biometric Testing (CBT)

by International Biometric Group (IBG) in 2006.

CBT of IBG evaluates the accuracy and usability of

biometric products using scenario-based testing, and

strives to understand biometric performance in the

real-world conditions. CBT Round 6 was the first

major independent test to evaluate multiple vascular

recognition technologies. Such assessments are typi-

cally based on a comparison of recognition samples

and enrollment templates. In the case of palm vein

authentication, approximately 40,000 [8] genuine

comparisons and 50 million imposter comparisons

were executed.

Results of the IBG study revealed that palm vein

authentication performed exceptionally well in the

failure to enroll (FTE) testing; only one person out of

1,290 did not finish the enrollment process given

the test criteria, a failure rate was of only 0.08%.

This extremely low rate indicates that palm vein au-

thentication is highly applicable virtually for every

individual, and does not impose any physiological

restrictions when users interface with the device. This

further indicates that palm vein authentication is us-

able, is easy for the users to learn, and is ideal for use in

high-volume and large-scale applications.

Most importantly, palm vein authentication was

effective when tested for authentication accuracy.

The false acceptance rate (FAR) and false rejection

rate (FRR) were extremely low, outperforming other

products in the evaluation at standard and high secu-

rity. The performance differences between same- and

different-day transactions were also minimal. There-

fore, after the users learned how to use the device, they

were able to use it successfully on an ongoing basis.

These data further confirm that palm vein authentica-

tion is highly accurate and has optimal usability, both

of which are relevant to real-world conditions.
Palm Vein. Figure 3 Palm vein access control unit

implemented by Fujitsu.
Implementation

In actual implementation, palm vein patterns can

be stored on a smartcard. The matching between the

palm vein pattern on the smartcard and the one cap-

tured for authentication can also be executed on the

smartcard. Because the palm vein pattern is protected

against external attacks by an antitampering function
of the smartcard, users can handle their own palm vein

patterns safely.
Application

Door Security Systems

Palm vein authentication sensors have been installed

on many access control units over the world (Fig. 3).

They can be used to control entry and exit into and out

of rooms and buildings. For those applications, the

combination of the following features of palm vein

authentication means that it provides the optimum

system: a hygienic contactless unit ideal for use in

public places, user-friendly operation that requires

people to simply hold their palms over a sensor, and

a method that makes impersonation difficult.

In view of the Personal Information Protection

Act that went into full effect in Japan in April 2005, the

Department of Planning, Information and Management

of the University of Tokyo Hospital began using palm

vein authentication for a new security system to control

room access. The security levels of the system were

divided into three access levels: access to the administra-

tive room, the development room, and the server room.

A palm vein authentication access control unit has been

installed at the entrance of each room. The system has

been able to restrict an individual’s entry in stages.
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Login Authentication

Palm vein authentication sensors can be integrated

into PC mouse (Fig. 4). Using a mouse as a palm

vein authentication sensor offers convenience and

space-saving advantages.

Many companies and government agencies have an

internal information system which handles sensitive

personal data. Using a mouse with an integrated

palm vein authentication sensor enables advanced,

high-level security for system log-ins, beyond mere

IDs and passwords, with the high accuracy and reli-

ability of palm vein authentication.
Palm Vein. Figure 5 ATM with palm vein authentication

sensor.

Financial Services

In 2003, Japan saw a rapid increase in financial damage

caused by fraudulent withdrawals from bank accounts

by spoofing the identity with fake bankcards that were

made using information from stolen or skimmed

cards. It was a significant social problem. This had

caused a sharp increase in the number of lawsuits

taken out by victims against financial institutions

for their failure to control information used for per-

sonal identification. The ‘‘Act for the Protection of

Personal Information’’ came into effect in May 2005,

and in response, financial institutions in Japan have

been focusing on biometric authentication methods
together with smartcards, as a way to reinforce the

security of personal identification. Palm vein authenti-

cation is the form of biometric authentication that was

most quickly introduced for customer confirmation at

banking facilities. It has been used since July 2004,

before the act came into effect.

When used for financial services, a user’s palm vein

pattern is registered at a bank counter and stored on a

smartcard. This has the advantage of allowing users to

carry their own palm vein pattern around with them,
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and lets them manage the usage of their smartcard.

To verify ATM transactions, palm vein pattern of a

user’s is captured by a palm vein authentication sensor

on the ATM (Fig. 5). The captured palm vein pattern is

transferred to the user’s smartcard, and this with the

one transferred from the sensor are compared on the

smartcard. Finally, only the matching result and not

the registered palm vein pattern of the user is output

from the smartcard.

In addition to Japan, Brazil has also already decided

to adopt palm vein authentication to identify users in

ATM banking transactions. Banco Bradesco S.A., the

largest private bank in Latin America, has been on

testing palm vein authentication. After researching

various biometric technologies, Bradesco chose palm

vein authentication because of its outstanding features,

such as its high level of verification accuracy and the

fact that it is noninvasive and hygienic, making it easier

to be accepted by customers of the bank.
Healthcare

Palm vein authentication is being deployed through-

out the Carolinas HealthCare System (CHS) in the

United States as part of a solution to effectively regis-

ter patient information and ensure that the proper

medical care is given to the right person, while pro-

tecting their medical record and privacy from identity

theft and insurance fraud. To implement the system,

CHS developed a unique hand guide as a sensor.

The hand guide is adapted perfectly for a hospital

environment since it incorporates a pediatric plate

that adapts the guide so it can be used with young

children, and can accommodate all the patients of

the CHS.

The Sapporo Hospital of Keiyu Association in

Japan also adopted palm vein authentication for their

electronic medical records system for patient authenti-

cation. Patients who are to undergo an operation,

register their palm vein patterns before the operation

and the registered palm vein pattern and the palm vein

pattern scanned from the patient on the day of the

operation are compared. This confirms that the patient

is the same as the one whose records have been input in

the electronic medical recording system by the doctor

in charge, and avoids the wrong patient being operated

on, which might occur if two patients have the same

name for example.
Some applications for healthcare could be realized

because the contactless type of palm vein authentica-

tion is excellent in terms of hygiene.
Other Uses

The Chiba Institute of Technology in Japan deployed a

student ID system that combines palm vein authenti-

cation and multifunctional smartcards to verify the

identity of students, and lets them securely access

their academic transcripts and other personal records

through information kiosk terminals installed in vari-

ous locations around the campus.

An examination service can use palm vein bio-

metrics to authenticate the identity of examination

candidates. Palm vein authentication is viewed as pref-

erable to other modalities due to the reliability; it is not

easy to steal palm vein images of others, making spoof-

ing difficult.
Summary

Palm vein authentication uses vein patterns on the

palm of a person as personal information. It is a highly

secure technology because palm vein pattern is infor-

mation contained within the body of someone. It is

also highly accurate because palm vein patterns are

complex and unique to each individual. Moreover, its

contactless feature gives it a hygiene advantage over

other authentication technologies. Many users of prac-

tical applications have highly evaluated this authenti-

cation method and experienced no psychological

resistance to using it. This is good reason for develop-

ing new products for various solutions, starting with

financial solutions followed by access control units and

then login sensors.
Related Entries

▶Vascular Image Data Format, Standardization

▶Vascular Network Pattern

▶Vein
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Synonyms

Palm vein authentication sensor; Palm vein scanner
Definition

The palm vein image sensor is used for palm vein

authentication. The device captures an image of the

vein pattern in the palm by emitting near-infrared rays

that are absorbed by the deoxygenated hemoglobin in

the veins and then reflected back to the device for

image capturing.

The palm vein image sensor is commercially avail-

able as a device for more secured personal identification.

Example applications include door security systems, PC

login management systems, financial services security

systems, and hospital patient confirmation systems.
Introduction

The palm vein image sensor is used for palm vein auth-

entication, a vascular pattern recognition technology.

The device uses the vein pattern of the palm as person-

al identification data. Therefore, the palm vein image

sensor must scan the position of the veins with the

highest degree of accuracy.

The technology for noninvasive scanning of blood

vessels is primarily categorized as in vivo measure-

ment. In this field, near-infrared spectroscopy (NIRS)

and imaging has been investigated for the last ten years

[1]. The palm vein image sensor was developed based

on this NIRS technology.

Infrared scanning of the pattern of subcutaneous

blood vessels for the identification of individuals was

first disclosed in Rice’s patent in 1985 [2]. In 2001,

Peterson et al. patented a device for palm vein authen-

tication [3], in which a plurality of light-emitting ele-

ments is arranged in an array with light-detecting

elements in a flexible mat. The mat was intended

to be put into a device to be grasped by the hand of the

person to be identified following to Stiver’s patent [4].

The device comprises of an elongated transparent

cylindrical exterior shell and scans the hand grasping

the device. In 2003, Fujitsu realized a box-type device

for practical use and it was launched in Japan the

following year. In 2008, Snowflake Technologies [5]

released a prototype in which a palm vein sensor is

embedded to the upper part of equipment for a door

security system. The palm vein image patterns can also

be simultaneously acquired with palmprint images and

employed to achieve improvement in performance of

palmprint authentication as detailed in [12].

http://www.biometricgroup.com/reports/public/reports/CBT6_report.htm
http://www.biometricgroup.com/reports/public/reports/CBT6_report.htm
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Hemoglobin in vessels is grouped into two types:

oxygenated hemoglobin that is in arteries and contains

oxygen; and deoxygenated hemoglobin that is in veins

and does not contain oxygen, and in particular, absorbs

light with a wavelength of about 760 nm [6, 7]. When

the palm of the hand is illuminated by near-infrared

light, the rays will be scattered by structures under the

surface of the skin. Much of this illumination will be

reflected back towards the illumination source, how-

ever little will be reflected from the veins since these

absorb near-infrared.

Palm vein patterns are preferably acquired using

the reflection method [3] and also in commercially

available products from Fujitsu [9] and Snowflake

[5], whereby the palm is illuminated from the front

and the image is also captured from the front. If the

transmission method is used, whereby the palm is

illuminated from the back of the hand and the image

is captured from the front, a very strong light would

be needed.

To realize this imaging method, the palm vein

image sensor must have both of an illumination func-

tion and imaging function by near-infrared rays. The

illumination function must emit light in a wavelength

of about 760 nm and the imaging function must have

sufficiently high resolution to distinguish the vein pat-

tern. In the reflection method, because the direction of

illumination is the same as that of image capturing, the

illumination device and the imaging device are com-

pactly integrated.

A palm vein image sensor should ideally scan

as broad a palm area as possible for keeping high

accuracy of palm vein authentication because the

human palm has an extensive and complex vein

pattern that contains sufficient information to identi-

fy an individual from among many people. But some

kinds of sensors which scan a partial area of a palm

would be designed for reasons of usability such as the

Stiver’s patent.
Implementation

The research and development efforts for the compact

palm vein image sensors have been confined to few

commercial vendors. Therefore only very limited tech-

nical details are available for the palm vein image

sensors. In Fujitsu’s implementation [8, 9], the palm

vein image sensor is in the shape of a small box 35 mm
deep by 35 mm wide by 27 mm high. Image capturing

is executed in a contactless manner. Users do not touch

the sensor; they only have to hold their palms above it.

The user places his or her hand below an optical reader,

which scans the palm.

To obtain a clear image of the palm vein pattern,

imaging is controlled according to the movement and

position of the hand above the sensor or below the

sensor, and illumination is controlled recognizing the

light around the sensor. Video-rate scanning is typical-

ly employed for the convenience in the palm vein

authentication so that users do not have to stop the

hand for authentication.

Any imaging devices such as CMOS sensors or

CCD sensors will be used for the capturing but it

must have sensitivities of near-infrared rays. It should

be also assembled not to capture except for the

reflected near-infrared rays from inner of the hand

using such as a polarizing filter, an optical filter cutting

off visible lights, and so on.

The contactless method, which is adopted by both

of sensors, eliminates the concerns of users who are

sensitive about hygiene or who are reluctant to come

into direct contact with publicly used devices. It also

enables the identification method to be used in envir-

onments where a high standard of hygiene is required,

such as in medical facilities or food factories.

Regarding security, a data encryption function for

the palm image should be also provided. This ensures

that image output is protected from any unauthorized

access or tampering.

Other possible substantiation of palm vein image

sensor has been also announced. NEC Corporation

developed the world’s first contactless multi-modal

finger recognition technology [10]. The new device

quickly scans two forms of biometric information,

fingerprints and vein patterns of finger. They proved

that the device might also be adapted to recognize skin

and vein patterns from any region of a human body. As

an example, the possibility of a scanning system cus-

tomized to analyze and authenticate both fingerprint

and palm characteristics was also shown.
Evaluation

Comparative Biometric Testing (CBT) by the Inter-

national Biometric Group (IBG) evaluates the accu-

racy and usability of biometric products using
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scenario-based testing, and strives to understand bio-

metric performance in real-world conditions. Round 6

of the testing in 2006 evaluated palm vein authentica-

tion technology using Fujitsu’s sensor.

The results of the IBG study revealed that palm vein

authentication using this sensor performed exception-

ally well in the failure to enroll (FTE) testing [11].

Authentication accuracy was also good; the false accep-

tance rate (FAR) and false rejection rate (FRR) were

extremely low. Performance differences between same-

day and different-day transactions were also minimal.
Palm Vein Image Sensor. Figure 1 Palm vein access

control unit implemented by Fujitsu.

Palm Vein Image Sensor. Figure 2 PC mouse equipped wit
Thus, after the users learned how the sensor worked,

they were able to use it successfully on an ongoing

basis. This data further confirms that palm vein au-

thentication using this sensor is highly accurate and

has optimal usability, both of which are directly rele-

vant to real-world conditions.
P

Application

Palm vein image sensors are embedded in many differ-

ent types of equipment for various applications, such

as for door security systems, PC login, financial ser-

vices, and so on.

The access control unit for door security systems is

a typical example in which the palm vein image sensor

is installed. Units throughout the world are equipped

with this sensor using various methods. Almost all the

units have an input device for the user’s ID, such as a

ten-key, smartcard reader, or both (Fig. 1).

Moreover, for the purpose of PC login, the palm

vein image sensor can be installed in the PC mouse

(Fig. 2), and in the case of financial services, it can be

installed in almost any type of ATM (Fig. 3).

Some of the equipment installed with a palm

vein image sensor includes a hand guide on which

the wrist is placed, so that first-time users of palm

vein authentication can easily understand how to

use this sensor. The adaptation of the Carolinas

HealthCare System (CHS) in the United States, which
h palm vein authentication sensor.



Palm Vein Scanner. Figure 3 ATM with palm vein

authentication sensor.
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is designed to protect patients from identity theft and

insurance fraud, is a good example of utilizing the

hand guide. To implement the system, CHS developed

a unique hand guide, adapted perfectly for a hospital

environment since it incorporates a pediatric plate

for young children, and thus can accommodate all

CHS patients.
Summary

The palm vein image sensor is used for palm vein

authentication employing the vein pattern of the

palm of a person as personal identification informa-

tion. An image of the palm vein pattern is captured

using near-infrared rays in the reflection method. The

illumination device emits light with a wavelength of

around 760 nm, which is more strongly absorbed by

the deoxygenated hemoglobin in the veins compared

to the surrounding subcutaneous tissues of the hand.

The imaging device captures the whole or partial

palm area and has a sufficiently high resolution to

distinguish the vein pattern. In case of sensors using

the reflection method for capturing, those two

devices are compactly installed. The palm image sen-

sor is used for various applications and is embedded

in many different kinds of equipment, such as the

access control unit for door security systems, PC

mouse for login management, ATMs for financial

services, confirmation units for hospital patients,

and so on.
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Palmprint
Palmprint is an impression or image left on a surface

by the friction skin of the palm.

▶Anatomy of Friction Ridge Skin
Palmprint, 3D
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Synonyms

Palmprint authentication, 3D; Palmprint recognition, 3D
P

Definition

Biometric systems that rely on unique features of the

palm for personal recognition are referred to as palm-

print based biometrics. A 3D Palmprint biometric

system employs 3D imaging device to acquire surfaces

of human palm and uses this data in performing user

identification. Extracted features from a 3D palmprint

data include depth and curvature of palmlines and

wrinkles on the palm surface.
Palmprint, 3D. Figure 1 Palmprint features.
Introduction

Human palmprints are rich in features that are unique

and stable. Major palmprint features include principal

lines, wrinkles, ridges, singular points, and minutiae

points (see Fig. 1). In addition, human palmprints

are also abundant with texture features. Apart from

being feature-rich, palmprints have advantages over

other hand-based biometric technologies [1, 2]:

1. Compared to the fingerprint, the palm provides

a larger surface area so that more features can be

extracted
2. An individual is less likely to damage a palm than a

fingerprint, and the line features of a palm are

stable throughout one’s lifetime

3. Small amounts of dirt or grease appearing on an

individual’s finger may pose challenges in accurately

extracting features for a fingerprint system. This

problem does not arise in the extraction of palmprint

features since a comparative low resolution palmprint

images are used to extract these features

Most of the current works in the area of automated

palmprint recognition are based on acquiring intensity

image of the user’s palm and extracting line or texture

features from it. Although these systems have been able

to achieve promising performance with low error rates

[3], there are a few inherent limitations associated with

such systems. Firstly, they are sensitive to spurious pat-

terns such as dirt, lines or text on the palm. Performance

of the palmprint recognition systems based on intensity

images can be severely affected by the spurious patterns

on the palm. An impostor may also blemish his palm

with a purpose to circumvent the system. In addition,

like most other 2D image based personal recognition

systems, palmprint systems are also vulnerable to sensor

level spoof attacks. An impostor may easily fabricate

a spoof palm resembling a genuine user’s palm and

use to it to circumvent the system. On the other hand,

a palmprint biometric system based on 3D images of

users’ palm offers higher degree of robustness against

such attacks. These systems are extremely difficult to

circumvent as they require sophisticated methods to fab-

ricate spoof 3D palmprint models. Another factor that

often has an impact over the performance of
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conventional palmprint recognition systems is the

changes in the illumination. This, in fact is a major

problem for other biometric systems such as the one

employing users’ face images. The face images are often

required to be imaged in outdoor environments and, as a

result, show large intra class variations. However, palm-

print systems often acquire images in a controlled envi-

ronment and therefore are less affected by inconsistent

illumination.

One possible solution to overcome these limitations

is to make use of depth features of the palm surface

using a 3D imaging device. Such observations will pro-

vide information on depth and curvature of palmlines

and wrinkles on the palm surface. Comparable perfor-

mance and robustness make 3D palmprint biometric

system a good candidate for high security identification

tasks. However there has not been much research

focused on exploring the utilities of 3D palmprint fea-

ture. Therefore references on this topic are limited.
3D Palmprint Recognition System

A 3D palmprint based personal recognition system

includes the following modules:

1. 3D palmprint image acquisition device

2. Extraction of Region of Interest (ROI) to obtain the

central part of the palmprint

3. Feature extraction

4. Feature matching, where extracted features are

matched with their respective feature templates

stored during enrolment phase, generating a simi-

larity score. In identification applications, the

query template is matched to all templates enrolled

in the database. Therefore, a one-to-many com-

parison is performed in this case

5. Decision module, where the similarity score pro-

duced is compared to the threshold of the system

to either accept or reject the identity claim. In iden-

tification applications, identity of the user is deter-

mined to be the one with highest similarity score
3D Palm Image Acquisition

Infrared sensors are employed to detect the presence of

the hand on the acquisition device. When a hand is

detected, the device projects multiple light patterns
onto the palm surface and acquires depth information

using active triangulation. In order to distinguish be-

tween stripes, they are coded with different brightness.

The system uses a computer controlled liquid crystal

display (LCD) projector that can generate arbitrary

stripe patterns. A CCD camera is used to acquire the

images formed on the palm side. The sequence of

images acquired by the CCD camera is then processed

to obtain the 3D palm data. Figure 2a shows the

process of acquisition of 3D palmprint data using a

3D image acquisition device based on structured

light principle. The US patent [4] describes the pro-

cess of acquisition of 3D finger and palmprint infor-

mation using multi-camera and light projection

system. This device projects multiple structured lights

from different directions and the images formed on

the object (palm or finger) are captured by cameras at

different angles. It is claimed that the system can

simultaneously obtain 3D fingerprint and palmprint

information.
Feature Extraction

Acquired 3D images are processed to extract the region

of interest (ROI). The inter finger points are used as

reference points to extract a sub image of fixed size

located at the center part of the palm. These 3D sub

images are further processed to extract surface curva-

ture features. To represent the curvature of every point

on the 3D palmprint image by a scalar value, the

curvedness (C) introduced in [5] is utilized. The posi-

tive value C is a measure of how sharply or gently

curved, a point is [6]. It is defined in terms of principal

curvatures k1, and k2, as:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk21 þ k22Þ=2

q
ð1Þ

The principal curvatures k1 and k2 can be deter-

mined as:

k1; k2 ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p
ð2Þ

where K and H are Gaussian and mean curvatures

respectively. For a surface patch represented by

Xðu; vÞ ¼ ðu; v; f ðu; vÞÞ, the values of K and H are

computed as follows:

KðXÞ ¼ fuufvv � f 2uv

ð1þ f 2u þ f 2v Þ2



Palmprint, 3D. Figure 2 (a) Example 3D palmprint image acquisition system. (b) Receiver Operating Characteristics

(ROC) curve for a 3D palmprint authentication system.
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and

HðXÞ ¼ ð1þ f 2u Þfvv þ ð1þ f 2v Þfuu � 2fufv fuv

ð1þ f 2u þ f 2v Þ3=2
ð3Þ

where, fu; fv and fuu; fvv ; fuv are first and second order

partial derivatives of f ðu; vÞ:
The scalar value of curvature (C) is obtained

for every point on the 3D palmprint image and this

can be stored in a 2D matrix or an image. Set of such

scalar values is referred to as surface curvature map.

Figure 3 shows sample 3D palmprint images and corre-

sponding curvature maps. It can easily be observed

that the surface curvature maps closely resemble the

palmlines, especially the strong principal lines.

Additional features such as surface types that are

characterized using the sign of mean and Gaussian

curvature [7], shape index [8], computed using mini-

mum and maximum curvature values; may also be

explored as feature representations for the 3D palm-

print images. Shape index, a local feature computed at

each point, is defined as:

S ¼ 1

2
� 1

p
arctan

k1 þ k2

k1 � k2
ð4Þ

The value of shape index S lies in the interval [0,1] and

can be used to classify each point on the surface to

different surface types ranging from spherical cup

to spherical cap.
Another approach to perform user authentica-

tion is to extract 3D palmlines from the acquired

3D palmprint images and match these lines (set of

points) using point set alignment algorithms such as

iterative closest point (ICP) [9]. ICP can be employed

to iteratively estimate the transformation between the

two 3D palm lines. Alignment error (e.g., mean

squared distance) generated by the ICP can be used

as the matching score.
Feature Matching

Feature matching establishes the similarity between

two 3D palmprint images. An image matching tech-

nique, normalized local correlation can be employed to

compare two curvature maps. Result of this matching

is a correlation value for every point in the input

curvature maps. Average of these correlation values is

considered to be the matching score. The expression

for normalized local correlation is given by:

C ¼

PN
i¼�N

PN
j¼�N

ðPij � �PÞðQij � �QÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼�N

PN
j¼�N

ðPij � �PÞ2
" #

PN
i¼�N

PN
j¼�N

ðQij � �QÞ2
" #vuut

ð5Þ



Palmprint, 3D. Figure 3 Sample 3D palmprint images (top row) and their corresponding curvature feature maps

(bottom row).

Palmprint, 3D. Figure 4 Matching of two curvature maps from the same subject.

1040P Palmprint, 3D
where Pij and Qij are curvature values in the neigh-

borhood of the points being matched in the two cur-

vature feature maps, and �P and �Q are the mean

curvature values in those neighborhoods. Figures 4

and 5 illustrate the process of matching two curvature

maps of the same and different user respectively. Red

(dark) colored pixels in the correlation map represent

high values of correlation while blue (light) represents

low correlation. Final matching score is the average of

pixel values in the correlation map. It can be observed

from Figure 4 that genuine matching results in a
correlation map with large regions of red colored pix-

els, indicating high correlation between the two curva-

ture maps being matched.
Decision Module

At the decision stage, match score from the feature

matching process is used to make a decision as to

whether the claimant is a genuine user or an impostor,

(in the verification scenario) or to decide the identity



Palmprint, 3D. Figure 5 Matching of two curvature maps from different subjects.

Palmprint, 3D. Figure 6 A framework for combing 2D and 3D palmprint matching scores.
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of the user in identification applications. Decision

threshold is selected based on a threshold criterion,

which is often the equal error rate (EER) of the system.

Figure 6 presents a framework for combining 2D and

3D palmprint matchers. It employs a two level decision

strategy. Decision module I accepts or rejects a claim

based only on the 3D matching score. This allows the

system to reject fake palms based on their 3D matching

scores. At the second level, Decision module II operates

on the combined (2D and 3D) matching score to

achieve performance improvement.
Performance Evaluation

The 3D palmprint verification system developed in

[10] presents promising performance on a database

of 108 users. Six images were collected from each

user, resulting in 648 3D palmprint images in the

database. Matching each palmprint image with all

other images in the database, 1,629 genuine and

208,008 impostor match scores were obtained.

Figure 2b shows the receiver operating characteristic

(ROC) curve for an authentication system based on 3D

palmprint features. The reported system achieves an

EER of 0.99% on the aforementioned database.
Summary

Palmprint based recognition systems are extensively

researched for applications such as physical access con-

trol, attendance tracking, and other personal verification

tasks. They have certain advantages such as high user

acceptance and ease of use, over other biometrics. While

2D image based palmprint based recognition systems

have achieved high performance, they can be sensitive

to factors such as spurious patterns on the palm and

variations in the illumination. 3D palmprint based rec-

ognition systems, on the other hand, offers high degree

of robustness along with comparable performance,

making them a good choice for high security applica-

tions. In addition, since 2D and 3D palmprint images

can be simultaneously acquired using a single image

acquisition device, these features can easily be combined

to form a multi-biometric system that can potentially

achieve significantly higher performance than either of

the two palmprint features. The reference [10] provides
details of a device that can simultaneously acquire 2D

and 3D palmprint images. It also provides experimen-

tal results on score level fusion of 2D and 3D palmprint

matchers. While 3D palmprint based biometric system

has several advantages over other biometrics, size of

these systems, due to large capture area, can be pro-

hibitive for its use in devices like PDA and laptop.
Related Entries

▶Hand Geometry

▶Palmprint Feature

▶Palmprint Matching
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Synonyms

Palmprint Representation; Palmprint Characteristics;

Handprint
Definition

Palmprint features refer to the representation of

palmprints which characterizes a palmprint in a stable
and unique way such that it has good discriminat-

ing ability for personal identification. A palmprint

identification system identifies an individual using

palmprint features which may or may not be observa-

ble to the naked eye. The selection of palmprint featu-

res is a fundamental problem in reliable palmprint

identification.
Introduction

Palmprint is the skin patterns of the inner surface of

the human hand from the wrist to the root of the

fingers. As a comparatively new biometric, palmprints

are rich in physical characteristics of skin patterns such

as lines, points and textures, which provide stable

and distinctive information sufficient for separating

an individual from a large population. Compared

with other biometric traits, the advantages of palm-

print are user friendliness, environment flexibility,

and discriminating ability.

A typical palmprint-based identification system

involves ▶ pre-processing, feature extraction, feature

matching and decision-making. Normally, automatic

palmprint identification systems can be classified into

two categories: offline and online. An offline system

usually processes previously captured palmprint

images which are often obtained from inked palmprints

or generated from ▶ forensic analysis, while an online

system captures palmprint images using a palmprint

scanner that is directly connected to a computer

for real-time processing. For both types of palmprint

identification systems, the selection of unique features

to identify a person is a fundamental issue to be solved.

Many unique features of palmprint images can

be used for personal authentication, which include

▶ principal lines, wrinkles, ridges, minutiae points, sin-

gular points, and texture. Various features can be

extracted at different image resolutions. Features such

as minutiae, ridges and singular points can be obtained

in high-resolution palmprint images of at least 400 dpi

(dots per inch) [1–3] and are difficult or even cannot

be observed in low-resolution images (<100 dpi).

Nevertheless, features like principal lines and wrinkles

can be extracted from low-resolution palmprint images

and play an important role in palmprint identifica-

tion [4–6]. In the real-time palmprint identification

system developed by the Biometric Research Centre at
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The Hong Kong Polytechnic University [7], a very

low resolution (75 dpi) palmprint image can be captured

by a CCD (charge-coupled device) camera-based palm-

print acquisition device (Fig. 1). In a typical palmprint

image captured by this system, the main patterns can

be generalized to principal lines, wrinkles, and creases

(also called ridges) (Fig. 2).

Regardless of image resolution and applications,

the selected feature should have good discriminating

ability to exhibit large variations between individuals

and small variations between samples from the same

palm. Thus, image feature extraction/representation

play an essential role in palmprint-based biometrics.

In general, the palmprint features can be classified into

three categories [8]: texture-, line-, and appearance-

based features.
Texture Features

Texture representation of coarse level palmprint classi-

fication provides an effective approach to palmprint

recognition. In the spatial domain, considering a palm-

print as a texture image, a statistical approach, e.g.,

Laws’ convolution masks, can be used to compute the

texture energy of palmprints [2]. In the frequency
Palmprint Features. Figure 1 The Design Principle of the Pa
domain, a polar coordination system ðr; yÞ can be

established to represent the Fourier transform of palm-

print images where less compact information indicates

stronger line features in the spatial domain [9]. In

addition, if a palmprint image has a strong line, there

is more information along the line’s perpendicular

direction in the frequency domain. In this polar coor-

dination system, the energy change tendency along

r corresponds to the intensity of a palmprint’s creases

and that along y to their directions. Another frequency

domain approach to the palmprint feature extraction

relies on the discrete cosine transform (DCT) of the

image pixels [10].

Two-dimensional Gabor filter, an effective tool for

texture analysis, is widely used to extract texture fea-

tures in palmprint-based biometrics [7, 11, 12]. A

circular 2-D Gabor filter in the spatial domain has

the following general form:

Gðx; y; y; u; s; bÞ ¼ 1

2psb
exp �p

x02

s2
þ y 02

b2

� �� �

exp 2iux0ð Þ;
ð1Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

; x0 ¼ ðx � x0Þ cos yþ ðy � y0Þ sin y;
y 0 ¼ �ðx � x0Þ sin yþ ðy � y0Þ cos y; ðx0; y0Þ is the
lmprint Acquisition Device.
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center of the function, u is the radial frequency in

radians per unit length, and y is the orientation of

the Gabor function in radians. s and b are the standard

deviations of the Gassian envelop along x and y axes,

respectively, and s ¼ b for the circular 2-D Gabor

filter. In order to provide more robustness to illumina-

tion, the Gabor filter is tuned to 0 DC (average value)

with the application of the following formula:

~G½x; y; y; u; s; b� ¼G½x; y; y; u; s; b�

�

Pn
i¼�n

Pn
j¼�n

G½i; j; y; u; s; b�

ð2nþ 1Þ2 ;

ð2Þ

where ð2nþ 1Þ2 is the size of the filter and

G½i; j; y; u; s; b� denotes the corresponding discrete

Gabor filter. The adjusted Gabor filter is first used to

convolute with the pre-processed central part palm-

print sub-image and then each sample point in the

filtered image is coded to two bits according to the

signs of the real and imaginary parts of the convolution

results. Using this coding method, only the phase in-

formation in palmprint images is stored in the feature

vector, which is called the PalmCode.

The PalmCode has been improved in two aspects.

To reduce the correlation between PalmCodes, a fusion

rule has been developed to produce a single feature,

called the Fusion Code. According to this fusion rule,

multiple elliptical Gabor filters (s 6¼ b) with different

orientations are utilized to extract the magnitude

and the phase information on a palmprint image and
then employ the magnitude for fusion and the phase

for the final feature (Fig. 3). To utilize the orientation

information of palmprints which is absent in a Palm-

Code, a competitive rule is further designed to extract

the orientation characteristics of palm lines by using a

set of neurophysiology-based Gabor filters. This com-

petitive rule is a winner-take-all rule where the orien-

tation of the sample point is determined by the Gabor

filter which gives the minimum filter response. The

corresponding feature codes, referred to as the Com-

petitive Code (Fig. 4), are more robust to different

capturing environments and devices.

The ordinal feature representation is another power-

ful method to capture the texture features from low-

resolution palmprint images [13]. In low-resolution

palmprint images, the main palmprint patterns are

negative line segments and can be characterized using

▶ ordinal measures. This measure qualitatively com-

pares two elongated, line-like image regions which are

orthogonal in orientation and generates one bit feature

code. The 2-D Gaussian filter which is used to obtain

the weighted average intensity of a line-like region is

formulated as follows:

f ðx; y; yÞ ¼ exp � x cos yþ y sin y
sx

� �2
"

� �x sin yþ y cos y
sy

� �2
#
;

ð3Þ

where y denotes the orientation of the 2-D Gaussian

filter, sx and sy denote the filter’s horizontal and

vertical scales, respectively and sx
�
sy should be higher
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than 3 to guarantee that the region is shaped like a line.

The orthogonal line ordinal filter is defined as the com-

parison/difference of two orthogonal line-like palm-

print image regions. For each local region, three

oriented ordinal filters with 0, p=6 and p=3 are per-

formed on it to obtain three bit ordinal codes based on

the sign of filtering results. Finally, three ordinal tem-

plates called the Ordinal Code are obtained as the

feature of the input palmprint image.
Line Features

In palmprint images, lines and textures are the most

observable features and lines are more appealing than

texture to the human eye. The line feature of palmprints

can be generalized to principal lines, wrinkles, and
creases. Normally, there are three principal lines in a

palmprint: the heart line, the head line, and the life

line. These lines vary little over time, and their shapes

and locations on the palm are the most important

physiological features for individual recognition.

Most wrinkles are thinner and more irregular than

the principal lines; some wrinkles are not only as

strong as the principal lines, but are also stable and

reliable for identification. Creases cover the entire

palm just like ridges in a fingerprint and cannot be

observed in low-resolution images.

The principal lines and wrinkles, also called

palm lines, are stable and reliable for individual

identification and can be exploited and derived from

a low-resolution palmprint image. Many algorithms

have been developed to extract palm line features

for personal authentication. Regarding palm lines as
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2, 3, 4 and 5, respectively. (b) Combination of (c)–(h).
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several straight line segments, line-like features can

be extracted by employing some directional masks,

as well as Sobel and morphological operations [1, 14].

Applying a wavelet transform followed by directio-

nal context modeling, a set of statistical signatures

of palm lines can be obtained to characterize palm-

prints [4].

The structural features of palm lines are a natural

choice for palmprint recognition in that they can

describe a palmprint clearly and are robust against

illumination and noises. According to the properties
of palm lines, a set of directional line detectors are

devised to detect palm lines in different directions

[5]. To ensure that the details of the palm line structure

are not lost, the detected lines are finally represented

by a chain code which is a pixel-by-pixel direction

code of a line.

Except the structural features, the width feature

generally reflects the strength information of palm

lines (Fig. 5) and is also important for describing the

characteristics of a palmprint especially when different

palmprints have similar palm line structures. The
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width features of palm lines as well as the structural

features can be extracted by using a wide line detector

[6]. This detector can extract a line completely by

inverting the kernel mass which is obtained by an

isotropic nonlinear filter.
Appearance Features

In palmprint recognition, the performance of subspace

learning methods has been promising [15–17]. These

methods efficiently characterize the overall space of

raw images by a low-dimensional subspace where stan-

dard statistical methods can be used to determine the

range of appearance of palmprints.

The Principal Component Analysis (PCA) has been

widely used in face recognition and it offers good char-

acterization for palmprint recognition. Based on the

Karhunen-Loeve (K-L) transform which is an optimal

transform for eliminating statistical correlation, the

original palmprint images used in training are trans-

formed into a small set of characteristic feature images,

called ‘‘eigenpalms,’’ which are the eigenvectors of the

training set. Feature extraction is then performed by

projecting a new palmprint image into the subspace

spanned by the ‘‘eigenpalms.’’

Features of palmprints extracted by the PCA are

actually ‘‘global’’ features of all palmprint images im-

plying that they are not necessarily good discriminative

representations. The LDA (linear discriminant analy-

sis), based on linear projections, seeks a linear trans-

formation by maximizing between-class variance and

minimizing within-class variance and thereby has
strong discriminability. Applying the LDA for palm-

print recognition, palmprints can be projected from a

high-dimensional space to a significantly lower dimen-

sional feature space spanned by Fisherpalms. In this

low-dimensional feature space, palmprints from differ-

ent palms can be discriminated more efficiently.

Both the PCA and LDAmethods attempt to find the

holistic features of the whole enrollment palmprints and

consequently miss the crucial details. Applying the Lo-

cality Preserving Projection (LPP) to palmprint images,

‘‘Laplacianpalms’’ are obtained by finding the optimal

linear approximation to the eigenfunctions of the Lapla-

cian Beltrami operator on the manifold [17]. They are

linear projective maps that arise by solving a variation-

al problem that optimally preserves the neighborhood

structure of the dataset. While the Eigenpalm method

aims to preserve the global structure of the palmprint

image space and the Fisherpalm method preserves the

global discriminating information, the Laplacianpalm

method strives to preserve the local structure of the

palmprint image space.
Summary

Several palmprint features have been investigated for

personal authentication and have yielded promising

results. According to the performance analysis of

various palmprint features presented in the litera-

ture, texture-based features, such as ordinal features

and competitive coding, revealed the best perfor-

mance in a large palmprint population. The study

of how to effectively combine different palmprint
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representations to achieve higher performance has

attracted the attention of an increasing number of

researchers.
Related Entries
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Synonyms

Comparison; Dissimilarity; Similarity
Definition

Palmprint matching is a comparison process of two

given palmprint and returns either a dichotomy deci-

sion (yes or no) or a degree of similarity. Due to the

rich features in a palm, including geometrical features

(e.g., width, length, area etc. of a palm), principle lines,

ridges, singular points, minutiae points, and texture,

the matching algorithms require an intermediate

palmprint representation to be extracted through a

▶ feature extraction stage. Based on these palmprint

features, several approaches to palmprint matching

have been devised and they can be broadly classified

into two major categories: geometry-based matching

and feature-based matching. The integration of two

approaches can be done in hierarchical manner to

improve the palmprint recognition systems in terms

of performance and speed.
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Introduction

In general, a palmprint recognition system consists of

three components: (1) preprocessing, (2) feature extrac-

tion, and (3) matching. A palmprint image will be first

preprocessed to determine the region of interest. This

process includes segmentation and normalization so

that a canonical palmprint image can be produced for

sequel processing. Then, an intermediate palmprint rep-

resentation has to be derived through a feature extrac-

tion stage. The common palmprint representation

techniques can be mainly divided into five categories

according to the palmprint features, such as (1) line-

based approaches, (2) texture-based, (3) appearance-

based approaches, (4) multiples feature approaches,

and (5) orientations-based approaches [1]. A decision

is sought eventually through the matching process.

The matching is a task to calculate the degree of simi-

larity of two given palmprint and return a decision.

The establishment of palmprint matching strategy

is not a trivial problem. The primary reason for study-

ing of palmprint matching is due to the large deviation

in different impressions of the same palmprint, i.e.,

large intra-class variations. The possible factors that

contributed to intra-class variations are as follows:

1. Noise. It is introduced by the palmprint acquisition

system, e.g., residual prints left on palmprint acqui-

sition device

2. Adverse environmental condition such as bad illu-

mination condition

3. Incorrect interaction by the user with the palm-

print recognition system

4. Preprocessing and feature extraction errors. The pre-

processing and feature extraction algorithm are

imperfect and often introduce measurement errors.

The errors will be propagated from the prepro-

cessing stage (e.g., incorrect segmentation and

normalization of region of interest) to feature

extraction. Another instance is that in low-quality

palmprint images, the line-based feature extraction

process may introduce a large number of spurious

lines or miss to detect the true palm lines

On the other hand, palmprint images from different

palms may appear quite similar, i.e., small inter-class

variations, especially in palmprint principle lines.

A well designed matcher attempts to find the ‘‘best

fit’’ between the two palmprint representations, and
thus reduces the errors that are introduced by the

above sources.

Furthermore, palmprint matching and feature

extraction are usually related to each other for both

verification and identification problems. Identification

problem treats the searching for an input palmprint in

a database of M palmprints, thus it can be implemen-

ted as a series of consecutive execution of M one

to one matches (verification) pairs of palmprints.

Several automatic palmprint matching algorithms

have been proposed in the literature of biometrics.

Based on the aforementioned feature representations of

palmprint image, the palmprint matching approaches

can be broadly classified into two categories:

� Geometry-based matching: It is a natural way to

represent the feature of palmprint using geometry

objects, such as points, orientation, lines etc. Lines

in palmprint such as principle lines (e.g., head line,

life line, and hearth line) and coarse wrinkle are

the basic feature of palmprint [2]. A set of feature

points or lines segments along the basic palm lines

and/or the associated orientations can be extracted

from a palmprint image. Geometry-based match-

ing consists of finding the geometrical alignment

between the template and the input feature set that

returns in the maximum number of features pair-

ing or smallest/biggest degree of ▶ similarity/dis-

similarity. However, line features is more popular

and widely used as it is relatively easier to be

extracted compared to point features in palmprint,

even in low spatial resolution palmprint image.

� Feature-based matching: Geometry-based matching

approach relies heavily on the extraction of points

or lines feature from a palmprint image, this might

be difficult in very low-quality palmprint images.

Alternatively, other features of the palmprint image

such as magnitude and orientation information in

palm lines can be utilized. The magnitude and

orientation of palm lines or texture, in general, can

be modeled and extracted by using appearance-

based [3, 4], transform-based [5], texture-based

[6, 7], and orientation-based techniques [8, 9].

The approaches belonging to this category compare

palmprint features based on the similarity/dissimi-

larity measurement, such as Euclidean distance,

hamming distance, angular distance etc. between

the two corresponding feature vectors/matrices.



Palmprint Matching P 1051
Besides the above two major categories, some other

techniques have also been proposed in the literature.

For instance, ▶machine-learning based recognition

techniques such as Neural Networks [4], Support

Vector Machine [10], and Correlation-based matching

[11]. In principle, they could be regarded as sub-

categories of feature-based matching according to the

feature used, but it is more appropriate to categorize

them separately based on the matching approach.
P

Geometry-Based Matching

Point-Based

In view of structural similarity of fingerprint and palm-

print impressions, where both are composed by ridges,

it is straightforward to adopt fingerprint minutiae moti-

vated point matching approach to palmprint image.

A representative example of point-based matching was

proposed by Duta et al. [12]. In their method, given a

palmprint image, an average filter is first used to

smooth the image followed by binarization process

based on a chosen threshold value, t. All pixels whose

value greater than t are labeled as palm line pixels while

others are regarded as background pixels. A set of

consecutive morphological erosions, dilations, and

subtractions are performed to eliminate the spurious

palm lines. The outstanding foregrounds pixel loca-

tions are subsampled to retrieve a set of 200–400

pixel locations that will be considered as feature points.

For each feature point, the orientation of its

corresponding palm line is calculated. The two sets of

feature points/orientations are geometrically aligned.

The goal of alignment of two feature point sets, A and

B is that to determine a corresponding feature points

in A such that the highest degree of correlation can be

found between A and B with respect to an optimal

transformation, T. The matching is finally carried out

based on a matching score that is defined as a tuple

(P, D), where P is the percentage of point correspon-

dences with respect to the minimum number of feature

points in set A and B, and D is the average distance

between the corresponding points. This matching score

was devised based on two sources of intra-class varia-

tions, i.e., noise introduced by feature point extraction

and non-linear palm deformation due to various

finger positions [12], which are modeled by P and D,
respectively. It was shown that in a small size inked

palmprint database with 30 subjects, 95% of recogni-

tion rate was attained.

Another work on feature point matching was

reported by Jane et al. [13]. This work applied an

interesting point detector, namely Plessey operator to

extract the feature points. The interesting point detector

differs from the conventional edge detector in the sense

that the points detection is based on the how interes-

ting a point is. ‘‘Interesting’’ here refers to a set of

application-specific specifications that enables the oper-

ator to extract only those representative and distinctive

feature points for matching purpose. In general, inter-

esting point detectors will be operated based on a

three-step procedure. The first step is to determine

a pre-specified size window, based on the average gradi-

ent magnitude. This is followed by the classification

that distinguishes the types of singular points such

as corners, rings, spirals etc. based on a statistical test.

The last step is to refine the located point within

the window.

For matching purpose, Hausdorff distance is

adopted to calculate the degree of similarity of

two feature points sets. The Hausdorff distance is

a non-linear operator, which measures the degree

of the mismatch between two feature point sets A

and B. Mathematically, the Hausdorff distance is

dH ¼ max {h(A, B), h(B, A)} where h(A,

B) ¼ max
a2A

fmin
b2B

fdðai; biÞgg and h(A, B) 6¼ h(B, A).

ai and bi are feature points of set A and B, respectively

and d(ai, bi) is an arbitrary metric between these

points. The major advantage of using the Hausdorff

distance for matching is that the computation can be

accelerated by partitioning the feature point sets A into

several subsets and match the B on these subsets simul-

taneously. To be specific, the feature point sets can be

represented in binary matrices, A(i, j) and B(i, j). The

(i, j)th entry indicates an interesting feature point

position, which is set to 1 and 0 otherwise.

Two distance matrices, DA and DB are defined as the

distance of each (i, j) location entry to the nearest

non-zero location entry of A and B, respectively.

Therefore, the Hausdorff distance, as a function of

translation can be computed by considering the

point-wise maximum of all the translated DA and DB

in the form of dH(i, j) = max (a, b) where a ¼ max
a

DA(ai – i, aj – j) and b ¼ max
b

DB(bi þ i, bj þ j) [13].



1052P Palmprint Matching
A limitation of the feature points matching techni-

ques, which based on exhaustive scanning approach

is cumbersome and may not meet the real-time

requirement for on-line matching in a large database.
Line-Based

Compared to the point-based matching, line-based

matching is conceived more informative than the

point-based matching in palmprint recognition system

due to the rich line features in a palmprint image. Line-

base matching technique first extract line feature,

which is composed by curves and straight line. In [2],

edge filters are applied to extract principle lines, thick

wrinkles, and ridges at various orientations repeatedly

and combine them with a post-processing algorithm

by line linking and thinning at the final stage. The

representation of each extracted line segment is deter-

mined by a series of end points: (u1(i), v1(i)) and

(u2(i), v2(i)), i = 1, . . .,m where m is the number of

line segments. The end points coordinate is described by

a two-dimensional right coordinates system, which is

uniquely determined by the datum points. In general,

each line segment can be categorized by three para-

meters: (1) slope, m, (2) intercept, c and (3) angle of

inclination, a. They can be calculated using equations

m(i) = (v2(i) � v1(i))/(v2(i) � v1(i)), c(i) = v1(i) �
u1(i)m(i), a(i) = tan�1(m(i)). The Euclidean distances

between the endpoints of two line segments, d1 and d2 is

given as d1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1ðiÞ � u1ðjÞÞ2 þ ðv1ðiÞ � v1ðjÞÞ2

q
and

d2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2ðiÞ � u2ðjÞÞ2 þ ðv2ðiÞ � v2ðjÞÞ2

q
.

For matching purpose, several conditions were

proposed as follows: (1) If both d1 and d2 are less

than a predefined threshold value, t, then this implies

that both line segments are the same. (2) If the differ-

ence between a and c is less than sum of their respective

threshold values, then this implies two line segments

have the equal a and c. Among the class of equal a
and c, if one of d1 and d2 is less than t, then two

line segments are considered identical. (3) When

two line segments overlap, they are regarded as a single

line segment if the midpoint of one line segment is

between two endpoints of another line. Based on the

three rules given, a corresponding pair of palm lines

can be obtained. A decision criterion is hence defined
as r ¼ 2N/(N1 + N2), 0 < r < 1 where N is the

number of these corresponding pairs; N1 and N2 are

the numbers of the line segments determined from two

palmprint images, respectively. In a medium scale

inked palmprint database that consists of 200 subjects,

it was reported that 92% of recognition rate can be

achieved.

Geometry-based matching approach, especially

line features is an active research area and still evolving.

The researchers believe that line-based features in

palmprint are highly discriminant. Huang et al. evi-

dences that even simple line-based features such as

principle lines also can show the high discriminability

[1]. In this work, they proposed to use a modified

finite Radon transform to extract the principle lines

and represent them in a binary matrix with size h � k,

where principle line point is set to 1 and 0 for others.

A new matching strategy, known as pixel-to-area com-

parison was devised based on the pixel to area compar-

isons for robust line matching. Given two principle

line matrices, A and B, the matching score from A to

B is defined as

S ¼ maxðsðA;BÞ; sðB;AÞÞ; 0 � S � 1

where
sðA;BÞ ¼
Xh
i¼1

Xk
j¼1

A i; jð Þ \ B i; jð Þ
 !

=NA and

sðB;AÞ ¼
Xh
i¼1

Xk
j¼1

B i; jð Þ \ A i; jð Þ
 !

=NB:

Here, \ denotes a logical ‘‘AND’’ operation,NA and

NB are the number of points on detected principle lines

in A and B. B i; jð Þis a small area around B(i, j) and

is defined as B(i + 1, j), B(i�1, j), B(i, j), B(i, j + 1)

and B(i, j�1). The same definition applies to A i; jð Þ.
S is devised in such a way that it is robust to slight

translations and rotations between the two images,

with limited to one pixel translation and 3� rotation.

In practice, the translation might be large due to im-

perfect preprocessing. This problem can be alleviated

by translating one image vertically and horizontally

repeatedly in the range of �2 to 2 pixels and match

with another image. The maximum value of S is

regarded as a final decision score. The experiment

result showed that the method could achieve an equal

error rate (EER) of 0.565% in a large scale database
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with 386 palmprints. It is believed that the perfor-

mance can be improved further if other line features

such as wrinkles are included.
P

Feature-Based Matching

Feature-based matching utilizes magnitude and orien-

tation information of palm lines, or texture in general

for matching purpose. Palm lines magnitude informa-

tion can be modeled and extracted by using statistical

and algebraic techniques such as appearance-based

feature representation [3, 4] (e.g., principle com-

ponent analysis (PCA), fisher discriminant analysis

(FDA), Independent component analysis (ICA) etc),

Fourier spectrum [5], wavelet transform [10], discrete

cosine transform [14], and convolution masks [13].

On the other hand, orientation information of palm

lines can be effectively extracted by using Gabor filters

[6, 8] and ordinal representation [9].

The common feature representation based on

statistical and algebraic techniques usually appear in

either one-dimensional feature vector with length n,

v = {vi| i = 1, . . . , n} or two-dimensional feature matrix

with size m � n, V = {Vij| i = 1, . . ., m, i = 1, . . ., n}.

For instance, [14] characterize a palmprint image by

using a set of context based wavelet signatures. Specifi-

cally, a palmprint image is decomposed into J wavelet

scales and only three detail wavelet sub-band coeffi-

cients, i.e., horizontal, vertical, and diagonal. For each

sub-band coefficient, four statistical readings, namely

(1) the Average Gravity Center Signature (AGCS), (2)

the Density Signature (DS), (3) the Spatial Dispersivity

Signature (SDS), and (4) the Energy Signature (ES) can

be computed. Each palmprint image will generate a

feature vector with length k = 3 + 3*3*J, which consists

of three pairs of AGCS, 3J DS, 3J SDS and 3J ES.

On the other hand, algebraic techniques such as

PCA, FDA, ICA etc first transform the palmprint train-

ing images into a small set of characteristic feature

images, called Projection Matrix, which are the eigen-

vectors of the training set. Then, feature extraction

is performed by projecting a new palmprint image

with length n into the subspace spanned by the Pro-

jection Matrix. The output is a feature vector with

length k << n.

For the representation in one-dimensional feature

vector, the matching is normally done by using
distance metric such as city block distance, d1 = |vi –

vj|, Euclidean distance, d2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
v i � v j
� 	2q

, weighted

Euclidean distance, d2 =
ffiffiffiffiffiffiP
k

r
1
wk

v i � v j
� 	2

, angular

distance, d3 =
v i

T v j

v ik k v jk k etc., where i 6¼ j andw is a weight

vector. Without loss of generality, the degree of simi-

larity/dissimilarity of these distance metrics is given in

term of score between 0 and 1.

Another popular palmprint feature extractor used in

extracting the texture information is 2-D Gabor filter

and its variants [6–8]. In this technique, a 2-D Gabor

filter will convolute with a preprocessed palmprint

image followed by a robust encoding to convert the

convoluted output into two binary matrices, which

corresponding to real and imaginary parts of the output.

Given two palmprint feature binary matrices, AR (AI)

and BR (BI) with size h � h, the matching is performed

via a normalized hamming distance H1 such as

H1 ¼

X
i

X
j

ðARði; jÞ 	 BRði; jÞ þ A1ði; jÞ 	 B1ði; jÞÞ

2h2

where 	 is an bitwise Ex-OR operator [6]. The equa-

tion can be modified to cattle the translation prob-

lem with

H2 ¼ min
jsj<S;jt j<T

�
X
minðh;hþsÞ
i¼maxð1;1þsÞ

X
minðh;hþtÞ
i¼maxð1;1þtÞ

ARði þ s; j þ tÞ 	 BRði; jÞ

þ AI ði þ s; j þ tÞ 	 BIði; jÞ
��

2HðsÞHðtÞ
�

s and t are set to 2 based on the assumption that

translation (both vertically and horizontally) is limited

in the range of 2 pixels andH(s) = min (h, h + s) – max

(1, 1 + s). However, this metric does not consider

rotation invariant, but this issue can be alleviated

during the enrolment stage. For instant, rotate the

coordinate system by a few degrees and perform fea-

ture extraction [6].

If a palmprint is not segmented properly during the

preprocessing stage, a number of non-palmprint pixels

will be introduced in the extracted feature matrix. In

this circumstance, these pixels are detected by using

some simple thresholding methods and their locations

can be recorded in the mask matrices, AM and BM that

corresponded to the feature matrices A and B. H1 can
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be modified to

H3 ¼XX
AM \ BM \ AR 	 BRð ÞþAM \ BM

\ AI 	 BIð Þ
2
XX

AM \ BM :
½7�:

On the other hand, [8] perceived that orientation

information from the palm lines could be the promi-

nent features for a palmprint image. An even Gabor

filter with six different orientations is used to convo-

lute with the palmprint image and their contrast

magnitudes are sought. Based on the winner-take-all

competitive principle, the index (ranging from 0 to 5)

of the minimum contrast magnitude is represented by

three bits, namely competitive code. The matching of

two inputs, A and B can be carried out through

H4 ¼
XXX3

k¼0
AM \ BM \ Ab

k 	 Bb
k

� 	

3
XX

AM \ BM

;

where Ab
k Bb

k

� 	
is the ith bit plane of A(B).

As far as the performance is concerned, orientation-

based feature representation couples with matching

in hamming domain are deemed to be the most

promising techniques in palmprint recognition. In a

comparison study done in PolyU (medium size) and

UST datasets (large size), the competitive code showed

better performance with EER = 0% and EER = 0.38%,

respectively compare to PalmCode (0.34%, 1.68%)

and FusionCode (0.11%, 0.75%). However, the Ordi-

nal code, which is another orientation-based feature

representation combined with robust encoding show

the best performance in terms of EER ¼ 0% and

EER¼ 0.22% [9]. In addition to that, low computation

complexity and small template representation are also

another compelling advantage of this approach.
Summary

The establishment of palmprint matching methodolo-

gy is highly related to feature representation of palm-

print image and it is essential as the preprocessing

and feature extraction are imperfect. Geometry-based

matching approach was first proposed in view of
natural representation of palmprint in feature points

and lines basis. However, it was believed that they are

less reliable as features point and lines are difficult to be

explicitly extracted, but recently it is receiving renewed

interest. Feature-based matching approach, as an

alternative, which utilizes the texture information

(magnitude and orientation of palm lines) of palm-

print, has also shown the significant advantages in

terms of performance, representation compactness,

and low computation complexity. The integration of

two approaches, e.g., in hierarchical manner [15] could

be the promising way to improve the palmprint recog-

nition systems in performance and speed.
Related Entries

▶Authentication

▶ Identification

▶Verification
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Palmprint Recognition, 3D
▶Palmprint, 3D
Palmprint Representation
P

▶Palmprint Features
Palmprint Sensor
▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Parallel Fusion Network
A parallel fusion network is a fusion network topology

in which the sensor nodes are connected directly to the
central fusion processor. There is no distribution of the

processing through the network.

▶ Fusion, Decision-Level
Parametric Models
Synonym

Mathematical models
Definition

Parametric or mathematical models are compact math

and algorithmic representations that use variables that

when defined allow the creation of the modeled phe-

nomenon that closely approximate the actual phenome-

non that is beingmodeled. An example of an empirically

derived parametric model is the University of Bologna’s

SFinGe fingerprint generator.

▶Biometric Sample Synthesis
Parametric-Based Biometrics
▶Biometric Sample Synthesis
Part-Based Face Recognition
▶ Face Recognition, Component-Based
Partial Occlusion
Occlusions of a local region of the face with objects

such as sunglasses, scarf, hands, and hair are generally
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called partial occlusions. Partial occlusions can, in

theory, correspond to any occluding object. Generally,

the occlusion has to be of less than 50% of the face to

be considered a partial occlusion.

▶ Face Recognition, Component-Based
Passive Biometrics
In passive biometrics systems the subject does not have

to take active part in the process of identification/

verification or, in fact, does not even know that the

process of identification takes place. In such biometrics

the user does not have to cooperate with the system

and does not need to touch any device or perform any

action.

▶Ear Biometrics
Patron Format Specification
▶Common Biometric Exchange Formats Framework

Standardization
Pattern Recognition
Pattern recognition aims to classify data (patterns)

based on either a prior knowledge or on statistical

information extracted from the patterns. The patterns

to be classified are usually groups ‘‘i’’ of measure-

ments or observations, defining points in an appro-

priate ‘‘i’’ multidimensional space. A complete pattern

recognition system consists of a sensor that gathers the

observations to be classified or described; a feature

extraction mechanism that computes numeric or sym-

bolic information from the observations; and a classi-

fication or description scheme that does the actual job
of classifying or describing observations, relying on the

extracted features.

▶Universal Background Models
PCA (Principal Component Analysis)
▶Deformable Models

▶ Face Alignment

▶ Face, Forensic Evidence of

▶Hand Shape

▶ Linear Dimension Reduction

▶ SFinGe

▶ Soft Biometrics
Pedestrian Detection
▶Human Detection and Tracking
Peg
Short projecting pin used for marking position. Within

Hand Geometry biometrics, they may be placed on

a planar surface, to guide the user when placing his

or her hand.

▶Hand Geometry
Pen Altitude
Angle measured counter-clockwise from the per-

pendicular projection of the pen onto the writing

plane to the pen. Altitude values can be acquired
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as time-series data. Altitude is a factor representing the

pen inclination, and it is used together with azimuth.

These features are used for on-line signature

verification.

▶ Signature Recognition
Pen Azimuth
Angle measured clockwise from the positive y axis to the

perpendicular projection of the pen onto the writing

plane. Azimuth values can be acquired as time-series

data. Azimuth is a factor representing the pen inclina-

tion, and it is used together with altitude. These features

are used for on-line signature verification.

▶ Signature Recognition
Pen Inclination (Pen Tilt)
P
Angle characterizing how the pen is held.

How the pen is held depends on the person, and it

changes during the signing process. Thus, this feature

is useful for on-line signature verification. Pen inclina-

tion has two degrees of freedom and it can be repre-

sented in two ways. One way is to represent it by angles

measured from two axes. The other way is to represent

it by azimuth and altitude.

▶ Signature Recognition
Pen Pressure
Force of the pen on the writing surface.

Pen pressure values can be acquired as time-series

data. This feature is used for on-line signature
verification. Generally, pen pressure is measured with a

stylus pen and tablet, or a pressure sensitive pen. Pen

pressure is represented by N quantized levels, for exam-

ple 1024 or 512. If the pen pressure is 0, the pen does not

touch the writing surface. Some kinds of tablet can

detect the pen position even when the pen does not

touch the tablet.

▶ Signature Recognition
Pen Tablet
A digitizing or pen tablet is a flat device that allows

recording handwriting movements. Usually these

devices are based on an electromagnetic principle.

The tablet has an embedded wire grid which acts as a

transmitter. The pen (which is specifically designed for

the tablet) acts as an antenna, which resonates and

emits a signal that is captured by the tablet, allowing

to detect its position with high accuracy. This allows

the tablet to detect the pen movement even if it is not

in contact with the tablet (in a reasonable range of

proximity).

▶ Signature Databases and Evaluation
Penetration Rate
The ratio of fingerprints retrieved over the size of the

database.

▶ Fingerprint Indexing
Pen-tip Position (Pen Coordinates)
Position of the pen-tip on the writing plane.

The pen-tip position is generally represented using

Cartesian coordinates (x; y). The time series of
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x-coordinates x(t) and y-coordinates y(t) are acquired

by a capture device at a sequence of sample points.

x(t) represents the position on the horizontal axis

and y(t) represents the position on the vertical axis

at each time t. This feature is used for on-line signa-

ture verification. Concatenating consecutive sample

points (x(t); y(t)) reproduces the shape of the

signature.

▶ Signature Recognition
Perceptual Expertise
Perceptual expertise is the change in perception due to

experience that may come about through a variety of

mechanisms such as shifting attention to different

dimensions or features, or new processes such as con-

figural processing.

▶ Latent Fingerprint Experts
Performance Bias in Synthesized
Biometric Data
Performance bias as applied to synthesized biometric

data is an asystematic error experienced by a biometric

system. This type of bias can arise from a lack of or an

excessive presence of some synthetically generated dis-

tortions that appear in a larger amount or do not

present at all in real biometric data.

▶ Iris Sample Synthesis
Performance Evaluation Measures
▶Performance Measures
Performance Evaluation,
Overview
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Synonyms

Biometric technology test; Performance testing
Definition

Performance evaluation assesses accuracy and usabil-

ity of biometric algorithms or systems. Performance

measures are computed for verification, identifica-

tion, and watch list tasks, in order to either discover

the state-of-the-art of biometric technologies or

quantify how well a biometric system meets the

requirements of specific applications. Evaluation pro-

tocols and biometric databases for testing should

be carefully designed to avoid biased results or

conclusions.
Introduction

In the past several decades, many biometric algo-

rithms and commercial biometrics systems have

emerged. Many of them have reported very impres-

sive results on some public or private databases in

all kinds of publications. However, it is hard to com-

pare them based only on the reported results, due

to the difference in either the evaluation methods or

the testing databases they exploited. Actually, these

published results often lead to confusion in public:

application users are puzzled when choosing product

venders and researchers (especially green hands) may

not be able to clearly know the state of the art. There-

fore, it is indeed very important to standardize meth-

odology for performance evaluation of biometric

technologies.

For most biometric technologies, there are two

main tasks when applying them in practice, i.e.,
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verification and identification. The former needs to

answer ‘‘Is he who he says he is?’’, while the latter

cares about ‘‘who is he?’’. According to whether

the unidentified end-user is enrolled in the system,

identification is further categorized into two types:

▶ closed-set identification and ▶ open-set identi-

fication. Typical verification application is access

control, while closed-set identification can be ap-

plied to mug shot retrieval for instance. In surveil-

lance scenario, open-set identification is also named

‘‘watch list,’’ which aims at answering ‘‘Is he one

of the persons of interest?’’ generally in real time.

For example, face recognition, gait recognition, and

speaker recognition can be applied for this purpose

in a surveillance scenario since they can work in non-

intrusive mode.

Performance evaluations can also be categorized

into three different types: algorithm evaluation, sce-

nario evaluation, and operational evaluation, as is

described in evaluation protocols part of this essay.
P

Performance Measures

Evidently, different tasks should explore distinct per-

formance measures. For verification, receiver operating

characteristic (ROC) curve is generally used to show

the trade-off between two error rates: false reject rate

(FRR) versus false accept rate (FAR). Sometimes, the

equal error rate (EER) point on the ROC, where FRR is

equal to FAR, is used as a single measurement. As for

identification, identification rate, rank-k identification

rate, or cumulative match characteristic (CMC) is

often used to compare different techniques. The reader

is referred to the ▶ performance measures entry for

more details.

For watch list applications, in some sense, it is

the verification of the rank-1 identification. So, its

performance can be measured by the identification

rate at certain pre-defined FAR, say 0.1%. This mea-

sure is exploited by face recognition vender test

(FRVT) [1].

Except the accuracy measures mentioned above,

there are also some performance criteria measur-

ing the usability of biometric systems, such as ▶ failure

to acquire rate, ▶ enrollment time, ▶ response time,

▶ throughput, and ▶ scalability. The readers are re-

ferred to the definitional entries for their description.
Datasets

The abovementioned performance measures are gen-

erally obtained by testing the biometric systems on

some databases. Evidently, the performance of a system

or algorithm depends not only on its capacity but also

the characteristic of the database. So, here it is worth

noting that pure recognition accuracy, say 100%,

means nothing if the database is not described clearly.

The following factors about validation database must

be considered carefully when performance evaluation

is conducted.

Here, first several distinct datasets in evaluation:

training dataset, validation dataset, gallery, and probe

dataset need to be distinguished. Among them, the

training set is used for learning the biometric models

and designing the recognition algorithms, including

the feature extractor (e.g., principal component analy-

sis and discriminant analysis) and the classifier. Vali-

dation set is used to tune the parameters of the leaned

models or the algorithms, for instance the dimension

of the feature vector or some empirical thresholds. In

some literature, training set and validation set are

combined together and called training set commonly.

For instance, in FVC2006 [2], a subset of finger-

print impressions acquired with various sensors was

provided to registered participants, to allow them to

adjust the parameters of their algorithms. The gallery

here means the dataset containing all the registered

biometric traits of all the enrolled users in the system,

that is, the templates for each enrolled users are

extracted from this dataset. Note that, the gallery

is often taken as part of (or the same as) the training

set by many researchers. This is mostly acceptable;

however, in many applications, each enrolled subject

may register only one biometric sample, which implies

that it is impossible to train a feature extractor (e.g.,

Fisher discriminant analysis) or classifier. In this case,

a training set is necessary. The probe dataset con-

tains testing biometric samples that need to be recog-

nized by matching against the templates in the gallery.

Note that, for identification task, all the subjects in

the probe set can be registered subjects (i.e., with at

least one template), while for verification and watch

list applications, part of the subjects in the probe set

should be unregistered subjects, which is used as

impostors to estimate the false accept rate. In litera-

ture, the gallery and probe set are called together
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the testing set. Sometimes, gallery is also called target

set, while probe set is also called query set, e.g., in

FRGC [3].

When collecting biometric samples in the above-

mentioned four datasets, some points should be

considered carefully. First, the samples in the gallery

should never be included in the probe set also, since

this will definitely result in correct match. Secondly,

whether the samples in the testing set should be

contained in the training set is task-dependent.

Thirdly, whether the subjects in the training and

testing set are overlapped partially or completely is

application-dependent. For instance, in face recogni-

tion technology (FERET) evaluation [4], part of the

face images (and subject) in the gallery and probe sets

are also in the training set for algorithm development.

However, in FRVT [1], all the images (and subjects) in

the testing set are confidential to all the participants,

which means the developers have to consider carefully

how their algorithms can generalize to unseen subjects.

In contrast, the Lausanne Protocol based on XM2VTS

database [5] does not distinguish the training set from

the gallery, i.e., the gallery is the same as the training

set. Evidently, different protocol will result in evalua-

tion of different difficulty.
Difficulty Control

The goals of performance evaluation are multifold,

such as to compare several algorithms and choose

the best one, or determine whether one technology

can meet the requirements of specific applications.

So, it is very important to control the difficulty of the

evaluation. The evaluation itself should not be too

hard or too easy. If the evaluation is too easy, all the

technologies might have similarly perfect perfor-

mances and thus no statistically salient difference

can be observed among the results. Similarly, if the

evaluation is too challenging, all the systems may not

work and have bad performance. Therefore, it is

indeed very important to control the difficulty of the

evaluation in order to make the participants perform

discrepantly.

The difficulty of an evaluation protocol is mainly

determined by the variations of the samples in the

probe set from the registered ones. The more the vari-

ation, the more difficult the evaluation is. The sources
of the variations are multifold. Coarsely, they can be

categorized into two classes: intrinsic variations and

extrinsic variations. The former means the changes of

the biometric feature itself, while the latter comes from

the external factors especially during the sensing pro-

cedure. For instance, in face recognition, variations in

the facial appearance due to the expression and aging

are intrinsic, while those due to lighting, viewpoint,

camera difference, and partial occlusion are extrinsic.

For instance, more recently, multiple biometric grand

challenge (MBGC) [6] is being organized to investi-

gate, test, and improve performance of face and iris

recognition technology on both still and video imag-

ery through a series of challenge problems, such as

low resolution, off-angle images, unconstrained face

imaging conditions etc. Especially, for all biometrics,

the time interval between the acquisition of the

registered sample and unseen samples presented to

a system is an important factor, because different

acquisition time implies both intrinsic and extrin-

sic variations. For an evaluation of academic algo-

rithms, a reasonable distribution of all the possible

variations in the testing set is desirable, while for

application-specific system evaluation it is better to

include variations most possibly appearing in the

practical applications.

The abovementioned database structure also affects

the difficulty of the evaluation. If the samples or the

subjects in the testing set have been included in the

training set, the evaluation becomes relatively easy. If

all the testing samples and subjects are novel to the

learned model or system, the overfitting problem

might make the task more challenging. In extreme

case, if the training set and the testing set are heteroge-

neous, the task will be much more difficult. For in-

stance, if the training set contains only biometric

samples of Mongolian, while the testing samples are

from the western. Therefore, the structure of the data-

base for evaluation should be carefully designed to

tune the difficulty of the evaluation.

Another factor influencing the evaluation diffi-

culty is the database size, i.e., the number of registered

subjects in the database. This is especially impor-

tant for identification and watch list applications,

since evidently the more subjects to recognize,

the more challenging the problem becomes. Some

observations and conclusions have been drawn in

FRVT2002 [1].
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Finally, the number of registered biometric samples

for each subject should also be considered to control

the difficulty of the evaluation. Generally speaking,

the task will become easier with the increase of the

sample number per person. Note that, an algorithm

that works very well with many samples per person

does not necessarily work similarly well when the

number of samples for each subject is very few. For

instance, in many face recognition applications, there

might be only one registered face image per person in

the database.
Evaluation Protocols

An evaluation protocol determines how to test a sys-

tem, design the datasets, and measure the perfor-

mance. Successful evaluations should be administered

by third parties. The details of the evaluation proce-

dure must be published along with the evaluation

protocol, testing procedures, performance results, and

the dataset (at least some representative examples).

Also, the information on the evaluation and data

should be sufficiently detailed so that users, developers,

and vendors can repeat the evaluation [7]. Generally,

there are three types of evaluation as described in the

following.
P
Algorithm Evaluation

This kind of evaluation assesses biometric techno-

logy itself. Laboratory or prototype algorithms are

evaluated to measure the state of the art, to define

the technological progress, and to identify the most

promising approaches. Typical technology evaluation

protocols include the FERET series of face recognition

evaluations [4], the National Institute of Standards

and Technology (NIST) speaker recognition evalua-

tions [8], the Lausanne Protocol based on XM2VTS

database [5], FRGC [3], and the evaluation protocol

based on CAS-PEAL-R1 face database [9]. In this kind

of evaluation, all the systems are generally tested with

completely the same dataset for the purpose of fair-

ness. As mentioned above, some of the protocols pro-

vide training set for algorithm development, and in

terms of intrinsic and extrinsic variations the training

samples are homogeneous with those in the testing set.
For this kind of evaluation, accuracy measures are the

main performance criteria.
Scenario Evaluation

This type of evaluation type aims at checking whether

a biometric technology is sufficiently mature to meet

the requirements for a class of applications. In this

case, because the systems might have their own data

acquisition sensors, the systems are tested with slightly

different data [7]. To compensate for this difference,

the evaluation must be designed carefully to evaluate

systems under as close condition as possible. In addi-

tion, since the evaluations are conducted under

real-world field conditions, they cannot be repeated

exactly. As a kind of system evaluation, performance

criteria measuring both accuracy and usability of the

system are required to consider, such as failure to

acquire rate, enrollment time, response time, through-

put, and scalability.
Operational Evaluation

Instead of evaluating for a class of applications, an

application-specific evaluation measures the perfor-

mance of a specific system for a specific application.

For example, an application-specific evaluation might

need to measure the performance of system X on

verifying the identity of people as they enter secure

building Y. The primary goal of this kind of evaluation

is to determine if a biometric system meets the require-

ments of a specific application [6]. The performance

measures are generally the same as those of scenario

evaluation.
Summary

Performance evaluation should tell unbiased facts.

To this goal, the independent evaluators must deeply

investigate the requirements of the applications

concerned, determine the planned difficulty of the

evaluation and collect appropriate datasets, then assess

the systems with suitable performance measures, and

finally report the results along with the evaluation

procedure in detail.
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Performance Measures
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Synonyms

Performance evaluation measures; Performance metrics
Definition

Performance measures in biometrics define quantifiable

assessments of the processing speed, recognition accu-

racy, and other functional characteristics of a biometric

algorithm or system. The processing speed is evaluated

by Throughput rate which represents the number of

users that can be processed per unit time, and the

typical metrics for recognition accuracy are the rates

of Failure-to-enroll, Failure-to-acquire, False non-

match, False match, False reject, and False accept. In

addition to these fundamental performance measures,

there are other measures which are specifically depen-

dent on applications (verification, open-set identifica-

tion, or closed-set identification), such as False-negative

and False-positive identification error rates. Also,

graphic measures such as DET curve, ROC curve, and

CMC curve are very efficient tools to present overall

matching performance of biometric algorithms or sys-

tems. Biometric performance testing focuses on the

evaluation of technical performance and various error

rates of biometric algorithms or systems.
Introduction

The purpose of biometric performance evaluation

is to determine the range of errors and throughput

rates, with the goal of understanding and predicting

real-world recognition and throughput performance of

biometric systems. The error rates include both false-

positive- and false-negative decisions as well as failure-

to-enroll and failure-to-acquire rates across the test

population. Throughput rates refer to the number of

users processed per unit time, based on both compu-

tational speed and human–machine interaction. These

measures are defined to be applicable to all biometric

systems and devices.

http://www.frvt.org
http://bias.csr.unibo.it/fvc2006/
http://face.nist.gov/mbgc/
http://face.nist.gov/mbgc/
http://www.nist.gov/speech/tests/sre/index.html
http://www.nist.gov/speech/tests/sre/index.html
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In general, biometric performance testing is divi-

ded into three categories: technology, scenario, and

operational [1–3]. The following summarizes the char-

acteristics and differences of evaluation types, espe-

cially focusing on the resulted metrics.
Technology Evaluation

Technology evaluation is an offline process for testing

biometric components using a precollected corpus of

samples. Its goal is to compare the performance of bio-

metric algorithms for the same biometricmodality. Only

algorithms compliant with a given input/output proto-

col are tested. Although sample data may be distributed

for developmental or tuning purposes prior to the test,

the actual testing must be done on data that have not

been previously seen by algorithm developers. The test

results are repeatable because the test corpus is fixed, and

provide most of the performance metrics.
P

Scenario Evaluation

Scenario evaluation is an online process for determining

the overall system performance in a prototype or

simulated application. Testing is performed on a com-

plete system in an environment that models a real-world

target application. Each tested system has its own acqui-

sition devices, while data collection has to be carried out

across all tested systems with the same population in the

same environment. Test results are repeatable only to

the extent to which the test scenario and population

can be carefully controlled, and provide only predicted

end-to-end throughput rates and error rates.
Performance Measures. Table 1 Biometric performance

testing and reporting standards by ISO/IEC JTC 1/SC 37

Standard No. Subtitle

19795-1 Principles and framework

19795-2 Testing methodologies for technology
and scenario evaluation

19795-3 Modality-specific testing

19795-4 Performance and interoperability
testing of data interchange formats

19795-5 Performance of biometric access control
systems

19795-6 Testing methodologies for operational
evaluation
Operational Evaluation

Operational evaluation is also an online process whose

goal is to determine the performance of a complete

biometric system in a specific application environment

with a specific target population. In general, its test

results are not repeatable because of uncontrolled op-

erational environments and population. This evalua-

tion provides only end-to-end throughput rates, false

accept, and false reject rates.

This article restricts discussion to the performance

measures of technology evaluation because they are
mathematically well defined and used more often in

real-world biometric performance evaluation.

In a technology evaluation, biometric systems or

algorithm components are evaluated with afixed corpus

of samples collected under controlled conditions. This

allows direct comparison among evaluated systems,

assessments of individual systems’ strengths and weak-

nesses, or insight into the overall performance of the

evaluated systems. Examples of benchmark test evalua-

tions are Facial Recognition Technology (FERET) [4, 5],

Face Recognition Vendor Test (FRVT) 2000, 2002 [6, 7],

2006, Fingerprint Verification Competition (FVC)

2000, 2002, 2004 [8–10], 2006, and National Institute

of standards Technolgy (NIST) Speaker Recognition

Competitions [11, 12]. Not only the performance

metrics but also the test protocols introduced by

these technology evaluations have become the basis of

the ISO/IEC standards on biometric performance test-

ing and reporting.

The international standards for testing and

reporting the performance of biometric systems

have been studied and developed by the Working

Group 5 of ISO/IEC JTC 1’s Subcommittee 37 on

Biometrics, one of which is ISO/IEC IS 19795 consist-

ing of the following multiparts described in Table 1,

under the general title Information technology –

Biometric performance testing and reporting. ISO/IEC

19795 is concerned solely with the scientific ‘‘technical

performance testing’’ of biometric systems and devices.

Especially, ISO/IEC 19795-1 presents the requirements

and best scientific practices for conducting technical

performance testing. Furthermore, it specifies per-

formance metrics for biometric systems. Most of the
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performance metrics introduced in this article are

quoted from those defined in ISO/IEC 19795-1.

This article describes not only fundamental but

also auxiliary performance measures of biometric

systems in terms of error rates and throughput

rates. These measures are mainly defined for tech-

nology evaluation, and can be easily employed for

other evaluation types. Most of the measures intro-

duced in this article are cited from ISO/IEC IS

19795-1 [1] and 19795-2 [2]. For more detailed infor-

mation, readers are recommended to refer to these

standards. Meanwhile, the performance measures for

interoperability testing of data interchange formats

and for sensor characteristics are not considered in

this article.
Performance Measures

Decision errors in biometric verification or identifica-

tion are due to various types of errors occurred in

each process of a biometric system, sample acquisi-

tion, feature extraction, and comparison. How these

fundamental errors combine to form decision errors

depends upon various factors such as the number

of comparisons required, either positive or negative

claim of identity, and the decision policy, for example,

whether the system allows multiple attempts.
Fundamental Performance Measures

The following measures are considered to be funda-

mental because they can be employed regardless of the

types of applications of biometric systems. The failure-

to-enroll and failure-to-acquire rates measure the per-

formance of the feature extracting component, while

the false match and false nonmatch rates measure that

of the matching component.

� FTE (failure-to-enroll rate) is the proportion of the

population for whom the system fails to complete

the enrolment process. The failure-to-enroll occurs

when the user cannot present the required biomet-

ric characteristic, or when the submitted biometric

sample is of unacceptably bad quality. In the latter

case, stricter requirements on sample quality at

enrollment will increase the failure-to-enroll rate,

but improve matching performance because the
failure-to-enroll cases do not contribute to the

failure-to-acquire rate, or matching error rates.

� FTA (failure-to-acquire rate) is the proportion of

verification or identification attempts for which

the system fails to capture or locate biometric sam-

ples of sufficient quality. The failure-to-acquire

case occurs when the required biometric character-

istic cannot be presented due to temporary illness

or injury, or when either the acquired sample or

the extracted features do not satisfy the quality

requirements. In the latter case, stricter require-

ments on sample quality at acquisition will increase

the failure-to-acquire rate but improve matching

performance, because the failure-to-acquire cases

are not included in calculating the false match and

nonmatch rates.

� FNMR (false nonmatch rate) is the proportion of

genuine attempt samples falsely declared not to

match the template of the same characteristic

from the same user submitting the sample.

� FMR (false match rate) is the proportion of zero-

effort impostor attempt samples falsely declared to

match the compared nonself template.

The false match and false nonmatch rates are deter-

mined by the same decision threshold value on simi-

larity scores. By adjusting the decision threshold, there

will be a trade-off between false match and false non-

match errors. They are calculated with the number of

comparisons (or attempts) and useful for evaluating

the performance of a component algorithm.
Performance Measures for Verification
System

Verification is one of the two major applications of

biometrics, where the user makes a positive claim to

an identity, features extracted from the submitted bio-

metric sample are compared with the enrolled templates

for the claimed identity, and an accept- or reject deci-

sion regarding the identity claim is returned. In evaluat-

ing the performance of biometric systems, the unit

operation is a transaction, which can be a single attempt

but mostly consists of multiple attempts. In this aspect,

the fundamental measures, FMR and FNMR, cannot

be directly applied to the overall performance evalua-

tion of a biometric system, and the following metrics

are designed for more general measures.
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� FRR (false reject rate) is the proportion of verifica-

tion transactions with truthful claims of identity

that are incorrectly denied. When a transaction

consists of a single attempt, a false rejection includes

a failure-to-acquire or a false nonmatch, and the

false reject rate is given by:

FRR ¼ FTAþ FNMR� ð1� FTAÞ
� FAR (false accept rate) is the proportion of veri-

fication transactions with zero-effort wrongful

claims of identity that are incorrectly confirmed.

When a transaction consists of a single attempt,

a false acceptance requires a false match with

no failure-to-acquire, and the false accept rate is

given by:

FAR ¼ FMR� ð1� FTAÞ

A first order estimation of FRR and FAR for transac-

tions of multiple attempts can be derived from the

detection error trade-off curve. However, such esti-

mates cannot take into account correlations in sequen-

tial attempts and in the comparisons involving the

same user, and consequently can be quite inaccurate.

Therefore, ISO/IEC 19795 recommends that these per-

formance metrics shall be derived directly, using test

transactions with multiple attempts as specified by

the decision policy.

FRR and FAR do not include the failures occurred

in enrollment. As mentioned earlier, increasing the

FTE rate generally improves matching performance.

For comparing the performance of biometric systems

having different failure-to-enroll rates, both FRR and

FAR need to be generalized so that they can take

enrollment errors into account. In the following

generalized FRR and FAR, a failure-to-enroll is treated

as if the enrollment is completed, but all subsequent

transactions by or against that enrollee fail. For a

technology evaluation, the generalized FRR and FAR

are defined as follows [1]:

� GFRR (generalized false reject rate) is the propor-

tion of genuine users who cannot be enrolled,

whose sample is submitted but cannot be acquired,

or who are enrolled, samples acquired, but are

falsely rejected.

GFRR ¼ FTEþ ð1� FTEÞ � FRR

¼ FTEþ ð1� FTEÞ � FTAþ ð1� FTEÞ
� ð1� FTAÞ � FMR
� GFAR (generalized false accept rate) is the propor-

tion of impostors who are enrolled, samples ac-

quired, and falsely matched.

GFAR ¼ ð1� FTEÞ � FAR

¼ ð1� FTEÞ � ð1� FTAÞ � FMR

Performance Measures for Identification
System

In identification, compared with verification, the

user presents a biometric sample without any claim of

identity, and a candidate list of identifiers are returned as

a result of matching the user’s biometric features with all

the enrolled templates in a database. Identification has

two cases: while the closed-set identification always

returns a nonempty candidate list, assuming that all

the users are enrolled in the database, the open-set iden-

tification may return an empty candidate list because

some potential users are not enrolled.

� CIR (correct identification rate) is the proportion

of identification transactions by users enrolled

in the system in which the user’s correct identifier

is among those returned. The identification rate

at rank r is the probability that a transaction by

a user enrolled in the system includes that user’s

true identifier within the top r matches returned.

When a single point identification rank is reported,

it should be referenced directly to the database size.

� FNIR (false-negative identification-error rate) is the

proportion of identification transactions by users

enrolled in the system in which the user’s correct

identifier is not among those returned.

FNIR ¼ FTAþ ð1� FTAÞ � FNMR

� FPIR (false-positive identification-error rate) is the

proportion of identification transactions by users

not enrolled in the system, where a nonempty list

of identifiers is returned. For a template database of

the size N, FPIR is given as:

FPIR ¼ ð1� FTAÞ � f1� ð1� FMRÞNg

Other Performance Measures

Besides the above performancemeasures from ISO/IEC

19795-1, the following measures have been defined
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for more accurate evaluation of performance of bio-

metric systems and employed in many biometric algo-

rithm contests such as FVC’s [8–10].

� Genuine score distribution and Impostor score dis-

tribution are computed and graphically reported

to show how the algorithm ‘‘separates’’ the two

classes.

� EER (equal error rate) is computed as the point

where FNMR=FMR. In practice, the matching

score distributions are not continuous and a cross-

over point might not exist.

� EER* is the value that EER would take if the match-

ing failures were excluded from the computation of

FMR and FNMR.

� FMR100 is the lowest FNMR for FMR � 1%.

� FMR1,000 is the lowest FNMR for FMR � 0.1%.

� ZeroFMR is the lowest FNMR at which no False

Matches occur.

� ZeroFNMR is the lowest FMR at which no False

NonMatches occur.

� Average enroll time is the average CPU time for a

single enrollment operation.

� Average match time is the average CPU time for a

single match operation between a template and

a test sample.
Performance Measures. Figure 1 Example set of DET curves
Graphic Performance Measures

When presenting test results, the matching or

decision-making performance of biometric systems

are graphically represented using Detection Error

Trade-off (DET), Receiver Operating Characteristics

(ROC), or Cumulative Match Characteristic (CMC)

curves.
DET Curve

DET curves are used to plot matching error rates

(FNMR against FMR), decision error rates (FRR

against FAR), and open-set identification error rates

(FNIR against FPIR). The DET curve is a modified

ROC curve which plots error rates on both axes (false

positives on the x-axis and false negatives on the

y-axis). For example, in Fig. 1, each DET curve is

generated by varying the value of the decision thresh-

old. If the threshold is set to a higher value in order to

decrease the false acceptances, the false rejections will

increase. On the contrary, if the threshold is set to a

lower value, the false rejections will decrease with the

increase in false acceptance.
[1].
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ROC Curve

ROC curves are a traditional method for summarizing

the performance of imperfect diagnostic, detection, and

pattern-matching systems. ROC curves are threshold-

independent, allowing performance comparison of dif-

ferent systems under similar conditions, or of a single
Performance Measures. Figure 2 Example set of ROC curve

Performance Measures. Figure 3 Example set of CMC curve
system under differing conditions. ROC curves may

be used to plot matching algorithm performance

(1�FNMR against FMR), end-to-end verification system

performance (1�FRR against FAR), as well as open-set

identification system performance (CIR against FPIR).

Figure 2 shows an example of ROC curves for compar-

ing the performance of a set of fingerprint matching
s [1].

s [7].

P
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algorithms. An ROC curve is a plotting of the rate

of false positives (i.e., impostor attempts accepted) on

the x-axis against the corresponding rate of true posi-

tives (i.e., genuine attempts accepted) on the y-axis

plotted parametrically as a function of the decision

threshold.
CMC Curve

For closed-set identification applications, performance

results are often illustrated using a cumulative match

characteristic curve. Figure 3 shows an example of CMC

curves for comparing the performance of a set of face

identification systems. These curves provide a graphical

presentation of identification test results and plots rank

values on the x-axis with the corresponding probability of

correct identification at or below that rank on the y-axis.
Throughput Rates

Throughput rates represent the number of users that can

be processed per unit time, based on both computational

speed and human–machine interaction. These measures

are generally applicable to all biometric systems and

devices. Attaining adequate throughput rates is critical

to the success of any biometric system. For verification

systems, throughput rates are usually controlled by the

speed of user interaction with the system in the process

of submitting a biometric sample of good quality.

For identification systems, they can be heavily impacted

by the computer processing time required to compare

the acquired sample with the database of enrolled

templates. Hence, depending upon the type of a system,

it may be appropriate to measure the interaction times

of users with the system and also the processing rate of

the computational hardware. Actual benchmark mea-

surement of computer processing speed is covered

elsewhere and is considered outside the scope of this

article [13].
Related Entries

▶CMC Curve

▶DET Curve

▶Biometric Sample Quality
▶ Influential Factors to Performance

▶ Interoperable Performance

▶ROC Curve
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Definition

Performance testing methodology standards define pro-

cesses for test planning, hardware and software configu-

ration and calibration, data collection andmanagement,

enrollment and comparison, performance measurement

and reporting, and documenting the statistical signifi-

cance of test results. The application of performance

testing standards enables meaningful measurement,

prediction, and comparison of biometric systems’ en-

rollment rates, accuracy, and throughput. Interoperabil-

ity of biometric data elements acquired or generated

through different components can also be quantified

through standardized performance tests. Standardized

performance testing methodologies have been devel-

oped for technology tests, in which algorithms process

archived biometric data; scenario tests, in which bio-

metric systems collect and process data from test sub-

jects in a specified application; and operational tests, in

which a biometric system collects and processes data

from actual system users in a field application.
Motivation for the Development of
Biometric Performance Evaluation
Standards

The development of biometric performance testing

standards has been driven by the need for precise,

reliable, and repeatable measurement of biometric sys-

tem accuracy, capture rates, and throughput. Match

rates, enrollment and acquisition rates, and through-

put are central considerations for any organization

deciding whether to deploy biometrics or determining

which modalities and components to implement.

Organizations need to know whether a claimed perfor-

mance level for System A can be compared to a claimed

performance level for System B; if test conditions

varied between two evaluations, comparison of the

same performance metrics may be useless. For exam-

ple, if a vendor claims that its system delivers a false

match rate (FMR) of 0.01%, for example, a potential

deployer might ask:

1. How many test subjects and samples were used to

generate this figure?

2. What was the composition of the test population

whose data was used?

3. How much time elapsed between enrollment and

verification?

4. Were all comparisons accounted for, or were some

samples discarded at some point in the test?

5. What is the statistical significance of the claimed

error rate?

6. What were the corresponding false non-match rate

(FNMR) and failure to enroll rate (FTE) at this

operating point?

7. Was the algorithm tuned to perform for a specific

application or test population?

8. How were test subjects trained and guided?

9. How were errors discovered?

Organizations also need to understand biometric per-

formance evaluation standards in order to properly

specify performance requirements. A lack of under-

standing of biometric performance testing often leads

organizations to specify requirements that cannot be

validated through testing.

Once an organization has decided to deploy a bio-

metric system, standardized performance testing

methods are no less important. Organizations must

properly calibrate systems prior to deployment and

monitor system performance once operational. This
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calibration and monitoring requires standardized

approaches to data collection, data management, pro-

cessing, and results generation.
Types of Biometric Performance Testing
Standards

Biometric performance tests are typically categorized

as technology tests, scenario tests, or operational tests.

These test types share commonalities – addressed in

framework performance testing standards – but also

differ in important ways.

▶Technology tests are those in which biomet-

ric algorithms enroll and compare archived (i.e.,

previously-collected) data. An essential characteristic

of technology testing is that the test subject is not ‘‘in

the loop’’ – the test subject provides data in advance,

and biometric algorithms are implemented to process

large quantities of test data. Technology tests often

involve cross-comparison of hundreds of thousands

of biometric samples over the course of days or

weeks. Methods of executing and handling the out-

puts of such cross-comparisons are a major component

of technology-based performance testing standards.

Technology tests are suitable for evaluation of both

verification- and identification-based systems, although

most technology tests are verification-based. Technolo-

gy testing standards accommodate evaluations based on

biometric data collected in an operational system as well

as evaluations based on biometric data collected for the

specific purpose of testing. Technology tests based on

operational data are often designed to validate or project

the performance of a fielded system, whereas technology

tests based on specially-collected data are typically more

exploratory or experimental.

▶ Scenario tests are those in which biometric sys-

tems collect and process data from test subjects in a

specified application. An essential characteristic of sce-

nario testing is that the test subject is ‘‘in the loop,’’

interacting with capture devices in a fashion represen-

tative of a target application. Scenario tests evaluate

end-to-end systems, inclusive of capture device, qual-

ity validation software, enrollment software, and

matching software. Scenario tests are based on smaller

sample sizes than technology tests due to the costs of

recruiting and managing interactions with test subjects

(even large scenario tests rarely exceed more than

several hundred test subjects). Scenario tests are also
limited in that there is no practical way to standardize

the time between enrollment- and recognition-phase

data collection. This duration may be days or weeks,

depending on the accessibility of test subjects.

Scenario-based performance testing standards have

defined the taxonomy for interaction between the

test subject and the sensor; this taxonomy addresses

presentations, attempts, and transactions, each of

which describes a type of interaction between a test

subject and a biometric system. This is particularly

important in that scenario testing is uniquely able

to quantify ‘‘level of effort’’ in biometric system

usage; level of effort directly impacts both accuracy

and capture rates.

▶Operational tests are those in which a biometric

system collects and processes data from actual system

users in a field application. Operational tests differ

fundamentally from technology and scenario tests in

that the experimenter has limited control over data

collection and processing. Because operational tests

should not interfere with or alter the operational usage

being evaluated, it may be difficult to establish ground

truth at the subject or sample level. As a result, opera-

tional tests may or may not be able to evaluate false

accept rates (FAR), false reject rates (FRR), or failure

to enroll rates (FTE); instead they may only be able to

evaluate acceptance rates (without distinction between

genuine and impostor) and operational throughput.

One of the many challenges facing developers of

operational testing standards is the fact that each opera-

tional system differs in some way from all others, such

that defining commonalities across all such tests is diffi-

cult to achieve. It is therefore essential that opera-

tional performance test reports specify which elements

were measurable and which were not. Operational

tests may also evaluate performance over time, such

as with a system in operation for a number of months

or years.

In a general sense, as a given biometric technol-

ogy matures, it passes through the cycle of technology,

scenario, and then operational testing. Biometric tests

may combine aspects of technology, scenario, and op-

erational testing. For example, a test might combine

controlled, ‘‘online’’ data collection from test subjects

(an element of scenario testing) with full, ‘‘offline’’

comparison of this data (an element of technology

testing). This methodology was implemented in iris

recognition testing sponsored by the US Department

of Homeland Security in 2005 [1].
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Elements Required in Biometric
Performance Testing Standards

Biometric performance testing standards address the

following areas:

1. Test planning, including requirements pertaining

to test objectives, timeframes, controlling test vari-

ables, data collection methods, and data processing

methods.

2. Hardware and software configuration and calibra-

tion, including requirements pertaining to algo-

rithm implementation and device settings.

3. Data collection and management, including require-

ments pertaining to identification of random and

systematic errors, collection of personally-identifi-

able-data, and establishing ground truth.

4. Enrollment and comparison processes, including

requirements pertaining to implementation of gen-

uine and impostor attempts and transactions for

identification and verification.

5. Calculation of performance results, including for-

mulae for calculating match rates, capture rates

(FTA and FTE), and throughput rates.
Performance Testing Methodology Standardization. Figure
6. Determination of statistical significance, including

requirements pertaining to confidence interval cal-

culation and reporting.

7. Methodology and results reporting, including require-

ments pertaining to test report contents and format.

One of the major accomplishments of biometric test-

ing standards has been to specify the manner in which

the tradeoff between FMR and FNMR is rendered in

chart form.

Verification system performance can be rendered

through detection error trade-off (DET) curves or

receiver operating characteristic (ROC) curves. DET

curve plots false positive and false negative error rates

on both axes (false positives on the x-axis and false

negatives on the y-axis), as shown below. ROC curves

plot of the rate of false positives (i.e., impostor attempts

accepted) on the x-axis against the corresponding rate

of true positives (i.e., genuine attempts accepted) on

the y-axis plotted parametrically as a function of the

decision threshold (Fig. 1).

Identification system performance rendering is

slightly more complex, and is dependent on whether

the test is open-set or closed-set.
1 Detection error tradeoff (DET) curve.

P
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Depending on the type of test (technology, scenario,

operational), certain elements will be emphasized more

than others, and results of the presentation will differ

based on whether a test implements verification or

identification.
Published Standards and Ongoing
Efforts – International and National
Activities

Several biometric performance testing standards have

been published, and many additional biometric per-

formance testing standards are in development. This sec-

tion discusses ISO/IEC 19795-1, -2, and -3. ISO/IEC

19795-4 is discussed below under Performance testing

and interoperability. These four standards are listed

in the Registry of USG Recommended Biometric

Standards Version 1.0, DRAFT for Public Comment,

NSTC Subcommittee on Biometrics and Identity

Management.

ISO/IEC 19795-1:2006 Information technology –

Biometric performance testing and reporting – Part 1:

Principles and framework [2] can be considered the

starting point for biometric performance testing stan-

dardization. This document specifies how to calculate

metrics such as false match rates (FMR), false non-

match rates (FNMR), false accept rates (FAR), false

reject rates (FRR), failure to enroll rates (FTE), failure

to acquire rates (FTA), false positive identification

rates (FPIR), and false negative identification rates

(FNIR). 19795-1 treats both verification and identifi-

cation testing, and is agnostic as to modality (e.g.,

fingerprint, face recognition) and test type (technolo-

gy, scenario, operational).

ISO/IEC 19795-2:2007 Information technology –

Biometric performance testing and reporting – Part 2:

Testing methodologies for technology and scenario evalua-

tion [3] specifies requirements for technology and sce-

nario evaluations, described above. The large majority

of biometric tests are of one of these two generic evalu-

ation types. 19795-2 builds on 19795-1, and is

concerned with ‘‘development and full description

of protocols for technology and scenario evaluations’’

as well as ‘‘execution and reporting of biometric evalua-

tions reflective of the parameters associated with bio-

metric evaluation types.’’ [4] 19795-2 specifies which

performance metrics and associated data must be
reported for each type of test. The standard also

specifies requirements for reporting on decision

policies whereby enrollment and matching errors are

declared.

ISO/IEC TR 19795-3:2007 Information technology –

Biometric performance testing and reporting – Part 3:

Modality-specific testing [5] is a technical report

on modality-specific considerations. 19795-1 and -2

are modality-agnostic (although they are heavily

informed by experts’ experience with fingerprint, face,

and iris recognition systems). 19795-3, by contrast,

reports on considerations specific to performance

testing of fingerprint, face, iris, hand geometry, voice,

vein recognition, signature verification, and other

modalities. These considerations are important to

deployers and system developers, as test processes

vary from modality to modality. For example, in iris

recognition testing, documenting biometric-oriented

interaction between the subject and sensor is a central

consideration to both usability and accuracy; in face

recognition testing, capture variables are much less

likely to impact performance.

Within the US, three biometric performance test-

ing standards were developed prior to publication of

the ISO IEC standards discussed above.

1. ANSI INCITS 409.1-2005 Information Technology –

Biometric Performance Testing and Reporting –

Part 1: Principles and Framework

2. ANSI INCITS 409.2-2005 Information Technology –

Biometric Performance Testing and Reporting –

Part 2: Technology Testing and Reporting

3. ANSI INCITS 409.3-2005 Information Technology –

Biometric Performance Testing and Reporting –

Part 3: Scenario Testing and Reporting
Performance Testing and
Interoperability

ISO/IEC 19795-4 Biometric performance testing and

reporting – Part 4: Interoperability performance testing

specifies requirements for evaluating the accuracy and

interoperability of biometric data captured or pro-

cessed through different vendors’ systems. The stan-

dard, whose publication is anticipated in 2008, can be

used to evaluate systems that collect data in accordance

with 19794-N data exchange standards. 19795-4 helps
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quantify the accuracy of standards’ generic data repre-

sentations relative to those of proprietary solutions.

For example, is System A less accurate when processing

standardized data than when processing proprietary

data? Can System A reliably process standardized data

from System B, and vice versa? 19795-4 contemplates

online (scenario), offline (technology), and hybrid

(scenario and technology) tests.

19795-4 is perhaps the highest-visibility perfor-

mance testing standard due to the close relationship

it bears with 19794-N standards. Data interchange

standards (and conformance to these standards) have

been the focus of much of the international commu-

nity’s efforts in biometric standardization. 19795-4

specified methods through which the adequacy of

these standards can be implicitly or explicitly evalu-

ated, leading to revisions or improvements in the stan-

dards where necessary.
P

Related End-User Testing Activities

Test efforts that have asserted compliance with pub-

lished performance testing standards include but are

not limited to the following:

1. NIST Minutiae Interoperability Exchange Test

(MINEX) [6], asserts compliance with ISO/IEC

19795-4, Interoperability performance testing.

2. U.S. Transportation Security Administration Qual-

ified Product List (QPL) Testing [7], asserts com-

pliance with ANSI INCITS 409.3, Scenario Testing

and Reporting.

3. NIST Iris Interoperability Exchange Test (IREX 08)

[8], asserts compliance with ISO/IEC 19795-4,

Interoperability performance testing.
Current and Anticipated Customer
Needs in Biometric Performance
Testing

One challenge facing biometric performance testing

standardization is that of successfully communi-

cating performance results to non-specialist customers

(e.g., managers responsible for making decisions on

system implementation). To successfully utilize even

standards-compliant test reports, the reader must learn
a range of acronyms, interpret specialized charts, and

understand the test conditions and constraints. The

‘‘so what’’? is not always evident in biometric perfor-

mance test reports. This is particularly the case when

trying to graphically render error bounds and similar

uncertainty indicators associated with performance

test results.

A difficult-to-avoid limitation of biometric

performance testing standards is that tests results

will differ based on test population, collection pro-

cesses, data quality, and target application. In other

words, a systems’ error rate is not necessarily a reflec-

tion of its robustness, even if a test conforms to a

standard.
Gaps in Standards Development

Performance has been defined somewhat narrowly in the

biometric standards arena, most likely because the first-

order consideration for biometric technologies has been

the ability to reduce matching error rates. The tradition-

al focus on matching error rates – particularly FMR – in

biometric performance testing may be considered

disproportionate in the overall economy of biometric

system performance. As accuracy, enrollment, and

throughput rates improve with the maturation of bio-

metric technologies, development of performance test-

ing standards may be required in areas such as usability,

reliability, availability, and resistance to deliberate

attacks. For example, the number of ‘‘touches’’ required

to negatively impact match rates associated with images

captured from a fingerprint sensor could be the subject

of a performance testing standard.

An additional gap in biometric performance testing

standards is in testing under non-mainstream condi-

tions, such as with devices exposed to cold or to direct

sunlight, or with untrained populations and/or opera-

tors. Many tests are predicated on controlled-condition

data collection, though biometric applications for

population control or military operations are often

highly uncontrolled.

Conformance testing is a third gap in performance

testing standards. The international community is

working on methods for validating that test reports

and methodologies conform to published standards.

Certain elements can be validated in an automated

fashion, such as the presence of required performance
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data; other elements, such as those that describe how

testing was conducted, may be reliant on test lab

assertions.
Role of Industry/Academia in the
Development of the Required Testing
Methods

Biometric performance tests predated the development

of standardized methodologies by several years. Gov-

ernment and academic researchers and scientists grad-

ually refined performance testing methods in the early

1990s, with many seminal works performed in voice

recognition and fingerprint. The National Biometric

Test Center at San Jose State University [9] was an early

focal point of test methodology development. Today,

leading developers of performance testing standards

include the National Institute of Standards and Tech-

nology (NIST) [10], an element of the US Department

of Commerce, and the UK National Physical Labora-

tory (NPL) [11].

Biometric vendors bring to bear considerable

expertise on performance testing, having unparalleled

experience in testing their sensors and algorithms. How-

ever, vendors are not highly motivated to pub-

lish comprehensive, standards-compliant performance

tests. Speaking generally, vendors are most interested

in practical answer to questions such as, how many

test subjects and trials are necessary to assert a FMR of

0.1%? Biometric services companies (e.g., consultancies

and systems integrators) also support government

agencies in standardized performance test design and

execution.
Summary

Biometric performance testing standards enable

repeatable evaluations of biometric algorithms and

systems in controlled lab and real-world operational

environments. Performance testing standards are cen-

tral to successful implementation of biometric systems,

as government and commercial entities must be capa-

ble of precisely measuring the accuracy and usability

of implemented systems. Deployers must also be

able to predict future performance as identification

systems grow larger and as transaction volume

increases.
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Perpetrator Identification
▶Gait, Forensic Evidence of
Personal Data
Personal data is any information that may be used,

either individually or when combined with other

data, to identify a person. For example, a name and

address are usually sufficient to identify a person, and

so this data pair would be considered personal data. A

more subtle example is hobbies and Postal Code

obtained from a retail liquor store’s customer database.

By themselves, these data items would not be uniquely

identifying, but when linked with another database,

say, that of an iguana owners club, and add to that

the common sense knowledge that iguana make rare

pets, it becomes almost certain who patronized the

liquor store. In other words, any data that could po-

tentially reveal the identity of a person must be treated

as personal data.

▶Privacy Issues
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Personal Information Search
▶Background Checks
Person-Independent Model
▶Universal Background Models
Phase
Every complex number a+bi can be expressed in polar

coordinate form as Aeip, where A is the amplitude and

p is the phase of the complex number. The phase p can

be computed by arctan (b/a). Phase is always in the

range between zero and 2p.

▶ Iris Recognition, Overview
P

Phoneme
The phoneme is to spoken language what the letter is

to written language – the representation of an individ-

ual speech sound. The English word ‘‘sick’’ comprises

the three phonemes /s-I-k/, whereas ‘‘thick’’ consists

of /y-I-k/, ‘‘sack’’ consists of /s-æ-k/, and sit consists

of /s-I-t/. The phonetic symbols, which can be used

for the sounds of any language, are defined in the

International Phonetic Alphabet. Strictly speaking,

the phoneme is an abstract concept used in linguistics,

and phonemes often correspond to complex com-

pound sounds. For example, the phoneme /b/ (as in

‘‘big’’) is produced by the speaker first closing the lips

and then releasing the built-up air pressure creating a

plosive sound. The period of lip closure, the plosion

and the transitions to and from the previous and
subsequent phonemes are all identifiable as distinct

events in the audio stream.

▶ Liveness Assurance in Voice Authentication

▶Voice Sample Synthesis
Photogrammetry
Photogrammetry is an examination of two images taken

from different positions to identify three-dimensional

points on an object or face represented in two dimen-

sions. It is akin to methods of stereoscopy.

▶ Face, Forensic Evidence of
Photography for Face Image Data

TED TOMONAGA

Konica Minolta Technology Center, Inc., Tokyo, Japan
Synonyms

Face photograph; Facial photograph; ID photograph;

Photography guidelines; Photometric guidelines
Definition

Face photography is used in passports, visas, driver

licenses, or other identification documents. Face photo-

graphs can be used by human viewers or by automated

face recognition systems, either for confirmation of a

claimed identity (usually termed verification) or, by

searching a database of face images, for determining

the possible identity of an individual (usually termed

identification). ISO/IEC 19794-5 defines a standard

data format for digital face images to allow interopera-

bility among face recognition systems, government

agencies, and other creators and users of face images.

In addition to image quality factors such as ▶ resolu-

tion, ▶ contrast, and ▶ brightness, many other factors

affect face recognition accuracy, including subject po-

sitioning, ▶ pose and ▶ expression, ▶ illumination
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uniformity, and the use of eyeglasses or makeup, as

well as the time difference between two photographs

being compared.
Introduction

Following the selection of a digital face image as the

primary biometric technology for use in ▶ ePassports

by the International Civil Aviation Organization

(ICAO) in 2003, machine-assisted face recognition

has become widely used for various identification and

verification purposes. Compared with other ▶ biomet-

ric technologies, face recognition is usually considered

non-invasive and more socially acceptable [1]. The

accuracy and speed of face recognition technology

has improved considerably recently, due, in part, to a

series of government-sponsored, objective competi-

tions among companies and academic institutions

producing face recognition systems [2, 3].

The face image interchange standard known as ISO/

IEC (International Organization for Standardization/

International Electrotechnical Commission) 19794-5

Biometric Data Interchange Formats – Face Image

Data was approved as an international standard by

ISO/IEC JTC1 SC37 in 2005 [4]. That standard defines

a data format for digital face images to allow interop-

erability among face-image-processing systems.

However, there are many factors that affect face rec-

ognition system performance, including an indivi-

dual’s appearance, such as his or her facial

characteristics, hair style, and accessories, and the

image acquisition conditions, such as the camera’s

field-of-view, focus and shutter speed, depth-of-

field, background, and lighting. As a consequence,

many of the countries producing ePassports have

their own guidelines for the production and submis-

sion of face photographs [5–8].

This chapter describes how to arrange lighting

and reflective surfaces relative to the camera and

subject, and provides specific advice on the acceptable

amount of variation in ▶ illumination across the face,

on how to avoid shadows on the face and background,

and on the design of a user interface that can help

ensure proper head positioning. Further information

may be found in ISO/IEC 19794-5 Amendment

1:2007, Conditions for taking photographs for face

image data.[9]. The amendment provides explicit guid-

ance for the design of photographic studios, photo
booths, and other sites producing conventional printed

photographs or digital images of faces that may be used

in passports, visas, driver licenses, or other identifica-

tion documents.
Enrollment Guidelines

The use of automated face recognition requires that an

input face image first be enrolled by the system, that is,

the specific set of face features to be used by the

recognition system must be measured and stored. Cor-

rect enrollment requires that the input image be of

high quality and meet the following criteria. Note

that the numbers displayed in parentheses in the fol-

lowing sections are the relevant subclause numbers of

the ISO/IEC 19794-5 face image interchange standard.
Subject Guidelines

For purposes of enrollment in an automated face rec-

ognition system, the following general subject guide-

lines should be observed:

Pose angle – The subject must be in a frontal pose.

Subjects should have their shoulders square towards

the camera and be looking directly at the camera.

There should be no rotation of the head left or right

or up or down, nor should it be tilted towards either

shoulder. For rotation of the head left/right and up/

down (yaw and pitch) – the compliance requirement is

<� 5� (7.2.2). For head tilt (roll) – the compliance

requirement is <� 8� (7.2.2). The requirement for roll

is less restrictive, because an in-plane rotation of the

head can be corrected by automated face recognition

systems more easily.

Face size/position adjustment – The adjustment of

face size can be made, if needed, by changing the

distance between the subject and the camera or by

optical zoom magnification.

Neutral expression – The subject’s face should be

relaxed and without expression; in particular, the sub-

ject should not be smiling. That is, his/her expression

should be neutral with eyes open and mouth closed.

Eyes closed/obstructed – There should be no ob-

struction of the eyes due to eyeglass rims, tint, or

glare, bangs, eye patches, head clothing, or closed

eyes (7.2.3, 7.2.11) Hats, scarves, or any other apparel

that may obstruct the face should be removed.
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Background – The background should be unpat-

terned and plain, such as a solid-color wall or cloth.

The background color may be a light gray, light blue,

white or off-white. The background should be separately

illuminated such that there are no shadows visible on the

background behind the subject’s face (A.2.4.3).
P

Camera Guidelines

To ensure correct camera focus, color, and exposure,

and minimal motion blur and geometric distortion,

the following general guidelines should be observed:

Shutter speed – The shutter speed should be high

enough to prevent motion blur (1/60–1/250 s), unless

electronic flash is the predominant source of

illumination.

Color balance – The image color balance should

reflect natural colors with respect to expected skin

tones. This value can be affected by inappropriate

white balancing or red-eye (7.3.4).

Brightness exposure/contrast – Exposure should be

checked with an exposure meter. Gradations in skin

texture should be visible, with no saturation on the

face (7.3.2).

Camera-to-subject distance – To ensure minimal

geometric distortion, the camera-to-subject distance

should be within the range of 1.2–2.5 m in a typical

photo studio.

Camera–subject height – The camera should be

tripod-mounted for stability. The optimum height of

the camera is at the subject’s eye-level. Height adjust-

ment can be done either by using a height-adjusting

stool for the subject or by adjusting the tripod’s height.

Centering – Keeping the subject’s face at the center

of the frame is recommended. The horizontal center of

face shall be between 45% and 55% of the image width

(8.3.2). The vertical center of the face shall be between

30% and 50% of the image height, as measured from

the top of the image (8.3.3).

Head size relative to the image size – Head width to

image width ratio should be between 5:7 and 1:2 (8.3.4,

8.3.5, A.3.2.2).

Focal length of camera lens (35 mm format equiva-

lent) – Use a normal to medium telephoto lens (50–

130 mm) (under shooting distance of 1.2–2.5 m).

Resolution – The spatial resolution should be greater

than about 2 pixels per mm. Resolution can easily be

checked by test shooting a ruler (7.3.3). For optimum
performance of a face recognition system, the number

of pixels between the eyes shall be at least 90 (8.4.1) and

preferably 120 (A.3.1.1).

Dynamic Range in Face – There should be at least

7 bits of intensity variation (i.e., at least 128 unique

values) in the facial region after conversion to grayscale

(7.4.2).
Lighting Guidelines

Artistic portraits are often taken with intentionally

uneven illumination, while face photographs taken

for the purposes of identification by humans or

machines should display even illumination of the

face. Various technical publications have reported

that the use of lighting arrangements that evenly illu-

minate the face without producing shadows around

the nose or eyes improves the accuracy of automated

face recognition systems [10, 11].

Example Configurations for a Photo Studio or Store

Typically, a photo studio or a photo store is a profes-

sionally operated facility, equipped with a film or

digital camera, multiple adjustable light sources, a

suitable background or backdrop cloth, and subject

positioning apparatus designed to obtain high quality

portraits. Some of the design considerations for a

photo studio or store are described in the following

paragraphs:

Lighting uniformity (No shadows and glare) on the

face – A simple arrangement is a single light source and

multiple reflector panels to illuminate the subject’s face

uniformly. The light, shown with a lamp reflector,

should be placed approximately 35� above the line

between the camera and the subject, and be directed

towards the subject’s face at a horizontal angle of less

than 45� from the line (Fig. 1). Ideally there would be

two diffused light sources in front of the face at 45� on
either side of the camera. The maximum difference of

four exposure values on the left and right sides of

a face, chin, and forehead should be less than 1 EV

(Fig. 2). The measurements may be made by placing an

incident light meter at those four positions of a sub-

ject’s face and pointing the meter towards the camera.

If the values are not within 1 EV, the lights should be

repositioned more symmetrically about the subject-to-

camera line or additional reflective surfaces may be

used to redistribute the light.
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No on-camera flash – An on-camera flash should

not be used. A single bare ‘‘point’’ light source such as a

camera-mounted flash often produces ‘‘hot spots’’

(very bright areas on the face) and is not acceptable for

imaging. (Fig. 3) The use of on-camera flash also can

produce ‘‘red-eye,’’ particularly for dark-adapted

subjects.

Example Configuration for a Photo Booth

A photo booth is typically a coin-operated, self-portrait

photography unit, mostly used for taking ID pictures.
Similar environments are used in registration offices for

drivers’ licenses, etc. (Figs. 4 and 5) Fig. 6 shows an

example of an arrangement of lighting and a camera for

a photo booth. Some of the system considerations for a

photo booth are described in the following paragraphs:

Adjustment of head size, expression, etc. by monitor-

GUI – There are many kinds of user interface displays

for adjustment of head size and position. Figure 7

shows one of the examples of a user interface: a

head positioning frame. Even with the use of a

head-positioning display, an image preview should be
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Photography for Face Image Data. Figure 3 Effect of using on-camera flash note glare glasses & specular reflections

from face, deep shadow on background –blending with dark hair.
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provided to allow thesubject to recapture the image

before it’s printed or written to a storage medium,

in case the subject might deem his/her pose or expres-

sion unacceptable. Illustrations of acceptable poses

and expressions should be provided inside the booth.

Face image quality assessment software – As an

alternative to a head-positioning display, ▶ face

detection software or ▶ quality assessment software

that automatically sizes and centers the head within the

field-of-view can be used to ensure proper head posi-

tioning. However, given that such software sometimes
does not find the face position correctly, a preview image

should be provided with provision for manual override

of the automatically determined position.
Summary

The use of proper illumination is important to obtain

face photographs suitable for identification purposes.

A key factor is the evenness of the illumination. Proper

lighting arrangements to reduce excessive shading and
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Photography for Face Image Data. Figure 6 Light and camera arrangement for a photo booth.
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specular reflections on the face, and deep shadows on

background (which can blend with thesubject’s dark

hair, etc.), improve the accuracy of automated face rec-

ognition systems.Other factors that can affect face image

quality include pose, expression, and positioning. In-

creasingly, face image quality assessment software is

being used to ensure high quality face images, for the

preparation of not only e- , but also other ID documents.
P

Related Entries

▶Enrollment

▶ Facial authentication

▶ Facial identification

▶ Facial verification
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Photon
In classical electromagnetic theory, light and other

forms of electromagnetic radiation propagate as

waves. Quantum mechanics teaches us that nature is

more complicated; light propagation can be modeled

as either a wave or a particle, depending on the view-

point and measurement process of the observer. A

photon is a ‘‘particle’’ of light, in the same sense that

an electron is a ‘‘particle’’ of electricity. When light is

absorbed by a piece of silicon in an camera sensor, the

model for the interaction is that photons of light are

individually absorbed by the silicon and excite elec-

tron-hole pairs in the silicon that result in an electrical

signal that can be processed to generate images.

▶ Iris Device
Physical Analogies for Ear
Recognition

DAVID J. HURLEY, MARK S. NIXON

School of Electronics and Computer Science,

University of Southampton, Southampton, UK
Synonyms

Convergence feature extraction: convergence
Definition

In the context of ear biometrics, Hurley et al. [1–3] have

developed a pair of invertible linear transforms called

the ▶ force field transform and the ▶ potential energy

transform, which transform an image into a force field
by pretending that pixels have a mutual attraction

directly proportional to their intensities and inversely

proportional to the square of the distance between

them, rather like Newton’s Law of Universal Gravita-

tion. Underlying this force field, there is an associated

potential energy field, which in the case of an ear, takes

the form of a smooth surface with a number of peaks

joined by ridges. The peaks correspond to the potential

energy wells, and to extend the analogy the ridges

correspond to the potential energy channels. Since

the transform also happens to be invertible, all the

original information is preserved, and since the other-

wise smooth surface is modulated by these peaks and

ridges it is argued that much of the information is

transferred to these features and that therefore they

should make good features for recognition. An analysis

of the mechanism of this algorithmic ▶ field line fea-

ture extraction approach leads to a more powerful

method called ▶ convergence feature extraction,

based on the divergence of force direction revealing

even more features in the form of antiwells and

antichannels.
Introduction

The last 10 years has seen increasing interest in the ear

as a biometric with significant contributions from

computer vision researchers [1–8]. In this context the

force field transform has been developed that effective-

ly filters an ear image by convolving it with a huge

inverse square kernel more than four times the size of

the image, the force then being the gradient of the

resulting massively smoothed image. Force field fea-

ture extraction subsequently exploits the directional

properties of the force field to automatically locate

ear features in the form of potential channels and

wells. The force field paradigm allows us to draw

upon a wealth of proven techniques from vector field

calculus; for example, the divergence operator is ap-

plied to the force field direction, yielding a nonlinear

operator called convergence of force direction leading

to the even more powerful convergence feature extrac-

tion. The extreme kernel size results in the smoothened

image having a general dome shape, which gives rise to

brightness sensitivity issues. However, it is argued by

showing that the field line features are hardly distorted,

that this will have little overall effect, and this conclusion

is borne out by including brightness variation in the



Physical Analogies for Ear Recognition P 1083
recognition tests. On the other hand, the dome shape

leads to an automatic extraction advantage, and this is

demonstrated by deliberately using poorly registered and

poorly extracted images in recognition tests and then

comparing the results with those for principal compo-

nents analysis (PCA) under the same conditions, where

we see that the ear images have to be accurately extracted

and registered for PCA to achieve comparable results.

The technique is validated by achieving a recognition

rate of 99.2% on a set of 252 ear images taken from the

XM2VTS face database [9]. Not only is the inherent

automatic extraction advantage demonstrated but it is

also shown that it performs even more favorably

against PCA under variable brightness conditions,

and also demonstrates its excellent noise performance

by showing that noise has little effect on recognition

results. Thus the technique has been validated by

achieving good ear recognition results, and in the

process a contribution has been made to the mounting

evidence that the human ear has considerable biomet-

ric value.
P

Ear Feature Extraction

Force Field Feature Extraction

Here, the force field transform and algorithmic field

line feature extraction are described before intro-

ducing convergence feature extraction. The mathe-

matical concepts used can be found in basic works

on electromagnetics [10] and a more detailed descrip-

tion of the transform can be found in [3]. Faster

computation using convolution and the Fast Fourier

Transform (FFT) and the question of brightness sensi-

tivity, both theoretically and by demonstration, are

considered.

The image is first transformed into a force field

by treating the pixels as an array of mutually attract-

ing particles that attract each other according to the

product of their intensities and inversely to the square

of the distances between them. Each pixel is assumed

to generate a spherically symmetrical force field so

that the total force FðrjÞ exerted on a pixel of unit

intensity at the pixel location with position vector rj
by remote pixels with position vector ri and pixel

intensities PðriÞ is given by the vector summation,

FðrjÞ ¼
X
i

PðriÞ ri�rj

jri�rj j3 8i 6¼ j

08i ¼ j

� �
: ð1Þ
The underlying energy field EðrjÞ is similarly des-

cribed by,

EðrjÞ ¼
X
i

PðriÞ
jri�rj j 8i 6¼ j

08i ¼ j

� �
: ð2Þ

In order to calculate the force and energy fields for

the entire image, the calculations should be performed

for every pixel. However, this requires the number of

applicati ons of eq uations 1 and 2 to be propor tional to

the square of the number of pixels. Therefore, for faster

calculation, the process is treated as a convolution of

the image with the force field corresponding to a unit

value test pixel, and then invoking the Convolution

Theorem to perform the calculation as a frequency

domain multiplication. The result of this is then trans-

formed back into the spatial domain. The force field

equation for an n-pixel image becomes,

force field ¼ ffiffiffi
n

p � ℑ�1½ℑðunit force fieldÞ�ℑðimageÞ�;
ð3Þ

where ℑ stands for the Fourier Transform and ℑ�1 for

its inverse. Listing 1

shows how to implement this in Mathcad in which 1j

denotes the complex operator and cfft and icfft denote

the Fourier and inverse Fourier transforms, respective-

ly. Moreover, because the technique is based on a

natural force field there is the prospect of a hardware

implementation in silicon by mapping the image pixels

to electric charges, which would lead to very fast real

time force field calculation.

Figure 1a demonstrates field line feature extraction

for an ear image where a set of 44 test pixels is arranged

around the perimeter of the image and allowed to
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follow the field direction so that their trajectories form

field lines which capture the general flow of the force

field. The test pixel positions are advanced in incre-

ments of one pixel width and the test pixel locations

are maintained as real numbers, producing a smoother

trajectory than if they were constrained to occupy

exact pixel grid locations. Note the two obvious poten-

tial wells in the lower part of the field.
Convergence Feature Extraction

This analytical method came about as a result of analyz-

ing in detail the mechanism of field line feature extrac-

tion. As shown in Fig. 1d, when the arrows normally used

to depict a force field are replaced with unit magnitude

arrows, thus modeling the directional behavior of explor-

atory test pixels, it becomes apparent that channels and

wells arise as a result of patterns of arrows converging

toward each other, at the interfaces between regions of

almost uniform force direction. As this brings tomind the

divergence operator of vector calculus, it was natural to

investigate the nature of any relationship that might exist

between channels and wells and this operator. This

resulted not only in the discovery of a close correspon-

dence between the two, but also revealed extra information

corresponding to the interfaces between diverging arrows,

leading to amore general description of channels andwells

in the form of a mathematical function in whichwells and

channels are revealed to be peaks and ridges, respectively,

in the function value. The new function maps the force

field to a scalar field, taking the force as input and return-

ing the additive inverse of the divergence of the force

direction. The function will be referred to as the ▶ force
direction convergence field C(r) or just ▶ convergence

for brevity. A more formal definition is given

cðrÞ ¼ �div fðrÞ ¼ � lim
DA!0

H
fðrÞ 
 dl
DA

¼ �r:fðrÞ ¼ � @fx
@x

þ @fy

@y

� �
; ð4Þ

where fðrÞ ¼ FðrÞ=jFðrÞj, DA is incremental area, and

dl is its boundary outward normal. This function is

real valued and takes negative values as well as positive

ones where negative values correspond to force direc-

tion divergence. Listing 2

shows a particular implementation of convergence in

Mathcad where FF represents the force field and DF is

the direction field.

It must also be stressed that convergence is nonlin-

ear because it is based on force direction rather than

force. This nonlinearity means that we are obliged to
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perform the operations in the order shown; we cannot

take the divergence of the force and then divide by the

force magnitude. Div(grad/|grad|) 6¼ (div grad)/|grad|.

This is quite easily illustrated by a simple example

using the scalar field e x in equa tion 5,

divðgrad=jgradjÞ
r 
 rex

rexj j
 �

¼ r 
 ex i
ex
¼ r 
 i ¼ 0

( )

6¼
ðdiv gradÞ=jgradj
r
rex

jrex j ¼ ex

ex
¼ 1

( )
; ð5Þ

where i is a unit vector in the x direction. This illus-

trates that even though convergence looks very much

like a Laplacian operator, it definitely is not.

Figure 1 shows the relationship between field lines

(a) and convergence (b) by merging the two fields in (c).

A small rectangular section of the force direction field

indicated by a small rectangular insert in Fig. 1a and b is

shown magnified in Fig. 1(d). We can see clearly that

channels coincide with white convergence ridges and

also that wells coincide with convergence peaks, which

appear as bright spots. Note the extra information in

the center of the convergence map that is not in the

field line map. Negative convergence values representing

antichannels appear as dark bands, and positive values

corresponding to channels appear as white bands.We see

that the antichannels are dominated by the channels, and

that the antichannels tend to lie within the confines of the

channels. Note also the correspondence between con-

verging arrows and white ridges, and between diverging

arrows and black ridges. The features detected tend to

form in the center of the field due to its overall dome

shape, with channels andwells tending to follow intensity
Physical Analogies for Ear Recognition. Figure 2 Effect of a

(b) 1 std. dev., (c) 2 std. devs., (d) 3 std. devs., (e) scaled �10.
ridges and peaks while antichannels and antiwells tend to

follow intensity troughs and hollows.
Brightness Change Analysis

Before proceeding to the next section on ear recogni-

tion, the effect of brightness change will first be ana-

lyzed by considering its effect on the energy field and

then confirmed by visual experiment. Should the indi-

vidual pixel intensity be scaled by a factor a and

also have an additive intensity component b, we

would have

EðrjÞ ¼
X
i

aPðriÞþb
jri�rj j 8i 6¼ j

08i ¼ j

( )

¼ a
X
i

PðriÞ
jri�rj j 8i 6¼ j

08i ¼ j

( )
þ
X
i

b
jri�rj j 8i 6¼ j

08i ¼ j

( )
:

ð6Þ
We see that scaling the pixel intensity by the factor a

merely scales the energy intensity by the same factor a,

whereas adding an offset b is more troublesome, effec-

tively adding a pure energy component corresponding

to an image with constant pixel intensity b. The effect

of the offset and scaling is shown in Fig. 2 with the

channels superimposed. We see that scaling by a factor

of 10 in Fig. 1e has no effect as expected. The original

image in Fig. 1a has a mean value of 77 and a standard

deviation of 47. Figures 1b–d show the effect of pro-

gressively adding offsets of one standard deviation. At

one standard deviation the effect is hardly noticeable

and even at three standard deviations the change is by

no means catastrophic as the channel structure alters

little. We therefore conclude that operational lighting
dditive and multiplicative brightness changes: (a) original,
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Image type Method Passes
Noise

20log10S/N

Correct
classification

rate (%)

Brightness change
by addition
(std dev.) Decidability

141�101 with deliberately
poor extraction and
registration

FFE 250/252 Nil 99.2 0 3.432

FFE 251/252 18 dB 99.6 0 3.488

FFE 249/252 12 dB 98.8 0 3.089

FFE 241/252 6 dB 95.6 0 1.886

FFE 250/252 Nil 99.2 1 3.384

FFE 247/252 Nil 98.0 2 3.137

FFE 245/252 Nil 97.2 3 2.846

PCA 118/189 Nil 62.4 0 1.945

111 � 73 with accurate
extraction and registration

PCA 186/189 Nil 98.4 0 3.774

PCA 186/189 18 dB 98.4 0 3.743

PCA 186/189 12 dB 98.4 0 3.685

PCA 177/189 6dB 93.6 0 3.606

PCA 130/189 Nil 68.8 1 1.694

PCA 120/189 Nil 63.6 2 0.878

PCA 118/189 Nil 62.4 3 0.476

PCA 181/189 Nil 95.6 1 normalized 3.171

PCA 172/189 Nil 91.0 2 normalized 1.91

PCA 166/189 Nil 82.5 3 normalized 1.14
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variation in a controlled biometrics environment will

have little effect. These conclusions are borne out by

the results of the corresponding recognition experi-

ments in Table 1.
Ear Recognition

The technique was validated on a set of 252 ear images

taken from 63 subjects selected from the XM2VTS

face database [9] by multiplicative template matching

of ternary threshold convergence maps where levels

less than �1 standard deviation are mapped to �1,

while those greater than one standard deviation map

to +1, and those remaining map to 0. A threshold level

of one standard deviation was chosen experimentally

resulting in the template channel thickness as shown

in Fig. 3c. This figure also shows a rectangular exclu-

sion zone centered on the convergence magnitude cen-

troid; the centroid of the convergence tends to be stable

with respect to the ear features and this approach has

the added advantage of removing unwanted outliers

such as bright spots caused by spectacles. The size of

the rectangle was chosen as 71 � 51 pixels by adjusting
its proportions to give a good fit for the majority of the

convergence maps. Note how for image 000–2, which

is slightly lower than the other three, the centroid-

centered rectangle has correctly tracked the template

downward.

The inherent automatic extraction advantage was

demonstrated by deliberately extracting or registering

the ears inaccurately, in the sense that the database

consists of 141 � 101 pixel images, where the ears

have only an average size of 111 � 73 and are only

roughly located by the eye in the center of these images.

This can be seen clearly in Fig. 3a where we see a

marked variation both in vertical and horizontal ear-

location, and also that there is a generous margin

surrounding the ears. The force field technique gives

a correct classification rate (CCR) of 99.2% on this set,

whereas running PCA [11] on the same set gives a

result of only 62.4% but when the ears are accurately

extracted by cropping to the average ear size of 111� 73,

running PCA then gives a result of 98.4%, thus demon-

strating the inherent extraction advantage. The first

image of the four samples from each of the 63 subjects

was used in forming the PCAcovariancematrix. Figure 4

shows the first four eigenvectors for the 111 � 73-pixel
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(b): Convergence fields, row (c): Thresholded convergence maps.
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images. The effect of brightness change by addition

was also tested where we see that in the worst case

where every odd image is subject to an addition of

three standard deviations the force field results only

change by 2%, whereas those for PCA under the same

conditions fall by 36%, or by 16% for normalized

intensity PCA, thus confirming that the technique is

robust under variable lighting conditions.

These results are presented in Table 1 where Daug-

man’s decidability index [12] combines the mean and

standard deviation of the intra-class and inter-class mea-

surement distributions giving a good single indication of

the nature of the results. This index d 0 measures, how

well separated the distributions are since recognition

errors are caused by their overlap. The measure aims

to give the highest scores to distributions with the

widest separation between means, and smallest standard
deviations. If the two means are m1 and m2 and the two

standard deviations are s1 and s2 then d 0 is defined as

d0 ¼ jm1 � m2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs21 þ s22Þ=2

p : ð7Þ

Note that the best case index for PCA is slightly higher

than the value of 3.43 obtained for the 141 � 101 images

but this could be attributed to the reduction in data set

size from 252 to 189 and also to the fact that the images

have been extracted for PCA. Noise performance figures

have also been included where noise has been modeled as

additive noise with a zero mean Gaussian distribution.

The signal to noise ratios of 6 dB, 12 dB, and 18 dB used

are calculated as 20log10(S/N). We see that the technique

enjoys excellent noise tolerance where even for an

extreme noise ratio of 6 dB the performance only

falls by about 3.6%. Interestingly, at a ratio of 18 dB
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the recognition rate actually improves over the noise-

less recognition rate, but this must be put down to the

combination of small changes and the random nature

of the noise process. For reference, the corresponding

noise results for PCA under the same conditions have

also been included, where we see that PCA also per-

forms well under noisy conditions but not quite as well

as FFE at 6 dB where the fall is about 4.8%.
Summary

In the context of ear biometrics, a linear transform

has been developed that transforms an ear image,

with very powerful smoothing and without loss of

information, into a smooth dome-shaped surface

whose special shape facilitates a novel form of feature

extraction that extracts the essential ear signature

without the need for explicit ear extraction. It has

been shown that the technique is robust under vari-

able lighting conditions both by analysis and experi-

ment. Convergence feature extraction has been

described and it has been shown that it is a powerful

extension to field line feature extraction. The tech-

nique has been validated by experiment where it has

been shown that it compares favorably with PCA,

especially under variable lighting conditions. In the

process, a contribution has been made to the mount-

ing evidence in support of the recognition potential

of the human ear for biometrics.
Related Entries
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Physical and Logical Access Control
convergence
The ability to authenticate and authorize a user across

both physical and logical access control systems. The

authentication may mean that a common credential,

such as a biometric, is used across both systems, with-

out the need for a user to re enroll. It may also mean

that the user’s authentication credentials are collective-

ly stored in a mutually accessible repository that stores

several biometric and nonbiometric types of authenti-

cation. The harmonization of the authorization of a

user across physical and logical access control systems

implies single enterprise policies, which are invoked in

both systems.

▶Access Control, Physical
Physics-Based Biometrics
▶Biometric Sample Synthesis
P

Physics-Based Models
Physics-based models create mathematical equations

that are derived from basic physical principles that can

recreate biometric samples. An example of a physics-

based model is a physics-based vocal tract model.

▶Biometric Sample Synthesis
Piezoelectric
Piezoelectric is the property of crystals, such as quartz,

which allows them to create electrical voltage when

deformed under the application of a mechanical force.

▶Digitizing Tablet
PIN Replacement
The method of using a biometric to unlock a smart

card or SIM card instead of having to enter a PIN. The

only secure method of PIN replacement is one that can

perform the biometric authentication within the se-

cure element itself, so that it remains in a locked state

until user verification is complete.

▶Transportable Asset Protection
Pitch
The pitch denotes the frequency at which the vocal

cords open and close the larynx to produce the voiced

sounds. The sound then produced resonates according

to the shapes of the different cavities of the vocal appa-

ratus. The pitch and resonances are generally measured

through a frequency based analysis of the speech signal

to extract information dependent to the speaker.

▶Transportable Asset Protection
Pixel
Pixel is a single picture element of the image. It never

corresponds to the physical pixel on the camera sensor.

The size of the pixel depends on the image (and the

camera) aspect ratio (the ratio between the image

width and length).

▶Biometric Sensor and Device, Overview

▶ Image Feature Extraction

▶ Image Formation
Platen
In a fingerprint device, the term platen refers to the

surface of a sensor on which the finger should roll or
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adhere. It can be done of different materials, but it is

mainly done with glass. In a hand-geometry device, it

means the flat surface of the hand geometry reader on

which the person presented to the device places his or

her hand. The platen is usually equipped with a num-

ber of pegs (or pins) to guide the placement of the

person’s hand and to ensure the accurate measuring of

the hand’s geometric structure.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor

▶Hand-Geometry Device
Point-Light Display
The motion of a living thing depicted by just the motion

of specific points on the body. Originally generated by

filming actors in darkened rooms, wearing dark clothes

with lights attached to the joints. By adjusting the con-

trast of these films only the motion of the lights was

visible. Modern day point-light displays are generally

created by movement data obtained by three-dimen-

sional motion capture equipment such as the one used

for computer animation. The point-light display shows

the motion of the actor with the majority of other

person information subtracted from the display.

▶Psychology of Gait and Action Recognition
Polar
Polar images are recorded as a matrix in which each

element of the matrix is an intensity value whose

location is expressed in polar coordinates. The origin

of the coordinate system is defined as the center of the

image, and the location of each intensity sample is

expressed as a radial distance r from the center along

a particular angular direction y. Typically, each row in

the image matrix contains all of the angular samples

for a particular radial distance, and each column of the

image matrix contains all of the radial samples for a

particular angular direction.

▶ Iris Image Data Interchange Formats, Standardization
Polarized
Of or relating to one or more poles (as of a

spherical body).

▶ Iris Standards Progression
Police Law Enforcement
▶ Law Enforcement
Portal
▶ Iris on the Move
Pose
The angle of the head relative to the camera-to-subject

line.

▶Photography for Face Image Data
Pose and Motion Models
Models that describe what combinations of joint angles

are plausible and how they can vary over time in

typical human motions. They are often expressed

probabilistically and specify the probability of a single

3D pose or of a set of consecutive poses.

▶Markerless 3D Human Motion Capture from

Images
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Poststratification
Poststratification is a statistical technique that forms

strata of observations after the data has been collected

to better inform statistical inference.

▶Test Sample and Size
Potential Energy Transform
P

An invertible linear transform which transforms an

image into an energy field by treating the pixels as an

array of particles that act as the source of a Gaussian

potential energy field. It is assumed that there is a

spherically symmetrical potential energy field gener-

ated by each pixel, so that EðrjÞ is the total potential

energy imparted to a pixel of unit intensity at the pixel

location with position vector rj by the energy fields of

remote pixels with position vectors ri and pixel inten-

sities PðriÞ, and is given by the scalar summation,

EðrjÞ ¼
X
i

PðriÞ
ri � rj
�� �� 8i 6¼ j

08i ¼ j

8><
>:

9>=
>;
: ð1Þ

To calculate the energy field for the entire image, Eq. 10

should be applied at every pixel position. For efficiency

this is calculated in the frequency domain using Eq. 11

where ℑ stands for FFT and ℑ�1 stands for inverse FFT.

energyfield ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � N

p
ℑ�1 ℑ unit energy fieldð Þ½

�ℑ imageð Þ�:
ð2Þ

▶Physical Analogies for Ear Recognition
Preemployment Screening
▶Background Checks
Pre-Processing
Palmprint pre-processing refers generally to the extrac-

tion of the region of interest and its normalization. A

coordinate system is defined to align different palm-

print images for matching. Normally, the central part

of a palmprint is extracted from the image boundaries

for reliable feature measurements. The extracted cen-

tral part is further subjected to histogram equalization.

▶Palmprint Features
Pretty Good Privacy (PGP)
Pretty Good Privacy (PGP) is a computer program that

provides cryptographic privacy and authentication. It

was originally created by Philip Zimmermann in 1991.

▶ Fingerprints Hashing
Primary Biometric Identifier
Anatomical and behavioral characteristics such as fin-

gerprint, palmprint, face, iris, hand-geometry, voice,

signature, and gait can be used to reliably determine or

verify a person’s identity. These biometric traits consti-

tute a strong and permanent ‘‘link’’ between a person

and his identity and these traits cannot be easily lost or

forgotten or shared or forged. Hence, they are known

as primary biometric identifiers and the systems that

recognize people based on such traits are referred to as

primary biometric systems.

▶ Soft Biometrics
Principal Component Analysis
See PCA (Principal Component Analysis)
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Principal Curvatures
The maximum and minimum values of the normal

curvature at a point on the surface are called the

principal curvatures. At any given point on the surface,

intersection of the surface with a plane containing the

normal vector and a particular tangent direction forms

a curve. Curvature of this curve is called the normal

curvature. Curvature values in all tangent directions

form the normal curvatures at that point.

▶Palmprint Features
Principal Lines
Human palmprints show a number of well defined

lines. These include major palmlines, often called the

principal lines, and wrinkles. Principal lines and wrin-

kles on palm are distinguished by their position and

thickness. Most palmprints show three principal lines:

heart line, head line and life line. Properties of the

principal lines can be summarized as follows:

1. Each principal line meets the side of the palm at

approximate right angle, when it flows out

2. The life line is located at the inside part of the palm,

which gradually inclines to the inside of the palm

3. In most cases, the life line and head line flow out of

the palm at the same point
▶Palmprint Features
Privacy
Privacy is the ability or right of an individual to control

how information pertaining to that person is collected,

distributed, and used. Surveillance, by its premise vio-

lates or at the least infringes on the privacy of an

individual. Hence, in that regard, it is extremely im-

portant to ensure that the information collected (with
or without consent) does not violate the legal rights of

the individual.

▶ Surveillance
Privacy Issues

TERENCE M. SIM

School of Computing, National University of

Singapore, Singapore
Synonym

Data protection
Definition

Privacy is a multidimensional and evolving concept,

whose definition varies according to country and

culture. It is thus difficult to agree on a precise defini-

tion that is universally accepted. Nevertheless, certain

notions of privacy have become fairly standard, espe-

cially among industrialized nations. These include:

informational, bodily, territorial, and communications

privacy. Of these, biometrics not only impacts infor-

mational privacy, but also affects bodily and territorial

privacy as well. However, contrary to the claims of civil

libertarians and to Hollywood hype, biometrics need

not be antithetical to privacy. Indeed, by understand-

ing the relevant issues, it is possible to design into a

biometrics system measures that will safeguard, and

even enhance, privacy. Doing so will increase user

acceptance of biometric systems, or at least, render

such deployments more tolerable.
Introduction

Losing one’s privacy often entails consequences. At

best, the consequence is fortuitous, as when receiving

an unsolicited discount on a product that one was

about to purchase. At worst, loss of privacy could result

in harassment, marital discord, or even termination of

employment. Biometrics, by its very nature, impacts

privacy. Civil liberty advocates routinely decry its use,
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and Hollywood movies often portray it negatively. Yet

biometrics, when judiciously used, can in fact enhance

privacy by improving security to sensitive data. This

chapter examines the privacy issues arising from the

deployment of biometric systems, and suggests ways in

which careful system design, along with government

policies, industry best practices, research and educa-

tion, can ameliorate privacy concerns, leading to grea-

ter user acceptance of such systems.

Privacy is a relatively new concept, dating back to

around 1900 A.D. Although some authors have tried to

argue that privacy notions may be found in ancient

religious texts such as the Christian Bible and the

Islamic Koran, most would agree that privacy appeared

in public consciousness and began influencing public

policy only at the turn of the last century. In Europe,

privacy notions came about largely in response to

rapid urbanization and the horrors of two World

Wars, leading to its formal articulation in the 1950

European Convention on Human Rights (ECHR).

In the U.S., the 1890 journal article by Warren and

Brandeis [1] may be considered a defining moment.

In other parts of the world, the development of

privacy often mirrors economic and political progress.

Privacy laws are most developed in nations that have

achieved high economic output, and where democratic

principles have been established for some time. Privacy

issues are by no means static; new technologies often

reveal subtle nuances in prevailing notions, and expose

inadequacies in existing laws, leading to new regula-

tions or amendments being proposed. Changing user

perceptions, brought about by increasing technolog-

ical savvy, also play a role in shaping public policy on

privacy. An historical account of privacy developments

in different countries, no doubt an interesting study, is

outside the scope of this chapter. For general privacy

issues, please see [2–5].
Privacy Notions

Although actual definitions vary depending on culture

and country, four notions of privacy are almost uni-

versally accepted:

� Informational privacy: This pertains to the collec-

tion and subsequent usage of ▶ personal data.

� Bodily privacy: This concerns protecting the physi-

cal body from invasive procedures.
� Territorial privacy: This relates to the observation of

one’s activities in a physical space, especially one’s

home or bedroom, but also in public places where

anonymity is to be expected.

� Communications privacy: This addresses the protec-

tion of one’s communications, such as emails, let-

ters, and telephone conversations.

Informational privacy can in turn be understood in

terms of four concepts: ▶ unnecessary data collection,

unauthorized data collection,▶ unauthorized data dis-

closure, and ▶ function creep.

By definition, biometrics is personal data: a biomet-

ric sample is a measurement of a human body for the

purpose of identifying that person.Moreover, in typical

usage, other personal data, e.g. date of birth or address,

are also retrieved along with the identification. Clearly

then, biometrics impacts informational privacy. But

there are other concerns as well. For some biometrics,

notably DNA samples and retina scans, the very act of

acquiring the biometric may be considered an invasion

into one’s body. These types of biometrics, thus, affect

bodily privacy. Likewise, for end-users who regard phys-

ical contact as unhygienic, placing one’s finger on a

fingerprint sensor may constitute a violation of bodily

privacy. Such an aversion to physical contact will be

especially acute during an epidemic, as when SARS

broke out in 2003 A.D. Finally, there may be issues with

territorial privacy as well. Whenever face recognition is

coupled with surveillance cameras to monitor a public

space, one’s anonymity is lost when traveling through

that space. Biometrics that can be remotely acquired

without the user’s cooperation, such as face images, and

to a lesser extent voice patterns, potentially increase

territorial privacy risks. Unfortunately, with expected

improvements in sensor technology, more types of

biometrics will be amenable to remote acquisition,

even for those that currently require physical contact.

Biometrics is inherently privacy-neutral: it neither

enhances nor enervates privacy. It is no different from

a database record of a person’s particulars. The real

concern is how biometrics is used, or more precisely,

misused. The misuse of biometrics is more potentially

more damaging than the misuse of a database record

because one cannot lie about biometrics the way

one can falsify one’s name or address. For example,

one cannot give a fake photograph when pressured by

a salesperson to sign up for some dubious product

offer. Moreover, biometrics is generally permanent
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throughout a person’s lifetime, and thus cannot be

revoked once compromised (unlike changing a pass-

word, PIN, or even one’s name). This immunity from

falsification and revocation makes biometrics a good

choice as an universal identifier. For example, banks,

government agencies, and supermarkets may use the

thumb print for verification. The convenience of using

a single fingerprint to access one’s bank account, to

obtain government services, and to pay for groceries is

extremely compelling for end-users and organizations

alike. But so are the risks correspondingly magnified.

The linking of the bank’s database with those of the

government and the supermarket to monitor one’s

intimate details would, in most places, be considered

an egregious invasion of privacy. Even if such moni-

toring were sanctioned by the appropriate authority,

the victim is unlikely to derive much comfort.

Privacy is not the same as security. Privacy is

concerned with people (their intimate details, personal

space), whereas security has to do with systems. A good

privacy policy protects people, whereas a secure system

is one that is effective at preventing unauthorized

access to the resource being protected. Identity theft

(the use of someone else’s identity for personal gain) is

primarily a security breach, but also a privacy viola-

tion. Thus, privacy begins with securing the biometric

system itself. An insecure biometric system affords

little privacy protection.

Effectively addressing the privacy issues arising from

the deployment of biometric systems require a holistic

and multipronged approach. This chapter highlights

five ways, as described in the following sections.
System Issues

Privacy should not be an afterthought; rather, mea-

sures to safeguard privacy should be designed into

a biometric system right from the beginning. Good

strategies for doing this may be found in [6, 7].

In addition, [8] has two chapters on the privacy aspects

of biometrics in relation to U.S. and European laws.

The following highlights the main issues.

1. Alternative technologies.Consider nonbiometric alter-

natives. Biometrics is not the only technology for

verifying identity or controlling access to a protected

resource. Other technologies may be more appropri-

ate, and less privacy invasive. For instance, the humble
lock-and-key works very well for gymnasium lockers,

and replacing it with a fingerprint access control

system seems excessive. Besides the obvious privacy

concerns, the fingerprint system does not permit the

ad hoc transfer of authorization, as when asking a

friend to retrieve one’s belongings from the locker.

The low-tech lock-and-key has no such problem.

2. Choice of biometrics. Choose a biometric appropri-

ate for the application, taking into account cultural

and religious sensitivities. As mentioned before,

DNA and retina scans may be regarded as invading

one’s bodily privacy because of the way these sam-

ples are collected. Since DNA can reveal genetic

defects and retina scans can reveal diabetes, their

usage can lead to function creep (also see below).

Likewise, avoid choosing biometrics that requires

physical contact for acquisition when doing so

would alarm end-users who consider such contact

unhygienic. Finally, using face recognition may

offend the modesty and privacy of end-users who

veil their faces for religious reasons.

3. Template storage. To enhance privacy, templates

must be securely stored, preferably with a strong

encryption method. Moreover, distributed storage

is preferred over a centralized database. Where

possible, delete the template as soon as it is no

longer required. This is preferable to storing it

indefinitely. Finally, allowing the end-user to decide

when and how the template can be used reduces

privacy risks. This could be achieved by permitting

the end-user to opt in or out (of using the biomet-

ric system) at the end-user’s discretion, or to speci-

fy the encryption method, or the duration and

location of template storage. In this regard, the

▶Match-on-Card technology for fingerprint veri-

fication, in which all the steps in the biometrics

architecture are implemented on the smart card

itself, comes closest to fulfilling this privacy ideal.

4. Function creep. Once a biometric system is opera-

tional, it is often convenient to use it for other

purposes. From a privacy perspective, this must be

resisted, even if the secondary purpose is a noble

one. At the very least, consent must be obtained

from the end-user for the expanded scope of bio-

metric usage. This is especially true for biometrics

that reveals more than just identity, e.g., DNA and

retina scans that reveal medical conditions, finger

vein patterns that reveal blood oxygen level, and

face images that reveal gender, ethnicity, and
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approximate age. The potential for medical, sexual,

racial, and age-related discrimination arising from

using such nonidentity information is clear. At

times, function creep can be subtle, as the next

example illustrates: To improve security, a secondary

school (name suppressed to avoid embarrassment)

implemented a fingerprint system to control access

to its science and computer laboratories. It soon

discovered a serendipitous way to reduce its electric-

ity bill: by identifying persons leaving the labs with-

out switching off the air conditioner.
Government

Governments play three important roles in ensuring

that biometric usage protects privacy: by enacting

appropriate laws, by self-regulation, and by cooperat-

ing with other governments. Privacy requires legal

backing to be effective. Yet laws are notoriously
Privacy Issues. Table 1 Privacy laws in selected countries, ex

Country/
region

Privacy in
constitution? Related laws

Australia � Crimes Act,
Telecommunications
Act,
Data-Matching Progra
Act

Canada � PIPEDA,
Telecommunications
Act,
Bank Act

China Limited rights Civil Law,
Practice Physician Law
Law on Lawyers

European
Union

1950 European
Convention on
Human Rights

Telecommunications
Privacy Directive

Hong Kong
S.A.R.

in Basic Law —

Japan Article 13 —

Singapore � Banking Act,
Computer Misuse Act

United States Not explicit Video Privacy Protectio
Act,
Right to Financial
Privacy Act
difficult to get passed. A quick survey of the state of

privacy laws in selected countries is shown in Table 1. It

is clear from the table that constitutional provision

for privacy does not automatically guarantee stronger

privacy laws. For example, both Canada and Australia

do not provide for privacy rights in their Consti-

tutions, yet both have enacted a Privacy Act and a

Privacy Commissioner to oversee and prosecute priva-

cy violations. China and the U.S. are opposite exam-

ples, having some form of privacy rights in their

Constitutions but no specific Privacy Act. Instead,

both rely on a hodgepodge of sectoral laws to regulate

privacy. Besides having the right laws, it is also neces-

sary to review them periodically as biometrics may

engender unanticipated privacy issues. Nevertheless,

countries having an explicit Privacy Act and appoint-

ing a Privacy Commissioner are expressing a strong

commitment to protect privacy. The experience of

Australia, Canada, and Hong Kong are thus worth

learning from.
cerpted from [2, 3]

Privacy act?
Privacy

commissioner?

m

Privacy Act 1988 ü

Privacy Act 1983 ü

,
� �

Personal Data
Directive 1995

�

Personal Data (Privacy)
Ordinance 1996

ü

Protection of Personal
Information Act 2003

various Ministers

� �

n Privacy Act 1974
(limited to govt)

�

P
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In most countries, the Government is also the larg-

est deployer of biometric systems. Thus, governments

can strongly influence how biometrics is used by

practicing self-regulation, and maintaining transpar-

ency and accountability. Governments should not, for

example, covertly deploy surveillance systems, nor

share sensitive data between agencies across different

jurisdictions. Federal and local authorities should

also respect each other’s boundaries. These prescrip-

tions are self-evident, perhaps even naı̈ve. Alas, they

are usually circumvented in the name of national secu-

rity and expediency. Most nations have emergency

laws that can be invoked when confronting terrorism

threats or disease epidemics. Such laws usually give

the government carte blanche power, to the detriment

of privacy concerns. While citizens are generally will-

ing to give up some privacy in exchange for personal

safety during times of threat, governments are less

willing to relinquish their power once the crisis sub-

sides. This asymmetry ought not to exist, and should

be corrected.

The third important role of the government

is international cooperation. In this digital age of trans-

border data flows, privacy is only as strong as the weak-

est jurisdiction. Already, regional and international

standards have been drawn up to address common

privacy issues. Examples include the OECD Guidelines

on the Protection of Privacy and Transborder Flows

of Personal Data, the European Union Personal Data

Directive, and the Asia-Pacific Economic Cooperation

Privacy Framework. Arguably, more can be done to

ratify and implement these guidelines in a timely man-

ner across member countries.
Industry

Privacy is too important to be left in the hands of

governments. Complementing government legislation,

and often faster to enact, is a necessary set of industry

regulations developed and updated by a nonpartisan

biometrics association. Such an association should ide-

ally consist of vendors, end-users, legal counselors, and

academics. Its role is to promote best practices, certify

compliance of vendor products with international

biometrics standards, educate the public, and otherwise

regulate the industry.

An example of this is the nonprofit Biometrics

Institute in Australia [9], which recently drafted a
Privacy Code and obtained the approval of the coun-

try’s Office of the Privacy Commissioner (OPC). The

Code, essentially an industry-specific realization of

Australia’s National Privacy Principles, recommends

guidelines for how biometrics data should be collected,

used, and disclosed, among other things, to safeguard

privacy. Members of the Institute voluntarily subscribe

to the Code, thereby agreeing to be bound by it.

In return, the subscriber establishes itself as a trust-

worthy party, and gains exclusive rights to bid for

government projects that require privacy certification.

Code violations are handled directly by the OPC,

which, unlike the Institute, has the legal teeth to pros-

ecute. This symbiotic relationship between the Insti-

tute and the OPC is admirable, and greatly enhances

public trust. Independent of the Code, the Institute

also conducts privacy impact assessments and educa-

tional talks for members.

Another essential role of the industry is to track

and participate in international standards, usually in

partnership with a government standards body. The

ISO JTC 1/SC 37 is the Biometrics Technical Sub-

committee under the ISO umbrella [10]. Its biannual

meetings divide into several workgroups, the sixth of

which concerns the ‘‘Cross-Jurisdictional and Societal

Aspects of Biometrics,’’ thus encompassing privacy

issues. Of interest is the still under development tech-

nical reference ISO/IEC DTR 24714 parts 1 and 2,

which lists 15 privacy principles for biometric sys-

tems. Although not yet publicly available, these docu-

ments are useful for reference and for adapting to suit

country-specific norms.
Research

Since biometrics is a technology, it seems plausible to

combat its ‘‘evils’’ with more technology. So-called

Privacy Enhancing Technologies (PET) aim at protect-

ing privacy while enabling their benefits to be enjoyed.

One possibility centers around the problem of autho-

rization without identification.

For many applications, it is not the identity of

the end-user that matters, but only whether the

end-user is duly authorized. That is, what needs to

be established is a proof of authorization (or proof

of credentials) rather than a proof of identity. This is

the case for all access control systems (Is the end-user

authorized to gain access to the protected resource?),
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and subscription systems (Does the end-user have

the necessary credentials for this service?). Proof

of authorization is a weaker notion than proof of

identity, and can in fact be achieved using a crypto-

graphic technique called zero-knowledge proof. Related

research includes group signatures and k-anonymity,

both of which permit identification only of a group

of people, but not the individual within it. This

coarser form of identification is like protecting a

room with a traditional lock-and-key, and giving

the keys only to the group of authorized people.

In effect, the key authorizes the group while preserv-

ing individual anonymity. For more details, please

see [11, 12].

A slight generalization of this concept is the proof

of authorized role. Here, the same person may assume

different roles when interacting with a system. For

example, it is common practice for a person to login

to a computer system either as an administrator, or as a

normal user, depending on the purpose of usage. The

required proof is not so much identity, but which role

the person wishes to assume. Different biometrics may

be associated with each authorized role to facilitate

interaction with the system.

There is yet another notion of identity: for certain

applications, not only is the identity required, but the

physical presence of the end-user must be guaranteed.

This proof of presence is clearly a stronger requirement.

An example of this is during wedding ceremonies

(be they religious or civil), where additional witnesses

are usually called upon to prove the identities and

presence of the marrying couple. Another example is

at the polling station, where it is necessary to establish

that the voter is physically present to cast his or her

vote, instead of relying on a proxy.

Distinguishing between these subtle notions of

identity is important. An authentication based on

biometrics is really a proof of presence, because the

biometric sample is collected ‘‘live’’ from the person.

Thus, using biometrics in situations that require only a

proof of authorization may be an overkill, and can lead

to privacy abuse. Research in PET is still in its early

stages, but should be encouraged and funded.
Education

The cliché, ‘‘perception is reality,’’ is especially true

for biometrics, where misconceptions and hyperbole
abound. Hollywood movies such as Minority Report

(2002) and Gattaca (1997) tend to negatively portray

biometrics as powerful tools used by Big Brother

regimes to track individuals. Media reports of high

profile abuses involving biometrics further fuel public

mistrust. Occasionally, evenwell-meaning privacy advo-

cates unwittingly deride biometrics more than the tech-

nology deserves. Such poor perceptions can lead to

public resistance, and even sabotage, of biometric

systems.

It is, therefore, important to increase public aware-

ness through educational talks and open dialog among

vendors, deployers, end-users, and privacy advocates.

Besides the technological issues, privacy issues have

to be realistically addressed, including assuring the

end-user on what recourse is available should he or

she feel victimized. Such educational talks can be

organized by anyone, although it is better received

if it comes from a neutral party, such as the non-

partisan biometrics association (see above). Dialog

should also be on-going, because new issues are

constantly thrown up.
Future Concerns

Many advocates believe that privacy is increasingly

under attack from two main fronts. New technologies

that permit more efficient data sharing, or that facili-

tate covert surveillance or identification of individuals,

pose real threats. Also, the rise of terrorism and the

imminence of epidemics (such as avian flu) necessitate

governments to more closely monitor the movements

and activities of their citizens in a bid to, ironically,

protect the same citizens.

Biometrics technology will also be further devel-

oped. Besides providing proof of authorization or

identity, biometrics may soon be able to reveal emo-

tional states. It is already possible to detect anxiety in

the voice, adding a new level of privacy concern to

voice (speaker) recognition. Other emotions may yet

be detectable through current or novel biometrics, and

could lead to a revolutionary type of lie detector.

The emerging field of neuroeconomics [13] attempts

to understand brain activity (measured through func-

tional magnetic resonance imaging, or fMRI) and eco-

nomic decisions such as buying a product. Researchers

are able to predict, from fMRI patterns, whether or not

a person is about to make a purchase. Other research in
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the field of cognitive science have demonstrated that

fMRI scans can detect cognitive states in the brain.

From such developments, it is but a small step to

imagine the day that biometrics (in the broader sense

of ‘‘bodily measurements’’) will offer proof of intention,

i.e. a kind of mind reading. The privacy abuses arising

from such a clarivoyant technology are too frightening

to even contemplate.

In light of all these, what can be said about the

future of privacy? One line of argument, proffered by

James Rule [5], is that privacy goals are still eminently

feasible. To quote:

" The issues involved are ultimately ethical and politi-

cal, not technological. If we determine to do so, we

can readily implement systems that place the burden

of justification on those who would create personal

data systems in the first place, ..., that limit the

amount and variety of personal data allowed to

bear on determinations of how organizations will

treat individuals.

However, doing this requires accepting the social

cost that information systems will necessarily be less

efficient because of increased privacy checks. Current

systems are predicated on providing better services or

making better decisions through gathering more per-

sonal data. Only by abandoning this avarice for effi-

ciency can society hope to restore privacy.

The other school of thought takes the opposite view:

that privacy is merely a passing ideal of the previous

century, increasingly irrelevant for the twenty-first

century. There will be no privacy in the future, and the

sooner we get used to it, the better. Among such

proponents is Scott McNealy, Chairman of Sun Micro-

systems, who famously quipped that ‘‘privacy is dead.’’

Increasingly, young people today act as if this is true

[14]. They are not afraid to reveal intimate details in

social networking sites, or post in their blogs videos of

themselves in situations deemed highly embarrassing

just one generation ago. They do this despite knowing

the privacy risks. They accept that their daily activities,

social habits, and personal data can be viewed by

anyone. Yet life goes on. To be sure, much private

data have only temporary value. For instance, one’s

soda and sartorial tastes are ephemeral, valid only

until the next fashion wind blows. For these young

people, losing one’s privacy in such matters is hardly

worth losing sleep over.
Related Entries

▶Biometrics Architecture

▶Match-on-Card

▶ Security
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camera to capture an image, process it and prepare it

for transport in the most secure way possible.

▶ Iris Acquisition Device
Privium
▶ Iris Recognition at Airports and Border-Crossings

▶ Simplifying Passenger Travel Program
Probabilty Density Function (PDF)
The statistical function that shows how the density of

possible observations in a population is distributed.

▶Gaussian Mixture Models
Process Artifacts
P

When footwear outsole patterns are created either

through pressing or molding, certain defect in the

pressing tools and mould will contribute to artifacts

being left on the final product. A common artifact

formed in conjunction with the molding process is

due to tiny air bubbles being trapped within the

mould, leaving gaps in the outsole pattern.

▶ Footwear Recognition
Procrustes Shape Distance
The Procrustes shape distance is a metric that captures

the shape of an object independent of the set of Eu-

clidian transformations (translation, rotation, and

scale). The Procrustes distance computation assumes

that all objects can be represented by a set of landmark

points, each object has the same number of points, and
exact correspondence between the points is known

from one object to the next.

▶Hand Shape
Proposal Descriptive and Decision
Making Model
P.J. van Koppen (University of Leiden and University

of Antwerp), and H.F.M. Crombag, (University of

Maastricht) analyzed all types of forensic evidence

and formulated the common, basic requirements in

an article published in the Dutch Journal for Lawyers

in January 2000. These are as follows:

1. The expert has a descriptive model at his disposal

that describes the relevant characteristics for com-

parison and identification of the mark found at the

crime scene, with the characteristics of the defendant.

2. There is sufficient variation between different per-

sons regarding these relevant characteristics.

3. The relevant characteristics change very little

over time that even after some time comparison is

feasible.

4. The expert has a method with which the relevant

characteristics can be established unequivocally/

unmistakably.

5. The expert has rules of decision-making at his

disposal with the help of which he can decide

about identification, based upon the comparison.
▶ Fingerprint Matching, Manual
Prosody
Prosody concerns the ‘‘melody’’ of an utterance. As such,

prosodic aspects of a sentence are rhythm, intonation,

and stress/emphasis. Acoustical expressions of prosody

are duration (of syllables/phonemes), loudness, pitch

and even formant structure (which might be different

in stressed vowels than in unstressed vowels).

▶Voice Sample Synthesis
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Protocol
Protocol is the preset procedure by which each tem-

plate in the database is compared to some specific

feature during the performance evaluation of the fin-

gerprint-matching approach, and the rule to treat the

failed matching.

▶ Fingerprint Matching, Automatic
Pseudo-Random Number Generator
An algorithm to generate a sequence of numbers that

approximate the properties of random numbers. The

sequence is not truly random since it is completely

determined by a few parameters and initial values.

Pseudo-random numbers are useful for cryptography

and simulation.

▶ SFinGe
Psychology of Gait and Action
Recognition

FRANK E. POLLICK

Department of Psychology, University of Glasgow,

Glasgow, UK
Synonyms

Action categorization; Action understanding; Biologi-

cal motion perception
Definition

The psychology of gait and action recognition strives

to understand the processes that underlie how people

detect, recognize and understand the movements of

others. Since gait is a fundamental human activity,
it has formed an important visual signal for psycholo-

gists to examine. Experiments have shown that sparse

representations of gait support the recognition of iden-

tity, gender, and emotion by observers even when

viewing conditions are degraded. The study of gait

and action recognition focuses on several questions,

including: what visual properties uniquely specify

human movement; how to quantify human perfor-

mance in action recognition; and the neural mechan-

isms that form the basis of decoding human

movement.
Introduction

The modern study of the psychology of human move-

ment, in particular the perception of gait, starts with

the work of the Swedish Psychologist Gunnar Johans-

son in the 1970s [1]. The work of Johansson and his

contemporaries focused on how humans use motion

to infer the structure of objects moving in the world.

To demonstrate this capability, he attached lights to the

joints (elbow, shoulder, ankle, etc.) of an actor and

filmed the actor moving about in a darkened room.

In any individual frame of the movie, the points did

not convey a strong impression of structure. However,

when the movie was played, a vivid impression of the

actor moving through space was obtained (Fig. 1).

These displays of human activity are called ▶ point-

light displays and the general field of studying how the

individual point motions spontaneously organize into

the percept of a moving body is known as ▶ biological

motion perception [2].

There are several reasons why point-light displays

form a key contribution to the psychology of under-

standing human actions. The first is that point-light

displays represent an action as just the 2D locations of

a set of joint locations on the body and thereby remove

a multitude of other visual information that can be

conveyed by things like hairstyle, clothes, facial expres-

sion, and other factors; thus the contribution of mo-

tion itself can be effectively isolated. A second reason

is that the relevance of motion is highlighted, since

for these displays any particular static frame typically

does not elicit a strong impression of a body. A third

reason is that the motion properties of a small set of

points can be easily quantified, allowing for biological

motion displays to be compared in experiments

against other motion patterns with identical motion



Psychology of Gait and Action Recognition. Figure 1 Examples of frames taken from an image sequence of a

point-light display of a ballet dancer. Each individual frame is seen predominately as just a collection of points, although

a static human form is possibly visible in some frames. However, a vivid impression of the action is appreciated nearly

instantaneously when all the frames of the sequence are presented consecutively in a motion sequence.
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statistics. Finally, point-light displays of biological mo-

tion provide a compelling demonstration of the use of

motion to perceptually organize a display, the precise

mechanisms of which are still unclear.

One issue with the use of point-light displays is

how to evaluate the role of form perception. It could

be assumed that the mechanisms behind the percep-

tual organization of the point-light displays pro-

vide ▶ structure-from-motion information regarding

form [3]. However, this form information is not nec-

essarily equivalent to what might be available from

that presented directly from an image or even some

other reduced form such as a stick figure or a silhou-

ette. The distinction between form and motion is

important from the psychological perspective since

data from neuroscience support the idea that the

human visual system is segregated into largely distinct

pathways that specialize in processing form and mo-

tion information.

The study of point-light displays has been critical

in developing the understanding of how motion can

be used to convey the presence of an actor from

minimal information, and to a degree psychological

research has focused in this domain. However, one

other question which has drawn attention is just what

person properties can be derived from the point-light

displays. Namely, can actor qualities such as identity,

gender, emotion, attractiveness, and intent be iden-

tified from such displays? Experimental results gen-

erally indicate that human observers can identify

such qualities at better than chance, though what

cues they use and how to evaluate their performance

on an absolute scale are presently areas of active

research.
Psychological Studies into Perceiving
Biological Motion and Recognizing
Person Properties

In this section empirical investigations into biological

motion perception and action recognition is reviewed.

The majority of research into biological motion percep-

tionhas involvedpoint-lightdisplaysofgait.Research into

action recognition has typically also used point-light dis-

plays, though sometimes limited the visual display to

those points that change substantially for the different

actions.Anothermethodologicaldifferencebetweenstud-

iesofbiologicalmotionperceptionandactionrecognition

has been that research into biological motion perception

has typically relied upon psychophysical analyses of the

ability of observers, under normal and degraded viewing

conditions, to detect the presence of a walker or to dis-

criminate thewalkingdirection [2]. In contrast, research

into action recognition has used a variety of experi-

mental techniques aimed at uncovering the underlying

features used by observers to recognize the action being

performed as well as properties of the actor.

Numerous experiments have shown that the abil-

ity of the perceptual system to detect the biological

motion of a walker is surprisingly resistant to distor-

tions of the walker or the embedding of the walker

in visual noise. For instance, limiting the lifetime of

the points on the walker or displacing them to points

on the skeleton, as opposed to joint locations, barely

diminishes the ability of an observer to detect a point

light walker. Furthermore, masking the motion of

the points using a background of randomly moving

noise dots still does not greatly reduce the impression

of a human walker unless the masking noise is used in
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combination with disruptions to the synchronization

between points on the walker [4]. This disruption

to synchronization, by introducing time delays and

advances among the points of the walker, renders

local motion cues ineffective for detecting biological

motion or discriminating the direction of motion,

forcing the perceiver to rely on global or configural

cues [5]. One effective way to mask the motion of a

walker is to take the walker points themselves as the

source of points to use as background noise. However,

even when this is done and the masking dots contain

local motion signals identical to those of the walker,

large numbers are required to diminish the impression

of a human walker [6].

The apparent fine tuning of the perceptual system

to point-light displays of walking has raised the ques-

tion of whether or not specialized motion detectors are

involved in the processing of biological motion [7].

Research comparing the perception of biological mo-

tion to other kinds of motion has revealed differences

in motion tuning characteristics. Namely, that the pro-

cessing of biological motion involves the integration

of motion information over a larger spatial extent and

a longer temporal window than that found for other

types of motion [8]. However, these results fall short of

proving that dedicated biological motion detectors

exist since they reflect the output of the entire action

processing system, which might include specialized

higher-order mechanisms for processing human act-

ions that augment standard motion detectors. Evi-

dence for the involvement of higher level factors

comes from the breakdown of biological motion de-

tection when the local form and motion relations are

preserved, but the entire display is inverted [9]. Per-

ception of these inverted point-light walkers is im-

paired relative to upright walkers, independent of the

location of the source of gravity [10].

Investigations of action recognition from point-

light displays have shown that a variety of actor prop-

erties and action styles can be reported above chance

[2, 11]. Importantly, for the field of biometrics, it has

been shown that human observers can recognize iden-

tity from point-light displays of gait [12, 13, 14, 15].

The work of Stevenage [12] also compared recognition

of identity from point-light displays to video record-

ings of the same actors under full light and diminished

light conditions. It was found that identification per-

formance was equivalent between the different viewing

conditions and this was taken as strong evidence that
the motion cues contained in gait were sufficient to

provide cues to identity. Further evidence for the im-

portance of motion cues comes from results which

show that even when size and walking frequency are

made equal for all the targets to be recognized, perfor-

mance decreases but recognition of identity is still

greater than chance and generalizes to novel viewing

directions [16].

Other actor properties which can be recognized from

point-light displays of gait include gender, emotion and

even vulnerability [17]. Emotion can also be obtained

from point-light displays of whole-body dance move-

ments as well as just the arm performing everyday

movements such as knocking. In sports a variety of

athlete characteristics and movement intentions can be

gleaned from observing the action [18]. As might be

expected from the variety of scenarios discussed,

there is not a specific single action feature that has

been found to explain the recognition of actor properties

and action styles. However, researchers have generally

distinguished between form andmotion cues. For exam-

ple, in gender recognition, experiments have focused

on the diagnosticity of form cues encoded in the differ-

ent relative sizes of hips and shoulders, while other

studies have concentrated on differences of hip motion

[19]. In general, both form and motion features appear

effective to inform recognition and given the complex-

ity of human motion it is hard to tease apart the

different sources even when using point-light displays.

Even with simple actions and extremely reduced

point-light displays there is a complex pattern of

body postures that unfold in time, and it is an open

question as to what features within this signal are

crucial. One way this complexity has been addressed

in cases such as gender recognition has been to reason

from first principles about what features drive recogni-

tion, and to use carefully manipulated action displays

to test hypotheses about these features. However, an-

other approach has been to use techniques of automat-

ic pattern classification to quantify how information in

the point-light displays are used for recognition. An

issue with automatic pattern classifiers is that while

they can effectively categorize action styles they do

not necessarily provide intuition into what specific

features differentiate the styles. For this reason they

have been applied in two domains that do not require

an intuitive understanding of the features. One of

these is to quantify levels of human performance and

the other is to invert the pattern classifiers so that
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recognizable differences in action style can be injected

into movements.

The use of pattern classifiers to quantify human

performance in recognition has been achieved by

using classifiers as the standard of comparison for

human performance. If the classifier can be shown to

optimally achieve recognition by using all the available

information then the efficiency of human performance

can be expressed as the percentage of available infor-

mation used by the human observers. If, however, it

cannot be shown that the classifier optimally uses all

the information available then it is still possible to use

the classifier to estimate an upper bound of human

efficiency or to compare human recognition of differ-

ent action properties against a standard classifier [20].

For the case of recognizing gender from point-light

displays of gait it has been shown that the average

percentage correct in gender identification is 66%,

which is moderately above chance of 50%. Efficiency

at gender recognition, calculated relative to a model

emphasizing structural features [21] is 26%, which is a

high value since efficiency values of 10% or higher are

generally considered excellent performance. This low

percentage and high efficiency reflects either that the

male and female distributions are highly overlapping

and that humans are very effective in using the avail-

able structural information, or that since the structural

features do not incorporate motion information that

the efficiency results are inflated [22]. In summary, the

calculation of efficiency provides a valuable tool to

examine the recognition of human movement and

provides a means to use methods of automatic pattern

classification or to examine how performance relates to

the modeled use of a specific feature.

Another application of automatic pattern classifiers

has been to ‘‘invert’’ their performance so that instead

of recognizing actions they are injecting style into

normal movements or otherwise modifying the move-

ments [23, 24]. The intuition behind this is that the

action of a point-light display can be specified by the

three-dimensional coordinates of the body sampled

many times per second, resulting in thousands of

values representing even a simple action. Each action

can be considered as a point in this high dimensional

space and the different styles of the action as different

regions of this movement space. By obtaining classi-

fiers to identify these different regions, possibly with

the use of dimensionality reduction techniques, one

is effectively isolating the differences between a stylistic
and a neutral movement. Thus, by inverting the

computational machinery used to recognize the move-

ment one can obtain the ability to synthesize new

movements which contain the features compatible

with the desired style.
Computational and Biologically Inspired
Models of Action Perception and
Recognition

Early models of biological motion processing were

closely tied to the point-light displays of Johansson.

These models took as their input the image coordinates

of the body points in successive frames and attempted

to solve a series of equations for the three-dimensional

structure of the point lights. The operation of these

algorithms was essentially to incorporate the image

coordinates within constraints such as the planarity of

groups of points, or the hierarchical structure of points.

These structure-from-motion calculations were essen-

tially data driven (i.e., not requiring any information

about body structure except for that incorporated into

the computational constraints) and provided a means

to explain both perceptual organization as well as the

perception of body structure. While later empirical

work called into question these particular models

[25], they are still appealing in their approach to

simultaneously explain perceptual organization and

recovery of body form.

The biologically inspired models have taken as a

starting point that the human visual system appears

to separate the processing of motion and static form

early in the processing streams. Additionally, these

largely independent streams appear to converge in a

brain region, known as the posterior superior temporal

sulcus (STS), that brain imaging studies [26] have

shown to specialize in the processing of biological

motion [27]. The modeling approaches have studied

the instantiation of biologically plausible computa-

tions within a hierarchical processing framework of

form and motion [28] or emphasized the potential

for template matching mechanisms to organize point-

light displays [29]. While these biologically inspired

computational models are broadly consistent with

human behavioral experiments they are exceedingly

complex to test at the physiological level. However,

current investigations of the responses of single cells

are beginning to reveal how motion and form neurons
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are organized in cortex and the form and motion

image characteristics to which they respond [30].

The computational and biologically inspired

models have focused on the early and mid levels of

visual processing in the interpretation of biological

motion. However, since obtaining a visual understand-

ing of the actions of others has significant social signif-

icance there has been activity in trying to understand

how deeper meanings such as goals and intentions of

actions are recovered. While it is possible that this

understanding arises simply from a visual matching

process that involves increasingly elaborate representa-

tions of the visual signal, there is evidence that a direct-

matching route works by directly mapping visual

input into ones own behavioral repertoire of actions.

These direct-matching models are largely inspired

by the finding of brain networks that represent

both the production and perception of goal directed

actions [31]. Consistent with these models recent brain

imaging experiments have found the functional

representations of movement goals and movement

kinematics to be differentially represented within

these networks [32].

Computational models of biological motion have

proven useful in many ways. Not only do they provide

a compact means to express how recognition might

occur but they often lead to testable hypotheses that

can be explored with further experiments. They also,

importantly, allow a common framework for describ-

ing biological motion perception that can span related

efforts in neuroscience and experimental psychology to

understand how actions are recognized.
Related Entries

▶Evaluation of Gait Recognition

▶Gait Recognition, Model-Based

▶Human Detection and Tracking

▶Gait Recognition, Motion Analysis for

▶ Surveillance
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Punch-in, Clock-in, Punch-out,
Clock-out, Punch
P
The term punch, describes the act of a mechanical

strike putting a hole, or ‘‘punching’’ the timecard to

signify the employees action of either registering for

work, or leaving work. In an electronic world, this has

changed to ‘‘clock-in’’ and ‘‘clock-out’’.

▶Time and Attendance
Punctum Lacrimale
The punctum lacrimale is located at the corner where

upper eyelid comes together with lower eyelid. It is

prominent in many subjects and appears as a ‘‘D’’

shape. The function of punctum lacrimale is to secrete

tears to keep proper moisture on the surface of eyeball.

▶ Iris Super-Resolution

▶Automatic Classification of Left/Right Iris Images
Pupil
The pupil is a hole in the center of the iris that controls

the amount of light entering the eye.

▶ Iris Image Data Interchange Formats, Standardization
Pupil Phase Engineered Iris
Biometrics
▶Wavefront Coded1 Iris Biometric Systems
Pupil Phase Engineering
A general framework for the design of pupil phase

masks for certain computational imaging systems,

where high-quality image acquisition is addressed

from an optimization perspective. Extending the

depth of field is but one requirement of image quality,

others being controlling and minimizing the impact of

aberrations, motion blur, and scattering from the im-

aging medium, to name a few.

▶Wavefront Coded1 Iris Biometric Systems
Purkinje Images
When illuminating the eye the exterior and interior

surfaces of the cornea and lens reflect the illuminating

light forming bright reflections within recorded images.

These are known as the Purkinje images. Within the field

of biometrics Purkinje images are evident within iris

images and can obscure areas of iris texture. Iris capture

systems aim to minimize their effect reducing them in

size and restricting them to within the pupil region.

▶ Simultaneous Capture of Iris and Retina for

Recognition





Q

Quadrant
In Cartesian coordinate system, the intersection of the

two axis (x and y) creates four regions, called quad-

rants. Conventionally, quadrants are labeled counter-

clockwise starting from the upper right (‘‘northeast’’)

quadrant. In the first quadrant, both x and y coordi-

nates are positive. In the second quadrant, x-coordi-

nates are negative and y-coordinates are positive. In

the third quadrant, both coordinates are negative and

in the fourth quadrant, x-coordinates are positive and

y-coordinates are negative.

▶ Iris Recognition, Overview
Quality-dependent Fusion
▶ Fusion, Quality-Based
# 2009 Springer Science+Business Media, LLC
Quantum Efficiency (QE)
For imaging sensors, the probability that a single pho-

ton impinging on a detector will be detected by the

sensor. The exact definition can vary from vendor to

vendor, e.g., some vendors report the QE for photons

that hit a sensor pixel, ignoring the fill factor – the

fraction of the sensor that is actually covered by pixels.

▶ Iris Device





R

Radiometric Calibration
A process for achieving a direct relation between the

value at a pixel and the absolute amount of thermal

emission from the corresponding physical scene

element.

▶ Face Recognition, Thermal

▶ Image Formation
RAIC
▶ Iris Recognition at Airports and Border-Crossings
Random Forgery
In signature verification, random forgeries (also

known as simple forgeries) represent the case where

forgers claim to be another user but use their own

signature.

▶ Signature Databases and Evaluation
Range Scans
Data that has the 3D depth information of every scanned

point. A scan is the reading of the information for a

typically prespecified region. A range image is a collec-

tion of pixel values with corresponding depth informa-

tion. In most instances, the sensor used to obtain the
# 2009 Springer Science+Business Media, LLC
range image is calibrated allowing us to give the distance

measures in physical units such as meters.

▶ Face Recognition, Component-Based
RASTA-Filtering
RASTA-filtering was originally introduced in connec-

tion with perceptual linear prediction (PLP) [4] type of

preprocessing; i.e., band-pass filtering in the log spec-

tral domain. It aims to suppress slow channel varia-

tions assumed to be additive. This filtering principle

has also been applied to cepstral feature based prepro-

cessing [21] in both the log spectral and the cepstral

domains. A general RASTA filter is defined by:

T zð Þ ¼
k
PN
n¼0

n� n�2
2

� �
zn

1� px�1
; ð1Þ

where, the numerator is a regression filter of odd order

N and the denominator is a leaky integrator. A simple

variant of RASTA-filtering is a sliddly window mean

subtraction technique, which corresponds to a moving

average filter. Filtering is normally performed in the ceps-

tral domain (CMS). The mean corresponds to the long-

term cepstrum and is normally computed on the speech

part. A silence/speech detector is thus necessary.

▶ Session Effects on Speaker Modeling
Raw Finger Vein Image
Raw finger vein image is the original infrared finger

vein image captured by a finger vein reader. It is
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typically a greyscale image in which finger vein pat-

terns are imaged as dark area.

▶ Finger Vein Biometric Algorithm
Read Noise
For image sensors, each time when a pixel is read out,

there is noise associated with the act of reading the

pixel. This noise is, to first order, independent of the

value of the pixel.

▶Biometric Sensor and Device, Overview

▶ Iris Device
Real-Time 3D Surface Digitization
Many 3D biometrics applications rely on laser scanners

for surface digitization. Although these devices pro-

duce very accurate 3D coordinates, they have two main

limitations. They are expensive thus prohibiting their

use in a wide scale, and they require the user to stay still

during the acquisition. The latter is because during

acquisition, a laser beam sweeps the object surface,

and thus movement may results to artifacts. 3D acqui-

sition based on the stereoscopic principle is an alterna-

tive without the above limitations, since two plain

cameras are used. However the accuracy of such

devices is usually limited. A solution that is a compro-

mise between the above is using sensors that are based

on the structured light approach. The surface of the

object is illuminated by a light pattern (e.g. by means

of a slide or video projector) and the resulting image is

captured by a common camera. By analyzing the de-

formation of this pattern on the surface 3D coordi-

nates may be computed by means of triangulation. The

accuracy of this approach has been shown to be ade-

quate for biometric applications.

▶ Finger Geometry, 3D
Recognition at a Distance
Recognition at a distance is the process of establishing

the identity of humans in a non-intrusive way from a

distance, often without their knowledge. Typically, face

and gait biometrics are used to perform recognition

from small to mid range distance.

▶ Face Recognition, Video-based
Rectilinear
Moving in, consisting of, bounded by, or characterized

by a straight line or lines. Rectilinear images are those

in which intensity values are recorded as a matrix, with

each element in the matrix corresponding to the inten-

sity measured by a single picture element (pixel) in the

image sensor.

▶ Iris Image Data Interchange Formats, Standardization

▶ Iris Standards Progression
Reference Set
Reference set is a set of biometric samples or extracted

features from a biometric trait of a user, which are

stored to perform matching. Stored samples are also

known as templates. Generally, each input biometric

sample will be compared to all the templates in the

reference set in the matching phase. Reference-based

systems are opposed to model-based systems, where

instead of storing genuine samples, a classifier is

trained (or a statistical model is estimated) from the

training set.

▶Performance Evaluation, Overview

▶ Signature Matching
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Reflection
When light impinges on a object, part of the light is

reflected, it bounces off the object; part of the light

is transmitted, it passes through the object; and part of

the light is absorbed, it is converted from light into

some other form of energy in the object.

The reflected light can be divided into two compo-

nents, specular and diffuse. A specular reflection is

what you see in a mirror; a single ray of light is

reflected back as a single ray of light in a new direction

determined by the rule that the angle of reflection with

respect to a normal to the surface equals the angle of

incidence with respect to the same normal. Diffuse

reflection is what you see from a matte surface; a single

ray of light is reflected back over a broad range of

angles. Most materials have specular and diffuse com-

ponents to their reflectivity.

▶ Iris Device
Reflection-Based Touchless Finger
Imaging (RTFI)
R

RTFI refers to touchless fingerprint sensor.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Region-of-Interest (ROI) Encoding
It is often desirable to allocate a coding budget non-

uniformly to an image, especially when compression is

required. This may take the form of space-variant

resolution, so that only some favored region receives

maximal resolution while other areas are encoded

with coarser resolution; or it may take the form of

completely masking out the irrelevant areas. The
capability to specify a Region-of-Interest (ROI) is

built into advanced coding protocols for image com-

pression, especially the JPEG2000 protocol (ISO Stan-

dard 15444) which allows binary masking as well as

code-block selection so that different resolution levels

and different coefficient scaling can be applied to dif-

ferent tiles. The older JPEG protocol (ISO Standard

10918), in its Part 3 extension, also supports variable

quantization for explicitly specifying different quality

levels for different image regions.

In JPEG2000, the MAXSHIFT tool allows specifi-

cation of an ROI of arbitrary shape. ROI methods

have been developed for compact encoding of iris

images so that nearly all of the available coding bud-

get is allocated to the iris itself, and not wasted on

costly irrelevant structures such as eyelashes. In these

methods, the non-iris regions of an image (eyelids,

eyebrows, eyelashes, skin and sclera) are all automati-

cally detected and painted out with uniform gray

values before JPEG or JPEG2000 compression, result-

ing in almost no coding coefficients being wasted on

them and allowing image file size to be reduced

to 2,000 bytes.

▶ Iris Recognition Performance Under Extreme Image

Compression
Registered Traveler

CATHERINE J. TILTON

Daon, Reston, VA, USA
Synonyms

Known traveler; Trusted traveler
Definition

Registered Traveler (RT) programs are designed to

expedite legitimate travelers through a border control

or security screening process by conducting a ▶ secu-

rity threat assessment to determine risk levels prior to

acceptance into the program and passage through a

designated travel lane. These programs are generally
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voluntary and involve the collection of biographic and

biometric data used in background checks. Often, they

involve the issuance of a secure biometric credential

that can be used as part of an identity verification

process.

Registered Traveler or Trusted Traveler programs

are airline passenger security assessment systems

deployed in the USA and controlled by the transporta-

tion security administration (TSA) as public/private

partnerships. Their purpose is to expedite the security

screening procedures for departing air passengers who

have been previously vetted by TSA and deemed, on

the basis of background checks, to be minimal security

risks. To use the expedited fast lanes at airports, trave-

lers must prove their identity and qualification under

the scheme by either fingerprint or iris recognition,

matching their own biometric record that is securely

encrypted on a smartcard issued by TSA and interop-

erable across dozens of US airports.

The largest such programme is called CLEAR oper-

ated by Verified ID, which has enrolled more than

175,000 fee-paying members.
Introduction

Today’s traveling public wants it all – hassle-free, se-

cure, and safe travel. However, security usually means

additional inconvenience. As a result, user-friendliness

is sometimes seen as a trade-off for enhanced security.

In the wake of the events of 9/11, national security and

transportation officials worldwide were faced with this

challenge: How to heighten the security of transporta-

tion, travel, and border systems while minimizing

delays, aggravations, and privacy intrusions?

One idea that has gained some momentum is reg-

istering travelers in advance such that those travelers

can be expedited through one or more of the travel

processes – usually security screening and/or border

control points. The idea is that by prescreening trave-

lers, along with a strong identity authentication

method, they can be segregated into risk categories,

allowing security officials to allocate greater attention

and resources to ‘‘unknown’’ or high-risk travelers [1].

Goals of RT programs generally include the

following [2]:

� Enhance security

� Facilitate legitimate travel and trade

� Protect personal privacy
Participation in registered traveler programs

involves a registration process in which the applicant

provides biographic information and enrolls his/her

biometrics. This information is used to conduct risk

assessments (or security threat assessments) that may

include criminal background and watchlist checks. The

cognizant agency then makes an adjudication decision

as to whether the individual is eligible for the program.

Benefits of participation from a traveler’s perspec-

tive include shorter lines, faster processing, and con-

sistency of experience. Some programs also offer other

commercial benefits (e.g., preferred parking, con-

cession discounts). When used to expedite security

screening, one of the main benefits expressed by parti-

cipants is predictability of wait times, allowing them to

better judge time allowances and thus to spend more

time at home or work prior to travel. This appeals

mostly to frequent business travelers who are willing to

pay for such an advantage. ‘‘The Privium (See ‘‘Example

Systems’’) experience suggests that travelers are a great

deal more willing to submit to fingerprint and iris scans

if they think it will save them time and effort [3].’’

RT programs exist in the US, Europe, and other

locations and are emerging elsewhere. The US program

centers on the security screening function, whereas

many other programs focus on the border control

area (i.e., immigration stations at ports of entry).

Nearly all such programs are implemented at airports;

however, this is not universally true. It is seen by many

as a method for ‘‘simplifying passenger travel’’. A few

such programs are highlighted in the examples section.
The RT Process

The processes used within a registered traveler pro-

gram are similar to those used in typical biometric-

based ▶ credentialing systems. (An example of a

credentialing system is the personal identity verifica-

tion program in the US.) [4] At a high level, the process

comprises three elements: (1) Registration, (2) Authen-

tication (Use), and (3) Administration. Depending on

system architecture (see next section), these can be

further broken down into component operations.

Registration is the process of enrolling and vetting

an applicant to determine and instantiate eligibility.

This generally involves the following steps:

� Preenrollment (optional). This step involves the

applicant providing biographical information

(usually via some remote means, such as the
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internet) in advance of in-person, full enrollment.

This may also include the scheduling of the enroll-

ment appointment, receiving instructions, and

payment of any associated fees.

� Biographic enrollment. The applicant either pro-

vides the requested biographic data or verifies/

corrects those supplied during preenrollment.

Biographic information would normally include

name, date/place of birth, address, employment,

and relevant identification numbers.

� Identity proofing. This entails the applicant providing

one or more identity documents (e.g., birth certifi-

cate, drivers license, passport, or government issued

ID), which are then scanned and validated.

� Biometric enrollment. Usually ten fingerprints as

well as a facial photograph are captured, as these

are the norm for criminal background checking.

Some programs capture additional or alternative

biometrics such as iris images.

� Identity investigation. Using the information

provided by the applicant, one or more of the

following checks may be performed as part of

the security threat assessment (STA):
� Name-based background checks, which may

include verification of the existence of the

claimed identity

� Biometric duplicate checks, to ensure that an

individual is not enrolled into the system under

more than one claimed identity

� Criminal history checks

� Watchlist checks, including but not limited to

known or suspected terrorists
R
� Adjudication. Based on the results of the STA, the

cognizant authority makes a decision as to appli-

cant eligibility.

� Credential issuance (optional) and notification.

Most RT programs issue to approved participants

a physical credential, such as a smartcard (or

register a previously issued credential, such as an

e-Passport) that is used in subsequent processes;

however, this is not strictly required as a central

server-based architecture is also possible. When

used, these credentials serve as the claim of identity

when presented, but also may contain biometrics

that can be used to verify that claim during an

authentication operation (this is discussed further

in the following section).

Authentication is the process of verifying identity

and program participation at the designated point
in the travel process. This usually involves a claim

of identity (either explicit or implicit), biometrically

verifying that identity against the enrollment and

validating the privilege of the participant. The last

step may include:

� Checking the validity of the credential including

expiration, revocation, integrity, and security

features

� Checking that the participant’s privileges have not

been revoked or otherwise invalidated.

Authentication is frequently performed at

(attended) verification kiosks located at RT privilege

lines. The outbound users may need to first show a

boarding pass and an ID (an RT card or a government-

issued ID) before approaching the kiosk. He or she

would then present his or her RT card e-Passport to the

kiosk (in a credential based system), present his or her

biometrics to the sensor when challenged, and be verified

to pass through if his or her biometrics match. In most

schemes, if biometric verification fails, the participant is

moved the head of the regular queue. Some multibio-

metric RT systems allow the traveler to select their pre-

ferred verification biometric (e.g., fingerprint or iris).

Administration includes both normal system oper-

ation and maintenance functions as well as ongoing

privilege management such as suspension or revoca-

tion of privileges, renewal and re-issuance, and some-

times periodic refresh of eligibility checks (i.e., running

a participant back against the current watchlist).
Architecture

As you might expect, several architectural alternatives

exist for RT schemes. Major architectural decisions

include whether a centralized or distributed model

will be used (this primarily relates to where the bio-

metric matching operations are performed) and

whether or not it will be federated (i.e., the degree of

autonomy and commonality of design among service

locations). Other decisions involve whether or not it

will be credential based, single or multimodal, and

whether a one-to-one (1:1) or one-to-many (1:N)

technology will be employed.

In a centralized model, most major operations are

performed at a central server. Participant facing opera-

tions are still performed locally (for example, informa-

tion collection and biometric captures). However, all

data storage/management and biometric matching are
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performed at the server. In a distributed model, data

may be stored at the operational site(s) or on a creden-

tial and matching may be performed locally as well.

In a federated system, the architectural model is set

and interfaces between major components are defined,

but the local systems may be defined and controlled by

multiple different entities, although some common

requirements will apply (e.g., security). For example,

in the US Registered Traveler system (see System

Examples, below), which is setup as a public/private

partnership, each enrollment and verification site is

owned and operated by a given ▶ service provider

(SP), which is contracted by a location sponsor (e.g.,

an airport). Design of the specifics of the enrollment

station and verification kiosk, including capture equip-

ment, process flow, and internal databases, is SP-

specific, although elements that affect interoperability

across the system are controlled by a system interoper-

ability specification and conformance testing to that

specification is performed. A central element still

exists, of course, to perform those functions that re-

quire it (e.g., duplicate checking, STA gateway, payload

generation/signing, etc.)

If a credential-based system is used, then there are a

number of design elements involved including the

card-operating system, data model, and card edge

specification as well as whether the card personaliza-

tion and issuance will be performed centrally, by an SP,

or locally. Depending on the degree of federation, ele-

ments of the card topology (what it looks like on the

outside) may also be strictly specified (e.g., whether/
Registered Traveler. Figure 1 Federated RT Model.
where a name and facial photo will be printed

on the card). A very basic and important decision is

whether a contact, contactless, or dual-interface card

will be used. Security and privacy models must also

be determined including how the personal information

(including biometric data) will be protected, security

features (topographical and digital), and tamper resis-

tance. For contactless cards, this includes the prevention

of covert reads and sniffing of RF communications

during use. Figure 1 depicts a high level architecture

and process flow for a federated, credential-based RT

system.

In selecting the biometrics to be enrolled, stored,

and verified, needs for background checking and oper-

ational use must be considered. Generally, background

checking requires the collection of ten fingerprints

(tenprints) as this is the standard for such systems;

however, this may or may not be the biometric of

choice for operational use. Considerations such as

social acceptability, accuracy, and ease of use will

drive this decision. To broaden the user population

and reduce false rejections, a multimodal system may

be employed. In this case, multiple biometrics are

captured during enrollment and the participant may

choose a preference at the time of enrollment or at

verification. The need to be able to verify any of the set

of supported modalities will, however, drive up the

cost of the enrollment and verification stations as mul-

tiple capture devices will be required.

It is important to note that in order to perform

duplicate (uniqueness) checking, the biometric collected
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for this purpose must be captured (or attempted to be

captured) from all participants – otherwise, the pur-

pose of such checking is defeated. Another important

consideration for credential-based schemes is which

biometrics will be stored on the credential itself, espe-

cially considering space limitations and data transfer

rates of the card. This may constrain the number,

types, and formats of biometric data to be held. For

example, some image data (even compressed) may be

too large to be feasibly considered, or if used, may

further limit the inclusion of other biometrics. If

fingerprint data are to be included, the number and

selection of fingers must be determined.

Most registered traveler systems use 1:1 biometric

verification; however, it is possible to use a 1:N identi-

fication technology (e.g., iris recognition). In this case,

no claim of identity is made. The participant merely

presents his or her iris(es) at the kiosk and this is

matched against all other participants’ records, result-

ing in an identification (identity returned as a result of

a match) or a no-match. This is usually performed

using a central server model to avoid the need to

duplicate the database and protect all copies.

Today’s systems are generally built around service-

oriented architectures (SOA) taking advantage of the

internet, existing SOA tools, and the many benefits of

this architecture. These include service requester/pro-

vider decoupling, modularity, scalability, and compo-

nent reuse. It is the basis of most large enterprise

architectures and supports business process orchestra-

tion (BPO) workflow implementation, usually as part

of an enterprise service bus (ESB).
R

Interoperability

In a nonfederated, single operator, closed RT system,

interoperability is not generally an issue. However, in a

federated system, this is critical as the various system

components must be able to properly function and

interact with one another. Areas in which interopera-

bility are most critical include:

� Intrasystem (inter-subsystem) interfaces

� Card edge and data model

� Security

Examples of intersubsystem interfaces include

those between an enrollment station/system and the

central Identity Management System (IDMS), between

the IDMS and the STA/adjudication agency, and
between the IDMS and the verification station/system.

The enrollment system must transmit collected ‘‘en-

rollment packages’’ to the IDMS for processing. The

data and messaging formats as well as the communica-

tion protocols must therefore be defined. This includes

the format of the biometric data. It is preferred that the

submitted biometric information be in raw image for-

mat with minimal compression; however, some pre-

processing and compression are usually required. For

example, fingerprint data are normally transferred as

three ‘‘slap’’ images in ANSI/NIST ITL1–2000/7 Type-

14 record format using WSQ compression [5]. Mes-

saging protocols are often Web services based, using a

‘‘SOAP over HTTP’’ XML-based implementation. In

addition to the basic set of messages required to per-

form an enrollment, additional messaging is required

to handle a host of error conditions and administrative

needs. These include those related to updates, fees, and

revocation.

With respect to an interoperable credential, the

challenge in a federated system is that a credential

produced by one service provider can be reliably and

securely read and verified by a different provider. This

generally requires a common form factor (e.g., ISO

card), a common ‘‘card edge’’ or card interface/com-

mand set, and a common data model. The card appli-

cation must be accessible and the security mechanisms

usable by all authorized entities. A good model for this

is the US PIV program already mentioned and the

associated technical guidance, most notably NIST

SP800–73 [6]. As an alternative, systems can leverage

the e-Passport as an interoperable, biometrically-en-

abled credential, without the lost and logistics of issu-

ing another. Common biometric data formats are also

critical for interoperable use across multiple airport

kiosks. For example, fingerprint data may be stored

as ISO/IEC 19794–2 minutiae templates [7]. See also

the chapter on Standardization for more information

on biometric data interchange formats and technical

interfaces.

Security is important in all RT systems, but

becomes a bit trickier in federated systems due to the

key management challenges. The intersubsystem mes-

sages should be signed and either encrypted or passed

via an encrypted channel (i.e., SSL/TLS) using stan-

dard cryptographic protocols. Biometrics on a creden-

tial can be protected by one of the following means:

PIN protection, biometric data encryption, and (card/

reader) mutual authentication. In all the cases, the

biometrics should be digitally signed either directly or
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via a container hashing/signing scheme such as that

used by ICAO for the ePassports.
Example Systems

This section takes a look at a few example registered

traveler system implementations.
Privium

An early, and successful showcase, registered traveler

program is the Privium system that was first intro-

duced in 2002 at Schiphol airport in Amsterdam (fol-

lowing a one-year pilot), where participants are

charged €99 for the privilege of bypassing the long

queues at immigration (passport control).

This is a credential-based system where the iris data

are stored on a smartcard issued to the participant. The

enrolled iris data are not stored in a central database –

only on the card, which also contains passport data.

Any temporary use of this data is immediately pur-

ged after use to comply with Dutch privacy laws.

Enrollment includes a background check. At the Pri-

vium verification station, a 1:1 biometric match is

performed against the iris template stored on the

Privium card.

The program is available to anyone with a Europe-

an Economic Area (EEA) passport. It is said to cut the

time spent at passport control to 10–15 s and queue

time by up to 30 min [3]. Besides fast-track border

passages, a separate check-in zone and priority parking

are offered (Privium Plus). Participants may check in

at the business class desk regardless of the class of ticket

they hold. Online application and appointments

are available. Onsite registration takes 15–20 min

and includes inspection of identity documents, iris

enrollment, and instructions on system operation.

The Privium card is good for 4 years, but is renewed

annually [8].
UK IRIS

The UK Home Office Border & Immigration Agency

introduced its Iris Recognition Immigration System

(IRIS) in March 2006, as a free service to the traveling

public both to enhance their experience and to reduce

manned immigration platforms. It is the first phase of
the UK e-Borders’ initiative to modernize immigration

controls. Participation allows registered passengers to

enter the UK without queuing to see an immigration

officer at passport control [9]. The intent is to enhance

both security and efficiency.

The Home Office says ‘‘Successfully enrolled pas-

sengers can enter the United Kingdom through auto-

mated immigration control barriers after looking into

an iris recognition camera.’’ Like the Privium program,

IRIS uses iris recognition technology ‘‘because it is a

fast, secure, and fraud-resistant way to verify passen-

gers’ identities. This makes it an ideal biometric for

secure yet expedited clearance [9]’’. It is operational

at Heathrow, Gatwick, Manchester, and Birmingham

airports where enrollment rooms are provided. Enroll-

ment takes approximately five to ten minutes.

Installation followed a trial in 2002 at Heathrow in

which 200 selected passengers were enrolled. This was a

joint project by British Airports Authority, the Immi-

gration Service, British Airways, and Virgin Atlantic

Airways. Figure 2 shows an IRIS verification station

(barrier) at a UK arrival hall. Note the inclusion of

multiple iris cameras mounted at various heights.

No fingerprint data are collected during IRIS

enrollment – just iris and facial images – although an

interview by an immigration official is conducted. No

credentials are issued. Participation is voluntary and a

marketing campaign is in place, targeting non-EEA

foreign nationals. This has been a very popular system

to date. As of February 2007, 61,000 people had

registered. The original estimate when the program

was announced was that over 1 million would be

registered within the first five years.
US Registered Traveler

The United States piloted a registered traveler program

in 2005 at five airports as part of a technology evalua-

tion. Based on the results (including the popularity of

the program which extended the original timeframe)

and one additional private installation, a broader in-

teroperable, national pilot system was deployed in late

2006. The US RT scheme is a fully fee-based public-

private partnership. It uses a credential-based, feder-

ated architecture in which service providers contract

with sponsors (airports/airlines) to operate the system.

A central IDMS operated by the American Associa-

tion of Airport Executives (AAAE) performs the func-

tions identified in Fig. 1. The Transportation Security
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Administration oversees the program and performs all

eligibility adjudications.

As a federated system, an interoperability specifica-

tion was developed by a group called the Registered

Traveler Interoperability Consortium (RTIC). This

group, which included airport operators, technology

vendors, and system integrators with participation

from the TSA, developed the specification over a

4 month period [10]. The TSA developed the program

‘‘to provide expedited security screening for passengers

who volunteer to undergo a TSA-conducted security

threat assessment (STA) in order to confirm that they

do not pose or are not suspected of posing a threat to

transportation or national security [2].’’ The process

generally follows that described in the ‘‘Process’’

section earlier.

By December 2008, 20 airports had deployed the

RT system and 200,000 participants had been enrolled,

and over 2 million trips made through RT lanes. At this

point, seven vendors had qualified as service providers.

Participants can verify (against their RT card) using

either fingerprint or iris recognition. Figure 3 depicts

one of the US RT airport installations.
Canpass/Nexus-Air

In 2002, the Canadian Customs and Revenue Agency

(CCRA) and Citizenship and Immigration Canada

piloted an ‘‘express lane’’ through customs and immi-

gration based on iris recognition. It is operational at
airports in eight of the largest Canadian cities. The

program allows preapproved low-risk air travelers to

clear customs and immigration by using a self-service

kiosk.

The goal was to streamline airport operations while

maintaining a safe and secure border.

Now run by the Canada Border Services Agency

(CBSA), this system was subsequently expanded via a

bilateral Canada/US agreement into the NEXUS-AIR

program which pre-clears travelers returning to the US

from all major Canadian airports. CANPASS likewise

pre-clears travelers returning from US (and some other

international) locations.

Self-service kiosks use iris recognition to verify

CANPASS membership. Through an agreement with

CATSA, NEXUS-AIR members may also use the prior-

ity lane through the security screening checkpoint. In

2007, fees were $80 CDN. Key findings of a 2006 pilot

evaluation found that participants were extremely

satisfied with the program and reported saving an

average of 27 minutes per passage. According to a

survey conducted by EKOS Research Associates, the

average NEXUS-Air participant enters Canada 12.8

times per year [11].
Others

RT systems have been implemented in other countries

besides those highlighted earlier. For example, Germany

has deployed a system in Frankfurt. Japan has recently
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announced an RT component to their Japan Biometrics

Identification (Border) system. And the EU has been

investigating the possibility of an ‘‘international’’ RT

program.
Issues and Considerations

Although apparently popular and workable, some

issues and considerations exist with the establishment

and use of RT systems.

Usability encompasses a range of issues related to

ergonomics, accessibility, user interface, general ease of

use, universality, and social acceptance. Biometric sys-

tems are typically not a ‘‘one-size fits all’’ arrangement,

and care must be taken in their design to make them as

usable as possible to the broadest possible user popu-

lation. For example, nearly every biometric technology

has a finite failure to enroll rate and some schemes are

not able to be used by disabled individuals.

Privacy concerns also must be dealt with sensitively.

Systems must take privacy considerations into account

from the earliest point in system design and gover-

nance. Fortunately, this seems to be the case in the

examples noted earlier.

Criticism has been levied against RT schemes as

being a ‘‘pay to go to the head of the line’’ rather
than a security improvement program – a so-called

‘‘Lexus line’’. ‘‘Not everyone is comfortable with what

amounts to a two-tier system: some say it unfairly

disadvantages infrequent travellers, and may make

them susceptible to undue scrutiny [12].’’
Summary

Biometric-based registered traveler programs are not

only becoming more popular but also being proved to

be workable and to provide benefits both to the imple-

menters (i.e., governments and airports) and to the

traveling public. Although similar in many areas, a

variety of different schemes, processes, and architec-

tures are employed to implement these programs.

Biometrics are used both in the registration process,

as part of the eligibility determination, and in the

authentication process, during operational use to

verify identity as a precleared program member.
Related Entries

▶Border Management Applications

▶ Iris Recognition at Airports and Border-Crossings

▶ Standardization

▶ System Design
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Remote Authentication
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Synonyms

e-authentication, Remote access (partial); Remote

monitoring (partial); Remote verification

Definition

As with any form of authentication, remote authenti-

cation involves the verification of a person’s claim of

identity. What makes remote authentication different

is that it is performed on individuals located beyond

the physical boundaries of the organization – what

some call as the ▶ extended enterprise.
Remote authentication is distinct from contactless

and at-a-distance. Those two methods refer to the

absence of direct contact or proximity between the

individual being authenticated and a biometric sensor.

Their focus is on the physical relationship between the

individual and the sensor.

In contrast, remote authentication says nothing

about the proximity of the user to the input device.

Both the user and the device are outside the perimeter

of the enterprise and may involve contact, contactless,

or at-a-distance input of biometric samples.

Remote authentication is also distinct from remote

identification. ‘‘Authentication’’ is a synonym for veri-

fication which means the individual has made a claim

of identity and the function of the biometric system is

to determine whether the claim is valid.
Introduction

Historically the boundaries of enterprises, whether

they were private corporations or government

agencies, were largely defined by brick and mortar.

Anyone wanting to do business with the enterprise

would appear in person and their identity would be

validated in situ. The primary forms of remote access

were via wireline telephone and mail, and remote au-

thentication was performed by humans.

Today, communication, transactions, and access

to information are available to anyone who has any

kind of telephone or Web-enabled computing device.

This extended enterprise is an essential component of

e-government and e-business which, in turn, are fueled

by the Internet, globalization, and the mobile revolu-

tion. Furthermore, the individuals accessing the enter-

prise remotely include employees as well as partners,

suppliers, customers, and the public. Furthermore,

enterprises must specify the policies and procedures

that govern the access granted to each of these indivi-

duals and groups.

Access to the extended enterprise has become in-

creasingly electronic and dominated by automation,

including ▶ interactive voice response (IVR) systems,

email, chat, SMS, and Web sites.

The growth of remote access has exposed the failure

of ID + password/PIN security to prevent or even

attenuate unauthorized access to personal data. There

has been a global escalation of identity theft and the

perpetration of new types of fraud [1]. In response,

security-enhancing regulations have been promulgated
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at national and international levels. In the United

States, alone, regulators now mandate multi-factor

security for financial services [2–4], healthcare [5],

and telecommunications [6].

The rise of remote access, concerns about the abili-

ty of existing authentication methods to prevent un-

authorized access, regulation, and other factors have

enhanced the attractiveness of biometrics for automat-

ing remote authentication. According to the National

Institute of Standards and Technology’s (NIST) publi-

cation Introduction to Public Key Technology and the

Federal PKI Infrastructure [7] ‘‘biometrics provide a

very high level of security because the authentication

is directly related to a unique physical characteristic of

the user which is more difficult to counterfeit.’’ (NIST

SP 800–32 pp. 8–9.) Biometrics is ideally suited to

remote authentication because it binds the authentica-

tion event to the physical presence of the human

claimant – even when the event is performed with a

remote user.
Levels of Assurance

Any application requiring authentication can be de-

scribed in terms of its security level, the degree of

potential harm or impact that an authentication error

would cause (from minor inconvenience to criminal

offenses and threat to personal safety), and the likeli-

hood that such harm or impact will occur. Those

considerations become extremely important when the

application must authenticate remote users. In re-

sponse to concern about such issues the United States

Office of Management and Budget (OMB) Publisher

E-Authentication Guidance for Federal Agencies [8] to

assist U.S. federal agencies implementing the ‘‘e-Gov’’

program.
Remote Authentication. Table 1 Maximum Potential Impac

Potential Impact Categories for Authentication Errors

Inconvenience, distress or damage to standing or reputation

Financial loss or agency liability

Harm to agency programs or public interests

Unauthorized release of sensitive information

Personal safety

Civil or criminal violations
OMB’s Guidance defines four levels of authentica-

tion security (called ‘‘assurance levels’’). Table 1 corre-

lates each of the levels with the damage that could

occur as the result of an authentication error and the

potential harm to the enterprise.

The National Institute of Standards and Tech-

nology (NIST) translated the OMB’s assurance levels

into electronic authentication solutions and published

them as Electronic Authentication Guideline (NIST SP

800–63) [9]. Technical committee MI (Biometrics)

The American National Standards Institute/InterNa-

tional Committee for Information Technology Stan-

dards (ANSI/INCITS) extended NIST’s categories to

include biometrics and published its work as Study

Report on Biometrics in E-Authentication (M1/07–

0185) [10].

The following provides a summary of assurance

levels in those three publications. The italicized de-

scription of each level is from Appendix A of OMB

04-04 [8]

� Level 1: Little or no confidence in the asserted iden-

tity’s validity is required. (OMB Appendix A p. 3.)

There needs to be some assurance that the claimant

is the same person who originally registered.

A single authentication method is sufficient, such

as a plaintext password. No cryptographic methods

are required and no effort is invoked to prevent an

eavesdropper from discovering a password or other

secret that might be used for authentication.
ts fo
Biometrics: ‘‘It is likely biometric technologies used

alone would be stronger than the necessary security

at this level.’’ (American National Standards Insti-

tute/InterNational Committee for Information

Technology Standards (ANSI/INCITS) 2007 Study

Report on Biometrics in E-Authentication (M1/

07–0185). p. 16).
r Each Assurance Level (from OMB M 04-04) [2]

Assurance Level Impact Profiles

1 2 3 4

Low Mod Mod High

Low Mod Mod High

N/A Low Mod High

N/A Low Mod High

N/A N/A Low Mod High

N/A Low Mod High
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Examples:

� A user presents a self-registered name and user

ID (e.g., a password) as part of creating a per-

sonalized space on a Web site or in a social

network (e.g., MyYahoo or Facebook) where

little or no sensitive, personal information is

stored.

� A user participates in an online discussion

group that does not request identifying infor-

mation beyond participant name and organiza-

tion name.
� Level 2: Some confidence in the asserted identity’s

validity [2] is required. This level requires only

single-factor authentication plus approved crypto-

graphic techniques. These credentials are appropri-

ate for operations that require, a user’s identity

details be verified independently during the initial

registration (Bolton, Joshua 2003 E-Authentication

Guidance for Federal Agencies (Memorandum M-

04-04) Office of Management and Budget (OMB)

Appendix A p.3).
R

Biometrics: ‘‘There is a contention that biometrics

cannot be considered secrets and therefore there is

language in this assurance level that prohibits the

sharing of secrets. This limitation can be overcome,

however, if there are countermeasures put in place

to mitigate the concerns about the sharing of au-

thentication secrets. In particular, through liveness

detection at the point of acquisition and the use

of approved cryptographic techniques to protect

transmission.’’ (ANSI/INCITS Op. cit. p. 16.)

A biometric would be suitable and could be stron-

ger than the security required for this level,

especially content-bearing biometrics, such as

▶ text-dependent speaker authentication because

they are two-factor techniques (biometric +

knowledge).

Examples:

� A user subscribes to an online educational ser-

vice that must authenticate the person in order

to present the appropriate course material, as-

sign grades, or demonstrate that the user has

satisfactorily completed the training. The pri-

mary risk is that an unauthorized third party

may gain access to the grades.

� A beneficiary changes her or his address of

record through the web site of an insurance

company. The primary risk is missing mails

that are sent to the beneficiary’s address.
The insurance company must assess the risk

that an unauthorized individual would access

the information.
� Level 3: High confidence in the asserted identity’s

validity [2] is required. This level requires a mini-

mum of two authentication factors (e.g., a one-

time password and a biometric). The claimant

must demonstrate that she or he controls the au-

thentication devices (called ‘‘tokens’’). Cryptogra-

phy must be used to protect the authentication

token against man-in-the-middle, replay, and

other attacks.
Biometrics: ‘‘Assurance Level 3. . . specifically calls

out the use of biometrics as an option in order for

the claimant to prove that he or she controls the

token.’’ (ANSI/INCITS Op. cit. p. 17).

Examples:

� A patent attorney electronically submits confi-

dential patent information to the United States

Patent and Trademark Office. Improper disclo-

sure would give competitors a competitive

advantage.

� A bank customer uses online or telephone

banking to access account information or trans-

fer restricted amounts of funds.

� A corrections agency must monitor non-violent

criminal offenders in home-incarceration and

community-release programs.

� An employee or contractor uses a remote system

giving her or him access to sensitive, personal

client information. The transactions occur over

the Internet. The sensitive personal information

available to the employee creates a moderate

potential impact for unauthorized release.

� Level 4: Very high confidence in the asserted identity’s

validity [2]. This level requires a minimum of two-

factor authentication that employs the strongest

authentication and cryptographic techniques that

can be applied to remote access.
Biometrics: ‘‘Assurance Level 4 still requires two-

factor authentication and does not prohibit the use

of biometrics as an option in order for the claimant

to prove that he or she controls the token.’’ (ANSI/

INCITS Op. cit. p. 17).

Examples:

� A law enforcement official accesses a law enfor-

cement database containing criminal records.

Unauthorized access could raise privacy issues

and/or compromise investigations.
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� A bank customer uses online or telephone

banking to transfer unrestricted amounts of

funds

� A physician uses a remote system to access the

medical records of a patient.
Architectures for Remote
Authentication

Architectures used for biometric remote-authentication

range from highly centralized to widely distributed.

There are two defining elements of those architectures

and they are:

� Where reference template/models are stored

� Where matching is performed.

ANSI/INCITS’ Study Report on Biometrics in E-Authen-

tication [10] examines four storage and matching

locations:

� Central Server

� Client/Workstation

� Device/Sensor

� Physical Token
Central Server

It is a centrally-located computer, sometimes called the

‘‘biometric authentication server.’’ In remote authenti-

cation architectures the server need not be co-resident

with the other resources involved in the authentication

operations, including the biometric verification

engine.

Storage

The most widely-used storage mechanism for remote

authentication is to house all biometric reference mod-

els in a centralized repository that supports authenti-

cation from multiple locations. This approach

1. Allows the enterprise to maintain control over the

reference templates/models

2. Facilitates frequently recurring operations, notably

Adding templates/models for new users

Updating data in the existing templates/models

(adaptation)

Deleting templates/models for users who have been

removed from the system

3. Helps ensure a consistent level of security for all

templates/models in the repository
Conversely, use of a centralized repository places the

responsibility for security and privacy on the enter-

prise. The enterprise must institute policies and pro-

cedures that ensure the integrity and validity of the

data in the repository. If matching is not performed

locally, there is a danger that transmissions may be

intercepted and used for replay attacks. Although

data management for a centralized repository is gener-

ally easier than management of distributed resources,

centralized repositories can become extremely large

and unwieldy.

Matching

The reference template/model and the live biometric

sample obtained from the claimant are compared/

matched with the server. That server may or may not

also house the centralized repository of biometric tem-

plates/models.

Centralized matching is useful when biometric

input is highly distributed and is a logical option

when the reference templates/models are stored in a

centralized repository. As with centralized storage, cen-

tralized matching assigns control and responsibility to

the enterprise. In particular, transmission of biometric

samples over networks makes them vulnerable to

network-based attacks.
Client/Workstation

A general-purpose workstation, usually a desktop or

laptop PC. PDAs and other mobile devices may be

included even though such use blurs the boundary

between ‘‘client/workstations’’ and ‘‘devices.’’ The cli-

ent is the location/resource where users initiate the

remote authentication process but none of these clients

is a dedicated biometric authentication server even if

they house other resources used for authentication.

Storage

One ore more reference templates/models are stored in a

local repository. That repository may or may not be the

same as the client used to access the authentication

service. This approach is useful when a small number

of users can access specific data or transactions. It

eliminates a central point of attack for intruders

and reduces the problem of managing an unwieldy re-

pository. Local storage also makes it possible for a system

to operate even when the central network connection is

unavailable.
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On the other hand, there is less control over the

integrity of the data on the local machine. Also, local

storage of templates/models does not support authen-

tication from multiple locations unless there are mul-

tiple copies of templates/models. Management of

multiple copies adds complexity to the system and

could lead to administration and synchronization pro-

blems. For example, it may not be possible for the

administrator to determine whether there are multiple

enrollments for a single individual under the same or

different names. Removal and updating can be more

difficult which could leave sensitive data and systems

vulnerable when, for example, a disaffected employee’s

templates/models are not purged from the entire system.

Matching

The reference template/model and the live biometric

sample obtained from the claimant are compared/

matched on the local workstation. If the reference

template/model is stored in a central repository it

must be downloaded to the local machine. If storage

and matching are both performed on the same ma-

chine there is less chance of network-based attacks on

the biometric data but there is the possibility of having

attacks on the reporting of authentication decisions.

Those possibilities arise from potential malware on the

workstation or an attack on the network.
R

Device/Sensor

It is a biometric input device. It may be part of a larger

peripheral that is attached to a workstation; embedded

in a workstation or other device, (e.g. a keyboard or a

cell phone) or it may be a telephone. If it is a ‘‘dumb’’

device, it does nothing more than capture and transmit

raw or slightly-processed biometric data (e.g., a stan-

dard telephone). If it has more intelligence, it may be

able to store or process data or perform matching.

Storage

Storage on the device provides rapid access if it is a

device the user controls (e.g., a cellphone Vs. a dedicated

biometric sensor) it can give the user control over the

biometric template/model. Depending on the device, it

may be possible to incorporate cryptographic methods

to further secure the stored template/model.

Template/model deletion can be challenging but

could be accomplished by the system administrator as

part of a provisioning process. Performing deletion in

this way requires the devices to be centrally managed
which is easier to accomplish when the input device is a

dedicated biometric sensor unit rather than a cellphone.

Matching

Matching on a biometric sensor involves embedding

biometric technology into the device in a way that

allows it to operate as a stand-alone system. The

matching process is generally fast because there may

be little or no communication with the outside until

the matching process is complete. As a result, network-

based attacks are eliminated as a threat.
Physical Token

An object capable of storing a biometric reference

template/model and possibly performing operations

related to authentication, such as encryption, feature

extraction, and even matching. Physical tokens gener-

ally have technology to resist tampering. Typical exam-

ples of physical tokens are smart cards, PCMCIA cards,

USB memory sticks, and RF tokens.

Storage

Storage of a single user’s reference template/model on a

token gives the user maximum control and privacy

protection. Only the user determines when her or his

token is used and for what purpose. This form of

storage also makes it possible for the token to be used

at multiple locations.

Since the token and enrolled template/model are

both controlled by the user, it is not possible to deter-

mine whether the user has enrolled multiple times

under different identities. This not only makes it diffi-

cult for the enterprise to maintain a definitive list of

users but also proves harder to prevent fraudulence.

Additional costs may come from the need to deploy

the dual-purpose sensors. Each biometric sensor must

not only be able to accept live samples but must also be

capable of reading the stored template/model on the

token. Another common cost factor is replacement of

lost or damaged tokens.

Matching

When both storage and matching are on the token, the

opportunity for network attack is greatly diminished.

There are some vulnerability in the communication

link between the smart card/token and the reader.

Tokens capable of matching are more complex and

more expensive to replace.
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Kinds of Applications

The most widely-deployed speaker-authentication

applications requiring remote authentication involve

� Data security

� Transaction security

� Remote monitoring

� Access security

at levels of assurance that vary with the sensitivity of

the data and other factors. All four types of applica-

tions of remote authentication exist in real-world

deployments.

Most of the examples provided in this section come

from speaker authentication since it is the modality

that exhibits the broadest spectrum of remote-authen-

tication applications today.
Speaker Authentication

Most remote applications of speaker authentication are

centralized for both storage and matching (although

the authentication resources including the application,

biometric engine, and the template/model database)

may not all reside on the same server. When authenti-

cation is hosted, for example, the application that

calls the authentication process may reside within the
Remote Authentication. Figure 1 Typical Centralized Archit
enterprise but the biometric engine will be located on

the server of the hosting-services provider. The tem-

plate/models may be stored within the enterprise or by

the hosting company.

Figure 1 shows a typical centralized architecture.

The remote-access channel, represented by the cloud in

Fig. 1, can be a wireless or wireline telephone network,

specialized data network (e.g., ATM), the Internet, or a

combination of those channels. If the authentication is

provided as a Web service, the cloud may include a

Web browser. The assurance levels of these applications

vary with the nature of the secured data, the resources

involved, the users, and other factors.

A typical deployment using speaker authenti-

cation is shown in Fig. 2. It employs two-factor

authentication that combines password security with

text-dependent, biometric security. The application

consists of a dialogue involving interactive voice re-

sponse (IVR). The IVR system answers the telephone

and prompts the caller for an ID (claim of identity)

and a spoken password (Fig. 2a). In some applications

the system uses the spoken password as both the claim

of identity and password (Fig. 2b). In those applica-

tions, ▶ speech recognition is used to decode the ID

before it is sent to the authentication sub-system for

biometric authentication.

The examples in Fig. 2 are typical for telephone

banking (e.g., ABN AMRO, Banco Bradesco of Brazil,
ecture.
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and Israel’s Bank Leumi), account access (e.g., Bell

Canada, Aeroplan, Australian Health Management,

and Ameritrade), automated PIN/password reset

(e.g., by Wells Fargo Bank, The Hartford Insurance,

Swisscom, Morgan Stanley, VISA, AT&T, and Banco

Santander International), and a range of other deploy-

ments, including

� Wells Fargo – credit card activation and customer

helpdesk

� Bell Canada, CNRail, Telus – secure reporting,

billing, dispatch instructions for field service

personnel

� Austar (Australia) – allow club members to order

movies

� United States Department of Homeland Security –

telephone check-in and reporting by visa holders

� Municipality of Dubai – reports of littering offenses

� Union Pacific Railroad – customers report when

their shipments are delivered (called ‘‘railcar release’’)

� Prisons – to ensure that inmates are not abusing

their outbound-calling privileges.
These applications often include a ‘‘gray area’’ for

matching-scores that fall slightly below the acceptance

threshold. Scores that fall within the gray area trigger

additional authentication procedures. Those proce-

dures may include prompting for repetition of the

password, a text-prompted (challenge-response) inter-

action, use of another authentication technology, or

transfer to a human.

If a tape attack is suspected, the application may

engage the user in a ▶ text-prompted interaction.

Some deployments challenge the user to say something

that she or he has never said to the system before, such

as the answer to ‘‘What is today’s date?’’

Another approach using centralized architecture

involves remote authentication of an individual call-

ing the enterprise’s call center and speaking with

a human rather than interacting with an IVR. Most

such deployments are designed to maintain a high level

of authentication security while reducing the time

needed to do the authentication. The agent initiates

a ▶ text-independent session while speaking with a
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caller when, for example, the caller requests a secured

transaction, such as a sizable funds transfer, or sensi-

tive account/customer information. While the system

is running in the background, the agent may also

be asking the caller questions (knowledge-based

authentication). The combination of the factors pro-

duces the needed authentication. Bank Leumi, one

of the largest banks in Israel, has used this approach

for several years.

A method developed by Authentify, an American

solutions provider, is suitable for authentication

levels 3 and 4. It combines out-of-band voice authen-

tication with a Web session. The following variant is

used by VeriSign to authenticate applicants renew-

ing digital certificates. The system sends an email to

the applicant containing a link that initiates the

authentication Web session. The system calls the tele-

phone number provided by the applicant and per-

forms speaker enrollment. The system then uses a

third-party telephone directory to obtain the phone

number for the applicant’s company, calls that num-

ber, and asks to be connected with the applicant.

When the applicant answers, the Web session displays

a randomly-generated sequence on the applicant’s

computer screen and the telephone session asks the

applicant to say that sequence and their name.

Electronic monitoring of community-released and

home-incarcerated offenders utilizes text-prompted

voice authentication. These systems place outbound

calls to registered telephone numbers of locations

where the offender is supposed to be (e.g., home, school,

work, or AA meetings). The calls are placed at random

times during the day and text-prompting is used to

reduce the chance that offenders will use tape recorders.

Challenge response is also used for remote authen-

tication employing other biometric modalities. This

approach is used for employees, customers using net-

worked devices (e.g., ATMs), and for registered airline

travelers seeking to move quickly through security

lines. Applications that require higher levels of authen-

tication may request more than one fingerprint or

samples for multiple biometric modalities.
Other Biometrics

A growing number of deployments are using smart-

cards with fingerprint, face, iris, or finger/hand
vascular templates embedded in them. This includes

e-passport, national ID, and trusted traveler programs.

Matching is almost always done on the device or

centrally (Fig. 2). One large-scale deployment in pri-

vate industry is by ICICI Prudential Life Insurance

of India. Its smartcard contains a fingerprint as well

as the individual’s policy information. Some biometric

ATMs also use card-based storage.
Related Entries

▶Biometrics, Overview

▶ Speaker

▶ Speaker Recognition, Standardization
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Remote Monitoring (Partial)
▶Remote Authentication
Remote Verification
▶Remote Authentication
Rendering
▶ Face Sample Synthesis
Replay Attack
R

Replay attack is a term used in computer security

where an attacker records a successful authentication

procedure between a legitimate client and a computer

system, or also between two computer systems, and

then replays that recording in order to be falsely

authenticated by the system. In the context of voice

authentication, a replay attack involves a recording –

analogue or digital – of a legitimate client’s voice and

the playing back of that recording to the authentication

system by the attacker in order to be falsely accepted by

the system as the legitimate client.

▶Biometric Secutiry, Standardization

▶Biometric Spoof Prevention

▶Biometric System Design, Overview

▶ Liveness Assurance in Face Authentication

▶ Liveness Assurance in Voice Authentication

▶Remote Authentication
▶ Security Issues, System Design

▶ Synthesis Attack

▶Tamper-proof Operating System
Residence Time
The length of time a subject must reside in the capture

volume of a biometric capture device to ensure that the

device captures a good quality image.

▶ Iris Device

▶ Iris on the Move™
Resolution
In image analysis, a measure of the ability of a system

to distinguish two features that are close together – to

recognize that there are two features rather than one.

In image displays, a measure of the ability of a system

to present two features that are close together as dis-

tinct features rather than a single feature. In digital

images and digital image processing, resolution is

often described in terms of the number of pixels in

the image or the number of pixels/unit length.

▶ Iris Device

▶Photography for Face Image Data
Response Time
The time required by a biometric system to return a

decision on identification or verification of a presented

biometric sample. Response time includes the time for

collecting data, extracting features, and matching

against the enrolled biometric templates.

▶Performance Evaluation, Overview
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Retina
The retina is the multilayered sensory tissue of the

posterior eyeball onto which light entering the eye is

focused, forming a reversed and inverted image. It

contains photosensitive receptor cells, the rods and

cones, which are capable of converting light into

nerve impulses that are conducted and further relayed

to the brain via the optic nerve. There are about 110 to

125 million rods and 6.3 to 6.8 million cones in each

human retina.

▶Anatomy of Eyes

▶ Iris Image Data Interchange Formats, Standardization
Retina Recognition

YOICHI SETO

Advanced Institute of Industrial Technology, Tokyo

Metropolitan University, Tokyo, Japan
Synonyms

Retinal scan; Vein Recognition; Vascular Recognition;

Ocular biometrics
Retina Recognition. Figure 1 Schematic representation

of ball of the eye. Refer from Wikipedia.
Definition

Retina recognition is a biometric technique that uses

the unique patterns on a person’s retina for person

identification. The retina is the layer of blood vessels

situated at the back of an eye. The eye is positioned in

front of the system at a capture distance ranging from

8 cm to one meter. The person must look at a series of

markers, viewed through the eyepiece, and line them

up. The eye is optically focused for the scanner to

capture the retina pattern. The retina is scanned with

the near infrared (NIR 890 nm) irradiation and the

unique pattern of the blood vessels is captured. Retina

recognition makes use of the individuality of the

patterns of the blood vessels. It has been developed

commercially since the mid-1970s. Sandia Laboratory

reported a false rejection rate of lower than 1.0%.
Introduction

The idea for retinal identification was first conceived

by Dr. Carleton Simon and Dr. Isodore Goldstein and

was published in the New York State Journal of Medi-

cine in 1935, which while studying eye disease, made a

study that every eye has its own totally unique pattern

of blood vessels [1]. They subsequently published a

paper on the use of retinal photographs for identifying

people based on blood vessel patterns.

Referring to Fig. 1, the retina is to the eye as film is

to the camera. Both detect incident light in the form of

an image that is focused by a lens. The amount of light

reaching the retina is a function of the iris. The retina is

located on the back inside of the eyeball. Blood reaches

the retina through vessels that come from the optic

nerve. Just behind the retina there is a matting of

vessels called the choroidal vasculature.

The retina is essentially transparent to the wave-

length of light. The mat of vessels of the choroids just

behind the retina reflects most of the useful informa-

tion used to identify individuals [2, 3].

A retinal scan is used to map the unique patterns of

a person’s retina. The blood vessels within the retina

absorb light more readily than the surrounding tissue

and are easily identified with appropriate lighting.

A retinal scan is performed by casting an undetectable

ray of low-energy infrared light into a person’s eye as

they look through the scanner’s eyepiece. This beam of

light outlines a circular path on the retina. Because

retinal blood vessels are more sensitive to light than

the rest of the eye, the amount of reflection fluctuates.
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The results of the scan are converted to a computer

code and stored in a database.
Processing

The process of enrollment and verification/identi-

fication in a retinal scanning system is the same as

the process for the other biometric technologies,

which are (1) Acquisition and preprocessing of images,

(2) Feature extraction, (3) Template data creation and

(4) Matching processing [4].
R

Image Acquisition and Preprocessing

Illumination was provided by a narrowband near-

infrared (NIR) LED. This wavelength selection was

made for several reasons. Near-infrared light was not

distracting to the subject and caused no visual discom-

fort. Additionally, it is important to choose wave-

lengths that give the best blood vessel contrast. The

oxy-hemoglobin and reduction-hemoglobin can be

found in the veins and arteries adequately absorb in

the NIR. However, there are tradeoffs that one must

consider when choosing NIR. A reduction-hemoglo-

bin strongly absorbs the NIR irradiation energy, and

then the part of vein pattern becomes dark.

The user must first place their eye onto a lens located

in the retinal scanning device at an extremely close range.

It is very important that the user must remain perfectly

still at this point, in order to insure that a robust image

will be captured. Also, the user must remove any eye-

glasses that he or shemight be wearing, because any light

reflection from the lens of the eyeglasses could cause

interface with the signal of the retinal scanning device.

Once the user is situated comfortably, he or she thenwill

notice a green light embedded against a white back-

ground through the lens of the scanning device. Once

the retina scanning device is activated, this green light

moves in a complete circle (360 degrees) and captures

images of the blood vessel pattern of the retina through

the pupil. At this phase, normally three to five images are

captured. Also, this phase can take over 1 minute to

complete, depending upon how cooperative the user is.

This is considered to be a very long time in comparison

to the image acquisition and processing times of the

other biometric technologies.

The first encoding step was the identification of

blood vessels within each image. Blood vessels were
separated from distracters such as choroidal texture.

The location and path of the retinal blood vessels were

then quantitatively described. Sections of blood vessels

were segmented and linked together. The identified

blood vessel structure was then reduced to an efficient

encoding template. Retina matching involves defining

a similarity score between encoded blood vessel pat-

terns. The encoding and final calculation of this simi-

larity score must take into account the differences

between the two source images.
Feature Extraction

A very strong advantage of retina recognition is that

genetic factors do not dictate what the blood vessel

pattern of the retina will be. This allows the retina to

have very rich, unique features. As a result, it is possible

that up to 400 unique data points can be obtained from

the retina as opposed to other biometrics, such as

fingerprint scanning, where only 30–40 data points

(the minutiae) are available.
Template Data Creation

The unique features gathered from the blood vessel

pattern of the retina forms the basis of the enrollment

template, which is only 96 bytes, and as a result, is

considered to be one of the smallest biometric templates.
Matching

The retinal matching involves defining a similarity

score between encoded blood vessel patterns. The

encoding and final calculation of this similarity score

must take into account the differences between the two

sources of images which is the same as the process for

the other biometric technologies.

Sandia Laboratory has tested the retina recognition

product of EyeDentify. The false rejection rate with

databases of several hundred individual eyes is

reported to be lower than 1.0% [3, 4].
Related Entries

▶Back-of-hand Vein recognition

▶ Finger Vein recognition
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▶Palm Vein recognition

▶Vein and Vascular recognition
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Retinal Angiogenesis
The formation of retina blood vessels by budding or

sprouting from existing vessels. Random processes

during retinal angiogenesis are thought to be responsi-

ble for the unique nature of the retinal blood vessel

network.

▶ Simultaneous Capture of Iris and Retina for

Recognition
Retinal Blood Vessels
The retina receives blood from two sources, the cho-

roidal capillaries and the central retinal artery. The

retinal and choroidal blood vessel pattern is unique

to every person. The branches of the central artery and

vein, for instance, diverge from the optic disc in a

distinctive pattern that varies considerably across indi-

viduals. These retinal blood vessels are readily visible

on a regular fundus photograph taken with visible

light, whereas the choroidal blood vessels, forming a

matting behind the retina, become visible when ob-

served with near-infrared illumination.

▶Anatomy of Eyes
Retinal Scan
▶Retina Recognition
Reverse Engineering
Reverse Engineering refers mechanical disassembling

and software analysis for architectural parsing for

product to study/investigate operational mechanisms

and its source code, etc.

▶Embedded Systems
Revocable Biometrics
▶Cancelable Biometrics
Ridge Enhancement
▶ Fingerprint Image Enhancement
Ridge Extraction
▶ Fingerprint Image Enhancement
Ridge Flow
The direction and overall pattern of a group of ridges

in an area of friction ridge skin.

▶Anatomy of Friction Ridge Skin

http://Time.com:www.time.com/time/printout/0,8816,755453,00.html
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Robustness Test
Test to evaluate how much a certain influencing factor

can affect biometric performance is robustness test.

▶ Influential Factors to Performance
ROC Curve
An ROC (receiver operating characteristic) curve is a

plot commonly used in machine learning and data

mining for exhibiting the performance of a classifier

under different criteria. The y-axis is the true positive

and the x-axis is the false positive (i.e., false alarm).

A point on ROC curve shows that the trade-off be-

tween the achieved true positive detection rate and

the accepted false positive rate.

▶ Face Detection

▶Performance Measures
Rolled-Equivalent Fingerprint
R

It refers to a special impression of the fingerprint

obtained by rolling the finger around the main finger

axis on a planar surface.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Rolls Capture Device
It refers to a fingerprint device that allows the capture

of rolled equivalent fingerprints. A special reconstruc-

tion algorithm is needed to compose the fingerprint

during the rolling of the finger on the surface.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Rotation Angle
The rotation angle is the angle between the line joining

the left and right pupil centers and the horizontal axis

of the iris camera system. Counterclockwise rotation of

the head about the optical axis of the camera is consid-

ered positive and clockwise rotation is considered

negative.

▶ Iris Image Data Interchange Formats, Standardization

▶Pose





S

Sample Quality
The intrinsic characteristic of a biometric signal may

be used to determine its suitability for further proces-

sing by the biometric system or to assess its confor-

mance to preestablished standards. The quality of a

biometric signal is a numerical value (or a vector)

that measures this intrinsic attribute (See also ▶Bio-

metric Sample Quality).

▶Biometric Algorithms

▶ Fusion, Quality-Based
Sample Size
▶Manifold Learning

▶Performance Evaluation, Overview

▶Test Sample and Size
Sampling Frequency
Sampling frequency is the number of samples captured

in a second from the continuous hand-drawn signal to

generate a discrete signal.

▶Digitizing Tablet
# 2009 Springer Science+Business Media, LLC
Scalability
Scalability is the ability of a biometric system to extend

adaptively to larger population without requiring

major changes in its infrastructure.

▶Performance Evaluation, Overview
Scenario Tests
Scenario tests are those in which biometric systems

collect and process data from test subjects in a speci-

fied application. An essential characteristic of scenario

testing is that the test subject is ‘‘in the loop,’’ inter-

acting with capture devices in a fashion representative

of a target application. Scenario tests evaluate end-

to-end systems, inclusive of capture device, quality

validation software, enrollment software, and match-

ing software.

▶Performance Testing Methodology Standardization
Scene Marks
Crime scene marks are generally any physical phenom-

enon created or left behind and in relation to a crime

scene, these can be fingerprints, blood spatter,
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intentional and unintentional damage, or alteration to

objects in the environment of the crime.

▶ Footwear Recognition
Scent Identification Line-Ups
Procedure where a trained dog matches a sample odor

provided by a person to its counterpart in an array (or

line-up) of odors from different people, following a

fixed protocol. Scent identification line-ups are used in

forensic investigations as a tool to match scent traces

left by a perpetrator at a crime scene to the odor of a

person suspected of that crime. The protocol includes

certification of the team involved, collecting and con-

serving scent samples at crime scenes, collecting, con-

serving and presenting suspect, and other array odors,

working procedures and reporting. Scent identification

line-ups have evolved from simple line-ups that are

used in human scent tracking/trailing, where a dog

has to walk up to the person whose track it has been

following and through some trained behavior indicate

the person.

▶Odor Biometrics
Score Fusion
▶ Fusion, Score-Level

▶Multiple Experts
Score Fusion and Decision Fusion
Score fusion is a paradigm, which calculates similarity

scores for each of the two modalities, then combines

the two scores according to a fusion formula, e.g., the

overall score is calculated as the mean of the two

modality scores. Decision fusion is a paradigm, which

makes an accept–reject decision for each of the two

modalities, then combines the two decisions according
to a fusion rule, e.g., the unknown sample is accepted

only if both modalities yield an accept decision.

▶Multibiometrics, Overview
Score Normalization
The score normalization techniques aim, generally, to

reduce the scores variabilities in order to facilitate the

estimation of a unique speaker-independent threshold

during the decision step. Most of the current normaliza-

tion techniques are based on the estimation of the impos-

tors scores distribution where the mean, μ, and the

standard deviation v, depend on the considered speaker

model and/or test utterance. These mean and standard

deviation values will then be used to normalize any

incoming score s using the normalization function

scoreNðsÞ s � m
v

:

Two main score normalization techniques used in

speaker recognition are:

1. Znorm. The zero normalization (Znorm) method

(and its variants like Hnorm (Heck, L.P., Weintraub,

M.: Handset-dependent background models for ro-

bust text-independent speaker recognition. In:

ICASSP. (1997))) normalizes the score distribution

using the claimed speaker statistics. In other words,

the claimed speaker model is tested against a set of

impostors, resulting in an impostor similarity score

distribution which is then used to estimate the nor-

malization parameters μ and v. The main advantage

of the Znorm is that the estimation of these para-

meters can be performed during the training step.

2. Tnorm. The test normalization (Tnorm)

(Auckenthaler, R., Carey, M., Lloyd-Thomas, H.:

Score normalization for text-independent speaker

verification systems. Digital Signal Processing

10 (2000) 4254) is another score normalization

technique in which the parameters μ and v are

estimated using the test utterance. Thus, during

testing, a set of impostor models is used to calculate

impostor scores for the given test utterance. μ and v

are estimated using these scores. The Tnorm is

known to improve the performances particularly

in the region of low false alarm.
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Any of a number of rules for adjusting a raw simi-

larity score in a way that takes into account factors

such as the amount of data on which its calculation was

based, or the quality of the data. One purpose of score

normalization in biometrics is to prevent the arising of

false matches simply because only a few elements (e.g.,

biometric features) were available for comparison. So

an accidental match by chance would be more like

tossing a coin only a few times to produce a perfect

run of all head. Another purpose of score normalization

is to make it possible to compare or to fuse different

types of measurements, as in multibiometrics. For ex-

ample, Z-score normalization redefines every observa-

tion in units of standard deviation from the mean,

thereby allowing incommensurable scores (like height

and weight) to become commensurable (e.g., he is 3.2

standard deviations heavier than normal but 2.3 stan-

dard deviations taller than normal). Frequently the goal

of score normalization is to map samples from different

distributions into normalized samples from a universal

distribution. For example, in iris recognition a decision is

made only after the similarity score (fractionalHamming

Distance) has been converted into a normalized score

that compensates for the number of bits that were avail-

able for comparison, thereby preventing accidental False

Matches just because of a paucity of visible iris tissue.

▶ Score Normalization Rules in Iris Recognition

▶ Session Effects on Speaker Modeling

▶ Speaker Matching
S

Score Normalization Rules in Iris
Recognition

JOHN DAUGMAN

Cambridge University, Cambridge, UK
Synonyms

Commensurability; Decision criterion adjustment;

Error probability non-accumulation; Normalised

Hamming Distance

Definition

All biometric recognition systems are based on similarity

metrics that enable decisions of ‘‘same’’ or ‘‘different’’ to
be made. Such metrics require normalizations in order

to make them commensurable across comparison cases

thatmay differ greatly in the quantity of data available, or

in the quality of the data. Is a ‘‘perfect match’’ based only

on a small amount of data better or worse than a less

perfect match based on more data? Another need for

score normalization arises when interpreting the best

match found after an exhaustive search, in terms of the

size of the database searched. The likelihood of a good

match arising just by chance betweenunrelated templates

must increase with the size of the search database, simply

because there are more opportunities. How should a

given ‘‘best match’’ score be interpreted? Addressing

these questions on a principled basis requires models

of the underlying probability distributions that describe

the likelihood of a given degree of similarity arising by

chance from unrelated sources. Likewise, if comparisons

are required over an increasing range of image orienta-

tions because of uncertainty about image tilt, the proba-

bility of a good similarity score arising just by chance

from unrelated templates again grows automatically, be-

cause there are more opportunities. In all these respects,

biometric similarity ▶ score normalization is needed,

and it plays a critical role in the avoidance of False

Matches in the publicly deployed algorithms for iris

recognition.
Introduction

Biometric recognition of a person’s identity requires

converting the observed degree of similarity between

presenting and previously enrolled features into a deci-

sion of ‘‘same’’ or ‘‘different.’’ The previously enrolled

features may not be merely a single feature set obtained

from a single asserted identity, but may be a vast number

of such feature sets belonging to an entire national

population, when identification is performed by exhaus-

tively searching a database for a sufficiently good match.

The ▶ similarity metrics used for each comparison

between samples might be simple correlation statistics,

or vector projections, or listings of the features (like

fingerprint minutiae coordinates and directions) that

agreed and of those that disagreed as percentages of the

total set of features extracted. For each pair of feature

sets being compared, varying amounts of data may be

available, and the sets might need to be compared

under various transformations such as image rotations

when the orientation is uncertain. An example is seen
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Illustration of limited data being available in an iris imagedue

to eyelid occlusion, as detected in a segmentation process.

1136S Score Normalization Rules in Iris Recognition
in Figure 1, in which only 56% of the annular iris area

is visible between the eyelids. Iris images may have also

been acquired with a tilted camera (not unusual for

handheld cameras), or with the head tilted or the eye

rotated (cyclovergence) by an unknown degree, requir-

ing comparisons to be made over a range of configura-

tions for each of the possible identities, and with

varying amounts of template data being available in

each case. This article is concerned with the methods of

▶ score normalization that are used in iris recognition

to make all of those comparison cases ▶ commensura-

ble with each other, preventing False Match probability

from rising simply because there is less data available

for comparison or because there are many more can-

didates and match configurations to be considered.
Score Normalisation by the Amount
of Iris Visible

The algorithms used in all current public deployments

of iris recognition [2] work by a test of statistical

independence: A match is declared when two templates

fail the test of statistical independence; comparisons

between different eyes are statistically guaranteed to

pass that test [1]. The test of independence is based

on measuring the fraction of bits that disagreed be-

tween two templates, called ▶ IrisCodes, and so the

similarity metric is a ▶Hamming Distance between

0 and 1. (The method by which an IrisCode is created

is described in this encyclopedia in the entry on Iris

Encoding and Recognition using Gabor Wavelets.)
If two IrisCodes were derived from different eyes,

about half of their bits should agree and half should

disagree (since any given bit is equally likely to be 1 or

0), and so a Hamming Distance close to 0.5 is expected.

If both IrisCodes were computed from the same

eye, then a much larger proportion of the bits should

agree since they are not independent, and so a

Hamming Distance much closer to 0 is expected. But

what is the effect of having varying numbers of

bits available for comparison, for example, because

of eyelid occlusion?

Eyelid boundaries are detected (as illustrated by the

spline curve graphics in Figure 1 where each lid inter-

sects the iris), and the parts of the IrisCode that are

then unavailable are marked as such by setting masking

bits. The box in the lower-left corner of Figure 1 shows

Active Contours computed to describe the pupil

boundary (lower ‘‘snake’’) and the iris outer boundary

(upper snake). As these snakes are curvature maps, a

circular boundary would be described by a snake that

was flat and straight. The two thick grey regions in the

box containing the upper snake represent the limited

regions where the iris outer boundary is visible and

possesses a large radial gradient (or derivative) in

brightness. The gaps that separate the two thick grey

regions correspond to parts of the trajectory around

the iris where no such boundary is visible, because it is

occluded by eyelids. Thus the outer boundary of the

iris must be estimated (dotted curve) by two quite

limited areas on the left and right sides of the iris

where it is visible. In the coordinate system that results,

the iris regions obscured by eyelids are marked as such

by masking bits.

The logic for comparing two IrisCodes to generate a

rawHammingDistanceHDraw is given in Equ ation (1 ),

where the data parts of the two IrisCodes are denoted

{codeA, codeB} and the vectors of corresponding mask-

ing bits are denoted {maskA, maskB}:

HDraw ¼ kðcodeA� codeBÞTmaskA
T
maskBk

kmaskA
T
maskBk ð1Þ

The symbol
N

signifies the logical Exclusive-OR

(XOR) operator which detects disagreement between

bits;
T

signifies logical AND whereby the masks dis-

count data bits where occlusions occurred; and the

norms k k count the number of bits that are set in

the result. Bits may be masked for several reasons other

than eyelid or eyelash occlusion. They are also deemed
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unreliable if specular reflections are detected in the

part of the iris they encode, or if the signal-to-noise

ratio there is poor, for example, if the local texture

energy is so low that the computed wavelet coefficients

fall into the lowest quartile of their distribution, or on

the basis of low entropy (information density).

The number of bits pairings available for compari-

son between two IrisCodes, kmaskA
T

maskBk, is

usually almost a thousand. But if one of the irises

has (say) almost complete occlusion of its upper half

by a drooping upper eyelid, and if the other iris being

compared with it has almost complete occlusion of its

lower half, then the common area available for com-

parison may be almost nil. How can the test of statisti-

cal independence remain a valid and powerful basis for

recognition when very few bits are actually being com-

pared? It may well be that a less exact match on a larger

quantity of data is better evidence of a match than is a

perfect match on less data. An excellent analogy is a

test of whether or not a coin is ‘‘fair’’ (i.e., gives unbi-

ased outcomes when tossed): Getting a result of 100%

‘‘heads’’ in few tosses (e.g., 10 tosses) is actually much

more consistent with it being a fair coin than getting a

result of 60% / 40% after 1,000 tosses. (The latter result

is 6.3 standard deviations away from expectation,

whereas the former result is only 3.2 standard devia-

tions away from expectation; so the 60/40 result is

actually much stronger evidence against the hypothe-

sis of a fair coin, than is the result of ‘‘all heads in
Score Normalization Rules in Iris Recognition. Table 1 Fals

number of bits compared and criterion

HDCrit 400 bits 500 bits 600 bits

0.260 2 � 10�9 5 � 10�10 3 � 10�10 1

0.265 3 � 10�9 8 � 10�10 5 � 10�10 2

0.270 4 � 10�9 1 � 10�9 9 � 10�10 5

0.275 7 � 10�9 2 � 10�9 1 � 10�9 9

0.280 1 � 10�8 4 � 10�9 2 � 10�9 2

0.285 2 � 10�8 7 � 10�9 4 � 10�9 3

0.290 3 � 10�8 1 � 10�8 8 � 10�9 7

0.295 4 � 10�8 2 � 10�8 1 � 10�8 1

0.300 6 � 10�8 3 � 10�8 3 � 10�8 2

0.305 9 � 10�8 6 � 10�8 5 � 10�8 4

0.310 1 � 10�7 1 � 10�7 8 � 10�8 8

0.315 2 � 10�7 2 � 10�7 1 � 10�7 2

0.320 3 � 10�7 3 � 10�7 2 � 10�7 3
10 tosses’’.) Similarly, in biometric comparisons, getting

perfect agreement between two samples that extracted

only ten features may be much weaker evidence of a

good match than a finding of 60% agreement among

a much larger number of extracted features.

This is illustrated in Table 1 for an actual database

of 632,500 IrisCodes computed from different eyes in

a border-crossing application in the Middle East [3].

A database of this size allows 200 billion different

pair comparisons to be made, yielding a distribution

of 200 billionHDraw similarity scores between different

eyes. These HDraw scores were broken down into seven

categories by the number of bits mutually available for

comparison (i.e., unmasked) between each pair of Iris-

Codes; those bins constitute the columns of Table 1,

ranging from 400 bits to 1,000 bits being compared.

The rows in Table 1 each correspond to a particular

decision threshold being applied; for example, the first

row is the case that a match is declared if HDraw is

0.260 or smaller. The cells in the Table give the ob-

served False Match Rate in this database for each

decision rule and for each range of numbers of bits

being compared when computing HDraw .

Using the findings in Table 1, it is informative to

compare performance for two decision criteria: a very

conservative criterion ofHDraw¼ 0.260 (the first row),

and a more liberal criterion HDraw ¼ 0.285 (the sixth

row) which allows more bits to disagree (28.5%) while

still declaring a match. Now if the False Match Rates
e match rate without score normalisation: dependence on

700 bits 800 bits 900 bits 1,000 bits

� 10�10 0 0 0

� 10�10 4 � 10�11 0 0

� 10�10 2 � 10�10 0 0

� 10�10 5 � 10�10 3 � 10�11 0

� 10�9 1 � 10�9 2 � 10�10 0

� 10�9 2 � 10�9 5 � 10�10 2 � 10�11

� 10�9 4 � 10�9 1 � 10�9 1 � 10�10

� 10�8 9 � 10�9 3 � 10�9 4 � 10�10

� 10�8 2 � 10�8 7 � 10�9 9 � 10�10

� 10�8 4 � 10�8 1 � 10�8 2 � 10�9

� 10�8 7 � 10�8 3 � 10�8 5 � 10�9

� 10�7 1 � 10�7 6 � 10�8 1 � 10�8

� 10�7 3 � 10�7 1 � 10�7 2 � 10�8

S
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are compared in the first and last columns of these

rows, namely when only about 400 bits are available for

comparison and when about 1,000 bits are compared,

it can be seen that, in fact, the more conservative

criterion (0.260) actually produces 100 times more

False Matches using 400 bits than does the more liberal

(0.285) criterion when using 1,000 bits. Moreover, the

row corresponding to the HDraw ¼ 0.285 decision

criterion reveals that the False Match Rate is 1,000

times greater when only 400 bits are available for

comparison than when 1,000 bits are compared.

The numerical data of Table 1 is plotted in Figure 2

as a surface, showing how the logarithm of the False

Match Rate decays as a function of both variables. The

surface plot reveals that there is a much more rapid

attenuation of False Match Rate with increase in the

number of bits available for comparison (lower-left

axis), than by reduction of theHDraw decision criterion

in the range of 0.260 - 0.320 (lower-right axis). This

is to be expected, given that iris recognition works by

a test of statistical independence. The observations of
Score Normalization Rules in Iris Recognition. Figure 2 The

coordinates, showing a range factor of 10,000-to-1 in the Fals

from 400 to 1,000. This bit count is more influential than is th

0.260 - 0.320 range.
Table 1 and Figure 2 clearly demonstrate the need for

similarity scores to be normalized by the number of

bits compared when calculating them.

A natural choice for the score normalization rule is to

rescale all deviations from HDraw ¼ 0.5 in proportion

to the square-root of the number of bits that were com-

pared when obtaining that score. The reason for such a

rule is that the expected standard deviation in the distri-

bution of coin-tossing outcomes (expressed as a fraction

of the n tosses having a given outcome), is s ¼ ffiffiffiffiffiffiffiffiffiffi
pq=n

p
where p and q are the respective outcome probabilities

(both nominally 0.5 in this case). Thus, decision con-

fidence levels can be maintained irrespective of how

many bits n were actually compared, by mapping each

raw Hamming Distance HDraw into a normalized score

HDnorm using a re-scaling rule such as:

HDnorm ¼ 0:5� ð0:5� HDrawÞ
ffiffiffiffiffiffiffi
n

911

r
ð2Þ

This normalization should transform all samples of

scores obtained when comparing different eyes into
data of Table 1 plotted as a surface in semilogarithmic

e Match Rate as the number of bits compared ranges

e HDraw decision criterion for unnormalised scores in the
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samples drawn from the same ▶ binomial distribution,

whereas the raw scores HDraw might be samples from

many different binomial distributions having standard

deviations s dependent on the number of bits n that

were actually available for comparison. This normali-

zation maintains constant confidence levels for deci-

sions using a given Hamming Distance threshold,

regardless of the value of n. The scaling parameter

911 is the typical number of bits compared

(unmasked) between two different irises.

The effect of using this normalization rule

(‘‘SQRT’’) is shown in Figure 3 for the 200 billion

comparisons between different irises, plotting the ob-

served False Match Rate as a function of the new

HDnorm normalized decision criterion. Also shown

for comparison is the unnormalized case (upper

curve), and a ‘‘hybrid’’ normalization rule which is

a linear combination of the other two, taking into

account the number of bits compared only when in

a certain range [4]. The benefit of score normalization

is profound: it is noteworthy that in this semilogarith-

mic plot, the ordinate spans a factor of 300,000 to 1.
Score Normalization Rules in Iris Recognition. Figure 3 Co

False Match Rate as a function of Hamming Distance.
The price paid for achieving this profound benefit

in robustness against False Matches is that the match

criterion becomes more demanding when less of the

iris is visible. Table 2 shows what fraction of bits HDraw

(column 3) is allowed to disagree while still accepting

a match, as a function of the actual number of bits that

were available for comparison (column 1) or the ap-

proximate percent of the iris that is visible (column 2).

In every case shown in this Table, the probability of

making a False Match is about 1 in a million; but it is

clear that when only a very little part of two irises can

be compared with each other, the degree of match

required by the decision rule becomes much more

demanding. Conversely, if more than 911 bits (the

typical case, corresponding to about 79% of the iris

being visible) are available for comparison, then the

decision rule becomes more lenient in terms of the

acceptable HDraw while still maintaining the same net

confidence level.

Finally, another cost of using this score normaliza-

tion rule is apparent if one operates in a region of the

ROC curve corresponding to a very nondemanding
mparing the effects of three score normalisation rules on

S
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Effect of score normalisation on the match quality required

with various amounts of iris visibility

Number
of bits
compared

Approximate
percent of iris
visible (%)

Maximum acceptable
fraction of bits
disagreeing

200 17 0.13

300 26 0.19

400 35 0.23

500 43 0.26

600 52 0.28

700 61 0.30

800 69 0.31

911 79 0.32

1,000 87 0.33

1,152 100 0.34
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False Match Rate, such as 0.001, which was the basis

for NIST ICE (Iris Challenge Evaluation 2006) report-

ing. The ICE iris database contained many very diffi-

cult and corrupted images, often in poor focus, and

with much eyelid occlusion, with motion blur, raster

shear, and sometimes with the iris partly outside

of the image frame. As ROC curves require False

Matches, NIST used a much more liberal decision

criterion than is used in any actual deployments of

iris recognition. As seen in Figure 4, using liberal

thresholds that generate False Match Rates (FMR)

in the range of 0.001–0.00001, score normalization

adversely impacts on the ROC curve by increasing

the False nonMatch Rate (FnMR). The Equal Error

Rate (where FnMR = FMR, indicated by the solid

squares) is about 0.001 without score normalization,

but 0.002 with the normalization. Similarly at other

nominal points of interest in this region of the ROC

curve, as tabulated within Figure 4, the cost of score

normalization is roughly a doubling in the FnMR,

because marginal valid matches are rejected due

to the penalty on fewer bits having been available

for comparison. In conclusion, whereas Table 1, and

Figures 2 and 3 document the important benefit of

score normalization when operating with very large

databases that require several orders of magnitude

higher confidence against False Matches, Figure 4

shows that in scenarios which are much less demand-

ing for FMR, the FnMR is noticeably penalized by

score normalization, and so the ROC curve suffers.
Adapting Decision Thresholds to the Size
of a Search Database

Using the SQRT normalization rule, Figure 5 presents

a histogram of all 200 billion cross-comparison simi-

larity scores HDnorm among the 632,500 different irises

in the Middle Eastern database [3]. The vast majority

of these IrisCodes from different eyes disagreed in

roughly 50% of their bits as expected, since the bits

are equiprobable and uncorrelated between different

eyes [2, 1]. Very few pairings of IrisCodes could dis-

agree in fewer than 35% or more than 65% of their

bits, as is evident from the distribution. The form of

this distribution needs to be understood, assuming

that it is typical and predictive of any other database,

in order to understand how to devise decision rules

that compensate for the scale of a search. Without this

form of score normalization by the scale of the search,

or an adaptive decision threshold rule, False Matches

would occur simply because large databases provide so

many more opportunities for them.

The solid curve that fits the distribution data very

closely in Figure 5 is a binomial probability density

function. This theoretical form was chosen because

comparisons between bits from different IrisCodes

are Bernoulli trials, or conceptually ‘‘coin tosses,’’ and

Bernoulli trials generate binomial distributions. If one

tossed a coin whose probability of ‘‘heads’’ is p in a

series of n independent tosses and counted the number

m of ‘‘heads’’ outcomes, and if one tallied this fraction

x ¼ m ∕n in many such repeated runs of n tosses, then

the expected distribution of x would be as per the solid

curve in Figure 5:

f ðxÞ ¼ n!

m!ðn�mÞ! pmð1� pÞðn�mÞ ð3Þ

The analogy between tossing coins and comparing

bits between different IrisCodes is deep but imperfect,

because any given IrisCode has internal correlations

arising from iris features, especially in the radial direc-

tion [2]. Further correlations are introduced because

the patterns are encoded using 2D Gabor wavelet fil-

ters, whose lowpass aspect introduces correlations in

amplitude, and whose bandpass aspect introduces cor-

relations in phase, both of which linger to an extent

that is inversely proportional to the filter bandwidth.

The effect of these correlations is to reduce the value of

the distribution parameter n to a number significantly

smaller than the number of bits that are actually



Score Normalization Rules in Iris Recognition. Figure 4 Adverse impact of score normalisation in ROC regions where

high False Match Rates are tolerated (e.g., 0.00001 to 0.001 FMR). In these regions, the False nonMatch Rate is roughly

doubled as a result of score normalization.
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compared between two IrisCodes; n becomes the num-

ber of effectively independent bit comparisons. The

value of p is very close to 0.5 (empirically 0.499 for

this database), because the states of each bit are equi-

probable a priori, and so any pair of bits from different

IrisCodes is equally likely to agree or disagree.

The binomial functional form that describes so

well the distribution of normalized similarity scores

for comparisons between different iris patterns is key

to the robustness of these algorithms in large-scale

search applications. The tails of the binomial attenuate

extremely rapid, because of the dominating central

tendency caused by the factorial terms in (3). Rapidly

attenuating tails are critical for a biometric system to

survive the vast numbers of opportunities to make

False Matches without actually making any, when ap-

plied in an ‘‘all-against-all’’ mode of searching for any

matching or multiple identities, as is contemplated in
some national ID projects. The requirements of bio-

metric operation in ‘‘identification’’ mode by exhaus-

tively searching a large database are vastly more

demanding than operating merely in one-to-one ‘‘ver-

ification’’ mode (in which an identity must first be

explicitly asserted, which is then verified in a yes/no

decision by comparison against just the single nomi-

nated template).

If P1 is the False Match probability for single one-

to-one verification trials, then (1�P1) is the probabili-

ty of not making a False Match in single comparisons.

The likelihood of successfully avoiding this in each of

N independent attempts is therefore (1�P1)
N, and

so PN, the probability of making at least one False

Match when searching a database containing N differ-

ent patterns is:

PN ¼ 1� ð1� P1ÞN ð4Þ



Score Normalization Rules in Iris Recognition. Figure 5 Binomial distribution of normalised similarity scores in

200 billion comparisons between different eyes. Solid curve is (3).
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Observing the approximation that PN � NP1 for

small P1 << 1
N
<< 1, when searching a database of

size N an identifier needs to be roughly N times better

than a verifier to achieve comparable odds against

making False Matches. In effect, as the database

grows larger and larger, the probability of making

a False Match also grows almost in proportion.

Obviously the frequency of False Matches over time

also increases with the frequency of independent

searches that are conducted against the database. In

the Middle Eastern deployment [3] from which the

data of Figure 5 was taken, in which typically about

12,000 daily arriving passengers are each compared

with about a million stored IrisCodes, the total num-

ber of iris comparisons is about 12 billion per day. To

survive successfully so many opportunities to make

False Matches, the decision threshold policy must be

adaptive to both of these factors: the size of the database

and the frequency of searches through it (the query

rate). Fortunately, because of the underlying binomial

combinatorics, the algorithms with score normaliza-

tion generate extremely rapidly attenuating tails for the

HDnorm distribution. The consequence is that extreme-

ly small adjustments to tighten the decision threshold

yield order-of-magnitude increases in robustness
against False Matches, and therefore in large-scale

search capability. But before specifying those rules, it

is first necesssary to understand the effect of the rota-

tion range over which repeated comparisons are done.
Factoring the Rotation Range into
Adaptive Decision Rules

Because cameras or heads may be tilted during iris

image acquisition, and indeed the eye itself can undergo

torsional (rotational) movements, it is necessary to

compare iris patterns at each of several relative orienta-

tions before deciding whether they match. Thus, when

searching a database of N enrollees and performing

each IrisCode comparison in each of k orientations,

the total number of comparisons effectively becomes

(k�N). Since the best match (smallest score) found in

each set of k comparisons is the score that is retained,

the new distribution for comparisons between differ-

ent eyes is biased towards lower scores, has a lower

mean, and has asymmetric tails compared with the

unrotated case seen in Figure 5. Using the same data-

base of IrisCodes but now performing all comparisons
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in each of k ¼ 7 orientations generates the new score

distribution seen in Figure 6.

The new distribution after k rotations of all Iris-

Codes in the search process still has a simple analytic

form that can be derived theoretically. Let f0(x) be the

raw density distribution obtained for the HDnorm

scores between different irises after comparing them

only in a single relative orientation; for example, f0(x)

might be the binomial defined in (3). Then F0(x), the

cumulative of f0(x) from 0 to x, becomes the probabil-

ity of getting a False Match in such a test when using

HDnorm acceptance criterion x:

F0ðxÞ ¼
Z x

0

f 0ðxÞdx ð5Þ

or, equivalently,

f 0ðxÞ ¼
d

dx
F0ðxÞ ð6Þ

Clearly, then, the probability of not making a False

Match when using decision criterion x is 1�F0(x)
Score Normalization Rules in Iris Recognition. Figure 6 Dis

of 200 billion iris comparison plotted in Figure 5, but now ke

compensate for unknown degrees of tilt in image acquisition

binomial (3) as the f0(x) density prior to rotations.
after a single test, and it is [1�F0(x)]
k after carrying

out k such tests independently at k different relative

orientations. It follows that the probability of a False

Match after a ‘‘best of k’’ test of agreement, when using

HDnorm criterion x, regardless of the actual form of the

raw unrotated distribution f0(x), is:

FkðxÞ ¼ 1� 1� F0ðxÞ½ �k ð7Þ

and the expected density fk(x) associated with this

cumulative is:

f kðxÞ ¼
d

dx
FkðxÞ

¼ kf 0ðxÞ 1� F0ðxÞ½ �k�1
ð8Þ

It is prudent to allow for at least a 20 deg orienta-

tion uncertainty, and so k ¼ 7 relative rotations in

2.81deg intervals were performed when arriving at

each best comparison HDnorm score plotted in the

Figure 6 distribution. As expression (8) in the deriva-

tion shown earlier for postrotation probability density
tribution of normalised similarity scores from the same set

eping only the best match after k ¼ 7 relative rotations to

. Solid curve is the fk(x) density function in (8), using the

S
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False match rates with HDnorm score normalisation:

dependence on criterion (200 Billion cross comparisons)

HD Criterion Observed False Match Rate

0.220 0 (theor: 1 in 5 � 1015)

0.225 0 (theor: 1 in 1 � 1015)

0.230 0 (theor: 1 in 3 � 1014)

0.235 0 (theor: 1 in 9 � 1013)

0.240 0 (theor: 1 in 3 � 1013)

0.245 0 (theor: 1 in 8 � 1012)

0.250 0 (theor: 1 in 2 � 1012)

0.255 0 (theor: 1 in 7 � 1011)

0.262 1 in 200 billion

0.267 1 in 50 billion

0.272 1 in 13 billion

0.277 1 in 2.7 billion

0.282 1 in 284 million

0.287 1 in 96 million

0.292 1 in 40 million

0.297 1 in 18 million

0.302 1 in 8 million

0.307 1 in 4 million

0.312 1 in 2 million

0.317 1 in 1 million
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indicates, this means that the left tail of the distribu-

tion in Figure 6 is essentially k ¼ 7 times higher than

the one in Figure 5. The new functional form (8)

derived gives an excellent fit to this new distribution,

as shown by the solid curve that closely matches the

Figure 6 data.

The cumulatives (up to various thresholds) under

the left tail of the distribution of normalized similarity

scores for different irises compared at k ¼ 7 relative tilts,

reveal the False Match Rates among the 200 billion iris

comparisons if the identification decision policy used

each such threshold. These FMR rates are provided in

Table 3. Although the smallest observed match was

around 0.26, the Table has been extended down to 0.22

using the theoretical cumulative (7) of the extreme

value distribution (8) of multiple samples from the

binomial (3) plotted as the solid curve in Figure 6,

in order to extrapolate the theoretically expected

False Match Rates for such decision policies. These

False Match Rates, whether empirical or theoretical,

also serve as confidence levels that can be associated

with a given quality of sample using the score normali-

zation rule (2). In this analysis, only a single eye

is presumed to be presented. Under the assumption

of independence between right and left eye IrisCodes,

which is strongly supported by the available data

(see Figure 6 of [2]), the confidence levels in Table 3

could be multiplied together for matches obtained

with both eyes.

Now it is finally possible to state a general rule for

adaptively selecting a decision criterion threshold on

HDnorm normalized similarity scores, given the

empirical cumulatives shown in Table 3 under the dis-

tribution of postrotation scores plotted in Figure 6.

If one is performing iris identifications by exhaustive

search through an enrolled database of size N, using

k ¼ 7 relative rotations for every comparison and

normalizing raw Hamming Distance scores by the

amount of available data as per (2), then the recom-

mended strategy is this:

Calculate the total number of iris comparisons that

will be performed in a given period of time, i.e., the size N

of the enrolled database times the number of queries

against it during that time. Decide the risk tolerance for

False Matches during such a period of time, and find the

corresponding entry in the second column of Table 3.

Then the first column gives the recommended decision

threshold on HDnorm scores.
Example: If every month 100,000 passengers are

each compared to 1 million enrolled IrisCodes by

exhaustive search, generating 1011 comparisons per

month, and no more than one False Match can be

tolerated per month, then Table 3 indicates that the

recommended single-eye decision criterion to use

would be around 0.265 for HDnorm similarity scores.
Related Entries

▶ Iris Encoding and Recognition using Gabor Wavelets
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Sealed Local Biometric Identity
Verification Systems
A sealed local biometric identity verification system is

a strong example of a trusted biometric identity verifi-

cation client. Sealed biometric systems are built around

the concept that the entire biometric acquisition and

matching process is ‘‘sealed’’ within a demonstrably

secure environment (see the following figure). No bio-

metric data can ever enter the system except via the

integrated biometric sensor, and no biometric data

ever leaves the system, period. In fact there is no way

to externally access the biometric data at all. The sealed

system securely stores cryptographic credentials for

each entity that registers its need to verify the user’s

identity, and releases those credentials only when that

entity has cryptographically identified itself, and the

correct user has been biometrically verified to be

present.
Sealed Local Biometric Identity Verification Systems. Figur
Figure 1 illustrates the concept of a sealed local

biometric identity verification system.

▶Biometric Sample Acquisition
Second Level Detail
This refers to the occurrence of fundamental events

within the general ridge flow which disturb the regu-

lar and parallel flow of ridges. These events can

manifest themselves as ending/starting ridges, diverg-

ing/merging ridges (bifurcations), and dots and com-

binations of these events such as short ridges, eyes,

spur, and islands. These events are also referred to

as Galton characteristics, points or major ridge path

deviations.

Minutiae reflect events in a persistent system of

papillary ridges that once developed to their final

form during gestation remain unchanged throughout

life.

Minutiae in the latent keep their basic properties

such as relative location, direction, and relations to

other points even under adverse condi tions (Fig . 1).

This differentiates fingerprints from other types of

forensic evidence. Minutiae and their formation in
e 1

S
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sequence are the backbone of fingerprint identifica-

tion. Additional features that are also referred to as

level two are incipient ridges, scars, and creases.

▶ Fingerprint Matching, Manual
Secure Biometric Token Operating
System
▶Tamper-proof Operating System
Secure Biometrics
▶Biometric and User Data, Binding of
Secure Element
Synonyms

Security processor; Secure token
Definition

A closed, tamper-resistant, well-trusted, and usually

certified embedded system with a very lightweight

microcontroller and some FLASH storage. Typical se-

cure elements are single-chip entities designed to

achieve a black box nature for maximum security.

Smart cards, SIM cards, and NFC controllers are the

most prevalent examples. Most secure elements inter-

act with a host using a wired or wireless communica-

tion channel, but may be standalone systems as well.

▶Transportable Asset Protection
Secure Sketch
▶Encryption, Biometric
Security and Liveness, Overview
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Definition

The security of a biometric system may be understood

to be its resistance to active attacks. Such attacks

may be classified as Presentation attacks (spoofing),

in which the appearance of the biometric sample is

physically changed or replaced; Biometric processing

attacks, in which an understanding of the biometric

algorithm is used to cause incorrect processing and

decisions; Software and networking vulnerabilities

based on attacks against the computer and networks

on which the biometric systems run; and Social and

presentation attacks, in which the authorities using the

systems are fooled. This article presents an overview of

the techniques used for classifying and assessing these

threats. Additionally, newer biometric schemes, such as

cancelable biometrics and biometric encryption, that

are designed to counter these security threats are

reviewed.
Introduction

Security must be defined in the context of an attacker.

However, biometric systems, even when not under

active attack, should always be assumed to operate in

an (at least somewhat) hostile environment – after all,

why should one test identity if all can be trusted? The

ability of a biometric system to stand up to ‘‘zero-

effort’’ attackers is measured by the false accept rate

(FAR). Such measures are not typically considered to

measure biometric security, but rather biometric per-

formance. This article gives a broad overview of the
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security and liveness issues in biometric systems where

biometric security is understood to be the resistance of

a system to attackers prepared to take active measures

to circumvent the system. This article considers four

broad types of active attack:

� Presentation attacks (spoofing): The appearance of

the biometric sample is changed either physically

or by replacement with a fabricated sample. For

physical biometrics, attackers may then change

makeup, facial hair and glasses, or abrade and cut

fingerprints in order to avoid being recognized; to

attempt to be recognized as another person, a

spoofed fingerprint or false iris contact lens may

be constructed and placed over the corresponding

body part.

� Biometric processing attacks: A detailed understand-

ing of the biometric algorithm is used to cause

incorrect processing and decisions. The possible

attacks depend on the details of the biometric

algorithm (▶Biometric vulnerabilities, Overview).

Some examples are enrolling specially crafted

noisy images that artificially lower thresholds; re-

generation of sample images from stored templates;

and ▶ side-channel attacks based on ‘‘leaked’’ sys-

tem information such as from match scores or

timing of processing.

� Software and networking vulnerabilities: Since bio-

metric systems are implemented on server compu-

ters, they are vulnerable to all cryptographic, virus,

and other attacks, which plague modern computer

systems [1]. Examples are databases security, denial

of service (DoS) attacks, and overriding the bio-

metric decision with compromised software. These

issues are not covered in detail in this article, since

they are not unique to biometric system security.

� Social and presentation attacks: Security systems de-

pend on a chain of trust. Links in this chain between

systems are especially vulnerable [2]. Presentation

attacks involve the use of fraudulent identity docu-

ments, which may be legitimately issued; social

attacks focus on convincing an operator to override

or allow fraudulent exceptions. This article points

out the importance of these issues like software

vulnerabilities, but does not cover them in detail.

This article gives an overview of the security issues

in biometric systems, including classifications, security

performance measures, liveness and antispoofing and

novel biometric protection schemes.
Biometric Security Classifications

Several authors have developed classification schemes,

which provide a taxonomy of biometric security chal-

lenges. Maltoni et al. [3], classify biometric system

vulnerabilities as follows:

� Circumvention is an attack by which one gains

access to the protected resources by a technical

measure to subvert the biometric system. Such

an attack may subvert the underlying compu-

ter systems (overriding matcher decisions, or repla-

cing database templates) or may involve a replay

of valid data.

� Covert acquisition (contamination) is the use of

biometric information captured from legitimate

users to access a system. Examples are spoofing

via capture and playback of voice passwords and

lifting latent fingerprints to construct a mold. This

category can also be considered to cover regener-

ated biometric images (▶Template Security). For

example, a fingerprint image can be regenerated

from the template stored in a database (and these

data can be captured covertly [4]). Covert acquisi-

tion is worrisome for cross-application usage (eg.,

biometric records from a ticket for an amusement

park used to access bank accounts).

� Collusion and Coercion are biometric system vul-

nerabilities from legitimate system users. The dis-

tinction is that, in collusion, the legitimate user is

willing (perhaps by bribe), while the coerced user is

not (through a physical threat or blackmail). Such

vulnerabilities bypass the computer security sys-

tem, since the biometric features are legitimate. It

may be possible to mitigate such threats by auto-

matically detecting the unusual pattern of activity.

Such attacks can be mounted from both adminis-

trator and user accounts on such a system; attacks

from user accounts would first need to perform a

privilege escalation attack [1].

� Denial of Service (DoS) is an attack that prevents

legitimate use of the biometric system. This can

take the form of slowing or stopping the system

(via an overload of network requests) or by degrad-

ing performance. An example of the latter would be

enrolling many noisy samples that can make a

system automatically decrease its decision thresh-

old and thus increase the FAR. The goal of DoS is

often to force a fall back to another system (such as
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operator override) that can be more easily circum-

vented, but DoS may be used for extortion or

political reasons.

� Repudiation is the case where the attacker denies

accessing the system. A corrupt user may deny her

actions by claiming that her biometric data were

‘‘stolen’’ (by covert acquisition or circumvention)

or that an illegitimate user was able to perform the

actions due to the biometric false accept. Interesting-

ly, biometric systems are often presented as a solu-

tion to the repudiation problem in the computer

security literature [1]. One approach to help prevent

repudiation would be to store presented images for

later forensic analysis. However, this need must be

balanced against user privacy concerns [5].

Another class of biometric vulnerabilities are those

faced by the system user, developed by Ratha et al. [6].

These issues impact on the user’s privacy and can lead

to identity theft or system compromise.

� Biometrics is not secret: Technology is readily avail-

able to capture images of faces, fingerprints, irises

and make recordings of voice or signature – with-

out subject consent or knowledge [2, 7]. From this

perspective, biometrics is not secret. On the other

hand, from a cryptography or privacy [5] perspec-

tive, biometric data are often considered to be

private and secret. This distinction is important,

as our understanding of computer and network

security is centered around the use of secret codes

and tokens [1]. For this reason, cryptographic pro-

tocols that are not robust against disclosure of

biometric samples are flawed.

� Biometrics cannot be revoked: A biometric feature

is permanently associated with an individual, and

a compromised biometric sample will compro-

mise all applications that use that biometric

feature. Such compromise may prevent a user

from re-enrolling [2]. Note, however, that this con-

cern implies that biometrics is secret, as opposed

to the previous consideration. One proposed solu-

tion is Cancelable biometrics, although the vulnera-

bility of such systems is not well understood.

� Biometric features have secondary uses: If an indi-

vidual uses the same biometric feature in multiple

applications, then the user can be tracked if the

organizations share data. Another aspect of this

problem is secondary use of ID cards. For example,
a driver’s license is designed with the requirements

to prove identity and driver certification to a police

officer, but it is used to prove age, name and even

citizenship. Similarly, biometric applications will

be designed with a narrow range of security con-

cerns, but may be used in very different threat

environments.

Biometric systems form part of larger security

systems and their risks and vulnerabilities must be

understood in the context of the larger system require-

ments. An excellent review of the security of biometric

authentication systems is [7]. Each assurance level

from ‘‘passwords and PINs’’ to ‘‘Hard crypto token’’

is analyzed to determine which biometric devices are

suitable. Since biometric systems are complex and

represent many interconnected subsystems, there are

many potential points for attack. Vulnerabilities in

Biometric Systems are considered in the article ▶Bio-

metric Vulnerabilities: Overview.
Liveness and Spoofing

Clearly, biometric systems are vulnerable to artificial

changes to the biometric features. Such changes can be

of two types: to avoid detection as an enrolled user or

watch list candidate and to masquerade as another

legitimate user. The former is easier and can sometimes

be as simple as using glasses, makeup, or abrasions and

cuts to the finger. Masquerading or spoofing attempts

to gain unauthorized access at the biometric sensor

with artificial biometric features of authorized users,

called ‘‘spoofs.’’ This is widely publicized for finger-

print where it is possible to spoof a variety of fin-

gerprint sensors through relatively simple techniques

using casts of a finger with molds made of materials,

including silicon, Play-Doh, clay, and gelatin (gummy

finger). Such spoof molds can be scanned and verified

when compared with a live enrolled finger [8–11].

Masquerade is also possible in the scenario of dismem-

bered fingers; cadaver fingers can be scanned and ver-

ified against enrolled fingers [9]. It is also possible to

spoof other common biometric modalities: for iris and

face, using pictures or high resolution video, for iris

with contact lenses, with voice with recordings [8, 11].

There are several approaches to increase the diffi-

culty of spoofing: multiple biometric features, liveness,

and the use of biometrics in combination with a
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challenge response, passwords, tokens, smart cards.

The goal of liveness testing is to determine if the

biometric feature being captured is an actual measure-

ment from the authorized, live person, who is present

at the time of capture. Typically, liveness is a secondary

measure after biometric authentication, which must be

met in order to achieve a positive response. Liveness

and antispoofing methods are covered in detail in the

following summaries [12–14]. The need for protec-

tions from spoofing may be assessed on an application

basis, although there is a need to address the spoofing

vulnerability throughout the industry, as the reputa-

tion of biometric systems as a security measure must

be considered. Liveness detection adds an additional

layer of security that also can increase the users trust in

biometric technology.

Characteristics of Liveness Approaches: The follow-

ing characteristics for evaluating biometric systems

need to be considered in implementing a liveness

algorithm.

� Ease of use: liveness approaches vary in the ease

of use. For example, a fingerprint deformation

approach, which requires a specific rotation proce-

dure, may be considered more difficult to use [15].

A fingerprint sensor using spectroscopy where

liveness inherent to the biometric feature may be

considered easier to use.

� Collectability: liveness approaches vary in the ease

of collection. For example, electrocardiogram,

which requires two points of contact on opposite

sides of the body or pulse oximetry where the

finger must be enclosed to protect from ambient

light [16].

� User acceptance: liveness approaches that may have

low user acceptance are teh ones that are more

likely to be linked with medical conditions (eg.,

electrocardiogram, DNA).

� Universality: clearly, all authorized users must be

live when enrolling. However, the liveness method

may be difficult to measure in some subjects.

For example, perspiration in fingerprint images

may be difficult to measure in subjects with very

dry skin.

� Uniqueness: For liveness approaches that are inher-

ent to the biometric feature, this is essential.

However, it is not clear that, for example, electro-

cardiogram or gait is unique to large data sets
of individuals. Thus, these biometric/liveness

approaches may be appropriate for applications

with a smaller number of individuals.

� Permanence is important to liveness approaches

taht are inherent to the biometric feature and

where the biometric/liveness features may vary

over time. This will impact on the biometric and

liveness error rates.

� Spoof-ability describes whether the liveness mecha-

nism designed to protect against spoofing can be

spoofed. For example, it may be possible to fool

pulse oximetry-based liveness, using a clear spoof

that allows transmission of the light needed to

make the pulse oximetry measurement.

The terms liveness and antispoofing are not com-

pletely synonymous. Measurements that rule out spe-

cific spoofs do not absolutely measure liveness. For

example, a liveness measure to detect pupil movement

will detect attempts based on a simple photograph

of a face. However, a modified spoofing method,

such as cutting a hole in the picture and putting a

real pupil behind it, may result in a successful spoof

attempt. Such a spoof is partially alive (to fool the

liveness) and partially a spoof (fabricated user biomet-

ric feature).
Encoded Biometric Schemes

Classical biometric systems require access to enrolled

templates in unencoded form. This differs from tradi-

tional computer security systems where a raw pass-

word need never be stored. Instead, a cryptographic

hash (one-way function) of the password is stored, and

each new test password is hashed and compared with

the stored version. Since such cryptographic techni-

ques provide important protections, there is great in-

centive to develop analogous methods for biometric

systems. Encoded biometric schemes are designed to

avoid these problems by embedding the secret code

into the template, in a way that can be decrypted only

with an image of the enrolled individual [17, 18].

Since the code is bound to the biometric template, an

attacker should not be able to determine either the

enrolled biometric image or secret code, even if he

had access to the biometric software and hardware.

Such technology would enable enhanced privacy



1150S Security and Liveness, Overview
protection, primarily against secondary use of biomet-

ric images [5] It would also reduce the vulnerability of

network protocols based on biometrics [7]. Biometri-

cally enabled computers and mobile phones currently

must hide passwords and keys in software; biometric

encryption would protect against this vulnerability.

Another interesting application is for control of access

to digital content with the aim of preventing copyright

infringement. Biometric encryption systems are not

widely deployed; research systems still suffer from

high error rates and slow processing speed. However,

such systems offer some compelling benefits for many

applications, and research is active.

Cancelable biometric features (see Cancelable Bio-

metrics) are encoded with a distortion scheme that

varies from application to application. The concept

was developed to address the privacy and security

concerns that biometric features are not secret and

cannot be canceled. During enrollment, the input bio-

metric image is subjected to a known distortion con-

trolled by a set of parameters. The distorted biometric

sample can, in some schemes, be processed with stan-

dard biometrics algorithms, which are unaware that

the features presented to them are distorted. During

matching, the live biometric sample must be distorted

with the same parameters, which must be security

stored. The cancelable nature of this scheme is pro-

vided by the distortion, in that it is not the user’s

‘‘actual’’ biometric which is stored, but simply one of

an arbitrarily large number of possible permutations.

The concern with cancelable biometric features is

the security of the storage and transmission of the

distortion parameters.

Biometric cryptosystems (▶ Encryption, Biometric)

are designed to overcome many security issues in

traditional biometric schemes by avoiding template

storage and the match stage of biometric processing.

Instead, the biometric features are bound to a secret

key that is designed to be recoverable only with a

biometric image from the enrolled individual. Clearly,

the key difficulty in the design biometric encryption

systems is the variability in the biometric image be-

tween measurements; the presented biometric image

cannot itself be treated as a code, since it varies with

each presentation.

The earliest biometric encryption system was pro-

posed by Soutar et al. [18]. Enrollment creates a tem-

plate binding a secret code to the multiple sample

images. During decryption, an error correcting scheme
based on Hamming distance is used to allow for vari-

ability in the input image. Similar schemes were

proposed for voice passwords (in which a vector of

features is calculated, and each value is used to select

a fraction of the key bits from a table)and iris images.

A significant body of work on biometric encryp-

tion has been done in the cryptography community,

much based on the fuzzy vault construction of Juels

and Sudan [19]. This scheme allows a cryptographic

encoding with a variable number of un-ordered data

points, which makes it suitable for fingerprint minu-

tiae. Clancy et al. [20] designed a fingerprint algorithm

that encodes the secret as the coefficients of a Galois

field polynomial. Minutiae points are encoded as

coordinate pairs, and numerous ‘‘chaff ’’ points are

added. During key release, the points closest to the

new minutiae are chosen, and the key estimated

using an error correcting scheme.

Encoded biometric schemes potentially offer some

important advantages in security and privacy, since the

template does not need to be available in unencrypted

form. However, little work has been done to study the

security of biometric encryption schemes. Uludag

et al. [21] note that most proposed biometric encryp-

tion systems only appear to account for a ‘‘limited

amount of variability in the biometric representation.’’

They suggest that many biometric encryption systems

can be attacked simply via the FAR, by presenting

biometric samples from a representative population.

A cryptographic attack of biometric encryption was

developed by Adler [22], based on using any ‘‘leaked’’

information to attempt a hill-climbing of the bio-

metric template. Overall, while biometric encryption

offers significant promise, there is little understand-

ing of the practical applicability and security of these

systems.
Performance of Biometrics Security and
Liveness

In order to quantify and compare the security and

liveness performance of biometric systems, it is neces-

sary to have appropriate figures of merit. There exists

well understood measures of biometric performance

under zero-effort impostor attempts: the false accept

(FAR) false reject rates (FRR), failure to acquire, and

transaction time among others. It is conceptually rea-

sonable to extend these measures to the active attackers
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considered here (although there are clear experimental

difficulties in performing the measurements).

In general, a security protection measure is created

to protect against a particular active attacker. Using the

example of a liveness (L) detection system, the follow-

ing measures are defined:

� L false reject ratio (LFRR): the number of times a

legitimate attempt is rejected as an attack, divided

by the total number of legitimate attempts.

� L false accept ratio (LFRR): the number of times

an active attack against L (a spoof, in the case of

liveness) is accepted as legitimate divided by the

total number of attack attempts.

� L failure to acquire: The number of times the L

module to is unable to collect information to

make a decision, divided by the total number of

attempts.

� L mean transaction time: The average time required

by the L module to make a decision.

In a general biometric system, one or more security

protection measures (L) will function in addition to

the core biometric (B) decisions. The performance of

the combination of a security measure and a biometric

matcher is defined as the combined system performance,

with the following measures:

� System false reject ratio (SFRR): the number of

times a legitimate attempt is rejected as an attack

(by L) or an impostor (by B), divided by the total

number of legitimate attempts. Here, false rejects

are the combined set of errors from the biometric

stage (false reject of the correct person) and errors

from the liveness stage (L false reject). Thus, the

SFRR is the union of the FRR and the LFRR. In

general, SFRR 	 FRR þ LFRR, because some

transactions may be rejected by both L and B.

� System false accept ratio (SFAR): the number of

times an active attack or an impostor is accepted

as legitimate divided by the total number of attack

or impostor attempts. This definition is more com-

plicated, since the measure must combine evalua-

tions of spoof accepts (against L) and traditional

false accepts (against B). This measure is modified

by the expected frequency of impostor and attack

attempts, and thus by the relative weight of these

events in the test database.

� System failure to acquire ratio: The number of times

the L module or the biometric system B is unable
collect information to make a decision divided by

the total number of attempts.

� System mean transaction time: The average time

required by the entire system to make all decisions

(including the liveness and match decisions).

Clearly, the main difficulty in making these mea-

surements is developing a database or procedures for

the active attacks, which are somehow reflective of

their expected frequency in the target operational con-

ditions. Nevertheless, such measures are important to

clarify how security measures impact on the overall

system performance. For example, a biometric system

with very good performance (1% EER) will be greatly

impacted by a liveness algorithm that has a liveness equal

error rate of 5%. In this case, the system false reject ratio

is equal to the union of the twomeasures, that is between

5% and 6%. This would represent a dramatically worse

system in terms of the experience of its users.
Summary

The security of a biometric system is its resistance

to active attack. Such attacks may be classified as

Presentation attacks (spoofing), in which the appear-

ance of the biometric sample is physically changed

or replaced; Biometric processing attacks, in which an

understanding of the biometric algorithm is used to

cause incorrect processing and decisions; Software and

networking vulnerabilities, based on attacks against

the computer and networks on which the biometric

systems run; and Social and presentation attacks, in

which the authorities using the systems are fooled.

In this article, a survey of issues in biometric security

and liveness (anti-spoofing) have been presented,

including frameworks to classify and measure bio-

metric security performance. In addition, encoded

biometric schemes are reviewed to clarify their promise

to to counter these security threats. Overall, in the

design of security and liveness systems, it is impor-

tant to consider the operational requirements of the

application and the specific security threats against

which it will be tested.
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Definition

Person authentication is one of the critical tasks in a

securing information technology (IT) systems and bio-

metric recognition is a natural and reliable solution

that can provide secure authentication. However,

a biometric system is just one component of the over-

all IT security solution. To ensure the confidentiality

http://www.biometricgroup.com/spoof/
http://www.ibgweb.com/reports/public/reports/liveness.html
http://www.ibgweb.com/reports/public/reports/liveness.html
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of the biometric information and the integrity of the

biometric system, several security issues must be

addressed in the design stage. Appropriate steps must

be taken to guard against the vulnerabilities at the

interfaces between the different components of the

security system and the threats introduced due to

improper implementation and administration of the

biometric system. Furthermore, the security of a bio-

metric system must be analyzed systematically based

on standard methodologies such as the Common

Criteria framework.
S

Introduction

In today’s digital world, a wide variety of information

technology (IT) systems is used by the government (e.g.,

e-governance) and private organizations (e.g., e-com-

merce) to deliver their products and services to the

society. The security of these IT systems is of vital im-

portance because any security breach could potentially

lead to adverse consequences such as terrorist attacks,

financial frauds and loss of privacy. In the context

of IT systems, security can be defined as ‘‘protection of

information and information systems from unautho-

rized access, use, disclosure, disruption, modification,

or destruction’’ [1]. In general, there are four major

aspects to be considered in IT system security.

� Secure authentication – only legitimate/authorized

users should able to access the system and carry out

specific tasks.

� Data confidentiality – prevent illegitimate access or

disclosure of sensitive data or information.

� Integrity – guard against improper modification or

destruction of the system/data and ensure nonre-

pudiation and authenticity of information.

� Availability – guarantee timely and reliable access

to and use of information.

Biometric recognition is one of the techniques

that can effectively address the secure authentication

problem. Since biometric traits cannot be easily lost,

stolen, misplaced or shared, biometric recognition

offers a natural and more reliable authentication solu-

tion compared to other techniques such as passwords

or physical tokens (e.g., ID cards). However, it is

important to realize that a biometric system is just

one component of the overall IT security solution
because it address only the secure authentication as-

pect. Other technologies such as encryption, digital

signature, etc. are needed to meet the confidentiality,

integrity, and availability requirements of the complete

IT system. Moreover, the biometric system can itself be

considered as an independent subsystem within the

complete ITsystem. If the biometric system (or subsys-

tem) is compromised or circumvented, the security of

the entire IT system gets affected. Due to this reason,

the security aspects involved in the design and imple-

mentation of a biometric system should be analyzed

independently [2–4].
Biometric System Architecture

The general architecture of a biometric system is

shown in Fig . 1. There are four majo r modu les in a

generic biometric system, namely, sensor, feature ex-

tractor, matcher, and decision module. Sensor is a part

of the interface between the user and the biometric

system and its function is to scan the biometric trait of

the user. The biometric user interface may also have

other functionalities such as collecting the identity

claim from the user and providing feedback or guid-

ance to the user on how to present the biometric data.

Feature extraction module processes the scanned bio-

metric data to extract the salient information (feature

set) that is useful in distinguishing between different

users. During enrollment, the extracted feature set is

stored in a database as a template, which is generally

indexed by the user’s identity information. The tem-

plate database is usually considered as a component of

the complete IT system. The creation and maintenance

of the template database is handled by the security ad-

ministrator of the IT system. The matcher module is

usually an executable program, which accepts two bio-

metric feature sets (one from the template and the other

from the query) as inputs, and outputs a match score

indicating the similarity between the two sets. Finally,

the decision module makes the identity decision based

on the threshold set by the system administrator. Based on

the recognition results, the user is granted or refused

access to the ITapplication or service by the administrator.

From Fig . 1, it is clear that there are five main

vulnerable areas in a biometric system, where security

is of critical importance. These areas include (1) the

interface between the user and the biometric system,
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are (1) user-biometric system interface, (2) biometric system modules, (3) interconnections between biometric

modules, (4) biometric system-IT system interface and (5) security administration.
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(2) the four modules of the biometric system, (3) the

interconnection between the modules within the bio-

metric system, (4) the interface between the biometric

system and the IT system, and (5) the administration of

the template database. The various threats and counter-

measures that need to be considered in the design of a

biometric system are presented in the subsequent sec-

tions. The threat agents (attackers) could either be insi-

ders (authorized users, operators or administrators) or

external adversaries. For insider threats, the cause for

the threat could be (1) unintentional (inadvertent)

error, (2) collusion between attackers, and (3) coercion

by external adversaries.
Threats at the Interface between
User and Biometric System

In general, any attempt by an attacker to break into

the system by presenting a biometric trait can be
considered as a threat at the user-biometric system

interface level. At this level, the following threats and

countermeasures are possible.

� Casual impersonation: An impostor attempts to fool

the system by presenting his/her biometric trait and

impersonating as an authorized user. In this case,

the identity to be attacked is chosen randomly and

the impostor does not modify his/her own biomet-

ric identifiers in any way. The probability of success

in such an attack is measured by the false accept rate

(FAR) of the biometric system. Since this threat is

due to the ▶ intrinsic failure of the biometric sys-

tem and does not require any explicit effort by the

attacker, it is referred to as zero-effort attack. This

attack can be countered by selecting a very low

value of FAR and by restricting the number of

failure attempts allowed within a time-frame.

� Targeted impersonation: Same as casual impersona-

tion, except that the impostor attacks a specific
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identity, which is known to be easier to imperson-

ate (also known as lambs [5]). This attack exploits

the fact that FAR is not uniform across all users.

The impostor may also target an identity whose

biometric characteristics are known to be similar

to his/her traits (also known as ‘‘Evil Twin’’ [6]).

The same countermeasures used against casual im-

personation may be employed to limit the success

of this attack.

� Mimicry : The impostor may be able to modify his

biometric characteristics to match that of the iden-

tity under attacks. Examples of this attack include

changing one’s voice, forging a signature or mim-

icking a gait pattern. This threat is more common

in systems using behavioral biometric traits and

in unattended applications. Countering this attack

requires biometric systems that have low FAR

under skilled forgery.

� Spoofing : This is the most common attack at user

interface level and it involves the presentation of

a spoof (fake or artificial) biometric trait (e.g.,

dummy finger, recorded voice, etc.). If the sensor

is unable to distinguish between fake and genuine

biometric traits, the adversary easily intrudes the

system under a false identity. This attack requires

knowledge of the biometric trait corresponding to

the identity to be attacked. This knowledge could

be obtained in one of the following three ways:

(1) directly colluding with or coercing an author-

ized user, (2) covert acquisition (e.g., lifting resid-

ual fingerprint impressions covertly from the

sensor or any surface touched by the authorized

user) and (3) stealing the biometric template from

a database and reverse engineering the template.

The solution to counter this threat is to incorporate

liveness detection capability in the biometric sen-

sor. A number of efforts have been made in devel-

oping hardware as well as software solutions that

are capable of performing liveness detection.

� Presentation of poor image: This threat is mainly

applicable to screening applications, where the

attacker may attempt to hide his true identity by

presenting a poor image or noisy biometric sam-

ple that may not be matched to his/her template in

the database. However, it may also be applicable

in verification systems that employ a fall-back

mechanism to handle false rejects. In this scenario,

the impostor may attempt to bypass the biometric

system by providing noisy samples and exploit the
loopholes in the exception procedures. This attack

can be countered by configuring the biometric sys-

tem in such a way that the False Nonmatch Rate

(FNMR) or False Reject Rate (FRR) is very low.

� Illegal enrollment: The impostor may enroll himself

into the system illegally (under a false identity) by

producing his biometric traits along with false cre-

dentials (e.g., fake passports, birth certificates, etc.).

It must be emphasized that the secure authentication

functionality provided by a biometric system is only

as good as the integrity of the enrollment process.
Threats at the Biometric System Modules

Though the sensor, feature extractor, matcher, and deci-

sionmodules logically constitute a single unit (known as

the biometric system or device) within the IT system,

there is a variety of possibilities in the physical configu-

ration of these modules. For example, it is possible to

place all the four modules and the interfaces between

them on a single smart card (or more generally a secure

processor). In such systems, known as system-on-card

technology, sensor, feature extractor, matcher, and even

the templates reside on the card or the chip [7]. The

advantage of this technology is that the biometric in-

formation never leaves the card and only the recogni-

tion results are transmitted to the IT system. It is much

easier to design a trusted or secure biometric system

based on the system-on-card technology. On the other

extreme, consider a large Automated Fingerprint Iden-

tification System (AFIS) used in forensic applications.

In the AFIS scenario, the modules of the biometric

system are typically distributed across different physi-

cal locations (sensor may be at the crime scene, feature

extractor and decision module may be at the regional

investigation office, matcher and database at a national

center, etc.). Other intermediate configurations where

the sensor and feature extractormay reside together at a

remote location, while the matcher and database reside

on the server (or a smart card (match-on-card technol-

ogy)) are also possible. Despite the wide ranging physi-

cal configurations, four common attacks can be

mounted on the biometric system modules.

� Bypass: The attacker may completely bypass one or

more modules of the biometric system. For in-

stance, the attacker can bypass the sensor and pres-

ent the biometric image directly to the feature

extractor. In cryptography, this threat is known as
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‘‘man-in-the middle’’ attack. One method to over-

come this threat is to employ a trusted biometric

system. A trusted biometric system is one in which

the different modules are bound together physically

and/or logically using ▶mutual authentication be-

tween the modules.

� Modification: The executable program at a module

can be modified such that it always outputs the

values desired by the adversary. Such attacks are

also known as Trojan-horse attacks. Secure code

execution practices or specialized tamper-resistant

hardware that can enforce secure execution of soft-

ware can be used to avoid modification of the

module functionalities.

� Exploitation of vulnerabilities: The attacker may

identify and exploit the loopholes in the implemen-

tation of the biometric algorithms or insecure con-

figuration to circumvent the biometric system.

As an example, consider a matching module in

which a specific input value, say X0, is not handled

appropriately and whenever X0 is input to the

matcher, it always outputs a match (accept) deci-

sion. This vulnerability might not affect the normal

functioning of the system because the probability

of X0 being generated from a real-biometric data

may be negligible. However, an adversary can ex-

ploit this loophole to easily breach the security

without being detected. Note that the attacker

may need to bypass one or more modules in the

biometric system to exploit such vulnerabilities.

� Sabotage: Finally, an adversary can physically tam-

per with or damage the infrastructure of a biomet-

ric system thereby preventing legitimate users from

accessing the application. Examples of sabotage

include disabling the power supply, damaging the

sensor surface or introducing excessive noise (in-

terference) that prevents the normal operation of

the system. Apart from causing denial of service to

authorized users, this kind of attack may also be

used to gain unauthorized access by exploiting the

vulnerabilities in the fall-back system.
Threats at the Interconnections between
Biometric Modules

The following vulnerabilities are possible when an ad-

versary gains control of the communication interfaces
between different modules of the biometric system.

Juels et al. [8] outlined the security and privacy issues

introduced by insecure communication channels in an

e-passport application that uses biometric recognition.

� Replay attacks: If the channels between the biometric

modules are not secured physically or cryptographi-

cally, an adversarymay intercept the data being trans-

ferred and replay it at a later time. The raw biometric

data or extracted features can be intercepted and

replayed. Replay attacks are possible even if the data

are encrypted. A countermeasure against this attack

is to use time-stamps or a challenge/response mech-

anism. Mutual authentication between the modules

and use of one-time session keys during every trans-

action could also mitigate replay attacks.

� Hill Climbing attacks: Hill climbing attacks are

possible when the adversary has the ability to inject

raw biometric data or features directly into the

channel by bypassing the sensor or feature extrac-

tor (or through Trojan-horse attacks). This attack

also requires some feedback from the biometric

system such as the match score [9]. In this scenario,

an artificially generated biometric sample or fea-

ture set is first introduced into the system and the

response (match score) is noted. The adversary

then perturbs the initial sample or feature set, sub-

mits it to the system and records the new match

score. If the match score in the second iteration is

higher than the first one, the changes are retained;

else, they are discarded. This process is iterated

several times until the match score crosses the

threshold set by the system administrator. In each

iteration where the match score is higher than

before, the artificially generated sample or feature

set becomes more similar to the template that is

being targeted. Restricting the number of failure

attempts allowed within a time-frame, increasing

the granularity of the match score, the use of

trusted biometric systems, etc. are some techniques

that can counter the threat of a hill-climbing attack.

� Sabotage : The adversary can also sabotage the bio-

metric system by physically damaging the commu-

nication interfaces between the modules or by place

an interfering source near the communication

channel (e.g., a jammer to obstruct a wireless inter-

face). This may cause the denial of service or lead to

unauthorized access attempts that try to exploit

vulnerabilities in the fall-back system.
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Threats at the Interface between
Biometric and IT systems

The communication channels at the interface between

the biometric system and the ITsystem carry four main

types of information, namely, the user identity infor-

mation, the biometric template, the system parameters

such as threshold, and the recognition results. Since all

the four pieces of information are of vital importance,

careful attention needs to be given to secure these links.

As in the interfaces between the modules, the key

threat is the interception and/or modification of data.

For instance, if the recognition results can be inter-

cepted and modified by the adversary, the complete

biometric system gets bypassed and the security

provided by the biometric system is rendered useless.

The countermeasures against this type of threat are

essentially the same as those used to secure the links

between the biometric modules.
S

Administration Threats

Administration attack refers to all vulnerabilities intro-

duced due to improper administration of the biometric

system, which may occur due to the following causes.

� Insider threat: Authorized users or system adminis-

tratorsmay exceed their authority either inadvertently

or with malicious intent. Steps such as security

awareness training and audit trails can minimize

the threats posed by the insider attacks. However, it

is important to ensure the integrity of the audit logs

themselves, because any unauthorized tampering of

audit logs can lead to undetected insider attacks.

� Template Modification: The template database could

be hacked ormodified by an adversary to gain unau-

thorized access. This scenario is also applicable to the

case where the template is stored on a smart-card.

The card may be forged to contain the biometric

template of the impostor. Template protection

approaches such as encryption and ▶ biometric

cryptosystems can be used to prevent this attack.

� Leakage of Biometric Information: Leakage of the

biometric template information may lead to

the following consequences: (1) A physical spoof

can be created from the template (see [10, 11]) to

gain unauthorized access to the system (as well as

other systems that use the same biometric trait), (2)

the stolen template can be replayed to the matcher
to gain unauthorized access, and (3) the templates

can be used for cross-matching across different

databases to covertly track a person without his/

her consent. Template protection schemes like

encryption, feature transformation, and biometric

cryptosystems can be used to mitigate this threat.

� Exception processing : User authentication systems

are usually riddled with exception processing pro-

cedures (or fall-back systems) to avoid inconve-

nience to genuine users. For example, when a user

suffers an injury to his finger, hemay still be granted

access based on alternative authentication mechan-

isms without undergoing fingerprint recognition.

Such exception processing procedures can be easily

abused to circumvent a biometric system.
Common Criteria Framework

The Common Criteria (CC) for Information Tech-

nology Security Evaluation is an international stan-

dard (ISO/IEC 15408) for evaluating the security of

information technology systems [12]. This standard

provides the ability to compare independent security

evaluations of a product or system. The IT product

or system whose security properties are to be analyzed

is called the Target of Evaluation (ToE). The CC frame-

work classifies the IT security requirements into secu-

rity functionalities and assurance levels. It also defines

two ways of expressing these requirements, namely,

Protection Profile (PP) and Security Target (ST).

The protection profile (PP) can be used by consumers

and system designers to list the various threats and

vulnerabilities faced by the ToE and the desired security

features that will meet their needs. The security target

(ST) precisely specifies the security capabilities of the

ToE and the ST is used by the evaluators as the basis for

the security evaluation. The STmay also claim compli-

ance with a protection profile. The CC framework can

be used to systematically evaluate the security of a

biometric system. For example, biometric protection

profiles have been introduced in the U.K., U.S. and

Germany [6, 13, 14].
Summary

A biometric system is one of the key components in an

IT security system that provides the secure authentica-

tion functionality. However, the biometric system itself



1158S Security Threat Assessment
is vulnerable to a number of security threats and a

systematic analysis of these threats is essential when

designing a biometric system. In this article, a high-

level categorization of the various vulnerabilities of a

biometric system was presented and countermeasures

that have been proposed to address these threats were

discussed. Public acceptance of biometric recognition

technology will depend on the ability of system

designers to demonstrate that these systems are robust,

have low error rates, and are tamper-proof. This can be

achieved by evaluating the biometric system security

using IT security standards such as the Common

Criteria framework.
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Definition

Iris image segmentation is the process of finding the iris

region within an image of the subject’s eye area: dis-

tinguishing the iris ring from the sclera, eyelids, and

other regions, and also detecting obscurations caused

by eyelashes and specular reflection. Off-axis images

are those captured when the subject is not looking in

the direction of the camera.
Segmentation of Off-Axis Iris Images. Figure 1 Off-axis

iris image from [1], Fig. 9a, p. 586. [Copyright U.S Naval

Academy]

S

Introduction

Iris recognition systems typically require that users

position themselves a few inches away from the

camera and look into the camera for a few seconds,

known as the ‘‘stop and stare.’’ More forgiving and

user-friendly interfaces in commercial systems may

facilitate the introduction of iris systems into a wider

range of applications. Taking it a step further, elim-

inating the user cooperation requirement entirely

would enable deployment of systems in which the

subject may not be aware of the image capture, such

as in a surveillance situation. The less user coopera-

tion that is expected, the more the systems depend

on recognition from off-axis images, namely those

taken when the subject is not looking in the direction

of the camera, such as in Fig. 1. The topic of this

chapter is the segmentation of off-axis iris images:

the task of determining which pixels from the captured

image belong to the iris, as opposed to the sclera, the

eyelids, eyelashes, etc.

Segmentation methods can incorporate certain

parameters, regarding the approximate size of the iris

as imaged through a given camera such as the approx-

imate pixel diameter. In addition, segmentation often

exploits the basic shape and proportions of a typical

eye, but to different degrees and in different ways.

Often the pupil (inner) boundary and limbic (outer)

boundary are conceptualized as nearly-concentric circles

(alternatively, the pupil mass may be thought of as a

disk and the limbic boundary as a circle), so one often

proceeds by searching for these shapes, for instance

with circular edge detection in the appropriate diam-

eter range, and then refining the search as needed

to account for irregularly shaped boundaries. Gener-

ally speaking, this is still true in the off-axis case, except

that the circular model must now be more flexible,
replaced with something like an oriented ellipse,

to account for sideward and/or up- or downward

gaze (yaw and pitch). An off-axis segmentation pro-

cedure is hopefully rather robust, because reduced

user cooperation may result in lower image quality,

such as from blur, inconsistent illumination and sha-

dows, significant eyelid and eyelash obscuration, and

specular reflections intersecting the pupil or limbic

boundary.

Shape models may enhance robustness and save

some time by narrowing down what to look for, and

they are useful for other reasons too. A shape model of

the inner and/or outer boundary, such as an ellipse

with a certain center, axis lengths, and orienta-

tion, provides a means to determine the gaze angle,

e.g., using eccentricity-based computations, from

which the eye image may be projected to orthographic

(on-axis) view before feature encoding. Whatever

the assumed shape of the iris ring, in many on-axis

recognition algorithms the iris boundaries are often

identified as closed curves (projecting behind any

occluding eyelids), because this description of the

boundaries is used to ‘‘cut and unwrap’’ the iris ring

into a rectangle prior to feature extraction.

What follows is a summary of off-axis segmen-

tation techniques, many of them adapted from or

inspired by previous on-axis methods – clever con-

structions and combinations of morphology, contours,

filters, snakes, splines, trigonometry, transforms, and

plain brute force.
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Reprinted from [5], Fig. 4, pp. 1171. Iris image (ICE-1 file

239766) overlaid with pupil, iris-sclera, and eyelid boundaries,

and detected eyelashes. Also shows iris pixel histograms

(lower right), snakes (the two lower left plots), and resulting

Iris Code (top left). In the top snake plot the two fuzzy bands

are the curvature map for the iris-sclera boundary, and the

dotted curve shows its Fourier series approximation are for

the pupil boundary. Copyright 2007 IEEE.
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Discussion of Segmentation
Methods

The Daugman Algorithm

The algorithm developed by Daugman [2–5] is used in

the current public deployments of iris recognition sys-

tems. Indeed, two of the iris image preprocessing steps

introduced in [2], an integro-differential operator for

edge detection and the pseudo-polar coordinate trans-

form which transforms (or ‘‘unwraps’’) the iris ring

into a doubly-dimensionless coordinate system, have

been incorporated into various other proposed recog-

nition methods. Therefore it is natural to begin with

the off-axis segmentation in [5].

The segmentation begins with approximating the

pupil, limbic, and eyelid boundaries using the integro-

differential operator from [2]:

max
r;x0;y0ð Þ

GsðrÞ
 @

@r

I

r;x0;y0

Iðx; yÞ
2pr

ds

�����

�����: ð1Þ

Here I(x, y) are the image grayscale values, Gs(r) is

a smoothing function such as a Gaussian of scale s,
and the contour integral is along circles given by

center (x0,y0) and radius r (but the circles are replaced

by arcs when searching for eyelids). Thus this opera-

tor produces initial circular estimates for the pupil

and limbic boundaries from the maximum blurred

partial derivative of the image grayscale values with

respect to a radial variable. To zero in on the actual

boundary, the plots of radial gradients for the pupil

and limbic boundaries form two ‘‘snakes’’, like those

shown in Fig. 2, each of which is then approxi-

mated by a discrete Fourier series. The iris ring is thus

bounded by smooth closed curves which would project

behind occluding eyelids, but in general the inner

and outer boundary will be neither exactly circular

nor elliptical.

The pupil boundary contour provides the informa-

tion necessary to compute the gaze angle from ‘‘Four-

ier-based trigonometry’’: using the Fourier coefficients

to fit an oriented ellipse to the pupil boundary. An

ellipse is parameterized by the equations x(t)¼ A cos(t),

y(t) ¼ B sin(t), where A < B in the case of a vertical

major axis. If the gaze is deviated upward or down-

ward, the pupil boundary would appear rotated by

some angle y, so the more general parameterization is

an oriented ellipse, given by
XðtÞ ¼ ½A cos2yþ B sin2y� cosðtÞ
þ ½ðB � AÞ cos y sin y� sinðtÞ;

Y ðtÞ ¼ ½ðB � AÞ cos y sin y� cosðtÞ
þ ½B cos2yþ A sin2y� sinðtÞ:

By comparison of these expressions with the lower

frequency terms of the Fourier series which describes

the pupil boundary contour, the values of A, B, and y
are uniquely determined. This is sufficient to deter-

mine sideward and upward/downward gaze directions,

and to rotate the image back to orthographic view with

an affine transformation. An example image before

and after rotation is shown in Fig. 3.

The last step in the segmentation process is the

detection of eyelashes, which are found by the realiza-

tion that the presence of eyelashes overlying the iris

results in too many dark pixels in the upper half of

the iris, compared with the grayscale distribution

in the lower half of the iris. In such cases, when the

grayscale distribution in the top half of the iris

shows multimodal mixing, the suspect pixels are elimi-

nated by thresholding. Figure 2 shows the iris pixel

histograms for eyelash detection, the segmentation
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Fig. 3, p. 1170. ICE -1 file 244858, shown before and after

the rotation process which corrects the iris to orthographic

view. Copyright 2007 IEEE.
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result, and the iris template after feature extraction

(i.e., the IrisCode [2–4]).
S

Alternative Segmentation Approaches

Some approaches to off-axis iris segmentation originate

from research for▶ eye tracking applications. There are

many published eye tracking methods with various

segmentation procedures, any of which could be bor-

rowed or built upon for use in iris recognition. For

present purposes, we mention the eye tracking meth-

ods of Zhu and Yang [6], and the related iris recogni-

tion paper by Sung et al. [7], which uses an initial

step of eye corner detection (by filters which detect

sideways V-shapes); then Sobel edge detection to find

the nearly vertical left and right ‘‘sides’’ of the iris–

sclera boundary, which also provides the center of the

iris and approximate center of the pupil; intensity

thresholding to identify dark regions; and finally, ▶ bi-

nary morphology (size and shape considerations) to
choose the pupil disk from among the dark masses

which lie within the previously determined iris

boundary.

Zuo et al. [8] likewise use a combination of inten-

sity and location for pupil segmentation, after a

▶ circular Hough transform which generates the list

of pupil candidates. Additional morphology (finding a

convex hull) eliminates indentations in the pupil mass

caused by specular reflection at the edge of the pupil.

Finally, the pupil boundary is declared to be an ellipse

fitted to the resulting region. Fitting an ellipse to the

pupil boundary is convenient for the eventual unwrap-

ping of the iris, but the ellipse is used here also to find

the limbic boundary: the operator (1) is modified so

that, instead of families of circles, the contours of

integration are ellipses of the same eccentricity and

orientation as the pupil boundary.

Binary morphology may be the most ubiquitous

idea in pupil segmentation; the structuring elements

are easy to construct and combine in many convenient

and intuitive ways. To cite a third example, Ross and

Shah [9] find the pupil using thresholding to identify

dark regions, median filtering to reduce noise, and a

circle-fitting procedure to locate the circle containing

the maximum number of black pixels, which is de-

clared to be the pupil boundary. The main innovation

in [9] is that the limbic boundary and eyelids are

detected using geodesic active contours. The boundary

is described as the zero level set of an embedding

function, where the embedding function is initialized

as the signed distance from any point in the image to a

circle concentric with the pupil boundary, but of

slightly larger radius. The active contour process

makes the embedding function evolve according to

gradients of the image grayscale values and the behav-

ior of the stopping function. The resulting boundary

contour traces the iris–sclera boundary arcs and the

iris–eyelid boundary, creating the correct iris mask.

Two sample images are shown in Fig. 4. Finally, the

boundary is projected behind the eyelid by fitting

a circle to the iris–sclera portion of the boundary

contour, as this is needed for unwrapping.

In each of the segmentation methods mentioned

so far, the segmentation process is performed prior

to gaze angle determination: segmentation provides

the information required to find the gaze angle using

the eccentricity idea. However, the segmentation pro-

cess and gaze angle determination can be intertwined

in other ways. In each of the two methods proposed by
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segmentation result using geodesic active contours, from

[9], Fig. 10a-b, shown on images from the West Virgina

University off-angle iris image database [12]. Copyright

2006 IEEE.
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Schuckers et al. [10], for instance, the rotation angle is

incremented to create a series of possible image trans-

forms. The angle is then selected according to an opti-

mizing procedure. One of the ways to use this is by the

application of camera calibration techniques to create

model planes: plotting and tracking reference points

from multiple eyes (image classes) at different angles,

as a training process to transform other images. The

other approach in [10] is to process the image through

a projective transform incremented within a range

of pitch and yaw angles. The rotation angle pair is

then defined as the one which maximizes the operator

(1) for the pupil, or in other words, the pitch and yaw

combination which best transforms the pupil bound-

ary back to a circle. This optimization process was

also used by Dorairaj et al. in [11].
Summary

Segmentation is always the critical step for correct

feature encoding. In the off-axis context, accurate seg-

mentation is required not only to know which pixels to

keep and which to throw away, but also (in most

approaches) to ascertain the gaze angle, from which

we can undo the effects of rotation before feature

encoding takes place.

The most common themes and techniques that

have been applied to on-axis segmentation appear

just as often in off-axis segmentation, notably edge

detection from large gradients, such as the Daugman

operator (1), and various combinations of threshold-

ing and binary morphology often brought to bear

on finding the pupil: thresholding to identify dark

regions, dilation and erosion for noise removal,
convexity to remove specular reflection, and assorted

ways to distinguish the pupil mass from the other dark

regions by its size and near-roundness. The same issues

that can plague on-axis segmentation are here as well,

but it is to be expected that they will be exacerbated

by the noncooperative image capture: blur, glare,

eyelashes, and eyelids conspire to thwart off-axis seg-

mentation and recognition.

There are no cut-and-dry ‘‘right answers’’ in iris

segmentation; the iris–sclera boundary in particular is

fairly subjective. Segmentation is often evaluated by

visual inspection or after its incorporation into a com-

plete recognition algorithm. In the latter case, the

performance of segmentation is affected by the choice

of the feature extraction process, the unwrapping pro-

cess (assuming unwrapping is required), and in the

off-axis case specifically, the results reflect the interac-

tions between the segmentation, the unwrapping, and

the determination of the gaze angle. Ultimately it

is true that segmentation must perform within a

start-to-finish recognition process, so all-up testing is

a necessary step, but it is important to recognize the

difficulty of cross-comparing segmentation perfor-

mance statistics in isolation.

The handling of off-axis segmentation is a relatively

new problem within the iris recognition community;

the methods discussed in this chapter were mostly

published in 2006–2007. For future work, a few obvi-

ous avenues of improvement are apparent. First, it has

been an educational experience for the author of this

chapter to explore a little more of the eye tracking

world, since they have been hard at work on quick

and robust segmentation at arbitrary angles for several

years. One such paper [6] was mentioned in this chap-

ter, but one could ask whether we have gleaned every-

thing we can from this and other image processing

applications. Second, there are very few off-axis

image databases. Most of the research discussed was

performed on the West Virginia University database

[12], the NIST Iris Challenge Evaluation (ICE) data-

base, or small sets of images collected locally by the

researchers. Of course, the more databases that can be

assembled, the better. Lastly, considerations about the

three-dimensional shape of the iris have until now

taken a back seat to other questions. This is certainly

understandable, since these modeling issues would not

affect the comparison of two images taken at the same

angle, which is the traditional on-axis iris recognition

assumption. Similarly, corneal refraction will affect
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off-axis recognition performance, a preliminary study

of which was undertaken in [13]. When it comes to the

more challenging real-world iris recognition situa-

tions, even seemingly small improvements in iris mod-

eling may prove very helpful.
Related Entries

▶ Iris Encoding and Recognition

▶ Iris Features and Anatomy

▶ Iris Recognition, Overview

▶ Iris Segmentation Using Active Contours
S
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Semi-Supervised
Part of data are labeled, but the rest are unlabeled.

Algorithms are designed for separation of data under-

lying different classes, by taking the use of both labeled

information and unlabeled information.

▶ Linear Dimension Reduction
Sensitivity Analysis in Biometric
Systems
Sensitivity analysis in application to biometric systems

investigates the influence of variations of certain para-

meters on the recognition performance of biometric

systems. As an example, in the case of iris sample

synthesis the selected parameters may include but are

not limited to parameters characterizing fibers, collar-

ette, and global features of iris images.

▶ Iris Sample Synthesis
Service-Oriented Architecture
Service-oriented architecture (SOA) are software

architectures in which reusable services are deployed

onto application servers and then consumed by clients

in different applications or business processes [1]. SOA

is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different

ownership domains. It provides a uniform means to

offer, discover, interact with, and use capabilities to
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produce desired effects consistent with measurable

preconditions and expectations.

▶Biometric Identity Assurance Services
Service Provider
In general, a business organization that provides con-

sumers with specified services, for a fee or sometimes

in response to a request. In the context of a federated

registered traveler program, service providers contract

with sponsoring entities (e.g., airports) to provide

enrollment and/or verification services. These services

generally include marketing, application processing,

applicant registration (including data collection/

biometric capture), data management/protection, card

production and issuance/re-issuance, and overall pro-

gram administration including fee collection. Verifica-

tion services include provision of manned kiosks at

travel lanes (e.g., screening checkpoints, passport con-

trol) with hardware/software to perform card reading/

validation, biometric verification (capture/matching),

security, and revocation checking.

▶Registered Traveler
Session and Channel Variabilities
▶ Session Effects on Speaker Modeling
Session Effects on Speaker Modeling

DRISS MATROUF, JEAN-FRANÇOIS BONASTRE

CERI, University of Avignon, Avignon, France
Synonyms

Session and channel variabilities; Factor analysis;

Nuisance attribute projection, Support vector

machine; Score normalization
Definition

In spite of the research efforts in the fields of speaker

feature characterization and speaker modeling, the

speaker recognizer must face a problem involving the

change of acoustic conditions, which vary in

an unforeseeable way, from one recording to another.

This phenomenon is generally referred to as session

mismatch or session variability. It is one of the greatest

sources of automatic speaker recognition (ASR)

performance degradation. The term session variability

encompasses a number of phenomena including trans-

mission channel effects, environment noise (other

people, cars, TV, etc.), differing room acoustics (hall,

park, etc.), the microphone position relative to the

mouth, and the variability introduced by the spea-

ker himself. These sources of mismatch have the

potential to increase the rate of errors of ASR. It is

not easy to separately solve the problem of session

variability caused by each of these sources thus, all

the solutions suggested in literature deal with the prob-

lem of session mismatch in its globality. These pro-

posed solutions perform at various levels of the ASR

(feature space, model space and score space).
Introduction

In speaker recognition most of the errors are due not to

the similarity among voiceprints of different speakers,

but to the intrinsic variability of different utterances of

the same speaker. This awkward variability for the

speaker recognition is called session variability. One of

the largest challenges in speaker recognition applica-

tions is dealing with session variability [1]. Session

variability, also known as channel variability, is defined

as the variability exhibited by given speaker from one

recording session to another and is caused by several

factors: channel effects, transducer characteristics, en-

vironment noise and intraspeaker variability. When

this mismatch is produced between sessions extracted

for enrolment and verification phases, performance of

speaker recognition system is highly degraded and

numerous techniques has been investigated to com-

pensate session variability in several domains: In fea-

ture domain, compensation attempts at removing the

channel effects from the feature vectors prior to mod-

eling or testing. In model domain, compensation

attempts to transform speaker models to minimize
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the effects of varying channels. In score domain, com-

pensation attempts to remove model score scales and

shifts caused by varying input channel conditions.
S

Feature Domain Compensation

In literature concerning the variability of the session

we find two types of compensation: unsupervised and

supervised. In the unsupervised case, speaker features

are transformed to accommodate the channel variation

without a priori knowledge of the channel character-

istics. On the other hand, supervised compensation

estimates session-channel characteristics based on a

priori knowledge of all possible channels.

Unsupervised Compensation: There are three types

of unsupervised compensation. The first type use the

temporal variability of feature vectors. It exploits the

fact that the channel effects vary slowly with respect to

the cepstral vectors (vocal tract characteristics evolu-

tion). For example, cepstral mean subtraction (CMS)

[2, 3] subtracts the cepstral mean of an utterance from

each of the cepstral vectors. ▶RASTA-filtering [4]

removes the slow varying components (corresponding

to the channel) from the sequence of cepstral vectors

by applying a bandpass filter. The second type of

unsupervised compensation transforms the distorted

features such that acoustic environments haveminimum

effect on the distribution of the transformed features.

For example, in feature warping [6], observed features

are mapped to a target distribution (e.g., standard

normal) such that they follow the target distribution

over a sliding window of feature vectors. In short-time

Gaussianization [7], a linear transformation is applied

to the distorted features before mapping them to a

normal distribution. The transformation aims to dec-

orrelate the feature vectors making them more suitable

for diagonal covariance GMMs. It was found that

short-time Gaussianization is superior to feature warp-

ing, especially at a low false acceptance rate. The third

type makes use of the statistical difference between the

clean acoustic models and the distorted speech to

estimate a transformation matrix to map the distorted

vectors to fit the clean model. This type of technique

involves blind stochastic feature transformation [8].

Supervised Compensation: Supervised techniques

are based on channel type detection during recogni-

tion. Examples in this category are featuremapping [9],

spectral-magnitude matching [10], and stochastic
feature transformation [11]. In feature mapping, the

handset type of the testing utterance is identified by

a handset detector. Feature vectors are then mapped

to the channel-independent space based on the closest

Gaussian in the channel-dependent GMM. In spectral-

magnitude matching [10], a nonlinear polynomial

mapper is trained to minimize the mean-squared spec-

tral magnitude error between speech arising from elec-

tret and carbon-button handsets. This mapping is

shown to be good at minimizing mismatches caused

by phantom formants, bandwidth widening, and spec-

tral flattening due to channel nonlinearity. Stochastic

feature transformation (SFT) [11] aims to transform

the distorted features to fit the clean speech models

by selecting the most appropriate pre-computed trans-

formation matrix. It has been shown that SFT can be

extended to nonlinear feature transformation to over-

come the nonlinear distortion [11].

Feature mapping [9] is a supervised technique

that relies on a handset detector which contains the

information of all possible channels that the users

may use during verification. In feature mapping, the

transformation is based on the top-1 Gaussian only.

Specifically, let GMM LCDi ¼ fpCDij ; mCDij ;SCDi
j gMj¼1 be

an M-mixture channel-dependent GMM for channel

i and GMM L ¼ {pj, mj, Sj}
M
j¼1, be an M-mixture

channel-independent root model. The mapping of a

distorted vector y in the channel-independent space

is given by

x ¼ ðy � mCDik Þ s
CD
k

sCDik

þ mCDk ð1Þ

x is the corresponding frame in the channel-independent

space. To account for the effect of other Gaussian com-

ponents on the transformed features, the transformation

should be based on a weighted average of all Gaussian

components, which leads to probabilistic feature

mapping (PFM).
Score Domain Compensation

Since the study of Li and Porter [40], various kinds of

score normalization techniques have been proposed in

the literature. Several of these are briefly described in

the following section.

Score normalization techniques have mainly been

derived from the study of Li and Porter [40]. In their

paper, large variances had been observed from both
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distributions of client scores (intraspeaker scores) and

impostor scores (interspeaker scores) during speaker

verification tests. As a result of these observations,

the authors proposed solutions based on impostor

score distribution normalization in order to reduce

the overall score distribution variance (both client

and impostor distributions) of the speaker verification

system. The basic idea of the normalization technique

is to center the impostor score distribution by applying

on each score generated by the speaker verification

system the following normalization. Let Ll(X) denote

the score for speech signal X and speaker model l. The
normalized score ~LlðXÞ is then given as follows:

~LlðXÞ ¼ LlðXÞ � ml
sl

ð2Þ

where ml and sl are the normalization parameters for

speaker l. Both of these parameters are estimated from

a (pseudo) impostor score distribution. Different pos-

sibilities are available to compute the impostor score

distribution: Znorm, Hnorm, Tnorm, HTnorm,

Cnorm, Dnorm. All these normalization techniques

are decsribed in [1]. This family of normalization

techniques is the most commonly used in ASR. They

are di rectly derived from Eq. 2 in whi ch the scores are

normalized by subtracting the mean and then dividing

by the standard deviation. In the following the princi-

ple of the most popular is given:

Znorm The zero normalization (Znorm) technique

is directly derived from the work done in [12]. It was

quickly incorporated in most speaker verification

systems in the middle of the nineties. In practice, a

speaker model is tested against a set of speech signals

produced by a group of impostors resulting in an impos-

tor similarity score distribution. Speaker-dependent

mean and variance-normalization parameters are esti-

mated from this distribution and used to normalize

similarity scores yielded by the speaker verification sys-

temwhen runningusing Eq. 16. One of the advantages of

Znorm is that the estimation of the normalization para-

meters can be performed offline during speaker model

training.

Hnorm By observing that, for telephone speech,

most of the client speaker models respond differently

according to the handset type used during testing data

recording, Reynolds [13] proposed a variant of Znorm

technique referred to as handset normalization

(Hnorm) to deal with handset mismatch between the

training and testing phases. Here, handset-dependent
normalization parameters are estimated by testing each

speaker model against handset-dependent speech signals

produced by impostors. During testing, the type of hand-

set relating to the incoming speech signal determines the

set of parameters to use for score normalization.

Tnorm Still based on the estimate of mean and

variance parameters to normalize impostor score dis-

tribution, test-normalization (Tnorm), proposed in

[14], differs from Znorm by the use of impostor mod-

els instead of test speech signals. During testing, the

incoming speech signal is classically compared with

claimed speaker model as well as with a set of impostor

models to estimate impostor score distribution and

normalization parameters consecutively. If Znorm is

considered as a speaker-dependent normalization tech-

nique, Tnorm can then be termed test-dependent. As the

same test utterance is used during both testing and

normalization parameter estimation, Tnorm avoids

mismatch between test and normalization utterances

which is a possible issue encountered when using

Znorm. Conversely, Tnorm has to be performed online

during testing.
Model Domain Compensation

Gaussian Mixture Models (GMM) used in a GMM-

UBM framework is perhaps one of the most common

configurations found in speaker verification systems

[1]. For a several years now, new techniques that take

session variability (or speaker intra-variability) into

account have emerged providing a significant increase

in system performance.

Among the approaches aimed at reducing the effect

of session variability, feature mapping was often used

alongside channel-labelled data with the assumption of

a discrete channel space. The novelty brought by the

factor analysis model is that it assumes the channel (or

session) variability space to be continuous. In this

model, the session variability effect is incorporated in

the speaker model through session-dependent GMM

mean supervectors offsets, constrained in a low dimen-

sional subspace.

A speaker model can be decomposed into three

different components: a speaker-session-independent

component, a speaker dependent component and a

session dependent component. A GMM mean super-

vector is defined as the concatenation of the GMM

component means. Let D be the dimension of the
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feature space and MD the dimension of a mean super-

vector where M is the number of Gaussian in the

GMM. A speaker and session independent model is

usually estimated in speaker verification to represent

the inverse hypothesis: the UBMmodel. Let this model

be parameterized by y ¼ {m, S, a}. In the following,

(h, s) indicates the session h of the speaker s. The factor

analysis model, in our case the eigenchannel MAP

estimator, can be written as:

mðh; sÞ ¼ mþ Dys þ Uxðh; sÞ; ð3Þ

where m(h,s) is the session-speaker dependent super-

vector mean, D is MD � MD diagonal matrix, ys the

speaker vector (a MD vector), U is the session varia-

bility matrix of low rank R (a MD � R matrix) and

x(h,s) are the channel factors, a R vector (theoretically

x(h,s) does not dependent on s). Both ys and x(h,s) are

normally distributed among Nð0; IÞ. D satisfies

the following equation I ¼ tDtS�1D where t is

the relevance factor required in the standard MAP

adaptation (DDt represents the a priori covariance

matrix of ys).

The success of the factor analysis model relies on a

good estimation of the Umatrix. This requires a suffi-

ciently high amount of data in which a high number of

different recordings per speaker are available.

The verification task is defined as follows. A speaker

star is enrolled by the systemwith his training data Y star .

Given a sequence of speech frames Y ¼ fy1 . . . yTg
and the speaker star, the speaker verification task con-

sists of determining if Y was spoken by star or not.

Using the factor analysis decomposition in both train-

ing and testing data, one can write:

mðhtar;star Þ ¼ mþ Dystar þ Uxhtar ;

mðhtest ;stest Þ ¼ mþ Dystest þ Uxhtest ; ð4Þ
where the speaker star in the training data and stest in

the testing data have been distinguished. To address

session variability, the strategy adopted by [15, 16]

assumes that the test speaker has the same identity as

the target speaker, i.e. ystest ¼ ystar . The channel com-

ponent Uxhtest of the test segment is estimated under

this assumption. Indeed, the session component of the

target model Uxhtar is replaced by the one estimated

from the test data Uxhtest . The world model in the score

equation remains unchanged. This strategy has several

drawbacks: the target speaker model is changed for

each test and significant performance gains can only
be achieved when score normalization techniques are

employed. In [17], a hybrid domain normalization

strategy is proposed which aims to withdraw the ses-

sion component in the test and training data. This can

be formulated as,

mstar ¼ mþ Dystar ; mstest ¼ mþ Dystest : ð5Þ
In this strategy, speakers are assumed to be different

and are treated separately. When using a LLR-based

verification approach, the speaker verification score is

an expected log-likelihood ratio:

LLK ðYjmðhtar ;star ÞÞ � LLK ðYjmÞ; ð6Þ
where LLK (� j �) indicates the average of the log-likeli-
hood function over all frames. Here, all GMMs have the

same covariance matrices as well as the same mixture

weights (both dropped from the equation for clarity).

Two session compensation approaches can be adopted.

The first approach involves performing compensation

at the frame level, where session compensation can be

seen as a front-end process. The second approach is a

hybrid compensation, where the session variability is

subtracted from the target speaker model (model do-

main) and the compensation in the testing data is

performed at the frame level (feature domain). The

following formula is used to remove the session effect

for each frame t (also successfully used by [18]):

t̂ ¼ t �
XM
g¼1

ggðtÞ � fU � xhtest g½g �: ð7Þ
A similar approach, NAP (nuisance attribute projec-

tion) [5] is also used to reduce the impact of channel

(or session) [5]. NAP is dedicated to the▶ SVM super-

vector (support vector machine) based systems [22],

which called the ▶NAP-SVM approach.
Experiments

Speaker verification experiments are performed using

the NIST SRE 2005 as a development set and the 2006

database for the validation set using only male speak-

ers. These databases consist entirely of telephony

speech and are referred to as the 2005 and 2006 pro-

tocols. The 2005 protocol consists of 274 speakers,

9,012 tests (951 target tests, the remainder being im-

postor trials) while the 2006 protocol consists of 354

speakers, 9,720 tests (of which 741 were target tests).
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(Please note that 2005 protocol corresponds to the core

condition labeled as det7 and the 2006 protocol corre-

sponds to the core condition labeled as det3.) Results

are given in terms of equal-error-rate (EER) and the

minimum DCF (an a posteriori decision). On average,

train and test utterances contain 2.5 min of speech

where around 30% of speech frames per speaker have

been retained. The intersession variability matrix is

trained on the NIST-SRE-2004 database with 2,938

examples from 124 speakers, taking approximately 20

iterations to reach convergence.

The baseline system is a standard GMM-UBM system

[19]. Frames are composed of 19 LFCC parameters,

their derivatives, and 11 second derivatives (the fre-

quency window is restricted to 300–3,400 Hz). A nor-

malization process is applied so that the distribution of

each cepstral coefficient is 0-mean and 1-variance for a

given utterance. Table 1 shows the results of the base-

line system and T-norm scores (Z and ZT-norm do not

bring any improvement).

The following outlines the experimental results

obtained with the implementation described in

[17]. Table 2 shows the improvement with score
Session Effects on Speaker Modeling. Table 2 Baseline

and score normalized results obtained when using the

factor analysis model (rank = 40). Znorm consistently

provides an improvement over the baseline results.

DCFmin (� 100), EER(%)

SRE-05 SRE-06

DCFmin EER DCFmin EER

Nonorm 1.83 4.42 1.61 2.97

Tnorm 1.84 4.72 1.29 2.83

ZTnorm 1.72 4.62 1.18 2.15

Znorm 1.64 4.21 1.46 2.33

Session Effects on Speaker Modeling. Table 1 Results of

the baseline GMM-UBM system on the 2005 and 2006

protocol. DCFmin (� 100), EER(%)

SRE-05 SRE-06

DCFmin EER DCFmin EER

Nonorm 3.83 7.15 3.88 6.79

Tnorm 3.05 8.52 2.9 5.7
normalization. Znorm consistently brings about an im-

provement in both protocols, while Tnorm is only ef-

fective in 2006. Indeed, the DCFmin drops from 1.83 to

1.64 with Znorm in 2005 and from 1.61 to 1.18 with

ZTnorm in 2006. While the behavior is different on

both protocols, ZTnorm appears to be the most confi-

dent choice for score normalization.

Table 1 shows the results of the baseline system and

T-norm scores (Z and ZT-norm do not bring any

improvement).
Conclusion

The majority of techniques presented in this chap-

ter fail to reach their goal for different reasons. For

example, feature mapping, speaker model synthesis

(SMS) [20], and H-Norm are sub-optimal because

they consider only finite and discrete sources of session

mismatch. In theory, assuming that the mismatch

belongs to a finite number of categories simplifies deal-

ing with the session variability problem. However, when

the session characteristics are very different from those

considered, inappropriate normalisation is applied

which can cause recognition or verification error.

When using this technique it is necessary to automati-

cally detect the appropriate category for each test utter-

ance. This process is somewhat error-prone having the

potential to cause verification errors when the inappro-

priate normalisation in applied.

The second key deficiency is not actually modeling

the effects of session variability but simply attempting

to suppress them. Feature warping, T-Norm and

Z-Norm fit into this category. These methods have

no knowledge of the specific conditions encountered

in a recording but use some a-priori information of the

effects caused by session variability.

For several years, new approachs have emerged that

take session variability (or speaker intra-variability) into

account, providing a significant increase in sys-

tem performance. Themain feature of these techniques is

the way in which the issue of mismatch in GMM-based

speaker verification in addressed. This is achieved

through the explicit modelling of session variability in

both the training and testing procedures. These directly

model the mismatch between sessions in a constrained

subspace of the GMM speaker model means. This

replaces the discrete categorisation of techniques such

as feature mapping and H-Norm with a continuous
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vector-valued representation of the session conditions. A

key strength of this approach is the avoidance of data

labelling requirements due to the particular training

methods that are employed.
Related Entries

▶Gaussian Mixture Models

▶ Speaker Matching

▶ Speaker Recognition, Overview

▶Uiniversal Background Models
S
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Definition

SFinGe (Synthetic Fingerprint Generator) is a finger-

print sample synthesis approach developed by the

Biometric System Laboratory of the University of

Bologna (Italy). It is available as a software program

able to generate large databases of images very similar

to human’s fingerprints, together with ▶ ground-truth

data about their characteristics and features. These

databases are particularly useful for developing, opti-

mizing and testing fingerprint recognition systems and

are being extensively used by industrial, academic and

government organizations.
Overview and History

SFinGe (the Italian for sphinx, pronunciation sphin-je)

is the acronym for Synthetic Fingerprint Generator.

SFinGe can be used to easily create large databases of

fingerprints, thus allowing recognition algorithms to

be simply trained, tested and optimized. The images

generated emulate fingerprints acquired with on-line

sensors (see ▶ Fingerprint Acquisition) but, with a few

changes, the simulation of impressions produced by

the ink-technique is also possible.

This ▶ fingerprint sample synthesis approach

was developed at the Biometric System Laboratory of

the University of Bologna (Italy) [1] since 1999; the

first version of the method [2] was able to synthesize
SFinGe. Figure 1 The user interface of the SFinGe software t
realistic fingerprint patterns, but limited to only one

impression of each ‘‘synthetic finger’’. Appropriate

techniques for simulating more impressions of the

same finger were developed at the end of 2000, suc-

cessfully adopted to generate one of the test databases

for the first Fingerprint Verification Competition [3],

and described, for the first time, in [4]. In 2002, realis-

tic background generation capabilities were added [5]

and, in 2004, an improved noise model was developed

[6]. More recently, the approach has been expanded

with the generation, for each synthetic fingerprint

image, of ▶ ground-truth minutiae information

(i.e., the precise location and characteristics of each

minutia) and other features (such as the ▶ orientation

field) [7].

A software tool for generating fingerprint images

according to the SFinGe method has been provided

by the Biometric System Laboratory of the University

of Bologna since 2001. A demo version of this tool

(Fig. 1) can be downloaded from http://biolab.csr.

unibo.it/sfinger.html and has been used to prepare

most of the figures in the following sections.
The Generation Process

Fig. 2 shows a functional schema of the generation

approach. SFinGe adopts a statistical ridge pattern

model (see fingerprint sample synthesis) to create

a master-fingerprint (that is the unique and immutable
ool.

http://biolab.csr.unibo.it/sfinger.html
http://biolab.csr.unibo.it/sfinger.html


SFinGe. Figure 2 A functional schema of the SFinGe generation approach: each rounded-box represents a step (based

on a corresponding mathematical model); the main parameters are reported between square brackets. Steps 1–4

create a master-fingerprint, steps 5–10 generate the final synthetic image.
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characteristics of a ‘‘synthetic finger’’) through the

following steps [5]:

1. Fingerprint shape generation: Definition of the global

shape of the fingerprint, according to a simple

model based on elliptical segments;

2. Orientation field generation: A mathematical ridge-

flow model allows to generate a consistent orienta-

tion field;

3. Frequency map generation: The local ridge-line fre-

quency is generated on the basis of some heuristic

criteria;

4. Ridge-line pattern generation: Ridge-lines and min-

utiae are created using space-variant filtering.

Once a master-fingerprint has been created, one ore

more of its ‘‘impressions’’ can be randomly generated,

by applying the following steps [5]:

5. Selection of the contact region: The ridge-line pat-

tern is translated without modifying the global

fingerprint shape and position (this simulates
different finger placements over the acquisition

device);

6. Variation of the ridge-line thickness: Morphological

operators are applied to simulated different degrees

of skin dampness and/or finger pressure;

7. Fingerprint distortion: A skin distortion model is

adopted to simulate the effects of skin elasticity;

8. Noising and rendering: A gray-scale noisy image

is produced by modeling some of the factors that

deteriorate the quality of real fingerprints;

9. Global translation/rotation: The image is randomly

translated and/or rotated, to simulate real finger-

prints that usually are not perfectly centered and

can present a certain amount of rotation;

10. Background generation: A realistic background

can be created to simulate a given acquisition

device.

Fig. 2 shows, for each of the steps described above, the

various input parameters (graphically represented by

the red arrows). The SFinGe software tool lets the user
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adjust most of those parameters and observe the

corresponding effects on the synthetic fingerprint (see

Figs. 3–7). The software also allows a database of syn-

thetic fingerprints to be batch-generated, given a relatively

small set of input parameters (see Fig. 8), including:

number of fingers, impressions per finger, image size,

seed for the random number generator, maximum

amount of noise, maximum amount of deformation.

During the batch-generation of a fingerprint database,

each master-finger is generated by using a different

seed for the random number generator; those seeds

are randomly selected as well. During the generation

of a single database, all the seeds chosen are different;

although it is reasonable to assume that different seeds

imply different fingerprints, it might happen that two

different seeds produce almost identical fingerprint

images. To reduce this hypothetical risk, SFinGe adopts
SFinGe. Figure 3 Graphical user interface for the fingerprint

(middle and right).

SFinGe. Figure 4 Graphical user interface for the ridge-line p
one of the best ▶ pseudo-random number generators

proposed in the scientific literature [8].

The creation of minutiae ground-truth proceeds

in parallel with the fingerprint generation (Fig. 9): the

standard minutiae extraction procedure defined in [9]

is applied to the master-fingerprint, then all the rele-

vant transformations executed on the fingerprint are

applied to the minutiae (e.g., translation, rotation,

distortion). This approach has some clear advantages:

1. The features can be extracted by applying the stan-

dard procedures easily and without ambiguities,

since the extraction occurs on a binary image with-

out any noise;

2. The ground truth is always unique and sound,

even when the quality of the final image is very

low (see Fig. 10).
shape generation (left) and orientation field generation

attern generation.



SFinGe. Figure 6 Graphical user interface for fingerprint distortion (left) and noising (middle and right).

SFinGe. Figure 5 Graphical user interface for the variation of the ridge-line thickness.

SFinGe. Figure 7 Graphical user interface for global rotation/translation (left) and background generation (middle

and right).
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SFinGe. Figure 8 The batch-generation options.

SFinGe. Figure 9 Generation of ground-truth minutiae data.
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Generation of other ground-truth features is per-

formed in a similar fashion; for instance, all the rele-

vant transformations can be applied to the orientation

field calculated at step 2, thus obtaining the true orien-

tation field of the final synthetic fingerprint.
The automatic generation of a whole fingerprint

database (including ground-truth data) is totally

parallelizable, since the generation of each master-

fingerprint (with its impressions) is independent of

the others. This makes it possible to distribute the



SFinGe. Figure 10 Minutiae ground-truth as generated by SFinGe for very high-quality fingerprints (left),

medium-quality fingerprints (middle), and low-quality fingerprints (right).
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process on many computers; for instance, using ten

3GHz PCs in a network, a database of 100,000 finger-

prints (10,000 fingers, 10 impressions per finger) can

be generated in less than two hours.
S

Applications

SFinGe can be used to create, at zero cost at without

any ▶ privacy issue, large databases of fingerprints,

whose main characteristics can be controlled and

adjusted according to the specific needs of a given

application. Furthermore, ground-truth data about

the main fingerprint features can be automatically

produced for each fingerprint in the database. SFinGe

has been used by many industrial, academic and gov-

ernment organizations; the main applications of this

synthesis approach are described in the following.

1. Performance evaluation: SFinGe is an effective tool to

overcome the problem of collecting large fingerprint

databases for test purposes. Obviously real finger-

print databases cannot be completely substituted,

especially when performance has to be measured

referring to a given real environment/application;

on the other hand synthetic fingerprints proved to

be well suited for ▶ technology evaluations [10]: a

comparison of the behavior of several fingerprint

matching algorithms on real and synthetic data-

bases showed that not only the performance is

very similar, but the genuine/impostor distribu-

tions and the FMR/FNMR curves (see ▶Perfor-

mance Measures) are also surprisingly close [5].

2. Training: Many classifiers and pattern recognition

techniques (e.g., neural networks, ▶ Principal

Component Analysis, ▶ Support Vector Machines)

require a large training set for an accurate learning

stage. Synthetic fingerprint images are very well

suited to this purpose: in fact the generator input

parameters allow to explicitly control the type and
features of the generated sets (e.g., class, type of

noise, distortion) and this can be exploited in con-

junction with boosting techniques to drive the

learning process. For example, in [11], a large syn-

thetic training set (generated by SFinGe) was suc-

cessfully used to derive optimal parameters for

▶fingerprint indexing.

3. Security evaluation: Synthetic fingerprints can be

used to test the robustness of fingerprint verifica-

tion systems to ‘‘Trojan horse’’ attacks against the

sensor or the feature extractor [5] (see ▶Biometric

Security, Overview). SFinGe allows to generate large

sets of fingerprints whose features (e.g. minutiae

distribution) can be varied independently of other

fingerprint characteristics (e.g. orientation field),

and therefore, it is well suited for studying the ro-

bustness against ‘‘hill-climbing’’ attacks (see [5]).

4. Semantic conformance to standards: Interoperability

tests [12, 13] have shown that the location, direc-

tion, and type of minutiae extracted by different

minutiae extraction algorithms from the same fin-

ger image tend to be different (see ▶ Finger Data

Interchange Format, Standardization). Algorithms

syntactically compliant to standards such as the

ISO/IEC 19794-2 [9], are often not semantically

compliant and this creates huge interoperability

problems. Unfortunately, testing semantic confor-

mance to a minutiae extraction standard is not easy,

since it requires a lot of data with manually-labeled

minutiae points (ground-truth); furthermore, in low-

quality areas, even the manual labeling of minutiae

points is not reliable. The automatic generation of

ground-truth data for synthetic fingerprint images

provided by SFinGe is an effective way to carry out

semantic conformance and interoperability studies.

For instance, in [7] a synthetic database has been

used to analyze the distribution of minutiae posi-

tions and directions of some algorithms with re-

spect to the ground-truth (see Fig. 11).



SFinGe. Figure 11 Distributions of minutiae placement and direction as estimated in [7] for some feature extraction

algorithms. In each image, the intensity I[x, y] is proportional to the estimated likelihood that a minutia will be found by an

algorithm at position (x, y) with respect to the ground-truth minutia direction (denoted by the arrow).
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Related Entries

▶Anatomy of Fingerprint

▶ Finger Data Interchange Format, Standardization

▶ Fingerprint Classification

▶ Fingerprint Databases and Evaluation

▶ Fingerprint Features

▶ Fingerprint Indexing

▶ Fingerprint Noise

▶ Fingerprint Orientation Field

▶ Fingerprint Ridge-line Pattern

▶ Fingerprint Sample Synthesis

▶ Fingerprint Singularities, Minutiae, Pores

▶Performance Measures

▶Privacy Issues

▶ Support Vector Machine
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Shape
‘‘Shape is all the geometric information that remains

when location, scale and rotational effects are filtered

out from the object’’. Kendall’s statistical shape is

a sparse descriptor of the shape that describes
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the shape configuration of k landmark points in an m-

dimensional space as a k � m matrix containing the

coordinates of the landmarks from which scale and

translation are filtered out. This shape feature therefore

lies on a spherical manifold which is well studied and

therefore properly defined distance measures are avail-

able in this manifold to perform recognition.

▶Gait Biometrics, Overview

▶Gait Recognition, Model-Based
Shape Index
Shape index Si, a quantitative measure of the shape of a

surface at a point p, is defined by (1),

Si ðpÞ ¼ 1

2
� 1

p
tan�1 k1ðpÞ þ k2ðpÞ

k1ðpÞ � k2ðpÞ ð1Þ

where k1 and k2 are maximum and minimum princi-

pal curvatures, respectively. With this definition, all

shapes can be mapped into the interval Si 2[0,1]. The
larger shape index values represent convex surfaces and

smaller shape index values represent concave surfaces.

▶Ear Biometrics, 3D
Shape Model
S
Shape model is often embedded within a structural

model. It uses geometrical shapes e.g., stick figures as

a reduced representation of human body, blob, or

cylinder to represent body masses, or silhouette outline

of a human figure obtained from edge information to

describe the body of interest.

▶Gait Recognition, Model-Based
Shape vs. Texture
▶ Face Recognition, Geometric vs. Appearance-Based
Shielding Functions
A theoretical approach to cancelable biometrics devel-

oped by Linnartz et al. (2003). Shielding functions allow a

verifier to check the authenticity of a prover (user want-

ing to be verified) without learning any biometric infor-

mation. The scheme depends on proposed d-contracting
and e-revealing functions, which allow testing whether

measured features are within a range. Under some

assumptions, a biometric may be tested without learning

anything about the biometric feature values. One limita-

tion of this scheme is that biometric samples are assumed

to be perfectly registered. This scheme offers an interest-

ing cryptographic basis for the construction of encrypted

biometric systems, and it is used by several authors.

▶Cancelable Biometrics
Shoeprint Matching
▶ Footwear Recognition
Shot Noise
For image sensors, photon conversion into electrons at

a pixel is a random event. Random fluctuations in the

number of electrons for a fixed number of photons are

referred to as shot noise. The standard model for shot

noise is that the noise is proportional to the square

root of the number of electrons generated. Hence, the

signal/noise ratio is proportional to √N, whereN is the

number of electrons.

▶Biometric Sensor and Device, Overview

▶ Iris Device
Side-Channel Attacks
Side-channel attack is an attack against a cryptographic

or biometric security system based on measurements
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of the implementation of the system, rather than

on weaknesses in the algorithms. For example, side-

channel attacks may use timing, power consumption,

or electromagnetic measurements on the security

device. Side-channel attacks are primarily of concern

for biometric encryption systems and match-on-card

devices where an attack could potentially be mounted

by iteratively improving the presented biometric. Very

little research has been done to explore the feasibil-

ity of side-channel attacks, but the success of attacks

on biometric template security and biometric encryp-

tion suggests that such attacks are certainly feasible.

▶ Security and Liveness, Overview
Signal to Noise Ratio
Information is transmitted or recorded by variations in a

physical quantity. For any information storage or trans-

mission system, there will be intended variations in the

physical quantity – signal – and unintended variations –

noise. In an analog telephone system, the signal (voice) is

represented by variation in a voltage level. As the signal is

transmitted along a phone line, it can pickup other

unintended variations – e.g., leakage of other signals,

static from electrical storms – that are noise. The ratio

of the signal level to the noise level is the signal to noise

ratio (SNR). Since it is a ratio, SNR is dimensionless.

However, SNR can be expressed as either an amplitude

ratio (voltage ratio for the phone example) or a power

ratio (milliWatts for the phone example). This leads to

confusion. SNR is frequently expressed as the log (base

10) of the ratio.When expressed as a log, the dimension-

less unit of SNR is decibel (dB).

What is signal and what is noise can depend on the

circumstances. Radio waves from lighting are noise to

an AM radio broadcast, but can be signal to a meteo-

rological experiment.

▶ Iris Device
Signature Benchmark
▶ Signature Databases and Evaluation
Signature Characteristics
▶ Signature Features
Signature Corporate
▶ Signature Databases and Evaluation
Signature Databases and Evaluation

MARCOS MARTINEZ-DIAZ, JULIAN FIERREZ

Biometric Recognition Group - ATVS,

Escuela Politecnica Superior, Universidad

Autonoma de Madrid, Campus de Cantoblanco,

Madrid, Spain
Synonyms

Signature benchmark; Signature corpora; Signature

data set
Definition

Signature databases are structured sets of collected

signatures from a group of individuals that are used

either for evaluation of recognition algorithms or as

part of an operational system.

Signature databases for evaluation purposes are, in

general, collections of signatures acquired using a

digitizing device such as a pen tablet or a touch-

screen. Publicly available databases allow a fair

performance comparison of signature recognition

algorithms proposed by independent entities. More-

over, signature databases play a central role in public

performance evaluations, which compare different

recognition algorithms by using a common experi-

mental framework. This type of databases is covered

in this entry.

On the other hand, signature databases can also be

a module of a verification or identification system.
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They store signature data and other personal informa-

tion of the enrolled users. This signature database is

used during the operation of the recognition system

to retrieve the enrolled data needed to perform the

biometric matching. This kind of databases is not

addressed here.
S

Dynamic Signature Databases

Until the beginning of this century, research on auto-

matic signature verification had been carried out using

privately collected databases, since no public ones were

available. This fact limits the possibilities to compare

the performance of different systems presented in the

literature, which may have been tuned to specific cap-

ture conditions. Additionally, the usage of small data

sets reduces the statistical relevance of experiments.

The lack of publicly available databases has also been

motivated by privacy and legal issues, although the

data in these databases are detached from any personal

information. The impact of the signature structural

differences among cultures must also be taken into

account when considering experimental results on a

specific database. As an example, in Europe, signatures

are usually formed by a fast writing followed by a

flourish, while in North America, they usually corre-

spond to the signers name with no flourish. On the

other hand, signatures in Asia are commonly formed

by Asian characters, which are composed of a larger

number of short strokes compared with European or

North American signatures.

While some authors have made public the data-

bases used for their experimental results [1], most

current dynamic signature databases are collected by

the joint effort of different research institutions. These

databases are, in general, freely available or can be

obtained at a reduced cost. Many signature databases

are part of larger multimodal biometric databases,

which include other traits such as fingerprint or face

data. This is done for two main reasons: the research

interest on multimodal algorithms and the low effort

required to incorporate the collection of other biomet-

ric traits once a database acquisition campaign has

been organized.

Two main modalities in signature recognition exist.

Off-line systems use signature images that have been

previously captured with a scanner or camera. On the

other hand, on-line systems employ digitized signals

from the signature dynamics such as the pen position
or pressure. These signals must be captured with spe-

cific devices such as ▶ pen tablets or ▶ touch-screens.

The most popular databases in the biometric research

community are oriented to on-line verification,

although in some of them, the scanned signature

images are also available [2, 3]. Some efforts have been

carried out in the handwriting community to collect

large off-line signature databases such as the GPDS-960

Corpus [4].

Unlike other biometric traits, signatures can be

forged with relative ease. Signature verification systems

must not only discriminate traits from different sub-

jects (such as fingerprints) but also must discriminate

between genuine signatures and forgeries. In general,

signature databases provide a number of forgeries for

the signatures of each user. The accuracy of the for-

geries depends on the acquisition protocol, the skill of

the forgers, and on how much time the forgers are let

to train. Nevertheless, forgeries in signature databases

are usually performed by subjects with no prior expe-

rience in forging signatures, this being a limitation to

the quality of forgeries.

Most on-line signature databases have been cap-

tured with ▶ digitizing tablets. These tablets are, in

general, based on an electromagnetic principle, allow-

ing the detection of the pen position (x,y), inclination

angles (y,g)¼(azimuth, altitude), and pressure p. They

allow recording the pen dynamics even when the pen is

not in contact with the signing surface (i.e., during

pen-ups). On the other hand, databases captured

with other devices such as touch-screens (e.g., PDAs)

provide only pen position information, which is

recorded exclusively when the pen is in contact with

the device surface.

In the following, a brief description of the most

relevant available on-line signature databases is given

in chronological order.
PHILIPS Database

Signatures from 51 users were captured using a Philips

Advanced Interactive Display (PAID) digitizing tablet

at a sampling rate of 200 Hz [5]. The following signals

were captured: position coordinates, pressure, azi-

muth, and altitude.

Each user contributed 30 genuine signatures, leading

to 1,530 genuine signatures. Three types of forgeries are

present in the database: 1,470 over-the-shoulder for-

geries, 1,530 home-improved, and 240 professional
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forgeries. There is not a fixed number of forgeries avail-

able for each user. Over-the-shoulder forgeries were

produced by letting the forger observe the signing pro-

cess. Home-improved forgeries were produced by giving

to the forgers samples of the signature static image and

letting them to practice at home. Professional forgeries

were performed by forensic document examiners.
MCYT Bimodal Database

The MCYT bimodal database is comprised of signatures

and fingerprints from 330 individuals [2]. Signa-

tures were acquired using a Wacom Intuos A6 tablet

with a sampling frequency of 100 Hz. The users signed

repeatedly on a paper with a printed grid placed over the

pen tablet. The following time sequences are captured:

position coordinates, pressure, azimuth, and altitude.

There are 25 genuine signatures and 25 forgeries

per user, leading to 16,500 signatures in the database.

For each user, signatures were captured in groups of 5.

First, 5 genuine signatures, then 5 forgeries from an-

other user, repeating this sequence until 25 signatures

from each type, were performed. Each user provided 5

forgeries for the 5 previous users in the database. As

the user is forced to concentrate on different tasks

between each group of genuine signatures, the varia-

bility between groups is expected to be higher than the

one within the same group.

Genuine signatures and forgeries corresponding

to 75 users from the MCYT database were scanned

and are also available as an off-line signature database.

This signature corpus is one of the most popular for the

evaluation of signature verification algorithms that are

being used bymore than 50 research groups worldwide.
BIOMET Multimodal Database

The BIOMETmultimodal database [6] is comprised of

five modalities: audio (voice), face, hand, fingerprint,

and signature. The signatures were captured using

a Wacom Intuos2 A6 pen tablet and an ink pen with

a sampling rate of 100 Hz. The pen coordinates,

pen-pressure, azimuth, and altitude signals were cap-

tured. The database contains data from 84 users, with

15 genuine signatures and up to 12 forgeries per user.

Signatures were captured in two sessions separated by

3–5 months. In the first session, 5 genuine signatures

and 6 forgeries were acquired. The remaining 10
genuine signatures and 6 forgeries were captured in

the second session. Forgeries are performed by 4 dif-

ferent users (3 forgeries each). This database contains

2,201 signatures, since not all users have complete data:

8 genuine signatures and 54 forgeries are missing.
SVC2004 Database

Two signature databases were released prior to the

Signature Verification Competition (SVC) 2004 [7]

for algorithm development and tuning. They were

captured using a Wacom Intuos digitizing tablet and

a Grip Pen. Due to privacy issues, users were advised to

use invented signatures as genuine ones. Nevertheless,

users were asked to thoroughly practice their invented

signatures to reach a reasonable level of spatial and

temporal consistency.

The two databases differ in the available data, and

correspond to the two tasks defined in the competi-

tion. One contains only pen position information,

while the other provides pressure and pen orientation

(azimuth and altitude) signals also. Each database con-

tains 40 users, with 20 genuine signatures and 20 for-

geries per user acquired in two sessions, leading to

1,600 signatures per database. Forgeries for each user

were produced by at least four other users, aided by a

visual tool, which represented the signature dynamics

on a display. Both occidental and asian signatures are

present in the databases.
SUSIG Database

The SUSIG database consists of two sets: one cap-

tured using a pen tablet without visual feedback

(Blind subcorpus) and the other using a pen tablet

with an LCD display (Visual subcorpus) [8]. There are

100 users per database, but these do not coincide,

as the Visual subcorpus was captured 4 years after

the Blind one. For the Blind subcorpus, a WACOM

Graphire2 pen tablet was used. The Visual subcorpus

was acquired using an Interlink Electronics ePad-ink

tablet, with a pressure-sensitive LCD. In both subcor-

pora, the pen coordinates and the pen pressure signals

were captured using a sampling frequency of 100 Hz.

While performing forgeries, users had prior visual

input of the signing process on a separate screen or

on the LCD display for the Blind and Visual subcorpus

respectively.
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For the Blind subcorpus, 8 or 10 genuine signatures

were captured in a single session. The users also

provided 10 forgeries from another randomly selected

user. Two sessions were performed in the Visual sub-

corpus. During each one, users provided 10 genuine

signatures and 5 forgeries.
MyIDea Multimodal Database

This signature set is a subset of the MyIDea Multimod-

al Biometric Database [9]. AWacom Intuos2 A4 graph-

ic tablet was used at a sampling rate of 100 Hz. Pen

position, pressure, azimuth, and altitude signals were

captured. This data set has the particularity that the

user must read loud what he is writing, allowing what

the authors call CHASM (Combined Handwriting and

SpeechModalities). This corpus consists of ca. 70 users.

Signatures were captured in 3 sessions. During each

session, each user performed 6 genuine signatures

and 6 forgeries, with visual access to the images of the

target signatures.
S

BiosecurID Multimodal Database

This database was collected by 6 different Spanish

research institutions [3]. It includes the following bio-

metric traits: speech, iris, face, signature, handwriting,

fingerprints, hand, and keystroke. The data were cap-

tured in 4 sessions distributed in a 4 month time span.

The user population was specifically selected to contain

a uniform distribution of users from different ages

and genders. Nonbiometric data were also stored,

such as age, gender, handedness, vision aids, and man-

ual worker (if the user has eroded fingerprints). This

allows studying specific demographic groups.

The signature pen-position, pressure, azimuth, and

altitude signals were acquired using a Wacom Intuos3

A4 digitizer at 100 Hz. During each session, two sig-

natures were captured at the beginning and two at the

end, leading to 16 genuine signatures per user. Each

user performed one forgery per session of signatures

from other three users in the database. The skill level

of the forgeries is increased by showing to the forger

more information of the target signature incremen-

tally. In the first session, forgers have only visual access

to one genuine signature; more data (i.e., signature

dynamics) are shown in further sessions and forgers
are let more time to train. Off-line signature data are

also available, since signatures were captured using an

inking pen.
BioSecure Multimodal Database

The BioSecure Multimodal Database was collected by

11 European institutions under the BioSecure Network

of Excellence [10]. It has three data sets captured in

different scenarios: DS1 was captured remotely over

the internet, DS2 was acquired in a desktop environ-

ment, and DS3 under mobile conditions. The database

covers face, fingerprint, hand, iris, signature, and

speech modalities and includes two signature subcor-

pora corresponding to the DS2 and DS3 data sets.

These two data sets were produced by the same group

of 667 users. The DS2 data set was captured using a

Wacom Intuos3 A6 digitizer at 100 Hz and an ink pen

while the user was sitting. On the other hand, the DS3

data set was captured with a PDA. Users were asked to

sign while standing and holding the PDA in one hand,

emulating realistic operating conditions. An HP iPAQ

hx2790 with a sampling frequency of 100 Hz was used

as capture device. The pen position, pressure, azimuth,

and altitude signals are available in DS2, while only the

pen position is available on DS3 due to the nature of

the PDA touch-screen.

Signatures were captured in two sessions and in

blocks of 5. An average of two months was left be-

tween each session. During each session, users were

asked to perform 3 sets of 5 genuine signatures and

5 forgeries between each set. Following this protocol,

each user performed 5 forgeries for the previous 4

users in the database. Thus, 30 genuine signatures and

20 forgeries are available for each user. Forgeries are

collected in a ‘‘worst case’’ scenario. For DS2, the

users had visual access to the dynamics of the signing

process of the signatures they had to forge on a com-

puter screen. In DS3, each forger had access to the

dynamics of the genuine signature on the PDA screen

and a tracker tool allowing to see the original strokes.

Some users were even allowed to sign following the

strokes produced by the tracker tool, reproducing

thus the geometry and dynamics of the forged signa-

ture with high accuracy.

The DS3 data set is the first multisession database

captured on a PDA and represents a very challenging

database [11]. Apart from the high accuracy of the



Signature Databases and Evaluation. Figure 1 PDA signature capture process in the BioSecure DS3 - Mobile Scenario

dataset (left) and pen-tablet capture process in the BioSecure DS2 - Access Control Scenario dataset (right). The

acquisition setup and paper template used in DS2 is similar to the ones used in MCYT, BIOMET, MyIDea and BiosecurID.
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forgeries, signatures from DS3 present sampling errors

and irregular sampling rates. Moreover, pen posi-

tion signals during pen-ups are not available, since

the acquisition device captures the pen dynamics only

when the PDA stylus is in contact with the touch-

screen surface.

The capture process for both DS2 and DS3 is shown

in Fig. 1. Examples of signatures from the BioSecure

Signature subcorpora corresponding to DS2 and DS3

are presented in Fig. 2. Unconnected samples represent

that at least one sample is missing between them due to

sampling errors.

In Table 1, the main features of the described sig-

nature databases are presented.
Signature Verification Evaluation
Campaigns

Despite the usage of a common database, one of the

main difficulties when comparing the performance of

different biometric systems is the different experimen-

tal conditions, under which each system is evaluated by

its designers. To overcome these difficulties, evalua-

tions and competitions provide a common reference

for system comparison on the same database and pro-

tocol. Public evaluations in the field of automatic sig-

nature verification are less common than for other

biometric modalities such as fingerprint or speech.

In particular, only evaluations for the on-line signature

verification modality have been proposed. These in-

clude the Signature Verification Competition (SVC),

which took place in 2004 [7], the signature modality of
the BioSecure Multomodal Evaluation Campaign held

in 2007 [12], and the BioSecure Signature Evaluation

Campaign in 2009 [13].
Signature Verification Competition
(SVC 2004)

The Signature Verification Competition (SVC 2004)

represents the first public evaluation campaign in the

field of signature verification [7]. The competition was

divided into two tasks, depending on the available

signature signals. In Task 1, only the pen position

signals (x,y) and the sample timestamps were available.

In Task 2, the pen pressure p and azimuth and altitude

angles (y,g) were also available. Participants had prior

access to a signature dataset for each task. These data

sets were later released for public access, and are

referred to as the SVC2004 database. Signatures from

40 users are present in each data set. This evaluation

has the particularity that users were advised to use

invented signatures because of privacy issues. More-

over, they did not have visual feedback from the sign-

ing process, since signatures were captured with a

digitizing tablet and a special pen.

The evaluation results were first released to par-

ticipants, which then had the choice to remain anony-

mous. The best Equal Error Rate (EER) in Task 1

was of 2.84% against ▶ skilled forgeries and 1.85%

for ▶ random forgeries. In Task 2 (which included

pressure and pen-inclination signals), the lowest

EERs were 2.89% against skilled forgeries and 1.70%

against random forgeries.



Signature Databases and Evaluation. Figure 2 Examples of signatures and associated signals from the BioSecure

Multimodal Database DS2 and DS3 signature subcorpora captured using a pen tablet (top) and a PDA (bottom),

respectively. As can be seen, there are missing samples for the signature captured with PDA, and no signals are available

during pen-ups, contrary to the pen-tablet case.
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BioSecure Multimodal Evaluation
Campaign (BMEC 2007)

The BioSecure Multimodal Evaluation Campaign

(BMEC) was held in 2007 with the aim of compar-

ing the performance of verification systems from

different research groups on individual biometric
modalities and fusion scenarios [14]. Two scenarios

were considered: access control and mobile condi-

tions. In particular, the Mobile Scenario consisted of

four modalities and fusion, using a subset of the

BioSecure Multimodal Database DS3 captured on

mobile conditions (i.e., using portable devices such

as a PDA).



Signature Databases and Evaluation. Table 1 Summary of the most popular on-line signature databases. The symbols

x,y,p,y,g denote pen position horizontal coordinate, vertical coordinate, pen pressure, azimuth and altitude respectively

Name Device Users Sessions

Signatures per user

Signals Interval between sessionsGenuine Forgeries

PHILIPS Pen tablet 51 3–5 30 up to 70 x,y,p,y,g 1 week approx.

BIOMET Pen tablet 84 3 15 up to 12 x,y,p,y,g 3–5 months

MCYT Pen tablet 330 1 25 25 x,y,p,y,g -

SVC2004 Task 1 Pen tablet 40 2 20 20 x,y min. 1 week

SVC2004 Task 2 Pen tablet 40 2 20 20 x,y,p,y,g min. 1 week

SUSIG Blind Subcorpus Pen tablet 100 1 8 or 10 10 x,y,p -

SUSIG Visual Subcorpus Pen tablet 100 2 20 10 x,y,p 1 week approx.

MyIDea Pen tablet ca. 100 3 18 18 x,y,p,y,g days to months

BioSecurID Pen tablet 400 4 16 16 x,y,p,y,g 1 month approx.

BioSecure DS2 Pen tablet ca. 650 2 30 20 x,y,p,y,g 1 month approx.

BioSecure DS3 PDA ca. 650 2 30 20 x,y,p,y,g 1 month approx.
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In this evaluation, a signature subset from the Bio-

Secure Multimodal DS3 database was used. A set of

signatures from 50 users was previously released to

participants for algorithm development and tuning.

For each user, 20 genuine signatures (15 from the first

session and 5 from the second) as well as 20 forgeries

were available.

Eleven signature verification systems from seven

independent European research institutions were pre-

sented to the evaluation. The results of the evaluation

and a description of each system that participated can

be found in [12]. Another evaluation study in similar

conditions, including a comparative analysis with

respect to the BMEC participants, can be found in

[11]. The best Equal Error Rate (EER) in the evalua-

tion was of 4.03% for random forgeries and of 13.43%

for skilled forgeries. The relatively high EER for skilled

forgeries reveals the high quality of the forgeries

acquired in this database.
BioSecure Signature Evaluation Campaign
(BSEC 2009)

The BioSecure Signature Evaluation Campaign is

aimed at measuring the impact of mobile acquisition

conditions, time variability, and the information con-

tent of signatures in the performance of verification

algorithms [13]. Signature subsets from the BioSecure
Multimodal Databases DS2 (pen tablet) and DS3 (PDA

touch-screen) corresponding to 50 users have been

released to participants prior to the evaluation. At the

time of publication, the results of the evaluation cam-

paign are still not available.
Related Entries
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Synonyms

Signature characteristics
Definition

Signature features represent magnitudes that are extrac-

ted from digitized signature samples, with the aim of

describing each signature as a vector of values. The

extraction and selection of optimum signature features

is a crucial step when designing a verification system.

Features must allow each signature to be described in a

way that the discriminative power between signatures

produced by different users is maximized while allowing

variability among signatures from the same user.

On-line signature features can be divided into two

main types. Global features model the signature as

a holistic multidimensional vector and represent mag-

nitudes such as average speed, total duration, and

aspect ratio. On the other hand, local features are

time-functions derived from the signals, such as the

pen-position coordinate sequence or pressure signals,

captured with digitizer tablets or touch-screens.

In off-line signature verification systems, features

are extracted from a static signature image. They can

also be classified as global, if they consider the image as

a whole (e.g., image histogram, signature aspect ratio);

or local, if they are obtained from smaller image

regions (e.g., local orientation histograms).

This entry is focused on on-line signature features,

although a brief outline of off-line signature features

is also given.
Introduction

Several approaches to extract discriminative informa-

tion from on-line signature data have been proposed

http://www.biosecure.info
http://www.biosecure.info
http://biometrics.it-sudparis.eu/BMEC2007/files/Results_mobile.pdf
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in the literature [1]. The existing systems can be broadly

divided into two main types: Global systems, in which a

holistic vector representation consisting of a set of

global features (e.g., signature duration, direction

after first pen-up) is derived from the signature trajec-

tories [2, 3], and function-based systems, in which time

sequences describing local properties of the signature

are used for recognition [4, 5], (e.g., position, acceler-

ation). Although recent works show that global

approaches are competitive with respect to local meth-

ods in some circumstances [6], the latter approach has

traditionally yielded better results. Despite this advan-

tage, systems based on local features usually employ

matching algorithms, which are computationally more

expensive than global-feature ones.

Due to the usually low amount of training data

in signature verification,▶ feature selection techniques

must be applied in order to reduce the feature vector

dimensionality. These techniques allow of finding the

optimal feature set for each system or scenario [7].
Feature extraction and preprocessing

Signature features are, in general, extracted from

the time functions captured from the pen dynamics

while an individual signs. In most cases, the capture

of time functions from the handwritten signature

is carried out with acquisition devices such as digitiz-

ing tablets or touch-screens. These devices provide

pen position information (i.e. horizontal x and verti-

cal y coordinates), and in some cases, pen pressure

z and pen inclination (▶ azimuth and ▶ altitude).

A diagram showing the nature of the captured signals

and an example of the signals from a real signature

are shown in Fig. 1. Other less common examples of

on-line signature acquisition devices are special pens

with dedicated hardware inside that captures signa-

ture data such as coordinate, force, or velocity

information.

The sampling rate of these devices is, in general, bet-

ween 100 and 200 Hz. Since the maximum frequencies

of the pen movements during handwriting are 20-30 Hz

[1], these sampling rates satisfy the Nyquist criterion.

Preprocessing steps before feature extraction may

be performed, such as position, size and rotation nor-

malization, noise filtering, or resampling. In some

works, resampling is avoided as it degrades the velocity

related features [4].
Global features

Global feature-based systems describe each signature

as a multidimensional vector where each element

consists on a feature extracted from the whole pen

trajectory. Many feature sets have been proposed in

the literature [2, 3, 8, 9], with variable sizes and a

maximum size of 100 features [6]. Due to the train-

ing data scarcity and adverse effects of the curse of

dimensionality, feature selection techniques must be

applied to reduce the feature vector size. In Table 1,

the 100 features described in [6] are presented.

This global feature set includes most of the features

described in previous works from other authors.

Features are arranged in the order of descending

individual discriminative power. In Fig. 2, examples

of the distribution of global features presented in

Table 1 are shown.
Local features

Local features represent time sequences extracted

from the signature raw captured data. A set of local

features leads to a multidimensional discrete se-

quence that describes a signature. Depending on the

matching algorithm, feature sets of varying sizes have

been proposed in the literature. As a rule of thumb,

Dynamic Time Warping-based algorithms employ

few local features, while systems based on Hidden

Markov Models or Gaussian Mixture Models employ

larger feature sets. In Table 2, the most popular local

features found in the literature are presented [2, 3, 4, 5,

10, 11, 12].

As in the case of global features, feature selection

algorithms must be applied to discriminate the best

performing feature set. Usually, small feature sets are

selected for Dynamic Time Warping-based matching

algorithms. In these systems, speed-related features

extracted from the first derivative of the pen-coordi-

nate time sequences (features 10-11 in Table 2) have

shown to be very effective [4]. On the other hand,

larger feature sets are used when Hidden Markov or

Gaussian Mixture Models are employed [5, 11] for

signature matching. Features related to second-order

derivatives (features 19-27 in Table 2) have not proved

to significantly improve the system verification perfor-

mance [3]. Examples of the local features presented in

Table 2 are depicted in Fig. 3.



Signature Features. Figure 1 (a) Representation of the position, azimuth and altitude of the pen with respect to the

capture device. (b) Example of raw captured data from a signature.
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The usage of features related to pen orientation

(azimuth and altitude) is a subject of controversy.

Although some authors report that these features in-

crease the verification performance [12], others have

reported a low discriminative power for these features

[2]. Moreover, these features are not always available,
since many touch-screen acquisition devices such as

Tablet-PCs or PDAs are unable to capture pen orienta-

tion information.

The fusion of the global and local feature-based

systems has been reported to provide better perfor-

mance than the individual systems [6].



Signature Features. Table 1 Set of global features sorted by individual discriminative power (T denotes time interval,

t denotes time instant, N denotes number of events, y denotes angle. Note that some symbols are defined in different

features of the table (e.g., D in feature 7 is defined in feature 15)

Ranking Feature Description Ranking Feature Description

1 signature total duration Ts 2 N(pen-ups)

3 N(sign changes of dx ∕dt and dy ∕dt) 4 average jerk �j

5 standard deviation of ay 6 standard deviation of vy

7 (standard deviation of y)/Dy 8 N(local maxima in x)

9 standard deviation of ax 10 standard deviation of vx

11 jrms 12 N(local maxima in y)

13 t(2nd pen-down) ∕Ts 14 (average velocity �v)/vx,max

15 Amin¼ðymax�yminÞðxmax�xminÞ
ðDx¼

Ppen�downs

i¼1
ðxmax ji�xmin jiÞÞDy

16 (xlast pen-up�xmax) ∕Dx

17 (x1st pen-down�xmin) ∕Dx 18 (ylast pen-up�ymin) ∕Dy

19 (y1st pen-down�ymin) ∕Dy 20 (Tw�v) ∕(ymax�ymin)

21 (Tw�v) ∕ (xmax�xmin) 22 (pen-down duration Tw)/Ts

23 �v ∕vy,max 24 (ylast pen-up�ymax) ∕Dy

25 Tððdy=dtÞ=ðdx=dtÞ>0Þ
Tððdy=dtÞ=ðdx=dtÞ<0Þ

26 �v ∕vmax

27 (y1st pen-down�ymax) ∕Dy 28 (xlast pen-up�xmin) ∕Dx

29 (velocity rms v)/vmax 30 ðxmax�xminÞDy

ðymax�yminÞDx

31 (velocity correlation vx,y)/v
2
max 32 T(vy>0 jpen-up) ∕Tw

33 N(vx¼0) 34 direction histogram s1

35 (y2nd local max�y1st pen-down) ∕Dy 36 (xmax�xmin)/xacquisition range

37 (x1st pen-down�xmax) ∕Dx 38 T(curvature>Thresholdcurv) ∕Tw
39 (integrated abs. centr. acc. aIc)/amax 40 T(vx>0) ∕Tw
41 T(vx<0 jpen-up) ∕Tw 42 T(vx>0 jpen-up) ∕Tw
43 (x3rd local max�x1st pen-down) ∕Dx 44 N(vy¼0)

45 (acceleration rms a)/amax 46 (standard deviation of x)/Dx

47 Tððdx=dtÞðdy=dtÞ>0Þ
Tððdx=dtÞðdy=dtÞ<0Þ 48 (tangential acceleration rms at)/amax

49 (x2nd local max�x1st pen-down) ∕Dx 50 T(vy<0 jpen-up) ∕Tw
51 direction histogram s2 52 t(3rd pen-down) ∕Ts
53 (max distance between points) ∕Amin 54 (y3rd local max�y1st pen-down) ∕Dy

55 (�x�xmin) ∕�x 56 direction histogram s5

57 direction histogram s3 58 T(vx<0) ∕Tw
59 T(vy>0) ∕Tw 60 T(vy<0) ∕Tw
61 direction histogram s8 62 (1st t(vx,min))/Tw

63 direction histogram s6 64 T(1st pen-up) ∕Tw
65 spatial histogram t4 66 direction histogram s4

67 (ymax�ymin)/yacquisition range 68 (1st t(vx,max))/Tw

69 (centripetal acceleration rms ac)/amax 70 spatial histogram t1

71 y(1st to 2nd pen-down) 72 y(1st pen-down to 2nd pen-up)

73 direction histogram s7 74 t(jx,max) ∕Tw
75 spatial histogram t2 76 jx,max

77 y(1st pen-down to last pen-up) 78 y(1st pen-down to 1st pen-up)

79 (1st t(xmax))/Tw 80 �jx

81 T(2nd pen-up) ∕Tw 82 (1st t(vmax))/Tw
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Signature Features. Table 1 (Continued)

Ranking Feature Description Ranking Feature Description

83 jy,max 84 y(2nd pen-down to 2nd pen-up)

85 jmax 86 spatial histogram t3

87 (1st t(vy,min))/Tw 88 (2nd t(xmax))/Tw

89 (3rd t(xmax))/Tw 90 (1st t(vy,max))/Tw

91 t(jmax) ∕Tw 92 t(jy,max) ∕Tw
93 direction change histogram c2 94 (3rd t(ymax))/Tw

95 direction change histogram c4 96 �jy

97 direction change histogram c3 98 y(initial direction)

99 y(before last pen-up) 100 (2nd t(ymax))/Tw

Signature Features. Figure 2 Examples of genuine signatures and forgeries (left) and scatter plots of 4 different

global features from the 100-feature set presented in Table 1 (right). The signatures belong to the BioSecure database

and the Figure has been adapted from [13].
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Signature Features. Table 2 Extended set of local features. The upper dot notation (e.g., ẋn) indicates time derivative

# Feature Description

1 x-coordinate xn

2 y-coordinate yn

3 Pen-pressure zn

4 Path-tangent angle yn¼arctan(ẏn ∕ ẋn)

5 Path velocity magnitude un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_yn þ _xn

p

6 Log curvature radius rn¼ log(1 ∕ kn)¼ log(υn ∕ _yn), where kn is the curvature of the
position trajectory

7 Total acceleration magnitude an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2n þ c2n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_u2n þ u2ny

2
n

q
, where tn and cn are respectively the

tangential and centripetal acceleration components of the pen
motion

8 Pen azimuth gn
9 Pen altitude fn

10–18 First-order derivative of features 1–9 ẋn, ẏn, żn, _yn, _un, _rn, ȧn, _gn, _fn

19–27 Second-order derivative of features 1–9 €xn,€yn,€zn,€yn,€un,€rn,€an,€gn, €fn

28 Ratio of the minimum over the maximum
speed over a window of 5 samples

υn
r¼min {υn�4, . . . ,υn} ∕max {υn�4, . . . ,υn }

29–30 Angle of consecutive samples and first
order difference

an¼arctan(yn�yn�1 ∕xn�xn�1) _an

31 Sine sn¼sin(an)

32 Cosine cn¼cos(an)

33 Stroke length to width ratio over a window
of 5 samples r5n ¼

Pk¼n

k¼n�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk�xk�1Þ2þðyk�yk�1Þ2

p

max xn�4;:::;xnf g�min xn�4 ;:::;xnf g
34 Stroke length to width ratio over a window

of 7 samples r7n ¼
Pk¼n

k¼n�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk�xk�1Þ2þðyk�yk�1Þ2

p

max xn�6 ;:::;xnf g�min xn�6;:::;xnf g
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Off-line signature features

Off-line signature verification systems usually rely

on image processing and shape recognition techni-

ques to extract features. As a consequence, additional

preprocessing steps such as image segmentation and

binarization must be carried out. Features are

extracted from gray-scale images, binarized images,

or skeletonized images, among other possibilities.

The proposed feature sets in the literature are nota-

bly heterogeneous, specially when compared with the

case of on-line verification systems. These include,

among others, the usage of image transforms (e.g.,

Hadamard), morphological operators, structural

representations, ▶ graphometric features [14], direc-

tional histograms, and geometric features. Readers are

referred to [15] for an exhaustive listing of off-line

signature features.
Related Entries

▶ Feature Extraction

▶Off-line Signature Verification

▶On-line Signature Verification

▶ Signature Matching

▶ Signature Recognition
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Synonyms

Signature similarity computation
Definition

The objective of signature matching techniques is to

compute the similarity between a given signature and a
signature model or reference signature set. Several pat-

tern recognition techniques have been proposed as

matching algorithms for signature recognition. In on-

line signature verification systems, signature matching

algorithms have followed two main approaches. Fea-

ture-based algorithms usually compute the similarity

among multidimensional feature vectors extracted

from the signature data with statistical classification

techniques. On the other hand, function-based algo-

rithms perform matching by computing the distance

among time-sequences extracted from the signa-

ture data with technique such as Hidden MarkovMod-

els and Dynamic Time Warping. Off-line signature

matching has followed many different approaches,

most of which are related to image processing and

shape recognition.

This essay focuses on on-line signature matching,

although off-line signature matching algorithms are

briefly outlined.
Introduction

As in other biometric modalities, signature matching

techniques vary depending on the nature of the features

that are extracted from the signature data. In feature-

based systems (also known as global), each signature

is represented as a multidimensional feature vector,

while in function-based systems (also known as local)

signatures are represented by multidimensional time

sequences. Signature matching algorithms also depend

on the enrollment phase.Model-based systems estimate

a statistical model for each user from the training

signature set. On the other hand, in reference-based

systems the features extracted from the set of training

signatures are stored as a set of template signatures.

Consequently, given an input signature, in model-

based systems the matching is performed against a

statistical model, while in reference-based systems the

input signature is compared with all the signatures

available in the ▶ reference set.
Feature-Based Systems

Feature-based systems usually employ classical pattern

classification techniques. In reference-based systems, the

▶matching score is commonly obtained by using a dis-

tance measure between the feature vectors of input and

template signatures [1, 2], or a trained classifier. Distance
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measures used for signature matching include Eucli

dean, weighted Euclidean, and Mahalanobis distance. In

model-based systems, trained classifiers are employed,

including approaches such as Neural Networks, Gaussian

Mixture Models [3] or Parzen Windows [4].
Function-Based Systems

In these systems, multidimensional time sequences

extracted from the signature dynamics are used as fea-

tures. Given the similarity of this task to others related to

speaker recognition, the most popular approaches

in local signature verification are related to algorithms

proposed in the speech recognition community.

Among these, signature verification systems using

▶Dynamic Time Warping (DTW) [5, 6, 7] or Hidden

Markov Models (HMM) [8, 9, 10, 11] are the most

popular approaches in signature verification. In such

systems, the captured time functions (e.g., pen coordi-

nates, pressure, etc.) are used to model each user sig-

nature. In the following, Dynamic Time Warping and

Hidden Markov Models are outlined. An brief over-

view of other techniques is also given.
S

Dynamic Time Warping

▶Dynamic Time Warping (DTW) is an application of

the Dynamic Programming principles to the problem

of matching discrete time sequences. DTW was origi-

nally proposed for speech recognition applications

[12]. The goal of DTW is to find an elastic match

among samples of a pair of sequences X and Y that

minimizes a predefined distance measure. The algo-

rithm is described as follows. Let’s define two

sequences

X ¼ x1; x2; :::; xi; :::; xI
Y ¼ y1; y2; :::; yj ; :::; yJ

ð1Þ

and a distance measure as

dði; jÞ ¼ xi � yj

���
��� ð2Þ

between sequence samples. A warping path can be

defined as

C ¼ c1; c2; :::; ck; :::; cK ð3Þ
where each ck represents a correspondence (i, j) be-

tween samples of X and Y . The initial condition of the

algorithm is set to
g1 ¼ gð1; 1Þ ¼ dð1; 1Þ � wð1Þ ð4Þ
where gk represents the accumulated distance after

k steps and w(k) is a weighting factor that must be

defined. For each iteration, gk is computed as

gk ¼ gði; jÞ ¼ min
ck�1

gk�1 þ dðckÞ � wðkÞ
� � ð5Þ

until the Ith and Jth sample of both sequences respec-

tively is reached. The resulting normalized distance is

DðX ;Y Þ ¼ gKPK
k¼1wðkÞ

ð6Þ

where ∑ w(k) compensates the effect of the length of

the sequences.

The weighting factors w(k) are defined in order to

restrict which correspondences among samples of both

sequences are allowed. In Fig. 1a, a common definition

of w(k) is depicted, and an example of a warping path

between two sequences is given. In this case, only three

transitions are allowed in the computation of gk. Con-

sequen tly, Eq. (5 ) becomes

gk ¼ gði; jÞ ¼ min

gði; j � 1Þ þ dði; jÞ
gði � 1; j � 1Þ þ 2dði; jÞ
gði � 1; jÞ þ dði; jÞ

2
4

3
5 ð7Þ

which is one of the most common implementations

found in the literature. In Fig. 1b, an example of point

correspondences between two signatures is depicted to

visually show the results of the elastic alignment.

The algorithm has been further refined for signa-

ture verification by many authors [5, 7], reaching a

notable verification performance. For example, the

distance measure d(i, j) can be alternatively defined,

or other normalization techniques may be applied

to the accumulated distance gK among sequences.

DTW can be also applied independently for each

stroke, which may be specially well suited for oriental

signatures, since they are generally composed of seve-

ral strokes. Although the DTW algorithm has been

replaced in speech-related applications by more pow-

erful approaches such as HMMs, it remains as a highly

effective tool for signature verification as it is best

suited for small amounts of training data, which is

the common case in signature verification.
Hidden Markov Models

Hidden Markov Models (HMM) have been widely

used for speech recognition applications [13] as well



Signature Matching. Figure 1 (a) Optimal warping path between two sequences obtained with DTW. Point-to-point

distances are represented with different shades of gray, lighter shades representing shorter distances and darker

shades representing longer distances. (b) Example of point-to-point correspondences between two genuine

signatures obtained using DTW.
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as in many handwriting recognition applications.

Several approaches using HMMs for dynamic signa-

ture verification have been proposed in the last years

[8, 9, 10, 11]. An HMM represents a double stochas-

tic process, governed by an underlying Markov

chain, with a finite number of states and a random

function set that generate symbols or observations

each of which is associated with one state [11].

Observations in each state are modeled with GMMs

in most speech and handwriting recognition applica-

tions. In fact, GMMs can be considered a single-state

HMM and have also been successfully used for signa-

ture verification [14]. Given a sequence of multi-

dimensional vectors of observations O defined as

O ¼ o1; o2; . . . ; oN ;

corresponding to a given signature, the goal of HMM-

based signature matching is to find the probability that

this sequence has been produced by a Hidden Markov

Model M

PðOjMÞ;

where M is the signature model computed during

enrollment.
The basic structure of an HMM using GMMs to

model observations is defined by the following elements:

� Number of hidden states N.

� Number of Gaussian mixtures per state M.

� Probability transition matrix A ¼ {aij}, which con-

tains the probabilities of jumping from one state to

another or staying on the same state.

In Fig. 2, an example of a possible HMM con-

figuration is shown. Hidden Markov Models are

usually trained in two steps using the enrollment

signatures. First, state transition probabilities and

observation statistical models are estimated using

a Maximum Likelihood algorithm. After this, a re-

estimation step is carried out using the Baum-Welch

algorithm. The likelihood between a trained HMM

and an input sequence (i.e., the matching score) is

computed by using the Viterbi algorithm. In [10],

the Viterbi path (that is, the most probable state tran-

sition sequence) is also used as a similarity measure.

A detailed description of Hidden Markov Models is

given in [13].

Within HMM-based dynamic signature verifica-

tion, the existing approaches can be divided in regional

and local. In regional approaches, the extracted time



Signature Matching. Figure 2 Graphical representation of a left-to-right N-state HMM, with M-component GMMs

representing observations and no skips between states.
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sequences are further segmented and converted into

a sequence of feature vectors or observations, each

one representing regional properties of the signature

signal [9, 11]. Some examples of segmentation bound-

aries are null vertical velocity points [9] or changes in

the quantized trajectory direction [11]. On the other

hand, local approaches directly use the time functions

as observation sequences for the signature modeling

[8, 10, 14].

Finding a reliable and robust model structure for

dynamic signature verification is not a trivial task.

While too simple HMMs may not allow to model

properly the user signatures, too complex models

may not be able to model future realizations due to

overfitting. On the other hand, as simple models have

less parameters to be estimated, their estimation may

be more robust than for complex models. Two main

parameters are commonly considered while selecting

an optimal model structure: the number of states and

the number of Gaussian mixtures per state [8]. Some

approaches consider a user-specific number of states

[10], proportional to the average signature duration or

a user-specific number of mixtures [14]. Most of the

proposed systems consider a left-ro-right configura-

tion without skips between states, also known as

Bakis topology (see Fig. 2).
Other Techniques

More examples of signature matching techniques in-

clude Neural Networks, in particular Bayesian,
multilayer, time-delay Neural Networks and radial-

basis functions among others have been applied for

signature matching. Other examples include Structural

approaches, which model signatures as a sequence, tree

or graph of symbols. Support Vector Machines have

also been applied for signature matching. The reader is

referred to [15] for an exhaustive list of references

related to these approaches.

Fusion of the feature- and function-based

approaches has been reported to provide better perfor-

mance than the individual systems [4].
Off-line Signature Matching

The proposed approaches for off-line signature match-

ing are notably heterogeneous compared to on-line

signature verification. These are mostly related to

image and shape recognition techniques and classical

statistical pattern recognition algorithms. They include

Neural Networks, Hidden Markov Models, Support

Vector Machines and distance-based classifiers among

others. A summary of off-line signature matching tech-

niques can be found in [15].
Related Entries

▶Off-line Signature Verification

▶On-line Signature Verification

▶ Signature Features

▶ Signature Recognition
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Synonyms

Handwritten signature recognition; signature/sign

recognition
Definition

A signature is a handwritten representation of name of

a person. Writing a signature is the established method

for authentication and for expressing deliberate deci-

sions of the signer in many areas of life, such as banking

or the conclusion of legal contracts. A related concept is

a handwritten personal sign depicting something else

than a person’s name. As compared to text-independent

writer recognition methods, signature/sign recognition

goes with shorter handwriting probes, but requires to

write the same name or personal sign every time. Hand-

written signatures and personal signs belong to the

behavioral biometric characteristics as the person must

become active for signing.

Regarding the automated recognition by means of

handwritten signatures, there is a distinction between

on-line and off-line signature recognition. On-line sig-

nature data are captured using digitizing pen tablets,

pen displays, touch screens, or special pens and include

information about the pen movement over time (at

least the coordinates of the pen tip and possibly also the

pen-tip pressure or pen orientation angles over time).

In this way, on-line signature data represent the way a

signature is written, which is also referred to as signa-

ture dynamics. By contrast, off-line (or static) signa-

tures are captured as grey-scale images using devices

such as image scanners and lack temporal information.
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Overview

Off-line and On-line Signatures

A number of features that are suitable for automated

comparison can be extracted from handwritten signa-

tures. The features depend on the type of data captured

and the chosen comparison method. Handwriting data

can be classified into

� on-line data captured during the writing process

using devices such as digitizing tablets, Tablet PC’s,

or special pens

� off-line data captured from paper after the writing

process using devices such as image scanners or

cameras

Dynamic information, like ▶ stroke order, writing

▶ speed, and ▶ pen pressure, is available in on-line

data, whereas only static information, like the shapes

of handwritten characters, is available in off-line data.

There is a multitude of methods for comparing hand-

written signatures, see under on-line signatures and

off-line signatures below.
S

Applications

Handwritten signatures are generally used for verifica-

tion (confirming a claimed identity through one-to-

one comparisons of biometric features), but rarely for

identification (finding identifiers attributable to a per-

son through one-to-many search among biometric

features in a large database) [1]. Handwritten signa-

tures have been used for a long time for authentication

purposes in many applications, such as credit cards,

banking transactions, agreements, and legal documents.

Off-line signature serve as a unique means to verify the

authenticity of a person through past records, such as

signatures on traveler’s cheques.
Strengths and Weaknesses

In order that handwritten signatures are useable for

recognizing persons, genuine signatures (i.e. signatures

written by the persons themselves whose names they

represent) need to be sufficiently repeatable over time

with respect to the comparison criteria, and forgeries

(i.e. signatures not written by the persons themselves
whose names they represent) need to be distinguish-

able from the genuine signatures by means of the

comparison criteria [2]. As for some persons the hand-

written signatures may vary considerably from signa-

ture to signature, the permanence of handwritten

signatures is considered lower than that of many phys-

iological biometric characteristics. As forgers can learn

with some effort how to imitate the signatures of their

victims, also the distinctiveness of handwritten signa-

tures is lower than that of many physiological biomet-

ric characteristics. However, forging the signature

dynamics is considerably harder than just forging the

signature shape [3, 4] because information about the

signature dynamics is less easily accessible to potential

forgers than information about the signature shape.

The strengths of handwritten signatures compared

to other biometric characteristics lie in a high level and

wide spread of user acceptance and in the fact that

handwritten signatures are regarded as an evidence of

a deliberate decision on the part of the signer. Further-

more, people can modify their signatures in case of

successful forgeries. By contrast, physiological biomet-

ric characteristics such as fingerprints or irises cannot

be modified.
Performance Testing of Signature
Verification Systems

Types of Testing

Users may obtain feedback (accepted or rejected) from

the signature verification system, which then influences

their subsequent input signatures. Genuine users will

become accustomed to the system, and forgers will use

this feedback to improve their signatures. Thus, in

order to determine the performance in practice, sce-

nario tests and operational tests (where users input

signatures to a prototype or operational verification

system) are preferable. Such tests, however, are expen-

sive and time consuming, and it is extremely difficult to

conduct tests on a large population. Moreover, since

the decision threshold of the system must be fixed, we

cannot evaluate the overall performance of the system.

Tests on databases can be easily conducted and a

large population can be tested. Moreover, such tests

can be conducted under the same conditions whenever

needed, and we can compare the different systems and

evaluate the overall performance of a system by assum-

ing different decision thresholds. Thus, technology
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tests using pre-existing or specially collected databases

of genuine signatures and forgeries are useful to develop

practical systems.

Neither scenario nor technology tests, by itself, are

sufficient to evaluate the actual performance. There-

fore, both tests should be conducted to estimate the

performance of the system in practice.

Evaluation Protocol

The performance of a signature recognition system

depends on the writing conditions and instruments,

skill of writers, required level of similarity for accep-

tance or rejection, and precision and reliability of tem-

plates. The performance of a system is also highly

dependent on the quality of the sample images to be

verified. Thus, the design and configuration of the test

should be carefully considered when performing eval-

uation experiments:

� The number of training signatures input during

enrollment: 3–20 training signatures, or more,

have generally been used in previous studies. For

instance, in [5], five signatures were used for

training.

� Selection method of training signatures from a da-

tabase: Some researchers select training signatures

randomly from genuine signatures, and some

researchers select them from the first several signa-

tures of the first session. Considering the actual

situation, it is reasonable to select the first several

signatures for training. In [5], genuine signatures

were collected from two sessions, and training sig-

natures were randomly selected from the first ses-

sion. This process was repeated ten times.

� Types of forgeries available for training: In general,

skilled forgeries are not available, and thus, genuine

signatures of other people are used as random for-

geries. In [5], skilled forgeries were not supplied for

training.

� Parameters of decision threshold: Some researchers

determine the parameters for the decision thresh-

old using all of the data, including test data, and

other researchers determine them using only train-

ing data. In the former case, the evaluated result is

termed ‘‘ideal’’ [6].
Forgery Data

The measured false match rate, which is useful for

predicting the forgery resistance of a signature
recognition system, depends on the degree of effort

with which signatures of other persons are tried to be

imitated. Different types of signature forgeries requir-

ing different skill levels can be distinguished, such as:

� Random forgery (also accidental forgery or zero-

effort impostor attempt) where an impostor with-

out knowledge of the genuine signature presents

any handwriting

� Simple forgery where an impostor with knowledge

of the genuine signature mimics it from memory

without practice

� Simulated forgery where an impostor traces a genu-

ine signature without prior practice

� Skilled forgery where an impostor mimics the gen-

uine signature after practicing

The quality of skilled forgeries depends on the capa-

bility of the forgers, what kind of information they

know, how they practice, and how motivated they are.

False match rates measured based on zero-effort

impostor attempts, where impostors submit their

own biometric characteristics while claiming to be

someone else, are meaningful for biometric systems

based on physiological characteristics, but are of less

relevance for predicting the forgery resistance of signa-

ture recognition systems where impostors can easily

take action to influence the outcome of recognition

attempts in their favor. A skilled forgery is the most

difficult to distinguish from a genuine signature.

Therefore, for a reliable prediction of the forgery resis-

tance of signature recognition systems, the measure-

ment of false match rates should be based on skilled

forgeries. In [5], random forgeries and skilled forgeries

were separately used for evaluation.
Signature Databases

For many years, there were no publicly available data-

bases. Therefore, each researcher needed to generate

his or her own private databases and evaluate algo-

rithms using them. These databases were not shared

with other researchers, and thus, it was difficult to

compare the performance of algorithms under the

same conditions. This is due to the difficulty in

providing forgeries that possess a sufficient level of

quality. Forgers, imposters, and seasoned document

examiners refuse to or are reluctant to furnish evidence

of skillful forgery because such evidence is considered

valuable private property.
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In the meantime, several on-line signature data-

bases have been developed and made available by sev-

eral research groups. For example, databases collected

by Munich and Perona [7], MCYT [8], BIOMET [9],

SVC2004 [5], and MYIDEA [10] are available. These

databases contain genuine signatures and skilled for-

geries of varying quality. Forgeries in some databases

were written by forgers who knew dynamic informa-

tion about genuine signatures, whereas forgeries in

other databases were written by forgers who knew

only shape information about genuine signatures.

Practical experience with respect to forgeries on bank

cheques may be accumulated in places such as Brazil, or

in criminal science studies in police institutions [11].

Databases are useful to compare different signature

recognition algorithms. However, each database is col-

lected based on a different policy, and they inevitably

differ in nature. Thus, evaluation using only a database

is not sufficient to determine the overall performance.
S

Off-line Signatures

Introduction

Off-line signature recognition is the recognition of

handwritten signatures based on a two-dimensional

gray image obtained by an item of equipment such as

a scanner, an optical reader, or a digitizer. Figure 1

depicts an example of an off-line signature.

Since the invention of writing in human society,

the signature on a document (or picture, including

monochrome brush painting) has been the most com-

mon means of authenticating the writer (or painter)

of the document (or picture). Not only leaders but

also persons accorded with responsibility in various
Signature Recognition. Figure 1 Off-line signature image.
capacities have had to put their signatures on paper

and recognize those of the others. Thus, signature

recognition has naturally been done off-line. It is only

with the recent development of an on-line technology

for biometric recognition that the relevance of off-line

recognition has been reduced. The relative character-

istics of on-line and off-line methods of signature

recognition will be discussed later.

The written name of the writer was originally used

as signature. In the course of the traditional use of

signatures, people started including symbols and dis-

torting them in order to increase their uniqueness and

beauty. In general, this made it impossible to recover

the writers’ names from such signatures. Further, some

signatures, like names, are merely personal signs that

help establish authenticity. In this sense, off-line signa-

ture recognition merely entails pattern recognition of

questionable images on a two-dimensional space by

referring to registered reference images, which may be

reduced to a template [3, 12, 2].

The following sections describe the basic modules

of the recognition procedure (i.e. data capture, prepro-

cessing, quality assessment, feature extraction, format-

ting, comparison, decision) for off-line signatures [13].
Basic Operation

Cutting off

In this module, a rectangular space containing the

entire image is identified, and the gray image of this

area is acquired using an appropriate item of equip-

ment such as a scanner.

Preprocessing

The size of questionable images is not always the same

as that of the reference images. Normalizing the size of

a questionable image is necessary in order to compare

it with templates and thereby facilitate recognition.

The background color of the sheet is not always

white. In fact, all cheques contain colored patterns for

preventing counterfeits, as shown in Fig. 2 [14]. As a

result, eliminating the effect of the background pattern

and the adjustment of gray levels is inevitable in pre-

processing. In general, the binarizing of gray levels up

to a certain threshold is preferred to obtain a steady

performance of the system.

Normalizing the angle to the baseline (if it exists)

proves to be effective in adjusting the signature
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background on a traveler’s cheque.
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position, because the angle (or gradient) is one of the

most important pieces of information that help differ-

entiate off-line signature images. In the case of digi-

tized images, rotating an image may add some noise to

deteriorate the transformed patterns.

Feature Extraction

There are numerous proposals for the method of fea-

ture extraction. In most of them, two types of princi-

ples, i.e., pattern matching and multivariate analysis,

are combined to construct an effective procedure for

similarity measurement and decision-making.

In pattern matching, we place a questionable image

on a template for measuring the difference in patterns.

The simple matching of gray levels on meshed pixels

does not yield robust estimates of similarity due to the

shift in the location of images. Therefore, the blurring

or smoothing of gray levels on any pixel with respect to

adjacent pixels, using a suitable weighted average, is

adopted as a method of feature extraction. A set of

shadow masking may be considered to apply this prin-

ciple. The measurement of the fringe of the image is

also a technique for feature extraction in pattern

matching. The accumulation of black pixels in a binary

image along a certain direction such as the x- or y-axis

yields a one-dimensional pattern in the form of a time

series with the coordinate considered as time.

For a multivariate analysis, multiple variables must

be properly defined. The frequency of properly selected

primitive patterns can be treated as variables for anal-

ysis. The number and location of pikes in the image

strokes along a certain direction may serve as variables
required to lend features. In certain situations, the gray

levels of pixels may act as variables, although the num-

ber of variables could go up to 262,144 when the pixels

are defined in a mesh of 256 � 1024. The reduction of

dimensionality is an important issue to be resolved.

The size of the envelope or gradient of strokes also may

be used as a feature.

The measurement of frequencies of various local

arc patterns on an image yields multiple variables;

this is possible by the application of a hybrid principle

that combines pattern matching and multivariate

analysis.

Measurement of Similarity

For pattern matching, a weighted sum of local simila-

rities may be an index for evaluating the total similarity.

When the x- or y-axis is regarded as the time axis, the

▶ dynamic programming comparison method and the

framework of a ▶ hidden Markov model may be useful

as the tool to construct a good similarity index [15].

In a multivariate analysis, the Euclidian distance,

▶Mahalanobis distance, Kullback-Leibler divergence,

or the deviance based on some probabilistic models

can be used, depending on the situation. Linear dis-

criminant functions, quadratic discriminant functions,

▶ support vector machine, or various nonparametric

statistics for discrimination are also used for discrimi-

nation, although they do not explicitly measure simi-

larity [16, 17, 18].

Judgment on Authenticity

Since there are several criteria of variability among

writers, simple judging procedures cannot, in general,

extract good performance from the devised system.

A multi-step procedure is more practical for achieving

better results. Therefore, the technique of fuzzy logic

may be effective [19]. The incorporation of the hidden

Markov model or neural network technology in the

judgment system may also be useful for ensuring rea-

sonably correct judgment.

The critical value or boundary line for judgment

should be determined based on the balance of the

possibilities of false acceptance and false rejection;

here, each possibility is, in general, evaluated by the

proportion of the incidence of false acceptance or re-

jection in the test sample used for designing the system.

An increase in false rejections may have grave repercus-

sions on the use of cheques, while an increase in false

acceptances may cause serious damage to businesses.
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(right) for a Japanese signature.

Signature Recognition. Figure 4 Examples of multiple

signatures.
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Review of Judgment

The variability in written images is less than that in the

motion of writing, because the writer can adjust his

motion by visually tracking the pen movement. This

visuality helps seasoned imposters to carry out skilled

forgery after extensive training. Even when the impos-

ter is not very skillful, the level of forgery is not very

inferior, as seen in Fig. 3. As a result, off-line signature

recognition is not a guaranteed way of identifying or

verifying identity of an individual. This factor necessi-

tates that judgment be reviewed using other means

such as identification cards or passwords, depending

on the gravity of the consequences of misjudgment.

Template Construction

A template is provided for measuring the similarity of

the questionable image with authentic signature

images registered in a database or saved in a system.

In the availability of only one authentic image, it

should be processed in exactly the same manner as

questionable images, in order to construct a template.

In the case wherein multiple images for the same

signature are stored in a reference database, there are

various means of constructing a template. One method

is to amalgamate a set of images into an image using a

suitable tool. Another method is to select a representa-

tive image that is considered as the preferred image.
Influence of Writing System and
Nationality

There aremany letter systems worldwide, such as Latin,

Chinese, Arabic, Cyrillic, Japanese, and Hangul. The

distinctiveness of signatures is highly dependent on

the letter system.With respect to themanner of writing,

letters are written separately in Chinese, Japanese, and
Hangul, whereas in English, French, and German, each

word is considered as one unit. In European letter

systems, a name is considered one word, whereas in

some Asian letter systems, it is regarded as a set of

disparate characters. The distinctiveness of signatures

is not as high in the latter group of countries as it is

in the former group due to the social habit of writing

[20, 21, 22]. In the Arabic letter system, words are

written from right to left.

With respect to the use of signatures, a study of the

Japanese case reveals singular circumstances. In 1883,

the Japanese government legislatively forced all Japa-

nese citizens to use red stamps called hanko or inkan

for official authentication. Further, the Japanese are

taught to write their names in the print form in their

childhood. As a result, Japanese signatures generally

lack uniqueness.

In countries such as Indonesia, the government

allows the people to periodically change their signatures

for registration in order tomaintain security. Given such

a situation, the period in which the concerned signature

was written is important to verify the authenticity.

Some people have multiple signatures depending

on their use, examples of which are shown in Fig. 4.
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In the left side of this figure, the middle name is

inserted in one signature, while different letter systems

produce different signatures for the same name, as seen

in the right side of the figure. People in countries that

have their own letter system can devise their signatures

based on their native alphabet, although they may

often use signatures written in Latin letters due to the

use of English as the lingua franca internationally.
On-line Signatures

Introduction

On-line signature verification uses data obtained while

a signature is being written. The data obtained during

the process of writing a signature is called an on-line

signature. Figure 5 depicts a sample of on-line signa-

ture data. On-line signature verification is based on the

hypothesis that the writing style of a signature differs

from person to person and cannot be easily forged.

On-line signature verification verifies whether an

input signature is a genuine signature or a forgery.

Ideally, it is a two-class partitioning problem; however,

it is not an easy problem to solve, because of the

following reasons:
Signature Recognition. Figure 5 On-line signature data.
� People do not reproduce their signature exactly

each time. Characteristics of the writing manner

of genuine writers can change over time. There is,

necessarily, intra-class (intra-person) variability. In

contrast, forgers attempt to make their forged sig-

natures as similar as possible to genuine signatures,

and thus inter-class (inter-person) variability

decreases. Therefore, it is difficult to distinguish

between genuine signatures and forgeries.

� Both the number and type of signatures available for

training are often severely limited. As on-line signa-

ture verification is a two-class partitioning problem,

general pattern recognition techniques can be ap-

plied if enough data is available from both the clas-

ses. In practice, however, only a few genuine

signatures are available from the genuine class.

Moreover, there are several types of forgeries in the

forgery class, but only a few types of forgery can be

collected for the following reasons: The forgeries

that are most similar to genuine signatures and the

most difficult to distinguish from genuine signatures

will be signatures that were produced by imitating

genuine signatures well. Because genuine signatures

differ from writer to writer, well-imitated forged

signatures should be collected for every writer; how-

ever, this is extremely difficult. Scarcity of genuine
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training data exist in all biometric methods; however,

scarcity of forgeries exist only in methods that must

prepare for imitation attacks.

A variety of algorithms have been proposed for on-

line signature verification. Early work carried out up to

1999 is summarized in [2, 3, 23]; subsequently, many

studies continue to be reported [6, 7, 24, 25, 26]. A first

on-line signature verification competition was held in

2004 [5].
S

Basic Operation

Data Acquisition

Several data acquisition devices are used for on-line

signature verification, for example, digital tablets with

pens, pen displays on Tablet PC’s, touch screens on

PDA’s, data acquisition pens, and cameras [6, 7]. These

acquisition devices provide ▶ pen coordinate informa-

tion as time-series data. In addition to pen coordinate

information, some devices can acquire information

about ▶ pen pressure and ▶ pen tilt (▶ altitude, ▶ azi-

muth) as time-series data.

Preprocessing

After data acquisition, preprocessing such as resam-

pling [6, 7, 27], noise filtering [26], rotation normali-

zation [7], and size normalization [25] is conducted to

suppress insignificant information that is expression of

random variation, but not of individual signature dy-

namics, and to even out differences between data cap-

tured with different capture devices.

Feature Extraction

This process extracts discriminative features from the

acquired data. The features should allow to distinguish

a genuine signature from forgeries and be suitable for

automatic comparison.

Comparison (Similarity/Dissimilarity Measure)

In the next step, similarity/dissimilarity scores between

the extracted features for the input signature and a

reference associated with the claimed identity are com-

puted. On-line signature verification algorithms can be

classified into parameter-based and function-based

approaches, depending on the features compared [3].

In the parameter-based approach, N features, such

as average writing speed, total signature duration, and
the number of pen ups/pen downs, are extracted as

parameters that represent the signature data [26, 28].

In this approach, signature data Sigpara after feature

extraction can be represented as an N-dimensional

parameter vector

Sigpara ¼ ðp1; p2; :::; pN Þ; ð1Þ

where pn is the n-th extracted feature, and each feature

has a scalar value. In the parameter-based approach,

Euclidean distance, weighted Euclidean distance, or cor-

relation are computed as similarity/dissimilarity scores.

In the function-based approach, several features,

such as pen coordinates, ▶ velocity, and acceleration,

are extracted as a sequence of data. In this approach,

signature data Sigfunc after feature extraction can be

represented as

Sig func ¼ fsig funcðtÞgTt¼1

¼ fðf 1ðtÞ; f 2ðtÞ; :::; f N ðtÞÞgTt¼1; ð2Þ

where fn(t) is the n-th feature and T is the number of

sample points. Each feature is a function of t. In the

case where the features are time-series data, t stands

for a time stamp and T is the total duration. In the

function-based approach, there are different compari-

son methods:

� If the reference is also a feature set, two sets of

functions are compared, namely, the reference and

the features extracted from the input signature.

These functions have different durations and are

nonlinearly distorted with respect to each other.

Then, an elastic comparison algorithm such as

dynamic time warping is applied to compute dis-

similarity scores [7, 24, 25, 27].

� If the reference is an enrollee-specific function,

such as a statistical model, similarity scores are

computed using the statistical model and the fea-

tures extracted from the input signature. For exam-

ple, the Hidden Markov Model can be used as a

statistical model, and probabilities are computed as

similarity scores such that the input features are

reproduced from the model [26].

After the comparison process, some studies apply

score normalization [6, 26]. In the case where multiple

scores are computed, score-level fusion strategies [29]

are adopted in some studies [6, 7, 25, 26, 27]. In the

case where statistical models are used in score-level
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fusion [25], model parameters should be estimated in

the enrollment process.

Decision Making

In the decision making process, a final decision is made

as to whether or not the input signature is considered a

genuine signature or a forgery. Some researchers use

a classifier for decision making [24], though generally a

decision is made by comparing the computed scores

with a decision threshold. For example, when similarity

scores (a larger score indicates a better match) are

used, a decision is made based on

Signature¼ Genuine signature if score> threshold

Forgery if score	 threshold

�

ð3Þ
where threshold is a decision threshold. A decision-

level fusion strategy [29] can also be used in combina-

tion with this decision rule [28].

The decision result can be changed by adjusting the

decision threshold value; thus, the decision threshold

should be set according to the expected security level.

Two types of decision threshold are possible: a writer-

dependent threshold (user-dependent threshold) and a

common threshold (global threshold). It is reported

that a writer-dependent threshold yields better results

[6]; however, setting a good user-dependent threshold

for each user is a difficult problem. In both types, some

parameters estimated in the enrollment process are

used to set the decision threshold.

Enrollment

Signatures input during enrollment are called ▶ train-

ing signatures. Feature sets are extracted from the

training signatures, and these extracted feature sets

are used in the enrollment process.

For the parameter-based comparison approach, the

extracted feature sets are directly enrolled as reference

data together with an identifier [28].

For the function-based comparison approach, two

types of enrollment are possible depending on the com-

parison approach adopted, namely, reference-based and

model-based [26]. In reference-based enrollment, the

feature sets extracted from training signatures are

directly enrolled as reference data together with

the identifier [6, 7, 25, 27]. In model-based enrollment,

the extracted features sets are used to estimate statisti-

cal models, and these models are enrolled as reference
models f(·;Y) together with the identifier [26]. Here, f

(·;Y) is a statistical model and Y is a parameter set of

the statistical model.
Summary

Signature recognition is a historically established

method for the authentication of an individual or a

document. It is recognized as a common technique

worldwide and therefore, is willingly accepted as a

means of person authentication by ordinary people.

Moreover, signature verification has the notable fea-

ture that the signature can be modified in the event

that it is compromised. However, since a signature

image can be easily copied by other people and there

are many people whose signatures are quite variable,

the capability of off-line signature recognition as an

exclusive means of person authentication is limited.

Many pen input devices, such as tablet PC’s and

PDA’s, are now available that allow to capture the

signature dynamics, which is more difficult to copy

than signature images. On-line signature verification

is thus a promising candidate for person authentica-

tion methods. However, the performance of on-line

signature verification needs to be improved before it

can be used for high-security applications.
Related Entries

▶Biometrics, Overview

▶Performance Evaluation
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Synonyms

Signature synthesis; Handwriting synthesis; Handwrit-

ing sample synthesis
Definition

Signature sample synthesis is the generation of synthetic

signature from a user’s signature samples. It is a special

case of handwriting sample synthesis which generates

novel handwriting in a particular person’s handwriting

style. A handwriting or signature synthesis system has

two basic modules: the modeling module and the

synthesis module. In the modeling module, the system

collects handwriting/signature samples of a specific

writer (online or offline), and identifies and stores

the basic characteristics of samples (for example,

shape and spatial layout). In the synthesis module,
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synthetic ▶ glyphs are generated from the stored tem-

plates, and they may be further aligned and connected

to form synthetic handwriting data.
Introduction

Like many biometric characteristics, such as face, fin-

gerprint, and iris, signature/handwriting has been

widely accepted by people as an effective way to iden-

tify a specific writer. Historically, signatures and forged

handwritings have always been of interest to forensic

experts. Many signature verification technologies have

been reported in the literature to detect handwriting

forgeries [1, 2]. Signature sample synthesis [3], as an

inverse biometrics problem, is the process of generat-

ing synthetic signatures that mimic real signature sam-

ples. The literature on signature sample synthesis is

quite rare. However, it is a special case of handwriting

sample synthesis [4, 5], which generates novel artificial

handwriting in a person’s handwriting style. The article

begins with handwriting sample synthesis techniques

and then narrows down to signature sample synthesis.

Handwriting sample synthesis has become active in

recent years, because the flourish of pen-based devices,

such as Tablet PCs, touch-screen mobile phones, per-

sonal digital assistants (PDAs), and electronic white-

boards, has brought users more natural communication

ways in human–computer interaction. In many situa-

tions, writing with a pen on the screen is more conve-

nient than typing on the keyboard. Yet, many users

find that keyboards are more efficient than handwrit-

ing because typing is faster than writing, and his/her

handwriting may become illegible after long-time

writing. Handwriting sample synthesis addresses this

dilemma by converting ASCII text to handwriting that

is close to the user’s personal handwriting. For those

people who prefer handwriting personal letters, greet-

ings, and compliments, handwriting sample synthesis

adds a personal touch to communications. Like wall-

papers and favorite software settings, synthesized

handwriting also contributes to the personalization of

one’s computing devices. Moreover, it can always gen-

erate legible handwriting and free the user from

lengthy and stressful writing, for example, while pre-

paring many hand-written documents such as greeting

cards with different content [6].

Handwriting sample synthesis is helpful to build a

signature/handwriting recognizer which heavily depends
on the size and quality of the training set [7]. It can

generate a large database of handwriting/signature

samples that look natural. This not only greatly

reduces the manual intervention in the preparation

of hand-written sample, but also provides the ability

to perform operational testing in a laboratory environ-

ment. The automated synthesis is also useful to evalu-

ate existing signature/handwriting verification methods

[8], including the accuracy and reliability against

fraudulent signature/handwriting. In addition, this tech-

nique can help forensic examiners [9] to understand

the key factors that affect a person’s handwriting or

signature.
Characteristics of Handwriting/Signature

As a behaviorial biometrics characteristic, handwrit-

ing/signature is affected by various factors which the

synthesis process should consider. For instance, the

signatures are quite different when the specific writer

writes in different languages (the article mainly con-

siders the English language, which contains a small set

of single characters, and the combination of individual

characters in a linear fashion forms various words).

Writing with different digital pen devices can also

cause direct changes in the appearance of handwriting.

Likewise, the person’s mood, his/her hand health and

the surrounding environment are also possible factors

to affect the acquisition process of handwriting sam-

ples. Despite those factors, signatures from a single

individual tend to be different even using the same

digitizing device. For different people, the character

shapes can vary greatly and the amount of shape varia-

tion may also differ from person to person. In addi-

tion, people may tend to write handwriting/signature

in a▶ cursive style or in a partially cursive and partially

▶ handprint style, which makes the problem of synthe-

sis more difficult.

As suggested by handwriting analysis techniques in

forensic inspection [10], the specific features that are

easily noticeable to ordinary people to distinguish dif-

ferent handwriting styles include: (1) the glyph and the

size of single characters; (2) the pressure distribution

and the slant of handwriting; (3) the relative sizes of

the middle, the upper, and the lower zones of letters;

(4) the existence and the shape of head, connecting,

and tail parts; (5) the letter, the word, and the line

spacings; (6) the embellishment in strokes or character
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glyphs; and (7) the simplified or neglected strokes.

These features can be roughly classified into three

types: features of character glyphs, spatial layout of

characters, and connection between characters. Differ-

ent from the English language, the oriental languages,

such as Korean and Indian, often contain a large num-

ber of characters that share the same small set of

strokes, and the characters are usually unconnected.

Therefore, the handwriting characteristics of the ori-

ental languages are depicted by two types of features:

features of strokes and spatial layout of strokes to form

characters [11, 12]. For simplicity, the following dis-

cussion focuses on the synthesis of English scripts.
S

Modeling Process

To generate signatures that look natural, it is important

to model the characteristics of signatures/handwriting

samples. Figure 1 shows the general outline of the

modeling process. It collects handwriting data of a

specific user and learns his/her handwriting model. In

the modeling process, the handwriting samples are first

obtained by acquisition devices. For example, digitiz-

ing pen-based devices capture the handwriting sample

by a sequence of discrete 2D points. Kinematic infor-

mation such as pressure and duration of writing can be

recorded during the acquisition. Handwriting samples

may also be acquired via scanning the off-line sample

images, but all kinematic characteristics will be lost.

The general handwriting model consists of three

parts: a character model which captures the shapes and

variations in single characters; an alignment model

which controls the spatial layout of the individual

characters that form words; and a connection model
Signature Sample Synthesis. Figure 1 Block diagram of the
which simulates how two characters are connected

together. The simplest form to represent the signa-

ture/handwriting is a planar curve. Hence, the char-

acter model often extracts a set of control points

to represent the hand-written character glyph [1, 3,

13–17]. Bezier curves or polynomials are then used

for curve approximation. The shape variation such as

scale, position, and slant can be learnt from multiple

samples of one character. Besides the geometric infor-

mation, physically plausible models have been pro-

posed to model the speed and acceleration in the

writing [4, 5]. These kinematic-based models are cap-

able of representing, compressing and reconstructing

input handwriting data, but they do not target at

synthesizing new handwriting. In contrast, geometry-

based models can generate handwriting with natural

shape variations and support different handwriting

styles, i.e., from handprint style to fully cursive style.

The alignment model records the horizontal letter

spacings and the relative vertical positions of charac-

ters with respect to a horizontal baseline [17]. The

connection model may record which character pairs

are likely to connect to each other. It may also extract

the distribution of concatenation strokes which are

formed by the tail and the head parts of adjacent

characters [14].

In the modeling process, the system usually

requires the users to provide adequate handwriting

samples, so a practical concern is to keep user involve-

ment at a reasonable level. In fact, the burden of user

involvement in the sample collection process depends

upon the handwriting models that the systems use. For

example, users are asked to write more than one thou-

sand letter groups in [13]. Besides writing 80–200

words, the work in [14, 15] may need user interaction
model training process.
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in order to get good segmentation results. In contrast,

the user is only required to input each single character

three times, several special pairs of letters and several

multiletter words (Fig. 2) in [17].
Synthesis Process

The synthesis process should have synthetic data visu-

ally similar to the samples and incorporate sufficient

variability in synthetic data. This objective, however, is
Signature Sample Synthesis. Figure 2 The user interface in

lowercase letters, capital letters, digits, punctuations, special

Signature Sample Synthesis. Figure 3 Block diagram of the
not easily achieved, especially when considering cur-

sive writing styles. Figure 3 shows the basic flowchart

of handwriting synthesis systems. For an input ASCII

text, each individual character glyph is first generated

from the character model. Then the glyphs are

arranged and adjacent characters are connected when

needed to form a cursive word. The words are further

aligned into lines and paragraphs. In the following

section, each step of synthesis is detailed.

Character selection generates glyphs based on the

stored character models. In [4], the handwriting
[17] to collect user handwriting samples: samples of

letter pairs, and multi-letter words.

handwriting sample synthesis process.
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sample is modeled by the writing velocity equations.

Then a similar synthetic data are generated by setting

initial conditions to the equations. In [14, 15], the

character model is the statistical distribution of control

points that are learnt from multiple glyph samples for

each character. By randomly sampling the distribution,

new handwriting trajectory can be generated. In [17],

three instances of characters are stored as the templates

which are supposed to appear at the beginning, the

middle, and the end of words, respectively. Then accord-

ing to the character position in the word, one of the

three templates is chosen as the initial glyph. After

selection, affine transformation (scale, rotation and

slant) is applied to the character glyphs. To mimic the

variability in the natural handwriting/signature, some

randomness is often added in the transformation.

Character alignment then places the glyphs with

respect to the baseline, both vertically and horizontally.

Vertical alignment is necessary for the generation of

smooth handwriting. For example, middle-zone letters

(‘‘a,’’ ‘‘c,’’ ‘‘e,’’ etc.), ascendent letters (‘‘b,’’ ‘‘d,’’ etc.),

and digits are expected to have their glyph bottoms

meet the baseline. Horizontal alignment, on the other

hand, separates the bodies of adjacent letters at a dis-

tance along the horizontal baseline. However, the adja-

cent character glyphs may have severe overlapping

when their head or the tail parts are too long. As a

result, the synthesized handwriting may look weird or

it may be hard to produce smooth connection part.

Hence, redundant portions of heads/tails may be

trimmed to alleviate the overlapping problem [17].
Signature Sample Synthesis. Figure 4 Integration of handw

Outlook1.
Character connection is developed to simulate cur-

sive handwriting, inwhich adjacent letters are connected

by smooth ligature parts (the head and tail parts of

adjacent characters). In [14], a statistical ligature gen-

eration model is learnt from handwriting samples.

when synthesis, a ligature stroke is generated for

every pair of adjacent letters. The final ligature part is

determined by jointly deforming the letter strokes and

the ligature stroke. This method needs sufficient sam-

ples for training. In [15], a delta log-normal model is

employed to represent the head/tail parts as pieces of

arcs. By changing the arc parameters, the trajectories of

letters are deformed to create a smooth ligature part.

This model may be interfered by too long overlaps

between head/tail parts. The work [17] adopts a high-

order polynomial to fit the ligature part. The problem

becomes to determine the control points given the

head/tail parts of adjacent glyphs. To solve the fitting

problem, three constraints are imposed on the ligature:

similarity to the original ligature, deformation energy

from the original ligature, and smoothness of the liga-

ture. The control points should minimize the sum of

these three energy terms.

After the processes mentioned above, an ASCII

word is converted to a hand-written word. Then it is

natural to synthesize handwriting text by rendering

multiple words one by one. Figure 4 shows an example

of the communication via emails with handwriting

synthesis. The sender types in a text email. The hand-

writing synthesizer automatically converts it into a

handwriting email and sends it to the receiver. Then
riting sample synthesis system with Microsoft1 Office

S
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the receiver finally reads the letter in the sender’s per-

sonal handwriting style.

Since signature is a special type of handwriting,

handwriting synthesis techniques can be adapted for

signature sample synthesis. Instead of representing

each character in handwriting synthesis, the whole

signature can be taken as a single glyph. Then the

character modeling is applied to the signature glyphs,

for example, extracting the control points or estimat-

ing the writing speed. During synthesis, the process of

character selection is applied to the learnt models of

signature glyphs. By this way, a large database of syn-

thetic signatures can be obtained to test the robustness

of an existing handwriting/signature verification or

recognition method.
Summary

As an inverse biometrics problem, signature/handwrit-

ing sample synthesis has been studied in recent years.

Existing synthesis systems can help common users to

produce personal signature/handwriting with pleasing

visual quality. However, they do not capture all aspects

of the handwriting style. For example, the handwriting

of people may evolve gradually with their ages. It may

add more liveness to the handwriting if the effect of

time is considered. Furthermore, the research on syn-

thesis in languages other than English needs more

investigation before it becomes accessible to people in

different countries.
Related Entries

▶Handwriting Structure

▶ Sample Synthesis from Templates

▶ Signature Features

▶ Signature Recognition
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Signature Synthesis
▶ Signature Sample Synthesis
Signature/Sign Recognition
▶ Signature Recognition
Silhouette
The set of pixels in an image corresponding to an

object of interest. In gait recognition, the object of

interest is the human subject to be recognized. These

are outlines of persons or object of interest in images or

videos. In gait recognition, these are represented as 2D

(filled) shapes of walking persons. Most common

usage includes both the inside and the boundary of

the shape to be part of the silhouette. Silhouettes are

typically detected by subtracting the background image

from any given image, followed by some simple hole

filling and clean up operations.

▶Gait Recognition, Silhouette-Based
S

Silhouette Analysis for Gait
Recognition
▶Gait Recognition, Motion Analysis for
Similarity Metric
Any of a large number of scalars assessing the degree of

similarity, or of dissimilarity, between objects such as
biometric features or templates is similarity metric.

Examples include: correlation statistics, vector projec-

tions (cosine or inner products), and fractional Ham-

ming Distance (the fraction of bits that differ between

two bit sequences of equal length). Similarity metrics

usually obey the axioms of distances (symmetry; non-

negativity; and triangle rule inequality), but they can

incorporate nonlinear or non-Euclidean topologies

(e.g., city-block distances between points in a space

versus straight-line distances). A similarity metric be-

tween biometric templates, after being suitably nor-

malized, is usually the input into a decision process

that renders a judgment about whether they should be

classified as ‘‘same’’ or ‘‘different.’’

▶Palmprint Matching

▶ Score Normalization Rules in Iris Recognition
Simplifying Passenger Travel
Program
Synonyms and Acronyms

ABG; CANPASS; IRIS; NEXUS; Privium; SPT
Definition

Organized by IATA (the international air transport

association representing 230 airlines), the simplifying

passenger travel initiative refers to a combination of

programs agreed by airlines, airports, and governmen-

tal regulatory bodies for the purpose of simplifying the

experience of air travel and making it more efficient.

Not focused solely on expediting security procedures

for departing passengers, SPT programs also include

the use of biometrics for automated immigration

clearance for arriving passengers, streamlined border-

crossing, automated check-in, and enhancing other

airport processes. National programs that use iris rec-

ognition for these purposes include IRIS (UK): Iris

recognition immigration system; Privium (NL); ABG

(Germany); and the Canadian and US border-crossing

programs, CANPASS and NEXUS.

▶ Score Normalization Rules in Iris Recognition



1212S Simultaneous Capture of Iris and Retina for Recognition
Simultaneous Capture of Iris and
Retina for Recognition
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Retica Systems, Inc., Waltham, MA, USA
Synonyms

Iris retina biometric fusion
Definition

The simultaneous imaging of the iris and retina for the

purposes of biometric recognition. A specialized optical

engine is used to illuminate and image both biological

features. Acquisition software extracts optimal images

from acquired video sequences. The resultant digital

images are analyzed and biometric information is

extracted and stored. Information from both the iris

and retina is combined or fused for the purposes of

verifying or determining the identity of the individual.

The fixed anatomical proximity of the iris and retina

facilitate their simultaneous capture by a single device.

Combining the iris and retina traits aims to offer an

advantage over unimodal iris and retina biometric

systems.
Introduction

Within the field of biometrics, the iris has received

considerable attention. Iris biometric systems are

commercially available and research is expanding.

Only recently has the technology begun to meet its

commercial potential. The reasons for this involve

meeting the many challenges necessary to create sys-

tems that combine high quality imaging, good human

factors engineering, and high quality software algo-

rithms for image capture, segmentation, encoding,

and matching. Retina-based identification has long

been perceived as a robust biometric solution, but

very few practical applications or commercially viable

products have been demonstrated. EyeDentify Inc. de-

veloped a retinal biometric product [1, 2] that demon-

strated reasonable performance [3]. However, it

suffered from a perception that its human interface

was intrusive. Optibrand Ltd. developed a retinal
biometric device for the livestock market [4]. More

recently, Retica Systems Inc. has developed a biometric

acquisition system that combines the retina with iris

biometrics [5]. As biometric systems attempt to meet

the demands of real world applications, multibio-

metric systems are receiving considerable attention. It

is believed that some of the limitations imposed by

unimodal systems can be overcome by using multiple

biometric modalities [6]. Both iris and retina systems

can suffer from problems associated with unimodal

systems. These include noisy data, intraclass variation,

nonuniversality, and susceptibility to spoof attacks. Al-

though iris technologies have demonstrated high levels

of performance, research with the aim of mitigating

poor iris image quality is ongoing, and attempts have

been made to improve performance by combining the

iris with other biometric traits including fingerprint [7]

and face [8]. The fixed anatomical proximity of the iris

and retina facilitates their simultaneous capture using

a single system. Biometric traits are best combined

when their discriminating power is evenly balanced

and their content is independent. The topology of the

retinal blood vessels is independent of the texture of

the iris. It therefore may be possible to improve bio-

metric performance by combining balanced iris and

retina recognition technologies into a single device.
Anatomical Background

The eye can be divided into the anterior and posterior

segments, Fig. 1. The iris is found in the anterior

segment that also includes the cornea and lens.

The iris is constructed of pigmented fibrovascular tis-

sue layered onto a back surface of pigmented epitheli-

um cells. Crypts and freckles add to the observed

pattern. The texture variation across the iris is distinc-

tive and it is this information that is encoded forming

the iris biometric signal. The retina is found in the

posterior segment that comprises the back two-thirds

of the eye. Light is refracted by the cornea and lens

through the pupil onto the retina, a thin layer of neural

cells that lines the interior surface of the eye (the

fundus). The fundus, as seen using a digital fundus

camera, is shown in Fig. 2 where the images of the left

eyes of two identical twins are shown. The retinal

blood vessel pattern is the subject of biometric encod-

ing methods. Two major blood vessel systems supply

the retina. The outer retinal layers are supplied by a
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choroidal blood vessel network. The choroidal vessels

form a grid-like pattern and are not generally visible

using standard digital fundus cameras and refractive

ophthalmoscopes. The inner layers of the retina are

supplied by the ▶ central retinal artery. There is also

one main collecting trunk, the ▶ central retinal vein.

These two blood vessels form ▶ bifurcations as they

emerge from the optic disc and branch out through the

nerve fiber and ganglion cell layers forming an extend-

ed network throughout the retina. The optic disc is the

point where the optic nerve breaks out into the retina

and can be seen as the bright spots in Fig. 2. Several
Simultaneous Capture of Iris and Retina for

Recognition. Figure 1 Schematic diagram of the human

eye (right). (Courtesy of National Eye Institute, National

Institutes of Health).

Simultaneous Capture of Iris and Retina for Recognition. F

eyes of two identical twins. Retinal blood vessels can be seen

The optic disc can be seen as a bright spot near the center of e

blood vessels is notably different. (Courtesy of Prof. Michael L
studies have concluded that the branching patterns of

the retinal arterial and venous systems have character-

istics of a fractal [9, 10]. It has been suggested that a

nonequilibrium Laplacian process could be involved in

▶ retinal angiogenesis [10] and that fluctuations in the

distribution of embryonic cell-free spaces provide the

randomness needed for fractal behavior and for

the uniqueness of each individual’s retinal vascular

pattern [9]. This fractal-like growth occurs in the em-

bryonic stages of humans and provides for uniqueness

even in the case of identical twins, Fig. 2. The anato-

mical stability of the iris and retina biometric traits

must be considered. While it is expected that both

suffer from minimal normal age-related changes,

both are effected by various disease states. Large-scale

studies specifically addressing the stability of the iris,

especially for biometrics, have yet to be performed

[11]. This is also the case for retinal biometrics.
Challenges

The principal challenges for an ocular imaging biomet-

ric device broadly fall into three categories encompass-

ing the imaging system, its human interface, and

software analysis algorithms:

1. Imaging system. The challenge for the imaging sys-

tem is to record stable images that best illuminate

biometric features. In the case of the iris, standards
igure 2 Fundus camera images corresponding to the left

to form a branching network centered on the optic disc.

ach image. Comparing the two images, the topology of the

arsen, Glostrup Hospital, University of Copenhagen).

S
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[12] dictate two basic requirements: (1) near-infra-

red illumination must be used, (2) pixel and spatial

resolution limits must be met. Illumination across

the eye must produce an image with even levels of

contrast throughout and with clearly defined iris

boundaries. Iris texture should be emphasized

and the optical system must minimize obscur-

ing reflections including ▶Purkinje images and

those from ambient light sources. In the case of the

retina, the interior surface of the eye must be imaged

through the refracting surfaces of the cornea and lens

and through its natural aperture, the pupil. A suitable

field-of-view containing a high level of blood vessel

detail is required. The blood vessels must show a

suitable level of contrast. Optical appliances such as

glasses, contact lens and other types of face guards,

and masks add additional imaging challenges for

both iris and retina systems, as they can contain

scratches and generally exhibit poor transmission

properties. In addition, in the case of a dual iris-

retina system, iris and retina imaging systems should

complement each other and stepsmust be taken such

that there is no interference between the two.

2. Human interface. Human interface challenges en-

compass fixation and targeting, illumination con-

siderations, and distance requirements, and are

highly dependent on the application of the tech-

nology. In general, a biometric device should in-

convenience the user as little as possible while

facilitating repeatable and stable imaging of the

biometric traits. The challenges associated with

imaging the retina dictate that, at least in the short

term, a passive imaging system with a level of

active participation by the user is required. If a

passive system is employed, then a suitable align-

ment tool is required. This fixture must be straight-

forward and intuitive to use and be capable of

aligning the user to a defined degree of accuracy.

3. Software analysis. Software analysis challenges

involve live acquisition, feature extraction, encoding,

and matching. The task of the image acquisition step

is to identify from video sequences if any acceptable

views of the biometrics have been presented and, if

so, to extract and record the best examples. In this

context the term best means an image from which

the biometric signal can be encoded with the high-

est degree of accuracy. Image acquisition methods

must process continuous video sources. Processing

constraints are therefore high. A definition of
image quality is needed and thresholds must be

applied to exclude unacceptable images. There is

an inherent trade-off between the image quality

thresholds applied during image acquisition, the

human interface, and the subsequent efficacy of

the encoding. Image quality constraints set too

high may result in a more prolonged and difficult

user experience or ubiquitous failures-to-acquire.

Image quality constraints set too low may compro-

mise encoding and therefore potentially degrade

matching performance. Feature extraction techni-

ques are used to reduce the acquired images into

biometric signals. Methods must accurately extract

the unique features present in the image and effi-

ciently encode them to facilitate matching. For iris

analysis systems, the iris must first be located and

separated from the rest of the image. This necessar-

ily includes identifying areas of iris occlusion. In

the case of the retina, the blood vessel network

must be separated from other features within the

retinal images. Encoding methods must provide an

efficient characterization of the biometric features

that facilitates accurate and rapid matching meth-

ods. Finally, matching algorithms must define a

similarity score such that scores from pairs of sig-

nals from the same individual show a high separa-

tion from scores generated from signals of different

individuals. Operational constraints often dictate

that matching must be rapid.
Image Quality Considerations

Systems that combine a good image capture hardware

design with a straight forward human interface can still

suffer from large variations in image quality. Inherent

anatomical, behavioral, and environmental variations

introduce confounding factors. A large range in iris

reflectance can result in low contrast for one of its

boundaries (e.g., dark irises can exhibit poor contrast

with the pupil. Highly reflective irises can result in a

low level of contrast for the iris–sclera boundary).

Variations in the reflectivity of the retina can result

in a range of retinal image brightness and contrast.

Variations in the optical efficiency of the eye and the

variable use of glasses or contact lenses can result in a

range of achievable focus for a fixed focused optical

system imaging the retina, and add unwanted reflec-

tions to iris images. Ambient light sources also affect



Simultaneous Capture of Iris and Retina for Recognition S 1215
the size of a user’s pupil. In addition to altering the

appearance of the iris, pupil scale changes can dyna-

mically affect the illumination on the retina. Variations

in user alignment can introduce eye-gaze to iris images

that can adversely affect segmentation and can intro-

duce nonlinear transformations to the blood vessel

pattern as projected onto a two dimensional retinal

image. Standards for iris image quality have been de-

fined [12]. No such standard exists for retinal images.
Simultaneous Capture of the Iris and
Retina

This section discusses Retica’s fusion of its iris

and retina technologies for simultaneous capture by a

single-presentation biometric device. Solutions to the

challenges discussed earlier combine to form a novel

iris–retina imaging system, its associated human inter-

face, and proprietary software analysis algorithms for

automated acquisition, encoding, and matching.

A more detailed description of Retica’s dual iris–retina

technology can be found in [5].

1. Imaging system. Proprietary iris and retina optical

systems are arranged in a single housing. Both

systems employ standard Video Graphics Array

(VGA) resolution cameras. In the iris optical sys-

tem, illumination is provided by a set of narrow-

band near-infrared (NIR) LED’s. A fixed focus

system with a focal length of 27 cm is used. Care
Simultaneous Capture of Iris and Retina for Recognition. F

Retica’s iris optical system and associated software analysis too

the whole visible section of the eye. (b) An example of a retin

associated software analysis tools. A 10∘ field-of-view was ce
was taken to meet the iris image quality standards

[12] for resolution, contrast, and noise levels. The

resolution of the iris imaging system is 25 pixels per

mm. An example of an iris image recorded using

Retica’s imaging system is shown in Fig. 3(a).

The retinal optical system was simplified by using

a 10∘ field-of-view. This relatively narrow field

allowed image capture from a greater distance.

The retina camera was set at a horizontal angle of

15.5∘ and 1.5∘ below line of sight, (see Fig. 4). At

this angle its field-of-view was centered on the

optic disc region. This region was chosen, as it has

a high concentration of blood vessels. In addition,

the optic disc is close to the pivot point for eye

rotation. It is therefore the most stable part of the

retina in terms of transformations in the recorded

images as a result of eye movements. Illumination

is provided by a narrowband NIR LED reflected off

a beamsplitter. An aperture is imaged by a large lens

to a 2 mm spot just before the cornea uniformly

illuminating the optic disc region. The resolution

of the retina imaging system is 90 pixels per mm.

Optimal positioning is approximately 27 cm from

the front panel. Figure 3(b) shows an example of a

captured image of the retina. The optic disc can be

seen near the center of the image along with radiat-

ing blood vessels.

2. Human interface. A beam splitter placed in front of

the iris camera (Fig. 4) is used to create a targeting

system for the user consisting of a colored illumi-

nating ring surrounding a colored disk containing
igure 3 (a) An example of an iris image captured using

ls. The field-of-view comprises 26 by 20 mm encompassing

al image captured using Retica’s retinal optical system and

ntered approximately on the optic disc).

S
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crosshairs. When the subject is able to see the

disk centered within the ring, they are in correct

lateral alignment. The user is then asked to move

forward maintaining lateral alignment. In doing so

they move through the fixed focus of the iris system

and across the optical axis of the retina system.

Empirical evidence showed that lateral alignment

could be achieved easily even for inexperienced

users. However, there was a large range in the

expectation of the distance positioning that was

required. Visual and auditory cues are used to

guide the user as they move towards the device.

An optical rangefinder is used to set the color of

the targeting system’s colored disk to green when

the user is at approximately the correct distance.

In addition to this, images meeting predefined

quality thresholds (see the following section) trig-

ger an audible tone. The user is instructed to con-

tinue moving towards the device until the tone

stops, then to move slowly backwards again moving

through the region coinciding with the tone once

more. These steps are repeated until the acquisition

process is interrupted when recorded data have met

predefined thresholds for quality and quantity. The

user must move through the optimal alignment

position; they are not required to hold a fixed

position. Moderately experienced users could be

acquired in less than 1 second. Most inexperienced

users were acquired in less than 15 seconds. The

active cooperation of the user combined with an

intuitive alignment tool reduce the effect of eye

gaze in the acquired iris images.

3. Software analysis. Iris and retina acquisition

algorithms automate the acquisition process.
Image quality thresholds for iris and retina image

focus are defined along with measures of iris occlu-

sion and retinal blood vessel content. A video

rate assessment of image quality is then used to

select best iris and retina frames as the user passes

though optimal alignment. Acquired images are

passed on to proprietary iris and retina encoding

algorithms. Encoded templates are then matched

against existing databases.
Conclusion

The section introduced the concept of simultaneous

capture of iris and retina for biometric recognition.

Some of the challenges associated with iris and retina

biometric systems were discussed. A bimodal system

that demonstrated that the iris and retina can be ac-

quired simultaneously was outlined and represents a

unique contribution to the field of biometrics. Although

unimodal results are good, intraclass variations can

present problems for both biometrics. As discussed

earlier, anatomical, behavioral, and environmental fac-

tors can result in a range in image quality for both the

iris and retina. The level of success of a recognition

system can be largely defined by how well its encoding

and matching methods are able to manage these varia-

tions. For example, inexact iris localization because of

poor iris image quality or failures in blood vessel seg-

mentation because of poor retinal image quality ulti-

mately result in poor genuine match scores.

Commercially available iris recognition systems exhibit

nonzero error rates. Problems such as occlusion, motion

blur, specular reflections, and pose contribute to



Skin Classification S 1217
intraclass variations. It may be possible to enhance

performance by using a dual iris–retina system. The

topology of the retinal blood vessel pattern is completely

uncorrelated to the texture patterns on the iris. They

therefore represent complementary sources of informa-

tion. While it is true that they share some ubiquitous

failures, (e.g., someone with no eye has neither an iris

nor a retina) various obfuscatory factors affecting the iris

or the retina are either uncorrelated or anticorrelated.

For example, eyelid and eyelash occlusion has no rela-

tion to retinal blood vessel detail. Highly dilated pupils

that can cause problems for iris systems aid imaging of

the retina. Both traits represent strong biometrics po-

tentially facilitating a more balanced fusion than the

combination of a strong biometric with a weaker one.

Both biometric features are enclosed organs and cannot

be altered without endangering vision. However, there

is a risk of spoof iris attacks, and antispoofing measures

are being actively investigated. Adding a requirement

for retinal identification significantly increases the chal-

lenge of hoax enrollment. Next generation iris

acquisition systems aim to relax constraints imposed

on users in terms of capture volume, standoff distance,

and motion. While the system proposed by Retica

demonstrated straightforward retina acquisition at

27 cm, less-constrained retina acquisition presents a

significant challenge. Dual iris–retina capture systems

are therefore likely to be restricted to applications that

require the highest accuracy, for cooperative users,

with relatively constraining human interfaces.
S
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Skilled Forgery
In signature verification, skilled forgeries represent the

imitations that are intentionally performed, that is,

where the forger actively tries to imitate the signature

from another user.

▶ Signature Databases and Evaluation
Skin Classification
▶ Skin Detection
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Synonyms

Skin classification; Skin color detection
Definition

Skin detection is the process of finding skin-colored

pixels and regions in an image or a video. This process

is typically used as a preprocessing step to find regi-

ons that potentially have human faces and limbs in

images. Several computer vision approaches have been

developed for skin detection. A skin detector typically

transforms a given pixel into an appropriate color

space and then use a skin classifier to label the pixel

whether it is a skin or a nonskin pixel. A skin classifier

defines a decision boundary of the skin color class

in the color space based on a training database of

skin-colored pixels.
Introduction

Skin color and textures are important cues that people

use consciously or unconsciously to infer variety of

culture-related aspects about each other. Skin color

and texture can be an indication of race, health, age,

wealth, beauty, etc. [3]. However, such interpretations

vary across cultures and across the history. In images

and videos, skin color is an indication of the exis-

tence of humans in such media. Therefore, in the last

two decades extensive research has focused on skin
detection in images. Skin detection means detecting

image pixels and regions that contain skin-tone color.

Most of the research in this area has focused on detect-

ing skin pixels and regions based on their color. Very

few approaches attempt to also use texture informa-

tion to classify skin pixels.

As will be described shortly, detecting skin pixels is

rather a computationally easy task and can be done

very efficiently, a feature that encourages the use of

skin detection in many video analysis applications. For

example, in one of the early applications, detecting

skin-colored regions was used to identify nude pictures

on the internet for the sake of content filtering [6]. In

another early application, skin detection was used to

detect anchors in TV news videos for the sake of video

automatic annotation, archival, and retrieval [1]. In

such an application, it is typical that the face and the

hands of the anchor person are the largest skin-tone

colored region in a given frame since, typically, news

programs are shot in indoor controlled environments

with man-made background materials that hardly con-

tain skin-colored objects. In many similar applications,

where the background is controlled or unlikely to

contain skin-colored regions, detecting skin-colored

pixels can be a very efficient cue to find human faces

and hands in images. An example in the context of

biometrics is detecting faces for face recognition in an

controlled environment.

Detecting skin-colored pixels, although seems a

straightforward easy task, has proved quite challenging

for many reasons. The appearance of skin in an image

depends on the illumination conditions (illumination

geometry and color) where the image was captured.

Humans are very good at identifying object colors in a

wide range of illuminations, this is called ▶ color con-

stancy. Color constancy is a mystery of perception.

Therefore, an important challenge in skin detection is

to represent the color in a way that is invariant or at

least insensitive to changes in illumination. As will be

discussed shortly, the choice of the color space affects

greatly the performance of any skin detector and its

sensitivity to change in illumination conditions. An-

other challenge comes from the fact that many objects

in the real world might have skin-tone colors. For

example, wood, leather, skin-colored clothing, hair,

sand, etc. This causes any skin detector to have many

false detections in the background if the environment

is not controlled.
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A Framework for Skin Detection

Skin detection process has two phases: a training phase

and a detection phase. Training a skin detector involves

three basic steps:

1. Collecting a database of skin patches from different

images. Such a database typically contains skin-

colored patches from a variety of people under

different illumination conditions.

2. Choosing a suitable color space.

3. Learning the parameters of a skin classifier.

Given a trained skin detector, identifying skin

pixels in a given image or video frame involves:

1. Converting the image into the same color space

that was used in the training phase.

2. Classifying each pixel using the skin classifier as

either a skin or a nonskin.

3. Typically post processing is needed using morphol-

ogy to impose spatial homogeneity on the detected

regions.

In any given color space, skin color occupies a part

of such a space, which might be a compact or large

region in the space. Such region is usually called the

skin color cluster. A skin classifier is a one-class or two-

class classification problem. A given pixel is classified

and labeled whether it is skin or nonskin given a model

of the skin color cluster in a given color space. In the

context of skin classification, true positives are skin

pixels that the classifier correctly labels as skin. True

negatives are nonskin pixels that the classifier correctly

labels as nonskin. Any classifier makes errors: it can

wrongly label a nonskin pixel as skin or a skin pixel as a

nonskin. The former type of errors is referred to as

false positives (false detections) while the later is false

negatives. A good classifier should have low false posi-

tive and false negative rates. As in any classification

problem, there is a tradeoff between false positives and

false negatives. The more loose the class boundary,

the less the false negatives and the more the false

positives. The tighter the class boundary, the more

the false negatives and the less the false positives. The

same applies to skin detection. This makes the choice

of the color space extremely important in skin detec-

tion. The color needs to be represented in a color space

where the skin class is most compact in order to be able

to tightly model the skin class. The choice of the color
space directly affects the kind of classifier that should

be used.
Skin Detection and Color Spaces

As was highlighted by Forsyth and Fleck [6] the human

skin color has a restricted range of hues and is not

deeply saturated, since the appearance of skin is

formed by a combination of blood (red) and melanin

(brown, yellow). Therefore, the human skin color does

not fall randomly in a given color space, but clustered

at a small area in the color space. But it is not the same

for all the color spaces. A variety of color spaces has

been used in skin detection literature with the aim of

finding a color space where the skin color is invariant

to illumination conditions. The choice of the color

spaces affects the shape of the skin class, which affects

the detection process. Here, some color spaces, which

are typically used in skin detection, are briefly de-

scribed, and the way they affect the skin detection is

discussed. The goal of the discussion is to highlight

answers to the following questions: Given a skin patch,

where will it be located in a given color space? Given a

skin patch, what effect will changing the illumination

intensity have in its location in a given color space?

Given skin patches from different people from the

same race, how are all these patches related in a given

color space? Given skin patches from different people

races, how are all these patches related in a given color

space? Figures 1 and 2 help illustrate the answers for

these questions. Figure 1 shows density plots for skin-

colored pixels obtained from images of different Asian

people plotted in different color spaces. Figure 2 shows

density plots for skin-colored pixels from different

people from different races: Asian, African, and Cau-

casian plotted in different color spaces.

RGB Color Space and Skin Detection: RGB color

space is the most commonly used color space in digital

images. It encodes colors as an additive combination of

three primary colors: red (R), green (G), and blue (B).

RGB Color space is often visualized as a 3D cube where

R, G, and B are the three perpendicular axes. One main

advantage of the RGB space is its simplicity. However,

it is not perceptually uniform, which means distances

in the RGB space do not linearly correspond to human

perception. In addition, RGB color space does not

separate ▶ luminance and ▶ chrominance, and the R,
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G, and B components are highly correlated. The lumi-

nance of a given RGB pixel is a linear combination of

the R, G, and B values. Therefore, changing the lumi-

nance of a given skin patch affects all the R, G, and B

components. In other words, the location of a given

skin patch in the RGB color cube will change based on

the intensity of the illumination under which such

patch was imaged! This results in a very stretched

skin color cluster in the RGB color cube. This can be

noticed in the first row of Fig. 1 where skin patches

from images of Asian people taken at arbitrary random

illumination are plotted in the RGB space. The skin

color cluster is extended in the space to reflect the

different illumination intensities in the patches. Simi-

larly, the skin color clusters for patches from different

races will be located at different locations in the RGB

color space. This can be seen in the first row of Fig. 2.
Despite these fundamental limitations, RGB is exten-

sively used in skin detection literature because of its

simplicity. For example, RGB is used by Rehg and

Jones [8] and yields quite a satisfying performance.

TV Color Spaces and Skin Detection: A different

class of color spaces is the orthogonal one used in TV

tansmission. This includes YUV, YIQ, and YCbCr. YIQ

is used in NTSC TV broadcasting while YCbCr is used

in JPEG image compression and MPEG video com-

pression. One advantage of using these color spaces is

that most video media are already encoded using these

color spaces. Transforming from RGB into any of these

spaces is a straight forward linear transformation [5].

All these color spaces separate the illumination channel

(Y) from two orthogonal chrominance channels (UV,

IQ, CbCr). Therefore, unlike RGB, the location of the

skin color in the chrominance channels will not be
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affected by changing the intensity of the illumina-

tion. In the chrominance channels the skin color is

typically located as a compact cluster with an elliptical

shape. This can be seen in Figs.1d–f. This facilitates

building skin detectors that are invariant to illu-

mination intensity and that use simple classifiers. The

density of the skin color over the chrominance chan-

nels can be easily approximated using a multivariate
Gaussian distribution. Moreover, the skin colors of

different races almost colocate in the chrominance

channels. This can be seen in the second and third

rows of Fig. 2. Therefore, using such color spaces

results in skin detectors which are invariant to

human race. The simplicity of the transformation

and the invariant properties made such spaces widely

used in skin detection applications [1, 2, 9–11, 14].
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Perceptual Color Spaces and Skin Detection: Percep-

tual color spaces, such as HSI, HSV ∕HSB, and HSL

(HLS), have also been popular in skin detection. These

color spaces separate three components: the hue (H),

the saturation (S), and the brightness (I,Vor L). Essen-

tially, HSV-type color spaces are deformations of the

RGB color cube and they can be mapped from the

RGB space via a nonlinear transformation. One of

the advantages of these color spaces in skin detection

is that they allow users to intuitively specify the bound-

ary of the skin color class in terms of the hue and

saturation. As I, Vor L give the brightness information,

they are often dropped to reduce illumination depen-

dency of skin color. These spaces have been used

by Shin et al. [11] and Albiol et al. [2].

Colorimetric Color Spaces and Skin Detection:

Separating the chromaticity from the brightness is

also achieved in Colorimetric color spaces, such as

CIE-XYZ, CIE-xy, CIE-Lab defined by the Interna-

tional Commission on Illumination (Commission

Internationale d’Èclairage – CIE). CIE-XYZ color

space is one of the first mathematically defined color

spaces (defined in 1920s). It is based on extensive

measurements of human visual perception, and serves

as a foundation of many other colorimetric spaces.

CIE-XYZ can be achieved through a linear coordinate

transformation of the RGB color space. The Y compo-

nent corresponds to the lightness of the color (the

luminance). The chromaticity values (x, y) can be

achieved by central projection into the plane XþYþ
Z¼1 and then projecting into the XY plane. For details

see [5]. The result is the well-known horse-shaped

CIE-xy chromaticity diagram defining the hue and

saturation of any color. One of the disadvantages of

the XYZ and the xy color spaces is that the color

differences are not perceived equally in different

regions of the color space. In contrast, the CIE-Lab

separates a luminance variable L from two perceptually

uniform chromaticity variables (a, b). Fig.1h shows

the skin color density for Asian skin in the a,b chro-

maticity space. Figure 2 (last row) shows the skin

color density for different races in the a,b space. Despite

the many advantages of such color spaces, they are

rarely used in skin detection. This is mainly because the

transformation from RGB is more computationally

expensive than other spaces. CIE-XYZ color space

was used by Shin et al. [11] in comparison with other

color spaces. The chrominance xy plane was used by

Lee and Yoo [9].
Skin Classifiers

Avariety of classification techniques has been used in the

literature for the task of skin classification. A skin classi-

fier is a one-class classifier that defines a decision bound-

ary of the skin color class in a feature space. The feature

space in the context of skin detection is simply the color

space chosen. Any pixel which color falls inside the skin

color class boundary is labeled as skin. Therefore, the

choice of the skin classifier is directly induced by the

shape of the skin class in the color space chosen by a skin

detector. The more compact and regularly shaped the

skin color class, the more simple the classifier.

The simplest way to decide whether a pixel is

skin color or not is to explicitly define a boundary.

Brand and Mason [4] constructed a simple one-di-

mensional skin classifier: a pixel is labeled as a skin if

the ratio between its R and G channels is between a lower

and an upper bound. They also experimented with one-

dimensional threshold on IQ plane of YIQ space where

the ‘‘I’’ value is used for thresholding. Other methods

explicitly define the skin color class boundary in a two-

dimensional color space using elliptical boundarymodels

[9]. The parameters of the elliptical boundary can be

estimated from the skin database at the raining phase.

Baysian Approach for Skin Detection: Skin classifica-

tion can be defined probabilistically as: given a pixel with

color c what is the probability of it being skin pixel

P(skin jc). Once this probability is computed, the pixel

is labeled as a skin pixel if such probability is larger

than a threshold and nonskin otherwise. Obviously

such probabilities cannot be computed for every pos-

sible color (e.g., in 24 bit RGB, there are 2563 colors).

Fortunately, using Bayes rule, this can be rewritten as

PðskinjcÞ ¼ PðcjskinÞPðskinÞ
PðcjskinÞPðskinÞ þ PðcjnotskinÞPðnotskinÞ

Bayes rule defines the posterior probability of a pixel

being skin given its color (P(skin jc)) in terms of the

likelihood of observing such color given the skin class

(P(c jskin)) and the prior probability of the skin class

P(skin). The prior probability measures our guess about

a random pixel being a skin without observing its color.

The denominator in the Bayes rule is the total proba-

bility of observing the color c, a factor that does not

affect the decision whether a pixel ought to be labeled as

skin or nonskin. Given Bayes rule, the skin classi-

fication reduces to computing the likelihood term, i.e.,

P(c jskin). Given a database of skin-colored pixels, the
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probability density function (pdf) of P(c jskin) can be

estimated. Several approaches have been introduced

to compute this pdf including the use of histograms

[8], the use of a single Gaussian model, or a Mixture of

Gaussians model [12] to approximate such pdf.

The skin classifier can also be posed as a two-class

problem. From Bayes rule, this results in computing the

likelihood ratio of observing a given color given a skin

class versus a nonskin class, i.e., P(c jskin) ∕P(c jnotskin).
Such a ratio can then be thresholded to decide whether

a pixel is a skin or nonskin pixel. Besides modeling the

likelihood of an observed color given the skin class, the

complementary class needs to be models. That is,

modeling the probability density function of nonskin

pixels P(c jnotskin). Rehg and Jones [8] approximated

such pdfs using 3D histograms in the RGB space based

on a large database of skin and nonskin images.
S

Skin Detection Applications and
Examples

Human face localization and detection is the first step

in obtaining face biometrics. Skin color is a distin-

guishing feature of human faces. In a controlled back-

ground environment, skin detection can be sufficient

to locate faces in images. As color processing is much

faster than processing other facial features, it can be

used as a preliminary process for other face detection

techniques [10]. Skin detection has also been used to

locate body limbs, such as hands, as a part of hand

segmentation and tracking systems, e.g., [7].

Forsyth and Fleck [6] demonstrated that skin filter

can be used as part of the detection process of images

with naked or scantily dressed people. Their technique

has three steps. First, a skin filter, based on color and

texture, was used to select images with large areas of

skin-colored pixels. Then, the output is fed into a

geometric filter which identifies the skin-colored regions

with cylindrical shapes. Those skin-colored cylinders

are grouped into possible human limbs and connected

groups of limbs. Images containing sufficiently large

skin-colored groups of possible limbs are then reported

as containing naked people.

Zheng et al. [14] presented an adaptive skin detec-

tor for detecting naked pictures on the internet. Their

technique applies a face detector on the picture first to

find the skin color. They argued that as skin color highly

depends on illumination and the race of the person, it is
more appropriate to get the skin color from the face of

the person in the image. Using the skin color and the

property of the texture from the detected face region,

the rest of skin pixels in the image can be detected.
Skin Detection Performance

Regardless of the choice of the color space and the

classification method, most published research on

skin detection reports about 95% true detection while

the false detection rates varies from 15 to 30%.
Summary

Skin detection in color images and videos is a very

efficient way to locate skin-colored pixels, which might

indicate the existence of human faces and hands. How-

ever, many objects in the real world have skin-tone

colors, such as some kinds of leather, sand, wood, fur,

etc., which might be mistakenly detected by a skin

detector. Therefore, skin detection can be very useful

in finding human faces and hands in controlled envir-

onments where the background is guaranteed not to

contain skin-tone colors. Since skin detection depends

on locating skin-colored pixels, its use is limited to color

images, i.e., it is not useful with gray-scale, infrared, or

other types of image modalities that do not contain

color information. There has been extensive research

on finding human faces in images and videos using

other cues such as finding local facial features or finding

holistic facial templates [13]. Skin detection can also be

used as an efficient preprocessing filter to find poten-

tial skin regions in color images prior to applying more

computationally expensive face or hand detectors.
Related Entries

▶ Face Localization

▶ Face Recognition, Overview

▶Hand Recognition
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Synonyms

Spectral analysis of skin
Definition

Skin spectroscopy is the study of interaction between

radiation and human skin, as a function of wavelength.

Human skin has a complicated multilayered structure

and each layer is composed of different chemical sub-

stance. The determination of the interaction can be

made by measuring the reflectance property of skin.
Introduction

The interaction between electromagnetic radiation and

matter at various wavelengths can be used to reveal the

structure of matter. The study of this interaction is

named as spectroscopy. Since the composition of the

object has different response under different radiation,

when the surface of an object is illuminated by the

radiation with different wavelength, the reflectance

will vary as well.

The study of skin spectroscopy originated in the

field of photobiology, which has tens of years history.

From the reflectance of skin under the radiation of

some wavelength, clinicians can obtain the composi-

tion of skin and observe the changes in skin or blood.

In [1], Anderson et al. established an effective optical

model for each layer of human skin by Kulberka-Munk

approach. The work developed a quantitative, general

model for the radiation transfer in the human skin.

Based on this model, the optical parameters of each

skin layer can be acquired.

Skin is a good basis for establishing the biometric

identity, because everyone has unique skin properties

in terms of color, appearance, texture, and inner struc-

ture. Skin spectroscopy provides an efficient way to

http://citeseer.ist.psu.edu/jones99statistical.html
http://citeseer.ist.psu.edu/jones99statistical.html
http://dx.doi.org/10.1109/34.1000242
http://dx.doi.org/10.1109/34.1000242
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describe these properties of skin under the radiation of

different wavelengths. Measurements of skin optics

under radiations of multiple wavelengths can provide

more information than using a single wavelength,

which can enhance the performance of biometric

system. In addition to the traditional visible light im-

aging, near-infrared and thermal-infrared imaging

have been applied in the biometric system.
Spectral Bands

Skin spectroscopy is focused on the interaction be-

tween electromagnetic wave and human skin. From

long to short wavelength, electromagnetic wave can

be divided into several categories: radio wave, infrared

(IR), visible light (VIS), ultraviolet (UV), x-ray,and

gamma ray. Radio wave is usually passed around the

human body with no interaction with the human skin,

due to its long wavelength and low energy. X-ray and

gamma ray can easily penetrate human skin to damage

cells in tissue. Although ultraviolet is widely used in

photo-medicine for disease diagnosis, high-intensity

ultraviolet can cause skin suntan, burn, or even skin

cancer. For noninvasive biometric applications, VIS

and IR are two main bands that have been used practi-

cally. The spectrum of visible light is usually divided

into three channels: red, green, and blue. The infrared

portion of electromagnetic wave can be divided into

four spectral regions: near infrared (NIR), short-wave

infrared, thermal infrared (TIR), and far infrared

(FIR). Fig. 1 illustrates UV, VIS, and IR bands in

different wavelength.
S

Human Skin Structure

Skin is the largest organ of the human body, which

covers the whole body and protects the internal tissue

from outside damage. From one’s skin, we can access

his mood, health condition, and attractiveness. Human
Skin Spectroscopy. Figure 1 The electromagnetic wave radi
skin has a complex, multilayered structure and chemi-

cal composition. Generally, from outside to inside,

human skin is composed of the following layers:

� The epidermis, which is the exterior layer of skin. It

does not contain blood vessels. The main type of

cells in the epidermis are keratinocytes, melano-

cytes, Langerhans cells, and Merkels cells. Among

these cells, melanocytes are the most important

cells for skin spectroscopy, because they can syn-

thesize melanin.

� The dermis, which is the layer of skin beneath the

epidermis. It contains hair follicles, sweat glands,

sebaceous glands, apocrine glands, lymphatic ves-

sels, blood vessels, and nerve endings. The blood

vessels provide nutrition for the epidermis and the

dermis. Nerve endings can provide the sense of

touch and heat.

� The subcutaneous tissue, which has no evident

boundary with the dermis, can isolate body from

heat and store energy. The main constituent of

subcutaneous tissue is adipose.
Human Skin Optics

The radiation first interacts with the surface of the

skin and then penetrates inside, but it usually cannot

reach the subcutaneous tissue. Thus, the skin sur-

face, the epidermis, and the dermis are three main

aspects that been studied in skin spectroscopy. In the

following sections, the optical properties of interface

between air and the stratum corneum, the epidermis,

and the dermis will be described. The optics of skin

is dependent on the wavelength and the dose of

the incident light. Due to the high energy, x-ray

and gamma ray can cause chemical reactions with

the cells of the skin and the body, which is called

‘‘radiolysis’’. Here, only the spectrum from 0.25 to

3 mm (including UV, VIS and IR) is discussed,

because the other spectra do not have much signifi-

cance for biometrics.
ation spectrum bands.
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A typical process of interaction between radiation

and the skin is illustrated in Fig. 2. Under the incident

radiation, a small fraction of radiation is reflected by

the interface between air and the stratum corneum.

Generally, the reflectance is always between 4% and

7% over the entire spectrum from 0.25 to 3 mm, for all

kinds of skin (white, black, etc.). Since the surface of the

stratum corneum is not flat and smooth, the reflectance

from skin is not specular except those reflected by oil.

The remaining 93–96% of the incident radiation pene-

trates into the skin and will be absorbed or scattered.

In the UV band, there are many cells and chemical

constituents in the epidermis, affecting the transmit-

tance and the remittance of the radiation. For example,

aromatic amino acids tryptophan and tyrosine are

with a minimum transmittance near 0.275 mm; nucleic

acids are with an absorption maximum near 0.26mm;

and numerous small aromatic molecules are with an

absorption maximum at 0.277 mm, and so on. The

content and distribution of melanin play an important

role in determining the optical properties of epidermis.

In the VIS band, melanin is the only pigment

affecting the transmittance of epidermis. Shorter wave-

lengths, such as blue light, are highly absorbed by

certain tissue components such as melanin and blood

compared with longer wavelengths. In addition, the

optical scattering increases as the wavelength gets

shorter in this spectral range. For these reasons, longer
Skin Spectroscopy. Figure 2 The general model of interactio
wavelengths (red) penetrate the tissue deeper than

shorter wavelengths. This phenomenon is illustrated

in Fig. 3, in which the R channel is shown to be the

smoothest channel and B channel contains most details.

The skin color (VIS spectrum) is affected by

the type and quantity of melanin in the epidermis.

This results in various skin colors from white to

brown and black, although the structure of human

skin is similar across different races. The absorption

of melanin decreases monotonously from the short

wavelength of 0.25 mm in the UV band (through the

VIS band wavelength) to the long wavelength of 1.1

mm in the NIR band. Beyond 1.1mm, the absorption of

melanin is negligible and both the transmittance and

remittance of skin are uncorrelated with melanin. TIR

of wavelength between 2.4 and 15 mm is often used

passively to determine the temperature of skin.

The dermis has a significantly different structure

and composition with epidermis, which causes their

different optical properties. Maybe, because the dermis

is deeper than epidermis, fewer studies have concen-

trated on dermal optics. In the dermis, scattering holds

the dominant position. Many observations show that

the transmittance and remittance are close to 100%

across the spectrum from 0.3 to 2.4 mm, indicating

that very little radiation is absorbed there. Light of

longer wavelengths can penetrate the dermis deeper

than shorter wavelengths.
n between radiation and skin.
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S

Biometrics Applications

From the foregoing discussion, we can find out two

important properties of skin spectroscopy: uniqueness

and diversity, which make the skin spectroscopy be-

come a valuable tool for the biometric technology. The

uniqueness is that everyone has his unique spectro-

scopic properties of skin, which provides a discrimina-

tive feature for the biometric systems. The diversity is

that the properties of different skin parts are diverse

under the radiation of different wavelengths, which

provides abundant features to describe skin.

Due to the nutritious texture information, face,

fingerprint, and palmprint are the three main parts of

skin used in biometric systems, which are called ‘‘mo-

dality’’ in biometrics. In addition, their physical for-

mation is stable and all of them can be easily imaged by

the optical sensors with different wavelengths. Then,

the application of skin spectroscopy in the biometric

systems is introduced in the following section.

In terms of the spectrum of radiation, VIS, NIR, and

TIR are the three common bands used widely in face

recognition. Fig. 4 shows VIS, NIR, and TIR

(thermogram) face images. Apparently, TIR face image

contains less texture information than VIS and NIR

images. The most conventional face recognition is based

on face images captured by common VIS camera. More

recently, techniques based on NIR [2, 3] and TIR [4, 5]
images are introduced to overcome problems arising

from changes in ambient illumination. Notably, facial

thermogram is not based on skin spectroscopy, which

shows the active TIR radiation of live human skin.

In fingerprint recognition, there are three common

data acquiring devices: optical, ultrasonic, and capaci-

tance. The first one belongs to spectroscopy-based

methods. Optical imaging devices usually capture a

digital image of fingerprint, using VIS light. One dis-

advantage of this type of sensor is that the imaging

capacity is affected by the skin quality of the finger.

Novel sensing techniques such as multispectral imag-

ing [7, 8] have been developed to overcome this prob-

lem. The principle of the ultrasonic device is very

similar to that of skin spectroscopy-based methods

while just using ultrasonic instead of electromagnetic

wave. Ultrasonic sensors use very high-frequency

sound waves to penetrate the epidermal layer of the

skin. Since the dermal skin layer exhibits the same

characteristic pattern of the fingerprint, the reflected

wave measurements can be used to form an image of

the fingerprint. This eliminates the need for clean,

undamaged epidermal skin and a clean sensing surface.

For palmprint biometric, a large region of palm

supplies plenty of line patterns that can be easily cap-

tured by a low-resolution imaging device. Palmprint

images are often captured by an active VIS lighting

imaging device in a semiclosed environment [9].
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Skin Spectroscopy. Figure 5 A NIR iris image.
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Strictly, the iris is not the skin, but it has a rich texture

like skin that can be used to distinguish different people.

Its complex patterns contain many distinctive features.

NIR wavelengths can penetrate the iris as deep as they

penetrate the skin. Hence, NIR is used for clear and

unobtrusive imaging at a distance of up to 1m further.

Moreover, under active NIR light, even darkly pigmented

irises reveal rich features. Fig. 5 is a NIR iris image that

presents complex iris texture pattern.

Moreover, compared with these single-modal sys-

tems described earlier, hybrid biometric systems can

achieve better performance by fusing some modalities

or spectrum, for example, face+fingerprint [10],

face+iris [11], face+palmprint [12], multispectral

NIR face [2] etc.
Summary

From the perspective of skin spectroscopy, the human

skin has its reflectance and absorption character-

istics as a function of wavelength of illumination.

Since the composition of skin across people have

significant difference, skin spectroscopy has been

widely used in biometrics, in which many parts of

skin with nutritious texture (face, fingerprint, palm-

print, and other modalities) are often chosen as

objects of study. For every modality, one or many

appropriate bands can be chosen according to the

skin spectroscopy. By fusing some modalities or spec-

trum, lots of hybrid biometrics have been generated.

Generally, compared with single biometric, multi-

spectral or multimodal features of skin can lead to

more effective biometric systems. More applications

of skin spectroscopy to biometric technologies can

be foreseen.
Related Entries

▶ Face Recognition

▶ Fingerprint Recognition

▶Multibiometrics

▶Multi-Spectral Biometrics

▶Near Infrared

▶Near Infrared Face Recognition

▶Palmprint Recognition
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Synonyms

Skin Print
Definition

Generaltly, skin texture is the surface texture pattern of

any part of human body with bare skin (e.g., face,

hand, and palm). In the context of biometrics, this

term commonly refers to the technologies and meth-

ods of face recognition using highly detailed facial skin

texture in high-resolution images.
Introduction

Since the success of local features in face recognition in

late 1990s, researchers have been seeking for more de-

tailed representations of human faces. Skin texture con-

tains plentiful detailed local information, and therefore

starts to attract research attention [1]. A person’s skin

texture pattern is, to some extent, a unique physical

trait and is distinguishable from those of others, and

thus can be used for biometric identification.

The primary difference between conventional face

recognition methods and skin texture methods is

the resolution of facial images used. Typically, in con-

ventional face recognition methods, the faces are scaled

to 30–60 or so pixels between the centers of eyes. For

skin texture methods, the inter-eye distance should be

at least 90 pixels to obtain reasonable performance.

With much higher ▶ image resolution, more sophisti-

cated face recognition algorithms could possibly be

proposed to yield better recognition accuracy.

However, with the increased facial image resolu-

tion, higher quality image capture devices, and more

computing resources are needed for acquiring and

processing the facial images, both expensive. In the

1990s, those were the main obstacles in the applica-

tions and developments of skin texture methods. Since

2000, high quality digital cameras and webcams are

becoming more affordable, and the processing speed of

personal computers is ten times faster than it was a

decade ago with much lower price. Those have cata-

lyzed the advance of skin texture technology.
Skin Texture Based Methods

The first work to create the skin texture face recogni-

tion algorithms was pioneered by Delean Vision

around 2001 [2]. The Delean method uses a probabi-

listic image analysis method for skin texture matching.

http://www.terravic.com/research/index.htm
http://www.terravic.com/research/index.htm
http://www.lumidigm.com
http://www.lumidigm.com
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This method first defines the average luminance of

each pixel as the average gray scale value of its sur-

rounding pixels. Then the facial images are converted

into binary images by comparing a pixel’s gray scale

value to its average luminance, with one or zero value

assigned by such pixel’s average luminance which is

above its gray value by a given margin, as illustrated by

the two feature maps in Fig. 1.

The skin area is then (usually below the eyes

and above the mouth)is divided into several neighbor-

ing small blocks. For each block in the test image

the algorithm searches, in a local region of its cor-

responding block in the reference image, for the best

matching position. Figure 2 shows the matching results

of identical twins, Ming and Gang, using Delean’s

Method. The upper row is one image of Ming and

two images of Gang. The lower row gives the pairwise

matching results and the corresponding similarity

scores. We use different colors to mark the continuous

regions after searching process. Same color indicates

that the neighbhoring blocks relative position change

is below a given threshold and they are considered as

continuous. More continuous block pairs implies that

the two images are likely to belong to a same person.

The probability can be formulated as a function of the

number of continuous block pairs. The underlying

assumption behind this method is: With two images

of a same person, the best matching positions of the
Skin Texture. Figure 1 Left: the blocks in a gallery skin textur

texture image.
neighboring blocks in the reference image tend to keep

the relative position of the blocks in the test image.

Otherwise, with two images of different persons, the

relative position will not be kept. Finally the method

takes advantage of the continuity of block pairs and the

relative location of neighboring blocks to compute the

similarity score (Fig. 1).

The method is usually used as a complementary

to the other face matching algorithms rather than on

its own. Indentix reported that the incorporation of

the skin texture method into a local feature analysis

(LFA) matcher [3] could increase its accuracy by

20–25%. It was also reported [4] that this method

could differentiate between identical twins.

The Neven Vision method [5] uses Elastic Bunch

Graph [6] to represent faces and is capable of placing

this graph with high precision on a face in a presented

image. Based on the found facial landmarks, cor-

responding to facial landmarks like eye corner or the

tip of the nose, it first accurately locates the areas

in the face that are used for skin texture analysis. The

skin areas are then warped and normalized before

matching. In the matching step, for each selected skin

patch, the feature vector is matched individually to the

face region of reference image and the most similar

skin patch is identified. The result is a more or less

distorted version of the graph in the original image.

From the similarity and distortion between the original
e image. Right: the best matching positions in a probe skin
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graph and the matched graph, a similarity score is

computed incorporating local geometric constraints

[5]. Having achieved an impressive performance in

FRVT2006 [7], Neven Vision also claims that their

skin texture analysis is about 1,000 times faster than

the Delean/Identix algorithm. This method works on

very high resolution images with inter-pupil distance

of at least about 600 pixels. When this condition is

fulfilled, it can achieve better recognition accuracy

than iris-based method and can even outperform

human performance [7].
S

Pros and Cons

Skin texture based methods have the following

advantages:

� The facial skin has a fine texture that is determined

randomly during embryonic gestation. Even iden-

tical monozygotic twins have completely indepen-

dent skin textures.

� The acquisition of skin texture is similar to captur-

ing a photograph, and can be performed from

several meters away. There is no need for the person

to be identified to touch any equipment that has

recently been touched by a stranger, thereby elim-

inating an objection that has been raised in some

cultures against finger-print scanners, where a
finger has to touch a surface, or retinal scanning,

where the eye can be brought very close to a lens.

� Skin texture contains plentiful local detailed infor-

mation and can achieve a very high recognition

accuracy.

However, they have the following disadvantages:

� High resolution is of vital importance for skin

texture based methods. The performance will dra-

matically drop with blurred images because the

image resolution is reduced.

� Skin texture may not be the same with aging, exag-

gerative expression, pose variation, and illumina-

tion changes.

� In surveillance environment, it is difficult to cap-

tain high resolution face images at a far distance if

the person to be identified is not cooperative by

holding the head still and looking at the camera.

This may narrow possible applications of skin

texture methods.
Summary

As a new method for biometrics, skin texture has

demonstrated its effectiveness in identifying indivi-

duals in high resolution images. The increased demand

for accurate, reliable, fast, and convenient biometric
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technologies, and availability of inexpensive comput-

ing resources and cameras will all benefit to the rapid

technical advances in this direction. Although there

are several unsolved problems and disadvantages as

aforementioned, the skin texture method is surely

of significance from both application and research

perspectives.
Related Entries

▶ Face Recognition

▶ Local Image Features

▶ Skin Spectroscopy
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Synonyms

Craniofacial reconstruction; Skull-photo superimposi-

tion; Craniofacial superimposition
Definition

Forensic evidence of skull is the technique of obtaining

the identity of a person based on attributes associated

with an individual skull. Generally, the methods of

determining the identity of a given skull can be classi-

fied into two categories: craniofacial reconstruction,

which reconstructs the facial appearance from a given

skull based on the assumed relationship between the

soft tissue envelope and the underlying skull substrate

[1, 2] and skull-photo superimposition or craniofacial

superimposition, which superimposes the skull and

face photo in a certain way to verify whether they are

from the same person, by comparing their feature

points [3].
Introduction

In forensic pathology, it is essential to determine

the identity of the dead. However, in many instances,

due to the storage environment and discovery time

of the corpse, the soft tissue becomes highly

decomposed, and forensics cannot determine the ap-

pearance of the dead directly. As a result, attempts

have been made to reconstruct the appearance from

the remaining skeletons, especially the skull. Research

has revealed that there are certain relationships be-

tween the facial soft tissue and the skull, and the skull

has evident influence on the shape, location and struc-

ture of the facial soft tissue. Thus, the facial appearance

is related to the skull to a certain extent, and it ensures

the fidelity of the forensic evidence of skull [4, 5].

To determine the identity of a skull, an option is

to reconstruct the 3D facial appearance explicitly or

implicitly. The former is known as craniofacial recon-

struction, which reconstructs the 3D facial appearance

based on the given skull. Face is the most expressive

part of the human being. Reconstructing a realistic

3D facial appearance is a challenging task. The latter

method referred to as skull-photo superimposition

does not reconstruct the 3D facial appearance explicit-

ly. Instead, it superimposes the skull and photo at the

same imaging condition to check whether the given

skull and photo are of the same person, by matching

their feature points. As in the case of fingerprint

and tooth-based inspection, skull-photo superimposi-

tion-based inspection can also verify the identity, and

is an important method in ▶ forensic anthropology.
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In cases where the body is dismembered, skull-photo

superimposition becomes even more important and

unique in identity verifications. DNA can be of value

in these cases and even when only the bones remain.
S

Craniofacial Reconstruction

Traditionally, craniofacial reconstruction methods can

be classified into 2D reconstruction and 3D recon-

struction. In 2D reconstruction, the hand drawn

portrait of the dead is viewed by experienced anthro-

pologists, artists or forensics based on the skull. 3D

reconstruction methods normally set some marker

points with height on the skull model, and use clay as

a replacement of soft tissue, to shape the facial appear-

ance based on the skull according to anatomical

knowledge. However, these traditional reconstruction

methods have several limitations:

1. The whole process is very time-consuming, it

takes almost a month to reconstruct a person’s

appearance.

2. The result relies heavily on the expertise and expe-

rience of the reconstructors, the accuracy and reli-

ability of the reconstruction is affected by many

human factors.

3. The soft tissue and shape of the human face is

different for each human race and living environ-

ment, it is favorable to generate several recon-

structed facial appearances simultaneously when

the race of a given skull is not known. Using tradi-

tional reconstruction methods, however, only one

appearance for one race can be obtained.

4. It is difficult to edit or modify the reconstructed

facial appearance once it is complete.

In the past decades, however, imaging technologies

like ▶CT and MRI have been applied to convert the

skull into digital data so that it can be stored and

processed easily, leading to computer-aided craniofa-

cial reconstruction. In a typical computer-aided cra-

niofacial reconstruction system, the relationship

between the skull and soft tissue is not determined by

the expertise and experience of the reconstructors.

Instead, the relationship is learnt from the training

data, which are reference pairs of captured skull data

and soft tissue data. The knowledge of obtaining facial

detail from the skull and the distribution law of the soft

issues are obtained through feature point pairs on the
skull and face appearance. This guides the creation of

an individual skull. Traditionally, several methods are

available to obtain the training samples of reference

skull data and soft tissue data, for example, using

▶ acupuncture on the dead body to measure the thick-

ness of the soft tissue. Following advances in imaging

technologies, CT technologies may be used to collect

training data for craniofacial reconstruction more ac-

curately and efficiently. A pre-processing step, typically

consisting of filtering and geometric transforma-

tion, is performed to eliminate the noise in each

2D CT slide and align the slides correctly [6, 7].

Sometimes, to facilitate 3D reconstruction of skull

and face, edge detection and edge tracking is per-

formed on the 2D CT slides to extract the contour

curves in each slide [8–10]. After pre-processing, 3D

reconstruction of the skull and face can be undertaken

to generate the training samples for the craniofacial

reconstruction system. In some systems, an explicit

model describing the relationship between the skull

and soft tissue is built from the training samples.

Along with the development of statistical learning

theory, some systems instead reconstruct 3D facial

appearance directly from a given skull by using statis-

tical learning methods, without developing an explicit

model describing the knowledge of these training

samples. However, though craniofacial reconstruction

can be used as an auxiliary method to aid detectives

in their work, its result cannot be used as legal evi-

dence in a court of law.

Craniofacial reconstruction can also be used in

▶ palaeoanthropology, for example, to reconstruct

the facial appearance of famous ancient people accord-

ing to their skull, in order to see how these people

looked and compare it with their portraits. Further,

Craniofacial reconstruction can be used in facial sur-

gery to help simulate the process and effect of the

surgery, providing a more detailed and accurate sur-

gery plan, and reducing the risk of operation.
Skull-photo Superimposition

Skull-photo superimposition was first developed to

verify the fidelity of portraits of ancient notables. In

the 1980s doubts were raised about the authenticity of

many of the portraits as it was believed that the pain-

ters wanted to please these notables. To verify this

conjecture, anatomists compared the skulls and
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portraits of notables. However, the earliest attempts to

use the skull for identity verification in literature were

made at the end of the 19th century by Schau Ffhausen,

Von Froliep and other scientists. In 1935 Brash

recorded the first successive use of craniofacial super-

imposition as forensic evidence in the Ruxton case.

Since then, along with the development of photo-

graphic and video technologies, many improvements

and upgrades have been made by researchers. In the

last 20 years, researchers have extended craniofacial

superimposition from photographic superimposition

to video superimposition, which has proven to be a

successful craniofacial identification.

A typical skull-photo superimposition operation

can be separated into the following stages: First, the

skull data is obtained through a 3D scanner or recon-

structed from CT scans. After collecting the 3D skull

data, the difference between locations, sizes and orien-

tations of the skull and photo need to be minimized

for the superimposition task. As the photo is difficult

to manipulate in three-dimension, the skull is nor-

mally edited or adjusted in three-dimension to be

aligned with the photo. Moreover, the facial photo

may need to exposed to several pre-processing steps

such image enhancement, scaling, and rotation [6, 7].

Next, facial features including head contour curves

are extracted from the facial photo [8–10]. In the

next stage marker points are selected, the traditional

method of manual selection relies on the expertise

of operators, and the result tends to be erroneous.

On the other hand, despite the recent advances in

computer vision, a fully automatic method of marker

points selection is not realistic at the current stage.

In practice, a hybrid system of combining manually

labeling and computer verification yields a reason-

able result. Finally, skull-photo registration techniques

and standardized verification process are performed

to verify the identity [11–14]. Unlike craniofacial

reconstruction, skull-photo superimposition opera-

tions, if performed well, can be used as legal evidence

in court.
Related Entries

▶Biometrics, Overview

▶ Forensic DNA Evidence

▶ Identification

▶Verification
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▶ Skull, Forensic Evidence of
Slap Or Four-Four-Two device
It refers to a device used to capture the ten fingerprints

of a person using the following capture sequence:
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simultaneous capture of the four fingers (index, mid-

dle, ring, and little finger) of one hand, simultaneous

capture of the four fingers of the other hand, and

simultaneous capture of the two thumbs. A segmenta-

tion algorithm is needed to detect and separate the

finger in ten single images.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Smart Cameras
Smart cameras are cameras that along with the sensor

have additional processing elements (micro-control-

lers, DSP) for processing data on-site. The results of

the processing are then transmitted to other nodes in

the network. Smart cameras form an important part of

the distributed computing idea, as only the relevant

information from each camera is transmitted to other

cameras/central processing agency. This alleviates the

burden on other nodes to replicate the processing as

well as the need for superior computing resources at a

central node.

▶ Surveillance
Smart Card

S

A smart card is a small plastic card with an embedded

microchip that can store and/or process information.

It can receive and submit data to or from any system

equipped with an appropriate card-reader module. In

commercial hand-geometry devices, for example,

smart cards are often used as storage media for user-

templates and as such eliminate the need for storing

templates in the internal memory of the device. Its

synonyms include integrated circuit card (ICC) and

chip card.

▶Hand-Geometry Device

▶Tamper-proof Operating System
Soft Biometrics
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Synonyms

‘‘Light’’ biometrics
Definition

Any anatomical or behavioral characteristic that pro-

vides some information about the identity of a person,

but does not provide sufficient evidence to precisely

determine the identity can be referred to as a soft

biometric trait. Personal attributes like gender, ethnicity,

age, height, weight, eye color, scars, marks, tatoos, and

voice accent are examples of soft biometric traits. Soft

biometric information complements the identity infor-

mation provided by traditional (primary) biometric

identifiers such as fingerprint, face, iris, and voice.

Hence, utilizing soft biometric traits can improve the

recognition accuracy of primary biometric systems.
Introduction

Systems that consolidate evidence frommultiple sources

of biometric information (e.g., face, fingerprint, hand

geometry, iris, etc.) in order to reliably determine the

identity of an individual are known as multibiometric

systems [1]. Multibiometric systems can alleviate many

of the limitations of unibiometric systems such as

nonuniversality and lack of distinctiveness, thereby

reducing the error rates significantly. However, using

multiple biometric traits will increase the enrollment

and verification times, cause more inconvenience to

the users, and increase the overall cost of the system.

An alternate way for reducing the error rates of the

biometric system without causing any additional in-

convenience to the user is to incorporate soft identi-

fiers of human identity like gender, ethnicity, height,

eye color, etc. into a (primary) biometric recognition

system [2]. Figure 1 depicts a scenario where both

primary (face) and soft (gender, ethnicity, height, and
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biometric identifier (face) and the soft biometric attributes

(gender, ethnicity, eye color and height) are automatically

extracted and utilized to verify a person’s identity.

1236S Soft Biometrics
eye color) biometric information can be automati-

cally extracted and utilized to verify an user’s identity.

In this scenario, the height of the user can be estimated

as he approaches the camera and his age, gender,

ethnicity, and eye color can be estimated from his

face image. These additional attributes can be used

along with the face biometric to accurately identify

the person.
Motivation for Utilizing Soft Biometric
Traits

The usefulness of soft biometric traits in improving

the performance of the primary biometric system

can be illustrated by the following example. Consider

three users A (1.8 m tall, male), B (1.7 m tall, female),

and C (1.6 m tall, male) who are enrolled in a finger-

print biometric system that works in the identifica-

tion mode. Suppose user A presents his fingerprint

sample X to the system, it is compared to the templates

of all the three users stored in the database and the

posteriori matching probabilities of all the three users

given the sample X are calculated. Assume that the

outputs of the fingerprint matcher are P(A jX) ¼ 0.

42, P(B jX) ¼ 0.43, and P(C jX) ¼ 0.15. In this case,

user A will be falsely identified as user B based

on the Bayesian decision rule. However, assume that

as the user approaches the fingerprint sensor, there

exists a secondary system that automatically identi-

fies the gender of the user as male and measures the

user’s height as 1.78 m. This information, in addition

to the posteriori matching probabilities given by the
fingerprint matcher, is likely to lead to a correct iden-

tification of the user as user A.

The first biometric system developed by Alphonse

Bertillon in 1883 used anthropometric features such as

the length and breadth of the head and the ear, length of

the middle finger and foot, height, etc. along with attri-

butes like eye color, scars, and tatoo marks for ascertain-

ing a person’s identity. These measurements were

obtained manually by Bertillon. Although each individ-

ual measurement in the Bertillonage systemmay exhibit

some (intra-user) variability, a combination of several

quantized (or binned) measurements was sufficient to

manually identify a person with reasonable accuracy.

The Bertillon systemwas dropped in favor of theHenry’s

system of fingerprint identification over 100 years back

due to three main reasons: (1) lack of persistence – the

anthropometric features (e.g., height) can vary signifi-

cantly for juveniles; (2) lack of distinctiveness – features

such as skin color or eye color cannot be used for distin-

guishing between individuals coming from a similar

ethnic background; and (3) the huge time, effort, and

training required to get reliable measurements.

While the anthropometric features used in the

Bertillon system provide some information about the

identity of the user, they are not sufficient for accurately

identifying the user. Hence, these attributes can be

referred to as ‘‘soft biometric traits’’. Figure 2 shows

some examples of soft biometric traits. Since the soft

biometric information complements the identity infor-

mation provided by traditional (primary) biometric

identifiers such as fingerprint, face, iris, and voice, utiliz-

ing soft biometric traits can improve the recognition

accuracy of primary biometric systems. Many practical

biometric systems collect soft biometric information

about the users during enrollment. For example, the

fingerprint card used by the Federal Bureau of Investiga-

tion (FBI) includes information on the gender, ethnicity,

height, weight, eye color, and hair color of the person

along with the prints of all ten fingers. However, the

searches in the FBI Automated Fingerprint Identification

System (AFIS) are solely based on fingerprints and the

potentially useful soft biometric information is either

ignored during the search or used only for manual

verification after a short list of potential fingerprint

matches is identified. If the soft biometric characteristics

can be automatically extracted and/or utilized during the

automated matching process, the overall accuracy of the

system will improve and the need for manual interven-

tion will be reduced.
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biometric traits.
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Challenges in Using Soft Biometrics

Two key challenges need to be addressed to incorporate

the soft biometric information into the traditional

biometric framework. The first challenge is the auto-

matic and reliable extraction of soft biometric informa-

tion in a nonintrusive manner, without causing any

inconvenience to the users. It must be noted that the

failure of Bertillon-like systems was caused by the

unreliability and inconvenience in the manual extrac-

tion of these features. Once the soft biometric infor-

mation about a user is available, the challenge is to

optimally combine this information with the ▶ primary

biometric identifier so that the overall recognition ac-

curacy is enhanced. While soft biometric traits can be

used for ▶ filtering a large database or for tuning the

parameters of a biometric system, such applications

require a highly accurate soft biometric feature extrac-

tion module. Since it is very difficult to extract soft

biometric features with 100% accuracy, the information

fusion system needs to be designed in such a way that
the overall recognition accuracy is enhanced even when

the soft biometric feature extraction is not perfect.
Automatic Soft Biometric Feature
Extraction

Soft biometric traits are available and can be extracted in

a number of biometric applications. For example, attri-

butes like gender, ethnicity, age, and eye color can be

extracted with sufficient reliability from the face images.

Automatic recognition of gender has been extensively

studied and a majority of the gender recognition sys-

tems proposed in the literature are based on frontal face

images. Furthermore, most of the these systems follow

an appearance-based approach to gender recognition

(see [3, 4] and the references therein). The face images

are typically cropped to include only the forehead, eyes,

nose, and mouth regions, and normalized for pose and

illumination changes. A pattern classifier is directly

trained using the normalized face images to learn the

decision boundary between the male and female classes.

The accuracy of face-based gender recognition systems

is typically around 90% when presented with good

quality frontal face images. Some of the techniques

used for gender recognition can also be applied to

classify people based on their ethnicity [3, 5].

Automatic age determination is a more difficult

problem than gender classification. Kwon and Lobo

[6] presented an algorithm for age classification

from facial images based on cranio-facial changes in

feature-position ratios and skin wrinkle analysis. More

recently, Lanitis et al. [7] performed a quantitative

evaluation of the performance of various classifiers

developed for the task of automatic age estimation

from face images. All the classifiers used eigenfaces

obtained using ▶ principal component analysis

(PCA) as the input features. Quadratic models, short-

est distance classifier, neural network classifiers, and

hierarchical classifier were used for estimating the age.

The best age estimation algorithm had an average

absolute error of 3.82 years, which was comparable to

the error made by humans (3.64 years) in performing

the same task. Geng et al. [8] proposed an iterative

learning algorithm known as AGES for age estimation

from PCA features. The AGES algorithm achieved a

mean absolute error of 6.77 years in estimating the age

on a database with 1,002 face images obtained from

82 subjects.
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Gender, speech accent, and perceptual age of the

speaker can also be inferred from the speech signal.

The weight of an user can be measured by asking him

to stand on a weight sensor while he is providing his

primary biometric. Ailisto et al. [9] used body fat

measurement as a soft biometric trait. The height of

a person can be estimated from a real-time sequence

of images as the user approaches the biometric system.

Jain et al. [2] implemented a real-time vision system for

automatic extraction of gender, ethnicity, height, and

eye color. The system was designed to extract the

soft biometric attributes as the person approaches

the primary biometric system to present his primary

biometric identifier (face and fingerprint). Their soft

biometric system is equipped with two pan/tilt/zoom

cameras. Camera 1 monitors the scene for any human

presence based on the motion segmentation image.

Once camera 1 detects an approaching person, it mea-

sures the height of the person and then guides camera

2 to focus on the person’s face.
Fusion of Primary and Soft Biometric
Information

Jain et al. [2] developed a Bayesian framework for

fusion of primary and soft biometric features. The

main advantage of this framework is that it does

not require the soft biometric feature extractors to be

perfect (100% accurate). Assume that the primary

biometric system is based on Rp (Rp � 1) biometric

identifiers like fingerprint, face, iris, and hand geome-

try. Further, the soft biometric system is based on

Rs (Rs � 1) attributes like age, gender, ethnicity, eye

color, and height. Let o1, o2, . . ., oM represent the M

users enrolled in the database. Let x ¼ ½x1; x2; . . . ; xRp
�

be the collection of primary biometric feature vectors.

Let p(xj jok) be the likelihood of observing the primary

biometric feature vector xj given the user is ok. If

the output of each individual modality in the pri-

mary biometric system is a set of match scores,

sk ¼ ½s1;k; s2;k; . . . ; sRp;k�, one can approximate p(xj jok)

by p(sj jok), provided the genuine match score distri-

bution of each modality is known.

Let y ¼ ½y1; y2; . . . ; yRs
� be the soft biometric fea-

ture vector, where, for example, y1 could be the gender,

y2 could be the eye color, etc. The posteriori probability

of user ok given both x and y can be calculated by

applying the ▶Bayes rule as follows:
Pðokjx; yÞ ¼ pðx; yjokÞPðokÞ
pðx; yÞ ; ð1Þ

where P(ok) is the prior probability of observing user

ok. If all the users are equally likely to access the system

and if all the primary biometric feature vectors

x1; . . . ; xRp
and all the soft biometric variables

y1; y2; . . . ; yRs
are independent of each other given

the user’s identity ok, the discriminant function,

gk(x, y), for user ok, can be computed as

gkðx; yÞ ¼
XRp

j¼1

log pðxj jokÞ þ
XRs

r¼1

log pðyr jokÞ: ð2Þ

During the identification phase, the input biomet-

ric sample is compared with the templates of all the M

users enrolled in the database and the discriminant

functions g1, . . ., gM are computed. The test user is

identified as that user with the largest value of discrim-

inant function among all the enrolled users. A simple

method for computing the soft biometric likelihoods

p(yr jok),r ¼ 1, 2, . . .,Rs, k ¼ 1, 2, . . ., M is to estimate

them based on the accuracy of the soft biometric

feature extractors. Jain et al. [2] also suggested the

use of a scaling factor br, 0 	 br 	 1, to flatten the

likelihood distribution of each soft biometric trait.

The scaling factor br can act as a measure of the

reliability of the rth soft biometric feature and its

value can be set depending on the environment (hos-

tile or friendly) in which the system operates.
Summary

In addition to the match scores provided by the bio-

metric matchers, ancillary information may also be

available to a biometric system. Soft biometric char-

acteristics like gender, ethnicity, height, and weight

provide some information about the identity of the

user. Although the soft biometric information alone

is not sufficient for accurate recognition, they can be

used to complement the information provided by the

primary biometric identifiers like fingerprint, iris, and

face. Techniques for automatically extracting soft bio-

metric information have been developed only recently.

Hence, fusion schemes that incorporate such ancillary

information have not been thoroughly explored and

there is a large scope for conducting more in-depth

research in this area.
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Soleprint Device
▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Soleprint Sensor
▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Sound
Sound is a pressure wave which is created by a vibrat-

ing object.

▶ Speech Production
Sound Generation
▶ Speech Production

▶Voice Sample Synthesis
Sources of Evidence
▶ Sources of Information in Biometric Fusion
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Synonyms

Sources of evidence
Definition

Multibiometric systems rely on the evidence presented

by multiple sources of biometric information. Based on
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the nature of these sources, a multibiometric system can

be classified into one of the following six categories:

multi-sensor, multi-algorithm, multi-instance (or

multi-unit), multi-sample, multimodal, or a hybrid

system. This terminology facilitates the characteriza-

tion of multibiometric systems in a systematic manner.

By identifying the various sources of biometric infor-

mation and by understanding the challenges associated

in consolidating them, appropriate fusion strategies

can be devised for performing biometric fusion.
Introduction

Information fusion refers to the reconciliation of evi-

dence presented by multiple sources of information

in order to generate a decision. In the context of
Sources of Information in Biometric Fusion. Figure 1 Sourc
biometrics, evidence reconciliation plays a pivotal

role in enhancing the recognition accuracy of human

authentication systems and is referred to as multibio-

metrics. Multibiometric systems combine the informa-

tion presented by multiple biometric sensors,

algorithms, samples, units, or traits. Besides enhancing

matching performance, these systems are expected to

improve population coverage, deter spoofing, and im-

part fault-tolerance to biometric applications.

In order to characterize a multibiometric system, it

is essential to know the various sources of information

that are being consolidated. Based on the nature of

these sources, a multibiometric system can be classified

into one of the following six categories [1]: multi-

sensor, multi-algorithm, multi-instance, multi-sample,

multimodal, and hybrid (see Fig. 1). Each of these

systems is described in the narrative below.
es of information for biometric fusion.
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Multi-Sensor Systems

In these systems, a single biometric trait is imaged using

multiple sensors in order to extract diverse information

from multiple images that may or may not be spatially

registered. For example, a system may record the two-

dimensional texture content of a person’s face using a

CCD camera and the three-dimensional surface shape

of the face using a range sensor in order to perform

authentication. The introduction of a new sensor (in

this case, the range sensor) to measure the facial surface

variation increases the cost of the multibiometric

system. However, the availability of multi-sensor data

pertaining to a single trait can assist the segmentation

and registration procedures also besides improving the

matching accuracy.

Marcialis and Roli [2] discuss a scheme to fuse the

fingerprint information of a user obtained using an

optical and a capacitive fingerprint sensor (spatial reg-

istration between the two sensors is not necessary in

this case). The authors, in their work, indicate that the

two sensors provide complementary information

thereby providing better matching accuracy. They

also suggest the possibility of employing a dynamic

sensor selection scheme [3] wherein, based on the

nature of the input data obtained from the two sensors,

the information from only one of the sensors may be

used to perform recognition. Chen et al. [4] examine

the face images of an individual obtained using a

thermal infrared camera and a visible light camera.

They demonstrate that integrating the evidence sup-

plied by these two images (both at the scorelevel and

ranklevel) improves matching performance. Soco-

linsky and Selinger [5] and Heo et al. [6] also demon-

strate the benefits of using thermal infrared and visible

light imagery for face recognition.
Multi-Algorithm Systems

In these systems, the same biometric data is processed

using multiple algorithms. For example, a texture-based

algorithm and a minutiae-based algorithm can operate

on the same fingerprint image in order to extract diverse

feature sets that can improve the performance of the

system [7]. This does not require the use of new sensors

and, hence, is cost-effective. Furthermore, the user is

not required to interact with multiple sensors thereby

enhancing user convenience. However, it does require
the introduction of new feature extractor and/or

matcher modules, which may increase the computa-

tional requirements of the system (Fig. 2).

A multi-algorithm system can use multiple feature

sets (i.e., multiple representations) extracted from the

same biometric data or multiple matching schemes

operating on a single feature set. Lu et al. [8] discuss

a face recognition system that employs three different

feature extraction schemes (principal component anal-

ysis (PCA), independent component analysis (ICA),

and linear discriminant analysis (LDA)) to encode

(i.e., represent) a single face image. The authors postu-

late that the use of different feature sets makes the

system robust to a variety of intra-class variations

normally associated with the face biometric. Experi-

mental results indicate that combining multiple face

classifiers can enhance the identification rate of the

biometric system. Han and Bhanu [9] present a con-

text-based gait recognition system which invokes

and combines two gait recognition classifiers based

on the walking surface. A probabilistic approach is

used to combine the participating classifiers. The

authors demonstrate that using context information

in a fusion framework has the potential to improve

the identification rate of the system. Jain et al. [10]

fuse the evidence of three different fingerprint match-

ers to determine the similarity between two minutiae

sets. The three minutiae matchers considered in their

system are based on the Hough transform, one-dimen-

sional string matching, and two-dimensional dynamic

programming. They observe that the matching perfor-

mance obtained by combining two of the three match-

ers is comparable to combining all the three matchers.

Factors such as the correlation between component

algorithms, the disparity in their matching accuracies,

and the fusion methodology adopted significantly im-

pact the performance obtained after fusion.
Multi-Instance Systems

These systems use multiple instances of the same body

trait and are also referred to as multi-unit systems in

the literature. For example, the left and right index

fingers, or the left and right irises of an individual

may be used to verify an individual’s identity. These

systems generally do not necessitate the introduction

of new sensors nor do they entail the development of

new feature extraction and matching algorithms and



Sources of Information in Biometric Fusion. Figure 2 The multi-algorithm fingerprint matcher designed in [7]. The

system utilizes both minutiae and texture information to represent and match two fingerprint images (query and

template). The minutiae-matching module provides the transformation parameters necessary to align the query image

with the template before extracting the texture information from the former. The texture information is represented

using ridge feature maps.
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are, therefore, cost-effective. However, in some cases, a

new sensor arrangement might be necessary in order to

facilitate the simultaneous capture of the various units/

instances. Automated fingerprint identification sys-

tems (AFIS) that obtain ten-print information from a

subject can benefit from sensors that are able to rapidly

acquire impressions of all ten fingers. Multi-instance

systems are especially beneficial to users whose biomet-

ric traits cannot be reliably captured due to inherent

problems. For example, a single finger may not be a

sufficient discriminator for a person having dry skin.

However, the integration of evidence across multiple

fingers may serve as a good discriminator in this case.

Similarly, an iris system may not be able to image

significant portions of a person’s iris due to drooping

eyelids. The consideration of both the irides will result

in the availability of more texture information that can
be used to establish the individual’s identity in a more

reliable manner. Multi-instance systems are often nec-

essary in applications where the size of the system

database (i.e., the number of enrolled individuals) is

very large (FBI’s database currently has �50 million

ten-print images, and multiple fingers provide addi-

tional discriminatory information).
Multi-Sample Systems

A single sensor may be used to acquire multiple samples

of the same biometric trait in order to account for the

variations that can occur in the trait, or to obtain a more

complete representation of the underlying trait. A face

system, for example, may capture (and store) the frontal

profile of a person’s face along with the left and right
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profiles in order to account for variations in the facial

pose. Similarly, a fingerprint system equipped with a

small-sized sensor may acquire multiple dab prints of

an individual’s finger in order to obtain images

of various regions of the fingerprint. A mosaicing

scheme may then be used to stitch the multiple

impressions and create a composite image. One of

the key issues in a multi-sample system is to deter-

mine the number of samples that has to be acquired

from an individual. It is important that the procured

samples represent the variability as well as the typicality

of the individual’s biometric data. To this end, the

desired relationship between the samples has to be

established beforehand in order to optimize the bene-

fits of the integration strategy. For example, a face

recognition system utilizing both the frontal- and

side-profile images of an individual may stipulate

that the side-profile image should be a three-quarter

view of the face [11]. Alternately, given a set of biomet-

ric samples, the system should be able to automatically

select the ‘‘optimal’’ subset that would best represent

the individual’s variability.
S

Multimodal Systems

These systems combine the evidence presented by dif-

ferent body traits to establish an identity. For example,

some of the earliest multimodal biometric systems

utilized face and voice features to establish the identity

of an individual [12]. Physically uncorrelated traits

(e.g., fingerprint and iris) are expected to result in

better improvement in performance than the correlated

traits (e.g., voice and lip movement). The cost of

deploying these systems is substantially more due to

the requirement of new sensors and, consequently,

the development of appropriate user interfaces. The

identification accuracy can be significantly improved

by utilizing an increasing number of traits altho-

ugh the curse-of-dimensionality phenomenon would

impose a bound on this number. The curse-of-

dimensionality limits the number of attributes (or

features) used in a pattern classification system

when only a small number of training samples is

available. The number of traits used in a specific

application will also be restricted by practical consid-

erations such as the cost of deployment, enrollment

time, throughput time, expected error rate, user

habituation issues, etc.
Hybrid Systems

Chang et al. [13] use the term hybrid to refer to systems

that integrate a subset of the five scenarios discussed

earlier. For example, Brunelli and Falavigna [12] de-

scribe an arrangement in which two speaker recog-

nition algorithms are combined with three face

recognition algorithms at the match score and rank

levels via a HyperBF network. Thus, the system is

multi-algorithmic as well as multimodal in its design.

Hybrid systems attempt to extract as much informa-

tion as possible from the various biometric modalities.
Summary

Multibiometric systems can consolidate different

pieces of evidence. Besides the above scenarios, it is

also possible to use biometric traits in conjunction

with nonbiometric identity tokens in order to enhance

the authentication performance. For example, Jin et al.

[14] discuss a dual factor authenticator that combines

a pseudorandom number (present in a token) with a

facial feature set in order to produce a set of user-

specific compact codes known as BioCode. The pseudo-

random number and the facial feature sets are fixed in

length, and an iterated inner product is used to generate

the BioCode. When an individual’s biometric informa-

tion is suspected to be compromised, the token contain-

ing the random data is replaced, thereby revoking the

previous authenticator. The use of biometric and non-

biometric authenticators in tandem is a powerful way of

enhancing security. However, some of the inconve-

niences associated with traditional authenticators re-

main (such as ‘‘Where did I leave my token?’’).

Another category of multibiometric systems com-

bine primary biometric identifiers (such as face and

fingerprint) with soft biometric attributes (such as

gender, height, weight, eye color, etc.). Soft biometric

traits cannot be used to distinguish individuals reliably

since the same attribute is likely to be shared by several

different people in the target population. However,

when used in conjunction with primary biometric

traits, the performance of the authentication system

can be significantly enhanced [15]. Soft biometric

attributes also help in filtering (or indexing) large

biometric databases by limiting the number of entries

to be searched in the database. For example, if it is

determined (automatically or manually) that the
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subject is an ‘‘Asian Male,’’ then the system can con-

strain its search to only those identities in the database

labeled with these attributes. Alternately, soft biomet-

ric traits can be used in surveillance applications to

decide if at all primary biometric information has to be

acquired from a certain individual. Automated techni-

ques are to estimate soft biometric characteristics

which is an ongoing area of research and is likely to

benefit law enforcement and border control biometric

applications.
Related Entries

▶Multibiometrics

▶Multiple Classifier Systems

▶Multispectral and Hyperspectral Biometrics

▶ Soft Biometrics
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Speaker Authentication
▶ Speaker Recognition, Standardization
Speaker Biometrics
▶ Speaker Recognition, Standardization
Speaker Change Detection
▶ Speaker Segmentation
Speaker Classification
Speaker Classification is a technology that uses infor-

mation from the stream of speech to place the speaker

into a category such as female versus male, young

versus old, native versus non-native speaker.

▶ Speaker Recognition, Standardization
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Speaker Clustering
The clustering process, in general, can be defined as an

unsupervised classification of data, i.e., without any a

priori knowledge about the classes or the number of

classes. In our task, the clustering process should result,

ideally, in a single cluster for every speaker identity.

▶ Speaker Segmentation
Speaker Databases and Evaluation
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Introduction

Expanding interest in the use of biometrics for security

purposes has brought increasing attention to the use

of speech as a biometric. Speech fits naturally into the

list of likely biometric modalities. It is an activity

engaged in by essentially everyone, and is one of the

primary means by which people identify those whom

they know.

But speaker recognition has not heretofore been

seen as among the most useful biometrics for general

security applications. There has been a much more

developmental effort on the use of face, fingerprint,

and iris. Recognition of speakers by voice has been seen

as more of a niche application, largely because of the

special difficulties associated with the collection of

quality speech input, and perhaps because of a partic-

ular advantage may offer.

This introduction briefly discusses some key issues

related to speaker recognition as a biometric. In the

following section some of the main databases that have

been used for speaker recognition research and evalua-

tion are discussed. The final section deals with the

leading technology evaluations of speaker recognition

that have been conducted and are ongoing.

Speaker recognition may be divided into speaker

identification (many to one decision) and speaker veri-

fication or speaker detection (one to one decision).

Perhaps because of the performance limitations or
because of the difficulty of collecting very large (in the

tens of thousands or more) speaker databases, the re-

search community has in recent years focused on the

latter. This represents the areas of current practical appli-

cations better, and of course ultimately superior perfor-

mance for the latter would make the former possible.

Defining a ‘‘standard’’ test for speech matching is

not simple. Numerous environmental factors affect the

quality of any voice signal collected, and these may,

depending on the collection configuration and circum-

stances, be very difficult to control. And there are many

choices of protocol to be made, involving in particular

the type of speech and specific words, as well as the

amount of speech, to be collected. These issues are very

much application dependent and operating consensus

is very hard to achieve.

Best performance in voice recognition is achieved

when a consistent wideband high quality audio chan-

nel is available for all speech input. But the needed

quiet room environment can be expensive and often

impractical to set up, and may be rather demanding

on the user in terms of speaking into a close talking

microphone. Meanwhile, competing biometrics may

more easily provide similar capability.

The particular advantage offered by voice as a bio-

metric is that it is transmissible over telephone chan-

nels, and telephone handsets, landline or cellular, are

ubiquitous in modern society. The variability of tele-

phone handsets and telephone channels makes the

recognition task far more difficult and degrades the

quality of performance. Nevertheless this has been

the area of greatest application interest, and thus of

greatest interest for evaluation.

One key distinction among speaker recognition

applications is the type of involvement of the speaker

in the process. The speaker may or may not be aware of

the recognition process, and if aware, may or may not

seek to cooperate with it.

Applications involving access, whether to a physical

location or to information, are likely to involve coopera-

tive and motivated users. The system can then prompt

the speaker to say a specific phrase, or even a previously

agreed upon passphrase (perhaps an account number),

allowing the recognition to be text-dependent and even

combined with a pin number for greater effective per-

formance. Commercial applications often rely on the

use of short phrases spoken by cooperative users, with

the system’s knowledge of what is to be said (text-

dependence) helping to aid performance despite the
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limited amount of speech involved and the difficul-

ties posed by the variable conditions of the telephone

channels.

Forensic applications, on the other hand, will in-

volve either an unaware or uncooperative user, and

other applications will involve listening in on unaware

speakers. Here text-dependent recognition is not an

option. A possible advantage of this type of applica-

tion, however, is that it may be possible to collect

rather long durations of speech from the speakers,

whereas a cooperative scenario requires that valid

speakers be able to enroll and obtain access after brief

speaking intervals. This can allow systems to learn

more about a target speaker’s speaking style and idio-

syncrasies. The frequency of occurrence of particular

words and phrases in someone’s natural (determined

with the aid of automatic speech recognition technol-

ogy for word transcription) may powerfully aid recog-

nition performance.
Databases

The era of standard corpora (or databases) for speech

processing applications began in the mid-1980’s as

modest priced computers became capable of perform-

ing the necessary signal processing and the costs of

storage media fell significantly. The Speech Group at

NIST (National Institute of Standards and Technology)

played an early role in making the corpora of interest

available at reasonable cost inCD-ROMformat. Since its

founding in 1992, the Linguistic Data Consortium

(LDC) at the University of Pennsylvania has been the

primary repository of speech corpora in the United

States. (ELRA, the European Language Resources Asso-

ciation, plays a similar role in Europe.) The corpora

described here are available through the LDC and are

described in its online catalog (www.ldc.upenn.edu/

catalog).

There are particular properties of the corpora

which are needed to support speaker recognition re-

search. A substantial number of different speakers

must be included, and most particularly, there need

to be a number of different recorded sessions of each

speaker. Applications require speakers to enroll in the

system at one time and to be successfully detected at a

later time. Particularly when recorded over time, mul-

tiple recording sessions with varying telephone chan-

nels are essential to represent this. Moreover, telephone
handsets vary, so it is desirable, for most real-world

applications, to have different sessions using different

handsets. It has been seen that recognition perfor-

mance over the telephone is considerably better if

speakers can use the same handset during both the

training (enrollment) and the test. This is particularly

so if impostor speakers use different handsets from

speakers of interest, as is typically inherently the case

in most collection protocols. But this results in doing

channel recognition rather than speaker recognition.

Thus a corpus such as Macrophone (the U.S. con-

tribution to the international Polyphone corpus), col-

lected to support multiple types of speech research and

containing telephone speech of a variety of types from

a large number of speakers, has been of limited useful-

ness for speaker recognition because of having only

a single session for each speaker.

One early corpus widely used for speaker research

was TIMIT, produced from a joint effort by Texas Ins-

truments (TI) and the Massachusetts Institute of

Technology (MIT), along with the Stanford Research

Institute (SRI) with sponsorship by DARPA (Defense

Advanced Research Projects Agency). TIMIT is a corpus

of read speech, containing 10 phonetically diverse sen-

tences spoken by each of 630 speakers chosen to repre-

sent 8major dialect regions of the United States. Its basic

implementation consists of high quality microphone

speech, but versions of the data sent through a lower

quality microphone channel or different types of tele-

phone channels were also produced.

TIMIT was collected for multiple types of speech

processing, but was very popular in speaker identifica-

tion/recognition research through much of the 1990’s,

partly because few alternatives were widely available

and partly because its limited vocabulary and high

recording quality supported the attainment of impres-

sive text-dependent performance results. It was a

source of some frustration to leading researchers

at speaker recognition workshops held in the 1990s

that paper after paper discussed systems performance

on TIMIT, rather than on any ‘‘real’’ data.

An early corpus collected specifically for speaker

recognition was the KING Corpus. It involved 51 male

speakers from whom ten sessions of about 30 seconds

each were collected. The speech was collected simulta-

neously over a wideband channel and a narrowband

telephone channel. There were 25 speakers whose speech

was collected in New Jersey, and 26 whose speech was

collected on in San Diego. For the San Diego speakers,

http://www.ldc.upenn.edu/catalog
http://www.ldc.upenn.edu/catalog
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researchers attempting to do speaker detection noted

that there was a ‘‘great divide’’ between the first five

and second five of the ten sessions involving narrowband

speech. The spectral slope characteristics turned out

to be very different on the two sides of this divide.

Much effort was devoted to understanding and coping

with this phenomenon, and this led to greater awareness

of the effects of channel characteristics for speaker

recognition using telephone speech, and considerable

later research effort to compensate for such channel

differences.

A third early corpus for text-dependent recognition

of high quality speechwas known as the YOHOCorpus.

It was collected (like KING) by ITTunder a US govern-

ment contract in 1989. There were 138 speakers each of

whom had 4 enrollment and ten verification sessions.

Each session involved speaking ‘‘combination locks’’

each consisting of three two digit numbers. There were

24 spoken phrases in the enrollment sessions, and 4 in

the verification sessions. This was clearly intended for

access applications involving cooperative speakers.

It does not appear that these early corpora were

used in multi-site evaluation, but were used extensively

in evaluating individual site research projects. As will

be noted, it has been difficult to find sufficient interest

and agreement on protocols for text-dependent evalu-

ation in the speaker arena. Table 1 summarizes these

early corpora.

The modern era in the collection of corpora for

speaker recognition, perhaps, began with the collection

of the Switchboard Corpus for DARPA by TI in the

early 1990s. This collection of about 2,400 two-sided

telephone conversations from over 500 participating

speakers was originally intended for multiple purposes,

including word spotting, topic spotting, and speaker

spotting in the terminology used at the time. An auto-

matic system was created which allowed registered
Speaker Databases and Evaluation. Table 1 Some early co

Year Corpus Size

Early 1980s TIMIT 630 speakers of eight major US English
each; alternative versions run original w
other specified channels

1987 KING 51 male speakers (25 New Jersey, 26 Sa
recorded on both a wide-band and a n

1989 YOHO 138 speakers with 4 enrollment session
sessions (4 phrases)
participants to call in at specified times to a ‘‘robot

operator’’ which attempted to contact other registered

participants and initiate a two-way conversation on

one of about 70 pre-specified topics that the partici-

pants had indicated would be acceptable. Thus the

conversants generally engaged in an at least somewhat

serious discussion for five minutes or more with some-

one whom they did not know. A speaker’s topic and

conversational partner were in general never repeated

in different conversations. A subset of the participating

speakers was encouraged to make a sizable (double-

digit) number of different conversations and to use

multiple telephone handsets in them.

Switchboard-1 (so denoted when similar corpora

followed) was used in a couple of limited U.S. govern-

ment sponsored evaluation of speaker spotting (and a

similar evaluation of topic spotting) in the early 1990s,

and it proved to be a popular corpus for further study

and research. Somewhat surprisingly it was used in

subsequent years for general evaluation of automatic

speech (word) recognition, as the focus of such evalu-

ation shifted to natural unconstrained conversational

speech. And it 1996 it provided the data for the first

of the series of ▶NIST (SRE’s) Speaker Recognition

Evaluations discussed below. A subset of 40 of the

most prolific corpus speakers was used as the target

speaker set in this evaluation.

The success of Switchboard-1, particularly for

speaker recognition, led to the collection of the

multi-part Switchboard-2 and Switchboard Cellular

Corpora. Each involved hundreds of speakers taking

part in a number of different conversations using mul-

tiple telephone handsets. This was important as the

early NIST evaluations established that telephone

handset variation between training and test affected

system performance very much, and the desire was to

truly recognize speakers and not merely handsets.
rpora used for speaker recognition

Types of speech

dialects, 10 sentences
ideband data through

Read speech of phonetically
rich sentences

n Diego), 10 sessions each
arrow-band channel

Sessions contain 30 s of
speech on an assigned topic

s (24 phrases) and 10 test ‘‘Combination lock’’ phrases
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Year Corpus Size Types of speech

1990/1991 SWBD I 543 speakers, 2400 two-sided
conversations

USA conversational telephone speech on
assigned topics

1996 SWBD II phase 1 657 speakers, 3638 conversations Primarily US Mid-Atlantic, conversational
telephone

1997 SWBD II phase 2 679 speakers, 4472 conversations Primarily US Mid-West, conversational
telephone

1997/1998 SWBD II phase 3 640 speakers, 2728 conversations Primarily US South, conversational telephone

1999/2000 SWBD cellular p1 254 speakers, 1309 conversations Primarily cellular GSM, USA conversational

2000 SWBD cellular p2 419 speakers, 2020 conversations Cellular, largely CDMA, USA conversational
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The Switchboard-2 Corpora each concentrated largely

on speakers from a specific area of the United States,

relying mainly on college students or early post-college

age people. Switchboard Cellular was collected in the

light of the increasing use of cellular telephone hand-

sets in the United States.

The Switchboard Corpora supplied the bulk of the

evaluation data used for the annual NIST evaluations

from 1996 to 2003. Table 2 summarizes these corpora.

Around 2003 the LDC moved to a somewhat dif-

ferent collection model from that used in the Switch-

board Corpora. The ‘‘Fisher’’ platform was similar to

that used for Switchboard, but it could also initiate a

search for paired conversants without one party initi-

ating matters with a call into the system. It was to

prove useful in new corpus collections for general

speech recognition and for language recognition, but

was also applied to the speaker recognition collection.

For this purpose the multi-part Mixer Corpus has been

collected. It was used in the 2004, 2005, and 2006

SRE’s, and will be used in the 2008 SRE.

The Mixer collections have expanded the types of

speaker data collected in two major ways. The first is

the inclusion of conversations in multiple languages.

LDC recruited a sizable number of bilingual speakers

(with English as one language) and utilized the collec-

tion protocol to pair up speakers of a non-English

language, who received a bonus for talking in their

other language. It became feasible, for example, to

have certain specified days devoted to the collection

of calls in specified languages. This supported inves-

tigation of the effect of language, and of language

change between training and test, in speaker recogni-

tion performance.
In addition, the Mixer corpora have included some

conversations in which participants were recorded

simultaneously over the telephone and over eight or

more different microphones. These included a range of

close talking, near-field, and far-field microphones

to support comparison of performance with the differ-

ent types, and of cross channel conditions between

training and test. This was accomplished by having

select groups of participants come to a special room

at two collection sites where all of the microphones

could be carefully placed while they used the cell

phones provided to call the automatic system and be

paired with participants in the usual way.

The Mixer 5 Corpus collected in 2007 contains

a further variation on this theme. Its 300 speakers

each participated in a series of six structured ‘‘inter-

views’’ of about a half hour each, occurring over at

least three different days. The bulk of each inter-

view involves conversational speech, but with an inter-

viewer who is present in the room and provides

appropriate prompts. The subject’s speech is recorded

over a dozen or so carefully placed microphones,

but not over a telephone line. Over the course of

the six sessions the subject gets to know the inter-

viewer, and this changes the nature of the spoken

dialog. Each interview also contains a brief period

of standard questions repeated, and periods of differ-

ent types of read speech. Each participant also makes

two simulated phone calls where side tones are used

to encourage each, rather high or rather low, vocal

effort. Each interview subject is also paired in the

usual way in about ten regular phone conversations

with unknown interlocutors outside of the inter-

views. This data will be used in the upcoming NIST
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Year Corpus Size Types of speech

2003 MIXER p1 and p2 600 speakers with 10 or more calls 200 with
4 cross-channel calls

Conversational, some calls in four
non-English languages

2005 MIXER p3 1,867 speakers with 15 or more calls Conversational, includes calls in
19 languages

2007 MIXER p4 200 speakers making 10 calls including
4 cross-channel

Conversational, primarily English

2007 MIXER p5 300 speakers doing 6 interviews and generally
10 phone calls

Conversational in interview setting, some
read speech
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SRE’s and may offer some interesting contrasts with

previous results.

The Mixer Corpora are discussed further in [1–3].

Table 3 summarizes the Mixer Corpora.
S

Evaluations

Evaluations of speaker recognition require a sponsor or

sponsors and participants. Sponsors must be willing to

commit the necessary resources to support an evalua-

tion infrastructure. Most important, they must sup-

port the collection of speech databases appropriate to

speaker recognition evaluation needs.

Participants must be willing to take part in evalua-

tion, to discuss the systems they develop, and to have

their performance results presented to the evaluation

community. They must be ready to do this not know-

ing in advance whether their evaluation performance

will compare favorably or unfavorably with that of the

other participants.

The most notable series of evaluations of recent

years have been those coordinated by the National

Institute of Standards and Technology (NIST), an

agency of the U.S. Department of Commerce, in

Gaithersburg, Maryland, USA. The NIST evaluations

have received sponsorship support and guidance from

interested U.S. government agencies involved in de-

fense, intelligence and law enforcement.

There were a couple of preliminary evaluations held

in 1992 and 1995, each utilizing a limited number of

target speakers from the Switcboard-1 Corpus. They did

not involve the scoring metric of the later evaluations,

described below, and looked at the range of operating

points (receiver operating characteristic curves) of each

target speaker separately rather than combining them
based on a required calibration threshold into a single

curve as will be described below. The 1995 evaluation

was the first to analyze and note the effect on perfor-

mance of having a speaker’s training and test segments

come from the same or different telephone numbers,

and thus the same or different telephone handsets.

These evaluations each had only about a half dozen

participants, mainly from the United States.

TheNISTevaluations assumed basically their present

form in 1996, and were conducted annually from 1996

to 2006, with the next one set to occur in 2008. These

have all included as the core task text-independent

speaker detection in the context of conversational tele-

phone speech. The 1996 evaluation selected 40 of the

more prolific Switchboard-1 speakers as target talkers,

and used other corpus speakers for non-target trials.

The subsequent evaluations have all utilized hundreds

of speakers from the LDC corpora involved (Switch-

board through 2003, Mixer subsequently), and have

followed the practice of allowing the target speakers to

also serve as impostor speakers for non-target trials.

The evaluation plan documents and other information

related to these evaluationsmay be found at http://www.

nist.gov/speech/tests/sre/index.html.

Participation in the NIST speaker recognition eva-

luations has grown steadily and has become world-

wide in scope. The number of participating sites has

grown to reach approximately 35 in 2006. The number

of participants noticeably increased in 2002 and

subsequent years, perhaps because of a growing interest

in biometric technologies after the events of 2001.

Of the growing number of participants in recent

years, only about half a dozen have been sites in the

United States, with a majority in Europe, and an

increasing number from the Far East. The greatest

numbers of participants have been from the U.S.,

http://www.nist.gov/speech/tests/sre/index.html
http://www.nist.gov/speech/tests/sre/index.html
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France, and China. Other participants have been from

Canada, various European countries, Singapore,

Australia, Israel, and South Africa.

Most of the sites participating in the NIST evalua-

tions have been from academic institutions. Some

government funded research institutions or companies

involved in government research have also partici-

pated. Not frequently represented, however, have

been smaller commercially oriented companies. This

may be due in part to the text-independent and re-

search oriented type of evaluation being conducted,

but also bespeaks a reticence to participate in evalua-

tions where competitors may show superior perfor-

mance results.

Evaluation requires a performance measure. For

detection tasks there are inherently two types of error.

There are trials where the target is present (target

trials) but a ‘‘false’’ decision is made by a system.

Such errors are misses. And there are trials where the

target is not present (non-target or impostor trials) but

a ‘‘true’’ decision is made. These are referred to as false

alarms. Thus it is possible to speak of a miss rate for

target trials and a false alarm rate for non-target trials.

The NIST evaluations have used a linear combi-

nation of these two error rates as its primary evaluation

metric. A decision cost function (DCF) is defined as

DCF ¼ CMiss � PMiss Targetj � PTarget þ CFalseAlarm

� PFalseAlarm NonTargetj � ð1� PTargetÞ
where CMiss represents the cost of a miss, CFA the cost

of a false alarm, and PTarget the prior probability of a

target trial. These are three somewhat arbitrary and

certainly application dependent parameters. The NIST

evaluations have used parameter values as hereunder.
CMiss CFalseAlarm PTarget

10 1 0.01
These have been viewed as reasonable parameters

for applications involving an unaware user, where

most speech segments examined are likely to be of

someone other than the target of interest, but where

detecting instances of the target have considerable

value. Note that PTarget need not represent the actual

target richness of the evaluation trials, but may be

chosen based on possible applications of interest. The
NIST evaluations have generally had an approximately

ten to one ratio of non-target to target trials, to mini-

mize the variance of the metric in the light of the

parameter values chosen.

A detection task inherently involves two types of

error, and a system may be expected to be able to tune

its performance to vary the relative frequency of the

two error types. In the NIST evaluations, systems have

been required to produce not only a decision, but also

a score for each trial, where higher scores indicate

greater likelihood that the correct decision is ‘‘true’’.

A decision threshold may then be varied based on this

score to show different possible operating points or

tradeoffs between the two types of error. Note that the

evaluations have required that this threshold be the

same for all target speakers.

The most informative way of presenting system

performance in the NIST SRE’s has been to draw a

curve showing the operating points and the tradeoff in

the error rates. This is easily done by varying the

decision threshold based on the scores provided. A

simple linear plot is know as an ROC (Receiver Opera-

tor Characteristic) curve, but a clearer presentation is

obtained by putting both error rates on a normal

deviate scale to produce what NIST has denoted a

DET (Detection Error Tradeoff) curve [4]. This has

the nice property that if the underlying error distribu-

tions for the miss and false alarm rates are normal, the

resulting curve is linear.

Figure 1 shows▶DET curves for the systems in the

core test done in the 2006 NIST SRE. These are curves

representing the performance of the primary systems

submitted by over 30 sites participating in the evalua-

tion. Better systems have performance curves closer

to the lower left corner of the plot. The actual decision

point of each performance curve is denoted by a

triangle, and a 95% confidence box is drawn around

these, while circles are used to denote the points

corresponding to the minimum DCF operating points.

The closer these two specially denoted points on each

curve, the better the system did at calibrating its deci-

sion threshold for hard decisions. For example, for the

best performing system shown, the actual decision

point has a false alarm rate of about 2% and a miss

rate of about 7%, while the minimum DCF point has a

false alarm rate of about 1% and a miss rate of about

11%. This gives a sense of the level of current state-of-

the-art performance for speaker detection on this type

of telephone data.
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participating sites on the core test of the 2006 NIST SRE.
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A possible alternative non-parametric information

theoretic type of metric has been proposed to be appli-

cable to a range of applications, and has been included

as an alternative measure in the most recent NIST

evaluations, provided the system specifies that its like-

lihood scores may be viewed as log likelihood ratios.

This metric is discussed in [5].

While the basic detection task has remained fixed,

there have been multiple test conditions in most

of the evaluations, and these conditions have varied

over the years. In particular there has been variation

in the durations of the training and test segments.

While the earlier evaluations focused on landline

phones and the varying types of telephone handsets

(carbon-button vs. electrets microphone), in the new

millennium there is was greater focus on the effect of

cellular transmission and newer types of handsets as

these became common in the U.S. Certain additional

data sources, such as a small FBI forensic database and

a Castilian Spanish corpus known as AHUMADA

(both apparently not currently easily available) were

used in one or two evaluations.
The earlier evaluations used fixed durations of

speech, as determined by an automatic speech detector.

Later evaluations allowed more variation in duration

within each test condition. Starting in 2001 there was

greater interest in longer durations for training and

test. This was largely as a result of some research

suggesting that with effective word recognition, higher

level lexical information about a speaker could be

effectively combined with more traditional lower level

acoustic information [6]. As a result of the apparent

success of such an approach in the 2001 evaluation,

a major summer research program was carried out at

Johns Hopkins University in the summer of 2001 (see

http://www.clsp.jhu.edu/ws2002/groups/supersid/).

Since then, ‘‘extended’’ training conditions, where the

training consists of multiple (often eight) conversation

sets have been a major part of the evaluations. The

earlier NISTevaluations are described further in [7–9].

The introduction of Mixer data in 2004 inaugu-

rated a new era in the NIST evaluations. The inclusion

of calls in multiple languages and cross language

trials introduced a new wrinkle that affected overall

http://www.clsp.jhu.edu/ws2002/groups/supersid/
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performance. The latest evaluations have also intro-

duced test conditions involving multiple microphones

and cross channel trials, that will be a major focus

in 2008 and beyond. The recent SRE’s are discussed

in [10–12].

Have the evaluations shown progress in perfor-

mance capabilities over the years? They have, but

changes in the test conditions from year to year and

in the types of data used have complicated perfor-

mance comparisons. Figure 2 from [13] attempts to

sort these matters out, and summarizes the DCF scores

of the best evaluation systems across ranges of years

involving more or less consistent test conditions.

The NIST SRE’s have been the most notable eva-

luations in speaker recognition in recent years. They

have concentrated on a basic speaker detection task

not tied to any specific current commercial applica-

tion. This has made it possible for a large range of

research sites around the world to participate in these

evaluations.

One other notable evaluation in the field was con-

ducted by TNO in the Netherlands in 2003. It featured

a protocol very similar to that of the NISTevaluations,

but utilized actual forensic data provided by the Dutch

police. Its very interesting results are discussed in [14],

but the data used was only provided to the evaluation
Speaker Databases and Evaluation. Figure 2 DCF (Decision

on different roughly comparable evaluation conditions over m

1996 to 2006.
participants for a limited time and purpose and is not

otherwise available.

Other efforts have been less successful. Research in

speaker recognition technology has been advanced by

the series of Odyssey workshops. These were held

in Martigny, Switzerland in 1996, Avignon, France in

1998, Crete, Greece in 2001 (where the name ‘‘Odys-

sey’’ was adopted), Toledo, Spain in 2004, San Juan,

Puerto Rico in 2006, and Stellenbosch, South Africa

in 2008. For the 2001 workshop an evaluation track

was included. This included both a text-independent

track based on the preceding NIST evaluation, and

a text-dependent track. Participation, particularly in

the text-dependent track, was very limited, perhaps

demonstrating the difficulty of persuading companies

or organizations to participate in this inherently appli-

cation specific and more immediately commercially

oriented field.

The European Union has sponsored a multi-year

program to develop biometric technologies deno-

ted as ‘‘BioSecure’’ (http://www.biosecure.info/), with

speaker as one of the included technologies. Evaluation

is intended to be part of this program, in particular

including evaluation of the fusion of multiple bio-

metrics. As of 2007, however, speaker recognition

evaluation appears not to have begun.
Cost Function) values for the best (lowest DCF) systems

ultiple years during the course of the NIST SRE’s from

http://www.biosecure.info/
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The NIST evaluations will resume in 2008, and

may be held in alternate years in the future. They will

feature an increased emphasis on cross channel recog-

nition. Whereas in 2005 and 2006 the core test involved

only telephone speech, with cross channel (train on

telephone, test on microphone) as an optional addi-

tional test, the core test condition is expected to

require processing of a mix of training or test segments

including both telephone and microphone speech,

with some of the trials including different channels in

training and test. This will utilize at least both types of

data as in Mixer 3 and Mixer 5. Evaluation perfor-

mance, however, will be subsequently analyzed to dis-

tinguish performance on telephone, microphone, and

cross-channel trials. A number of different micro-

phone types from the Mixer 5 data will be included.
Related Entries

▶Performance Evaluation, Overview

▶ Speaker Recognition, Overview
S
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Speaker Detection
Speaker detection means determining whether or not a

particular speaker is present in an audio stream. The

term multispeaker detection refers to the task of deter-

mining whether a particular known speaker is speaking

in an audio stream containing speech from multiple

speakers.

▶ Speaker Segmentation
Speaker Diarization
This task consists of segmenting a conversation involv-

ing multiple speakers into homogeneous parts, which

contain the voice of only one speaker, and grouping

together all the segments that correspond to the same

speaker.

▶ Speaker Segmentation



1254S Speaker Features
Speaker Features

DANIEL RAMOS, JAVIER GONZALEZ-DOMINGUEZ,

DOROTEO T. TOLEDANO,

JOAQUIN GONZALEZ-RODRÍGUEZ
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Speaker Features. Figure 1 Identity levels in the speech
Synonyms

Observations from speech; Speaker parameters
signal.
Definition

Speaker features are measurements extracted from the

speech signal with the objective of determining the

identity of a given speaker. In voice biometrics, speaker

features whose source is known are typically used to

build ▶ speaker models. Then, speaker features of un-

known source are compared with the enrolled models

in order to obtain measures of similarity. The identity

of the speaker influences the speech production pro-

cess in many different ways, due to vocal tract configu-

ration, language spoken, social context, education, etc.

Thus, several levels of identity can be identified in the

speech signal, e.g., spectral, phonetic, prosodic, etc.

Speaker features can be extracted at any of this identity

levels, and therefore the speaker recognition process

follows in essence a multilevel approach.
Identity Information in the Speech
Signal

The ▶ identity levels in the speech signal are config-

ured by the speech production process, which is the

subject of study of phoneticians and other areas such as

engineering, physics or signal processing [1, 2, 3, 4].

There are two main stages in voice production: (1) lan-

guage generation and (2) speech production; and

speaker specificities are introduced in both compo-

nents. In the field of speaker recognition these two

components correspond to so-called high-level (lin-

guistic) and low-level (spectral) characteristics. Auto-

matic speaker recognition systems will intend to take
advantage of the different sources of information avail-

able in the speech signal, combining them in the best

possible way for every speaker [5, 6]. Figure 1 illus-

trates these different identity levels in the speech signal.

The information extracted in each of these groups of

levels can be summarized as follows:

� Spectral level. The information about the speaker

identity is extracted from the spectrum of the

speech signal, analyzed in short-time windows.

The spectrum of the speech signal is directly related

to the dynamic configuration of the vocal tract,

which presents speaker-dependent specificities.

� Higher levels. Several sublevels can be found

here. For instance, at the phonotactic level, the infor-

mation about the identity of the speaker is embedded

in the particular use of the phones and syllables and

their realizations. At the prosodic level, parameters

like instantaneous energy, intonation, speech rate,

and unit durations are analyzed, which are known

to be speaker-dependent. At the idiolectal level, the

information about speaker identity relies on the par-

ticular use of the words and language in general,

which depends not only on the speaker, but also on

many other sociolinguistic conditions.
Short-Term Spectral Feature
Extraction

The analysis at spectral level of the speech signal is

based on classic Fourier analysis. However, an exact

definition of Fourier transform cannot be directly ap-

plied because speech signal cannot be considered
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stationary due to constant changes in the articulatory

system within each speech utterance.

To solve these problems, speech signal is split into a

sequence of short segments in such a way that each one

is short enough to be considered pseudo-stationary.

The length of each segment, also called window or

frame, ranges between 10 and 40ms (in such a short-

time period our articulatory system is not able to

significantly change). Finally, a feature vector will be

extracted from the short-time spectrum in each win-

dow. The whole process, known as short-term analysis,

is depicted in Fig. 2.

Signal representation or coding from short-term

spectrum into a feature vector is one of the most

important steps in automatic speaker recognition and

continues being subject of research. Many different

techniques have been proposed in the literature and

generally they are based on speech production models

or speech perception models. Most widely used tech-

niques in the state of the art are described as follows.

� Linear Predictive Coding (LPC)method, introduced

in [7], is based on the assumption that a speech

sample can be approximated by a linearly weighted

summation of a determined number of preceding

samples. In time domain, this can be represented as

s
 ½n� ¼
Xp

k¼0

a k½ �s n� k½ �: ð1Þ

Here, s∗[n] is the approximation, or prediction,
of the speech signal, and a [k] are the LPC coeffi-

cients calculated to minimize the total square error
E ¼
X
n

e½n�2; ð2Þ

where e[n] is the error between the real signal

value s [n] and predicted value s∗[n], defined as

e½n� ¼ s½n� � s
 ½n� ¼ s½n� �
Xp

k¼1

a k½ �s n� k½ �: ð3Þ

In the domain of the z-transform, a [k] para-

meters define an all-pole filter H(z), as defined

in [1, 7].

H zð Þ ¼ 1

1�Pp
k¼1a k½ �z�k

: ð4Þ

LPC has proved to be a valid way to compress

the spectral envelope in an all-pole model with just

10–16 coefficients [1, 3]. Figure 3 shows the rep-

resentation of the envelope of the short-time spec-

trum at a given window as modeled by LPC.

However, LPC coefficients are strongly correlated

among them, which is an undesirable characteris-

tic. Therefore, ▶ cepstrum transform [3, 8] has

been proposed in order to obtain pseudo-orthogo-

nal cepstral coefficients, yielding Linear Prediction

Cepstral Coefficients (LPCC).

� Mel-Frequency Cepstral Coefficients (MFCC) pro-

posed in [9] are the most extensively used para-

meters at the spectral level in automatic speaker

recognition systems. The MFCCmethod first uses a

mel-scale filterbank in order to obtain some coeffi-

cients from the power spectrum of the speech win-

dow. The main aim of mel filtering is to mimic
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coefficients defined in Eq. 4 .

Speaker Features. Figure 4 Triangular mel-filter bank for typical MFCC feature extraction.
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the human hearing behavior by emphasizing lower

frequencies and penalizing higher frequencies. Thus,

a mel filterbank analyzes the power spectrum using a

logarithmic scale. First, a transformation is applied

according to the following formula:

fm ¼ 1; 125� log 1þ f =700ð Þ; ð5Þ

where f is the linear frequency. Second, a filterbank is

applied to the amplitude of themel-scaled spectrum fm in

order to obtain a vector of outputs from each filter.
Figure 4 shows a typical mel filterbank in the fre-
quency domain. The centers f [m] of the filters Hm [k]

are uniformly spaced in the mel scale. Using a DFT
of the input signal withN points each filter Hm [k] is

given by

Hm k½ � ¼

0 k< f m�1½ �
k�f m�1½ �ð Þ

f m½ ��f m�1½ �ð Þ f m�1½ � 	 k	 f m½ �
f mþ1½ ��kð Þ

f mþ1½ ��f m½ �ð Þ f m½ � 	 k	 f m½ �

0 k> f mþ1½ �;

8>>>>>>>><
>>>>>>>>:

ð6Þ

where 0<k<N.
Once filtering is carried out, cepstrum transform is
applied to the filter outputs in order to obtain mel

frequency cesptrum coefficients.



Speaker Features S 1257
� Perceptual Linear Prediction (PLP) was proposed

in [10]. Here, speaker features are calculated in a

similar way as LPC coefficients, but previous trans-

formations are carried out in the spectrum of each

window aiming at introducing knowledge about

human hearing behavior. Details can be found in

[10].

As we mentioned earlier, the main aim of the

described methods is to extract a feature vector for

each frame or window. However, in this independent

analysis possible useful information such as coarticula-

tion can be lost. In order to take this kind of information

into account, velocity (D) and acceleration (DD) coeffi-
cients are usually obtained from the static window-

based information. This D and DD coefficients model

the speed and acceleration of the variation of cepstral

feature vectors across adjacent windows.
S

High-Level Tokenization

At phonotactic and idiolectal levels, tokenization is the

translation from sampled speech into a time-aligned

sequence of linguistic units, or tokens. Hidden Markov

Models (HMM) [11] are widely used for phone, sylla-

ble, and word tokenization. HMM as used in speech

processing are finite state machines which model the

temporal dependency of spectral feature vectors in a

probabilistic way [1, 11]. The performance of the toke-

nization may be improved by the use of language

models, which impose some linguistic or grammatical

constraints on the high number of combinations of all

possible units (phones, syllables or words) [1].

Basic prosodic features as pitch and energy are also

obtained at a frame level. The instantaneous pitch

can be determined by, e.g., autocorrelation or cepstral-

decomposition based methods, usually smoothed with

some time filtering [2]. Other important prosodic fea-

tures are those related to linguistic units duration,

speech rate, and all those related to accent. In all

those cases, precise segmentation is required [1, 12],

i.e., determination of the points in the speech signal

where each unit occurs.

Recently, Nonuniform Extraction Region Features

(NERF) have been proposed for obtaining high level

features [13]. This technique is based on including

high-level information in the spectral information at

each short-time frame.
Summary

The information about the identity of the speaker

extracted from a speech utterance is represented by

the speaker features, which can be obtained at different

levels. The essay presented the main approaches for

speaker feature extraction at the short-time spectral

level and at higher levels. The widely used MFCC,

LPCC, and PLP features have been described, and

several approaches of phonetic and prosodic tokeniza-

tion have been sketched. Such features will be used to

build the models and to compare themwith test speech

segments in a given voice biometric system.
Related Entries

▶ Feature Extraction

▶ Speaker Matching

▶ Session Effects on Speaker Modeling

▶ Speaker Recognition, Overview

▶ Speech Analysis
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Synonyms

Speaker recognition engine; Voice biometric engine
Definition

Speaker matching aims to compare the acquired data

corresponding to an individual against the template

feature set stored in the database. Depending on the

operating mode, the comparison could be done using

only the template related to a given person (detection

or verification tasks) or with all the templates of the

database (identification task).
The speaker matching could be split into three

main functionalities:

� Create a template from the feature set extracted

from the enrollment data. Usually, the template is

denoted ‘‘speaker model.’’

� Compare a feature set acquired from a sound cap-

tor with a speaker model and output a likelihood

score.

� Take an identification decision using this score.

Usually other information are used during this

decision phase, like a model of potential impostors.

In a speaker recognition system, the scores are very

often normalized before to take the decision, using

a ▶ Score Normalization technique.
Introduction

Two main classes of approaches are usually used for

speaker matching:

� Direct matching. This kind of approaches don’t

really use a modeling of the speaker voice: the en-

rollment voice sample is used directly as a model

and a similarity function between two voice samples

is used for the score computation. If the time syn-

chronization aspects are taken into account, a dy-

namic time warping algorithm is used in order to

find the best time alignment between the enroll-

ment acoustic feature sequence and the test feature

test sequence. ▶Dynamic Time Warping (DTW)

[1, 2] involves a strong dependency on the text

pronounced by the individuals: the text should be

the same during the enrollment and the recogni-

tion phases, the message should have a short dura-

tion (few seconds). The Fig. 1 illustrates the DTW

main principles. For text independent systems,

where the text pronounced by the individuals

could be different between the enrollment and the

recognition phases, a ▶Vector Quantification

(VQ) algorithm is used [2]. The main principle of

VQ is illustrated in Fig. 2. In this case, the VQ

codebook could be seen as a model, but it is in

fact close to a data reduction of the enrollment

sample: only a subset of the feature vectors

extracted from the enrollment data are kept and

the other are withdrawn. The main advantage of

these methods is the low level of needed computer

resources. These methods are also efficient in terms



Speaker Matching. Figure 1 DTW principle.

Speaker Matching. Figure 2 Frames distribution of two speakers in the acoustic space. Each speaker can be

characterized by its own distribution modes (centroids).
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of identification performance if the variability fac-

tors like utterance text content, microphone or

environmental noises are controlled [1, 3].

� Machine learning approaches. In this class of meth-

ods, a speaker voice model is learnt using one or

several enrollment recordings. During the test, the

likelihood of the test data is computed using this

model. Two kind of methods are used: the statis-

tical modeling techniques (mainly GMM or HMM)

and the discriminative classification techniques

(mainly neural networks and SVM). Recently,

mixed approaches were proposed, where a statistical

approach (based on GMM) is used to deal with the
data variability and a discriminative classifier is used

for the decision estimation (SVM).

This chapter will describe more precisely the

Machine Learning based approaches, which associate

the GMM and the SVM.
GMM-UBM (GMM-MAP) Approach

GMM-UBM is the predominate approach used in

speaker recognition systems, particularly for text-

independent task [4]. This approach is based on a
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generative statistical framework and follows the

▶Bayesian Hypothesis Test representation.

This hypothesis test involves the estimation of

two probabilities: (H0), Y comes from the hypothe-

sized speaker S and (H1), Y is not from the hypo-

thesized speaker S , where Y is the observed speech

segment and S the targeted speaker. In GMM-UBM

approach, the models are Gaussian Mixture Models

which estimate a probability density function by:

pðxjlÞ ¼ SM
i¼1wiNðxjmi;SiÞ ð1Þ

where wi, mi and Si are weights, means and covariances

associated with the Gaussian components in the mix-

ture. Usually a large number of components in the

mixture and diagonal covariance matrices are used.

The model l
hyp

is denoted world model or Univer-

sal Background Model (UBM) when the model is

environment independent. Its parameters are esti-

mated using the EM algorithm, maximizing the Maxi-

mum Likelihood criterion. The speaker model lhyp
parameters are generally obtained by adapting the

world model parameters, using the Bayesian adapta-

tion framework. Generally, only mean parameters are

adapted and the other parameters remain unchanged

[5]. The MAP adaptation procedure follows the

formula:

mimap ¼
ni

ni þ r
:miemp þ ð1� ni

ni þ r
Þ:miubm ð2Þ

where mimap is the adapted mean for a given Gaussian

component i, miemp is the corresponding empirical

mean (obtained using the speaker enrollment data

and EM algorithm), miubm is the corresponding UBM

mean, ni is the occupancy value for the component

(obtained also thanks to the EM algorithm, using

the UBM and the enrollment data) and r is a regula-

tion factor.

Speaker detection test relies on a log-likelihood

ratio computation. Regarding the large size of the

GMM models usually used (between 512 and 2,048

Gaussian components), a fast scoring technique is

usually used. This technique consists in computing

the ratio only on the n winning components, i.e. for a

given frame only the n highest component likelihoods

are computed for each target, the UBMmodel is used to

find this top-component set. IfW is the world model, fs
the test segment and L the hypothetic target model, the

test is computed as follows (usually, n ¼ 10):
lðf sjLÞ ¼
Xn
i¼1

lðf sjyLi Þ þ
XG
i¼nþ1

lðf sjyWi Þ ð3Þ

where L and W are GMMs of G gaussian components,

each one of them respectively described by yi
L and yi

W.

(y being the parameters of a gaussian in a mixture:

yi ¼ (mi, si, ai) with i2[1,G]). It is important to

emphasize the multiple roles of the background

model, the UBM. This model is used to represent the

acoustic/phonetic/linguistic space. It is derived in order

to obtain the speaker models (and only the mean para-

meters are adapted for these speaker models). The UBM

model also drives the component selection during the

testing phase (fast computation technique). Finally, in

the decision step, the UBM represents the inverse hy-

pothesis (H1:Y is not from the hypothesized speaker S).

The UBM is clearly one of the key part of a GMM-

UBM speaker recognition system.
GMM Supervector Linear Kernel (GSL)

The SVM approach offers an alternative classification

strategy to the widely used GMM and has been inves-

tigated by many in the context of ASV, see for example

[6, 7].

Recalling that ASV is a two-class problem then all

expansion vectors corresponding to a given speaker in

the training mode are labeled for exampleþ1 and are

confronted individually by expansions from a cohort

of other speakers (loosely termed the impostor cohort)

with the label�1. The result of the training is the

definition of a separating hyperplane:

f ðxÞ ¼
XNSV

i¼1

ait iR�1=2FðXiÞx þ d ð4Þ

based on NSV support vectors and where ti represent

the ideal output,
PNSV

i¼1

ait i ¼ 0, d is an offset and R�1

is a diagonal normalization matrix. Then the classifier

model can be compacted as

wX ¼
XNSV

i¼1

ait iR�1FðXiÞ
d

2
64

3
75 ð5Þ

enabling the evaluation of f(x) with a simple dot prod-

uct. Indeed, in the testing phase, the expansion of

the test segment is augmented by the value 1 and
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then a dot product between the two vectors of dimen-

sion Eþ1 is performed to produce a verification score:

ScoreSVM ðX ;Y Þ ¼ f ðR�1=2FðY ÞÞ ¼ ½FðY Þt 1�wX : ð6Þ
Because R�1 ∕2 is already integrated in wX, it is not

required in the calculation of f(R�1 ∕2F(Y )).

The main difficulty for SVM based speaker-

recognition is to obtain a fixed length input vector

from a length-variable sequence of features. Several

solutions were investigated, like the GLDS method

proposed in [7]. Using the development of metrics in

GMM space [8, 9] proposed to use the UBM-GMM

system in order to extract the SVM input data. This

solution combines the best of the two approaches: it

takes advantage of the statistical modeling power of

the GMM/generative approach and of the discrimina-

tive abilities of the SVM, which works only at the

decision level. this approach is denoted GMM Super-

vector Linear Kernel (GSL) in this chapter. The SVM

input vectors are gathered from the UBM-GMM para-

meters as defined bellow:

FGSLðXÞ ¼ mX ¼

m1
X

:::
mi

X

:::
mC

X

2
66664

3
77775
; ð7Þ

It corresponds to the supervector comprising the

values of means, mX
i, taken from the GMMs, trained

on utterance X. Each GMM has C components and,

with an acoustic feature vector of size F, this gives a

FGSL(X) of size CF. The weight and variance para-

meters from the UBM are used to define r with

r
�1

2

GSL ¼

ffiffiffiffiffi
l1

p
S
�1

2

1

:::ffiffiffiffi
li

p
S
�1

2

i

:::ffiffiffiffiffiffi
lC

p
S�1

2

C

2
66664

3
77775

ð8Þ

In terms of performance, the supervector approach

like GSL is close to the GMM-UBM approach when

a session mismatch technique is applied. Moreover,

it allows to exploit other sources of information, like the

information gathered from the GMM weights in [10].
Hidden Markov Model (HMM)

A Hidden Markov Model (HMM) is a double sto-

chastic process in that it has an underlying stochastic
process that is not observable (hence the term hidden)

but can be observed through another stochastic pro-

cess that produces a sequence of observations [11].

A Markov chain consists of states and arcs between

these states. The arcs, which are associated to transit-

ion probabilities, permit to pass from one state to the

another, to skip a state, or contrary to remain in a state.

In a Hidden Markov Model, the real states sequence

is hidden but the state sequence that minimize the

probability of the observations given the HMM para-

meters could be easily determined using external

observations, such as the vectors resulting from the

pre-processing phase. The Hmms are more often

used in text-dependent speaker recognition tasks,

where there is a prior knowledge of the textual content.

The Hmms have a theoretical advantage on the GMM,

as Hmms can better model temporal variations [12,

13]. They also control the linguistic nature of the test

speech segment, adding a kind of password-based

security to the voice biometric identity verification.

HMM-based methods have been shown to outper-

form conventional methods in text-dependent speaker

verification [14].
Session Effects on Speaker Matching

The mismatch between the enrolment speech recording

and the test speech recording is one of themain problem

adressed in speaker recognition. Several factors compose

thismismatch: the recording environment (room acous-

tic, other people, cars, TV, etc.), the microphone, the

signal transmission channel, the phonetic or linguistic

content of the messages, the pathological aspects of the

speaker or the voice aging (for a given person, the voice is

changing along the life).

Dealing correctly with the session mismatch prob-

lem is mandatory in order to obtain a robust speaker

recognition system. The chapter Session effects on

speaker modelling is dedicated to this subject.
Related Entries

▶Gaussian Mixture Model

▶Hidden Markov model

▶ Speaker Features

▶Universal Background Model
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Speaker Model
Speaker model is a representation of the identity of a

speaker obtained from a speech utterance of known

origin. It can be generative or discriminative. Most

popular generative speaker models are the Gaussian
Mixture Models (GMM), which model the statistical

distribution of speaker features with a mixture of

Gaussians. Typical discriminative speaker models are

based on the use of Support Vector Machines (SVM),

where the speaker model is basically a separating hy-

perplane in a high-dimensional space. Once enrolled,

speaker models may be compared to a set of features

coming from an utterance of unknown origin, to give a

similarity score.

▶ Speaker Features
Speaker Parameters
▶ Speaker Features
Speaker Recognition Engine
▶ Speaker Matching
Speaker Recognition, One to One
▶ Liveness Assurance in Voice Authentication
Speaker Recognition, Overview
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Definition

Speaker recognition is the task of recognizing people

from their voices. Speaker recognition is based on the

extraction and modeling of acoustic features of speech

that can differentiate individuals. These features conveys

two kinds of biometric information: physiological prop-

erties (anatomical configuration of the vocal apparatus)

and behavioral traits (speaking style). Automatic speak-

er recognition technology declines into four major

tasks, speaker identification, speaker verification, speaker

segmentation, and speaker tracking. While these tasks

are quite different for their potential applications, the

underlying technologies are yet closely related.
S

Introduction

Speaking is the most natural mean of communication

between humans. Driven by a great deal of potential

applications in human-machine interaction, auto-

mated systems have been developed to automatically

extract the different pieces of information conveyed in

the speech signal (Fig. 1). Speech recognition systems

attempt to transcribe the content of what is spoken.

Language identification systems aim at discovering the

language in use. Speaker recognition systems aim to

discover information about the identity of the speaker.

Interestingly, speaker recognition is one of the few

biometric approach which is not based on image proces-

sing. Speaker dependent features are actually indirectly

measured from the speech signal which is 1-dimensional

and temporal. Speaker recognition is a biometrics quali-

fied as performance-based or active since the user has to

cooperate to produce a sequence of sounds. This is also
Speaker Recognition, Overview. Figure 1 The different spee

identification, and speaker recognition.
a major difference with other passive biometrics such

as for fingerprints, iris, or face recognition systems

where user cooperation is not requested.

Speaker recognition technologies are often ranked

as less accurate than other biometric technologies such

as fingerprint or iris scan. However, there are two main

factors that make voice a compelling biometric. First,

there is a proliferation of automated telephony services

for which speaker recognition can be directly applied.

Telephone handsets are indeed available basically

everywhere and provide the required sensors for the

speech signal. Second, talking is a very natural gesture

and it is often considered as lowly intrusive by users as

no physical contact is requested. These two factors,

added to the recent scientific progresses, made speaker

recognition converge into a mature technology.

Speaker recognition finds applications in many dif-

ferent areas such as access control, transaction authen-

tication, forensics, speech data management, and

personalization. Commercial products offering voice

biometric are available from different vendors. How-

ever, many technical and non-technical issues, dis-

cussed in the next sections, still remain open and are

still subjects of intense research.

History of Speaker Recognition

Research and development on speaker recognition

methods and techniques have now spanned more than

five decades and it continues to be an active area [1].

In 1941, the laboratories of Bell Telephone in New

Jersey produced a machine able to visualize spectro-

graph of voice signals. During the Second World War,

the work on the spectrograph was classified as a mili-

tary project. Acoustic scientists used it to attempt to
ch tasks can be declined into speech recognition, language



1264S Speaker Recognition, Overview
identify enemy voices from intercepted telephone and

radio communications. In the 1950’s and 1960’s, so-

called Experts testimony in forensic application started.

These experts were claiming that spectrographs were a

precise way to identify individuals, which is of course

not true in most conditions. They associated the term

‘‘voiceprint’’ to spectrographs, as a direct analogy to

fingerprint [2]. This expert ability to identify people on

the basis of spectrographs was very much disputed in

the field of forensic applications, for many years and

even until now [3].

The introduction of the first computers and mini-

computers in the 1960’s and 1970’s triggered the be-

ginning of more thorough and applied research in

speaker recognition [4]. More realistic access control

applications were studied incorporating real-life con-

straints as the need to build systems with single-session

enrolment. In the 1980’s, speaker verification began to

be applied in the telecom area. Other application issues

were then uncovered, such as unwanted variabilities

due to microphone and channel. More complex statis-

tical modelling techniques were also introduced such

as the Hidden Markov Models [5]. In the 1990’s, com-

mon speaker verification databases were made avail-

able through the Linguistic Data Consortium (LDC).

This was a major step that triggered more intensive

collaborative research and common assessment. The

National Institute of Standards and Technology (NIST)

started to organize open evaluations of speaker verifi-

cation systems in 1997.

In the present decade, the recent advances in com-

puter performances and the proliferation of automated

system to access information and services pulled spe-

aker recognition systems out of the laboratories into

robust commercialized products. Currently, the tech-

nology remains expensive and deployment still needs

lots of customization according to the context of use.

From a research point of view, new trends are also

appearing. For example, the extraction of higher-level

information such as word usage or pronunciation is

studied more for applications and new systems are

attempting to combine speaker verification with

other modalities such as face [6, 7] or handwriting [8].
Speech Signal

Speech production is the result of the execution of

neuromuscular commands that expel air from the
lungs, causes vocal cords to vibrate, or to stay steady

and shape the tract through which the air is flowing out.

As illustrated in Fig. 2, the vocal apparatus includes

three cavities. The pharyngeal and buccal cavities form

the vocal tract. The nasal cavity form the nasal tract

that can be coupled to the vocal tract by a trap-door

mechanism at the back of the mouth cavity. The vocal

tract can be shaped in many different ways deter-

mined by the positions of the lips, tongue, jaw, and

soft palate.

The vocal cords are located in the larynx and, when

tensed, have the capacity to periodically open or close

the larynx to produce the so-called voiced sounds. The

air is hashed and pulsed in the vocal apparatus at

a given frequency called the pitch. The sound then

produced resonates according to the shapes of the

different cavities. When the vocal cords are not vibrat-

ing, the air can freely pass through the larynx and two

types of sounds are then possible: unvoiced sounds are

produced when the air becomes turbulent at a point of

constriction and transient plosive sounds are produced

when the pressure is accumulated and abruptly re-

leased at a point of total closure in the vocal tract.

Roughly, the speech signal is a sequence of sounds

that are produced by the different articulators chang-

ing positions over time [9]. The speech signal can then

be characterized by a time-varying frequency content.

Figure 3 shows an example of a voice sample. The

signal is said to be slowly time varying or quasi-

stationary because when examined over short time

windows (Fig. 3-b), its characteristics are fairly station-

ary (5�100 msec) while over long periods (Fig. 3-a),

the signal is non-stationary (>200 msec), reflecting

the different speech sounds being spoken.

The speech signal conveys two kinds of information

about the speaker’s identity:

1. Physiological properties. The anatomical configura-

tion of the vocal apparatus impacts on the prod-

uction of the speech signal. Typically, dimensions

of the nasal, oral, and pharyngeal cavities and the

length of vocal cords influence the way phonemes

are produced. From an analysis of the speech signal,

Speaker recognition systems will indirectly capture

some of these physiological properties characteriz-

ing the speaker.

2. Behavioral traits. Due to their personality type and

parental influence, speakers produce speech with

different phonemes rate, prosody, and coarticulation



Speaker Recognition, Overview. Figure 2 Schematic view of the human vocal apparatus. The vocal apparatus

includes three cavities: the pharyngeal, buccal, and nasal cavities. These cavities form the vocal and nasal tract that can

be shaped in many different ways determined by the positions of the lips, tongue, jaw, and soft palate.
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effects. Due to their education, socio-economic

status, and environment background, speakers use

different vocabulary, grammatical constructions,

and diction. All these higher-level traits are of

course specific to the speaker. Hesitation, filler

sounds, and idiosyncrasies also give perceptual

cues for speaker recognition.

Most of the speaker recognition systems are relying

on low-level acoustic features that are linked to the

physiological properties. Some behavioral traits such as

prosody or phoneme duration are partly captured by

some systems. Higher-level behavioral traits such as

preferred vocabulary are usually not implicitly modeled

by speaker recognition systems because they are difficult

to extract and model. Typically, the systemwould need a

large amount of enrolment data to determine the pre-

ferred vocabulary of a speaker, which is not reasonable

for most of the commercial applications.

Intra-speaker variabilities are due to differences of

the state of the speaker (emotional, health, . . .). Inter-

speaker variabilities are due to physiological or
behavioral differences between speakers. Automatic

speaker recognition systems exploit inter-speaker vari-

abilities to distinguish between speakers but are im-

paired by the intra-speaker variabilities which are, for

the voice modality, numerous.
Feature Extraction and Modeling

In the case of the speech signal, the feature extrac-

tor will first have to deal with the long-term non-

stationarity. For this reason, the speech signal is usually

cut into frames of about 10-30 msec and feature ex-

traction is performed on each piece of the waveform.

Secondly, the feature extraction algorithm has to cope

with the short-term redundancy so that a reduced and

relevant acoustic information is extracted. For this

purpose, the representation of the waveform is generally

swapped from the temporal domain to the frequency

domain, in which the short-term temporal periodicity

is represented by higher energy values at the frequency



Speaker Recognition, Overview. Figure 3 Speech signal of the word accumulation: (a) waveform, (b) partial waveform,

(c) narrow-band spectrogram of (a), (d) power spectrum magnitude of (b).
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corresponding to the period. Thirdly, feature extrac-

tion should smooth out possible degradations incurred

by the signal when transmitted on the communication

channel. For example, in the case of telephone speech,

the limited bandwidth and the channel variability will

need some special treatment. Finally, feature extraction

should map the speech representation into a form

which is compatible with the statistical classification

tools in the remainder of the processing chain.

Usual feature extraction techniques are the so-

called linear predictive coding (LPC) cepstral analysis

or themel-frequency cepstral analysis. These algorithms

are widely used in the field of speech processing [9, 10].

The output of the feature extraction module is a tem-

poral sequence of acoustic vectors X ¼ {x1, x2, . . ., xN}

of length N with each vector xn having a constant

dimension D. The sequence X is then input into the

pattern classification module.

There are many different ways reported in the scien-

tific literature to build speaker models: vector
quantization, second order statistical methods, Gaussian

Mixtures Model (GMM), Artificial Neural Network

(ANN), Hidden Markov Model (HMM), Support

Vector Machines (SVM), etc. One of the most widely

used is GMM modeling. By nature, GMMs are versatile

as they can approximate any probability density function

given a sufficient number of mixtures. With GMMs, the

probability density function p(xn jMclient) or likelihood

of a D-dimensional feature vector xn given the model

of the client Mclient, is estimated as a weighted sum of

multivariate gaussian densities (e.g., [11]).
Speaker Recognition Tasks and
Applications

Automatic speaker recognition can be declined into

four tasks (Fig. 4).

Speaker identification attempts to answer the ques-

tion ‘‘Whose voice is this?’’ In the case of large speaker



Speaker Recognition, Overview. Figure 4 From left to right, the different speaker recognition tasks can be loosely

classified from the most difficult to the less difficult ones. The tasks of verification and identification are the major

ones considering the potential commercial applications.
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sets, it can be a difficult task where chances are more to

find speakers with similar voice characteristics. The

identification task is said to be closed-set if it is sure

that the unknown voice comes from the set of enrolled

speaker. By adding a ‘‘none-of-the-speaker’’ option,

the task becomes an open-set identification. Speaker

identification is mainly applied in surveillance do-

mains and, apart from this, it has a rather small num-

ber of commercial applications. Speaker verification

(Also known as speaker detection or speaker authentica-

tion task.) attempts to answer the question ‘‘Is this the

voice of Mr Smith?’’ In other words, a candidate

speaker claims an identity and the system must accept

or reject this claim. Speaker verification has a lot of

potential commercial applications thanks to the grow-

ing number of automated telephony services. When

multiple speakers are involved, these tasks can be ex-

tended to speaker tracking (when a given user is

speaking) and speaker segmentation (blind clustering

of a multi-speaker record).

Speaker recognition systems can also be classified

according to the type of text that the user utters to get

authenticated. One can distinguish between ▶ text-

dependent, ▶ text-prompted, and ▶ text-independent

systems. These categories are generally used to classify

speaker verification tasks. To some extent, they can also

apply to the task of identification.

� Text-dependent systems. These systems use the same

piece of text for the enrolment and for the sub-

sequent authentication sessions. Recognition per-

formances of text-dependent systems are usually

good. Indeed, as the same sequence of sounds is

produced from session to session, the charact-

eristics extracted from the speech signal are
more stable. Text-dependency also allows to use

finer modeling techniques capable to capture infor-

mation about sequence of sounds. A major draw-

back of text-dependent systems lies in the replay

attacks that can be performed easily with a simple

device playing back a pre-recorded voice sample of

the user. The term password-based is used to qualify

text-dependent systems where the piece of text is

kept short and is not supposed to be known to

other users. There are system selected text/password

where an a priori fixed phrase is composed by the

system and associated to the user (e.g., pin codes)

and user selected text/password where the user can

freely decide on the content of the text.

� Text-prompted systems. Here the sequence of words

that need to be said is not known in advance by the

user. Instead, the system prompts the user to utter

a randomly chosen sequence of words. A text-

prompted system actually works in two steps.

First, the system performs speech recognition to

check that the user has actually said the expected

sequence of words. If the speech recognition

succeeds, then the verification takes place. This

challenge-response strategy achieves a good level of

security by preventing replay attacks.

� Text-independent. In this case, there is no constraint

on the text spoken by the user. The advantages are

the same as for the text-prompted approach: no

password needs to be remembered and the system

can incrementally ask for more data to reach a

given level of confidence. The main drawback lies

here in the vulnerability against replay attacks since

any recording of the user’s voice can be used to

break into the system.
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Speaker recognition finds applications in many dif-

ferent areas such as telephony transaction authentica-

tion, access control, speech data management, and

forensics. It is in the telephony services that speaker

recognition finds the largest deal of applications as the

technology can be directly applied without the need to

install any sensors.

� Telephony authentication for transactions. Speaker

recognition is the only biometric that can be directly

applied to the automated telephony services (In-

teractive Voice Response - IVR systems). Speaker

recognition technology can be used to secure the

access to reserved telephony services or to authen-

ticate the user while doing automated transac-

tions. Banks and telecommunication companies

are the main potential clients for such systems.

As many factors impact on the performances

of speaker recognition in telephony environ-

ment, it is often used as a complement to other

existing authentication procedures. Most of the

implementations are using a text-prompted pro-

cedure to avoid pre-recording attacks and to

facilitate the interaction with a dialog where the

user just needs to repeat what the system is

prompting. A less known but interesting example

of speaker verification application in telephony is

also the home incarceration and parole/probation

monitoring.

� Access control. Speaker verification can be used

for physical access control in combination with

the usual mechanisms (key or badge) to improve

security at relatively low cost. Applications such

as voice-actuated door locks for home or igni-

tion switch for automobile are already com-

mercialized. Authorized activation of computers,

mobile phones, or PDA is also an area for poten-

tial applications. Such applications are often

based on text-dependent procedures using single

passwords.

� Speech data management and personalization.

Speaker tracking can be used to organize the infor-

mation in audio documents by answering the ques-

tions: who and when a given speaker has been

talking? Typical target applications are in the

movie and media industry with speaker indexing

and automatic speaker change detection for auto-

matic subtitling. Automatic annotation of meeting

recordings and intelligent voice mail could also
benefit from this technology. In the area of perso-

nalization, applications to recognize broad speaker

characteristics such as gender or age can be used to

personalize advertisements or services.

� Forensic speaker recognition. Some criminal cases

have recordings of lawbreakers voice and, speaker

verification technologies can help the investigator

in directing the investigation. On the other hand,

there is a general acceptation in the scientific com-

munity on the fact that a verification match

obtained with an automatic system or even with a

so-called voiceprint expert, should not be used as a

proof of guilt or innocence [3].
Performances and Influencing
Factors

Figure 5 summarizes typical ranges of Equal Error Rate

(EER) performances for four categories of speaker

verification systems [12]. The range of performances

is globally extremely large, going from 0.1 to 30%

across the systems. Text-dependent applications using

high quality speech signals can have very low EER

typically ranging from 0.1 to 2%. Such performances

are obtained with multi-session enrolment of several

minutes and test data of several seconds acquired in the

same condition as for the enrolment. Pin-based text-

dependent applications running on the telephony

channel will typically show performances ranging

from 2 to 5%. Text-independent applications based

on telephony quality, recorded during conversations

over multiple handsets and using several minutes of

multi-session enrolment data and a dozen of seconds

for the test data, will show EER ranging from 7 to 15%.

Finally, text-independent applications based on very

noisy radio data will show performances ranging

from 20 to 35%.
Summary

Speaker recognition is often ranked as providing me-

dium accuracy in comparison to other biometrics.

This is due to three main factors. First, there are the

inherent and numerous intra-speaker variabilities of

the speech signal (emotional state, health condition,

age). Second, the inter-speaker variabilities are



Speaker Recognition, Overview. Figure 5 Typical performances of speaker verification systems. The arrows define

ranges of Equal Error Rates for four different types of applications. Applications of type (a) are text-dependent based on

high quality speech signals. Applications of type (b) are text-dependent based on telephony speech quality, typically a

pin-based application. Applications of type (c) are text-independent on telephony speech quality recorded during

conversations. Applications of type (d) are text-independent based on very noisy radio.
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relatively weak, especially within family members.

Finally, the speech signal is often exposed to all sort of

environmental noise and distortions due to the commu-

nication channel. These varying acquisition conditions

are captured by the speech template which becomes

biased. To smooth out these variabilities, lengthy or

repeated enrollment sessions are often performed, but

this is generally at the expense of usability.

Speaker recognition remains however a compelling

biometrics. First, talking is considered a very natural

gesture and user acceptance is generally high. Further-

more no physical contact is requested to record the

biometric sample and the rate of failure to enroll is also

very low. Finally, the technology cost of ownership is

pretty low. For computer-based applications, simple

sound cards and microphones are available at low-

cost. For telephony applications, there is no need for

special acquisition devices as any handset can be used

from basically anywhere.

Speaker recognition technology has made tremen-

dous progress over the past 20 years and finds new

applications in many different areas such as telephony

authentication, access control, law enforcement,

speech data management, and personalization.
Related Entries
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Definition

The term ‘‘speaker recognition’’ (SR) refers to a group

of technologies that use information extracted from a

person’s speech to perform biometric operations such

as speaker identification and verification (SIV). Stan-

dards for SR are designed to support the development

of applications that can work with technology from

different vendors (application programming inter-

face standards), the sharing of SR data (data inter-

change standards), the transmission of data in real

time (distributed speaker recognition standards), and

the management of data resources in distributed envir-

onments (process-control protocol standards).
Introduction

SR technologies stand at the juncture between▶ speech-

processing and biometrics. They belong in speech pro-

cessing, because they extract and analyze data from the

▶ stream of speech. They belong in biometrics, because

the data that are extracted describe a physical or be-

havioral characteristic of the speaker and because they

use that information to make decisions regarding the

speaker, usually determining the identity of the speaker

and verifying a claim of identity. Some SR technologies

perform other speaker-related functions, such as plac-

ing the speaker into a category, such as female or

male (▶ speaker classification); determining whether

the speaker has changed (speaker change); assessing the

speaker’s level of stress or emotion (emotion detection,

voice stress analysis); tracking a specific voice in a

multispeaker communication (speaker/voice track-

ing); separating interleaved and overlapping voices

from each other (▶ speaker separation); and determin-

ing whether the speaker is lying or telling the truth

(voice lie detection).

Standards for SR come from both speech processing

and from biometrics. They fall into several categories:

1. Application programming interface (API) standards,

2. Sharing of stored SR data (data interchange),

3. Transmission of data in real time (distributed speaker

recognition) and

4. Management of data resources in distributed envir-

onments (process-control protocols).
Application Programming Interface (API)
Standards – Early Work

API standards eliminate the need for programmers

to learn a new set of programming functions for each

SR product. They accomplish this by establishing

a standard set of functions that can be used to

develop applications using any standards-compliant

SR technology.

The bulk of the work on SR standards has been

directed toward the development of standard APIs.

Most of these standards have been crafted by speech-

processing industry consortia or standards bodies and

are extensions of existing standards for ▶ speech

recognition.



Speaker Recognition, Standardization S 1271

S

The first and, to date, the most detailed API standard

is the SpeakerVerificationAPI (SVAPI) [1, 2]. SVAPI was

constructed by a speech- and biometrics-industry con-

sortium formed in 1996, whose work was sponsored by

Novell Corporation. The goal was to develop a com-

panion to Speech Recognition API (SRAPI), an API

standard for speech recognition on the PC desktop.

SVAPI is a low-to-midlevel standard that covers

enrollment, verification, identification, and speaker

classification with some support for speaker separation.

It handles both centralized and distributed deployments

and includes the functionality for specifying features of

the stream of speech, the inclusion of several types of

normalized scoring, and the characterization of input

from both microphones and telephones. SVAPI consists

of a set of callable Dynamically Linked Library (DLL)

functions. It is written in C++ and Java and runs under

Windows on desktop platforms.

SVAPI 1.0 was released in 1997, but work on the

specification stopped shortly thereafter and the stan-

dard remains largely unsupported. Despite its short life

as a standard, SVAPI has had a lasting impact on API

standards in both biometrics and speech processing.

Work on SVAPI inspired the development of a high-

level, generic API for biometrics that was developed by

The National Registry, Inc. (NRI) under contract with

an agency of the US Department of Defense. The result-

ing specification called Human Authentication API

(HA-API) [3] was the precursor to the BioAPI specifi-

cation of the BioAPI Consortium (www.bioapi.org).

Proof-of-concept testing began early in 1998 and was

performed on five commercial biometric products,

including one SR product.

HA-API was designed for desktop platforms run-

ning 32-bit Windows operating systems. It supported

stand alone and client–server implementations. HA-API

operations required by SR, such as adaptive updating

voice models (called ‘‘adaptation’’), were retained

when HA-API evolved into the BioAPI specification.

The S.100 Media Resources and Service Protocol [4]

was developed by the Enterprise Computer Telephony

Forum (ECTF). It was an API standard for using

speech recognition (ASR) in computer-telephony.

Support for speaker verification and identification was

added to S.100 version 2 in the form of two parameters:

ASR_ECTF_Verification and ASR_ECTF_Identification.

Their role was to extend the functionality of speech

recognition (ASR) technology. ‘‘When supported,
the ASR resource may be used for speaker identification

and speaker verification, e.g., by training a context with

▶ utterances from a particular speaker [4].’’
API Standards – Current Work

VoiceXML is an XML scripting language for develop-

ing speech applications for▶ interactive voice response

(IVR) applications over the telephone. It is the

dominant standard for ASR and text-to-speech syn-

thesis. Its developers, the World Wide Web Consor-

tium (W3C) and the VoiceXML Forum, are defining

an SR module for the next version of VoiceXML

(version 3.0). The Forum’s Speaker Biometrics Com-

mittee (SBC) has identified the requirements for

the module, and the W3C’s Voice Browser Work-

ing Group is constructing the actual specification.

When completed, the SR module will become part

of a network of speech-processing standards for ser-

vices-oriented architecture. Figure 1 shows the net-

work and indicates where the SR module (called

‘‘SIV’’) will fit.

The SBC has published several documents related

to its work on the Forum’s web page (http://www.

voicexml.org/biometrics):

1. SIV Glossary [6],

2. SIV Applications [7] a review of existing and po-

tential SR applications, and

3. Speaker Identification and Verification (SIV)

Requirements for VoiceXML Applications [8].

The requirements document specifies the basic func-

tions that an API standard for speaker verification and

identification must support: enrollment, verification,

identification, and supervised adaptation. It also estab-

lishes a three-phase ‘‘session’’ as the basic unit of oper-

ation. Those phases are

1. Designation – when the function is specified (e.g.,

verification), andpreparatory events occur (e.g., claim

of identity)

2. Audio processing – when speech samples are col-

lected and analyzed and decisions are rendered

3. Cleanup – when temporary files and data are

purged and the session is concluded.

The document denotes a set of basic properties,

including various kinds of thresholds (e.g., decision

http://www.bioapi.org
http://www.voicexml.org/biometrics
http://www.voicexml.org/biometrics
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Relationship of a VoiceXML module for SR and the BioAPI

specification.

1272S Speaker Recognition, Standardization
threshold, adaptation threshold), timeouts, and limits

(e.g., minimum number of utterances required to per-

form verification). It defines allowable concurrent and

nested sessions and provides support for multifactor

applications. As shown in Fig. 2, the requirements

document also indicates how a VoiceXML SR module
might work with the generic biometric standard, the

BioAPI specification.
Data Interchange Standards

Data exchange/interchange standards support the

sharing and reuse of enrollment, verification, and iden-

tification data. They are needed by a broad spectrum of

operations requiring interoperability, such as product

upgrades that are not backwards compatible, security

audits, inter-bank customer support, and multiagency

intelligence and law-enforcement investigations.

They facilitate the exchange of SR data by providing a

structure that not only transmits the data but also

offers a controlled description of those data. The data

exchanged by a data interchange standard may be raw,

partially-processed/feature data, or fully-processed

model/template data.

The VoiceXML Forum and Technical Committee

M1 (Biometrics) of the InterNational Committee for
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Name Status Data Type Value(s)

Purpose Required String Verification

Identification

Enrollment

Multiple

Other

Channel Required Complex type

AudioFormatHeader Required Complex type

Security Optional Complex type

Speaker Optional Complex type

Input device Optional Complex type

Speaker Recognition, Standardization. Table 2

Elements in audio format header

Name Status
Data
Type Value(s)

Byte Order Required hexBinary 0Xff00

Streaming Required boolean 0 or 1

AudioFormat Required string LinearPCM

Mu-Law

A-Law

OGG Vorbis

OGG Stream

Samplingrate Required Integer Samples per
second

BitsPer
Sample

Required Integer
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Information Technology Standards (INCITS) [9] are

collaborating on the development of an American

National Standard for SR. As its name suggests, the

draft standard Speaker Recognition Format for Raw

Data Interchange (SIVR-1) supports the interchange

of raw SR data. SIVR-1 is a format for describing

the data being transmitted for a single SR session. It

supports enrollment, verification, and identifica-

tion operations. Work on SIVR began in 2005 and

the standard is currently wending its way through

separate approval processes by INCITS and the

VoiceXML Forum.

SIVR-1 defines two headers: ‘‘Session’’ and ‘‘In-

stance.’’ It also supports the inclusion of nonstandardized

data (called ‘‘extended’’ data). Since SIVR-1 is an XML

standard, it also specifies an XML schema.

Each SIVR-1 compliant format has a single Session

header. Table 1 contains a subset of the XML elements

included in the Session header. The Session header

contains information that remains constant through-

out the session. Those elements include the date and

time the session took place, the total amount of utter-

ance data included in the session, characteristics of

the channel and input device, and a description

of the data.

These elements are governed by existing standards.

For example, the syntax of the DateAndTime element

must comply with ISO 8601 2004(E) Data Elements

and Interchange Formats – Interchange Formats -

Representation of Dates and Times [10]. Although se-

curity is essential for protecting data stored in an

SIVR-1 format, that element is optional to avoid con-

flict with external security and identity management

technologies that may be applied.
Elements in Table 1 that are ‘‘complex type’’ are

themselves made up of elements. Table 2 displays sev-

eral of the elements that make up the AudioFor-

matHeader, which defines the data that are stored in

and transmitted using SIVR-1.

The element AudioFormat specifies the audio for-

mats to be used to store data in the format. These

audio formats are widely used open standards.

An SIVR-1 format must contain at least one In-

stance Header. Each Instance contains information

that can change from one of the speaker’s utterances

to the next within the Session. Instances also contain

the raw data of the utterance. Table 3 displays some of

the elements in the SIVR-1 Instance header.

As Table 3 reveals, each Instance in a Session is

assigned a number. SIVType is included, because
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Representative Elements of SIVR-1 Instance Header

Name Status
Data
Type Value(s)

Instance
number

Required Integer

SIVType Required String Text-dependent

Text –prompted

Text-
independent

Unknown

ASRUsed Required String Yes

No

Unknown

Type of Prompt
Content

Required String None

Text

Binary

Pointer

Both

Utterance Required Complex
type
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different Instances can utilize different kinds of SR

technology as the following example illustrates.
Instance 1
 Investigator: ‘‘Please say your rank.’’
Speaker: ‘‘Corporal’’
Instance 2
 Investigator: ‘‘Please say your ID

number’’
Speaker: ‘‘7398722’’
Instance 3
 Investigator: ‘‘Where were you on the

night of March 5, 2007?’’
Speaker: ‘‘I was home alone.’’
ASRUsed is included, because some of the instances

may use ASR, while other instances may not. It is more

likely, for example, that ASR would be used for

instances 1 and 2, which are the ▶ text-prompted and

▶ text-dependent technology than for instance 3, which

is text-independent and requires a different type of ASR.

As with the elements of the Session header, the

complex type element Utterance consists of several

other elements that include the quality of the raw

audio data and audio-format information that deviates

from the default values specified in the AudioFor-

matHeader element of the Session.
In 2007, the Joint Technical Committee 1 (JTC 1) of

the International Standards Organization (ISO) and the

International Electrotechnical Commission (IEC) ap-

proved a project for the development of an international

standard under JTC1 Subcommittee 37 – Biometrics

(No. 1.37.19794–13, Voice data) that is similar in

scope to the INCITS/VoiceXML project. This project

differs from the INCITS/VoiceXML project in that it is

developing binary and XML versions and will have

header for standardized feature as wel as far raw data.
Distributed Speaker Recognition
Standards

The real-world conditions under which SR must oper-

ate are not always optimal. SR data are captured by an

increasingly diverse spectrum of heterogeneous, third-

party input devices that process the data, using one of a

growing number of standard audio formats so that they

can be transmitted over telecommunications and data

networks. Those networks (called ‘‘channels’’) differ in

their acoustic characteristics, bandwidths, and quality.

These variables affect the performance of even the most

accurate SR technology and are represented in the data-

interchange headers presented in the previous sections.

One method for reducing the impact of differences

in data quality and processing associated with input

devices and channels is to embed technology into

input devices that perform standardized preprocessing

and feature extraction before the data are sent over the

channels. If those operations produce the features that

are needed to perform speech recognition or SR, the

embedded technology is called ‘‘distributed speech/

speaker recognition’’ (DSR).

In 2000, the European Telecommunications Stan-

dards Institute (ETSI) published a standard for extracting

those common features [11] in support of speech rec-

ognition. As Fig. 3 indicates, the embedded technology

(‘‘terminal front end’’) performs error-reduction, noise

reduction, compression, and other operations in addi-

tion to feature extraction before transmitting the data.

Work is now being done to extend ETSI DSR to SIV.

In order to accomplish that, several additional features

need to be extracted from the speech signal [12].

Since most developers of speech recognition and

SR technology use a core set of common features, the

development of a DSR standard seems reasonable. The

problem facing ETSI DSR and other DSR standards is
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that each speech recognition and SR vendor approaches

feature extracting in a unique way and those differences

are considered to be part of the vendor’s ‘‘secret sauce.’’
S

Process-Control Protocols

Process control/data transport standards facilitate real-

time communications among the disparate elements of

a system. They enable applications, servers, input

devices, and SR technology to exchange data in real

time quickly, effectively, and smoothly. This is parti-

cularly important in the burgeoning web-services/

services-oriented architecture (SOA) environment,

which often involves complex network interactions

among different kinds of ‘‘nodes.’’ Those nodes include

devices (e.g., telephones), resources (e.g., an SR prod-

uct), applications, and servers.

One standard that is used to support SR in SOA is

the Simple Object Access Protocol (SOAP). SOAP is

a W3C standard for exchanging messages (called a

‘‘data transport protocol’’) that can be used over

HTTP and HTTPS (for secured transport). It allows

one network node (e.g., a client) to send a message to

another node (e.g., a browser or server) and to get an

immediate response. SOAP is a generic data-transport

protocol; it makes no mention of SR and does not

address issues of special concern to transmission of

audio data.

Unlike SOAP, the Media Resources Control Protocol

(MRCP) was created specifically to control voice-

related resources and to support the transport of

speech data in SOA and IVR environments. As shown

in Fig. 4 , MRCP mediates between the servers that

house the speech and SR technologies (called ‘‘media

processing resources’’) and applications or other enti-

ties on the network (called ‘‘clients’’) that need to
communicate with them. Figure 4 provides a more

detailed view of the architecture of MRCPv2.

MRCPv2 specifies the messages that can be sent

between the two parties, how the resources are to be

used, and how these messages are to be carried over a

transport layer. Figure 4 shows the two parties involved

in the communication (client, resource server); the

speech-processing resources that may be involved;

and how the Session Initiation Protocol (SIP), the

Transmission Control Protocol (TCP), and Real-Time

Transport Protocol (RTP) are utilized.

An interaction between a client and a media re-

source server is called a ‘‘session.’’

A separate session may be created for each resource

(e.g., a speaker-verification product and an ASR prod-

uct) or a single session may involve multiple resources.

For example, it supports the establishment of a single

session for ASR and speaker verification that allows

both resources to operate on the same utterances. The

client uses Session Initiation Protocol (SIP) to start

and end sessions and to establish an MRCP control

channel with the media server so that the client can use

the server’s media processing resources. Once that is

accomplished, MRCP-compliant messages can be sent

between the client and the server. The SIP-labeled

line between the client and the server, as shown in

Fig. 4, indicates that SIP is also used to ensure that

messages and audio are properly sent and received.

The commands/functions for speaker verification

and identification are the ‘‘messages’’ that enable the

client to control the SR operation within the session.

They include commands to start and end sessions, to

verify, identify, and get intermediate-level results.

MRCP is based on a requirements document that

includes speaker verification and identification among

the technologies to be supported [13], even though

those technologies were not incorporated into MRCP
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version 1. SR has been added to version 2, which also

addresses security considerations, primarily for SR

sessions.

MRCP version 1 (MRCPv1) was developed jointly

by Cisco Systems, Inc., Nuance Communications, and

Speechworks Inc. and has become a widely used stan-

dard within the speech-processing industry[14].

MRCPv2 was created by a speech-industry consortium

within the Internet Engineering Technology Forum

(IETF) and is in its final stages of approval [15].
Related Entries

▶Biometrics, Overview

▶Common Biometric Exchange Format Framework

standards

▶Remote Authentication

▶ Speaker Authentication

▶Voice
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Speaker Segmentation
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University of Vigo, Vigo, Spain
Synonyms

Speaker change detection; Speaker clustering; Speaker

diarization
S

Definition

Speaker segmentation is the process of partitioning an

input audio stream into acoustically homogeneous

segments according to the speaker identity. A typical

speaker segmentation system finds potential speaker

change points using the audio characteristics.
Introduction

Segmenting an audio–visual stream by its constituent

speakers is essential in many application domains.

First, for audio–visual documents, speaker changes

are often considered natural points around which to

structure the document for navigation by listeners

(▶ speaker indexing). In broadcast news, for example,
speaker changes typically coincide with story changes

or transitions. Audio recordings of meetings, presenta-

tions, and panel discussions are also examples where

organizing audio segments by speaker identity can

provide useful navigational cues to listeners. Further-

more, an accurate speaker segmentation system is also

necessary for effective audio content analysis and

understanding, audio information retrieval, speaker

identification-verification-tracking, and other audio

recognition and indexing applications. In fact, speaker

segmentation is an important subproblem of the

▶ speaker diarization task, which is used to answer

the question Who spoke when?. Speaker segmentation

focuses on finding out when a person is speaking and

the main goal is to mark where speaker changes occur,

i.e., to divide a speech signal into a sequence of speaker-

homogeneous regions. Typically, there is no prior

knowledge about the speech characteristics of the

speakers or the number of different speakers before

the process starts, so these have to be derived, in an

unsupervised manner, from the same data that are

going to be used to find the speaker changing points.

Second, speaker segmentation relates to automatic

transcription of speech. In many scenarios, the per-

formance of automatic speech recognition can benefit

greatly from speaker adaptation, whether supervised

or unsupervised. Speaker segmentation, while not a

strict prerequisite for speaker adaptation, is important

for performing adaptation on multispeaker data, as

it can provide the recognizer with homogeneous

speaker data.

Speaker segmentation has sometimes been referred to

as speaker change detection and is closely related

to acoustic change detection. It has received much atten-

tion recently. For a given audio stream, speaker segmen-

tation systems find the times when there is a change of

speaker in the audio. On a more general level, acoustic

change detection aims at finding the times when there is

a change in the acoustics in the recording, which includes

speech/nonspeech, music/speech and others. Thus,

acoustic change detection can detect boundaries within

a speaker turn when the background conditions change.

With the rapid increase in the availability of multi-

media data archives, efficient segmentation, indexing

and retrieval of audio–visual data is quite an important

task in many applications. Automatic metadata ex-

traction from video and audio recordings enables the

development of sophisticated multimedia content man-

agement applications which can help users manage their

http://www3.tools.ietf.org/html/rfc4313
http://www3.tools.ietf.org/html/rfc4313
http://www.ietf.org/rfc/rfc4463.txt
http://nsodl.org/resource/2200/2006H
http://tools.ietf.orglid
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personal recordings. For real world audio–visual data

the text can be generated using automatic speech recog-

nition (ASR), the speaker labeled using speaker recogni-

tion, and the speaker turns and segments derived can be

used for indexing the associated audio and video.

The general unsupervised speaker segmentation

problem, in addition to not having models or other

information to help segment the speech data by speaker,

brings several additional obstacles that complicate the

task of separating the segments of one speaker from the

segments of another speaker. For example, multispea-

ker speech data typically includes several short seg-

ments. Short segments are difficult to analyze because

of the inherent instability of short analysis windows. In

addition, more than one speaker may be talking at the

same time in multispeaker speech data and the seg-

ments may be contaminated with the speech of another

speaker. Also, the accuracy of the segmentation process

is affected by background noise and/or music. This

leads to the need of modeling of these artifacts, which

in turn increases system complexity. Other difficulties

are related to the dynamic fine-tuning of some para-

meters that improve the accuracy of the segmentation

algorithms. It is also a major concern into optimizing

the system performance in terms of access times and

signal processing speed. It is highly desirable that these

segmentation tasks are accomplished automatically

with the least user intervention but additionally these

need to be performed fast and accurately.

The task of speaker segmentation can be considered

as an evolution of a Voice Activity Detection (VAD),

also referred to as Speech Activity Detection (SAD).

VAD constitutes a very basic task for most speech-

based technologies (Speech Coding, automatic speech

recognition (ASR), Speaker Recognition (SR), speaker

segmentation, voice recording, noise suppression and

others). The classification of an audio recording in

speech and nonspeech segments can be utilized to

achieve more efficient coding and recognition.

Grouping together segments from the same speaker,

i.e., ▶ speaker clustering, is also a crucial step for

segmentation. Speaker segmentation followed by

speaker clustering is referred to as speaker diarization.

Diarization has received much attention recently. It

is the process of automatically splitting the audio re-

cording into speaker segments and determining which

segments are uttered by the same speaker. In general,

diarization can also encompass speaker verification and

speaker identification tasks.
Speaker clustering also belongs to the pattern

classification family. Clustering data into classes is a

well-studied technique for statistical data analysis, with

applications in many fields, and, in general, can be

defined as unsupervised classification of data, i.e.,

without any a priori knowledge about the classes or

the number of classes. In the speaker diarization task,

the clustering process should result, ideally, in a single

cluster for every speaker identity. The most common

approach is to use a hierarchical agglomerative cluster-

ing approach in order to group together segments

from the same speaker [1]. Hierarchical agglomerative

clustering typically begins with a large number of clus-

ters which are merged pair-wise, until arriving (ideally)

at a single cluster per speaker. Since the number of

speakers is not known a priori, a threshold on the

relative change in cluster distance is used to determine

the stopping point (i.e., number of speakers). Deter-

mining the number of speakers can be difficult in appli-

cations where some speakers speak only during a very

short period of time (e.g., in news sound bites or back

channels in meetings), since they tend to be clustered in

with other speakers. Although there are several para-

meters to tune in a clustering system, the most crucial is

the distance function between clusters, which impacts

on the effectiveness of finding small clusters.
Examples of Efforts to Foster Speaker
Segmentation Research

The Defense Advanced Research Projects Agency

(DARPA) and U.S. National Science Foundation have

promoted research in speech technologies for a wide

range of tasks from the late 1980s. Additionally, there

are significant speech research programs elsewhere in

the world, such as European Union funded projects.

The Information Technology Laboratory (ITL) of

the National Institute of Standards and Technology

(NIST), has the broad mission of supporting U.S. indu-

stry, government, and academia by promoting U.S.

innovation and industrial competitiveness through

advancement of information technology measurement

science, standards, and technology in ways that enhance

economic security and improve our quality of life.

From 1996 the NIST Speech Group, collaborating

with several other Government agencies and research

institutions, contributes to the advancement of the

state-of-the-art in human language technologies and
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related multimodal technologies that employ machine

learning approaches by

� Developing measurement methods and algorithms

� Providing annotated corpora for development and

evaluation

� Coordinating challenge-task-focused benchmark

tests

� Sponsoring evaluation-oriented workshops

� Building test-bed systems

Benchmark tests, implemented within this community

since 1987, are used to track the development of several

speech technologies. These tests, which provide diag-

nostic information that helps to identify the strengths

and weaknesses of the technology, have facilitated

increased accuracy and robustness of the technology

over time.

In 1996 NIST also started the 1996 ARPA CSR

Hub-4 evaluation (1996–1999). The purpose of this

evaluation is to improve the basic performance of

speaker-independent unlimited-vocabulary recogni-

tion systems using Broadcast News Sources. In this

task speaker segmentation enables speaker normaliza-

tion and adaptation techniques to be used effectively to

integrate speech recognition.

In 1997 NISTstarted the Hub-5E evaluation (1997–

2001) that focuses on the task of transcribing conver-

sational speech into text. This task is posed in the

context of conversational telephone speech.

Since 1996, NIST has also organized yearly Speaker

Recognition (SR) evaluation campaigns, focusing on the

automatic ▶ speaker detection and ▶ speaker tracking

tasks. In 2000, the NIST SR evaluation introduced the

speaker segmentation evaluation as a new task.

With the DARPA EARS (Effective, Affordable,

Reusable Speech-to-Text) program (2002–2004) the

focus moves on a new task, denoted rich transcription,

which addresses the need for systems that generate

high accuracy, readable transcripts. Here, semantic

information is not the only element of interest. Indeed,

acoustics-based information (sounds, speech qualities,

speaker information, . . .), discourse-based informa-

tion (disfluencies, emotion, . . .), as well as linguistic

information (topic, named entities, . . .) may also be

used to enrich the transcription and to help for index-

ing audio documents. Speaker characteristics are obvi-

ously an important information in this context.

The EARS program supports several evaluation

tasks that are administrated by the NIST under the
Rich Transcription (RT) heading. The specific research

tasks are broadly categorized as supporting either

Speech-to-Text (STT) or Metadata Extraction (MDE).

While STT emphasizes getting the words right, MDE is

concerned with structuring STToutput to be maximally

readable for humans and downstream automatic pro-

cesses by humans and machines. The Metadata Extrac-

tion (MDE) component is designed to enrich the raw

word sequence generated by STT systems, by introdu-

cing additional information (e.g., who is speaking, how

the word stream breaks into sentence units, how to

correct the word sequence based on verbal edits) that

plays a fundamental role not just in transcribing the true

speech content but also in facilitating downstream

processing by humans and machines.

For this reason, since 2003 the speaker segmenta-

tion system evaluation had joined in the Rich Tran-

scription evaluation campaigns and had left the

Speaker Recognition evaluation campaign.

The NIST RTmetadata MDE task has been includ-

ing several tracks:

� MDE ‘‘Who Spoke When’’ Speaker Diarization

focused on speaker segmentation and clustering.

� MDE ‘‘Who Said What’’ Speaker Diarization.

� MDE Speech Activity Detection.

� MDE Source Localization.

� Structural MDE concerned with identifying

sentence-like units and detecting disfluencies.

The RT evaluation corpora have included different

domains: broadcast news, conversational telephone

speech, conference room meetings, and lecture room

meetings. The segmentation challenges are different

for the different tasks according to their quality of

recordings, number of speakers, the speaking duration

of each speaker, and the sequence of speaker changes,

etc. But usually high-level speaker segmentation tech-

niques work well over different domains.
Operation of a Speaker Segmentation
System

A basic speaker segmentation system consists of three

main steps. First, the input signal is processed to

extract a set of acoustic features. Second, a speech/

nonspeech detector separates target speech regions

from the given audio clip. And lastly, the speaker

change detector identifies potential speaker changing
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points in each speech region and consequently divides

the speech regions into segments containing speech

from a single speaker (Fig. 1).

The state-of-art systems for speaker segmentation

can be divided into three categories: metric-based,

model-based, and hybrid (i.e., combined metric-

and model-based) ones. The segmentation process

may be carried out by a single pass or by multiple

passes through the acoustic data. In the multiple passes

case the decision of change-point detection is refined

on successive iterations.

Metric-based segmentation is probably the most

used approach. It relies on the definition of somemetric

or distance measure to compare the spectral character-

istics on both sides of successive points of the audio

signal, and it hypothesizes as speaker change points

those boundaries whose distance values exceed a given

threshold. The performance of this approach depends

highly on the metric and the threshold. Various metrics

have been proposed and analyzed in the literature.

The most cited are the Bayesian Information Criterion
Speaker Segmentation. Figure 1 A brief flow diagram

for a speaker segmentation module.

Speaker Segmentation. Figure 2 Block diagram of a traditio
(BIC) which presents the advantages of robustness and

threshold independence [2]; the Generalized Likelihood

ratio (GLR) and the Kullback–Leibler distance [3];

Divergence Shape Distance [4], etc. The threshold is

normally defined empirically given a development set,

according to a desired performance. Thus, the thresh-

old will be dependent on the data being processed and

needs to be redefined every time data of a different

nature need to be processed. This problem has been

studied within the speaker identification community

in order to classify speakers in an open set speaker

identification task [5].

Model-based techniques are an applied evolution

of a common pattern recognition task (Fig. 2). In

model-based segmentation, a set of models is esti-

mated for different speaker classes by using training

data. Then, the input audio stream is classified, using

these models, by finding the most likely sequence of

models [6, 7]. The boundaries between models become

the segmentation change points. Several models, in-

cluding Gaussian Mixture Models (GMMs) [8],

▶Hidden Markov Models (HMMs) [9] and Support

Vector Machines (SVMs) [10] have been employed to

describe specific speakers.

Hybrid techniques combine metric- and model-

based techniques [11]. Usually, metric-based segmen-

tation is used initially to presegment the input audio

signal. The obtained segments are used then to create

a set of speakers models. Finally, model-based re-

segmentation gives a refined segmentation.

There are some speaker segmentation techniques

proposed in the literature that are not a clear fit to any

of the two previous categories. For example, in [12]

dynamic programing is proposed to find the speaker

change points. In [13] a genetic algorithm is proposed

where the number of segments is estimated via the

Walsh basis functions and the location of change points
nal pattern recognition system.
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is found using a multipopulation genetic procedure.

In [14] segmentation is based on the location estimation

of the speakers by using a multiple-microphone setting.

The difference between two locations is used as a feature

and tracking techniques are employed to estimate the

change points of possibly moving speakers.
Assessing Performance

A speaker segmentation system should provide the cor-

rect speaker turns and therefore the segments should

contain a single speaker. The performance of speaker

segmentation can be assessed in terms of the accuracy

of speaker turn point detection. In this case, two pairs of

figures of merit are commonly used to assess the perfor-

mance of a speaker segmentation system. On the one

hand, one may define two fundamental types of errors,

namely false alarm (FA) and missed detection (MD).

A FA of turning point detection occurs when a detected

turning point is not a true one. A missed MD occurs

when a true turning point cannot be detected. Thus, it is

possible to use the false alarm rate (FAR) and the miss

detection rate (MDR) defined as:
Speaker Segmentation. Figure 3 The MDR–FAR curve for sp
FAR ¼ NFA

NFA þ N ref

;

MDR ¼ NMD

N ref

;

where NFA and NMD are the total number of FA andMD

respectively, andNref is the total number of true turning

points given by the reference manual segmentation. A

high value of FAR signifies that the speech signal has

been oversegmented. A high value of MDR means

undersegmentation. Figure 3 shows an example of

FAR–MDR curve [15]. This figure shows the tradeoff

between missed detection and false alarm, and pro-

vides a reference to select different operation points.

On the other hand, one may employ the precision

(PRC) and recall (RCL) rates given by

PRC ¼ CFC

DET
;

RCL ¼ CFC

GT
;

where CFC denotes the number of correctly found

changes, DET is the number of the detected

speaker changes, and GT stands for the actual number
eaker segmentation.

S
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of speaker turns, i.e., the ground truth. For the latter pair,

another objective figure of merit is the F1 measure

F1 ¼ 2PRCRCL

PRCþ RCL

that admits a value between 0 and 1. The higher its

value is, the better performance obtained is. Between

the pairs (FAR, MDR) and (PRC, RCL) the following

relationships hold:

MDR ¼ 1� RCL;

FAR ¼ RCLFA

DETPRC þ RCLFA
:

The performance of speaker segmentation can also

be assessed in terms of the speaker coverage. For the

measurement of speaker coverage, the false alarm cov-

erage (FACov) and the missed detection coverage

(MDCov) are defined as,

MDCov ¼
P

i
duration of missed portion for

reference segment iP
iduration of reference segment i

;

FACov ¼
P

j
duration of false portion for

detected segment jP
iduration of detected segment j

:

In the NIST evaluations the performance of a

speaker segmentation system is measured using the

segmentation cost function, defined as a weighted

sum of decision errors, weighted by error type and

integrated over error duration. Thus, five kinds of

errors are considered, all as a function of time:

� Missing a segment of speech when speech is present

(PMissSeg)

� Falsely declaring a segment of speech when there is

no-speech (PFASeg)

� Assigning a false alarm speaker to a segment of

speech (PMissSpkr)

� Assigning a speaker to a segment of speech of a

missed speaker (PFASpkr)

� Assigning an incorrect speaker to a segment of

speech (PErrSpkr)

Therefore, the speaker segmentation cost is defined

as:
CSeg ¼ ðCMissSegPMissSeg þ CFASegPFASegÞ

þ ðCMissSpkrPMissSpk þ CFASpkPFASpkÞ
þ CErrSpkPErrSpk:

Typically, the cost parameters are all set equal to 1.
Applications

First, one of the applications is in multimedia infor-

mation management (information indexing, informa-

tion access and content protection) in order to

automatically extract meta-data information. Multi-

media technologies, which play a crucial role in a

wide range of recent application domains, are highly

demanded to further facilitate multimedia services

and to more efficiently utilize multimedia information

generated from diverse domains. A multimedia con-

tent based indexing and retrieval system requires anal-

ysis of both textual and speaker content. Speaker

changes are often considered natural points around

which to structure the spoken document for naviga-

tion by users. Creating an index into an audio–visual

stream, either in real time or in postprocessing, may

enable a user to locate particular segments of the audio

data. For example, this may enable a user to browse a

recording to select audio segments corresponding to

a specific speaker, or ‘‘fast-forward’’ through a record-

ing to the next speaker. In addition, knowing the

ordering of speakers can also provide content clues

about the conversation, or about the context of the

conversation. In broadcast news, for example, speaker

changes typically coincide with story changes or tran-

sitions. Furthermore, audio recordings of meetings,

presentations, and panel discussions are also examples

where organizing audio segments by speaker identity

can provide useful browsing cues to listeners. Also, the

audio recording of a meeting or a conversation can be

speaker-indexed automatically to facilitate the search

and retrieval of the content spoken by a specific per-

son. In this way, meeting information can be obtained

conveniently, such as who is saying what and when,

remotely through on-line or off-line systems.

Second, biometric applications such as access

control. Surveillance is becoming increasingly impor-

tant for public places. However, most surveillance sys-

tems simply store video data, then storing video

information selectively through identifying key events

or human activities is very important for facilitating

access to huge amount of the stored surveillance video

archivals with improved browsing and retrieval func-

tionality. Tracking speaker-specific segments in con-

versations, to aid in surveillance applications, is

another place to use a speaker segmentation system.

Third, ASR related applications such as the tran-

scription of conversations. Speaker segmentation relates

to automatic labeling and transcription of audio archives
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that involve multiple speakers. In this application, the

audio signal typically contains speech from different

speakers under different acoustic conditions. It is well

known that the performance of automatic speech recog-

nition can benefit greatly from speaker adaptation,

whether supervised or unsupervised. With the knowl-

edge of ‘‘who is speaking,’’ acoustic models for speech

recognition can be adapted to better match the environ-

mental conditions and the speakers. Furthermore, in the

speech-to-text conversion process, information about

speaker turns can also be used to avoid linguistic

discontinuity.

Also, capturing the speaker change in a given audio

stream could be very useful in military and forensic as

well as commercial applications. In forensic applica-

tions it is often required to process speech recorded by

means of microphones installed in a room where a

group of speakers conduct a conversation. Questions

such as how many speakers are present, at what time a

new person has joined (left) the conversation and

others are often asked. It is also often required to

determine the true identity of the speakers, or some

of them, using available templates of known suspects.

For this, one needs to segment the recorded signal into

the various speakers and then use conventional speaker

identification or verification methods.
S

Summary

There are a number of relevant applications that may

benefit from a speaker segmentation module. Among

them, ASR (rich transcription), video tracking, movie

analysis, etc. Defining and extracting meaningful char-

acteristics from an audio stream aim at obtaining a

more or less structured representation of the audio

document, thus facilitating content-based access or

search by similarity.

In particular, speaker detection, tracking, clustering

as well as speaker change detection are key issues in

order to provide metadata for multimedia documents

and are an essential preprocess stage of multimedia

document retrieval. Speaker characteristics, such as

the gender, the approximate age, the accent or the

identity, are also key indices for the indexing of

spoken documents. It is also important information

concerning, the presence or not of a given speaker in a

document, the speaker changes, the presence of speech

from multiple speakers, etc.
Related Entries

▶Gaussian Mixture Models

▶Hidden Markov Models

▶Pattern Recognition

▶ Speech Analysis
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Speaker Separation
Speaker separation is a technology used in multi-

speaker environments to separate the vocal features of

each speaker from those of the other speakers, even

when speakers interrupt and talk over each other.

▶ Speaker Recognition, Standardization
Speaker Tracking
Speaker tracking consists of determining not only

whether a particular speaker appears in a multispeaker

audio stream, but identifying the specific intervals

within the audio stream corresponding to the speaker.

It requires that this speaker is known a priori by the

system. In that sense, speaker tracking can be seen as a

speaker verification task applied locally along a docu-

ment containing multiple interventions of various

speakers. The objective of this task is to cluster the

speech by speaker.

▶ Speaker Segmentation
Speaker Verification
▶ Liveness Assurance in Voice Authentication
Spectral Analysis of Skin
▶ Skin Spectroscopy
Specular Reflection
Specular reflection is the mirror-like reflection of light

or waves on a surface. The incoming light is reflected at

the same angle as it hits on the surface.

▶ Iris Standards Progression

▶ Skin Spectroscopy
Specularity
▶ Specular Reflection
Speech Analysis

DOROTEO T. TOLEDANO, DANIEL RAMOS, JAVIER GONZALEZ-

DOMINGUEZ, JOAQUÍN GONZÁLEZ-RODRÍGUEZ

ATVS – Biometric Recognition Group. Escuela

Politecnica Superior, Universidad Autonoma de

Madrid, Spain
Synonyms

Speech parametrization
Definition

The analysis of speech signals can be defined as the

process of extracting relevant information from the

speech signal (i.e., from a recording). This process is

mainly based on the speech production mechanism,

whose study involves multiple disciplines from linguis-

tics and articulatory phonetics to signal processing and
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source coding. In this article, a short overview is given

about how the speech signal is produced and typical

models of the speech production system, focusing on

the different sources of individuality that will be pres-

ent in the final uttered speech. In this way, the speaker

who produced the speechwith those individual features

is then recognizable both for humans and formachines.

Although speech production is felt by humans as a

very natural and simple mechanism, it is a very com-

plex process that involves the coordinated participa-

tion of several physiological structures that evolution

has developed over the years. For a deeper description

of this process the interested reader may consult some

of these excellent books [1–3]. Here the human speech

production mechanism is described very briefly as

the basis for the automated speech analysis systems.

Once these mechanisms have been understood, the most

common methods to analyze speech are addressed.

These methods are based on the speech production

mechanisms to some extent. The last part of this article

analyzes how the relevant information in this context

(the speaker individualization information) is encoded

into the speech signal.
Speech Production and Its Relation to
Speech Analysis

The process of speech production is described in

many books [1–3]. Here the main conclusions about

how the speech production system relates to the main

parameters estimated in speech analysis are briefly
Speech Analysis. Figure 1 Simplified functional scheme of th

speech parameters affected by each organ.
reviewed. Next section addresses the problem of esti-

mating these parameters.

Figure 1 summarizes the different parts of the

human speech productionsystem (represented very

schematically), and how they are related to the main

parameters that describe the characteristics of the

speech signal:

� Volume or intensity of the sound. The volume or

intensity of a speech sound depends mainly on

the amount of air exhaled by the lungs and the

muscular tension on the articulators producing

the sound. The volume or intensity is a prosodic

parameter that is related to emotions (i.e., speech in

anger has usually more volume than normal or

relaxed speech) and sentence type (for instance

interrogative sentences tend to end with a higher

intensity).

� Voicing and, in case of a voiced sound, ▶ funda-

mental frequency. Human sounds can be voiced or

unvoiced depending on whether the vocal chords

vibrate or not when producing the sound. Voicing

is a binary feature that is essential in discriminating

different phonemes. In voiced sounds the vocal

chords vibrate at a frequency that is called funda-

mental frequency (also called F0, tone, or pitch). The

fundamental frequency depends on the tension ap-

plied to the vocal chords and on the air flow pro-

duced by the lungs, and can bemodulated to provide

the sentence with a certain intonation, constituting

one of the most important prosodic parameters. The

fundamental frequency plays an important role in

determining emotions and sentence types.
e human speech production system with indication of the

S
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� Spectral envelope. The rest of the speech production

system from the vocal chords to the lips and nostrils

is called the vocal tract. The effect of the vocal tract

is to modulate the sound produced to obtain the

different phonemes. This is accomplished with the

help of several mobile parts called articulators such

as the tongue, the lips, and the teeth, which can

substantially modify the shape of the vocal tract

and therefore the modulation produced. It can be

seen that the modulation produced by the vocal

tract affects mainly the spectral envelope of the

signal produced. This spectral envelope typically

presents a few maxima at the frequencies of reso-

nance of the vocal tract, called formants, which are

characteristics of the different phonemes. In fact, it

is possible to distinguish the different vowels based

on their formants. The spectral envelope alone is

capable of, with the help of voicing (and fundamen-

tal frequency for tonal languages such as Chinese),

discriminating among the different phonemes of a

language and also among different speakers.

� Duration of the phonemes. The speech production

system moves over time in a coordinated way and

this movement defines the durations of the pho-

nemes. This is considered a prosodic feature that

contains valuable information for recognizing pho-

nemes and speakers.

This complex system is coordinated and directed

by the brain, which in a much more complex and

largely unexplained process is capable of generating

the adequate sequence of words to utter at a precise

instant in a dialog, transforming these sentences into a

sequence of phonemes, sending the necessary orders to

the muscles to coordinately produce the speech and

even superimposing other information such as emo-

tions. This process of language generation is mainly

learned, and different individuals learn to generate

language and coordinate the articulatory organs in

different ways, thus constituting another source of

speaker discriminating information.
Speech Analysis

Speech analysis is the process of analyzing the speech

signal to obtain relevant information of the signal in

a more compact form than the speech signal itself.
Given the previous review of the speech production

mechanism and its relation to the most important

characteristics of speech, the goal of speech analysis is

to obtain some or all of these parameters (and possibly

more) from a speech recording. This section presents a

review of how these parameters are estimated from

a speech recording and how important they are for

voice biometrics.

� Volume or intensity of the sound. This parameter is

typically measured as the logarithm of the short-term

average energy of the signal (i.e., the average of the

energy of the signal over a few milliseconds). In-

tensity can be a clue to identify a speaker and to

discriminate between sounds, but this feature is

affected very much by external parameters such as

the gain of the recording equipment and micro-

phone and even the distance and position between

the mouth and the microphone. For this reason

absolute intensity is rarely used in speech analysis

and only relative intensity variations are used.

� Voicing and, in case of a voiced sound, fundamental

frequency. Voicing and the fundamental frequency

can be estimated from the autocorrelation function

of the speech signal. Figure 2 shows a voiced and

and unvoiced phoneme and their autocorrelation

functions. The quasi-periodicity of the voiced sig-

nals becomes apparent in the autocorrelation func-

tion as a local maximum at a lag corresponding to

the pitch period (the inverse of the fundamental

frequency). In Fig. 2 this maximum is placed at a

lag of 7.5ms, corresponding to a fundamental fre-

quency of 133 Hz. For unvoiced phonemes this

maximum does not appear. To estimate the funda-

mental frequency it is necessary to locate the correct

local maximum in the autocorrelation function,

which is sometimes (as in the example shown

here) difficult due to the presence of local maxima

at rational multiples of the fundamental frequency.

Besides the autocorrelation method there are other

methods to estimate the fundamental frequency,

either with lower computational cost (such as

using the Magnitude Difference Function instead of

the autocorrelation function) or with more preci-

sion [4]. The fundamental frequency is very char-

acteristic of the speaker and is very different for

male and female speakers. The evolution of the

fundamental frequency over time determines the



Speech Analysis. Figure 2 Example of a voiced sound /a/ and an unvoiced sound /s/ of Spanish and their corresponding

autocorrelation functions showing a possible way of determining voicing and estimating the pitch period.
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intonation of the utterance and intonation is also

very characteristic of the speaker.

� Spectral envelope. The spectral envelope of the

speech signal contains the richest information

about the speech sounds and also about the speak-

er. Not surprisingly, speech and speaker recogni-

tion systems typically focus primarily (many times

exclusively) on extracting and processing this dyna-

mically changing information from the speech sig-

nal. For this reason many times the speech analysis

phase is reduced to the spectral envelope estima-

tion. Several modeling strategies have been pro-

posed in the literature, but with no doubt the

most successful one in terms of number of applica-

tions based on one kind of modeling is Linear

Predictive Coding (LPC) of speech. In this ap-

proach, the vocal tract is modeled as an all-pole

(or autoregressive, AR) model [5] representing the

vocal tract resonances with a digital filter com-

pletely determined by the poles positions. In this

way, with a very small number of LPC coefficients

(typically between 10 and 20), the spectral envelope

is fully determined for every analysis frequency. An

example of this analysis is shown in Fig. 3 for two

different vowels in Spanish. Here the spectral enve-

lope is represented with 17 LPC coefficients and
shows very clearly the different formants of the two

vowels. Theoretically, only nasal sounds are not

properly modeled with an AR system, as the nasal

cavity in parallel, as shown in the acoustic theory of

tubes, introduces zeros (minima, as opposed to the

poles or resonances) in the overall vocal tract re-

sponse. Then those nasal sounds could be better

modeled by ARMA (AR and MA, moving aver-

age) – or pole-zero models – doubling the number

of coefficients. However, good enough approxima-

tions of nasal spectral envelopes can be obtained

with the typical number of poles (now in positions

not so well correlated with physical configuration

of the acoustic vocal tract), simplifying the model

with a single all-pole model for all kinds of sounds.

Each possible sound is then modeled as a set of LPC

coefficients (see ‘‘Speaker Features’’ entry for

details on LPC coefficients computation). In this

LPC context, the speech production system, as a

generator of a continuum of different sounds

which constitute syllables, words, and phrases, is

modeled as a discrete sequence of different config-

urations of the LPC model, switching every new

analysis frame (typically, each 5–25ms) to a new

vector of parameters defining the model character-

istics. This kind of modeling has been successful in



Speech Analysis. Figure 3 Spectral envelope of /a/ (solid blue line) and /i/ (dashed red line) Spanish vowels estimated

with LPC analysis of order 17 on 8 kHz bandwidth speech (only 0–4 kHz range is shown). The spectral envelope

shows clearly the different position of the formants in both vowels.
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many applications, such as coding or recognition of

speech signals. In speech coding, basic vocoders

were based mainly in the model description men-

tioned earlier, focused on efficient extraction from

real speech of the best set of model parameters (also

including voicing, fundamental frequency, and in-

tensity) that better fit the actual speech in each

analysis frame. Newest codecs have based their

improvements in better modeling of the excitation

signal, as having catalogs (VQ, Vector Quantized

codebooks) of possible excitation patterns, but the

underlying model is basically the same as men-

tioned earlier. In speech recognition, the objective

is to properly estimate the phone which better

corresponds to the observed spectral features at

the input at every time frame. In order to have an

efficient (both in accuracy and complexity) pattern

recognizer, the coefficients in the feature vector to

be modeled should not be correlated, which eases

the obtention of pseudo-diagonal covariance ma-

trices modeling the underlying data classes. This is

the main reason why cepstral derived features (see

‘‘Speaker Features’’ entry for details) are preferred

from highly correlated LPC coefficients, but the

model is still valid as the objective is to better

decode the phoneme at the origin of the observed

(LPC or cepstral) feature vector. Finally, in voice

biometrics even this simple LPC model can provide
speaker specific information as frame based spec-

tral, but also phonotactic data can be derived from

the basic previous features. Details on state-of-the-

art features and models for voice biometrics are

detailed in corresponding entries ‘‘Speaker Fea-

tures’’ and ‘‘Speaker Modeling.’’

� Duration of the phonemes. Estimating the durations

of the phonemes requires recognizing the pho-

nemes and determining the boundaries between

them. This process is usually made within the

context of phonetic recognition and is generally

considered too complex and not enough reliable

to be used in the context of speaker recognition,

even though durations contain important informa-

tion for speaker individualization purposes.
Speaker Information in the
Speech Signal

Speech production is an extremely complex process

that encodes multiple types of information into a

speech signal. This section describes the information

about the speaker that is encoded in the speech signal.

This information is what it is necessary to extract from

the speech signal for performing speaker recognition.

There is no single way of looking for speaker informa-

tion in a speech signal. Rather, there are multiple ways
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of extracting valuable speaker information from differ-

ent levels of the speech signal. Recently these levels

have been named high-level and low-level speaker fea-

tures, however, there is more of a continuous rather

than a hard division. Some of the levels fromwhich it is

possible to extract information about the speaker from

a speech signal are the following:

� Idiolectal characteristics of a speaker’s speech are on

the highest levels to take into account, and describe

how a speaker uses a specific linguistic system. This

‘‘use’’ of the language is basically learned and is

determined by how the speaker learned to generate

the adequate words for each speaking act. It can be

seen that there are individualities in this use that

can be exploited for voice biometrics.

� Phonotactics describes the use by the speaker of

the phone sequences, highly influenced by the

language being spoken but including highly

individualized features. A bit lower than the idiolec-

tal characteristics, the phonotactics is also learned by

the speaker and determine the phones produced for

a sequence of words. As with idiolectal characteris-

tics, it has also been shown that this information has

important individualization power.

� Prosody is the combination of instantaneous energy,

fundamental frequency, and phoneme durations to

provide speech with naturalness and full sense.

Prosody helps clarifying the message, the type

of sentence, and even the state of mind of the

speaker. Some prosodic features are learned by

the speaker (such as the different prosodic struc-

tures for the different messages and possibly even

state of mind), but some other prosodic features

have a physiological basis (such as the average fun-

damental frequency). In both cases the prosodic

features provide useful speaker information for

voice biometrics.

� Short-term spectral characteristics are the lowest

level features containing speaker individualization

information. These are directly related to the artic-

ulatory actions related to each phone being pro-

duced. Spectral information intends to extract the

peculiarities of speaker’s vocal tracts and their re-

spective articulation dynamics. Again these features

are a mixture of learnt uses (such as dynamics) and

physiological features (such as the length of the

vocal tract, that have a strong impact on the char-

acteristics of the produced speech).
Summary

An overview of the speech production system has been

given, centered on the basic mechanisms involved in

speech production and the origin of sounds or pho-

nemes individuality, which makes them recognizable.

But in this homogenizing environment (the use of a

common linguistic system, usually a language, intended

for communication based in common elements),

speakers introduce individual characteristics making

each speaker’s speech to sound according to his indi-

vidual physical, emotional, and idiolectal characteris-

tics. Simple analysismodels as Linear Predictive Coding

of speech allow us to easily understand the potential of

digital signal processing and pattern recognition tech-

niques, which will lately allow us to build efficient

speech codecs or recognizers and even finally good

detectors of individual speaker’s voice.
Related Entries

▶ Session Effects on Speaker Modeling

▶ Speaker Features

▶ Speech Production

▶Voice, Forensic Evidence of

▶Voice Device
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Speech Parametrization
▶ Speech Analysis
Speech Processing
Speech processing is a technology that operates on the

stream of speech.

▶ Speaker Recognition, Standardization
Speech Production
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Synonyms

Speech system; Sound generation

Definition

Speech production is the process of uttering articulated

sounds or words, i.e., how humans generate meaningful

speech. It is a complex feedback process in which also

hearing, perception, and information processing in the

nervous system and the brain is involved.

Speaking is in essence the by-product of a necessary

bodily process, the expulsion from the lungs of air

charged with carbon dioxide after it has fulfilled its

function in respiration. Most of the time one breathes

out silently; but it is possible, by contracting and relax-

ing the vocal tract to change the characteristics of the

air expelled from the lungs.
Introduction

Speech is one of the most natural forms of communi-

cation for human beings. Researchers in speech
technology are working on developing systems with

the ability to understand speech and speak with a

human being.

Human–computer interaction is a discipline con-

cerned with the design, evaluation, and implementation

of the most natural interactive computing systems for

human use [1]. Computers with this kind of ability are

gradually becoming a reality today, through the success

of speech synthesis, speech recognition, and other

related speech technologies. However, in order to give

them functions that are much closer to those of human

beings, one must learn more about the mechanisms by

which speech is produced and perceived, and develop

speech information processing technologies that make

use of these functions.

However, progress in advanced computer speech

interfaces is limited in part due to incomplete knowl-

edge of the physics of speech production. For compu-

ter generated speech output, this means limitations in

the naturalness and intelligibility of synthetic speech.

The generation of human speech involves a re-

markably complex process. In modeling the process

of human speech production one may recognize two

principal stages:

1. Formation in the mind of thoughts to be expressed

as well as the choice of words to be used. The

message is organized on the linguistic level and

structured grammatically and phonologically.

2. The string of phonemes is converted into a set of

continuous signals controlling the musculature of

the various articulators. This results in a highly

complex integrated movement sequence in which

generally participate all the articulators, the lips,

the tongue, the mandible, etc. Finally, the physical

interaction of the vibrating vocal cords and the

moving articulatory structure produces a continu-

ous acoustic signal perceived as speech.

Speech production is an activity embodied in a com-

plex physical system. It is produced by a cooperation of

lungs, glottis (with vocal cords), and articulation tract

(mouth and nose cavity). The speaker produces a

speech signal in the form of pressure waves that travel

from the speaker’s head to the listener’s ears. This

signal consists of variations in pressure as a function

of time and is usually measured directly in front of the

mouth, the primary sound source. The amplitude var-

iations correspond to deviations from atmospheric

pressure caused by traveling waves.
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An audible speech signal is produced by moving

the vocal articulators to modify and ‘‘sculpt’’ the

source of sound energy in the vocal tract (e.g., air

turbulence or vocal fold vibration). The signal is non-

stationary changing characteristics as the muscles of

the vocal tract contract and relax. Since speaker wishes

to produce a ▶ sound sequence corresponding to the

message to be conveyed, most major vocal tract move-

ments have a voluntary basis. For each sound, there is a

positioning for each of the vocal tract articulators:

vocal cords, tongue, lips, teeth, velum, and jaw. Sounds

are typically divided into two broad classes: vowels,

which allow unrestricted airflow in the vocal tract;

and consonants, which restrict airflow at some point

and have a weaker intensity than vowels.

The most common sound generation sources are

quasi-periodic vibration of the vocal cords and turbu-

lent noise generated by the passage of air through a

narrow constriction, usually in the oral cavity. More

rarely, sounds are generated by plosive release of air

(following the buildup of pressure behind an obstruc-

tion in the vocal tract), implosion (following the crea-

tion of a vacuum behind an obstruction in the vocal

tract), and clicks created by, the action of the tongue

pulling away from the roof of the mouth.

Depending on the type of excitation, i.e., sound

generation sources, two types of sounds are produced:

voiced and unvoiced sounds. ▶Voiced sounds are pro-

duced by forcing air through the glottis or an opening
Speech Production. Figure 1 Schematic view of human spe
between the vocal folds. Then the vocal folds vibrate,

they interrupt the air stream and produce a quasi-

periodic pressure wave that excite the vocal tract. An

example of voiced sound is the vowel ‘‘a’’ in cut, or ‘‘ee’’

in ‘‘beet.’’ ▶Unvoiced sounds are generated by form-

ing a constriction at some point along the vocal tract

and forcing air through the constriction to produce

turbulence. Vocal folds do not vibrate in this case. An

example of unvoiced sound is ‘‘s’’ as in ‘‘six.’’

The frequency at which vocal folds open and close

is called the fundamental frequency.

A major focus of speech production research is in

modeling articulatory–acoustic relationships of speech

sounds. Physically and physiologically based models

for speech acoustics are particularly important for

developing high-quality speech synthesis and low bit

rate (articulatory) coding. Significant progress has

been recently made towards developing improved

articulatory-acoustic models.
The Human Speech Production
Mechanism

Figure 1 shows an illustration of the human speech

production system. The gross anatomical components

of the systems are the lungs, trachea, larynx (organ

of speech production), pharyngeal cavity (throat),

buccal cavity (mouth), and nasal cavity (nose).
ech production mechanism.

S
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The pharyngeal and buccal cavities are usually grouped

and referred to as the vocal tract, and the nasal cavity is

often called nasal tract. Accordingly, the vocal tract

begins at the output of the larynx, and terminates at

the input of the lips. The nasal tract begins at the velum

and ends at the nostrils of the nose. There are many

other anatomical components that contribute to the

production of speech, such as the vocal folds (or

cords), tongue, lips, teeth, and jaw. These are referred

to as articulators and move to different positions in

order to produce various speech sounds. Due to the

physical constraints of the vocal tract, the positions of

the articulators can only change slowly with time and

individual realizations of a phone are strongly influ-

enced by previous and future phones in an utterance.

This phenomenon is known as coarticulation and is

important for both accurate speech analysis and natu-

ral speech production.

The speaker-specific characteristics of speech are

due to differences in physiological and behavioral

aspects of the speech production system in humans.

The main physiological aspect of the human speech

production system is the vocal tract shape.

The process of human speech production can be

summarized as follows. While speaking, the air pushed
Speech Production. Figure 2 Block diagram of human spee
out from the lungs (the main energy source) travels

into the trachea, then up into the glottis, where it is

periodically interrupted by the movement of the vocal

cords. The tension of the vocal cords is adjusted by the

larynx so that the chords vibrate in an oscillatory

fashion, resulting in the production of voiced speech.

During unvoiced speech, constrictions within the vocal

tract (oral cavities – mouth, throat, etc.) force air

through the constriction to produce turbulence.

Speech production can be viewed as a filtering

operation (source-filter model of speech production

[2]) in which the three main cavities of the speech

production system (vocal and nasal tracts) comprise

the main acoustic filter. The filter is excited by the

organs below it (▶ glottal excitation), and is loaded at

its main output by a radiation impedance due to the

lips (▶ lip-radiation effect). The articulators, most of

which are associated with the filter itself, are used to

change the properties of the system, its form of excita-

tion, and its output loading over time. Figure 2 shows

this model. The source which excites the filter may be

either periodic, resulting in voiced speech, or noisy and

aperiodic, causing unvoicing speech.

The basic assumption of the model is that the source

signal produced at the glottal level is linearly filtered
ch production system.
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through the vocal tract. The resulting sound is emit-

ted to the surrounding air through radiation loading

(lips). The model assumes that source and filter are

independent of each other. Although recent findings

show some interaction between the vocal tract and a

glottal source [3], Fant’s theory of speech production

is still used as a framework for the description of

the human voice.

An articulatory representation of the speech produc-

tion system has certain attractive properties which

might be exploited to help in modeling speech. Articu-

lation is the term used for all actions of the organs of the

vocal tract that effect modifications of the signal gener-

ated by the voice source. This modification results in

speech events which can be identified as vowels, con-

sonants or other phonological units of a language.

Speech articulators move relatively slowly and smoothly,

and their movements are continuous. The mouth can-

not jump instantaneously from one configuration to

a completely different one. Using speech production

knowledge could help to improve speech processing

methods by providing useful constraints. Suggested

applications include, for example, automatic speech

recognition, low bit-rate speech coding, speech analysis

and synthesis, and animated talking heads.
Modeling the Human Speech Production
System

Speech is transmitted between humans in the acoustic

domain, and fortunately, it can be easily measured and

recorded as acoustic representation. Underlyingly,
Speech Production. Figure 3 A general model for speech p
however, the acoustic speech signal is the product of

events in a speaker’s articulatory system, and there

has long been interest in ways to exploit the under-

lying articulatory information for speech techno-

logy. Increasingly detailed and sophisticated models

about how speech is generated in human speech

production system has been developed in the past

30 years [4].

The most relevant models of the speech production

mechanism belong to acoustic modeling, that is based

on the acoustic theory of speech production [5].

According to this theory, speech waveform is consid-

ered to be the output of a resonant network (namely

the vocal tract filter) that is excited by sound sources

placed at the glottis. The main sections of the speech

production mechanism, namely the voice source, vocal

tract, and radiation effects, are likely to be linearly

modeled in a noncoupled manner following a source-

filter arrangement. The assumption that the source and

the filter can be separately modeled probably holds for

most of the cases. However, this assumption is ques-

tionable for low frequencies, because the nonlinear

coupling may produce damping of the first formant.

It is also disputable for unvoiced speech (excitation is

due to turbulence originating at constrictions on the

vocal tract itself).

As described in the previous section, the human

speech production can be illustrated by a simple source-

filter model (Fig. 3). Here the lungs are replaced by a

DC source, the vocal cords by an impulse generator,

and the articulation tract by a linear filter system. A

noise generator produces the unvoiced excitation. In

practice, all sounds have a mixed excitation, which
roduction.

S
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means that the excitation consists of voiced and un-

voiced portions. Of course, the relation between these

portions varies strongly with the sound being generated.

In general, the source-filter model is related to

linear prediction. Based on this model, a further sim-

plification can be made (Fig. 4). A ‘‘hard’’ switch which

only selects between voiced and unvoiced excitation is

used. The filter, representing the articulation tract, is a

simple recursive digital filter; its resonance behavior

(frequency response) is defined by a set of filter coeffi-

cients. Since the computation of the coefficients is based

on the mathematical optimization procedure of Linear

Prediction Coding, they are called Linear Prediction

Coding Coefficients or LPC coefficients and the com-

plete model is the so-called LPC Vocoder (Vocoder is a

concatenation of the terms ‘voice’ and ‘coding’) [6].

Speech can be modeled as the response of linear

time varying system with appropriate excitation. For

voiced speech, the excitation can be approximated by a

pulse train in which the pulses appear according to the

instantaneous pitch rate. If a single pitch period is

analyzed at a time, an analysis known as ‘‘pitch syn-

chronous analysis,’’ only one pulse occurs somewhere

in the period.

This model has a great advantage. Since the main

parameters of the speech production, namely the pitch

and the articulation characteristics, expressed by the

LPC coefficients, are directly accessible, the audible

voice characteristics can be widely influenced. Also

the number of filter coefficients can be varied to influ-

ence the sound characteristics, above all, the formant

characteristics.

Articulatory models of speech production mechan-

isms aim at modeling the physical, anatomical, and
physiological functioning of the organs involved in

human voice production. In this approach, the system

is modeled instead of the signal or its acoustic charac-

teristics. Modeling the process at the articulatory level

can be expected to be simpler because the articulators

respond to muscular forces with predictable changes in

their position and rates of movement.

It is worth noting that, globally, the speech signal is

a nonstationary signal. Then, all the systems in such

speech production models should be time-varying,

with their parameters changing in accordance to the

sound to be produced. The classic source-filter linear

model is satisfactory only as a first approximation of

the overall nonlinear process of speech production,

and only for short time frames, on which the signal is

quasi-stationary.

The variability of the speech signal originates in

the specific dynamics of the articulatory apparatus.

It is well-known that the phonatory system is a time-

varying system, and consequently speech signal is

nonstationary. A large class of nonstationary and

nonlinear processes is involved in speech production.
Applications

To provide a compact computational model for speech

production that can be beneficial to a wide range of

areas in speech signal processing.

The speech production models which have been

derived can be applied in almost all fields of speech

processing like speech synthesis, speech analysis, speech

and speaker recognition, and also in speech coding.
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Summary

Decades of research have gone into the technical and

quantitative understanding of human speech produc-

tion mechanisms.

This communication focuses on the human speech

production mechanism. Speech is produced through

the careful movement and positioning of the vocal-

tract articulators in response to an excitation signal

that may be periodic at the glottis, or noiselike due to

a major constriction along the vocal tract, or a

combination.
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Speech Recognition
Speech recognition is a non-biometric technology that

enables a machine to recognize the words a speaker

speaks.

▶Remote Authentication

▶ Speaker Recognition, Standardization
Speech Spectral Envelope
The speech spectral envelope is referred as an approxi-

mation to the frequency response of the vocal tract

obtained from the speech signal. The speech spectral

envelope contains the most discriminative information

available in speech to distinguish phonemes and

speakers.

▶ Speech Analysis
Speech Synthesis
▶Voice Sample Synthesis
Speech System
▶ Speech Production
Speed
▶ Signature Recognition
SPME
SPME is a simple, solvent-free headspace extrac-

tion technique in which volatile and semi-volatile

organic compounds adhere to the fiber either by

adsorption or absorption depending on the fiber

type. The fiber itself is constructed out of a station-

ary phase-like material which is selected for use

based on the functionality of the substances present

for extraction.

▶Odor Biometrics
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Spoofing
Spoofing entails the presentation of an artifact

designed to imitate a legitimate biometric so as to

defeat or circumvent a biometric system or process.

▶Anti-spoofing

▶ Fraud Reduction, Overview
Spoofing Countermeasures
▶ Liveness Detection: Iris
Spoof-resistance
▶ Liveness Detection: Iris
Stand Off
The distance between a biometric capture device and

the subject from whom the biometric is captured.

▶ Iris Device

▶ Iris on the Move
Statistical Models
▶Deformable Models
Statistical Signal Processing
▶ Fusion, Decision-Level
Steganography
Hiding a secret message within a larger, typically unre-

lated cover message such that unintended recipients do

not suspect the presence of the hidden message. In

steganography, the cover message serves only as a

mechanism to transport the secret message; it may be

discarded or destroyed after the secret message has

been extracted and communicated to the intended

recipient. An example might include a spy posing as

a tourist sending government secrets via images of

tourist venues.

▶ Iris Digital Watermarking
Strain Gauge
Strain gauge is a device used to measure deformation

(strain) of an object. It is a sensor whose resistance

varies with applied force; it converts force, pressure,

tension, weight, etc., into a change in electrical resis-

tance which can then be measured.

▶Digitizing Tablet
Stream of Speech
Stream of speech is the flow of sounds, words, and

utterances produced by a human speaker.

▶ Speaker Recognition Standardization
Strength of Voice Evidence
The strength of the forensic evidence of voice is the

result of the interpretation of the evidence, expressed

in terms of the likelihood ratio of two alternative

hypotheses: H0 – the suspected speaker is the source

of the questioned recording, H1 – the speaker at the
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origin of the questioned recording is not the suspected

speaker.

▶Voice, Forensic Evidence of
Stroke
Single movement of a pen during the signing process.

The number of strokes and the stroke order are very

important features for on-line signature verification.

Strokes are in general delimited by a change in the pen

up/down status.

▶ Signature Recognition
Structural and Functional Anatomy
▶Anatomy of Face
Structural Model
S

Describes the fundamental structures that interlink

and constitute a body and specifies their constraints:

e.g., torso and upper leg are linked by the hip, upper

leg and lower leg are linked by the knee, and the knee

constrains the degree of freedom of the lower leg.

Therefore, it also defines the dependency of one body

segment to another. Structural model is normally used

together with a motion model to guide feature (of

motion) extraction process. It may also consist of

information such as length, thickness, area, or volume.

▶Gait Recognition, Model-Based
Structural Risk
The error associated with the nature of the classifier.

Structural risk minimization tunes the complexity
of the classification function in order to optimize

the generalization. The true risk combines structural

risk with empirical risk, which is dependent on the

training set.

▶ Support Vector Machine
Structure Tensor Field
The matrix field obtained by outer products of the

gradients.

▶ Fingerprint Features
Structure-from-Motion
The process of recovering the three-dimensional struc-

ture of an object by the analysis of subsequent two-

dimensional images of the object in motion. Although

this term most commonly refers to the recovery of the

structure of a rigid object (i.e., the distances between

all points on the object remain constant), it still applies

to piecewise rigid objects such as the human body

where only some subsets of points remain rigid.

▶Psychology of Gait and Action Recognition
Subject Interaction Time
▶Operational Times
Super-Resolution
The techniques that form an enhanced-resolution

image by fusing together multiple low-resolution
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and/or learning from high-resolution training images

are known as super-resolution. Super-resolution can

be performed in either frequency or spatial domain.

▶ Face Sample Quality
Super-Resolution for Iris
▶ Iris Super-Resolution
Supervised
Supervised are the class labels of all data which are

known. Algorithms are designed for separation of

data of different classes by additionally using labeled

information.

▶ Linear Dimension Reduction
Supervised Learning
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Synonyms

Classification
Introduction

Supervised learning is to find a model for an unknown

target function, using a given set of training examples –

pairs of a data point and a target function value. The

fundamental assumption of learning by examples is
that similar data points tend to have similar function

values. In this chapter, learning tasks are focused

on classification, in which the aim is to assign each

data point to one of a finite number of function

values, called class labels. Then, the assumption can

be restated that a group of similar data points form a

meaningful pattern, which corresponds to the same

class label.

Biometric recognition systems require two different

classification problems of verification and identifica-

tion, depending on the application context [1]. In

the verification problems, we need to verify a claimed

identity by comparing an input feature vector extrac-

ted from the biometric data with the corresponding

template feature set. The verification problem can be

restated as binary classification, in which the learned

classifier takes the feature vector as an input and deter-

mines whether the claimed identity is true or false.

The goal of identification problems, however, is to rec-

ognize a person’s identity by searching templates

corresponding to all the users enrolled in the biometric

database. The identification problem may be stated

as classification with K þ 1 classes fC1; . . . ; CK ; CKþ1g,
where K is the number of the users enrolled in the

system and the last class CKþ1 indicates the unidenti-

fied user.

A variety of approaches for classification can be

grouped into parametric and nonparametric, based

on the assumptions about class-conditional densities

[2]. If the class-conditional densities are specified with

a functional form of distributions, which are charac-

terized completely with a finite number of parameters,

we have a parametric method for classification. In

contrast, if we model the class-conditional densities

without any assumptions regarding the functional

form of the underlying distribution, non-parametric

algorithms are derived. The methods that directly con-

struct the decision boundaries without referring to the

class-conditional densities are also considered as non-

parametric approaches.
Parametric Approach

Suppose we have a D-dimensional real-valued feature

vector x ¼ (x1,. . .xD)
T. The goal of classification is to

predict the class label for a new value of x given a training

set of D. According to Bayesian decision theory, an

optimal decision boundary can be obtained from
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posterior probabilities for classes. Using Bayes’ theorem,

the posterior probabilities pðCkjxÞ can be written as

pðCkjxÞ ¼ pðxjCkÞpðCkÞP
j pðxjCjÞpðCjÞ

¼ expðakÞP
j expðajÞ

; ð1Þ

where pðxjCkÞ is the class-conditional density repre-

senting the probability of a feature vector x given class

Ck , pðCkÞ is the prior probability of class Ck , and ak is

defined by

ak ¼ ln pðxjCkÞpðCkÞ: ð2Þ
In parametric approaches to classification, we directly

model the class-conditional density with a parametric

form of probability distribution (e.g., multivariate

Gaussian). Many parametric methods for classification

have been proposed based on different assumptions for

pðxjCkÞ [3, 4, 5] (see Table 1):
1. Linear discriminant analysis (LDA) uses Gaussian

distributions Nðmk;SkÞ for the class-conditional

densities with a common covariance matrix Sk¼S.
2. Quadratic discriminant analysis (QDA) also uses

Gaussian distributions and does not assume equal

covariance matrices.

3. In a naive Bayes classifier, we assume that the dis-

tributions of the feature values x1, . . .xD are condi-

tionally independent given the class label, pðxjCkÞ ¼QD
i¼1 pðxijCkÞ. In parametric approach, the one-

dimensional densities pðxijCkÞ are usually Gaussian
for continuous features or multinomial for discrete

features.

The parameters of each class-conditional densities can

be estimated from a training set D with a maximum

likelihood approach.
Supervised Learning. Table 1 Comparison among

parametric methods for classification

Method pðxjCkÞ
Number of
parameters

Decision
boundary

LDA Nðmk ;SÞ (K�1)
(Dþ1)

Linear

QDA Nðmk ;SkÞ (K�1)
(D(Dþ3) ∕
2þ1)

Quadratic

Naive Bayes
classifier with
multinomial
distributions

QD
i¼1pðxijCkÞ (K�1)

(Dþ1)
Linear

S

Linear Discriminant Analysis

We assume that all class-conditional densities pðxjCkÞ
are Gaussian with the same covariance matrix S. Then
the density for class Ck is given by

pðxjCkÞ ¼ 1

ð2pÞD=2
1

jSj1=2
exp �1

2
ðx�mkÞ>S�1ðx�mkÞ

� �
:

ð3Þ
From (1), we have

akðxÞ ¼ w>
k x þwk0; ð4Þ

where
wk ¼ S�1mk: ð5Þ

wk0 ¼ � 1

2
m>

k S
�1mk þ ln pðCkÞ: ð6Þ

We see that the equal covariance matrices make ak(x)

to be linear in x, and the resulting decision boundaries

will also be linear. As a special case of LDA, the nearest-

neighbor classifier can be obtained, when S¼s2I. If the
prior probabilities pðCkÞ are equal, we assign a feature

vector x to the class Ck with the minimum Euclidean

distance jjx � mkjj2, which is equivalent to the opti-

mum decision rule based on the maximum posterior

probability. Another extension of LDA could be

obtained by allowing for mixtures of Gaussians for

the class-conditional densities instead of the single

Gaussian. Mixture discriminant analysis (MDA) [6]

incorporates the Gaussian mixture distribution for

the class-conditional densities to provide a richer

class of density models than the single Gaussian.

The class-conditional density for class Ck has the

form of the Gaussian mixture model, pðxjCkÞ ¼PR
r¼1pkrNðxjmk;SÞ, where the mixing coefficients

pkr must satisfy pkr � 0 together with
PR

r¼1pkr ¼ 1.

In this model, the same covariance matrix S is used

within and between classes. The Gaussian mixture

model allows for more complex decision boundaries

although it does not guarantee the global optimum of

maximum likelihood estimates.
Quadratic Discriminant Analysis

If the covariance matrices Sk are not assumed to be

equal, then we get quadratic functions of x for ak(x)

akðxÞ ¼ �1

2
ðx�mkÞ>S�1

k ðx�mkÞ �
1

2
ln jSkj þ lnpðCkÞ:

ð7Þ



1300S Supervised Learning
In contrast to LDA, the decision boundaries of QDA

are quadratic, which is resulted from the assump-

tion on the different covariance matrices. From the

added flexibility obtained from the quadratic decision

boundaries, QDA often outperforms LDA when the

size of training data is very large. However, when

the size of the training set D is small compared to the

dimension D of the feature space, the large number of

parameters of QDA relative to LDA causes over-fitting

or ill-posed estimation for the estimated covariance

matrices. To solve this problem, various regularization

or Bayesian techniques have been proposed to obtain

more robust estimates:

1. Regularized discriminant analysis (RDA) [7, 8]

employs the regularized form of covariance matri-

ces by shrinking Sk of QDA towards the common

covariance matrix S of LDA, that is, Sk(a)¼ aSkþ
(1�a)S for a 2 [0, 1]. Additionally, the common

covariance matrix S could be shrunk towards

the scalar covariance, S(g) ¼ gSþ(1�g)s2I for g
2[0, 1]. The pair of parameters is selected by cross-

validation based on the classification accuracy of

the training set.

2. Leave-one-out covariance estimator (LOOC) [9]

finds an optimal regularized covariance matrices

by mixing four different covariance matrices of

Sk,diag(Sk), S, and diag(S), where the mixing

coefficients are determined by maximizing the

average leave-one-out log likelihood of each class.

3. Bayesian QDA introduces prior distributions over

the mean mk and the covariance matrices Sk [10], or

over the Gaussian distributions themselves [11].

The expectations of the class-conditional densities

are calculated analytically in terms of the para-

meters. The hyper-parameters of the prior distribu-

tions are chosen by cross-validation.
Naive Bayes Classifier

In the naive Bayes classifier, the conditional indepen-

dence assumption makes the factorized class-condi-

tional densities of the form

pðxjCkÞ ¼
YD
i¼1

pðxijCkÞ: ð8Þ
The component densities pðxijCkÞ can be modeled

with various parametric and nonparametric distribu-

tions, including the following:

1. For continuous features, the component densities

are chosen to be Gaussian. In this case, the naive

Bayes classifier is equivalent to QDA with diagonal

covariance matrices for each class.

2. For discrete features, multinomial distributions are

used to model the component densities. The mul-

tinomial assumption makes ak(x) and the resulting

decision boundaries to be linear in x.

3. The component densities can be estimated using

one-dimensional kernel density or histogram esti-

mates for non-parametric approaches.

The naive Bayes model assumption is useful when the

dimensionality D of the feature space is very high,

making the direct density estimation in the full feature

space unreliable. It is also attractive if the feature vector

consists of heterogeneous features including continu-

ous and discrete features.
Nonparametric Approaches

One major problem of parametric approaches is that

the actual class-conditional density is not a linear nor a

quadratic form in many real-world data. It causes the

poor classification performance, since the actual distri-

bution of data is different from a functional form we

specified, regardless of parameters.

To solve this problem, one can increase the flexibility

of the density model by adding more and more para-

meters, leading to a model with infinitely many num-

ber of parameters, called nonparametric density

estimation. Otherwise, rather than modeling the

whole distribution of a class, one can model only a

decision boundary that separates one class from the

others, since restricting the functional form of the

boundary is a weaker assumption than restricting

that of the whole distribution of data. Either using a

nonparametric density model or modeling a decision

boundary are called nonparametric approaches. In this

article, the latter approach is only considered.

We define a function ak(x) as a relevancy score of

x for Ck, such that ak(x) > 0 if x is more likely to be

assigned to Ck, and ak(x) < 0 otherwise. Then, the

surface ak(x) ¼ 0 represents the decision boundary
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Method ak(x) Number of parameters Decision boundary

k-NN jfxðiÞ 2 Ckgj k Nonlinear

ANNs fk
(Lþ1)(x)

PL
‘¼0ðW‘ þ 1ÞW‘ þ 1 Linear (L¼0) or nonlinear (L>0)

SVMs
P

aki>0akiykikðxi ; xÞ O(K N) Linear (k(xi,x)¼xi
Tx) or nonlinear (otherwise)
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between Ck and the other classes, and a test point x is

assigned to Ck if k ¼ arg maxkak(x), which is called

one-against-all.

Many nonparametric methods have been derived

from various models for ak(x). We introduce three

representative methods [12, 13, 14] (see Table 2):

1. k-nearest neighbor algorithm (k-NN) chooses k

data points in the training set, which are closest

from x, then ak(x) is the number of those selected

points belonging to Ck.
2. Artificial neural networks (ANNs) represent ak(x)

as a multilayered feed-forward network. The ℓth

layer consists of Wℓ nodes, where the jth node in

the layer sends a (non)linear function value fj
(ℓ)(x)

as a signal to the nodes in the (Lþ 1)th layer. Then,

ak(x) is the signal of the kth node in the final layer,

fk
(Lþ1)(x).

3. Support vector machines (SVMs) choose some

‘‘important’’ training points, called support vectors,

then represent ak(x) as a linear combination of

them. SVM is known to be the best supervised

learning method for most real-world data.
S

k-Nearest Neighbor Algorithm

Given a set of data points X ¼ {x1,x2, . . . xN} and a set

of the corresponding labels Y ¼ {y1, y2, yN}, K-NN

assigns a label for a test data point x bymajority voting,

that is to choose the most frequently occurred label

in {y(1), y(2), . . . y(k)}, where x(i) denotes the ith nearest

point of x in X and y(i) is the label of x(i). That is,

we have

akðxÞ ¼ jfxðiÞ 2 Ckgj; ð9Þ
where j � j denotes the number of elements in a set. The

decision boundary is not restricted to a specific func-

tional form. It depends only on the local distribution

of neighbors and the choice of k. Larger k makes the

decision boundary more smooth.
k-NN is widely used in biometrics, especially for

computer vision applications such as face recogni-

tion and pose estimation, where both the number of

images N and dimension of data D are quite large.

However, traditional k-NN takes O(ND) time to com-

pute distances between a test point x and all training

points x1, . . .,xN, which is too inefficient for practical

use. Thus, extensive research has focused on fast

approximations based on hashing, embedding or

something [15].
Artificial Neural Networks

In ANNs, the signal of the jth node in the (ℓþ1)th

layer is determined by the signals from the ℓth layer:

f
ð‘þ1Þ
j ðxÞ ¼ g w

ð‘Þ>
j f ð‘ÞðxÞ þ w

ð‘Þ
j0

	 

; ð10Þ

where w‘
j ¼ ½wð‘Þ

j1 ;w
ð‘Þ
j2 ; � � � ;wð‘Þ

jW ‘
�> and f ð‘ÞðxÞ ¼

½f ð‘Þ1 ðxÞ; f ð‘Þ2 ðxÞ; � � � ; f ð‘ÞW ‘
ðxÞ�>. The input layer,

f (0)(x), is simply x. g(�) is a nonlinear, nondecreasing

mapping, causing ANNs to yield a nonlinear decision

boundary. There are two popular mappings: (1) sig-

moid, g(x) ¼1 ∕(1þexp{�x}); (2) hyperbolic tangent,

g(x) ¼ tanh(x).

More nodes and layers increase the nonlinearity of

decision boundary obtained by ANNs. However, it is

difficult to train ANNs having a number of nodes and

layers, since the model can easily fall into poor solu-

tions, called local minima.

Radial basis function (RBF) networks [16] are

another type of ANNs, having the form

akðxÞ ¼ w>
k FðxÞ þ wk0 : ð11Þ

That is, RBF networks contain only one hidden layer,

denoting by F(x)¼[f1(x),f2(x), . . . ,fW(x)], and the

network output is simply a linear combination of the

hidden nodes. The main difference between RBF net-

works and ANNs with L ¼ 1 is the mapping from the
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input to the hidden. In RBF networks, each jj(�) is a
nonlinear function similar to Gaussian density:

fjðxÞ ¼ exp �bj jjx � cj jj2
n o

; ð12Þ

for some bj > 0 and the center vector cj. That is, each

hidden node represents local region whose center is cj,

and its signal would be stronger if x and cj are closer. In

general, cj is fixed to one of the training points and bj is
chosen by hand, thus the global optimum of wk and

wk0 can be simply found by least squares fitting.
Support Vector Machines

Similar to RBF networks, SVMs obtain a linear decision

boundary in a transformed space: ak(x)¼wk
TF(x)þ

wk0, where F(�) is an arbitrary mapping, either linear

or nonlinear. The difference betwen SVMs and ANNs

is the optimality of the decision boundary. In SVMs,

the optimal decision boundary is such that the distance

between the boundary and the closest point from that

boundary, called the margin, is maximized:

max
wk ;wk0

min
i

jakðxiÞj
jjwkjj

� �
: ð13Þ

This optimization problem always converges to the glob-

al solution, the maximum margin boundary. Figure 1

shows the motivation for SVMs intuitively. One can

expect that the generalization error of the maximum

margin boundary is less than that of other boundaries.
Supervised Learning. Figure 1 (Left) Possible solutions obta

solution, the maximum margin boundary.
Theoretically, the generalization power of SVMs is

guaranteed by Vapnik–Chervonenkis theory [17].

Training SVMs can be rewritten as the following

convex optimization problem

min
wk ;wk0

jjwkjj; subject to ykiakðxiÞ � 1 for all i;

ð14Þ
where yki ¼ 1 if xi 2 Ck and otherwise�1. At the

optimum, ak(x) has the form

akðxÞ ¼
Xn
i¼1

akiykiFðxiÞ>FðxÞ; ð15Þ

where aki � 0 is a Lagrangian multiplier of the ith

constraint, ykiak(xi) � 1. If a data point xi is exactly

on the margin, i.e., ykiak(xi) ¼ 1, then xi is called

support vector and aki > 0. Otherwise, aki ¼ 0 and

ykiak(xi) > 1. Hence, ak(x) only depends on the sup-

port vectors. To compute F(xi)
TF(x), we can intro-

duce a function of the form k(xi, x), representing the

inner product in the feature space can be used, without

computing the mapping F(�) explicitly. Such a func-

tion is called kernel function [18]. There are two popu-

lar kernel functions: (1) polynomial kernel, k(xi, x)¼
(xi

Txþc)p for some c and p > 0; (2) Gaussian kernel

(also called as RBF kernel), kðxi; xÞ ¼ expf� 1
2s2

jjx i � xjj2g for some s > 0.

Various algorithms and implementations have been

developed to train SVMs efficiently. Two most popular

softwares are LIBSVM [19] and SVMlight [20], both
ined by neural networks. (Right) SVMs give one global
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implement several techniques such as working set se-

lection, shrinking heuristics, and LRU caching to speed

up optimization, and provide various kernel functions

with choosing appropriate parameters of those func-

tions automatically (automatic model selection). Two

recent extensions of SVMlight – SVMstruct for structured

data, SVMperf for training with more than hundred-

thousands of data points – are also popular in

biometrics.
Related Entries

▶Classifier Design

▶Machine-Learning

▶Probability Distribution
S
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▶Multiple Experts
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Definition

Support vector machines (SVMs) are particular linear

▶ classifiers which are based on the margin maximiza-

tion principle. They perform ▶ structural risk minimi-

zation, which improves the complexity of the classifier

with the aim of achieving excellent ▶ generalization

performance. The SVM accomplishes the classification

task by constructing, in a higher dimensional space, the

hyperplane that optimally separates the data into two

categories.
Introduction

Considering a two-category classification problem,

a linear classifier separates the space, with a hyper-

plane, into two regions, each of which is also called a

class. Before the creation of SVMs, the popular algo-

rithm for determining the parameters of a linear clas-

sifier was a single-neuron perceptron. The perceptron

algorithm uses an updating rule to generate a separat-

ing surface for a two-class problem. The procedure

is guaranteed to converge when the ▶ training data

are linearly separable, however there exists an infinite

number of hyperplanes that correctly classify these data

(see Fig. 1).

The idea behind the SVM is to select the hyper-

plane that provides the best generalization capa-

city. Then, the SVM algorithm attempts to find the
Support Vector Machine. Figure 1 Linear classifier: In this ca

the best?
maximum margin between the two data categories

and then determines the hyperplane that is in mid-

dle of the maximum margin. Thus, the points near-

est the decision boundary are located at the same

distance from the optimal hyperplane. In machine

learning theory, it is demonstrated that the margin

maximization principle provides the SVM with a

good generalization capacity, because it minimizes

the structural risk related to the complexity of the

SVM [1].
SVM Formulation

Let consider a dataset fðx1; y1Þ; . . . ; ðx‘; y‘Þg with

xi 2 Rd and yi 2{�1,1}. SVM training attempts to

find the parameters w and b of the linear decision

function f(x) ¼ w.x þ b defining the optimal hyper-

plane. The points near the decision boundary define

the margin. Considering two points x1, x2 on opposite

sides of the margin with f(x1)¼1 and f(x2)¼�1, the

margin equals ½ f ðx1Þ � f ðx2Þ�= wk k ¼ 2= wk k. Thus,
maximizing the margin is equivalent to minimizing

||w|| ∕2 or ||w||2 ∕2. Then, to find the optimal hyper-

plane, the SVM solves the following optimization

problem:

min
w;b

1

2
w 0w

s:t yi w
0:xi þ bð Þ � 1 8i ¼ 1; . . . ; ‘

ð1Þ
se, there exists an infinite number of solutions. Which is
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The transformation of this optimization problem

into its corresponding dual problem gives the follow-

ing quadratic problem:

max
/

X‘

i¼1

ai � 1

2

X‘

i;j¼1

aiajyiyi xi:xj
 �

s:t
X‘

i¼1

yiai ¼ 0; a � 0 8i ¼ 1; . . . ; ‘

ð2Þ

Where W 0 denotes the transpose of W.

The solution of the previous problem gives

the parameter w ¼ P‘
i¼1yiaixi of the optimal

hyperplane. Thus, the decision function becomes

f ðxÞ ¼ P‘
i¼1aiyiðxi:xÞ þ b in dual space. Note that the

value of the bias b does not appear in the dual problem.

Using the constraints of the primal problem, the bias

is given by b ¼ �1=2½maxy¼�1ðw:xiÞ þminy¼1ðw:xiÞ�.
It is demonstrated with the Karush-Kuhn-Tucker

conditions that only the examples xi that satisfy

yi(w. xiþb)¼1 are the corresponding ai non-zero.

These examples are called support vectors (see Fig. 2).
SVM in Practice

In real-world problems, the data are not linearly sepa-

rable, and so a more sophisticated SVM is used to solve
Support Vector Machine. Figure 2 SVM principle: illustratio

two-dimensional input space based on margin maximization.
them. First, the slack variable is introduced in order to

relax the margin (this is called a soft margin optimiza-

tion). Second, the kernel trick is used to produce

nonlinear boundaries [2]. The idea behind kernels is

to map training data nonlinearly into a higher-dimen-

sional feature space via a mapping function F and to

construct a separating hyperplane which maximizes

the margin (see Fig. 3). The construction of the linear

decision surface in this feature space only requires the

evaluation of dot products f(xi).f(xj)¼k(xi,xj), where

the application k : Rd �Rd ! R is called the kernel

function [3, 4].

The decision function given by an SVM is:

yðxÞ ¼ sign½w 0fðxÞ þ b�; ð3Þ
where w and b are found by resolving the following

optimization problem that expresses the maximiza-

tion of the margin 2 ∕ ||w|| and the minimization of

training error:

min
w;b;x

1

2
w 0w þ C

X‘

i¼1

xi L1� SVMð Þ or

min
w;b;x

1

2
w 0w þ C

X‘

i¼1

x2i L2� SVMð Þ
ð4Þ

subject to : yi w
0f xið Þ þ b½ � � 1� xi 8i ¼ 1; . . . ; ‘
ð5Þ
n of the unique and optimal hyperplane in a

S



Support Vector Machine. Figure 3 Illustration of the kernel trick: The data are mapped into a higher-dimensional

feature space, where a separating hyperplane is constructed using the margin maximization principle. The hyperplane

is computed using the kernel function without the explicit expression of the mapping function. (a) Nonlinearly separable

data in the input space. (b) Data in the higher-dimensional feature space.

Support Vector Machine. Table 1 Common kernel used

with SVM

Gaussian (RBF) kðx; yÞ ¼ expð�jjx � yjj2=s2Þ
Polynomial kðx; yÞ ¼ ðax:y þ bÞn
Laplacian ðx; yÞ ¼ expð�ajjx � yjj þ bÞ
Multi-quadratic kðx; yÞ ¼ ðajjx � yjj þ bÞ1=2
Inverse multi-
quadratic

kðx; yÞ ¼ ðajjx � yjj þ bÞ�1=2

KMOD
kðx; yÞ ¼ a

"
exp

	
g2

jjx�yjj2þs2



� 1

#

1306S Support Vector Machine
xi � 0 8i ¼ 1; . . . ; ‘: ð6Þ
By applying the Lagrangian differentiation theorem

to the corresponding dual problem, the following

decision function is obtained:

yðxÞ ¼ sign½
X
i¼1

‘
aiyikðxi; xÞ þ b�; ð7Þ

with a solution of the dual problem.

The dual problem for the L1-SVM is the following

quadratic optimization problem:

maximize : W að Þ ¼
X‘

i¼1

ai � 1

2

X‘

i;j¼1

aiajyiyjk xi; xj
 �

ð8Þ

subject to :
X‘

i¼1

aiyi ¼ 0 and 0	ai 	C; i¼ 1; . . . ;‘: ð9Þ

Using the L2-SVM, the dual problem becomes :

maximize : W að Þ ¼
X‘

i¼1

ai

� 1

2

X‘

i:j¼1

aiajyiyj k xi; xj
 �þ 1

2C
dij

� �

ð10Þ

subject to :
X‘

aiyi ¼ 0 and 0 	 ai; i ¼ 1; . . . ‘: ð11Þ

i¼1

where dij ¼ 1 if i ¼ j and 0 otherwise.
In practice, the L1-SVM is used most of the

time, and its popular implementation developed by

Joachims [5] is very fast and scales to large datasets.

This implementation, called SVMlight, is available

at svmlight.joachims.org.
SVM Model Selection

To achieve good SVM performance, optimum values

for the kernel parameters and for the hyperparameterC

much be chosen. The latter is a regularization parameter

controlling the trade-off between the training errormin-

imization and the margin maximization. The kernel

parameters define the kernel function used to map data

into a higher-dimensional feature space (see Table 1).

Like kernel functions, there are the Gaussian kernel

k(xi,xj)¼exp(� ||xi�xj||
2 ∕s2) with parameter s and



Support Vector Machine. Figure 4 (a) and (b) show the impact of SVM hyperparameters on classifier generalization,

while (c) illustrates the influence of the choice of kernel function.
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S

the polynomial kernel k(xi, xj)¼(axi
0xj þ b)d with

parameters a, b and d. The task of selecting the hyper-

parameters that yield the best performance of the ma-

chine is called model selection [6, 7, 8, 9].

As an illustration, Fig. 4a shows the variation of

the error rate on a validation set versus the variation

of the Gaussian kernel with a fixed value of C and

Fig. 4b shows the variation of the error rate on the

validation set versus the variation of the hyperpara-

meter C with a fixed value of the RBF kernel parameter.

In each case, the binary problem described by the

‘‘Thyroid’’ data taken from the UCI benchmark is

resolved. Clearly, the best performance is achieved with

an optimum choice of the kernel parameter and of C.

With the SVM, as with other kernel classifiers, the

choice of kernel corresponds to choosing a function

space for learning. The kernel determines the function-

al form of all possible solutions. Thus, the choice of

kernel is very important in the construction of a good

machine. So, in order to obtain a good performance

from the SVM classifier, one first need to design

or choose a type of kernel, and then optimize the

SVM’s hyperparameters to improve the generalization

capacity of the classifier. Figure 4c illustrates the influ-

ence of the kernel choice, where the RBF and the

polynomial kernels are compared on datasets taken

from the challenge website on model selection and

prediction organized by Isabelle Guyon.
Resolution of Multiclass Problems with
the SVM

The SVM is formulated for the binary classification

problem. However, there are some techniques used to
combine several binary SVMs in order to build a sys-

tem for the multiclass problem (e.g., a 10-class digit

recognition problem). Two popular methods are pre-

sented here:

OneVersustheRest: The idea of one versus the rest

is to construct as many SVMs as there are classes,

where each SVM is trained to separate one class from

the rest. Thus, for a c-class problem, c SVMs are built

and combined to perform multiclass classification

according to the maximal output. The ith SVM is

trained with all the examples in the ith class with

positive labels, and all the other examples with negative

examples. This is also known as the One-Against-All

method.

Pairwise(orOne�Against�One): The idea of pair-

wise is to construct c(c�1)2 SVMs for a c-class prob-

lem, each SVM being trained for every possible pair of

classes. A common way to make a decision with the

pairwise method is by voting. A rule for discriminating

between every pair of classes is constructed, and the

class with the largest vote is selected.
SVM Variants

The least squares SVM (LS-SVM) is a variant of

the standard SVM, and constitutes the response

to the following question: How much can the SVM

formulation be simplified without losing any of its

advantages? Suykens and Vandewalle [10] proposed

the LS-SVM where the training algorithm solves a

convex problem like the SVM. In addition, the training

algorithm of the LS-SVM is simplified, since a linear

problem is resolved instead of a quadratic problem

in the SVM case.
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The Transductive SVM (TSVM) is an interesting

version of the SVM, which uses transductive inference.

In this case, the TSVM attempts to find the hyperplane

and the labels of the test data that maximize the

margin with minimum error. Thus, the label of the

test data is obtained in one step. Vapnik [1] proposed

this formulation to reinforce the classifier on the test

set by adding the minimization of the error on the

test set during the training process. This formula-

tion has been used elsewhere recently for training

semi-supervised SVMs.
Applications

The SVM is a powerful classifier which has been used

successfully in many pattern recognition problems,

and it has also been shown to perform well in

biometrics recognition applications. For example, in

[11], an iris recognition system for human identifica-

tion has been proposed, in which the extracted iris

features are fed into an SVM for classification. The

experimental results show that the performance of

the SVM as a classifier is far better than the perfor-

mance of a classifier based on the artificial neural

network. In another example, Yao et al. [12], in a

fingerprint classification application, used recursive

neural networks to extract a set of distributed features

of the fingerprint which can be integrated into the

SVM. Many other SVM applications, like handwriting

recognition [8, 13], can be found at www.clopinet.

com/isabelle/Projects/SVM/applist.html.
Related Entries

▶Classifier

▶Generalization

▶ Structural Risk

▶Training
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Surface Curvature
Measurements of the curvature of a surface are com-

monly used in 3D biometrics. The normal curvature on

a point p on the surface is defined as the curvature of

the curve that is formed by the intersection of the

surface with the plane containing the normal vector

and one of the tangent vectors at p. Thus the normal

curvature is a function of the tangent vector direction.

The minimum and maximum values of this function

are the principal curvatures k1 and k2 of the surface

http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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at p. Other measures of surface curvature are the

Gaussian curvature defined as the product of principal

curvatures, the mean curvature defined as the average

of principal curvatures and the shape index given by

SI ¼ 2

p
k2 þ k1

k2 � k1

Computation of surface curvature on discrete surfaces

such as those captured with 3D scanners is usually

accomplished by locally fitting low order surface

patches (e.g. biquadratic surfaces, splines) over each

point. Then the above curvature features may be com-

puted analytically.

▶ Finger Geometry, 3D
Surface Matching
S

3D biometrics work by computing the similarity be-

tween 3D surfaces of objects belonging to the same

class. The majority of the techniques used measure

the similarity among homologous salient geometric

features on the surfaces (e.g. based on curvature).

The localization of these features is usually based on

prior knowledge of the surface class (e.g. face, hand)

and thus, specialized feature detectors may be used.

The geometric attributes extracted are selected so that

they are invariant to transformations such as rotation,

translation and scaling. In the case that knowledge-

based feature detection is difficult, a correspondence

among the surfaces may be established by randomly

selecting points on the two surfaces and then trying to

find pairs of points with similar geometric attributes.

Several such techniques have been developed for rigid

surface matching (e.g. Spin Images) which may be

extended for matching non-rigid or articulated sur-

faces. Another technique for establishing correspon-

dences is fitting a parameterized deformable model to

the points of each surface. Since the fitted models are

deformations of the same surface, correspondence is

automatically determined. Creation of such deform-

able models requires however a large number of anno-

tated training data.

▶ Finger Geometry, 3D
Surveillance

RAMA CHELLAPPA, ASWIN C. SANKARANARAYANAN

University of Maryland, College Park, MD, USA
Synonyms

Monitoring; Surveillance
Definition

Surveillance refers to monitoring of a scene along

with analysis of behavior of the people and vehicles

for the purpose of maintaining security or keeping a

watch over an area. Typically, traditional surveillance

involves monitoring of a scene using one or more

close circuit television (CCTV) cameras with person-

nel watching and making decisions based on video

feeds obtained from the ▶ cameras. There is a grow-

ing need towards building systems that are com-

pletely automated or operate with minimal human

supervision.

Biometric acquisition and processing is by far the

most important component of any automated surveil-

lance system.There aremany challenges and variates that

show up in acquisition of biometrics for robust verifica-

tion. Further, in surveillance, behavioral biometrics is

also of potential use in many scenarios. Using the pat-

terns observed in a scene (such as faces, speech, behav-

ior), the system decides on a set of actions to perform.

These actions could involve access control (allowing/

denying access to facilities), alerting the presence of

intruders/abandoned luggage and a host of other secu-

rity related tasks.
Introduction

Surveillance refers to monitoring a scene using sensors

for the purposes of enhanced security. Surveillance

systems are becoming ubiquitous, especially in urban

areas with growing deployment of cameras and CCTV

for providing security in public areas such as banks,

shopping malls, etc. It is estimated that UK alone

has more than four million CCTV cameras. Surveil-

lance technologies are also becoming common for
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other applications [1] such as traffic monitoring,

wherein it is mainly used for detecting violations and

monitoring traffic. Typically, video cameras are find-

ing use for detecting congestion, accidents, and in

adaptive switching of traffic lights. Other typical sur-

veillance tasks include portal control, monitoring

shop lifting, and suspect tracking as well as post-

event analysis [2].

A traditional surveillance system involves little au-

tomation. Most surveillance systems have a set of cam-

eras monitoring a scene of interest. Data collected from

these sensors are used for two purposes.

1. Real time monitoring of the scene by human

personnel.

2. Archiving of data for retrieval in the future.

In most cases, the archived data is only retrieved after

an incident has occurred.

This, however is changing with introduction of

many commercial surveillance technologies that intro-

duce more automation thereby alleviating the need or

reducing the involvement of humans in the decision

making process [3]. Simultaneously, the focus has also

been in visualization tools for better depiction of data

collected by the sensors and in fast retrieval of archived

data for quick forensic analysis. Surveillance systems

that can detect elementary events in the video streams

acquired by several cameras are commercially available

today. A very general surveillance system is schemati-

cally shown in Fig. 1.
Surveillance. Figure 1 Inputs from sensors are typically stor

retrieved only after incidents. However, in more automated sy

monitors these certain patterns to occur which initiates the a

for additional robustness, data across sensors might be fused
Biometrics form a critical component in all

(semi-)automated surveillance systems, given the

obvious need to acquire, validate, and process

biometrics in various surveillance tasks. Such tasks

include:

1. Verification. Validating a person’s identity is useful

in access control. Typically, verification can be done

in a controlled manner, and can use active

biometrics such as iris, face (controlled acquisi-

tion), speech, finger/hand prints. The system is

expected to use the biometrics to confirm if the

person is truly whom he/she claims to be.

2. Recognition. Recognition of identity shows up in

tasks of intruder detection and screening, which

finds use in a wide host of scenarios from scene

monitoring to home surveillance. This involves

cross-checking the acquired biometrics across a

list to obtain a match. Typically, for such tasks,

passive acquisition methods are preferred making

face and gait biometrics useful for this task.

3. Abnormality detection. Behavioral biometrics find

use in surveillance of public areas, such as airports

and malls, where the abnormal/suspicious behavior

exhibited by a single or group of individual forms is

the biometric of interest.

Biometrics finds application across a wide range of

surveillance tasks. We next discuss the variates and

trade-offs involved in using biometrics application

for surveillance.
ed on capture. The relevant information is searched and

stems the inputs are pre-processed for events. The system

ppropriate action. When multiple sensors are present,

.
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Biometrics and Surveillance

The choice of biometric to be used in a particular task

depend on the match between the acquisition and pro-

cessing capability of the biometric to the requirements

of the task. Such characteristics include the discrimina-

tive power of the biometric, ease of acquisition, the

permanence of the biometric, and miscellaneous con-

siderations such as acceptability of its use and▶ privacy

concerns [4, 5]. Towards this end, we discuss some

of the important variates that need be considered in

biometric surveillance.

1. Cooperative acquisition. Ease of acquisition is

probably the most important consideration for use of

a particular biometric. Consider the task of home

surveillance, where the system tries to detect intruders

by comparing the acquired biometric signature to a

database of individuals. It is not possible in such a task

to use iris as a biometric, because acquisition of iris

pattern requires cooperation of the subject. Similarly,

for the same task, it is also unreasonable to use con-

trolled face recognition (with known pose and illumi-

nation) as a possible biometric for similar reasons.

Using the cooperation of subject as a basis, allows

us to classify biometrics into two kinds: cooperative and

non-cooperative. Fingerprints, hand prints, speech

(controlled), face (controlled), iris, ear, and DNA are

biometrics that need the active cooperation of the

subject for acquisition. These biometrics, given the

cooperative nature of acquisition, can be collected

reliably under a controlled setup. Such controls could

be a known sentence for speech, a known pose and

favorable illumination for face. Further, the subject

could be asked for multiple samples of the same bio-

metric for increased robustness to acquisition noise

and errors. In return, it is expected that the biometric

performs at increased reliability with lower false alarms

and lower mis-detections. However, the cooperative

nature of acquisition makes these biometrics unusable

for a variety of operating tasks. None the less, such

biometrics are extremely useful for a wide range of

tasks, such as secure access control, and for controlled

verification tasks such as those related to passports and

other identification related documents.

In contrast, acquisition of the biometric without

the cooperation of the subject(s) is necessary for sur-

veillance of regions with partially or completely unre-

stricted access, wherein the sheer number of subjects
involved does not merit the use of active acquisition.

Non-cooperative biometrics are also useful in surveil-

lance scenarios requiring the use of behavioral

biometrics, as with behavioral biometrics the use of

active acquisition methods might inherently affect the

very behavior that we want to detect. Face and gait are

probably the best examples of such biometrics.

2. Inherent capability of discrimination. Each bio-

metric depending on its inherent variations across

subjects, and intra-variations for each individual has

limitations on the size of the dataset it can be used

before its operating characteristics (false alarm and

mis-detection rate) go below acceptable limits. DNA,

iris, and fingerprint provide robust discrimination

even when the number of individuals in the data-

base are in tens of thousands. Face (under controlled

acquisition) can robustly recognize with low false

alarms and mis-detections upto datasets containing

many hundreds of individuals. However, performance

of face as a biometric steeply degrades with uncon-

trolled pose, illumination, and other effects such as

aging, disguise, and emotions. Gait, as a biometric

provides similar performance capabilities as that of

face under uncontrolled acquisition. However, as

stated above, both face and gait can be captured with-

out the cooperation of the subject, which makes them

invaluable for certain applications. However, their use

also critically depends on the size of the database that

is used.

3. Range of operation. Another criterion that be-

comes important in practical deployment of systems

using biometrics is the range at which acquisition can

be performed. Gait, as an example, works with the

human silhouette as the basic building block, and can

be reliably captured at ranges upto a 100 m (assuming

a common deployment scenario). In contrast, finger-

print needs contact between the subject and the sensor.

Similarly, iris requires the subject to be at much closer

proximity than what is required for face.

4. Miscellaneous considerations. There exist a host

of other considerations that decide the suitability of

a biometric to a particular surveillance application.

These include the permanence of the biometric, secu-

rity considerations such as the ease of imitating or

tampering, and privacy considerations in its acquisi-

tion and use [4, 5]. For example, the permanence of

face as a biometric depends on the degradation of its

discriminating capabilities as the subject ages [6, 7].
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Similarly, the issue of wear of the fingerprints with use

becomes an issue for consideration. Finally, privacy

considerations play an important role in the accept-

ability of the biometrics’ use in commercial systems.
Behavioral Biometrics in Surveillance

Behavioral biometrics are very important for surveil-

lance, especially towards identifying critical events be-

fore or as they happen. In general, the visual modality

(cameras) is most useful for capturing behavioral in-

formation, although there has been some preliminary

work on using motion sensor for similar tasks. In the

presence of a camera, the processing of data to obtain

such biometrics falls under the category of event de-

tection. In the context of surveillance systems, these

can be broadly divided into those that model actions of

single objects and those that handle multi-object inter-

actions. In the case of single-objects, an understanding

of the activity (behavior) being performed is of im-

mense interest. Typically, the object is described in

terms of a feature-vector [8] whose representation is

suitable to identify the activities while marginalizing

nuisance parameters such as the identity of the object

or view and illumination. Stochastic models such as

the Hidden Markov models and Linear Dynamical

Systems have been shown to be efficient in modeling

activities. In these, the temporal dynamics of the activ-

ity are captured using state-space models, which form

a generative model for the activity. Given a test activity,

it is possible to evaluate the likelihood of the test

sequence arising from the learnt model.

Capturing the behavioral patterns exhibited by

multiple actors is of immense importance in many

surveillance scenarios. Examples of such interactions

include an individual exiting a building and driving
Surveillance. Figure 2 Example frames from a detected casin

was used to detect the casing incident.
a car, or an individual casing vehicles. A lot of other

scenarios, such as abandoned vehicles, dropped objects

fit under this category. Such interactions can be mod-

eled using context-free grammars [9, 10] (Fig. 2).

Detection and tracking data are typically parsed by

the rules describing the grammar and a likelihood

of the particular sequence of tracking information

conforming to the grammar is estimated. Other

approaches rely on motion analysis of humans accom-

panying the abandoned objects.

The challenges towards the use of behavioral

biometrics in surveillance tasks are in making algo-

rithms robust to variations in pose, illumination, and

identity. There is also the need to bridge the gap be-

tween the tools for representation and processing used

for identifying biometrics exhibited by individuals and

those by groups of people. In this context, motion

sensors [11] provide an alternate way for capturing

behavioral signatures of groups. Motion sensors regis-

ter time-instants when the sensor observes motion

in its range. While this information is very sparse,

without any ability to recognize people or disambi-

guate between multiple targets, a dense deployment

of motion sensors along with cameras can be very

powerful.
Conclusion

In summary, biometrics are an important component

of automated surveillance, and help in the tasks of

recognition and verification of a target’s identity.

Such tasks find application in a wide range of surveil-

lance applications. The use of a particular biometric

for a surveillance application depends critically on the

match between the properties of the biometrics and

the needs of the application. In particular, attributes
g incident in a parking lot. The algorithm described in [10]
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such as ease of acquisition, range of acquisition and

discriminating power form important considerations

towards the choice of biometric used. In surveillance,

behavioral biometrics are useful in identifying suspi-

cious behavior, and finds use in a range of scene moni-

toring applications.
Related Entries

▶Border Control

▶ Law Enforcement

▶Physical Access Control

▶ Face Recognition, Video Based
S
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SVM
▶ Support Vector Machine
SVM Supervector
An SVM (Support Vector Machine) is a two class classi-

fier. It is constructed by sums of kernel function K(.,.):

f ðxÞ ¼
XL
i¼1

aitiK ðx; xiÞ þ d ð1Þ

ti are the ideal outputs (−1 for one class and +1 for the

other class) and
PL
i¼1

aiti ¼ 0ðai > 0Þ The vectors xi are

the support vectors (belonging to the training vectors)

and are obtained by using an optimization algorithm.

A class decision is based upon the value of f (x)

with respect to a threshold. The kernel function

is constrained to verify the Mercer condition:

K ðx; yÞ ¼ bðxÞt bðyÞ;where b(x) is a mapping from

the input space (containing the vectors x) to a possibly

infinite-dimensional SVM expansion space.

In the case of speaker verification, given universal

background (GMM UBM):

gðxÞ ¼
XM
i¼1

oiNðx; mi;SiÞ; ð2Þ

where, oi are the mixture weights, N() is a Gaussian,

andðmi þ SiÞare the means and covariances of

Gaussian components. A speaker (s) model is a

GMM obtained by adapting the UBM using MAP

procedure (only means are adapted: ðmsÞ). In this

case the kernel function can be written as:

K ðs1; s2Þ ¼
XM
i¼1

ð ffiffip oiS
�ð1=2Þ
i ms1i Þt

ð ffipoiS
�ð1=2Þ
i ms2i Þ:

ð3Þ

The kernel of the above equation is linear in the GMM

Supervector space and hence it satisfies the Mercer

condition.

▶ Session Effects on Speaker Modeling
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Sweep Sensor
It refers to a fingerprint sensor on which the finger

has to sweep on the platen during the capture.

Its capture area is very small and it is represented by

few pixel lines.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Synthesis Attack
Synthesis attack is similar to replay attack in that it also

involves the recording of voice samples from a legiti-

mate client. However, these samples are used to build a

model of the client’s voice, which can in turn be used

by a text-to-speech synthesizer to produce speech that is

similar to the voice of the client. The text-to-speech

synthesizer could then be controlled by an attacker, for

example, by using the keyboard of a notebook com-

puter, to produce any words or sentences that may be

requested by the authentication system in the client’s

voice in order to achieve false authentication.

▶ Liveness Assurance in Face Authentication

▶ Liveness Assurance in Voice Authentication

▶ Security and Liveness, Overview
Synthetic Biometrics
▶Biometric Sample Synthesis
Synthetic Fingerprint Generation
▶ Fingerprint Sample Synthesis

▶ SFinGe
Synthetic Fingerprints
▶ Fingerprint Sample Synthesis
Synthetic Iris Images
▶ Iris Sample Synthesis
Synthetic Voice Creation
▶Voice Sample Synthesis
System-on-card
Smartcard has complete biometric verification system

which includes data acquisition, processing, and

matching.

▶On-Card Matching
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▶Digitizing Tablet
Tamper-Proof
The term tamper-proof refers to as a functionality of

a device that enables the system to resist and/or pro-

tect itself from tampering acts. This functionality

sometimes implemented as a combination of a self-

destruction mechanism and sensors that detect any

unauthorized access to the device including vandalism.

This functionality is also known as temper-resistant or

anti-tampering.

▶ Finger Vein Reader
Tamper-proof Operating System

RAUL SANCHEZ-REILLO

University Carlos III of Madrid; Avda. Universidad,

Leganes (Madrid), Spain
Synonyms

Malicious-code-free Operating System; Secure Bio-

metric Token Operating System
Definition

Operating System with a robust design, as not to allow

the execution of malicious code. Access to internal data
# 2009 Springer Science+Business Media, LLC
and procedures are never allowed without the proper

authorization. In its more strict implementations, this

Operating System will have attack detection mechan-

isms. If the attack is of a certain level, the Operating

System may even delete all its code and/or data.
Introduction

The handling of sensible data in Information Systems

is currently very usual. Which data is to be considered

sensible is up to the application, but at least we can

consider those such as personal data, financial data as

well as access control data. Actors dealing with such

Information System (clients/citizens, service providers,

integrators, etc.) have to be aware of the security level

achieved within the system.

Although this is a very important issue in any system,

when biometric information is handled it becomes a

critical point. Reason for this is that biometric informa-

tion is permanently valid, as it is expected to be kept the

same during the whole life of a person. While a private

key can be changed as desired and even cancelled, a user

cannot change his fingerprint (unless changing finger) or

even cancel it. If cancelling biometric raw data, the user

will be limited, in case of fingerprints, to 10 successful

attacks during his/her whole life. These kind of consid-

erations has already been published even back to 1998, as

it can be read in [1].

Therefore, biometric systems have to be kept as

secure as possible. There are several Potential Vulnera-

ble Points (PVPs) in any Biometric System, as it can be

seen in Fig. 1. All those 9 PVPs have to be considered

when designing a biometric solution. A good introduc-

tion to threats in a Biometric System can be found in

[2, 3], and in BEM [4].

� PVP 1 has to deal with user attitudes, as well as

capture device front end. Regarding user attitude,

an authorised user can provide his own biome-

tricsample to an impostor unknowingly, unwill-

ingly, or even willingly. From the capture device
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front-end point of view, such device may not be

able to:
– Detect a nonlive sample

– Detect the quality of the input sample, being able

to discard those under a determined threshold

– Protect the quality threshold againstmanipulation

– Detect degradation of its own degradation

– Resist environmental factors

– Eliminate residual information from previous

captures

– Detect and discard sample injection

– Deny successive and fast sample presentation
� PVP 2 is directly related to the threat group 3 of

BEM. It is basically focused on the capture device

back-end, as well as the front-end of the Biometric

Algorithm. Captured sample could be intercepted

and/or reinjected, to provide a ▶ replay attack.

Major problem relies on the potential lost of the

user’s biometric identity. Also, another threat is a

▶ hill-climbing attack by injecting successive bio-

metric samples.

� PVPs 3, 4, 6, 7, and 8 could be treated as in any

other IT system (Trojans, Viruses, communications

interception, data injection, hill climbing attacks,

etc.). So the same kind of study shall be done.

It is in this kind of PVPs where a Tamper-proof

Operating System can be of help. It is important to

note that sensibility related to biometric related

information, covers not only the sample data, fea-

ture vectors, and templates, but also thresholds,

access logs, and algorithms.
� PVP 5, being also a typical point of study in any IT

system, has here more importance depending on

the information that could be given by the system

after the matching. If matching result is not given

just by an OK / ERROR message, but also carries

information about the level of matching acquired,

this could be used by an attacker to build an artifi-

cial sample, by hill-climbing techniques. For this

PVP also, the Tamper-proof O.S. can play an im-

portant role.
Biometric Devices

Regarding Biometrics, a Tamper-proof Operating Sys-

tem is intended to be running in some (or any) ele-

ments which are part of the Biometric System. The idea

of this kind of Operating Systems is not new, as they

are already implemented in other areas, such as

▶ smart cards for financial services. This kind of

electronic devices are designed under a basic security

rule: ‘‘Not only the device has to work under its con-

strained conditions of user, but also has to stop work-

ing outside those conditions’’. In few words, this means

that, for example, if the smart card is expected to work

with a supply voltage from 4.5 to 5.5 volts, it does not

have to work outside the range (e.g., if supply voltage is

4.4 or 5.6, not even a response has to be obtained from

the card). Related to the Operating System inside the

card, this covers things like not allowing the execution

of any undefined/undocumented command, or not
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being able to install new functions that can behave as

Trojan Horses or Viruses.

With this example, the reader can think that

this kind of products does not really exist, because

several papers have been published related to secu-

rity problems with smartcards (e.g., [5] and some

general audience press). It has to be stated that not all

times an integrated circuit identification card is re-

ferred, it is really a smartcard (i.e., a microprocessor-

based identification card with a tamper-proof O.S.).

Also, some real smartcards have not been properly

issued, leaving some critical data files unprotected,

or not using the security mechanisms provided. Rules

to be followed to properly use a smartcard can be

found in [6].

This same kind of rules can be applied to all kind of

biometric devices. Obviously, depending on the system

architecture, biometric devices can be of very different

kinds. Figure 2 shows two possible architectures of a

biometric authentication system, which are usually

known as (a) match-off-card (also known as match-off-

token), and (b) match-on-card (or match-on-token).

Apart from these two, many other schemes can be
Tamper-proof Operating System. Figure 2 Some architectu

several devices.
designed. The term ‘‘match’’ should be changed for

‘‘Comparison’’. So instead of ‘‘match-off-card’’, ‘‘off-

card biometric comparison’’ should be used. But with-

in text ‘‘match-off-card’’ and ‘‘match-on-card’’ are

used due to being terms widely used among the

industry.

In a match-off-card system (e.g., [7]), we can con-

sider a simplification of the system as composed of

three devices: the capture device, the token or card

where the user’s template is stored, and the rest of the

system, which will be named as ‘‘Biometric System’’.

Major difference with the match-on-card system (e.g.,

[8]) is that here the token only stores the user’s tem-

plate, while in the match-on-card version it also per-

forms some biometric-related computations.

In any case, any of those devices should be designed

following the rules given below regarding a Tamper-

proof O.S. Being this viable, if those devices are devel-

oped as embedded systems, major problems can arise

when one of those devices (typically the Biometric

System) is running on a general purpose computer,

where little or no control is available for installed

applications and data exchange.
res of biometric authentication systems, splitting tasks in

T
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Requirements for a Tamper-Proof O.S.

Once focused the environment where a Tamper-proof

O.S. has to be found in Biometric Devices, it is time to

start its design. A good starting point will be following

all previous works dealing with smart cards. The rea-

son for that is to transfer the know–how of near 30

years of secure identification tokens given by the smart

card industry [9]. This same ideas can be extrapolated

to other biometric devices, not only personal tokens.

First thing to consider when designing a Tamper-

proof O.S. is the different life phases that the biometric

device will have. All devices, specially those related to

personal authentication, should go through different

life stages, from manufacturing to its use by the end

users. As information handled by them is really sensi-

ble, extra protection should be taken to avoid robbery,

emulation, or fraudulent access to the device or its

information. Therefore, security mechanisms will be

forced in each life stage. Those mechanisms are mainly

based on Transport Keys, which protect access to using

the device in each change of its life phase. Life phases

defined are:

� Manufacturing: where the device is assembled. The

microcontroller within the device should be pro-

tected by a Transport Key, before delivered to the

next stage. The way to compute that Transport Key

for each microcontroller, will be sent to the com-

pany responsible of the next phase by a separate

and secured way.

� Personalization: In this phase, each device is differ-

entiated from all others by storing some unique

data related to the final application, user, and access

conditions. Some times this phase is split in several

subphases, specially when the device has to be per-

sonalized for the application (prepersonalization)

and then for the final user (personalization), as it

may happen with identification tokens. In this

phase, also Data Structure regarding the applica-

tions may be created, as well as the full security

architecture.

� Usage: The end user is ready to use the device.

� Discontinuation: Due to ageing, limited time use,

accidents, or attack detection, the devicemay be out

of use. This can be temporary (for example, when

keys are blocked), or permanent (no re-activation is

allowed). It has to be guaranteed that once discon-

tinued, such device shall not be able to be used.
Entering in details regarding the requirements for a

tamper-proof operating system, we can state the fol-

lowing general rules:

� Mutual Authentication mechanisms have to be

used before exchanging any kind of biometric

information. In any communication, both parts

have to be sure that the other party is a reliable one.

� To avoid▶ replay attacks, some time-stamping-like

mechanisms have to be used (e.g., generation of

session keys to sign/cipher eachmessage exchanged).

� Only the manufactured designed commands can

be executed. No possibility of downloading new

commands has to be allowed. Therefore, flash rep-

rogramming and device updating are strongly

discouraged.

� Before executing anything in the biometric device,

full integrity check (both cryptographic and se-

mantic) of the command and its data has to be

performed. Some attacks would try to exploit un-

defined cases in the semantics of a command

exchanged.

� All sensible data (sample data, feature vectors,

templates, and thresholds) has to be transmitted

ciphered.

� If there is a command related to changing pa-

rameters, it has to be sent with all security mech-

anisms allowed, as the system can be even more

vulnerable to attacks related to changing those para-

meters (e.g., quality or verification thresholds).

� Feedback information from the device to the exter-

nal world has to be as short as possible to avoid hill-

climbing attacks. For example, a device performing

comparisons in an authentication system has to

provide only a YES/NO answer, but not giving

information on the matching score obtained.

� Attack detection mechanisms have to be consid-

ered. If an attack is detected, then the device has to

stop working, and a reinitialization has to be made.

If the detected attack is consider extremely serious,

the device may consider deleting not only all tem-

poral data, but also its permanent data or even it

programming code.

� Successive failed attempts to satisfy any security

condition has to be considered as an attack, and

therefore, the device has to be blocked, as it hap-

pens with a PIN code in a smartcard.

� No direct access to hardware resources (e.g., mem-

ory addresses, communication ports, etc) can be
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allowed. Most virus and Trojan horses benefit for

not following this rule.

� As soon as data is no longer needed by the

Operating System, it has to be erased as to prevent

latent data to be acquired in a successful attack.

Most of these requirements canbe satisfiedbydefining

a security architecture basedon cryptographic algorithms.

Several implementations can be followed. If the developer

is not familiar with these mechanisms, it is suggested

to follow the secret codes/secret keys architecture of a

smartcard, and the Secure Messaging mechanism [6, 9].

These can be directly applied to personal Tokens, and

upgraded to other kind of biometric devices.
T

Example of an O.S. Instruction Set

When implementing a Tamper-proof O.S. several

design decisions have to be made: Frame formats,

time-outs, number of retries, etc. All these issues

depend on the communication strategy followed by

the whole biometric system. Therefore, no general

rule can be given to the designed.

Regarding the instruction set, a minimal list of

functions can be considered, depending on the device

where the O.S. is to be included. This is also dependent

on the platform chosen. As an example, the instruction

set for a limited-resources platforms is given. This

instruction set has been proposed to ISO/IEC JTC1/

SC37 to be considered as a lighter version of BioAPI,

the standardized Application Program Interface for

biometric applications. This lighter version is called

BioAPI Lite and is being standardized as ISO/IEC

29164.

Commands needed by a limited biometric device,

depends on the functionality of such device. Obviously

is not the same a capture device, than a personal token.

But in general terms these commands can be classified

in four major groups: Module Management, Template

Management, Biometric Enrolment, and Biometric

Process.

Management Commands relate to manage the

overall module behavior. Four commands can be con-

sidered in this group:

� Initialize: Tells the module to initialize itself, open-

ing the offered services and initialize all security for

ciphered data exchange. This command is to be

called any time a session is started (power on,
session change, etc). Without being called, the rest

of the commands shall not work.

� Close: Tells the module to shutdown.

� Get Properties: Provides information on capabil-

ities, configuration, and state.

� Update Parameters: Updates parameters in mod-

ule. One of such parameters can be the comparison

threshold. For that reason, this function is recom-

mended to be used with all security mechanisms

available.

Template Management Commands refer to those

functions needed to store and retrieve templates from

the module. These functions will be supported by those

modules that are able to store users’ templates. These

set of commands are expected to be used by personal

tokens or small databases. The functions defined are:

� Store Template: Stores the input template in the

internal biometric module database.

� Retrieve Template: Obtain the referenced template

from the biometric module.

The next group is the Biometric Enrolment Com-

mands. This group of functions will be considered in

systems where enrolment is to be made internally. Due

to the different process of enrolment, even for a single

biometric modality (e.g., different number of samples

needed), in limited devices a multi step procedure

is suggested. First, user will call functions related to

obtain samples for the enrolment and then a call to

the Enrol function will have to be done. Commands

defined are:

� Capture for Enrol: Performs a biometric capture

(using onboard sensor), keeping the information in

module for later enrolment process. The number

this function is called depends on the number of

samples the module needs to perform enrolment.

As this operation involves user interaction, biomet-

ric module manufacturer shall consider time-out

values to cancel operation, reporting that situation

in the Status code returned.

� Acquire for Enrol: Receives a biometric sample

to keep the information in module for later enro-

lment process. The number this function is called

depends on the number of samples the module

needs to perform enrolment. Depending on mod-

ule capabilities, input data can be a raw sample,

a preprocessed one, or its corresponding feature

vector.
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� Enrol: Performs an enrolment to create a template

and stores the template in module. To execute this

function, either Capture for Enrol or Acquire for

Enrol functions has to be called in advance. Enrol

with process with the samples temporally stored

in the module. The return value is the number of

template internally assigned.

� Erase Enrolments: Erases all enrolment templates

or the indicated (by number) template.

Finally, the fourth group is dedicated to all those

commands that are dealing with biometric functions.

It covers the capture process, feature extraction, and

comparison. Even with comparison, it handles com-

parisons with internal templates, or templates coming

from the external world.

� Capture: Performs a biometric capture (using

on-board sensor), returning biometric sample.

� Process: Processes biometric sample to create com-

parable recognition data (feature vector). Depend-

ing on module capabilities, the input sample can

be a raw sample or a preprocessed one.

� Capture and Process: Performs a biometric capture

(using on-board sensor), returning its feature vector.

� Compare External: Compares a feature vector with

the template sent by the external world.

� Process and Compare External: Processes a biomet-

ric sample and compares it with the template sent

by the external world.

� Capture and Compare External: Perform a biomet-

ric capture (using on-board sensor), process the

biometric sample, and compares it with the tem-

plate sent by the external world.

� Compare Internal: Compares a feature vector with

templates stored in the module. If the input

parameter is 0xFF, comparison will be done with

all templates stored. In other case, comparison is

done only with the template whose internal num-

ber is given at the input parameter.

� Process and Compare Internal: Processes a biomet-

ric sample and compares it with templates stored in

the module. If the input parameter is 0xFF, com-

parison will be done with all templates stored. In

other case, comparison is done only with the tem-

plate whose internal number is given at the input

parameter.

� Capture and Compare Internal: Perform a biomet-

ric capture (using on-board sensor), process the

biometric sample, and compares it with templates
stored in the module. If the input parameter is

0xFF, comparison will be done with all templates

stored. In other case, comparison is done only with

the template whose internal number is given at the

input parameter.

Some of these instructions involve user interaction.

Therefore, manufacturer shall consider time-out

values to cancel operation if it is exceeded, reporting

that situation within the protocol used.
Applicability of Tamper-Proof O.S.

As mentioned above, this kind of Operating System

is desirable to be included in all devices related to

Biometric Identification, but unfortunately this is not

always possible. As in many applications a general

purpose computer is used, general purpose Operating

Systems are used (such as Windows, Linux, etc.).

Developing those O.S. in a Tamper-proof way, without

restricting usability and generality is nearly impossible.

Therefore, Tamper-proof Operating Systems are meant

for those embedded systems, sensors and personal

tokens, dealing with personal identification.

Using this kind of Tamper-proof O.S. in these

devices, restrict the number of security holes to the

minimum within the device, and to be concentrated

only in those general purpose systems used. As some

tasks will be performed in such secured devices, secu-

rity leaks will be avoided. For example, if a biometric

system uses personal tamper-proof tokens with match-

on-card capability, the user’s template will never be

exposed, and possibility of hill-climbing or replay

attacks will be cancelled. Thus, all comparison and

decision blocks will be secured, restricting the potential

security problems to the relevant previous modules.
Summary

Due to the sensibility of biometric data, security in

biometric devices has to be considered. One of the

ways to protect privacy is to include a Tamper-proof

operating system. This O.S. would not allow direct

access to hardware resources of the device, neither

to temporary nor permanent data. This O.S. has also

to control the different life stages of the device. A set of

requirements have been defined that have to be con-

sidered when developing such Tamper-proof O.S.
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Finally an example of the commands to be covered

by some devices have been given. Including this kind

of O.S. in all biometric devices will improve the secu-

rity of the whole system. Unfortunately, when some

parts of the biometric system has to be implemented in

a general purpose computer with an open Operating

System, applying these rules is not easy.
Related Entries

▶Biometric Security Threat

▶Biometric Token

▶Biometric Vulnerabilities

▶Match-off-Card

▶Match-on-Card

▶Template Security
T

References

1. Rejman-Greene: Security considerations in the use of biometric

devices. Information Security Technical Report 3, 77–80 (1998)

2. Ratha, N.K., Connell, J.H.B.R.M.: Enhancing security and pri-

vacy in biometrics-based authentication systems. IBM Systems

Journal 40(3), 614–634 (2001)

3. Roberts, C.: Biometric attack vectors and defences. Computers &

Security 26(1), 14–25 (2007)

4. Criteria, C.: Biometric evaluation methodology supplement

(bem). Common Methodology for Information Technology

Security Evaluation - http://www.cesg.gov.uk/site/ast/biometrics/

media/BEM_10.pdf (2002)

5. Matthews, A.: Side-channel attacks on smartcards. Network

Security 2006(12), 18–20 (2006)

6. Sanchez-Reillo, R.: Achieving Security in Integrated Circuit Card

Applications: Reality or Desire? IEEE Aerospace and Electronic

Systems Magazine 17, 4–8 (2002)

7. Sanchez-Reillo, R., Gonzalez-Marcos, A.: Access control system

with hand geometry verification and smart cards. Aerospace and

Electronic Systems Magazine, IEEE 15(2), 45–48. (2000). DOI

10.1109/62.825671

8. Sanchez-Reillo, R.: Smart card information and operations using

biometrics. Aerospace and Electronic Systems Magazine, IEEE

16(4), 3–6 (2001). DOI 10.1109/62.918014

9. ISO ∕IEC_JTC1 ∕SC17: ISO/IEC 7816 Parts 3, 4, 8, 9 & 11

(1987–2005)
Target Detection
▶Human Detection and Tracking
Target Population
▶Test Sample and Size
Target-Dependent Fusion
▶ Fusion, User-Specific
Technology Tests
Technology tests are those in which biometric

algorithms enroll and compare archived (i.e., previ-

ously-collected) data. An essential characteristic of

technology testing is that the test subject is not ‘‘in

the loop’’ – the test subject provides data in advance,

and biometric algorithms are implemented to process

large quantities of test data. Technology tests often

involve cross-comparison of hundreds of thousands

of biometric samples over the course of days or

weeks. Methods of executing and handling the outputs

of such cross-comparisons are a major component

of technology-based performance testing standards.

Technology tests are suitable for evaluation of both

verification- and identification-based systems, al-

though most technology tests are verification-based.

▶Performance Testing Methodology Standardization
Template
The features extracted from an individual’s biometric

trait during enrollment is stored in the biometric

database and is referred to as a template. During au-

thentication, the system compares an individual’s bio-

metric features against this template. The template

http://www.cesg.gov.uk/site/ast/biometrics/media/BEM_10.pdf
http://www.cesg.gov.uk/site/ast/biometrics/media/BEM_10.pdf


1322T Template Distortion
may be updated over time in order to reflect changes in

an individual’s trait (if any).

▶Biometrics, Overview

▶On-Card Matching
Template Distortion
Template distortion consists of applying either invert-

ible or non invertible distortions to a biometric tem-

plate. The distortion can be performed using either an

invertible or a non invertible transform. In both cases

the transform is chosen on the basis of a user key,

which must be known when authentication is per-

formed. In the case when an invertible transform is

chosen, the whole security of the system relies on the

key. On the contrary when non invertible transforms

are used, even if the key is known by an adversary, no

significant information about the template can be ac-

quired. Then, the distorted data are stored in the

database. Different distorted data can be generated

from the same original data, simply by changing the

transform key. Moreover, even if the database is com-

promised, the biometric data cannot be retrieved un-

less user dependent keys are revealed, when dealing

with invertible transforms.

▶Conformance Testing for Biometric Data Inter-

change Formats, Standardization of

▶ Iris Template Protection
Template Protection
It is a method to keep away from biometric template

attack, storing transformed template data rather than

raw template data in a biometric system.

▶ Iris Template Protection

▶User Interface, System Design
Template Reconstruction
▶Template Security
Template Security
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Synonyms

Image regeneration from templates; Template

reconstruction
Definition

Template security refers to techniques which allow

regeneration of enrolled images from templates. Such

image regeneration poses a security and privacy vul-

nerability because the images may be used to spoof or

masquerade as the enrolled individual. Image regener-

ation is of two types. The first relies on decoding the

features in the template and estimating a biometrically

reasonable image with the appropriate features. Results

have been published for fingerprint templates, but

such algorithms are easily implemented for face and

iris recognition. The second type of image regeneration

uses the ability to compare images against the target

and obtain the match score to perform hill-climbing to

iteratively improve an image estimate. Appropriate

biometric template security measures requires strong

encryption of all biometric data, including templates

and match results.
Introduction

It is generally understood that source biometric

images – those captured at the sensor for enrollment

and matching – need to be handled carefully; compro-

mise of these images can impact user privacy and

provide a pathway for security breaches (see▶Biomet-

ric Vulnerabilities, Overview). On the other hand,

other types of biometric data are not necessarily man-

aged with the same care as the biometrics images, and

recent work has shown that it is often possible to

regenerate the source images, or learn other important

information, from these data. Image regeneration may

be performed from two data sources, biometric
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templates and match (or similarity) score results. This

topic has come to be known as ‘‘biometric template

security,’’ or ‘‘template reconstruction,’’ even when it

applies to security issues around the match scores.

Perhaps the best overview of the issues in biometric

template security is given by Jain et al. [1, 2].

Biometric templates carry the most important bio-

metric information – the features considered most

discriminating for the identity of the subject. and

thus present an important concern for privacy and

security of systems. The basic concern is that templates

may be used to spoof the owner of the document.

Biometric algorithm vendors have largely claimed

that it is impossible or infeasible to regenerate the

image from the templates [3]; thus biometric tem-

plates are sometimes considered to be effectively non-

identifiable data, much like a password hash. These

claims are supported by: (1) the template records fea-

tures (such as fingerprint minutiae) and not image

primitives, (2) templates are typically calculated using

only a small portion of the image, (3) templates are

small – a few hundred bytes – much smaller than the

sample image, and (4) the proprietary nature of the

storage format makes templates infeasible to ‘‘hack.’’

Two pathways are considered from which to regenerate

images from templates: (1) from the template directly,

based on a knowledge of the features, and (2) from

match score values from a biometric algorithm.
T

Image Regeneration from Templates

The goal of image regeneration from a biometric tem-

plate is to compute an image which best matches the

feature values encoded in the template, while mainta-

ing a ‘‘reasonable’’ appearance. The constraints on the

image appearance depends on whether the regenerated

images are designed to be shown to humans (experts

or casual observers) or only to be used to fool a

biometric algorithm. In order to regenerate images in

this way, it is necessary for templates to be available in

unencrypted form. Thus, encryption of template data

storage does impede this vulnerability; however, since

templates must be available in unencrypted form to

perform matching, they are vulnerable at that point.

Published work on image regeneration from tem-

plates is for fingerprints, for the reason that regenera-

tion is trivial for most iris and face recognition

templates, in which the template features are typically
based on subspace image transforms. A biometric tem-

plate based on such transforms may be used to regen-

erate the image as follows: assume the template feature

vector, y, is computed from an image, x using a trans-

form that can be approximated by a linear equation

y ¼ Hx for a linear subspace transform expressed as a

matrix, H, then a reconstructed image, x̂, can be

computed from x̂ ¼ Hyy using a pseudoinverse H{.

Construction of H{ would use the well understood

techniques of inverse problem theory (e.g., [4]).

Images reconstructed in this way would typically suffer

some blurriness, due to the inherent ill-conditioning of

such inverse problems.

Because fingerprint template features cannot be

expressed as linear functions of the image data, recon-

struction of fingerprint images from templates is a

nonlinear, and considerably more difficult problem.

The earliest template reconstruction technique for fin-

gerprints was proposed by Hill [5], who developed an

ad-hoc approach to calculate an image from the tem-

plate of an unspecified fingerprint system vendor. Soft-

ware was designed to create line pattern images which

had a sufficient resemblance to the underlying ridge

pattern to be verified by the match software. This work

also devised a simple scheme to predict the shape

(class) of the fingerprint using the minutiae template.

The algorithm iterated over each orientation, core and

delta position keeping the image with the best match

score. It is worth noting the reconstructed line patterns

do not visually resemble a fingerprint, although

these images could be easily improved manually or

automatically.

More recently, Ross et al. [6, 7] have demonstrated

a technique to reconstruct fingerprint images from a

minutiae description, without using match score

values. First, the orientation map and the class are

inferred based on analysis of local minutiae triplets

and a nearest neighbor classifier, trained with feature

exemplars. Then, Gabor-like filters were used to recon-

struct fingerprints using the orientation information.

Correct classification of fingerprint class was obtained

in 82% of cases, and regenerated images resembled

the overall structure of the original, although the

images were visually clearly synthetic and had gaps

in regions which lacked minutiae. Another valuable

contribution of this work is calculation of the proba-

bility density fields of minutiae; such information

could be used to attack fingerprint based biometric

encryption schemes.



Template Security. Figure 1 A functional schema of the reconstruction from fingerprint templates using the approach

of Cappelli et al. [9]. The minutiae information in the template is used to: estimate the orientation field, generate a

reasonable fingerprint area and place synthetic minutia prototypes on an blank image. Then, given a constant frequency,

a ridge-line pattern is generated according to the orientation field, starting from the prototypes. Finally noise is added to

make the reconstructed image more realistic.
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In 2007, Cappelli et al. [8, 9] demonstrated a

technique which allows synthesis of highly realistic

fingerprint images from minutiae data in templates.

The reconstruction approach is based on a sequence

of steps to estimate various aspects of the original

unknown fingerprint from the template (Fig. 1):

the fingerprint area, the orientation field, and the

ridge-line pattern. First, a simple elliptical model is

adopted and its parameters estimated by calculating

the minimal area that encloses all the minutiae. Next,

starting from each minutia direction, the orientation

field is estimated by optimizing the parameters of the

model proposed in [10]. Finally, the ridge-line pattern

is generated, starting from the estimated orientation

field estimated and from generic minutiae prototypes

positioned according to the template information. The

reconstructed images are very similar to the original
fingerprints. Although the reconstructed images may

not fool a human expert, they may be used to success-

fully attack automatic recognition systems; the per-

centage of successful attacks against nine different

systems was 81% at a high security level, and 90% at

a medium security level.
Image Regeneration from Match
Scores

The other approach to regeneration of biometric

images is based on match score values and does not

require access to the template. This means that tem-

plate encryption is not a countermeasure, but also

means that a large number of match score comparisons

are needed. For this to be feasable, the requirements are
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the ability to present arbitrary images for matching

against a target, and access to calculated match scores.

The goal is to: (1) determine an image which matches

against the target for the specific biometric algorithm,

and (2) determine a good estimate of the original

image. Clearly, if one can test arbitrary images, one

could mount a brute force attack. Given a biometric

database of sufficient quality and variety, it should be

possible to attain the first goal in approximately 1 ∕ FAR
attempts. A brute-force attack would be guaranteed to

succeed in the second goal, but the size of image space

is extremely large.
Template Security. Figure 2 Regenerated images using hill-

fingerprint minutiae (from [13]). The target fingerprint with lab

(c–e): Regenerated face images (from [12]). The target face im

regenerated face image (e).
Brute force searches would only be necessary if

biometric image space were random, and nothing

could be learned from the output of previous tests.

Soutar et al. [11] first proposed the possibility of

‘‘hill-climbing’’ in order to practically regenerate

images from match score data (Fig. 2). A hill-climbing

algorithm functions as follows:

1. Initial image selecion: Choose an initial image esti-

mate (IM). Typically, a sample of initial biometric

patterns are tested and the one with the largest

match score, MS, is selected.
climbing techniques. (a–b): Regenerated

eled minutiae (a), and regenerated minutiae positions (b).

age (c); the initial selected image for hill-climbing (d), and

T
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2. Iterative estimate improvement:

a. Modify IM (to get IMtest) in a random, but

biometrically reasonable way (details below).

b. Calculate MStest for IMtest.

c. IfMStest >MS, set IM¼ IMtest andMS¼MStest.

d. End iterations if MS is no longer increasing.

The only difficulty to a practical implementation of

this algorithm is to implement ‘‘biometrically reason-

able’’ modifications. For face images, Adler [12] added

a small factor times a PCA (eigenface) component to

the face image. For fingerprint minutiae, Uludag and

Jain [13] mademodifications to perturb, add, replace, or

delete an existing minutiae point at each step. The key

constraint is that such modifications attempt to main-

tain ‘‘biometric feasibility’’ in the search space. Other

image modifications, such as changing random pixels

in the image, do not converge under hill-climbing.

In fact, ‘‘hill-climbing’’ algorithms are simply one

type of multidimensional optimization algorithm.

Other methods for unconstrained minimization (or

maximization) such as the Nelder–Mead simplex ap-

pear to perform equally or better than hill-climbing

(unpublished observations).

In order to protect against regeneration of biomet-

ric images, Soutar et al. [11] suggested that match

score output be quantized to a limited set of levels.

The idea is that small image modifications are unlikely

to push the MS up by one quantum, so that the hill-

climbing algorithmwill not see the effect of its changes.

This recommendation is maintained in the BioAPI

specification [14]. However, by an appropriate modi-

fication of the algorithm, Adler showed that hill-

climbing could still function [15]. Each hill-climbing

iteration is applied to a quadrant of IM. Before each

calculation, noise is added to the image in the opposite

quadrant, in order to force the match score to a value

just below the quantization threshold. This means that

the quantized match score is brought into a range

where it provides useful information. Images were

successfully regenerated for quantization levels equal

to a 10% change in FAR.

These results suggest that biometric images can gen-

erally be regenerated if: (1) arbitrary images can be

input into the biometric system, and (2) raw or quan-

tized match score values are output. The images calcu-

lated are of sufficient quality to masquerade to the

algorithm as the target, and give a good visual impres-

sion of the biometric characteristics. In order to prevent
this attack, it is necessary to either limit image input, or

to provide only Match/Nonmatch decisions.
Consequences of Template Security
Breaches

There has been some criticism of the research on

biometric template security which accuses the authors

of fearmongering (need ref). Specifically, it is claimed

that there are no (or very few) practical scenarios in

which image regeneration from templates is a serious

security consideration. While this criticism has some

merit, there do exist several security breaches which are

facilitated by these techniques, such as the following

examples:

� Fraudulent use of passports. Passports conforming

to the most recent ICAO specification (and re-

quired for visa–waiver entry into USA) encode

the fingerprint or iris templates of the holder in

an embedded smart card. Similarly, the new ILO

standard for the seafarers ID card [16] encodes the

fingerprint minutiae into a 2D barcode on the

document in a standardized format. In general, it

may be assumed that even when these data are

encrypted, it will be possible to decode, either

through errors in the issuance process (e.g., [17])

or by using the public keys of the issuance agencies.

After decoding the document data, the template

may be read, and an image reconstructed which is

sufficiently similar to match. It would then be

possible to fabricate a spoofed biometric to allow

a criminal or terrorist to fraudulently use the doc-

ument and bypass the biometric security.

� Biometrically locked digital media. Biometrics have

been proposed as a way to control access to digital

media, with the primary interest being in prevent-

ing copyright infringement. Digital documents

encoded with the biometric of the user(s) with

approved access will presumably be subject to

attacks, especially since both the documents and

the software to access them will be widely

distributed. The techniques described in this article

would facilitate attacking the digital locks and im-

pact the privacy of the content owner.

� Regenerating watchlist images from match scores. In

many cases, governments may allow collaborating

agencies to perform searches against a biometric

watch list; however, for security reasons, the
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primary agency may not want to distribute watch

list images. Using the techniques described here, it

may effectively be possible to generate these watch-

list images from the match score data, thus bypass-

ing the security.
Summary

This article summarizes the current research in tem-

plate security. This work shows that, in all cases

tested, a high quality image of an enrolled fingerprint

or face can be regenerated if access is given to bio-

metric templates or to match scores. This is strong

evidence to refute the somewhat naı̈ve assumption

commonly made that biometric templates are secure

in a similar way to a cryptographic hash function.

Based on these results, a prudent design for biometric

security should consider any biometric data to poten-

tially ‘‘leak’’ information about the source images,

and provide a potential attack pathway. One partial

solution is the use of cryptographic techniques to

protect biometric data in databases and communicated

over networks.
Related Entries

▶Biometric Encryption

▶Biometric System Design

▶Biometric Vulnerabilities

▶ Security and Liveness, Overview
T
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Temporal Characterization of Faces
Temporal characterization of faces is the process of

modeling the way appearance of a face varies with

time. As a face moves, its appearance as captured in a

video changes due to change in pose, illumination

conditions, expression, etc. The pattern of these varia-

tions is often specific to the individual, containing

distinguishing information that can be used by video-

based face recognition systems for improved

performance.

▶ Face Recognition, Video-based
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Temporal Domain
When a face is captured over a period of time, as in

video recording, it is often said that a facial image is

available in temporal domain or that it has temporal

resolution. In contrast, when only a single image of a

face is available, as in a passport photograph, it is said

that facial image is not available in temporal domain.

In sensing data, a natural tradeoff is observed: either

sensory data are of high spatial resolution or temporal

resolution, but not of both at the same time. For

example, an image of a face in a printable document

is of high resolution, whereas faces observed live on TV

are normally of very small resolution. As demonstrated

by biological vision systems, recognizing an object that

is observed in temporal domain (e.g., recognizing a

face on TV) can be done just as efficiently or even

more efficiently than recognizing the same object

from a single high-resolution sample. For automated

recognition systems however this is not the case yet.

▶ Face Databases and Evaluation
Tenprint Capture
▶Biometric Technical Interface, Standardization
Tensor
In mathematics, tensor is a topic in multilinear alge-

bra. A tensor, which can be expressed as a multi-

dimensional array, is an object extending the notion

of scalar, vector, and matrix. For example, tensor sin-

gular value decomposition (SVD) is a generalization of

matrix SVD to multilinear higher-order SVD.

▶ Face Sample Quality
Test Sample and Size

MICHAEL E. SCHUCKERS

St. Lawrence University, Canton, NY, USA
Synonyms

Crew designs; Sample size; Target population
Definition

The testing and evaluation of biometrics is a complex

task. The difficulties in such an endeavor include the

selection of the number and type of individuals that

will participate in this process of testing. Determining

the amount of data to be collected is another impor-

tant factor in this process. Choosing an appropriate set

of individuals from which to collect biometrics data

is another important aspect of testing a biometrics

system.
Introduction

The assessment of a biometric system’s matching per-

formance is an important part of evaluating such a

system. A biometric implementation is an ongoing

process and as such will be treated as a process in the

sense of Hahn and Meeker [1]. Thus, any inference

regarding that process will be analytic in nature rather

than enumerative as delineated by Deming [2]:

An enumerative study has for its aim an estimate of

the number of units of a frame that belong to a speci-

fied class. An▶ analytic study has for its aim a basis for

action on the cause-system or the process, to improve

product of the future.

Here focus is on determining the amount and type

of data necessary for assessing the current matching

performance of a biometrics system.

The matching performance measures that are com-

monly considered most important are the false match

rate (FMR) and the false non-match rate (FNMR).

One of the important parts of designing a test of a

biometrics system is to determine, prior to comple-

tion, the amount of testing that will be done. Below

calculations that explicitly allow for determining the



Test Sample and Size T 1329
amount of biometric data which will be sampled are

described. As with any calculations of this kind it is

necessary to make some estimates about the nature of

process beforehand. Without these, it is not possible to

determine the amount of data to collect. These sample

size calculations will be derived to achieve a certain

level of sampling variability. It is important to recog-

nize that there are other potential sources of variability

in any data collection process.

Selection of the individuals from whom these

images will be taken is another difficulty because of

the need to ensure that the biometric samples taken are

representative of the matching and decision making

process. The goal of any data collection should be to

take a sample that is as representative as possible of the

process about which inference will be made. Ideally,

some probabilistic mechanism should be utilized to

select individuals from a targeted population. In reali-

ty, because of limitations of time and cost, this is a

difficult undertaking and often results in a ▶ conve-

nience sample, Hahn and Meeker [1].
T

Test Size Calculation

Determining the amount of biometric information to

collect is an ongoing concern for the evaluation of a

biometrics system. Several early attempts to address

this problem include those by Wayman [3] and [4] as

well as the description inMansfield andWayman [5] of

the ‘‘Rule of 3’’ and the ‘‘Rule of 30’’. The former is

due to several authors including Louis [6] as well as

Jovanovic and Levy [7], while the latter, the so-called

Doddington’s Rule, is due to Doddington et al. [8].

Mansfield and Wayman note that neither of these

approaches is satisfactory since they assume that

error rates are due to a ‘‘single source of variability’’,

which is not generally the case with biometrics. Ten

enrolment-test sample pairs from each of a hundred

people is not statistically equivalent to a single enrol-

ment-test sample pair from each of a thousand people,

and will not deliver the same level of certainty in

the results.

Effectively, the use of either the ‘‘Rule of 3’’ or the

‘‘Rule of 30’’ requires the assumption that the decisions

used to estimate error rates are uncorrelated. More

recently, Schuckers [9] provided a method for dealing

with the issue of the dual sources of variability and the

resulting correlations that arise from this structure.
The calculation given below is for the determina-

tion of the number of comparison pairs, n, from which

samples need to be taken. Define a comparison pair,

similar to the enrolment-test sample pair of Mansfield

and Wayman [5], as a pair of possibly identical indi-

viduals from whom biometric data or images have

been taken and compared. If the two individuals are

the same then call the comparison pair a genuine one.

If the two individuals are distinct then call the com-

parison pair an imposter one. In order to use this

information to determine test size, it is necessary to

specify some estimates of the process parameters be-

fore the data collection is complete. In order to obtain

sample size calculations it is necessary to make these

specifications. It is worthwhile noting here that most

other biological and medical disciplines use such cal-

culations on a regular basis and the U.S. Food and

Drug Administration requires them for clinical trials.

Approaches to carrying this out are discussed below.

Let the error rate of interest, either FMR or FNMR,

for a process be represented by g and let Yij represent

the decision for the jth pair of captures collected on the

ith comparison pair, where n is the number of com-

parison pairs, i ¼ 1, . . ., n and j 1, . . ., mi. Thus, the

number of decisions that are made for the ith compar-

ison pair is mi, and n is the number of different com-

parison pairs being compared. Define

Y ij ¼ 1
if jth decision from comparison

pair i is incorrect
0 otherwise:

8<
: ð1Þ

Assume for the Yij’s that E[Yij]¼ g and V [Yij]¼ g(1�g)
where E[X] and V [X] represent the mean and variance

of X, respectively. Estimation of g is done separately for
FNMR and FMR and so there is a seperate collection of

Yij’s for each. The form of the variance is a result of

each decision being binary. The correlation structure

for the Yij
0s is

CorrðY ij ;Y i0 j0 Þ ¼
1 if i ¼ i0; j ¼ j0

r if i ¼ i0; j 6¼ j0

0 otherwise

8<
: ð2Þ

This correlation structure is based upon the idea that

there will only be correlations between decisions made

on the comparison pair but not between decisions

made on different comparison pairs. Thus, conditional

upon the error rate, there is no correlation between

decisions on the ith comparison pair and decisions on
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use of (7)

a B g m r n

0.05 0.005 0.01 10 0.4 700

0.05 0.01 0.01 10 0.4 175

0.01 0.005 0.01 10 0.4 1,209

0.05 0.005 0.02 10 0.4 1,386

0.05 0.005 0.01 5 0.4 792

0.05 0.005 0.01 10 0.1 290
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the i0th comparison pair, when i 6¼ i0. The degree of

correlation is summarized by r. This is not the typical
Pearson’s correlation coefficient, rather it is the intra-

class correlation or here the intra-comparison pair cor-

relation. More details can be found in Schuckers [10].

Derivation of sample size calculations requires an

understanding of sampling variability in the estimated

error rate. Thus consider

V̂ ½ĝ� ¼ N�2ĝð1� ĝÞ N þ r̂
Xn
i¼1

miðmi � 1Þ
" #

; ð3Þ

where N¼∑n
i¼1 mi, and ĝ ¼ N�1

Pn
i¼1

Pmi

j¼1Y ij .

Fleiss et al. [11] has suggested the following moment-

based estimator for r

r̂ ¼
 
ĝð1� ĝÞ

Xn
i¼1

miðmi � 1Þ
!�1

Xn
i¼1

Xmi

j¼1

Xmi

j0¼1

j0 6¼j

ðYij � ĝÞðYij0 � ĝÞ:

Since ĝ is a linear combination, if n is large it is

reasonable to assume that the central limit theorem

holds, Serfling [12]. To produce a (1�a) � 100%

confidence interval for g use

ĝ� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�2ĝð1� ĝÞ

�
N þ r̂

Xn
i¼1

miðmi � 1Þ
�
;

s
ð5Þ

where za ∕2 represents the 1�a ∕2th percentile of a

Gaussian distribution with mean 0 and variance 1.

Further, if mi ¼ m for all i (3) simplifies to

V ½ĝ� ¼ ðnmÞ�1ĝð1� ĝÞ 1þ rðm� 1Þ½ �; ð6Þ
where N has been replaced by nm. This form will be

used to derive sample size calculations.

Turning from variance estimation to sample size

calculations, set the portion of (6) after the �, the

margin of error, equal to some desired value B and

solve for n, the number of comparison pairs. Then the

following sample size calculation for making a 100

(1�a)% CI with a specified margin of error of B is

obtained.

n ¼
z21�a

2
gð1� gÞð1þ ðm� 1ÞrÞ

mB2

& ’
; ð7Þ

where de is the next largest integar or ceiling function.

In order to create sample size calculations for a
▶ confidence interval, it is necessary to specify,

among other things, the desired margin of error, B,

for the interval. As mentioned above there are effec-

tively two sample sizes when dealing with performance

evaluation for biometric authentication devices. This

derivation here is for the number of comparison pairs,

n, that need to be tested and assume that the number of

decisions per individual is fixed and known. This is

equivalent to assuming thatmi ¼m for all i and thatm

is known. In practice it will be possible to determine

different values for n by varying m before proceeding

with a evaluation. As with all sample size calculations it

is important to note that specification of a priori values

for the parameters in the model is necessary. In this

case that means it is necessary to estimate values for

g and r to be able to determine the number of indivi-

duals, n. Several strategies are reasonable and have

been discussed in the statistics literature for these a

priori specifications. See, e.g., Lohr [13]. Ideally, it

would be possible to make a pilot study of the process

under consideration and use actual process data to

estimate these quantities. Alternatively, it may be pos-

sible to use estimates from other studies perhaps

done under similar circumstances or with similar

devices. The last possibility is to approximate based

upon prior knowledge without data. Regardless of the

method used it is important to recognize that n is

a function of a, B, m, g and r. n varies directly with g
and r and inversely with a, m and B. Thus, a con-

servative approach to estimation of these quantities

would overestimate g and r and underestimate m.

This will produce a value for n that is likely to be larger

than required. Table 1 illustrates the use of (7). It is also

worth noting that most studies of this type have a

significant drop out rate of individuals as the data

collection progresses. Thus it is adviseable to plan
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a collection process that assumes some attrition in the

number of comparison pairs to be selected. The values

of a and B are likely to be set by investigators or by

standards bodies rather than the performance of the

process under study.

Equation (7) is straightforward for calculation of

the number of comparison pairs that need to be tested

when g = FNMR. It is less so when interest centers on

g = FMR. This is because for FNMR the number of

comparison pairs translates to the number of indivi-

duals, while for FMR the number of comparison pairs

is not proportional to the number of individuals. If all

cross-comparisons are used to estimate FMR, then one

can replace n with n∗(n∗� 1) in (7). In that case n∗

will be the number of individuals that need to be

tested.
T

Sample Selection

Once the number of individuals to be selected is deter-

mined, another important step is to specify the target

population of individuals to whom statistical inference

will be made. Having done so, a sample would ideally

be drawn from that group. However, this is not possi-

ble often. The next course of action is to specify a

sample that is as demographically similar to the target

population as possible. The group of individuals that

will compose the sample is often referred to as the

▶ ‘‘volunteer crew’’ or simply the ‘‘sample crew’’,

Mansfield and Wayman [5]. The more similar the

sample crew is to the target population the more prob-

able it will be that the estimates based upon the sample

crew will be applicable to the target population. Often

the sample crew is chosen to be a convenience sample,

Hahn and Meeker [1]. Methodology for best selecting

the sample crew is an open area of research in

biometrics.

One useful tool for extrapolation from estimates

based upon the ‘‘crew’’ is post-stratification. ▶Post-

stratification is a statistical tool for weighting a sample

representation after the sample has been taken so that

resulting estimates reflect the known population. Sup-

pose that, there are H non-overlapping demographic

groups of interest, or strata, and nh individuals have

been sampled from among the Nh total individuals in

each strata. Further suppose that estimates of the error

rate, ĝh, from each of the strata are known. Then a

poststratified estimate of the error rate is
ĝps ¼
XH

h¼1

nh

Nh

ĝh: ð8Þ

An estimate of the variability of the predicted error

rate is

V̂ ½ĝps� ¼
XH

h¼1

nh

Nh

� �2

V̂ ½ĝh�; ð9Þ

where V̂ ½ĝh� can be calculated using the equation

found above. A (1�a) � 100% poststratification con-

fidence interval for the process error rate can then be

made using

ĝps � za=2

ffiffiffiffiffiffiffiffiffiffiffiffi
V̂ ½ĝps�

q
: ð10Þ

As above, use of the Gaussian distribution here is

justified by the fact that the estimated error rate, ĝps ,
is a linear combination of random variables.
Summary

Testing and evaluation of biometric devices is a diffi-

cult undertaking. Two crucial elements of this process

are the selection of the number of individuals from

whom to collect data and the selection of those indi-

viduals. Determining the number of individuals to test

can be calculated based on (7). To obtain the number

of individuals that need to be tested, some process

quantities need to be specified. These specification

can be based on previous studies, pilot studies or on

qualified approximations. Selection of the ‘‘crew’’ for a

study is a difficult process. Ideally a sample from the

target population is the best, but a demographically

similar ‘‘crew’’ is often more attainable. The inference

from a demographically similar crew can be improved

by the use of poststratification.
Related Entries

▶ Influential Factors to Performance

▶Performance Evaluation, Overview

▶Performance Measures

▶Performance Testing Methodology Standardization
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Text-Dependent
Speaker recognition systems are said to be text-

dependent when the same piece of text is used for the

enrolment and for the subsequent authentication

sessions. A major drawback of text-dependent systems

lies in the replay attacks that can be performed easily

with a simple recording device.

▶Remote Authentication

▶ Speaker Recognition, Overview

▶ Speaker Recognition, Standardization
Text-Independent
Speaker recognition systems are said to be text-indepen-

dent when there is no constraint on the text spoken by

the user. Very convenient to use, such systems are

although quite sensitive to replay attacks as any recording

of the user’s voice can be used to break into the system.

▶Remote Authentication

▶ Speaker Recognition, Overview

▶ Speaker Recognition, Standardization
Text-Prompted
Such speaker recognition systems prompt the user to

repeat a randomly chosen sequence of words. The

system first performs speech recognition to verify the

expected sequence of words, then the verification takes

place. These systems achieve a good level of security by

preventing replay attacks.

▶Remote Authentication

▶ Speaker Recognition, Overview
Text-to-Speech (TTS)
▶Voice Sample Synthesis
Text-to-Speech (TTS) Synthesis
TTS synthesis is the process of converting human read-

able text input into audible speech output. It involves

several steps including text and linguistic analyses,

letter-to-sound conversion for pronouncing each word

in context, and, finally, speech synthesis to create the

speech waveform.

▶Voice Sample Synthesis

http://www.engr.sjsu.edu/biometrics/nbtccw.pdf
http://www.engr.sjsu.edu/biometrics/nbtccw.pdf
http://www.cesg.gov.uk/site/
http://www.cesg.gov.uk/site/
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TFIR
The Total Frustrated Internal Reflection is one of the

physical principles on which is based a contact-based

optical sensor.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Thermal Biometrics
Thermal biometrics uses thermal imaging to support

human identification. This is an alternative imaging

modality which can reveal different (image) features

for identification purposes, and it requires sensor sys-

tems which are more specialized than conventional

video.

▶Ear Biometrics
Thermogram
The heat pattern emitted from an object.

▶ Face Recognition, Thermal
T
Third Level Detail
This refers to the minute details of the ridges and deals

with the shape and relative position of the pores, the

edge shape of the ridges, and the alignment of individ-

ual ridges.

Third level detail can be the same, and if so, may

add up to the value and significance of each individual

point and the total. However, if different or absent, it

does not prevent identification because it cannot be

expected to reproduce the same in the latent and the

inked print due to its minute detail, its three
dimensional properties (of the source) and less ideal

conditions during printing.

▶ Fingerprint Matching, Manual
Threshold Limit Value (TLV)
TLV1 is a trademark of the ACGIH. TLVs1 are similar

in concept to maximum permissible exposures (MPE)

and permissible exposure limits (PEL), though they are

distinct. The ACGIH (www.acgih.org) defines TLVs as

follows.

Threshold limit values (TLVs1) are determinations

made by a voluntary body of independent knowledge-

able individuals who represent the opinion of the sci-

entific community that exposure at or below the level

of the TLV1 does not create an unreasonable risk of

disease or injury.

TLVs1 are not standards. They are guidelines

designed for use by industrial hygienists in making deci-

sions regarding safe levels of exposure to various physical

agents found in the workplace. TLVs1 are health-based

values established by committees that review existing

published and peer-reviewed literature in various sci-

entific disciplines (e.g., industrial hygiene, occupation-

al medicine, and epidemiology). Since TLVs1 are

based solely on health factors, there is no consideration

given to economic or technical feasibility.

▶ Iris on the Move™

▶ Iris Device
Thresholding
Thresholding is a simple grayscale image segmentation

method in which individual pixels are marked as ‘‘ob-

ject’’ pixels if their value is greater than some threshold

value (assuming an object to be brighter than the

background) and as ‘‘background’’ pixels otherwise.

Typically, an object pixel is given a value of ‘‘1’’ while

a background pixel is given a value of ‘‘0.’’

▶Hand Shape

▶ Image Segmentation

http://www.acgih.org
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Throughput
The number of end users that a biometric system can

process within a given time interval; for example, 1

min. Different applications have varying requirements

on throughput. For instance, for employee attendance

checking scenario, users might expect a throughput of

at least 30 considering the rush hour situation.

▶Performance Evaluation, Overview
Time and Attendance
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Definition

Time & Attendance (TA) describes the field of tracking

the hours that employees spend on the job, and com-

pensating them appropriately. The time and atten-

dance calculations are non-trivial, and include shift

differentials, holiday pay, vacation and sick pay, flex

time, minimum increments, time quantization as well

as multiple employee roles, where the pay structure is

different for each role.
Overview of Time and Attendance

Time & Attendance (TA) describes the field of tracking

the hours that employees spend on the job, and com-

pensating them appropriately. While such a succinct

definition implies that the task is trivially simple, it is

indeed not. The TA industry encompasses hundreds of

competing companies focusing on one or more con-

stituent parts of the field, such as

1. Data capture

2. Payroll calculations

3. Payroll disbursement

This article discusses the following topics: complexities of

payroll calculation, data capture paradigms, a sampling
of modern ▶TA terminals, driving factors for choosing

biometric terminals over non-biometric terminals, appli-

cation-specific tradeoffs, a case study, and factors con-

founding the adoption of biometrics for TA.
Payroll Calculations

The value of the Time & Attendance market is the

ability of companies to oversee their employees and

operations. Time & Attendance facilitates the compen-

sation of employees for time worked, and provides

insight into employee attendance and absence. The

benefits of accurate time calculations include a correct

assessment of operational costs, improved regulatory

compliance, and better management. An ancillary

benefit to accurate time and attendance is employee

morale – according to a report by IDC payroll accuracy

is one of small businesses’ biggest concerns [1].

The calculation of payroll is non-trivial. Many

countries have instituted laws standardizing the amount

of time an employer may reasonably expect certain

classes of employee to work. Any hours above and

beyond this reasonable limit are considered ‘‘overtime’’

andmust be paid at a higher hourly rate. For example, in

the United States, the Fair Labor Standards Act of 1939

(FLSA) defines the standard work week as 40 h, and

requires employers to pay a 50% premium for any

hours worked beyond that limit.

Note that employees must be paid overtime if they

were ‘‘suffered or permitted’’ [2] to work those hours;

thus employees can sometimes choose to work over-

time (regardless of authorization or business need)

unless specifically prohibited or controlled by the em-

ployer. The Department of Labor states that ‘‘The

reason (employees work overtime) is immaterial.

The hours are work time and are compensable.’’

The issue of overtime is confounded by the fact that

different labor laws cover persons employed in differ-

ent countries, states, cities, etc. The Department of

Labor encourages businesses to contact local Wage

and Hour Division offices to understand their respon-

sibilities [3]. Small businesses end up becoming

experts in their local labor laws, and large multination-

al corporations become experts in the laws at each site

(including work-from-home sites) around the world.

The only effective alternative to becoming a labor law

expert is to outsource payroll calculations to a

specialized TA company.



Time and Attendance. Figure 1 Typical punchcard based

time clock.

Time and Attendance T 1335
One example of the differences seen in laws from

place to place involves the classification of certain

work-hours as standard or overtime. As mentioned

above, the Fair Labor Standards Act defined a standard

work week as 40 h. However, in the US state of

California, a standard work day is defined as 8 h, so

for certain jobs any time beyond 8 h in a single day is

considered overtime.

Other examples of calculation complexities

include:

1. Shift differentials (paying a premium for working

nights or weekends)

2. Holiday pay (paying a premium for working on

recognized holidays)

3. Vacation & sick-pay (paying even though an em-

ployee did not work)

4. Flex time (not paying overtime when employees

shift work hours between days)

5. Minimum increments (e.g., paying workers a min-

imum of 4 h for showing up at the worksite, even if

they are sent home after 10 min)

6. Time quantization (e.g., rounding time to the near-

est 15 min vs. the nearest minute)

7. Employees with multiple roles, who are paid differ-

ent rates for each role

While this is by no means a comprehensive list, is

does illustrate the point that calculating employee

compensation can be very complex. It’s easy to see

why some companies might want to outsource this

activity, freeing up time to concentrate on their core

business.
T

Data Capture

Regardless of who calculates employee compensation,

somehow the raw data must be collected. When col-

lecting data, companies have choices on how they

decide to automate and integrate. An immature time

and attendance system is paper-based, and relies on the

error-prone step of deciphering employees’ handwrit-

ing to record their hours-worked. The next step up

from this approach is a mechanical clock using time

cards, as shown in Fig. 1. An employee using a me-

chanical clock would typically:

1. Arrive at work

2. Pick his/her card out of a rack
3. Place it into a time clock to stamp the current date/

time onto the card

4. Place the card back in the rack

Someone from the accounting department would then

typically collect all the time cards every week and type

the resulting numbers into a spreadsheet, calculate

each employee’s hours worked, and calculate their

compensation. There is an interface with payroll, but

such an interface requires manual workarounds.

As described in the previous section, there are

many different rules and complexities for time and

attendance systems. This complexity is sometimes

solved by the third level of automation where automa-

tion of the time and attendance system encompasses

the majority of workers (but not necessary all), and is

automatically fed into the payroll system. It is only

when full electronic time capture for all and a fully

integrated system are installed that workforce manage-

ment and visibility of the operation can be revealed.

These various complexities in automation and integra-

tion drive the selection of a Time & Attendance system.

Today, most small businesses are semi-automated,

and rely on employee vigilance to ensure that their

hours were recorded correctly. These businesses also

rely on the ability of the accounting department to

create workarounds when errors are discovered.
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Electronic data capture is inherently different, in

that the ▶ time clock generates electronic data when-

ever an employee clocks-in or clocks-out. TA terminals

using electronic data capture record a ▶ clock-in or

▶ clock-out transaction when the employee presents

an authorized credential to the clock. The credential

may be an ID number, proximity card, smartcard,

magnetic stripe card, etc.
Time and Attendance. Figure 3 Wasp Biometric Time

and Attendance System.
Typical Time and Attendance Terminals

There are three main classes of electronic time & at-

tendance terminals – card or proximity based, finger-

print, and hand geometry.

Figure 2 shows a proximity card system for small

business (it supports up to 250 employees). The time

clock automatically calculates the total hours worked,

including overtime. Employees interact with the sys-

tem by bringing their proximity badge close to the

reader, and a large display and internal speaker provide

feedback to the employee. The system interfaces with

software on Windows™ compatible machines.

There are also biometric systems for small busi-

nesses – one example is the WaspTime Biometric

Time & Attendance system (Fig. 3) which uses finger-

prints to recognize the employee (it supports up to

1,500 employees). The system is very similar in that it

also provides clear audible and visual feedback to

employees, and interfaces to software on Windows™

compatible machines. However, the larger display and

numeric keypad support richer interactions with the

employee.
Time and Attendance. Figure 2 Wasp Barcode RFID

reader.
Another biometric modality that is used for time

and attendance is hand geometry. Figure 4 shows the

HandPunch 4000 from Ingersoll Rand. Similar to the

fingerprint terminal above, it supports rich interac-

tions to thousands of employees (up to 3,498) with a

clear display, audible feedback, and a keypad. The

HandPunch also includes function keys and can

apply validation tables to complex data entered at the

terminal. Such data includes department transfers, tips

collected, job codes, and pay codes [4].

Figure 5 shows the GT-400 timeclock from

Ingersoll Rand, which exemplifies a recent trend in

biometric time clocks: hardware manufacturers are
Time and Attendance. Figure 4 HandPunch 4000 from

Ingersoll Rand.
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Rand.
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providing programmable Linux-based terminals so

that specialized TA software companies can run their

applications directly on the data-collection terminal

(not only on a PC). Such terminals typically have

large displays, graphical user interfaces, ATM-style

keypads, and high processing power (one variant of

the GT-400 claims to support >100,000 users on the

terminal [5]).
T

Driving Factors for Choosing
Biometrics

As demonstrated in the previous section, there are many

commonalities between biometric and nonbiometric

terminals. In fact, the only true differentiator is that

biometric terminals are, well. . . biometric. Nonbio-

metric terminals require a physical credential (such as a

magnetic stripe card or smart card) or a nonphysical

credential (such as a PIN, employee number, or

password) to identify the employee. However, such

terminals cannot determine if the credential was pre-

sented by the authorized user or someone else. This leads

to the primary driving factor for companies’ choosing to

employ biometric Time & Attendance systems.

Payroll fraud, also called ‘‘buddy punching,’’ occurs

when an employee’s timecard is punched by someone
else in order to credit that employee with more hours

thanwere actually worked. ‘‘Buddy punching’’ typically

involves two employees that share identification

mechanisms such as tokens, passwords, or smart cards

between them in order to receive pay for, or portion of

pay for that day. An American Payroll Association

study discussed in its January 2002 issue of PayTech

Magazine found that over 5% of payroll costs in the

United States are fraudulent. For many companies,

shrinking or eliminating this fraud saves more money

than is spent purchasing a biometric terminal.

Is buddy punching rampant in all companies?

Absolutely not; it is carried out by a minority of

employees, and only at some companies. Sites that

are most prone to buddy punching encompass unsu-

pervised employees and those with little management

oversight. A lack of oversight can occur when any of

the following conditions arise:

1. Employees work off-site or without supervision

2. Employees have flexible or staggered work-

schedules

3. Employees who rise into supervisory roles feel un-

comfortable disciplining their former peers

4. The workforce has high turnover, making it diffi-

cult for supervisors to know who should be where

when

5. Supervisors are not present when employees clock-

in or clock-out

Even sites exhibiting none of these conditions often

choose to employ biometrics as an inexpensive, conve-

nient alternative to card-based systems. Card readers

generally cost less than biometric terminals, but the up-

front costs of purchasing cards plus the annual cost of

replacing cards or worn-out readers can tip the balance

towards biometric-only or PIN + biometric systems.

The convenience of biometric terminals stems from the

fact that employees cannot lose or forget their biomet-

ric credential, where they can easily forget or misplace

card-based credentials. When that happens, time is

wasted while they track down a supervisor, spending

their own time and the supervisor’s time entering man-

ual overrides to clock-in and clock-out.
Application Specific Tradeoffs

The Time & Attendance market is different than other

markets. It has different customers, users, use profiles,
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and product demands than other markets. For this

reason, the data collection terminals focused on the

TA market have different attributes than similar term-

inals targeting other markets (e.g., Access Control).

Some of the most striking differences concern:

1. Location – TA terminals are generally placed in em-

ployee-only areas inside a company. Since customers

and investors generally don’t see these areas, there is

less need for the terminal to be beautiful or svelte.

2. User interface – Employees sometimes verify their

hours-worked or enter/extract other data from TA

terminals, requiring more buttons and larger

screens than AC terminals.

3. Vandal resistance – TA terminals must (surprisingly)

be more vandal-resistant than other terminals. This

is unintuitive since Access Control terminals are

often located on the outside of a building where

random people can attack the device with impunity.

However, random people rarely bother to attack a

small box hanging on the wall. Alternatively, employ-

ees who believe that a newly-installed TA system is

intrusive or onerous are sometimes irritated to the

point of physically damaging the system. Some even

use such damage to ‘‘prove’’ that the system is inher-

ently unsound and should be removed. Screwdrivers,

wire snips, pliers, paper clips, and even pens/pencils

can damage some TA terminals. Gum, dirt, glue, and

scratches effectively disable others.

4. Habituation – Employees typically clock-in and

clock-out every day. They grow accustomed to

using the device over time, developing habits in

the way they use it. This process is called ‘‘habitua-

tion’’ and groups of users who have gone through it

are called ‘‘habituated’’ users. TA results in a highly-

habituated workforce.

5. Demographics – TA workforces are often demo-

graphically diverse, including employees of differ-

ing gender, age, ethnicity, size, and job function

(office workers vs. manual laborers).

6. Error rates – TA data collection terminals control

employees’ paychecks, and thus must work for

every employee every time they attempt to use it.

At best, failure to do so results in wasted time

correcting the hours-worked. At worst it results in

incorrect paychecks or lawsuits. For this reason the

biometric tradeoff for TA systems is that the Failure

to Enroll Rate and False Reject Rate are every bit as

important as the False Accept Rate.
When assessing biometric reject rates, organizations

must insist on credible (independent) data collected

from a statistically-significant number of habituated

users with an appropriate demographic distribution

including the mix of office workers and manual laborers

expected at the target site.
Case Study: McDonalds

This case study, excerpted from Ingersoll Rand’s web

site [6], is indicative of the types of applications served

by biometric time clocks.

In Venezuela, McDonald’s restaurants are cutting pay-

roll costs by up to 22% annually after incorporating

HandPunch biometric terminals to record time

and attendance.

Over 3,400 employees at 85 McDonald’s restaurants in

Venezuela have been enrolled with the HandPunch

over the past four years. On average, the system

generates over 7,500 transactions each day resulting

in over 2.5 million ‘‘punches’’ annually.

Students make up about 90% of the McDonald’s work-

force in Venezuela. They were frequently punching

one another into cover for exams or other school-

related events. McDonald’s needed to move to

biometrics to verify that the employee clocking in

was really that person.

Most supervisors at McDonald’s are promoted from

within and many find it difficult to impose rules

and restrictions on their fellow workers. The Hand-

Punch ensures that everyone is treated fairly (Fig. 6).
Confounding Issues

Since there are so many benefits to using biometric TA

terminals, why don’t all companies use them? Because

they have down-sides to them too. The most common

issues cited when arguing against biometrics are:

1. Morale – Some employees find it demeaning that

the employer doesn’t trust them to ▶ punch-in and

▶ punch-out correctly. If some workers/depart-

ments are required to use the TA terminal while

others are not (possibly because they are exempt

from FLSA), tensions can rise. One employee that

was dissatisfied stated ‘‘These systems are being

used. . . to reduce us tomere cogs in the machine’’. . .

‘‘It is as if we are working in some textile mill in the
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quick-serve restaurant.
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1820s and when the whistle blows we had better all

be sitting in front of our looms ready to go. . . As

civil servants, we produce incredibly creative,

thoughtful and substantive projects but this only

happens when we are treated with respect and dig-

nity, and these systems treat us with neither!’’ [7].

2. Privacy – The idea that ‘‘big brother’’ is watching is

unacceptable to some employees. They may link the

idea of biometric TA terminals to government bio-

metric programs they’ve heard about, including

criminal forensics, border control, and the search

for terrorists. Movies such as Minority Report in-

voke the image of uncontrolled biometric surveil-

lance tracking one’s every move [8].

3. Safety – Employees and unions often cite safety as

an argument against biometric time clocks. Com-

mon issues include ‘‘lasers’’ in the eye (a misinter-

pretation of the infrared LEDs used in many face

and iris systems) and microbes on the surfaces of

fingerprint and hand geometry systems.

4. Restrictive work policies – Some TA systems incor-

porate rules & policies that employees find oner-

ous, such as requiring that employees punch in/out

within 5 min of their scheduled start/finish times.

This has nothing to do with biometrics, but is often

blamed on the biometric terminal since it is the

most visible part of the system.
Sometimes complaints turn into grievances, and some

grievances must be solved through litigation or arbi-

tration. In the arbitration ruling of Canada Safeway

Ltd. and United Food and Commercial Workers Union,

Local 401, the arbitrator balanced the privacy rights of

employees to the business needs of the company. He

stated: ‘‘the more intrusive the impact on employee

privacy the greater the business rationale that must be

demonstrated. Conversely, if the intrusion on employ-

ee privacy is insubstantial, the concomitant level of

justification also is lower.’’ He found that Hand Geom-

etry technology was minimally intrusive, and ruled

that employees could be required to use hand geome-

try time clocks [9].

In another arbitration ruling, IKO Industries Ltd.

and U.S.W.A., Loc. 8580, the arbitrator found that

capturing fingerprints was not an ‘‘egregious disregard

of privacy rights’’ but was nonetheless an invasion of

privacy. IKO Industries was not able to show enough

business benefit to justify that invasion, and the arbi-

trator ordered IKO to cease and desist their deploy-

ment of biometrics.

In addition to navigating the minefield of installing

a biometric TA system, employers must be mindful

of providing due process to employees during disciplin-

ary proceedings (should they become necessary). In a

non-biometric TA application in Tucson, Arizona, city

sanitation workers and union representatives said that

buddy-punching was allowed by supervisors, and was

something that had gone on for years in the city’s

Environmental Services Department [10]. The firing

of two supervisors was overturned because the super-

visors weren’t given enough warnings, and both were

reinstated to their former positions and were awarded

back-pay.

Companies wishing to deploy biometrics to com-

bat buddy-punching must consider all of these con-

founding issues and precedents when choosing a

system. Engaging with unions and educating employ-

ees before introducing biometric terminals can allay

concerns before they escalate into grievances.
Summary

Time and Attendance is a complex field covering pay-

roll calculations, labor law, and employee relations.

Historically, the data for payroll calculations has been

gathered by hand-writing time cards or using ‘‘punch’’
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clocks that imprint the time & date onto a time card.

To decrease data entry errors and administrative

overhead, companies have migrated to electronic TA

systems that use an ID card or ID number to identify

each employee. However, card-based and ID-based

systems leave open the loophole of buddy-punching,

where employees punch-in or punch-out for one an-

other to be paid for hours they did not work. This

loophole is being closed by biometric TA systems that

ensure all employees are paid for exactly the hours they

are physically at work.
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Time and Attendance Terminal
A time and attendance terminal is a device that is more

sophisticated than a time clock. It uses electronic data

capture record to record a clock-in or clock-out transac-

tion when the employee presents an authorized creden-

tial to the clock. The credential may be an ID number,

proximity card, smartcard, biometrics etc. There are
three main time and attendance terminals, card or prox-

imity-based, fingerprint, and hand geometry.

▶Time and Attendance
Time Clock
Time clock is a mechanical or electronic device that is

used to track employee hours. When interacting with

the device, employees either ‘‘punch-in’’ or ‘‘clock-in’’

when registering the start of the time, and ‘‘punch-out’’

or ‘‘clock-out’’ when leaving work or the assigned task.

▶Time and attendance
Time Series
A time series is a sequence of data points, measured

typically at successive times, spaced at (often uniform)

time intervals. Learning on time series data attempts to

understand the relationship between data and time,

e.g., making forecasts. The order of the data points

along the time axis is an important factor to be con-

sidered in the learning methods.

▶ Incremental Learning
Tongue-Print Recognition
A biometric technology for automatically identifying

or verifying a person using information of tongues.

As the tongue can be protruded from the body for

inspection, the shape and texture information can be

acquired from its images as ‘‘tongue-print’’ for the rec-

ognition process. Unlike face and fingerprint, the tongue

is an internal organ and well protected in the mouth, so

it is basically immune to forgery. This is advantageous

for protecting user’s privacy and security.

▶Biometrics, Overview
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Tooth Biometrics
▶Dental Biometrics
Top and Secondary Choices
Every biometric matcher employed for user recogni-

tion compares the presented biometric with the stored

templates and generates the matching scores corres-

ponding to each of the possible user identities. The

top choice refers to the user identity corresponding to

user template generating the highest matching score.

The secondary choices refer to the remaining choices of

the possible user identities corresponding to the tem-

plates that do not generate the highest matching score.

If the difference between the highest matching score

and the second highest matching score is large, there is

high probability that the top choice represents the

correct user identity. However, if this difference is

small, the top choice may not represent the correct

user identity and secondary choices become important

in generating the decisions.

▶ Fusion, Rank-Level
T
Total Transaction Time
▶Operational Times
Touch Tablet
▶Digitizing Tablet
Touch-Screen
A touch-screen is an electronic display that locates and

captures the contact of objects within the display area.

Touch-screens can be divided in two main types: those

oriented to finger-input and the ones oriented to

styles. Touch-screens of stylus oriented hand-held

devices are based on a resistive principle and are not

oriented to operation with the user fingertips. Two

separated metallic layers are connected when the screen

is pressed. The position of the contact point can be

accurately detected, but only when the stylus is in

contact with the surface, contrary to pen tablets.

▶ Signature Databases and Evaluation
Tracing
The following of adjacent parallel ridges over a certain

length in the vicinity of the supposed event and by

calculating whether the count of ridges in between

increases or decreases, thus defining the beginning or

ending of a ridge in between.

▶ Fingerprint Matching, Manual
Training
A process used to determine the values of the classifier

parameters with the help of the prototypes of the data

to be recognized. The data used during this step con-

stitute the training set.

▶ Support Vector Machine
Training Data, Sufficiency
A training data set is sufficient for a learning task if all the

knowledge required for correct future predictions is
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contained in the data set. In practice, it is hard to judge

whether a training set is sufficient for a given task.

Generally, if the distribution estimated from the training

data covers all possible examples that may appear in the

task, then the training data is sufficient for the task.

▶ Incremental Learning
Training Signature
Signature used in the enrollment phase.

The training signatures are used for enrollment of a

reference template, reference model parameter estima-

tion, decision threshold estimation, and the like.

▶ Signature Recognition
Transfer Learning
▶ Incremental Learning
Transformation
The transformation refers to the process of normalizing

the output (score) for a matcher to a desired range. The

range of output matching scores generated from the

different biometric matchers can vary significantly.

This variation can be attributed to the different distance

criteria used to generate matching scores or the differ-

ent biometric features employed by different matchers.

▶ Fusion, Rank-Level
Transmission-Based Touchless
Finger Imaging (TTFI)
TTFI refers to touchless fingerprint sensor.

▶ Fingerprint, Palmprint, Handprint and Soleprint

Sensor
Transportable Asset Protection
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Synonym

Asset protection
Definition

Transportable Asset Protection is a means by which

personal user secrets and privileges, stored in digital

form on a portable device such as a smart card or a

mobile handset, are secured from unauthorized access

and/or use. The assets, being carried on one’s person,

are highly prone to theft or loss, making the need for

security that much greater. The unique challenge posed

by Transportable Asset Protection is to provide ade-

quate security and performance using the lightweight

processing resources available on the mobile device in a

portable and interoperable way.
Introduction

The nature of a transportable asset is that it is carried

from place to place and therefore prone to theft or loss.

Once lost or stolen, the vessel (or vault) holding the

asset is subject to relentless physical attack by a hacker,

possibly for an indefinite period of time. As our society

grows more mobile, our transported assets become

more valuable and our thieves more sophisticated,

hence the need for greater security and privacy is

increasing rapidly. Transportable asset protection in

the modern sense was ushered in with the invention

of smart cards. Incorporating biometric authentica-

tion into such systems is a relatively new application

and research areas designed to address the unique

needs of mobile users for whom the standard methods

of authentication are either too cumbersome or not

secure enough.

A transportable asset protection system that uses

biometrics will incorporate at least one mobile com-

puting device or host capable of storing the asset.

Examples of mobile devices include smart cards,

SIM cards, PDAs, mobile handsets, FLASH storage

tokens, notebook computers and other such relatively
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small lightweight items that can store data and/or

access services. Except for the notebook computer,

these devices are all examples of embedded systems,

and therefore include some limited – typically very

limited – dynamic memory and compute power.

An asset can be any digital item of value to a user.

Asset types fall into three broad, somewhat overlap-

ping categories: (1) user secrets, (2) physical or logical

access to places or services and (3) rights. Secret data is

most commonly in the form of username and pass-

word data that can be used to access large amounts of

confidential information, such as corporate databases

or encrypted documents. In more secure systems the

secret may be the private key of a digital certificate,

used to cryptographically encode and sign data. Accor-

dingly, these types of assets have a hard-to-measure

value to all involved parties that depends on the con-

fidentiality of the secret.

Examples of privileged access include access to

wireless or corporate networks, use of services such as

internet access, online banking, or mobile-commerce

transactions. While passwords and keys are sometimes

used to access these services, many such systems

require a secure hardware token (e.g., smart card) for

multi-factor authentication. These kinds of assets usu-

ally have a directly measurable monetary value to the

user and/or the service provider.

Finally, the last category of assets is the right to use

a device or a digital file. Devices with restricted use are

myriad, including automobiles, photocopy machines,

cell phones and firearms. However, digital rights are

also becoming increasingly important: the right to

listen to a downloaded song or watch a movie or

open a document. Digital Rights Management and

transportable asset protection are likely to become

increasingly coupled in the future. In most of these

cases the user has a reason to prevent third parties from

obtaining the asset; in other cases it is the service

provider that the vested interest.

From an implementation perspective, of parti-

cular interest – due both to their importance and

popularity – are those systems composed of a host

(e.g., mobile handset) and a hardware token or other

▶ secure element (SE) used to store secrets and/or

provide access to services. The biometric sensor is

attached to the host, which usually offers little or no

physical protection from hackers and may provide

dubious overall security. In contrast, the secure ele-

ment – physically or wirelessly connected to the host
– is typically a closed, tamper-resistant, well-trusted,

standardized and usually certified system with a very

lightweight microcontroller and some FLASHmemory

or EEPROM storage. Smart cards and SIM cards are

the most prevalent examples of SEs that are completely

separate entities from the host. ▶Near Field Commu-

nication (NFC) controller chips, used for short range

mobile transactions, are an example of a device that

can be permanently integrated into the host hardware

itself. The Trusted Platform Module (TPM) is the

secure element inside the high-end notebook compu-

ters that incorporate them.

A well-designed secure element is a single-chip

entity designed to exacting specifications to achieve a

‘‘black box’’ nature. In the locked state, therefore, an SE

is fairly impenetrable. However, the vast majority of

these devices are unlocked by entering a 4-digit Per-

sonal Identification Number or PIN, which in itself is

not terribly secure, since a PIN entry can be observed

by onlookers and does not tie the unlocking process to

a person as would biometric authentication. Further-

more, when cryptography is employed in a system,

such as digitally signing a document, the expectation

is for a very high level of security and trust. However,

those having experience with such systems know that

the weakest link is often in protecting the private key,

something that most existing secure elements rely

upon and that a simple PIN can provide. Without a

biometric match, the system-wide security of a 256-

bit cryptographic key is reduced from 2�256 to 10�4

per break-in attempt. Hence the need for biometrics is

clear, not only for increased security but also

convenience.

Despite the drawbacks of the PIN, in the discussion

that follows the host is considered to be a non-secure

entity while the secure element is maximally trusted.

Therefore, the more processing done on the secure

element, the safer the system. As will become clear,

the most secure platforms are the ones in which the

host and the secure elements are the same physical

device.
System Architectures

Implementations of transportable asset protection sys-

tems are varied. The most trivial, least secure architec-

ture employs only a host, with no secure element

connected to the system. Security risks abound, the
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most important of which is the lack of any secure

element to protect the assets. While the host itself

might employ security features such as user locking,

those are easily circumvented by a thief who steals the

phone and accesses the filesystem through alternate

hardware means. In short, this architecture is too inse-

cure to constitute a useful asset protection system.

However even those implementations that use a

secure element can vary widely in effectiveness.

Figures 1, 2 and 3 show examples of transportable

asset protection systems that offer basic security

(Fig. 1), very good security (Fig. 2) and maximal
Transportable Asset Protection. Figure 1 Diagram describin

a host and a Secure Element. The host is connected to a biom

tasks. The secure element is used only to store assets, and mu

are accessible by the host.

Transportable Asset Protection. Figure 2 Diagram of a tran

architecture. The host is connected to a biometric sensor and

templates are saved on the secure element, which has the ab

PIN or by sending it a live scan template that matches the sto

accessible by the host.
security (Fig. 3). Referring to the basic security archi-

tecture, a secure element is used only to protect the

assets and nothing else. In this case, the biometric

sensor, template extraction algorithms, and matcher

all execute from the host CPU, and enrolled template

data is stored on the host’s filesystem. This imple-

mentation is the easiest to engineer because typically

the host has much more processing power and memo-

ry than a secure element. Assets are protected with

only a PIN, but putting aside that shortcoming for

the moment, a number of additional security risks

exist with such a system.
g a basic transportable asset protection system employing

etric sensor and performs all template extraction

st be unlocked using a PIN. Once unlocked, the secrets

sportable asset protection system employing the MOSE

performs all template extraction tasks. Assets and enrolled

ility to perform a biometric match. The SE is unlocked via a

red enrolled template. Once unlocked, the secrets are
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is itself a secure element. All processing is performed on the secure host, making it the most trustworthy, albeit

the most costly design choice.
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The first security hole is that templates must be

stored on the filesystem. This means these templates

are readable by anyone operating the host device, repre-

senting both a security and a privacy issue, as the tem-

plates themselves could be considered an asset.While the

natural inclination is to encrypt this data, the problem is

that encryption requires a private key, and that key must

be stored someplace for use later during decryption.

Usually the key is hidden somewhere on the filesystem

or in the code itself, but this kind of ‘‘security by obscu-

rity’’ is a major risk nonetheless [1]. If the host does not

guard against tampering, then it would be quite easy

for a hacker to access the data in unencrypted form by

tapping the memory bus during the match process,

where it must be in plaintext form prior to use. Even

easier hacks involve modifying the results of the

matching algorithm to force a match even when one

does not exist. [2]

A variation on this system uses the secure ele-

ment to simply store the enrolled templates, thereby

removing the need to store them on the host and

offering increased protection if the host is lost or

stolen. In this case, the templates are stored safely on

the tamper-proof secure element, where presumably

only very advanced hacking techniques could unlock

it. This approach offers only a marginal increase in

security, however, if the host and the secure element

are both lost, which can often be the case (e.g., a

mobile phone + SIM card). The memory tapping

techniques are still effective as the secrets must leave

the card before they are matched, and altering the

match results is still possible because the match occurs
on the host. Of note is that a PIN must still be used

to unlock the secure element before a biometric match

can be performed, and though this can be considered a

security feature, it removes the user convenience that is

a major selling point of biometric implementations,

since PIN entry, especially on a small mobile device, is

often cumbersome.

A much more secure approach is shown in Fig. 2,

where the matching algorithm is executed inside the

secure element itself, thereby eliminating the need for

PIN entry entirely. This configuration is commonly

referred to as ▶Match-on-Card (MOC) when used

with a smart card or SIM card [3]. A more general

term is Match-on-Secure-Element (MOSE). In this

architecture, the sensor and template extraction are

still performed on the host, but during the verification

process, the template is sent to a locked secure element,

which only opens upon a successful match against the

enrolled templates stored there. This approach has a

number of important advantages. Firstly, the enrolled

template data, once stored, never leaves the secure ele-

ment for any reason; it is well-protected under all cir-

cumstances. Secondly, it is not possible to simply alter

the match results because the matcher executes in a safe,

black box environment. One other important aspect of

this implementation is that it allows for secure replace-

ment of the PIN with a biometric. This preserves both

the convenience and security largely responsible for the

market success of biometric systems.

The attacks on such systems tend to focus on the

host processing: both sensor data and extracted tem-

plates can be snooped and modified, allowing for
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replay and denial-of-service attacks. These issues are

addressable for the most part, as this class of hacks can

only be launched during the authentication process

and therefore will be useless if the device is stolen

afterward. Overall, this is the most cost-effective and

technologically feasible approach to transportable asset

protection.

The least cost-effective approach, but offering the

highest level of security, is one in which the sensor,

template extraction, and matching are all located on

the secure element (see Fig. 3). In this case it is not

possible for a hacker to snoop or alter any biometric

data or algorithms. The most promising attacks on

such a system involve fake-finger spoofing, for which

there are countermeasures available. However, such a

system is costly, because the microcontroller on the

secure element can no longer be lightweight: much

more memory and computing power would need to

be available to process the raw biometric data into a

template and perform the match. Other considerations

involve powering such a secure element and addressing

the mechanical mounting issues presented by placing a

sensor on a smart card or other miniature device,

where it must meet flexibility and height standards to

be universally adopted.
Role of Standards

As noted, the secure elements used to protect trans-

portable assets are typically standard-based tokens

such as smart cards and SIM cards. Being portable,

standards have evolved so that these tokens can inter-

operate with a variety of different host hardware, as

long as the token and the host support the same stan-

dard. For commercial deployments, it has become

increasingly difficult to attract interest in proprietary

solutions and formats due to this expectation of

interoperability.

A good example to illustrate the need for standards

is a GSM-based mobile handset, which uses a SIM

card to verify the user and provide wireless network

access. Let’s assume this is a MOC system where the

biometric sensor and template extraction algorithms

are on the handset, and the removable SIM card has

embedded in it a biometric matcher where the en-

rolled templates are stored on the SIM card. Given

that wireless network operators require that a SIM

card be usable in any GSM handset, it is prudent to
ensure that handsets adhere to the same template

format standard that the SIM card does, or else the

biometric matching would not work. While it is pos-

sible and sometimes necessary to fall back to having

the user enter a PIN instead, this scenario is undesir-

able from the operators’ point-of-view as it weakens

the value of deploying biometric SIM cards to their

network subscribers.

The ISO-7816 standard [4] is an example of

how smart cards interact with their hosts at both an

electrical, physical, and communication level, and ISO-

7816-11 even allows for biometric Match-on-Card

commands. But as the above example illustrates, stan-

dard commands are not enough to ensure compati-

bility. In a MOSE architecture the host and secure

element must agree on the nature and format of bio-

metric templates to be used for enrollment and

unlocking. Although some widely-accepted standards

exist for face recognition [5] and other biometrics [6],

fingerprints currently offer the most options in this

regard, and the only ones thus far designed to directly

address the requirements of a MOSE system [7].
Algorithmic Challenges and
Approaches

To fully appreciate the challenges involved with creating

a biometric matcher for use within a secure element, it is

necessary to understand the execution environment in

which it runs. The most common secure elements em-

ploy 8-bit or 16-bit microcontroller units (MCUs), hav-

ing available RAM from 500 bytes to 2KB, and 128KB or

less of ROM. Internal clock rates are typically below 30

MHz, often in the 7–15 MHz range. There is usually no

floating-point support, and sometimes no native hard-

ware support for signed integer math, as is the case with

an 8051-class MCU [8]. The computational power of

the Pentium-class CPU found on most PCs is roughly

3 orders of magnitude more than that of the MPU

found on most secure elements; available RAM is 6

orders of magnitude more. While the processing power

for secure elements does increase from year to year,

low-end security processors continue to dominate the

mass market due to its low cost. Therefore, it is impor-

tant to design it with these in mind.

The simplest overall approach is to design the bio-

metric template so that it is a statistical feature vector,

allowing matching to be done via a linear or non-linear
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classifier, which is more suitable for imple mentatio n

on low-end MCUs. Cer tain biome trics lend themselves

more easi ly to lig htwe ig ht matc hing algor ithms than

others. Iris match ing and DNA match ing are two

example s w here most of the comp utational effor t is

in the templa te extraction step, while the match ing

step is relatively straig htfor ward. Standard fing erprint

match ing does not fall into this categor y – it t y pi cally

req uires both local and g lobal geometric informati on –

which is unfor tunate given its populari t y w ith and

suitabili t y fo r mobile platfor ms.

Nonetheless, most of the implementation issues

have been overcome, and fingerprint-based MOSE sys-

tems are among the most popular, including Giesecke &

Devrient’s STARCOS 2.4 smart card Operating System

w ith On-card matcher [9]. The initi al FP-b ased MOSE

algor ithms, first introduced in 1999, used proprietar y

templa tes [10, 11] for which much of the data was

preprocessed on the ho st to minimize the compu ta-

tional load on the secu re elem ent. Second-generatio n

algor ithms use a standards-based templa te format [7]

but, due to the adde d burden this puts on the secure

elem ent, accurac y tra deoffs have been necessar y to

achieve acceptable match speed. Current work under-

way by the aut hor promises a more comple x third-

generati on, standards-based minu tiae matc hing

algor ithm w ith mu ch smalle r accuracy degradati on

and suit abilit y for execu tion on most secure elem ents.

Of note is that pattern match ing techn iques for

finge rprints, w ith their relatively l arge templa te size

and image-processing-b ased algorithms , are harder

to imp lement and in many cases simply not practical,

leaving the aforementioned stat istical featu re-vector

approach as the best alte rnative to minu tia-based

metho ds. Unfor tunately, in additi on to accuracy

issues , proprietar y stat istical approaches suff er from

lack of a ny w id ely-accepted tem plate standards, drasti-

cally reducing their suit abilit y for the marketplace.
Recent Trends

The overall trend for biome trics – esp ecially

finge rprints – is rapidly grow ing in the cons umer mar-

ket, most notably in noteboo k compu ters, mob ile

phone s, door locks a nd USB storage tokens. Whi le

some of these applicati ons focus on the convenience

aspec t of bio metrics (e.g ., password replacement) al-

most all of them perform some sor t of asset protection
functio nalit y, w ith var y ing levels of secu rit y depending

on the des ign and applicati on.

Simil arly, MOSE system s for asset protection con-

tinue to gain in populari t y, and dep loyments are

expecte d to grow quite ra pidly in the nex t 2–5 years.

Mobile handset applica tions, which employ N FC

chips and/o r SI M cards, are driv ing the commercial

need . Atrua Technolo gies, Inc ., by which the aut hor is

employed, has demo nstrated the first SIM card w ith

on-chi p fingerprint matchin g in 2007 as w ell as the

first NFC controller w ith on-chi p matchin g . It is

expecte d that variou s vendors w ill offer MOSE capabl e

system s in the near future and that mobile hand sets

w ith MOSE capabi lities w ill reach the mass market

worldw ide w ithin this timefr ame.

On the government side, the U.S. has recently put

together guidelines for t esting Personal Identit y Verifica-

tion (P IV ) c ards [12 ]  with fingerprint-based match-on-

card capabilit y using FIPS 201 minutiae format stan-

dards. A s PIV cards have become the standard w ay o f

identifying U.S. Government employees, the added secu-

rity and convenience of match-on-card will see a wide

deployment if the planned technology trials are

successful.
Related Entries

▶Template Security

▶Biometrics and Security, Standardization

▶Common Biometric Exchange Formats Framework,

Standardization

▶ Fingerprint Matching, Automatic
References

1. Schneier, B.: Applied cryptography, Wiley, Inc., New York (1996)

2. Maltoni, D., Maio D., Jain, A.K., Prabhakar, S.: Handbook of

fingerprint recognition, Springer, New York (2003)

3. Russo, A.P.: ‘‘Fingerprint-based authentication and smart cards:

Issues and trends’’, E-Payments 2000 Conference. http://www.

epf.net/PrevMtngs/Sep00/Sep00Meeting.html. Accessed Oct 5,

2000

4. ISO/IEC 7816-4: ‘‘Information technology–Identification cards–

Integrated circuit(s) cards with contacts, Part 4: Interindustry

commands for interchange,’’ International Standard (1995)

5. ANSI-INCITS 385-2004: American National Standard for

Information Technology – Face Recognition Format for Data

Interchange (2004)

http://www.epf.net/PrevMtngs/Sep00/Sep00Meeting.html
http://www.epf.net/PrevMtngs/Sep00/Sep00Meeting.html


1348T Tread Pattern
6. ANSI-INCITS 398-2005: American National Standard for Infor-

mation Technology – Common Biometric Exchange Formats

Framework (CBEFF) (2004)

7. ISO/IEC 19794-2: Information Technology—Biometric Data

Interchange Formats—Part 2: Finger Minutiae Data (2005)

8. MacKenzie, I.S., Phan, R.C.-W.: The 8051Microcontroller, Pren-

tice Hall, (2006)

9. Giesecke & Devrient: STARCOS1 2.4 Card Operating

System, Bio Version http://www.gdai.com/portal/page-_pageid=

42,70526&_dad=portal&_schema=PORTAL.htm. Accessed Dec

30, 2005

10. Russo, A.P.: Fingerprint matching algorithm for low-cost 8-bit

smart cards. RSA Conference Europe 2000 (2000)

11. Russo, A.P. (inventor): Method and system for fingerprint tem-

plate matching. U.S. Patent Number 6681034 (1999)

12. National Institute of Standards and Technology: FIPS Pub 201-1

Personal Identity Verification (PIV) of Federal Employees

and Contractors. Federal Information Processing Standards

Publication (2006)
Tread Pattern
The outsole or underside of a shoe can sometimes have

a complex pattern of ridges and various shapes which

provide traction for the wearer. For example, athletic

shoes may have a tread pattern composed of many
slanted ridges placed close together so as to give an

improved grip to the running surface, while hiking

shoes may have a thick and high profiled wedge-

shaped tread for easy walking in soft terrain. This

complex pattern is commonly referred to as a tread

pattern.

▶ Footwear Recognition
Trusted Biometric System
Biometric system with template protection, compared

to traditional biometric system, paying more attention

to security and privacy issues of the users.

▶User Interface, System Design
Trusted Traveler
▶Registered Traveler
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UBM
▶Universal Background Models
ULW
▶Universal Latent Workstation
Unauthorized Data Collection
In principle, all data collected must be backed by the

law, whether state legislation or contractual obliga-

tions. A data item may well be necessary for a particu-

lar purpose, but this does not mean that the purpose

itself is authorized, or that the agent (human or ma-

chine) collecting the data is empowered to do so.

▶Privacy Issues
Unauthorized Data Disclosure
From a privacy perspective, the end-user owns his or

her own personal data, even if the data resides in an

organization’s computer system. Therefore, permission

should be sought from the end-user before data is

disclosed or shared. In practice, different jurisdictions

have different notions of data ownership, which may

result in disclosure without the end-user’s explicit con-

sent or even knowledge.

▶Privacy Issues
# 2009 Springer Science+Business Media, LLC
Unification Framework
A unification framework includes a collection of fusion

algorithms and it uses the evidences obtained from the

input biometric probe data to dynamically select the

optimal fusion algorithm. The selected fusion algo-

rithm is then used to compute the fused biometric

information. The unification or reconciliation should

satisfy most of the application requirements and yield

better recognition performance.

▶ Fusion, Sensor-Level
Universal Background Models

DOUGLAS REYNOLDS

MIT Lincoln Laboratory, Lexington, MA, USA
Synonyms

General model; Person-independent model; UBM;

World model
Definition

AUniversal BackgroundModel (UBM) is a model used

in a biometric verification system to represent general,

person-independent feature characteristics to be com-

pared against a model of person-specific feature char-

acteristics when making an accept or reject decision.

For example, in a speaker verification system, the

UBM is a speaker-independent Gaussian Mixture

Model (GMM) trained with speech samples from a

large set of speakers to represent general speech char-

acteristics. Using a speaker-specific GMM trained with

speech samples from a particular enrolled speaker, a
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likelihood-ratio test for an unknown speech sample

can be formed between the match score of the speaker-

specific model and the UBM. The UBM may also

be used while training the speaker-specific model by

acting as a the prior model in Maximum A Posteriori

(MAP) parameter estimation.
Likelihood Ratio Test

To understand the development and use of a Universal

Background Model (UBM), the likelihood-ratio test

for which it is intended is first described. Given an

observation, O, and a person, P, the task of verification

is to determine if O was from P. This verification task

can be restated as a basic ▶ hypothesis test between

H0 : O is form person P

H0 : O is not form person P

Using statistical ▶ pattern recognition techniques, the

optimum test to decide between these two hypotheses

is a likelihood ratio test (Strictly speaking, the likeli-

hood ratio test is only optimal when the likelihood

functions are known exactly. In practice this is rarely

the case.) given by

pðOjH0Þ
pðOjH1Þ

� yAcceptH0

< yRejectH0

�
; ð1Þ

where p(OjHi), i ¼ 0,1 is the probability density func-

tion for the hypothesis Hi evaluated for the mea-

surement Y, also referred to as the ‘‘likelihood’’ of the

hypothesis Hi given the measurement (p(AjB) is

referred to as a likelihood when B is considered the

independent variable in the function.). The decision

threshold for accepting or rejecting H0 is y. The basic
aim in developing a verification system is to determine

techniques to compute this likelihood ratio function,

usually by finding method to represent and model

the two likelihoods, p(OjH0) and p(OjH1).

The first step in a verification system is to extract

from the observation features that convey person-

dependent information, such as vocal-tract related

spectral measurement when the observations are

speech samples in a speaker verification system. The

output of this stage is typically a sequence of feature

vectors representing the observation, X ¼ fx1 ; : : : ; xTg.
These feature vectors are then used to compute the

likelihoods of H0 and H1.
In statistical pattern recognition based verifica-

tion systems, H0 is represented by a model denoted

lP , that characterizes the distribution of features

derived from observations from the person P in the

feature space of x. For example, one could assume

that a Gaussian mixture model (GMM) distribution

best represents the distribution of feature vectors for

H0 so that lP would be denoting the weights, means,

and covariance matrix parameters of a GMM. The

alternative hypothesis (see entry on ▶GMM for more

details of this model). H1, is likewise represented by

a model lP . The likelihood ratio statistic is then

formed as

LRðXÞ ¼ pðX jlpÞ
pðX jlpÞ

ð2Þ

See other articles in this book and chapters in [1, 2] for

more details on speaker verification systems.
Alternative Hypothesis Modeling

While the model for H0 is well defined and can be

estimated using training samples from P, the model

for lP is less well defined since it must potentially

represent the entire space of possible alternatives to

the person P.

From the area of speaker recognition, two main

approaches have been taken for this alternative hy-

pothesis modeling. Here terms ‘‘speakers’’ and ‘‘speech

samples’’ are used, but these apply equally to other

biometric measurements and features. The first ap-

proach is to use a set of other speaker models to

cover the space of the alternative hypothesis. In various

contexts, this set of other speakers has been called

likelihood ratio sets [3], cohorts [4] and background

speakers [5]. Given a set of N background speaker

models {l1, . . ., lN}, the alternative hypothesis model

is represented by

pðXjlPÞ ¼ FðpðXjl1Þ; . . . ; pðXjlN ÞÞ; ð3Þ

where FðÞ is some function, such as average or maxi-

mum, of the likelihood values from the background

speaker set. The selection, size, and combination

of the background speakers have been the subject of

much research (for example [4–6]). In general, it has

been found that to obtain the best performance with

this approach requires the use of speaker-specific back-

ground speaker sets. This can be a drawback in an
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application using a large number of hypothesized speak-

ers, each requiring its own background speaker set.

The second major approach to alternative hypoth-

esis modeling is to pool speech from several speakers

and train a single model. Various terms for this single

model are a general model [7], a world model, and a

universal background model [8]. Given a collection of

speech samples from a large number of speakers repre-

sentative of the population of speakers expected during

recognition, a single model, lbkg, is trained to represent
the alternative hypothesis. Research on this approach

has focused on the selection and composition of

the speakers and speech used to train the single

model [9, 10]. The main advantage of this approach

is that a single speaker-independent model can be

trained once for a particular task and then used for

all hypothesized speakers in that task. It is also possible

to use multiple background models tailored to specific

sets of speakers [10, 11].
U

Universal Background Models

Most modern speaker verification system use a UBM for

modeling the alternative hypothesis in the likelihood

ratio test. Typically, GMMs are used for distribution

models and a speaker-specific model is derived by

using MAP estimation with the UBM acting as the

prior model (see article on GMMs for details on MAP

estimation). In the GMM–UBM system a single, speaker-

independent background model is used to represent

pðXjlPÞ. The UBM is a large GMM (2,048 mixtures)

trained to represent the speaker-independent distribu-

tion of features. Specifically, speech samples are selected

that are reflective of the expected alternative speech to

be encountered during recognition. This applies to

both the type and quality of speech, as well as the
composition of speakers. For example, for a verification

system using telephone speech and only male speakers,

the UBMwould be trained using telephone speech from

a pool of male speakers. In the case where such specific

prior knowledge of the gender composition of the alter-

native speakers is not known, speech samples from both

male and female speakers are used. Other than these

general guidelines and experimentation, there is no

objective measure to determine the right number of

speakers or amount of speech to use in training a UBM.

Given the data to train a UBM, there are many

approaches that can be used to obtain the final

model. The simplest is to merely pool all the data

and use it to train the UBM via the EM algorithm.

One should be careful that the pooled data is balanced

over the subpopulations within the data. For example,

in using gender-independent data, one should be sure

that there is a balance of male and female speech.

Otherwise, the final model will be biased towards

the dominant subpopulation. The same argument

can be made for other subpopulations such as speech

from different microphones. Another approach is to

train individual UBMs over the subpopulations in

the data, such as one for male and one for female

speech, and then pool the subpopulation models

together. This approach has the advantages that one

can effectively use unbalanced data and can carefully

control the composition of the final UBM. Still other

approaches can be found in the literature (see for

example [10, 12]).

The concept of a UBM is also used for discrimina-

tive systems, such as Support Vector Machines (SVM),

where explicit likelihood functions for the two hypoth-

esis are not used. In this case, the UBM refers to the

collection data from the general population used as

negative examples while training a person-specific dis-

criminate function [13].
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Synonym

ULW
Definition

In the past, the commercial automated finger-

print identification systems (AFIS) used by local,

state, and federal criminal justice agencies have not

accounted for cross-jurisdictional searching of latent

crime scene fingerprints. The mobile criminal might

avoid identification by simply crossing a jurisdictional

boundary. This lack of interoperability stems from

the fact that each AFIS vendor has a unique set of

features to characterize and match fingerprints. Search-

ing multiple AFIS in this environment involves redun-

dant encodings of the latent fingerprint on separate

workstations, each using a different vendor’s feature set.

The universal latent workstation (ULW) simpli-

fies cross jurisdictional searches by enabling an exam-

iner to search multiple AFIS with a single fingerprint

feature encoding. In many cases, the examiner will

edit the features to optimize the search for a particu-

lar AFIS but they will not need to reenter the case.

The ULW is based on an open interface standard

developed in cooperation with the AFIS vendors,



Universal Latent Workstation. Figure 1 Fingerprint ridge flow pattern classifications: Arch (left), Loop (center), Whorl

(right).
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effectively establishing a common language for crime

scene investigators to share latent fingerprint identifi-

cation services. The FBI provides the ULW software,

training, and support to criminal justice agencies at

no charge.
Universal Latent Workstation. Figure 2 Fingerprint

features: ridge ending and bifurcation (left), pores, dots,

and distinctive ridge edge detail.

U

Introduction

Fingerprints have a long history in the investigation of

crime and play a major part in criminal apprehensions

and convictions [1]. Identifications start with the dis-

covery, development, and capture of ▶ latent finger-

prints at the crime scene or on an object used in

connection with the commission of a crime. The

print is then scanned into a latent workstation where

the ▶ features are extracted and formatted into a

search record. The search record is then sent to an

AFIS to find candidate matches for the latent print. A

fingerprint examiner makes the final comparison and

identification.

Within the US, every state and most of the larger

cities have an AFIS with arrest records from within

their jurisdiction. At the national level the FBI has the

integrated automated fingerprint identification system

(IAFIS) with arrest prints for the entire country,

currently about 55 million records. A latent print

search that is not identified in the state AFIS must be

searched in the national system to determine if it

matches arrest prints from another state. ULW was

developed to facilitate searching a single latent finger-

print in multiple AFIS.
Fingerprint Features

Fingerprints comprise ridges and furrows in a flow like

pattern. The characteristics or information content of
the ridge structure is traditionally categorized into

three levels of detail. Level 1 includes the general

ridge flow and pattern classification (Fig. 1). A partic-

ular ridge flow pattern is not unique to an individual

but can be used in filtering out or excluding a portion

of a data base from further consideration [2]. If the

crime scene print is a whorl, for example, there is no

need to search arches and loops; however this strategy

can occasionally cause a miss at the classification

boundaries [3].

Level 2 details are the ridge path characteristics

including bifurcations, endings, and dots. The normal

parallel flow of the ridges is occasionally disrupted

when a ridge ends or bifurcates into two ridges

(Fig. 2). These disruptions, called minutia, occur at

random locations and are the primary basis for identi-

fication. Level 3 features are the sweat pores and edge

texture that make up the finer details along the ridges.

When level 3 features are visible, they provide the

examiner with additional points of comparison to

reach an identification or exclusion decision [4]. Cur-

rent research is bringing level 3 detail into the auto-

mated AFIS search as well [5].



Universal Latent Workstation. Figure 3 Exceptionally

high clarity latent print. The bifurcation (a) and the ridge

ending (b) are on the same ridge and the ridge count

between them is four intervening ridges. You can use

these relationships to compare this latent to the matching

print in Fig. 1.
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Fingers are pliable and ▶ distortions in the finger-

print may cause some shifting in the positions of the

minutiae. By focusing on the topological structure of

the minutiae, the examiner can accurately assess the

similarity between two fingerprints without adverse

effects due to variance in minutia locations. The num-

ber of intervening ridges between corresponding mi-

nutia pairs will be the same even if one of the

impressions is stretched (Fig. 3). Additionally, an ex-

aminer may follow a ridge path forward from a minu-

tia to see if another event affects the same ridge.
Search Preparation with ULW

The clarity of a fingerprint image determines how

difficult it will be to locate and mark the minutiae.

Many latent prints are low contrast partial impressions

on a substrate or surface with texture and graphics that

make it difficult to follow the ridge structure. On these

low quality prints, automated feature extraction may

not locate all the correct minutiae and will likely mark

several false minutiae. In this case, the examiner will

have to mark the minutiae in the areas where the auto
▶ encoder could not follow the ridges. The ideal work

environment for the examiner would be to drop the

false minutiae from the auto encoding and display only

the correct minutiae for editing and verification. Un-

fortunately, the software does not know which minu-

tiae are false; otherwise they would not have been

included in the first place. ULWaddresses this problem

by assigning a confidence score to each minutia based

on the local image quality. ULW will then only display

minutiae above a threshold confidence score and the

examiner can adjust the threshold to their own prefer-

ence (Fig. 4).

Counting the number of intervening ridges

between neighboring minutiae has similar issues. It

is a very tedious task to do manually and on a clear

image the software will provide accurate results. As

the image quality degrades, a procedure is needed

to split the task between the software and the exami-

ner. ULW assigns a confidence score to each ridge

count based on the clarity of the ridges traversed.

In ridge count verification mode, ULW will present

the ridge counts in score sequence starting with

the lowest. Once the examiner reviews several con-

secutive ridge counts without finding any errors it is

likely that all the remaining ridge counts are correct

as well.

In addition to the fingerprint features the search

record can include variables to limit the search to a

subset of the file. Descriptors such as sex, eye color, and

weight range can be entered if available. Also, the

search can be focused on a geographic region by enter-

ing state codes. In practice, the variables that are most

commonly used are the finger number and pattern

classification. Focusing the search can improve accu-

racy with a large system. When searching a latent print

with limited information a small percentage of the file

prints will tend to get high scores in the same range as

the true match. Reducing the size of the search popu-

lation will reduce the high scoring non-matches and

improve the chances that the true match makes it into

the candidate list [6].
Searching Multiple AFIS

The commercial AFIS used each by local, state,

and Federal criminal justice agencies have different

rules for marking the minutiae and other features on

a latent search. Figure 5 shows a diagram of two



Universal Latent Workstation. Figure 5 Two different

vendor encodings for the same print.

Universal Latent Workstation. Figure 4 ULW screen display for marking minutia. This latent print matches the arch

print in Fig. 1 .
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different vendor’s encoding for the same print. The

minutiae placement rules for vendor on the left require

that the ridge ending be marked in the center of the

valley just beyond the actual end of the ridge. The
bifurcation in the center of the print is not marked

because it is in a high curvature region. The other

vendor, on the right, expects the ridge ending to be

marked right on the ending of the ridge and also

expects minutiae in high curvature areas to be marked.

In addition to the differences in the placement of

minutiae, some vendors require ridge counts to four

neighboring minutia, some require ridge counts to

eight neighbors and others do not use ridge counts

[7]. In practice, the differences are important for accu-

racy but do not present a problem for the examiners.

ULW can create a latent search record for any of

the major AFIS vendors or translate a record from

one format to another. In some states ULW is used to

search both the state system as well as the FBI IAFIS.

The examiner first marks the features for the state

system and if that search does not find a match, they

can then translate the state search into an IAFIS search.

IAFIS requires eight ridge counts per minutia so ULW

would calculate the additional ridge counts. The
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examiner would then verify and edit the new ridge

counts. Any ridge counts from the state search that

had already been verified would have a confidence

score of 100 so they would not be verified a second

time. Even if the state search was conducted with a

latent workstation provided by the state AFIS vendor,

the search record can still be imported into ULW and

then converted using the same process in order to

conduct an IAFIS search.

The search records are formatted in accordance

with the ANSI/NIST standard: Data Format for the

Interchange of Fingerprint, Facial, & Other Biometric

Information [8]. This is a tagged field format and

a block of fields have been reserved for each vendor.

The development of the standards and its use for lat-

ent searching has been a cooperative effort by state

and local agencies, the AFIS vendors, NIST, and the

FBI. The ULWwas first developed as a proof of concept

for standards based latent searching and is now in

use across the country. There are currently about

200 agencies using ULW to conduct almost 10,000

searches a month. Approximately, 10% of the cases

that make it up to a National level search produce

identifications.
Summary

Any effort to combat crime and the threat of terror is

dependent on cooperation and sharing information

across agencies. Sharing latent identification services

within the US is complicated by the hierarchical net-

work of AFIS systems and the variation in latent search

feature sets. The FBI developed ULW to address these

issues and facilitate information sharing across the

Nation’s city, county, and state borders.
Related Entries

▶Biometric Standards for LawEnforcementApplications
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Unnecessary Data Collection
A service provider typically requires data from an end-

user in order to provide the appropriate type or level of

service to the end-user. Data that are not relevant for

this purpose are deemed unnecessary, and should be

labeled as optional. In principle, the service provider

must be able to explain why each and every data item

collected is necessary, while the end-user has the right

to such an explanation.

▶Privacy Issues
Unsupervised
Unsupervised is the class information of data which are

not available. Algorithms are designed purely based on

the attributes of data and data distribution.

▶ Fusion, Rank-Level

▶ Linear Dimension Reduction
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Unsupervised Rank Level Fusion
The rank level fusion methods can be generally cate-

gorized under the headings of supervised and unsuper-

vised. The rank level fusion method that does not

require any training data to achieve the fusion of

ranks can be categorized as unsupervised method.

Thus, using unsupervised rank level fusion methods,

one can combine the ranks from different matchers

without any ‘‘teacher’’ or training data. The Highest

rank method and Borda count methods are the exam-

ples of unsupervised rank level fusion methods.

▶ Fusion, Rank-Level
Unvoiced Sounds
The unvoiced speech is generated by constriction of the

vocal tract narrow enough to cause a turbulent airflow,

which results in noise, e.g., in fricatives like /f/, /s/, or

breathy voice (where the constriction is in the glottis).

Unvoiced plosives like /p/, /t/, /k/ fall into this category,

too.

▶ Speech Production
Usability
U

The extent to which a product can be used by specified

users to achieve specified goals. Usability testing

employs techniques to collect empirical data during

the observation of users using the product for a specific

task in order to rectify usability deficiencies of a prod-

uct. The ISO document 924111 discusses three factors

that compose usability: effectiveness, efficiency, and

satisfaction. The IEEE Standard Computer Dictionary

further describes usability as the ‘‘ease with which a

user can learn to operate, prepare inputs for, and

interpret outputs of a system or component.’’

▶Ergonomic Design for Biometric Systems

▶Hand Geometry
User Acceptance

MAREK REJMAN-GREENE

Home Office Scientific Development Branch,

Sandridge, St Albans, Herts, UK
Definition

User acceptance: the demonstrated willingness within a

user group to employ information technology for the

tasks it is designed to support [1].
Introduction

The effective use ofmany of the applications that include

a biometric component requires users to follow specified

procedures, and hence, calls for cooperation from the

user. Such cooperation is predicated on the acceptance of

the biometric technology. In recent years, there have

been a number of studies addressing the nature and

extent of such acceptance, although our understanding

is still partial and further research is needed. Among the

often cited reasons for willingness to use a biometric

system is trust in the technology as well as in the organi-

zation holding biometric reference data – although

many of the major studies have not explored user accep-

tance in sufficient depth to elicit the reasons for a lack of

acceptance among a minority of the population.

In a wider sense, user acceptance of IT technologies

has been the subject of research for more than 20 years,

as ever more complex systems were developed for use

in personal, corporate, and government applications

[2]. Unfortunately, many of the documented case stud-

ies are limited to self-reporting by survey respondents

rather than the observation of usage (e.g., obtaining

take-up metrics), and often research is addressed to

systems where the use of a technology is voluntary. The

validation of models such as TAM, the Technology

Acceptance Model of Fred Davis [3] (and its succes-

sors), remains to be demonstrated as each new tech-

nology tests their assumptions.

In his original paper, Davis identified two deter-

minants of an individual’s intent to use an IT system:

perceived usefulness and perceived ease of use. Sub-

sequent developments of the model have also includ-

ed aspects such as subjective norm (the subject is

influenced by the positive attitudes of people in
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positions of respect), personal experience, and de-

monstrability of the success of the new technology

in achieving a goal, as well as the extent to which the

use of the application enhances the subject’s status

or image [2].

Even though there is considerable empirical sup-

port for this type of modeling in the deployment of

other IT components, such modeling has yet to be

validated for user acceptance of biometrically enabled

applications. Nevertheless, the literature on user accep-

tance of biometric systems offers numerous indicators

of intent to use – or not use, prominent among which

are concerns about privacy and data misuse, health

risks, usability issues, and uncertainty about system

reliability.

For some applications, especially where convenience

is the principal reason for using biometrics, user accep-

tance may not be sufficient. In these instances, the

challenge is to recast the metrics for success in terms

of the users’ satisfaction with the application (and,

hence, with the biometric elements). Furthermore, we

can envisage systems where the use of the biometric is

so integrated with an application that it is no longer

seen to be exceptional, for example, in multiplayer,

multimedia games where verification by facial image

and/or speech blends into the player’s immersive

environment.
Historical Context

Biometric systems have been deployed for over

30 years, yet the literature to support a unified view

on their acceptance has been sparse. Early trials of the

technology added a short questionnaire for partici-

pants in scenario tests, asking about acceptance and

comfort in use, without a more detailed exploration of

the reasons for any concerns.

A 1995 review of user acceptance studies summarizes

the position at that time [4]. This notes the ground-

breaking 1988 study for the State of California’s De-

partment of Motor Vehicles on retinal scanning and

fingerprint technologies. In this extensive study, con-

siderably more participants declined to use the eye

method than the live scan fingerprint equipment –

perhaps related to rumors circulating at the time

about the risk of disease transmission through eye

fluids.
Reference is also made in this review to the results

of the 1991 Sandia National Laboratories’ pioneering

performance evaluation of five biometric modalities

[5]. Nearly 100 employees and contractors took part

in the trial in ‘‘an office-like environment.’’ Of these,

76 returned a questionnaire that sought their views

on matters that have appeared time and again in

subsequent studies: which devices required most con-

centration and most proficiency? which were most

frustrating to use? and which gave health and safety

or privacy concerns or were most intimidating? The

hand geometry systemwas rated as the most acceptable

in most of the categories, while a retinal scanning

system and one of the two voice systems were viewed

as the least acceptable.

Biometric technologies can be applied in a wide

range of systems: from personal use in mobile handsets

and laptops, and access control at doors of homes and

cars, through to the management of time and atten-

dance at work and the control of migration at national

borders. With such a diversity of uses, user acceptance

is likely to vary considerably according to the proposed

application and its context, since concerns that have

been raised in studies, such as ‘‘invasion of privacy,’’

trust in the quality of the database management, per-

ceptions of health risks [6] etc., are likely to differ in

prominence for each context.

More recently, as large-scale applications are

deployed, the trend has been to use telephone surveys,

even though respondents are unlikely to have experi-

enced the range of biometric modalities about which

they are questioned, nor they had the opportunity to

view this type of technology [7, 8]. Although these

surveys (often with over 1,000 participants) can pro-

vide valuable insights into the perception of biometric

technologies across wider populations, focus group

studies will be needed to elicit the rationale behind

the statistics and comment on specific issues based

upon users’ experience of the equipment (and its ap-

plication) at first hand [6, 9].

Acceptance, as reported in surveys, will depend on

the context in which the question is put and the trust

that the respondents place in the integrity of the survey

organizers. As a consequence, reports that claim that a

specific biometric technology is more or less acceptable

to a population need to be examined critically. There

should always be supporting evidence of a validated

methodology in the context of one or more types of
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application. As a minimum, a study should offer the

following in order to interpret its results:

1. A sample questionnaire and the associated tele-

phone scripts, especially if the questions relating

to biometrics form part of a more general survey

(scripts may describe certain features of the tech-

nology, while remaining silent about crucial aspects

of their operation);

2. The dates of beginning and completion of the sur-

vey, as media comments during the survey period

may affect the results;

3. The method of selection of participants, the num-

bers successfully contacted, together with an indi-

cation of reasons for nonresponse and any

weighting factors applied to the results; and

4. Any incentives offered

It is expensive to undertake combined scenario trials

and facilitated focus groups, along with extensive ques-

tionnaire surveys, even though this strategy is likely

to give the best indication of the user acceptance of

systems to be deployed in the future [9]. However,

their relevance begins to diminish with time as better

biometric equipment and user interfaces are devel-

oped, and the media debate moves on to other aspects

of the deployment.
U

The Importance of User Acceptance

Although there has been limited research to prove the

point, it is an established axiom in the field that confi-

dent and cooperative users of biometric technology are

a prerequisite for successful applications. Sasse [10]

notes the close link with usability of systems, since

systems that are difficult to use, or where users have

unresolved concerns, will result in more verification

errors, longer throughput times, and therefore, lead to

additional costs for the operator of the system. Re-

duced usability has also been associated with a reduc-

tion in the trust users place in a service.

Reference is also made by Sasse to the Biovision

Technology Roadmap [11], which concluded that three

factors lead to the acceptance of biometric technology:

trust in the security enhancement offered by this form

of authentication; greater convenience in use com-

pared with alternative systems; and trust in those hold-

ing the biometric data, maintaining the security of that
data and not using data for other purposes. In addition

to the absence of these factors, other reasons that lead

to systems being less accepted include fears of health

effects of long-term use of the equipment and the

reliability of the identification process.
Principal Large Scale Studies

In 2001–2002, ORC International undertook two

nationwide telephone surveys (commissioned by the

National Consortium for Justice Information and Sta-

tistics) to assess attitudes toward the use of bio-

metrics by government and the private sector [7].

As the first was conducted directly after the events of

9/11, a follow up survey was needed a year later to

ensure that responses were not colored by the extensive

media discussion of the response to terrorist attacks.

The authors of the studies commented, however, that

very little had changed in the intervening time. Over

1,000 US adults were sampled in each year and the

full results of the survey, together with sample ques-

tionnaires and telephone scripts, are available in the

public domain.

The study found that only half of the sampled

population was aware of the existence of biometrics,

indicating that public acceptance would require fur-

ther education and marketing initiatives. Personal ex-

perience of its use was also very low: only 5% of the

sample (57 users) had ever used a biometric system,

with the majority reported as feeling comfortable with

the experience.

Support for the use of biometrics in major govern-

ment systems (passport verification, entry to government

buildings, and for airport check-in) was above 80% in

2002, although these figures represented a decrease

in acceptance from the immediate post 9/11 period.

For applications designed to counter terrorism, about

two-thirds of the survey participants trusted that there

would be no unwarranted extension of their use (‘‘func-

tion creep’’). Nevertheless, there was strong support for

privacy safeguards in accordance with Fair Information

Practices. Other government applications that scored

highly were those in support of law enforcement and

reduction of social security fraud.

There was also clear support for private sector use

of biometrics, although expressed with markedly less

enthusiasm. Respondents voiced support for biometric
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verification in the selling of guns and for credit card

transactions that involved large sums of money.

In March 2005, TNS and TRUSTe commissioned

an Internet survey of attitudes to the application of

biometrics [12]. Nearly three years after the ORC

study, the awareness of biometrics in the US popula-

tion had risen to 75%. As in the 2001–2002 study,

substantial majorities supported the government use

of these technologies, although a group of 15–20% of

subjects were opposed to some of the more conten-

tious applications such as use by employers for identity

verification and in national identity systems. A com-

parison of US with Canadian respondents in this re-

search showed that use in the private sector is viewed

with more suspicion in Canada (e.g., 55% in the US

would support the use of biometrics in employer iden-

tity schemes in contrast to 36% of Canadians).

In a question about the acceptability of different

modalities for proving identity, fingerprint recognition

was a clear leader (81%, with 58% for iris methods

appearing in second place).

US respondents were also asked about some of

the negative aspects of deploying biometrics at scale.

The technologies themselves were trusted, but they

were seen as expensive and likely to be defeated by

criminals; a significant proportion would not trust

governments to limit the use of biometric data to

originally stated aims.

In 2004, UKPS, the UK Passport Service, analyzed

attitudes to the use of biometrics as part of a very

large scale enrolment trial for those biometric tech-

nologies that had been proposed for the National

Identity Scheme: facial, fingerprint, and iris recogni-

tion [13]. With a total of more than 10,000 partici-

pants, this is one of the largest trials ever undertaken.

Two thousand individuals formed a quota sample,

representing the diversity of the UK population, with

an additional 750 subjects with a range of disabilities.

The remaining users included some who applied di-

rectly to participate in the trial. In addition to testing

the processes of biometric enrolment, a major goal was

to assess the customer experience of recording biomet-

ric features.

The overwhelming majority of participants in the

UKPS trial found that, overall, the experience was at

least as good as they had anticipated, although the iris

recognition system experience was noted as least satis-

factory, comments being made about the need to re-

main still and wait for a long time. Advances in
technology since 2004 have aimed to address both of

these criticisms.

In general, the majority of the group of trialists was

not overly concerned about the recording of biometrics

(with the exception of comments by disabled people

about the use of iris systems). Concerns were lessened

after users enrolled into the system. It was notable,

however, that greatest concern regarding the use of

biometrics was expressed by the Black and Minority

Ethnic group and by subjects aged between 18 and 34.

In the quota group, iris recognition was the pre-

ferred biometric for males (iris as a first choice for

51%, with a second preference for fingerprints at

24%), female participants preferring this modality to

fingerprint use (45% against 36%).

In answer to the question of whether they were in

favor of biometrics being used as a means of identifi-

cation for passport purposes, over 90% of the quota

group were either ‘‘in favor’’ or ‘‘strongly in favor.’’ In

line with their concerns about iris biometrics, disabled

people were somewhat less in favor of its use in this

context.

In September 2008, the Lieberman Research Group

conducted a survey in a number of European countries

to ascertain concerns about national and personal

financial security, security of dealing on the Internet,

and people’s personal safety [8]. For the first time, this

annual survey included a supplementary question

about biometrics, enabling a comparison of attitudes

toward the use of these technologies across a number

of European countries. The question was posed

as: ‘‘Which of the following (. . . methods of authen-

tication. . .) would you be willing to use to verify your

identity with banks and government and other

organizations to prevent fraudulent misuse of your

personal information?’’ The interpretation of the

results has to be viewed against the generally threaten-

ing world, of which participants were reminded in

the earlier part of the survey, and the lack of any

further information regarding the technologies them-

selves – or the participants’ familiarity with them. The

question also brings together use by both public and

private sectors, whereas earlier studies have shown

significant differences in acceptance.

In all the seven European countries surveyed, the

order of acceptance of biometric technologies is finger-

print, eye scan, and voice. ‘‘A scan of blood vessels in

your hand’’ was least acceptable of the five modalities.

Some countries appear to be noticeably more willing to
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use biometrics. For example, willingness to use finger-

print systems is highest in Netherlands (80%) and the

UK (75%), and lowest in France (58%). The surveys

picked up some significant differences in user accep-

tance for certain age groups and between males and

females in a number of countries. For example, in the

Netherlands, less than 50% of the 18–34 age group

were willing to consider offering a face image for veri-

fication, whereas two-thirds of the over 65s would,

in principle, find this acceptable. However, caution

should be exercised in interpreting such trends, since

the survey respondents’ mental models of biometric

technologies could be at variance with reality.
U

Technologies

Smaller scale studies have attempted to understand

the issues of user acceptance in respect of individual

biometric technologies. In several of the major studies,

fingerprint technology has been rated as most ac-

ceptable. For example, in the Trustguide focus group

studies [6], it was seen as the ‘‘least invasive and the

most acceptable form of biometric identification.’’

The report authors mention that this could be

context-specific, and may reflect the perception of

high accuracy in its use in the detection of crime.

In a study of the use of fingerprint biometrics,

researchers from the CanadianNational Research Coun-

cil questioned a sample of 24 individuals in order to

understand some of the considerations that might be

influencing comments by users [14]. These subjects

were firstly asked to simulate a number of Internet

purchases, using biometrically secured personal or cor-

porate credit cards. In the discussion afterwards, there

was considerable confusion about the security value

of biometrics, but users felt that they were likely to

accept the technology once it became more prevalent.

Privacy concerns were mentioned without being rated

as overly important. However, as the facilitator probed

more deeply, subjects began to be less certain of their

acceptance. Even though this was a limited study, it

points to the need for more detailed investigation of

users’ perceptions and willingness to use these

modalities.

Occasionally, comments have been made in the lit-

erature about the fears of disease transmission, as users

touch the surface of conventional fingerprint sensors

one after another. In some deployments, cleaning tissues
are provided, while users are reminded of the numerous

occasions on which they touch common surfaces such

as door handles and terminals. For a small number of

deployments, these assurances may not be sufficient.

Munyan at Computer Sciences Corporation reports

that the immigration control authorities in one Asian

country required the decontamination of the fingerprint

sensor before every use by travelers [15].

In the evaluations of user acceptance described

earlier, voice verification has not been rated highly in

spite of its growing application in corporate password

reset systems. Attitudes to its possible use were ex-

plored in a Harris Interactive telephone poll conducted

in April-May 2008 with 553 UK residents who had

been in contact with a Customer Service Center during

the previous year [16]. A description of the process of

enrollment resulted in only 38% of subjects rating it as

a technology they would be likely to use, even though

60% were confident that it was secure. By listening to

a demonstration, the willingness to accept voice bio-

metrics increased to 51%. (As in services using other

biometric modalities, users seem to need reassurance

about the impact of verification failure on their every-

day lives.) Additional data in this survey suggest that

those who did not accept speaker recognition were

also concerned about unrelated aspects of automation

of the phone interaction with the service provider.

Strategies for managing the handover between a

failed speaker verification session and a human opera-

tor have been examined in an earlier UK study [17].

Two-hundred and seventy onesubjects were authenti-

cated over the public telephone network. From the

options investigated, subjects preferred the protocol

of a message: ‘‘I’m sorry the voice verification process

has not been successful, please hold while I connect

you to a human operator’’ after two failed machine

verifications. Research with a small number of subjects

in the US hints at the need for operators to communi-

cate trust during any speaker verification dialog [18].

To assess the likely acceptance of a biometric tech-

nology in the context of an application, focus groups

can be used at first to elicit major concerns. This

qualitative research should inform the design of ques-

tionnaires that can then track changes in acceptance, as

individuals experience the application in both in-

house and public-facing trials.

A successful six-month trial of iris recognition in a

banking (public ATM) context demonstrates this ap-

proach [9]. At the beginning, focus groups identified
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issues of trust, questioning whether such a ‘‘futuristic’’

technology could be used in consumer financial trans-

actions, as well as noting health concerns. Participants

in the groups were also invited to review proposals for

a marketing campaign. In the second (questionnaire)

stage, concerns with reliability, health aspects, and data

misuse surfaced – even before participants were ex-

posed to the technology. As users became familiar

with the use of iris biometrics, progressively higher

levels of acceptance were recorded as users enrolled in

the system, used an early prototype to withdraw cash,

and then experienced the final prototype.

Subsequently, the 1998 public trial in Swindon,

UK (with about 400 users from the general public)

confirmed this progression: from 44% comfort levels

directly after iris enrolment to 94% after use of the

IRIS ATM.
Applications

Biometric technologies are integrated into applications

that deliver a service to an operator or individual, and

users may not separate the biometric aspects from con-

cerns about the application [19]. In such cases, the

results of user acceptance testing will be partly deter-

mined by the biometric technology and partly by the

application. For example, in a 2008 pilot for the UK’s

Identity Card for Third Country Nationals [20], a high

degree of user satisfaction was recorded for the process

as a whole. Over 12,000 sets of facial images and ten

fingerprints were recorded, stored, and matched. The

analysis of feedback forms showed that in excess of

90% of the customers rated the enrollment service as

satisfactory. Dissatisfaction was registered by 8% of the

group – a figure that challenges the service designers to

improve the complete customer experience.
Summary

For many applications with a biometric element, user

acceptance is likely to be a key issue for their successful

operation. However, there has been an absence of sys-

tematic modeling of the nature of user acceptance in

such systems. Focus groups and other qualitative re-

search have identified some of the key determinants;

trust in the technology, fears of misuse of biometric

data, and health concerns have been mentioned.
It is unfortunate that the few larger-scale telephone

surveys on user acceptance have not followed up these

observations with more targeted questions. In any case,

few of the participants in these surveys would have had

any first hand experience of using a biometric system –

a key factor in improving user comfort and acceptance

of these novel technologies as evidenced in the UKPS

Biometric Enrollment and IRIS ATM trials.

Further research should be associated with the de-

sign, development, and piloting of new biometrically

enabled applications, with the aim of identifying the

main factors influencing user acceptance of technology

and application, both at enrollment and in service use.

Since the usability of a biometric system is believed to

play a substantial role in user acceptance, research

targeting both the aspects is recommended. However,

in the longer term, the goal should not be mere accep-

tance, but a positive degree of satisfaction with the

end-to-end service.
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User interfaces are systems (including hardware and
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users with the system.

▶Biometric Systems, Agent-Based
User Interface, System Design

JIANJIE LI, XIN YANG, XUNQIANG TAO, JIE TIAN

Institute of Automation, Chinese Academy of Sciences,

Beijing, People’s Republic of China
Synonyms

Interface; Graphical user interface
Definition

The User Interfaces have been around as long as com-

puters have existed, even well before the field of

Human–Computer Interaction was established [1, 2].

The user interface provides means of: input, allow-

ing the users to manipulate a system; output, allowing

the system to produce the effects of the users’ mani-

pulation [3].
Introduction

Computer software has become pervasive in today’s

society. How to design and create easy usable software

is the central issue in software development. As new

software products are developed the emphasis has often

been on what features and function they contain rather

than how the features are used. This emphasis is often

reflected as user interface. The user interfaces are the

main and dispensable components of any software [2].

The user interface is often used in the context of

computer systems and electronic devices. The user

interface of a mechanical system, a vehicle, or an

industrial installation is sometimes referred to as the

Human–Machine Interface (HMI) [4]. HMI is a

modification of the original term Man–Machine Inter-

face (MMI). In practice, the abbreviation MMI is

still frequently used, although some may claim that

MMI stands for something different now. Another

abbreviation is Human–computer interaction (HCI)

[5], but is more commonly used for Human–computer

interaction than Human–computer interface. In a

word, the terms refer to the ‘‘layer’’ that separates

a human who is operating a machine from the machine

itself [3].
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When designing human/computer systems, the

user interface between human and system is crucial.

It is the communication channel that end-user can

interact with a system [5]. A good user interface is to

find out user tasks as one of the first steps and driven in

large part by human aesthetics in their look and feel

[6]. Users have to be able to control the system and

access the state of the system. For example, when

driving an automobile, the driver uses the steering

wheel to control the direction of the vehicle, and the

accelerator pedal, brake pedal, and gear stick to control

the speed of the vehicle. The driver perceives the posi-

tion of the vehicle by looking through the windscreen

and exact speed of the vehicle by reading the speedom-

eter. The user interface of the automobile is the instru-

ments that the driver can use to accomplish the tasks of

driving and maintaining the automobile [2]. In a bio-

metric’ system design, the user interface refers the

aggregate designed into an information device with

which a human being may interact. The user interface

should provide means of ‘‘Input’’ which allows the

users to manipulate a system and ‘‘Output’’ which

allows the system to produce the effects of the users’

manipulation.

User interface design is an expensive, complex, and

time consuming process [7]. To provide an environ-

ment where developers can design and implement user

interfaces in a professional and systematic way, there
User Interface, System Design. Figure 1 Architecture of the
are a lot of good software to help developers design and

implement the user interface such as QT and MFC.

In biometric system design, the user interface is a

little different from other system design. Biometric

system always has capture device for input biometric

feature. The graphical user interface should have a

picture control to show the image of the capture, and

the user can discard the image because of poor quality.

The biometric system need to set the parameter for

different purpose. So user interface need to have some

interaction with the user. There is two kind of system,

one for Single mode and the other for Client/Server

mode.
Single Mode

The single mode means all the system run on a single

PC. That is a common mode. It is simple in system

design, easy to install, and undertaken on a small scale.

Figure 1 shows the architecture of the single mode.

When system works in single mode, UI can be de-

scribed as follows:

1. User interface include a page or dialog including

some exit boxes or scroll bars that can set the

configuration of the system. This step initializes

the biometric system.
Single mode.
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2. User interface include the button like ‘‘connect the

capture’’ to make ready of the capture, then call the

capture’s API to try to open the sensor or camera.

If the capture is ready, the program opens the

corresponding capture interface. Then a biometric

feature can be captured. If any error happens, the

program return a message box or show a message

on the dialog, which let the user know that the

capture is not ready. The user interface also shows

where the error occurred, which help the user to

find the problem.

3. When the biometric feature is captured, the user

interface shows the image to the user. Note that a

good automated image mechanism ought to be

employed so that the system will be able to obtain

an image of sufficient quality. If the image does not

have enough quality, the user interface should can-

cel current image, and let the user capture the

biometric feature again.

4. There is a push-button interface to select from two

applications: Enrollment and Match. In enrollment

process, user should input other information like

ID number, age, sex, etc. That may need several edit

boxes, scroll bars, and combo boxes. After that, a
User Interface, System Design. Figure 2 Architecture of the
message should be given to tell the user whether

Enrollment or Match succeeds or not.

5. In single mode, the biometric feature does not

always have a database. Instead, program store the

feature in a folder with some files. And some use

the desktop database like Microsoft Access. What

ever, the user interface could check the database

conveniently if possible.
Client/Server Mode

In client/server mode, there is a high performance com-

puter called server, the algorithms are run in server, and

the entire database are stored in server. Figure 2 shows

the architecture of the client/server mode. There are

server advantages in client/server mode [8].

1. The client PC may not have sufficient power to run

the algorithms on real-time.

2. The user database maybe on a server and that is a

safe mode.

3. The matching algorithms will execute in a more

secure environment.
Client/Server mode.

U
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4. Identification over large populations can only rea-

sonably be done on a server.

The client part is a common PC. It is used for input

or scans the biometric feature, show the result from

the server.

1. The user interface includes the button to make

ready of the capture, then call the capture’s API to

try to open the sensor or camera. If the capture is

ready, the program opens the corresponding cap-

ture interface. If some error occurred, the program

should return a message box or show a message on

the dialog, which let the users know the capture is

not ready. The user interface should show where

the error occurred, which make the user easy to

find the problem.

2. When the biometric feature is captured, the user

interface shows the image on the dialog to the user.

That can let user make sure the image is suitable for

the situation. In some situation, user should also

input some information like ID number,

age, sexual, etc. If the image does not have enough

quality, the user interface should cancel current

image, and let the user capture the biometric feature

again.

3. The user interface should have a button to connect

the server. If the server is ready, then the client could

transfer the biometric feature and other information

to the server using net protocol, and also tell the

server what to do with these in formations. For

example, verify with the ID number, or identify in

a database. If there are some errors occur in this

process, the program should show a message on

the dialog in order to let the user know what and

where the error is.

4. After the server calculates for a moment, the client

will receive amessage about the result from the server.

The user interface should change the numeric result

to an intuitionist message, and show it on the dialog,

for example, a message box or an obvious picture.

And user could decide whether to capture it again.

The server is a high performance computer. It can store

the database; calculate the huge operation in very short

time. It has a super user who has the greatest power.

1. The user interface has a log in dialog for user to

input the name and password. It also can capture

the biometric feature to log in.
2. User interface need to manage the common users.

That interface should include a list of all the users.

When click one of them, the interface should show

all the detail about this user. There is a button to

show a dialog, and allow super user change the

common user’s competence or details. In this dia-

log, super user can insert or delete a common user.

3. User interface need to manage the parameter of the

system and the algorithms. This interface should

correspond to the project. It can change the match

score parameter to decide if it necessary to reduce

the false accept rate (FAR).

4. User interface needs to manage the database. The

program connects to the database and has a dialog

to show the detail. The super user can delete or

insert a record by push the corresponding button.
Summary

Technology alone may not win user acceptance

and subsequent marketability. The user experience, or

how the user experiences the end product, is the key to

acceptance [9]. The importance of good user interface

design can be the difference between product accep-

tance and rejection. So, in biometric’ system design

good User Interface Design must make a product

easy to understand and use, which can result in greater

user acceptance.
Related Entries

▶Biometric System Design, Overview
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User-Centered Design
U

Pheasant summarized ergonomic design by the princi-

ple of user-centered design, which ‘‘If an object, a

system, or environment is intended for human use,

then its design should be based upon the physical and

mental characteristics of its human users’’. Moreover

Woodson states the design should allow users to com-

plete the desired functions and tasks with minimal

stress and maximum efficiency. Therefore, the object

of ergonomics and user-centered design is to achieve

the best possible match between the product and users

in the context of the task to be performed. Chignell and

Hancock referred to this as the ‘‘design triad,’’ which

consists of three primary relationships. The first is the

user-task relationship, which is much like task analysis

and answers the following questions: What is the task,

and how is it carried out by the user? The second

relationship is user-artifact, which is the relationship

between the user and the system and lies at the heart of

ergonomics. Lastly, the artifact-task relationship repre-

sents the methodology for using the system to perform

the task, which is also known as methods improve-

ment. Other techniques, methods, and practices of

User-centered Design besides usability testing and audits
include: interviews, focus group research, surveys, de-

sign, cognitive, or structured walk-throughs, paper and

pencil evaluations, expert evaluations, field studies, and

follow-up studies.

▶Ergonomic Design for Biometric Systems
User-dependent Fusion
▶ Fusion, User-Specific
Utility
Utility is the observed performance of a sample in a

biometric system, or similarly the impact of an individ-

ual biometric sample on the overall performance of a

biometric system. The characteristic of the sample

source and the fidelity of the processed samples contrib-

ute to or similarly detract from the utility of the sample.

▶ Speech Production
Utterance
Utterance is a spoken input speech sample. It may be

real time streaming audio, a prerecorded file, or the

result of buffering. In interactive systems, a single utter-

ance generally corresponds to a single interaction turn.

▶ Speaker Recognition, Standardization

http://www.usernomics.com/user-interface-design.html
http://www.bioapi.org/Version_2.0_Description.asp
http://www.bioapi.org/Version_2.0_Description.asp
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Synonyms

Vascular biometrics; Vein biometrics
Definition

AVascular▶Biometrics, Overview Image Format Stan-

dard is useful for the exchange of vascular biometric

image information across different systems developed

by multiple organizations. As one part of this standar-

dization effort, the International Standard Organization

(ISO) has published a standard for a vascular biometric

image interchange format, which is the ISO/IEC 19794-

9 (Biometric Data Interchange Format – Part 9 Vascular

Image Format). The standard includes general require-

ments for image capture devices, environmental condi-

tions, specific definitions of image attributes, and the

data record format for storing and transmitting vascu-

lar biometric images. The vascular biometric image

format standard was developed in response to the

need for system interoperability which allows different

vascular biometric systems to be easily integrated with

other biometric modalities in a large-scale system.
# 2009 Springer Science+Business Media, LLC
Introduction

Vascular biometric technologies have existed for many

years. Moreover, new technologies employing vascular

images obtained from various parts of the human body

are emerging or under continuous improvement as a

result of new, state-of-the-art imaging devices. Some of

these technologies are being widely adopted as reliable

biometric modalities [1].

Vascular biometrics offer several intrinsic advan-

tages in comparison with the other popular biometric

modalities. First, the vascular imaging devices use

near-infrared or infrared images to capture the vein

pattern underneath the skin. This provides a high

degree of privacy that is not available with fingerprints,

which can be unintentionally left on objects, or by

facial images for face recognition schemes, which are

easily captured without ones knowledge. A similar

possibility exists for iris images captured without con-

sent for use in iris recognition schemes. Second, the

vascular imaging devices can be constructed to operate

in a non-contact fashion so that, it is not necessary for

the individual to touch the sensor in order to provide

the biometric data. This is advantageous in applica-

tions that require a high degree of hygiene such as

medical operating room access or where persons are

sensitive about touching a biometric sensing device.

Third, a high percentage of the population is able to

provide viable vascular images for use in biometric

identification, increasing ▶ usability by providing an

additional way to identify persons not able to provide

fingerprints or other biometric modal data. Fourth,

depending on the particular wavelength of (near-)

infrared light that is used, the image can capture only

the vein patterns containing oxygen depleted blood.

This can be a good indication that the biometric image

is from a live person. Fifth, the complexity of the

vascular image can be controlled so that the underlying

amount of information contained in the image can be

quite high when compared to a fingerprint, allowing

one to reduce the false accept or false reject rates to low
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levels. At the same time, the image information can be

compressed or it can be processed into a template to

reduce storage requirements.

Vascular biometric technologies are being used or

proposed for many applications. Some of these include

access control to secure areas, employee time-clock

tracking, Automatic Teller Machines (ATMs), secure

computer login, person identification, and as one of

several biometrics in multi-biometric systems. The

technology is not appropriate for certain other appli-

cations such as criminal forensics or surveillance.

Currently, however, little vascular biometric image

information is being exchanged between the equip-

ment and devices from different vendors. This is due

in part to the lack of standards relating to interopera-

bility of vascular biometric technology. In the general

area of biometrics interoperability, the International

Standard Organization (ISO) and the regional organi-

zations, such the INCITS M1 group in the US, define a

collection of standards relating to the various biomet-

ric modalities that include data interchange formats,

conformance testing of image and template inter-

change formats, performance testing and application

profiles. The most critical are the formats for infor-

mation exchange that would ensure interoperability

among the various vendors. Definition and standardi-

zation of the data structures for the interoperable use

of biometric data among organizations is addressed in

the ISO/IEC 19794 series [2], which is the multipart

biometric data interchange format standard, which

describes standards for capturing, exchanging, and

transferring different biometric data from personal

characteristics such as voice, or properties of parts of

the body like face, iris, fingerprint, hand geometry, or

vascular patterns.

To address this short-coming in the vascular do-

main, the ISO has published a standard for a vascular

biometric image interface format, entitled the ISO/IEC

19794-9 (Biometric data interchange format – part 9

Vascular image format) [3].

The main purpose of this standard is to define a

data record format for storing and transmitting vascu-

lar biometric images and certain of their attributes

for applications requiring the exchange of raw or

processed vascular biometric images. It is intended

for applications not severely limited by the amount of

storage required and is a compromise or a trade-off

between the resources required for data storage or

transmission and the potential for improved data
quality/accuracy. Basically, it enables various prepro-

cessing or matching algorithms to identify and verify

the type of vascular biometric image data transferred

from other image sources and to allow operations on

the data. The currently available vascular biometric

technologies that are commercialized and that may

utilize this standard for image exchange are technolo-

gies that use the back of the hand, the palm, and the

finger [4–6]. There is the ability to extend the standard

to accommodate other portions of the body if the

appropriate technology is brought forward.

The use of standardized source images can provide

interoperability among and between vendors relying

on various different recognition or verification algo-

rithms. Moreover, the format standard will offer the

developer more freedom in choosing or combining

matching algorithm technology. This also helps appli-

cation developers focus on their application domain

without concern about variations in how the vascular

biometric data was processed in the vascular biometric

modalities.
Introduction to ISO/IEC 19794-9 Vascular
Image Data Format Standard

ISO published the ISO/IEC 19794-9 Vascular Image

Data Format Standard in 2007, as a part of the ISO/

IEC 19794 series. The ISO/IEC 19794-9 vascular image

data format standard specifies an image interchange

format for biometric person identification or verifica-

tion technologies that utilize human vascular biometric

images and may be used for the exchange and compari-

son of vascular image data [7]. It specifies a data record

format for storing, recording, and transmitting vascu-

lar biometric information from one or more areas

of the human body. It defines the contents, format,

and units of measurement for the image exchange. The

format consists of mandatory and optional items, in-

cluding scanning parameters, compressed or uncom-

pressed image specifications, and vendor-specific

information.

The ISO/IEC 19794-9 vascular image data format

standard describes the data interchange format for

three different vascular biometric technologies utiliz-

ing different parts of the hand including back-of-hand,

finger, and palm. The standard also supports room for

extension to other vascular biometrics on other parts

of the human body, if needed. Figure 1 shows an
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example of vascular biometric areas on different parts

of the hand that are specified in ISO/IEC 19794-9.

The interchange format follows the standard data

conventions of the 19794 series of standards such as

requiring all multi-byte data to be in big-endian for-

mat, transmitting the most significant byte first and

the least significant byte last, and within a byte, the

order of transmission shall be the most significant bit

first and the least significant bit last. All numeric values

are treated as unsigned integers of fixed-length.

The vascular pattern biometric technologies cur-

rently available employ images from the finger, back of

the hand, and palm side of the hand. The location used

for imaging is to be specified in the format. To further

specify the locations, the object (target body) coordi-

nate system for each vascular technology is defined.

Standard poses and object coordinate systems are also

defined. All the coordinate systems are right-handed

Euclidian coordinate systems. It is then possible to

optionally specify a rotation of the object from the

standard pose. In order to map the object coordinate

system to the image coordinate system without further

translation, an x- and y-axis origin for scanning can be

specified in the data.

The image is acquired by scanning a rectangular

region of interest of a human body from the upper left

corner to the lower right in raster scan order, that is,

along the x-axis from top to bottom in the y direction.

The vascular image data can be stored either in a raw or

compressed format. In a raw format, the image is
represented by a rectangular array of ▶ pixels with

specified numbers of columns and rows. Images can

also be stored using one of the specified lossless or lossy

compression methods, resulting in compressed image

data. The allowable compression methods include the

JPEG [8], JPEG2000 [9], and JPEG LS [10]. It is

recommended that the compression ratio be less than

a factor of 4:1 in order to maintain a quality level

necessary for further processing.

Image capture requirements are dependent on var-

ious factors such as the type of application, the avail-

able amount of raw pixel information to be retained or

exchanged, and the targeted performance. Another

factor to consider as a requirement for vascular bio-

metric imaging is that the physical size of the target

body area where an application captures an image for

the extraction of vascular pattern data may vary sub-

stantially (unlike other biometric modalities).

The image capture requirements also define a set of

additional attributes for the capture devices such as

▶ gray scale depth, ▶ illumination source, horizontal

and vertical resolution (in pixels per cm), and the

aspect ratio. For most of the available vascular biomet-

ric technologies, the gray scale depth of the image

ranges up to 128 gray scale levels, but may, if required,

utilize two or more bytes per gray scale value instead of

one. The illumination sources used in a typical vascu-

lar biometric system are near-infrared wavelengths in

the range of approximately 700–1200 nm infrared light

sources. However, near-infrared, mid-infrared, and
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Bytes Type Content Description

1–26 Data block header Header used by all vascular biometric image providers.
Information on format version, capture device ID, number of
vascular images contained in the data block, etc.

27–58 Vascular image header Image header for the first image. Contains all individual image
specific information

Unsigned char Image data

� �
� �
Vascular image header Image header for the last image

Unsigned char Image data
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visible light sources can be defined and more than one

source may be employed.

Table 1 shows the basic structure of the vascular

image biometric data block. A single data block starts

with a vascular image record header, which contains

general information about the data block such as the

identification of the image capture device and the

format version. One or more vascular image blocks

follow the record header. Each image block consists

of an image header and raw or compressed image data.

The image header contains all the image specific infor-

mation such as the body location, rotation angle, and

imaging conditions. All images in a data block must

come from the same capture device. If multiple devices

are used, then multiple blocks must be used.

The vascular image record header consist of general

information on the vascular images contained in the

data block, such as the format version number, total

length of the record block, capture device identifica-

tion, and the number of images contained in the data

block. More specific information includes format iden-

tifier, version number, record length, capture device

ID, and number of images.

For each image in the data block, the vascular

image header describes individual image-specific in-

formation including image type, vascular image record

length, image width and height, gray scale depth,

image position, property bit field, and rotation angle.

Other information in the vascular image header may

include Image format, illumination type, image back-

ground, horizontal scan resolution, vertical scan reso-

lution, pixel aspect ratio, and vascular image header

constants. The image data follows and is used to store

the biometric image information in the specific format

defined in the vascular image record header.
Future Activities

There are considerable ongoing standardization activ-

ities relating to vascular biometrics, building upon the

biometric data interchange format for vascular images

standard. A companion document that specifies the

conformance testing for the data interchange format

is currently under development. The conformance

standard specifies how to check whether the data pro-

duced by a vascular imaging device, does indeed agree

with the interchange format, as well as which items are

mandatory or optional. There are also ongoing efforts,

both internationally and in the U.S., to include the

vascular image formats into the various application

profiles (such as the INCITS M1 Profile for Point-

of-Sale Biometric Identification/Verification), which

define how to use vascular biometrics in the specific

context of an application. There are also efforts at

including vascular methods in multi-biometric fusion

schemes or as a biometric component of a smart-card

based solution. Eventually, it is expected that vascular

methods will become one of the important biometric

modalities, offering benefits not provided by the other

techniques in certain applications.
Summary

Vascular biometric technologies including vascular

images from the back-of-hand, finger, and palm are

being used as a security integrated solution in many

applications. The need for ease of exchanging and

transferring vascular biometric data from biometric

recognition devices and applications or between differ-

ent biometric modalities requires the definition of a
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vascular biometrics data format standard. The devel-

opment of the vascular biometric data interchange

format standard also helps to ensure interoperability

among the various vendors. This paves the pathway so

that vascular biometric technologies can be adopted

as a standard security technology which is easily in-

tegrated in various ranges of applications.
Related Entries

▶Back-of-hand Vein

▶ Finger Data Interchange Format Standardization

▶ Finger Vein

▶Palm Vein

▶Vein and Vascular Recognition
V
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Vascular Network Pattern
The network pattern composed of blood vessels.
Human blood vessels develop network structures in

each level of artery, arteriole, capillary, venule, and

vein. The network of major blood vessels can be seen

in funduscopy and in visual observation of body sur-

face. The vascular networks in fundus image are those

of retinal arteries and retinal veins. The blood vessels

observed on body surface are the cutaneous veins.

Both network patterns can be used in biometric

authentication. There are no apparent evidence on

the uniqueness and the permanence of the vascular

network pattern. However, in practice, the vascular

pattern has been used for biometric authentication

without a serious problem. Since the retinal pattern is

kept inside an eye, it is stable and seldom affected by

the change of outer environment. It is not easily ob-

servable by others and robust against the theft and the

forgery. The retinal pattern is complex, and high iden-

tification accuracy can be expected. The authentication

using this retinal pattern has been used in the institu-

tions that require high level of security.

The vascular network pattern in a hand and in a

finger can be visualized by transillumination imaging

or reflection-type imaging using near-infrared light.

The authentication with vascular pattern of a hand

and a finger is safer and more convenient than that

with retinal pattern. It has been used in common

security applications such as the authentication in

ATM and in access management.

▶Performance Evaluation, Overview
Vascular Recognition
▶Retina Recognition
Vector Quantization
The vector quantization (VQ) is a process of mapping

vectors from a large vector space to a finite number of

regions in that space (Linde, Y., Buzo, A., Gray, R.: An

algorithm for vector quantizer design. IEEE Trans.
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Comm. 28, 84–9517 (1980)). Each region is called

a cluster and can be represented by its center called a

codeword. The collection of all codewords is called

a codebook. During the training phase, a speaker-

specific VQ codebook is generated for each known

speaker by clustering the corresponding training acous-

tic vectors. The distance from a vector to the closest

codeword of a codebook is called a VQ-distortion.

During the recognition phase, an input utterance of

an unknown voice is vector-quantized using each

trained codebook, outputting a VQ distortion for

each codebook, each client speaker. The speaker

corresponding to the VQ codebook with the smallest

distortion is identified. Both for the training and test-

ing phases, the VQ process works independently on

each input frame and produces an averaged result (a

codebook or VQ distortion). Thus, there is no need to

perform a time alignment. The lack of time warping

greatly simplifies the system; however, it neglects

speaker-dependent temporal information that may be

present in prompted phrases.

▶ Speaker Matching
Vein
Veins are the blood vessels that carry blood to the

heart. In the cardiovascular system, blood vessels con-

sist of arteries, capillaries, and veins. Veins collect

blood from capillaries and carry it toward the heart.

In most of the veins, the blood is deoxygenated. The

pulmonary vein is one of the exceptions that carry

oxygenated blood. The walls of veins are relatively

thinner and less elastic than those of arteries. Some

veins have one-way flaps called venous valves that

prevent blood from flowing back. The valves are

found in the veins that carry blood against the force

of gravity, especially in the veins of the lower

extremities.

The vein in the subcutaneous tissue is called a

cutaneous vein. Some of the cutaneous veins can be

observed on the body surface with the naked eye. With

the light of high transmission through body tissue such

as near-infrared light, we can obtain a clear image of

the cutaneous vein. Since the pattern of venous
network is largely different between individuals, the

images can be used for authentication. The biometric

authentication using the venous network patterns in a

palm and a finger is common.

▶Palm Vein Image Sensor

▶Performance Evaluation, Overview
Vein Biometrics
▶Vascular Image Data Format, Standardization
Vein Recognition
▶Retina Recognition
Velocity (Speed)
Velocity of pen movement during the signing process.

Velocity features seem to be one of the most useful

features of on-line signatures. Generally, velocity is com-

puted from the first-order derivative of the pen position

signal with respect to time. The easiest way to compute

the velocity is to calculate the distance between two

consecutive pen-tip positions if the data is acquired at

equidistant sample points. Velocity features are repre-

sented in two ways: velocities along the x-axis and y-axis

or velocity along the pen movement direction (tangen-

tial direction). In the latter case, the direction of pen

movement is also considered as a separate feature.

▶ Signature Recognition
Verification
Biometric verification is a process that shows true or

false a claim about the similarity of biometric reference(s)
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and recognition biometric sample(s) by making a bio-

metric comparison(s).

▶Verification/Identification/Authentication/Recogni-

tion: The Terminology
Vetting
▶Background Checks
Video Camera
▶ Face Device
Video Surveillance
▶Human Detection and Tracking
Video-based Face Recognition
▶ Face Recognition, Video-based

V

Video-based Motion Capture
▶Markerless 3D HumanMotion Capture from Images
Visible Spectrum
Synonyms

Optical spectrum; Visible light
Definition

The portion of the electromagnetic spectrum that is

visible (detected) by the human eye. The wavelengths

for this spectrum is 380 to 750 nm, which are the

wavelengths seen (detected) by the human eye in air.

▶ Iris Databases
Visual Memory
Visual memory is the perceptual ability that allows

visual images to remain in memory after they are no

longer visible. It supports the matching process be-

tween two fingerprints when eye movements are

required.

▶ Latent Fingerprint Experts
Visual Sensor
▶ Face Device
Visual-dynamic Speaker Recognition
▶ Lip Movement Recognition
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Vitality
▶ Liveness Detection: Fingerprint

▶ Liveness Detection: Iris
Viterbi Algorithm
The Viterbi algorithm is the conventional, recursive,

efficient way to decode a Hidden Markov Model that is

to find the optimal state sequence, given the observa-

tion sequence and the model. It provides information

about the hidden process and is a good an efficient

approximation of the evaluation problem.

▶Hidden Markov Models
VOCs (Volatile Organic Compounds)
Organic chemicals that have a high vapor pressure

resulting in a relatively high abundance in the head-

space of samples.

▶Odor Biometrics
Voice Authentication
Voice authentication is also known as speaker au-

thentication, speaker verification, and one-to-one

speaker recognition. For example, for a client – a
bank customer – to be authenticated, the client must

first go through an enrollment procedure, also known

as training. During enrollment, the client provides a

number of voice samples to the system, which in turn

are used to build a voice model for the client. When

requesting a voice authentication, a client must first

announce his or her identity. This may be done verbal-

ly by saying name, user id, account number or the

like, or it may be done by presenting an identifying

token such as a staff card or bank card. Then the

authentication takes place when the person speaks a

set phrase or a requested phrase or simply engages in

a dialogue with the authentication system. If the

voice sample matches the stored model or template

of the claimed identity, the client is authenticated.

If an impostor tries to be authenticated as a particular

client, the impostor’s voice will not match the client

model and the impostor will be rejected. The authen-

tication paradigm only compares a speech sample

with a single client model, namely the model of

the claimed identity. Hence, it is sometimes known as

one-to-one speaker recognition. In contrast speaker

identification compares a speech sample with every

possible client model, to find the closest match.

Hence this paradigm is also known as one-to-many

speaker recognition.

▶ Liveness Assurance in Voice Authentication

▶ Speaker Recognition Standardization
Voice Biometric
▶ Speaker Recognition, Overview
Voice Biometric Engine
▶ Speaker Matching
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Voice Device
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V

Synonyms

Microphone; Speech input device

Definition

Voice device in the context of biometrics is frequently

used as a synonym for a simpler word: microphone.

A microphone [1] is a transducer that converts sound

(or equivalently, air pressure variations) into electrical

signals. There are many different types of microphones

that use different methods to achieve this transduction,

most of which will be revised in this article. Besides

the method employed to do the transduction, micro-

phones aremost frequently encapsulated, and the encap-

sulation allows to build microphones with different

directional characteristics, which allow, for instance, to

capture the voice coming from one direction and reject

(to a certain extent) the noises or voices coming from

other directions. Apart from the directionality, micro-

phones also have different frequency responses, sensitiv-

ities, and dynamic ranges. All these characteristics can

dramatically influence the performance of a speech bio-

metric system, and should therefore be taken into ac-

count in the design of such systems.

Microphones are the most commonly used speech

input devices, and for that reason they deserve most of

the space of this article. However, this article will be

incomplete without mentioning that microphones, at

least traditional microphones, are not the only speech

input device that can be used in speech biometrics.

For instance, microphones may be arranged to form

▶microphone arrays. There also exist special micro-

phones called ▶ contact microphones that transduce

vibrations in solid bodies into electrical signals. Finally,

there is also the possibility of combining the acoustic

evidence and the visual evidence of speech by record-

ing the audio and also the movement of the lips in
what is commonly referred to as audio-visual speech

processing. Definitional entries are devoted at the end

of this article to these special speech input devices.

The first step in any voice biometric (or automatic

speaker recognition) system is to capture the voice of

the speaker, and speech input devices are used for this

purpose.

Introduction

The human hearing sense is extremely robust against

noise and small distortions in the speech and humans

are very good at recognizing people based on their

voices, even under strong distortion and noise. Most

speech input devices are designed with the goal of

capturing speech or music, translating it into electrical

signals, transmitting or storing it and, finally, reprodu-

cing that speech or music (by means of the opposite

transducer, a loudspeaker). The important point here is

that microphones are designed to be used in a chain, at

which end is, most times, the human ear. Having such

a robust receptor at the end of the chain makes it

unnecessary to be very careful in the design or selection

of a speech input device.

During the last years, however, there has been a

fundamental change in speech communication since

the receiver in the speech communication chain is

not always a human listener any more. Nowadays

machines are used for transcribing speech signals (in

automatic speech recognition) and also, and most im-

portantly in this context, for recognizing the speaker

given a segment of speech (in voice biometrics or auto-

matic speaker recognition). This fundamental change

has brought an uncomfortable reality for all speech

researchers: machines are still far less robust than

humans at processing speech.

Of course, the goal of speech researchers is making

machines not even as robust as humans but even more.

Currently, voice biometric systems achieve very good

results in relatively controlled conditions, such as in

telephone conversations with similar durations. This

has been the basic setup for the yearly competitive

Speaker Recognition Evaluations (SRE) organized

by the National Institute of Standards and Technology

(NIST) [2] for the last years. These evaluations

show that currently, technology is capable of achieving

very competitive results in these conditions and is

becoming more and more robust against variabilities.
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However, the problem of variability due to the speech

input device is far from being solved. Actually, this is a

very hot research and technological topic. The proof of

it is that next NISTevaluations in voice biometrics will

probably be centered on cross-channel conditions in

which training and testing data come from different

channels (including different microphones, micro-

phone locations (close-talk and far-field) and record-

ing devices. However, achieving robustness against

such variations is a long-term research goal that most

probably will not be fulfilled in the next few years.

In the meantime, it should be stressed that technol-

ogy is already usable in practical situations, but it should

also be highlighted that current technology may not be

as robust as desirable. In these circumstances it is essen-

tial to take extra care of the design or the selection of the

speech input device. In some cases, of course, the speech

input device is out of control, such as in telephone

applications. But there are other cases where it is neces-

sary to design the speech input device and, in this cases,

it is essential to make the right choice because there are

multiple choices of speech input devices with very dif-

ferent features, and an appropriate selection of the

speech input device could be the key to success or failure

in a voice biometrics application. This section tries to

provide an introduction to the world of speech input

devices or microphones.
Microphones

Definition

Amicrophone is a transducer that converts sounds (air

pressure variations) into variations of an electrical

magnitude, typically voltage.
History

The early history of the microphone is tied to the

development of the telephone [3]. In fact, the micro-

phone was the last element required for a telephonic

conversation to be developed. One of the earliest

versions of microphones was developed by German

researcher Philipp Reis in 1861. These microphones

were just a platinum piece associated with a membrane

that opened and closed an electric circuit as the sound

made the membrane vibrate. This allowed Reis to build
primitive prototypes that allowed to transmit voice

and music along several hundred meters. It was several

years later, in 1874, when Alexander Graham Bell pat-

ented the telephone and transmitted what is consid-

ered the first telephone conversation ‘‘Mr. Watson,

come here, I want you.’’ Bell improved the microphones

to make them better and better suited for commercial

applications. Among the earlier microphones devel-

oped by Bell there are liquid microphones in which a

diaphragm moved a metallic needle inside a metal

recipient filled with a solution of water and sulfuric

acid, so that the resistance between the needle and the

recipient varied with the movement of the diaphragm.

The latter microphones developed by Bell were based

on the variations of inductance in a moving coil at-

tached to a diaphragm. However, it was not until 1878

that the word microphone was used for the first time,

and it was associated with what it is know today as the

carbon microphone. The carbon microphone was

invented by Edison and Hughes, and constituted a

real breakthrough for telephone systems, since they

were more efficient and robust than the earlier devices.

Currently it has mostly been substituted by more mod-

ern microphones that will be described in the following

sections.
Types

All microphones are based on the transduction of air

pressure variations into an electromagnetic magnitude.

However, there are many ways to achieve this, and

therefore there are many types of microphones with

different characteristics and applications. In this article

some of the most important types will be summarized.

� Condenser or capacitance microphones. These

microphones are based on the following physical

principle (Fig. 1): the capacitance of a condenser

with two metallic plates depends on the distance

between the two plates. If one metallic plate of a

capacitor is substituted by a metallic membrane

that vibrates with sound, the capacitance of the

condenser varies with sound, and this variation

can be translated into the variation of an electrical

magnitude. There are two ways of doing this trans-

formation. The most common one is trying to set a

constant charge in the two plates and measuring

the variations of the voltage between the two plates.
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The other one (slightly more complex) is using the

variations in the capacitance to modulate the fre-

quency of an oscillator. This generates a frequency

modulated signal that needs to be demodulated,

but the demodulated signal has usually less noise

and can more effectively reproduce low frequency

signals than the one obtained with the constant

charge method. A special type of condenser micro-

phone is the electret microphone. This microphone

is a capacitor microphone in which the charge in

the plates is maintained not by applying an external

constant voltage to the capacitor, but by using a

ferroelectric material that keeps a constant charge,

in a similar way as a magnet generates a constant

magnetic field. Condenser microphones are the

most frequently used microphones nowadays, and

it is possible to find them from low-quality cheap

versions to high-quality expensive microphones.

� Dynamic or induction microphones. These micro-

phones are based on a different physical principle:

when an induction moves inside a magnetic field, it

generates a voltage by electromagnetic induction. If a

small coil is attached to a diaphragm thatmoves with

sounds and if this coil is placed into a magnetic field

(generated by a permanent magnet), the movement

of the coil will produce a voltage in its extremes that

is related to the sound. A special type of induction

microphone is ribbon microphones in which the coil

is substituted by a metallic ribbon that vibrates

with sound as is suspended in a constant magnetic

field, thus generating a current related to the

sound. These microphones are more sensitive

than coil microphones, but also are more fragile.

� Carbon microphones. This microphone is essentially

a recipient filled with carbon powder and closed by a
metallic membrane on one side and a metallic plate

on the other. As the membrane vibrates with the

sound the powder supports more or less pressure

and its electrical resistance is higher or lower (with

more pressure carbon particles increase their surface

in contact with other particles and this makes elec-

trical resistance decrease). Carbon microphones

were widely used in telephones. Currently they have

been substituted by capacitor microphones.

� Piezo-electric microphones. These microphones are

based on yet another physical effect: some solid

materials, called piezo-electric materials, have the

property of producing a voltage when a pressure

is applied to them. Using this property and a piezo-

electric material a microphone can by built by just

placing two electrical contacts on the piezo-electric

material. Piezo-electric microphones are mainly

used in musical instruments (such as electric gui-

tars) to collect and amplify the sound.

� Silicon microphones. Silicon (or chip) microphones

are not based on a new physical effect. Rather, they are

just capacitor microphones built on a silicon chip in

which the membrane is directly attached to the chip.

These microphones can be very small and are usually

associated with electronic circuitry such as a pream-

plifier and a analog-to-digital converter (ADC), so

that a single chip can produce digital audio.
Directional Characteristics

Microphones have different characteristics depending

on the direction of arrival of the sound with respect to

the microphone. A microphone’s directionality pattern

measures its sensitivity to a particular direction.
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Microphones may be classified by their directional

properties as omnidirectional (or non-directional) and

directional [4]. The latter can also be subdivided into

bidirectional and unidirectional, based on their direc-

tionality patterns. Directionality patterns are usually

specified in terms of the polar pattern of the micro-

phone (Fig. 2).

� Omnidirectional microphones. An omnidirectional

(or nondirectional) microphone is a microphone

whose response is independent of the direction of

arrival of the sound wave. Sounds coming from

different directions are picked equally. If a micro-

phone is built only to respond to the pressure, then

the resultant microphone is an omnidirectional

microphone. These types of microphones are the

most simple and inexpensive and have as advantage

having a very flat frequency response. However, the

property of capturing sounds coming from every

direction with the same sensitivity is very often

undesirable, since it is usually interesting capturing

the sounds coming from the front of the micro-

phone but not from behind or the laterals.

� Bidirectional microphones. If a microphone is built

to respond to the gradient of the pressure in a

particular direction, rather than to the pressure

itself, a bidirectional microphone is obtained.

This is achieved by letting the sound wave reach

the diaphragm not only from the front of the

microphone but also from the rear, so that if a

wave comes from a perpendicular direction the

effects on the front and the rear are canceled. This

type of microphones reach the maximum
Voice Device. Figure 2 Typical polar patterns for omnidirect

microphones.
sensitivity at the front and the rear, and reach

their minimum sensitivity at the perpendicular

directions. This directionality pattern is particular-

ly interesting to reduce noises from the sides of the

microphone. For this reason sometimes it is said

that these microphones are noise-canceling micro-

phones. Among the disadvantages of this kind of

microphones, it must be mentioned that their fre-

quency response is not nearly as flat as the one of

an omnidirectional microphone, and it also varies

with the direction of arrival. The frequency re-

sponse is also different with the distance from the

sound source to the microphone. Particularly, for

sounds generated close to the microphone (near

field) the response for low frequencies is higher

than for sounds generated far from the microphone

(far field). This is known as the proximity effect. For

that reason frequency responses are given usually

for far-field and near-field conditions, particularly

for close-talking microphones. This type of micro-

phones are more sensitive to the noises produced

by the wind and the wind induced by the pronun-

ciation of plosive sounds (such as /p/) in close-

talking microphones.

� Unidirectional Microphones. These microphones

have maximum response to sounds coming from

the front of the microphone, have nearly zero re-

sponse to sounds coming from the rear of the

microphone and small response to sounds coming

from the sides of the microphone. Unidirectional-

ity is achieved by building a microphone that

responds to the gradient of the sounds, similar to
ional, bidirectional and unidirectional (or cardioid)
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a bidirectional microphone. The null response

from the rear is attained by introducing a material

to slow down the acoustic waves coming from the

rear so that when the wave comes from the rear it

takes equal time to reach the rear part and the front

part of the diaphragm, and therefore both cancel

out. The polar pattern of these microphones has

usually the shape of a heart, and for that reason are

sometimes called cardiod microphones. These

microphones have good noise-cancelation proper-

ties, and for these reasons, are very well suited for

capturing clean audio input.
V

Microphone Location

Some microphones have different frequency response

when the sound source is close to the microphone

(near field, or close-talking) and when the sound

source is far from the microphone (far field). In fact,

not only the frequency response, but also the problems

to the voice biometric application and the selection of

the microphone could be different. For this reason a

few concepts about microphone location will be

reviewed.

� Close-talking or near-field microphones. These

microphones are located close to the mouth of

the speaker, usually pointing at the mouth of the

speaker. This kind of microphones can benefit from

the directionality pattern to capture mainly the

sounds produced by the speaker, but could also be

very sensitive to the winds produced by the speaker,

if placed just in front of the mouth. The character-

istics of the sound captured may be very different

if the microphone is placed at different relative

positions from the mouth, which is sometimes a

problem for voice biometrics applications.

� Far-field microphones. These microphones are loca-

ted at some distance from the speaker. They have

the disadvantage that they tend to capture more

noise than close-talking microphones because

sometimes cannot take advantage of directionality

patterns. This is particularly true if the speaker can

move around as she speaks. In general, far-field

microphone speech is considered to be far more

difficult to process than close-talking speech. In

some circumstances it is possible to take advantage

of microphone arrays to locate the speaker spatially

and to focus the array to listen specially to them.
Specifications

There is an international standard for microphone

specifications [5], but few manufacturers follow it ex-

actly. Among the most common specifications of a

microphone the following must be mentioned.

� Sensitivity. The sensitivity measures the efficiency

in the transduction (i.e. how much voltage it gen-

erates for an input acoustic pressure). It is

measured in millivolts per Pascal at 1 kHz.

� Frequency Response. The frequency response is a

measure of the variation of the sensitivity of a

microphone as a function of the frequency of the

signal. It is usually represented in decibels (dB)

over a range of frequency typically between 0 and

20 kHz. The frequency response is dependent on

the direction of arrival of the sound and the dis-

tance from the sound source. The frequency res-

ponse is typically measured for sound sources very

far from the microphone and with the sound

reaching the microphone from its front direction.

For close talking microphones it is also typical to

represent the frequency response for sources close

to the microphone to take into account the pro-

ximity effect.

� Directional Characteristics. The directionality of a

microphone is the variation of its sensitivity as a

function of the sound arrival direction, and is usu-

ally specified in the form of a directionality pattern,

as explained earlier.

� Non-Linearity. Ideally, a microphone should be a

linear transducer, and therefore a pure audio tone

should produce a single pure voltage sinusoid at

the same frequency. As microphones are not exactly

linear, a pure acoustic tone produces a voltage

sinusoid at the same frequency but also some har-

monics. The most extended nonlinearity measure

is the total harmonic distortion, THD, which is the

ratio between the power of the harmonics produ-

ced and the power of the voltage sinusoid produced

at the input frequency.

� Limiting Characteristics. These characteristics indi-

cate the maximum sound pressure level (SPL) that

can be transduced with limited distortion by the

microphone. There are two different measures,

the maximum peak SPL for a maximum THD,

and the overload, clipping or saturation level. This

last one indicates the SPL that produces the
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maximum displacement of the diaphragm of the

microphone.

� Inherent Noise. A microphone, in the absence of

sound, produces a voltage level due to the inherent

noise produced by itself. This noise is measured as

the input SPL that would produce the same output

voltage, which is termed the equivalent SPL due to

inherent noise. This parameter determines the min-

imum SPL that can be effectively transduced by the

microphone.

� Dynamic Range. The former parameters define the

dynamic range of the microphone, (i.e. the mini-

mum and maximum SPL that can be effectively

transduced).
Summary

Speech input devices are the first element in a voice

biometric system and are sometimes not given the

attention they deserve in the design of voice biometric

applications. This section has presented some of the

variables to take into account in the selection or design

of a microphone for a voice biometric application. The

right selection, design, and even placement of a micro-

phone could be crucial for the success of a voice bio-

metric system.
Related Entries

▶Biometric Sample Acquisition

▶ Sample Acquisition (System Design)

▶ Sensors
References

1. Eargle, J.: The Microphone Book, 2nd edn. Focal, Elsevier, Bur-

lington, MA (2005)

2. National Institute of Standards and Technology (NIST): NIST

Speaker Recognition Evaluation. http://www.nist.gov/speech/

tests/spk/

3. Flichy, P.: Une Histoire de la Communication Moderne. La

Decouverte (1997)

4. Huang, X., Acero, A., Hon, H.W.: Spoken Language Processing.

Prentice-Hall PTR, New Jersey (2001)

5. International Electrotechnical Comission: International Stan-

dard IEC 60268-4: Sound systems equipment, Part 4: Micro-

phones. Geneva, Switzerland (2004)
Voice Evidence
The forensic evidence of voice consists of the quanti-
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dent features extracted from the questioned recording

(trace) and the same extracted from recorded speech of

a suspect, represented by his or her model.
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Synonyms

Speech synthesis; Synthetic voice creation; Text-to-

speech (TTS)
Definition

Over the last decade, speech synthesis, the technology

that enables machines to talk to humans, has become

so natural-sounding that a naı̈ve listener might assume

that he/she is listening to a recording of a live human

speaker. Speech synthesis is not new; indeed, it took

several decades to arrive where it is today. Originally

starting from the idea of using physics-based models of

the vocal-tract, it took many years of research to per-

fect the encapsulation of the acoustic properties of the

vocal-tract as a ‘‘black box’’, using so-called formant

synthesizers. Then, with the help of ever more

http://www.nist.gov/speech/tests/spk/
http://www.nist.gov/speech/tests/spk/
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powerful computing technology, it became viable to

use snippets of recorded speech directly and glue them

together to create new sentences in the form of con-

catenative synthesizers. Combining this idea with now

available methods for fast search, potentially millions

of choices are evaluated to find the optimal sequence of

speech snippets to render a given new sentence. It is the

latter technology that is now prevalent in the highest

quality speech synthesis systems. This essay gives a

brief overview of the technology behind this progress

and then focuses on the processes used in creating

voice inventories for it, starting with recordings of a

carefully-selected donor voice. The fear of abusing the

technology is addressed by disclosing all important

steps towards creating a high-quality synthetic voice.

It is also made clear that even the best synthetic voices

today still trip up often enough so as not to fool the

critical listener.
V

Introduction

Speech synthesis is the technology that gives compu-

ters the ability to communicate to the users by voice.

When driven by text input, speech synthesis is part of

the more elaborate ▶ text-to-speech (TTS) synthesis,

which also includes text processing (expanding abbre-

viations, for example), letter-to-sound transformation

(rules, pronunciation dictionaries, etc.), and stress and

pitch assignment [1]. Speech synthesis is often viewed

as encompassing the signal-processing ‘‘backend’’ of

text-to-speech synthesis viewed as encompassing the

signal-processing ‘‘backend’’ of text-to-speech synthe-

sis (with text and linguistic processing being carried

out in the ‘‘front-end’’). As such, speech synthesis takes

phoneme-based information in context and transforms

it into audible speech. Context information is very

important because, in naturally-produced speech, no

single speech sound stands by itself but is always highly

influenced by what sounds came before, and what

sounds will follow immediately after. It is precisely

this context information that is key to achieving

high-quality speech output.

A high-quality TTS system can be used for many

applications, from telecommunications to personal

use. In the telecom area, TTS is the only practical way

to provide highly flexible speech output to the caller

of an automated speech-enabled service. Examples of

such services include reading back name and address
information, and providing news or email reading. In

the personal use area, the author has witnessed the

ingenious ‘‘high jacking’’ of AT&T’s web-based TTS

demonstration by a young student to fake his mother’s

voice in a telephone call to his school: ‘‘Timmy will be

out sick today. He cannot make it to school.’’ It seems

obvious that natural-sounding, high quality speech syn-

thesis is vital for both kinds of applications. In the

telecom area, the provider of an automated voice service

might lose customers if the synthetic voice is unintelli-

gible or sounds unnatural. If the young student wants to

get an excused day off, creating a believable ‘‘real-sound-

ing’’ voice seems essential. It is mostly concerns about

the latter kind of potential abuse that motivates this

author to write this essay. In the event that the even

stricter requirement is added of making the synthetic

voice indistinguishable from the voice of a specific per-

son, there is clearly a significantly more difficult chal-

lenge. Shortly after AT&T’s Natural Voices1 TTS

system became commercially available in August 2001,

an article in the New York Times’ Circuits section [2]

asked precisely whether people will be safe from seri-

ous criminal abuse of this technology. Therefore, the

purpose of this essay is to demystify the process of

creating such a voice, disclose what processes are

involved, and show current limitations of the technol-

ogy that make it somewhat unlikely that speech syn-

thesis could be criminally abused anytime soon.

This essay is organized as follows. The next section

briefly summarizes different speech synthesis methods,

followed by a somewhat deeper overview of the so-

called Unit Selection synthesis method that currently

delivers the highest quality speech output. The largest

section of this essay deals with creating voice databases

for unit selection synthesis. The essay concludes with

an outlook.
Overview of Voice Synthesis Methods

The voice (speech) synthesis method with the most

vision and potential, but also with somewhat unful-

filled promises, is articulatory synthesis. This method

employs mathematical models of the speech produc-

tion process in the human vocal tract, for example,

models of the mechanical vibrations of the vocal

chords (glottis) that interact with the fluid dynamics

of the laminar and turbulent airflow from the lungs to

the lips, plus linear or even nonlinear acoustical
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models of sound generation and propagation along the

vocal tract. A somewhat comprehensive review of this

method is given in [3]. Due to high computational

requirements and the need for highly accurate model-

ing, articulatory synthesis is mostly useful for research

in speech production. It usually delivers unacceptably

low-quality synthetic speech.

One level higher in abstraction, and much more

practical in its use, is formant synthesis. This method

captures the characteristics of the resonances of

the human vocal tract in terms of simple filters. The

single-peaked frequency characteristic of such a filter

element is called formant. Its frequency, bandwidth

(narrow to broad), and amplitude fully specify each

formant. For adult vocal tracts, four to five formants

are enough to determine their acoustic filter character-

istics. Phonetically most relevant are the lowest three

formants that span the vowel and sonorant space of a

speaker and a language. Together with a suitable wave-

form generator that approximates the glottal pulse,

formant synthesis systems, due to their highly versatile

control parameter sets, are very useful for speech per-

ception research. More on formant synthesis can be

found in [4]. For use as a speech synthesizer, the

computational requirements are relatively low, making

this method the preferred option for embedded appli-

cations, such as reading back names (e.g., ‘‘calling

Mom’’) in a dial-by-voice cellular phone handset. Its

storage requirements are miniscule (as little as 1 MB).

Formant synthesis delivers intelligible speech when

special care is given to consonants.

In the 1970s, a new method started to compete

with the, by then, well-established formant synthesis

method. Due to its main feature of stitching together

recorded snippets of natural speech, it was called con-

catenative synthesis. Many different options exist for

selecting the specific kind of elementary speech units

to concatenate. Using words as such units, although

intuitive, is not a good choice given that there are many

tens of thousands of them in a language and that each

recorded word would have to fit into several different

contexts with its neighbors, creating the need to record

several versions of each word. Therefore, word-based

concatenation usually sounds very choppy and artifi-

cial. However, subword units, such as diphones or

demisyllables turned out to be much more useful be-

cause of favorable statistics. For English, there is a

minimum of about 1500 ▶ diphones that would need

to be in the inventory of a diphone-based
concatenative synthesizer. The number is only slightly

higher for concatenating ▶ demisyllables. For both

kinds of units, however, elaborate methods are needed

to identify the best single (or few) instances of units to

store in the voice inventory, based on statistical mea-

sures of acoustic typicality and ease of concatenation,

with a minimum of audible glitches. In addition, at

synthesis time, elaborate speech signal processing is

needed to assure smooth transitions, deliver the de-

sired prosody, etc. For more details on this method, see

[5]. Concatenative synthesis, like formant synthesis,

delivers highly intelligible speech and usually has no

problem with transients like stop consonants, but usu-

ally lacks naturalness and thus cannot match the qual-

ity of direct human voice recordings. Its storage

requirements are moderate by today’s standards

(�10–100 MB).
Unit Selection Synthesis

The effort and care given to creating the voice inventory

determines to a large extent the quality of any concatena-

tive synthesizer. For best results, most concatenative syn-

thesis researchers well up into the 1990s employed a

largely manual off-line process of trial and error that

relied on dedicated experts. A selected unit needed to fit

all possible contexts (or made to fit by signal processing

such as, stretching or shrinking durations, pitch scaling,

etc.). However, morphing any given unit by signal proces-

sing in the synthesizer at synthesis time degrades voice

quality. So, the ideawas born tominimize the use of signal

processing by taking advantage of the ever increasing

power of computers to handle ever increasing data sets.

Instead of outright morphing a unit to make it fit, the

synthesizer may try to pick a suitable unit from a large

number of available candidates, optionally followed by

much more moderate signal processing. The objective

is to find automatically the optimal sequence of unit

instances at synthesis time, given a large inventory of

unit candidates and the available sentence to be synthe-

sized. This new objective turned the speech synthesis

problem into a rapid search problem [6].

The process of selecting the right units in the in-

ventory that instantiate a given input text, appropri-

ately called unit selection, is outlined in Fig. 1. Here,

the word ‘‘two’’ (or ‘‘to’’) is synthesized from using

diphone candidates for silence into ‘‘t’’ (/#-t/), ‘‘t’’

into ‘‘uw’’ (/t-uw/), and ‘‘uw’’ into silence (/uw-#/).
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Each time slot (column in Fig. 1) has several candi-

dates to choose from. Two different objective distance

measures are employed. First, transitions from one

unit to the next (depicted by arrows in the figure) are

evaluated by comparing the speech spectra at the end

of the left-side unit candidates to the speech spectra at

the beginning of the right-side unit candidates. These

are n*m comparisons, where n is the number of unit

candidates for the left column of candidates, and m is

the number of unit candidates in the right-side column

of candidates. Second, each node (circle) in the net-

work of choices depicted in Fig. 1 has an intrinsic

‘‘goodness of fit’’ measured by a so-called target cost.

The ideal target cost of a candidate unit measures the

acoustic distance of the unit against a hypothetical unit

cut from a perfect recording of the sentence to be

synthesized. However, since it is unlikely that the

exact sentence would be in the inventory, an algorithm

has to estimate the target cost using symbolic and

nonacoustic cost components such as the difference

between desired and given pitch, amplitude, and con-

text (i.e., left and right phone sequences).

The objective of selecting the optimal unit sequence

for a given sentence is to minimize the total cost that is

accumulated by summing transitional and target costs

for a given path through the network from its left-side

beginning to its right-side end. The optimal path is

the one with the minimum total cost. This path

can be identified efficiently using the Viterbi search

algorithm [7].
More detailed information about unit selection syn-

thesis can be found in [1, 8]. The latter book chapter also

summarizes the latest use of automatic speech recogni-

tion (ASR) technology in unit selection synthesis.
Voice Creation

Creating a simple-minded unit selection synthesizer

would involve just two steps: First, record exactly the

sentences that a user wants the machine to speak; and

second, identify at ‘‘synthesis’’ time the input sentence

to be spoken, and then play it back. In practice units

are used that are much shorter than sentences to be

able to create previously unseen input sentences, so

this simple-minded paradigm would not work. How-

ever, when employing a TTS front-end that converts

any input text into a sequence of unit specifications,

intuition may ask for actually playing back any inven-

tory sentence in its entirety in the odd chance that the

corresponding text has been entered. Since the transla-

tion of text into unit-based tags and back into speech is

not perfect, the objective is unlikely to ever be fully

met. In practice, however, the following, somewhat

weaker objective holds: as long as the text to be synthe-

sized is similar enough to that of a corresponding

recording that actually exists in the inventory, a high

output voice quality can be expected. It is for this

reason that unit-selection synthesis is particularly well

suited for so-called limited domain synthesis, such as
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weather reports, stock reports, or any automated tele-

com dialogue application (banking, medical, etc.)

where the application designer can afford the luxury

of recording a special inventory, using a carefully se-

lected voice talent. High quality synthesis for general

news or email reading is usually much more difficult to

achieve because of coverage issues [9].

Because unit selection synthesis, to achieve its best

quality results, mimics a simple tape recorder playback,

it is obvious that its output voice quality largely

depends on what material is in its voice inventory.

Without major modifications/morphing at synthesis

time, the synthesizer output is confined to the quality,

speaking style, and emotional state of the voice that

was recorded from the voice talent/donor speaker. For

this reason, careful planning of the voice inventory is

required. For example, if the inventory contains only

speech recorded from a news anchor, the synthesizer

will always sound like a news anchor.

Several issues need to be addressed in planning a

voice inventory for a unit selection synthesizer. The

steps involved are outlined in Fig. 2, starting with text

preparation to cover the material selected. Since voice

recordings cannot be done faster than real time, they

are always a major effort in time and expense. To get

optimal results, a very strict quality assurance process

for the recordings is paramount. Furthermore, the

content of the material to be recorded needs to be

addressed. Limited domain synthesis covers typical

text for the given application domain, including greet-

ings, apologies, core transactions, and good-byes. For

more general use such as email and news reading,

potentially hundreds of hours of speech need to be

recorded. However, the base corpus for both kinds of

applications needs to maximize linguistic coverage

within a small size. Including a core corpus that was

optimized for traditional diphone synthesis might

satisfy this need. In addition, news material, sentences

that use the most common names in different prosodic

contexts, addresses, and greetings are useful. For limited

domain applications, domain-specific scripts need to

be created. Most of them require customer input

such as getting access to text for existing voice

prompts, call flows, etc. There is a significant danger

in underestimating this step in the planning phase.

Finally, note that a smart and frugal effort in designing

the proper text corpus to record helps to reduce the

amount of data to be recorded. This, in turn, will speed

up the rest of the voice building process.
Quality assurance starts with selecting the best pro-

fessional voice talent. Besides the obvious criteria of

voice preference, accent, pleasantness, and suitability

for the task (a British butler voice might not be appro-

priate for reading instant messages from a banking

application), the voice talents needs to be very consis-

tent in how she/he pronounces the same word over time

and in different contexts. Speech production issues

might come into play, such as breath noise, frequent

lip smacks, disfluencies, and other speech defects. A

clearly articulated and pleasant sounding voice and a

natural prosodic quality are important. The same is true

for consistency in speaking rate, level, and style. Surpris-

ingly, good sight reading skills are not very common

among potential voice talents. Speakers with heavy

vocal fry (glottal vibration irregularities) or strong

nasality should be avoided. Overall, a low ratio of

usable recordings to total recordings done in a test

run is a good criterion for rejecting a voice talent.
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Pronunciations of rare words, such as foreign names,

need to be agreed upon beforehand and their realiza-

tions monitored carefully. Therefore, phonetic supervi-

sion has to be part of all recording sessions.

Next, the recording studio used for the recording

sessions should have almost ‘‘anechoic’’ acoustic char-

acteristics and a very low background noise in order to

avoid coloring or tainting the speech spectrum in any

way. Since early acoustic reflections off a nearby wall or

table are highly dependent on the time-varying geom-

etry relative to the speaker’s mouth and to the micro-

phone, the recording engineer needs to make sure that

the speaker does not move at all (unrealistic) or mini-

mize these reflections. The recording engineer also

needs to make sure that sound levels, and trivial things

like the file format of the recordings are consistent and

on target. Finally, any recorded voice data needs to be

validated and inconsistencies between desired text and

actually spoken text reconciled (e.g., the speaker reads

‘‘vegetarian’’ where ‘‘veterinarian’’ was requested).

Automatic labeling of large speech corpora is a

crucial step because manual labeling by linguists is

slow (up to 500 times real time) and potentially incon-

sistent (different human labelers disagree). Therefore,

an automatic speech recognizer (ASR) is used in

so-called forced alignment mode for phonetic labeling.

Given the text of a sentence, the ASR identifies the

identities and the beginnings and ends of all ▶ pho-

nemes. ASR might employ several passes, starting from

speaker-independent models, and adapting these mod-

els to the given single speaker, and his/her speaking

style. Adapting the pronunciation dictionary to the

specific speaker’s individual pronunciations is vital to

get the correct phoneme sequence for each recorded

word. Pronunciation dictionaries used for phonetic

labeling should also be used in the synthesizer. In

addition, an automated prosodic labeler is useful for

identifying typical stress and pitch patterns, prominent

words, and phrase boundaries. Both kinds of automat-

ic labeling need to use paradigms and conventions

(such as phoneme sets and symbolic ▶ prosody tags)

that match those used in the TTS front-end at synthe-

sis time. A good set of automatic labeling and other

tools allowed the author’s group of researchers to

speed up their voice building process by more than

100 times over 6 years.

Once the recordings are done, the first step in the

voice building process is to build an index of which

sound (phoneme) is where, normalize the amplitudes,
and extract acoustic and segmental features, and

then build distance tables used to trade off (weigh)

different cost components in unit selection in the last

section. One important part of the runtime synthesiz-

er, the so-called Unit Preselection (a step used to nar-

row down the potentially very large number of

candidates) can be sped up by looking at statistics

of triples of phonemes (i.e., so-called triphones) and

caching the results. Then, running a large independent

training text corpus through the synthesizer and

gathering statistics of unit use can be used to build a

so-called join cache that eliminates recomputing join

costs at runtime for a significant speedup. The final

assembly of the voice database may include reordering

of units for access efficiency plus packaging the voice

data and indices.

Voice database validation consists of comprehen-

sive, iterative testing with the goal of identifying bad

units, either by automatic identification tools or by

many hours of careful listening and ‘‘detective’’ work

(where did this bad sound come from?), plus repair.

Allocating sufficient testing time before compute-

intensive parts of the voice building process (e.g.,

cache building) is a good idea. Also, setting realistic

expectations with the customer (buyer of the voice

database) is vital. For example, the author found that

the ‘‘damage’’ that the TTS-voice creation and synthe-

sis process introduces relative to a direct recording

seems to be somewhat independent of the voice talent.

Therefore, starting out with a ‘‘bad’’ voice talent will

only lead to a poorer sounding synthetic voice. Reduc-

ing the TTS damage over time is the subject of ongoing

research in synthesis-related algorithms employed in

voice synthesis.

The final step in unit selection voice creation is for-

mal customer acceptance and, potentially, ongoing

maintenance. Formal customer acceptance is needed

to avoid disagreements over expected and delivered qual-

ity, coverage, etc. Ongoing maintenance assures high

quality for slightly different applications or application

domains, including, for example, additional recordings.
Conclusion

This essay highlighted the steps involved in creating a

high-quality sample-based speech synthesizer. Special

focus was given to the process of voice inventory

creation.



1388V Voice Verification
From the details in this essay, it should be clear

that voice inventory creation is not trivial. It involves

many weeks of expert work and, most importantly, full

collaboration with the chosen voice talent. The idea of

(secretly) recording any person and creating a synthet-

ic voice that sounds just like her or him is simply

impossible, given the present state of the art. Collecting

several hundreds of hours of recordings necessary to

having a good chance at success of creating such a voice

inventory is only practical when high-quality archived

recordings are already available that were recorded

under very consistent acoustic conditions. A possible

workable example would be an archive containing a

year or more of evening news read by a well-known

news anchor. Even then, however, one would need to

be concerned about voice consistency, since even slight

cold infections, as well as more gradual natural changes

over time (i.e., caused by aging of the speaker) can

make such recordings unusable.

An interesting extension to the sample synthesis of

(talking) faces was made in [10]. The resulting head-

and-shoulder videos of synthetic personal agents are

largely indistinguishable from video recordings of the

face talent. Again, similar potential abuse issues are a

concern.

One specific concern is that unit-selection voice

synthesis may ‘‘fool’’ automatic speaker verification

systems. Unlike a human listener’s ear that is able to

pick up the subtle flaws and repetitiveness of a

machine’s renderings of a human voice, today’s speaker

verification systems are not (yet) designed to pay at-

tention to small blurbs and glitches that are a clear

giveaway of a unit selection synthesizer’s output, but

this could change if it became a significant problem. If

this happens, perceptually undetectable watermarking

is an option to identify a voice (or talking face) sample

as ‘‘synthetic’’. Other procedural options include ask-

ing for a second rendition of the passphrase and

comparing the two versions. If they are too similar

(or even identical), reject the speaker identity claim

as bogus.
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Synonym

Forensic speaker recognition
Definition

Forensic speaker recognition is the process of determin-

ing if a specific individual (suspected speaker) is the
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source of a questioned voice recording (trace). The

forensic application of speaker recognition technology

is one of the most controversial issues within the wide

community of researchers, experts, and police workers.

This is mainly due to the fact that very different methods

are applied in this area by phoneticians, engineers, law-

yers, psychologists, and investigators. The approaches

commonly used for speaker recognition by forensic

experts include the aural-perceptual, the auditory-

instrumental, and the automatic methods. The forensic

expert’s role is to testify to the worth of the evidence by

using, if possible a quantitative measure of this worth.

It is up to other people (the judge and/or the jury) to

use this information as an aid to their deliberations

and decision.

This essay aims at presenting forensic automatic

speaker recognition (FASR) methods that provide a

coherent way of quantifying and presenting recorded

voice as scientific evidence. In such methods, the evi-

dence consists of the quantified degree of similarity

between speaker-dependent features extracted from

the trace and speaker-dependent features extracted

from recorded speech of a suspect. The interpretation

of a recorded voice as evidence in the forensic context

presents particular challenges, including within-speaker

(within-source) variability, between-speakers (between-

sources) variability, and differences in recording sessions

conditions. Consequently, FASR methods must provide

a probabilistic evaluation which gives the court an indi-

cation of the strength of the evidence given the estimated

within-source, between-sources, and between-session

variabilities.
V

Introduction

Speaker recognition is the general term used to include

all of the many different tasks of discriminating people

based on the sound of their voices. Forensic speaker

recognition involves the comparison of recordings of

an unknown voice (questioned recording) with one

or more recordings of a known voice (voice of the

suspected speaker) [1, 2].

There are several types of forensic speaker recog-

nition [3, 4]. When the recognition employs any

trained skill or any technologically-supported proce-

dure, the term technical forensic speaker recognition

is often used. In contrast to this, so-called naı̈ve for-

ensic speaker recognition refers to the application of
un-reflected everyday abilities of people to recognize

familiar voices.

The approaches commonly used for technical foren-

sic speaker recognition include the aural-perceptual,

auditory-instrumental, and automatic methods [2].

Aural-perceptual methods, based on human auditory

perception, rely on the careful listening of recordings

by trained phoneticians, where the perceived differ-

ences in the speech samples are used to estimate the

extent of similarity between voices [3]. The use of

aural-spectrographic speaker recognition can be con-

sidered as another method in this approach. The

exclusively visual comparison of spectrograms in what

has been called the ‘‘▶ voiceprint ’’ approach has come

under considerable criticism in the recent years [5]. The

auditory-instrumental methods involve the acoustic

measurements of various parameters, such as the aver-

age fundamental frequency, articulation rate, formant

centre-frequencies, etc. [4]. The means and variances

of these parameters are compared. FASR is an estab-

lished term used when automatic speaker recognition

methods are adapted to forensic applications. In auto-

matic speaker recognition, the statistical or determin-

istic models of acoustic features of the speaker’s voice

and the acoustic features of questioned recordings are

compared [6].

FASR offers data-driven methodology for quanti-

tative interpretation of recorded speech as evidence.

It is a relatively recent application of digital speech

signal processing and pattern recognition for judicial

purposes and particularly law enforcement. Results

of FASR based investigations may be of pivotal im-

portance at any stage of the course of justice, be it the

very first police investigation or a court trial. FASR

has been gaining more and more importance ever

since the telephone has become an almost ideal

tool for the commission of certain criminal offences,

especially drug dealing, extortion, sexual harassment,

and hoax calling. To a certain degree, this is undoubt-

edly a consequence of the highly-developed and fully

automated telephone networks, which may safeguard

a perpetrator’s anonymity. Nowadays, speech com-

munications technology is accessible anywhere, any-

time and at a low price. It helps to connect people,

but unfortunately also makes criminal activities

easier. Therefore, the identity of a speaker and the

interpretation of recorded speech as evidence in

the forensic context are quite often at issue in court

cases [1, 7].
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Although several speaker recognition systems for

commercial applications (mostly speaker verification)

have been developed over the past 30 years, until

recently the development of a reliable technique for

FASR has been unsuccessful because methodological

aspects concerning automatic recognition of speakers

in criminalistics and the role of the forensic expert have

not been investigated sufficiently [8]. The role of a

forensic expert is to testify in court using, if possible,

quantitative measures that estimate the value and

strength of the evidence. The judge and/or the jury

use the testimony as an aid to the deliberations and

decisions [9].

A forensic expert testifying in court is not an advo-

cate, but a witness who presents factual information

and offers a professional opinion based upon that

factual information. In order for it to be effective, it

must be carefully documented, and expressed with

precision in neutral and objective way with the adver-

sary system in mind. Technical concepts based on

digital signal processing and pattern recognition must

be articulated in layman terms such that the judge and

the attorneys may understand them. They should also

be developed according to specific recommendations

that take into account also the forensic, legal, judicial,

and criminal policy perspectives. Therefore, forensic

speaker recognition methods should be developed

based on current state-of-the-art interpretation of

forensic evidence, the concept of identity used in crim-

inalistics, a clear understanding of the inferential pro-

cess of identity, and the respective duties of the actors

involved in the judicial process, jurists, and forensic

experts.
Voice as Evidence

When using FASR, the goal is to identify whether an

unknown voice of a questioned recording (trace)

belongs to a suspected speaker (source). The ▶ voice

evidence consists of the quantified degree of similarity

between speaker dependent features extracted from the

trace, and speaker dependent features extracted from

recorded speech of a suspect, represented by his or her

model [1], so the evidence does not consist of

the speech itself. To compute the evidence, the proces-

sing chain illustrated in Fig. 1 may be employed [10].

As a result, the suspect’s voice can be recognized as the

recorded voice of the trace, to the extent that the
evidence supports the hypothesis that the questioned

and the suspect’s recorded voices were generated by

the same person (source) rather than the hypothesis

that they were not. However, the calculated value of

evidence does not allow the forensic expert alone to

make an inference on the identity of the speaker.

As no ultimate set of speaker specific features is

present or detected in speech, the recognition process

remains in essence a statistical-probabilistic process

based on models of speakers and collected data,

which depend on a large number of design decisions.

Information available from the auditory features and

their evidentiary value depend on the speech organs

and language used [3]. The various speech organs have

to be flexible to carry out their primary functions

such as eating and breathing as well as their secondary

function of speech, and the number and flexibility of

the speech organs results in a high number of ‘‘degrees

of freedom’’ when producing speech. These ‘‘degrees of

freedom’’ may be manipulated at will or may be subject

to variation due to external factors such as stress,

fatigue, health, and so on. The result of this plasticity

of the vocal organs is that no two utterances from the

same individual are ever identical in a physical sense.

In addition to this, the linguistic mechanism (lan-

guage) driving the vocal mechanism is itself far from

invariant. We are all aware of changing the way we

speak, including the loudness, pitch, emphasis, and

rate of our utterances; aware, probably, too, that style,

pronunciation, and to some extent dialect, vary as we

speak in different circumstances. Speaker recognition

thus involves a situation where neither the physical

basis of a person’s speech (the vocal organs) nor the

language driving it, are constant.

The speech signal can be represented by a sequence

of short-term feature vectors. This is known as feature

extraction (Fig. 1). It is typical to use features based on

the various speech production and perception models.

Although there are no exclusive features conveying

speaker identity in the speech signal, from the source-

filter theory of speech production it is known that the

speech spectrum envelope encodes information about

the speaker’s vocal tract shape [11]. Thus some form

of spectral envelope based features is used in most

speaker recognition systems even if they are dependent

on external recording conditions. Recently, the major-

ity of speaker recognition systems have converged to

the use of cepstral features derived from the envelope

spectra models [1].
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Thus, the most persistent real-world challenge in

this field is the variability of speech. There is within-

speaker (within-source) variability as well as between-

speakers (between-sources) variability. Consequently,

forensic speaker recognition methods should provide

a statistical-probabilistic evaluation, which attempts

to give the court an indication of the strength of the

evidence, given the estimated within-source variability

and the between-sources variability [4, 10].
Bayesian Interpretation of Evidence

To address these variabilities, a probabilistic model [9],

Bayesian inference [8] and data-driven approaches [6]

appear to be adequate: in FASR statistical techniques

the distribution of various features extracted from a
suspect’s speech is compared with the distribution of

the same features in a reference population with re-

spect to the questioned recording. The goal is to infer

the identity of a source [9], since it cannot be known

with certainty.

The inference of identity can be seen as a reduction

process, from an initial population to a restricted class,

or, ultimately, to unity [8]. Recently, an investigation

concerning the inference of identity in forensic speaker

recognition has shown the inadequacy of the speaker

verification and speaker identification (in closed set

and in open set) techniques [8]. Speaker verification

and identification are the two main automatic techni-

ques of speech recognition used in commercial appli-

cations. When they are used for forensic speaker

recognition they imply a final discrimination decision

based on a threshold. Speaker verification is the task of
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deciding, given a sample of speech, whether a specified

speaker is the source of it. Speaker identification is the

task of deciding, given a sample of speech, which

among many speakers is the source of it. Therefore,

these techniques are clearly inadequate for forensic

purposes, because they force the forensic expert to

make decisions which are devolved upon the court.

Consequently, the state-of-the-art speaker recognition

algorithms using dynamic time warping (DTW) and

hidden Markov models (HMMs) for text-dependent

tasks, and vector quantization (VQ), Gaussian mixture

models (GMMs), ergodic HMMs and others for text-

independent tasks have to be adapted to the Bayesian

interpretation framework which represents an ade-

quate solution for the interpretation of the evidence

in the judicial process [9].

The court is faced with decision-making under un-

certainty. In a case involving FASR it wants to know

how likely it is that the speech samples of questioned

recording have come from the suspected speaker.

The answer to this question can be given using

the Bayes’ theorem and a data-driven approach to

interpret the evidence [1, 7, 10].

The odds form of Bayes’ theorem shows how new

data (questioned recording) can be combined with

prior background knowledge (prior odds (province

of the court)) to give posterior odds (province of the

court ) for judici al outcomes or issues (Eq. 1). It allow s

for revision based on new information of a measure of

uncertainty (likelihood ratio of the evidence (province

of the forensic expert)) which is applied to the pair

of competing hypotheses: H0 – the suspected speaker

is the source of the questioned recording, H1 – the

speaker at the origin of the questioned recording is

not the suspected speaker.

posterior

knowledge

pðH0jEÞ
pðH1jEÞ
posterior

odds

ðprovince of
the courtÞ

¼
new data

pðEjH0Þ
pðEjH1Þ
likelihood

ratio

ðprovince of
the expertÞ

�

prior

knowledge

pðH0Þ
pðH1Þ

prior odds

ðprovince of
the courtÞ

ð1Þ

This hypothetical-deductive reasoning method, based

on the odds form of the Bayes’ theorem, allows evalu-

ating the likelihood ratio of the evidence that leads

to the statement of the degree of support for one
hypothesis against the other. The ultimate question

relies on the evaluation of the probative strength of

this evidence provided by an automatic speaker recog-

nition method [12]. Recently, it was demonstrated that

outcome of the aural (subjective) and instrumental

(objective) approaches can also be expressed as a

Bayesian likelihood ratio [4, 13].
Strength of Evidence

The ▶ strength of voice evidence is the result of the

interpretation of the evidence, expressed in terms of

the likelihood ratio of two alternative hypotheses. The

principal structure for the calculation and the inter-

pretation of the evidence is presented in Fig. 1. It

includes the collection (or selection) of the databases,

the automatic speaker recognition and the Bayesian

interpretation [10].

The methodological approach based on a Bayesian

interpretation (BI) framework is independent of the

automatic speaker recognition method chosen, but the

practical solution presented in this essay as an example

uses text-independent speaker recognition system based

on Gaussian mixture model (GMM) [14].

The Bayesian interpretation (BI) methodology

needs a two-stage statistical approach [10]. The first

stage consists in modeling multivariate feature data

using GMMs. The second stage transforms the data

to a univariate projection based on modeling the simi-

larity scores. The exclusively multivariate approach is

also possible but it is more difficult to articulate

in layman terms [15]. The GMM method is not only

used to calculate the evidence by comparing the

questioned recording (trace) to the GMM of the sus-

pected speaker (source), but it is also used to produce

data necessary to model the within-source variability

of the suspected speaker and the between-sources

variability of the potential population of relevant

speakers, given the questioned recording. The interpre-

tation of the evidence consists of calculating the likeli-

hood ratio using the probability density functions

(pdfs) of the variabilities and the numerical value of

evidence.

The information provided by the analysis of the

questioned recording (trace) leads to specify the initial

reference population of relevant speakers (potential pop-

ulation) having voices similar to the trace, and,
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combined with the police investigation, to focus on and

select a suspected speaker. The methodology presented

needs three databases for the calculation and the inter-

pretation of the evidence: the potential population data-

base (P), the suspected speaker reference database (R),

and the suspected speaker control database (C) [14].

The potential population database (P) is a database

for modeling the variability of the speech of all the

potential relevant sources, using the automatic speaker

recognition method. It allows evaluating the between-

sources variability given the questioned recording,

which means the distribution of the similarity scores

that can be obtained, when the questioned recording is

compared to the speaker models (GMMs) of the po-

tential population database. The calculated between-

sources variability pdf is then used to estimate the

denominator of the likelihood ratio p(E|H1). Ideally,

the technical characteristics of the recordings (e.g.,

signal acquisition and transmission) should be chosen

according to the characteristics analyzed in the trace.

The suspected speaker reference database (R) is

recorded with the suspected speaker to model his/her

speechwith the automatic speaker recognitionmethod.

In this case, speech utterances should be produced in

the same way as those of the P database. The sus-

pected speaker model obtained is used to calculate the
Voice, Forensic Evidence of. Figure 2 The LR estimation giv
value of the evidence, by comparing the questioned

recording to the model.

The suspected speaker control database (C) is

recorded with the suspected speaker to evaluate her/his

within-source variability, when the utterances of this

database are compared to the suspected speaker model

(GMM). This calculated within-source variability pdf

is then used to estimate the numerator of the likeli-

hood ratio p(E|H0). The recording of the C database

should be constituted of utterances as far as possible

equivalent to the trace, according to the technical

characteristics, as well as to the quantity and style of

speech.

The basic method proposed has been exhaustively

tested in mock forensic cases corresponding to real

caseworks [11, 14]. In an example presented in Fig. 2,

the strength of evidence, expressed in terms of likeli-

hood ratio gives LR = 9.165 for the evidence value

E = 9.94, in this case. This means that it is 9.165

times more likely to observe the score E given the

hypothesis H0 than H1. The important point to be

made here is that the estimate of the LR is only as

good as the modeling techniques and databases used

to derive it. In the example, the GMM technique was

used to estimate pdfs from the data representing simi-

larity scores [11].
en the value of the evidence E. � IEEE.

V
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Evaluation of the Strength of
Evidence

The likelihood ratio (LR) summarizes the statement of

the forensic expert in the casework. However, the great-

est interest to the jurists is the extent to which the LRs

correctly discriminate ‘‘the same speaker and different-

speaker’’ pairs under operating conditions similar to

those of the case in hand. As was made clear in the US

Supreme Court decision in Daubert case (Daubert v.

Merrell Dow Pharmaceuticals, 1993) it should be cri-

terial for the admissibility of scientific evidence to know

to what extent the method can be, and has been, tested.

The principle for evaluation of the strength of

evidence consists in the estimation and the comparison

of the likelihood ratios that can be obtained from the

evidence E, on one hand when the hypothesis H0 is

true (the suspected speaker truly is the source of the

questioned recording) and, on the other hand, when

the hypothesisH1 is true (the suspected speaker is truly

not the source of the questioned recording) [14]. The

performance of an automatic speaker recognition

method is evaluated by repeating the experiment de-

scribed in the previous sections, with several speakers

being at the origin of the questioned recording, and by

representing the results using experimental (histogram

based) probability distribution plots such as probabili-

ty density functions and cumulative distribution func-

tions in the form of Tippett plots (Fig. 3a) [10, 14].

The way of representation of the results in the form

of Tippett plots is the one proposed by Evett and
Voice, Forensic Evidence of. Figure 3 (a) Estimated probab

corresponding to (a). � IEEE.
Buckleton in the field of interpretation of the forensic

DNA analysis [6]. The authors have named this repre-

sentation ‘‘Tippett plot,’’ referring to the concepts of

‘‘within-source comparison’’ and ‘‘between-sources

comparison’’ defined by Tippett et al.
Forensic Speaker Recognition in
Mismatched Conditions

Nowadays, state-of-the-art automatic speaker recogni-

tion systems show very good performance in discrimi-

nating between voices of speakers under controlled

recording conditions. However, the conditions in

which recordings are made in investigative activities

(e.g., anonymous calls and wire-tapping) cannot be

controlled and pose a challenge to automatic speaker

recognition. Differences in the background noise, in

the phone handset, in the transmission channel, and in

the recording devices can introduce variability over

and above that of the voices in the recordings. The

main unresolved problem in FASR today is that of

handling mismatch in recording conditions, also in-

cluding mismatch in languages, linguistic content, and

non-contemporary speech samples. Mismatch in re-

cording conditions has to be considered in the estima-

tion of the likelihood ratio [11–13]. Next step can

be combination of the strength of evidence using

aural-perceptive and acoustic-phonetic approaches

(aural-instrumental) of trained phoneticians with

that of the likelihood ratio returned by the automatic
ility density functions of likelihood ratios; (b) Tippett plots
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system [4]. In order for FASR to be acceptable for

presentation in the courts, the methods and techniques

have to be researched, tested and evaluated for error, as

well as be generally accepted in the scientific commu-

nity. The methods proposed should be analyzed in the

light of the admissibility of scientific evidence (e.g.,

Daubert ruling, USA, 1993) [11].
V

Summary

The essay discussed some important aspects of fore-

nsic speaker recognition, focusing on the necessary sta-

tistical-probabilistic framework for both quantifying

and interpreting recorded voice as scientific evidence.

Methodological guidelines for the calculation of the

evidence, its strength and the evaluation of this strength

under operating conditions of the casework were pre-

sented. As an example, an automatic method using the

Gaussian mixture models (GMMs) and the Bayesian

interpretation (BI) framework were implemented for

the forensic speaker recognition task. The BI method

represents neither speaker verification nor speaker iden-

tification. These two recognition techniques cannot be

used for the task, since categorical, absolute and deter-

ministic conclusions about the identity of source of

evidential traces are logically untenable because of the

inductive nature of the process of the inference of iden-

tity. This method, using a likelihood ratio to indicate the

strength of the evidence of the questioned recording,

measures how this recording of voice scores for the

suspected speaker model, compared to relevant non-

suspect speaker models. It became obvious that partic-

ular effort is needed in the trans-disciplinary domain of

adaptation of the state-of-the-art speech recognition

techniques to real-world environmental conditions for

forensic speaker recognition. The future methods to be

developed should combine the advantages of automatic

signal processing and pattern recognition objectivity

with the methodological transparency solicited in

forensic investigations.
Related Entries

▶ Forensic Biometrics

▶ Forensic Evidence

▶ Speaker Recognition, An Overview
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Voiced Sounds
The voiced speech is generated by the modulation of

the airstream of the lungs by periodic opening and

closing of the vocal folds in the glottis or larynx. This

is used, e.g., for vowels and nasal consonants.

▶ Speech Production
Voiceprint
Voiceprint is another name for spectrogram. This

name is usually avoided because of its association
with voiceprint recognition, which is a highly contro-

versial method of forensic speaker recognition, which

exclusively uses visual examination of spectrograms.

▶Voice, Forensic Evidence of
Volunteer Crew
The volunteer crew for a biometric test is the indivi-

duals that participate in the evaluation of the biometric

and from whom biometric samples are taken.

▶Test Sample and Size
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Walk-through
▶ Iris on the Move™
Walk-up
▶ Iris on the Move™
Watermarking, Biometric
A specific type of digital watermarking that includes

biometric information either in the watermark, the

host data, or both. The Biometric watermarking sys-

tems have the additional requirement of not degrading

the performance of the biometric system(s) which they

protect. This characteristic, sometimes referred to as

performability, can entail any effect on matching per-

formance, image quality, or computational efficiency.

Systems watermarking biometric host data with bio-

metric feature vectors add the potential for multimodal

authentication.

▶ Iris Digital Watermarking
Watermarking, Digital
Digital watermarking is a method of embedding infor-

mation within digital media for the purpose of proving
# 2009 Springer Science+Business Media, LLC
file authenticity, tracking chain of custody and data

reproduction, or describing host content. In digital

watermarking, the watermark and the host data are

typically related, and both are utilized by an intended

recipient. Although not necessary, digital watermarks

are typically imperceptible to humans either visually or

audibly unlike their predecessors, paper watermarks.

As a result, digital watermarking systems rely on

machines to carry out the processes of watermark

detection and extraction.

▶ Iris Digital Watermarking
Wavefront Coded® Iris Biometric
Systems
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Synonyms

Computational iris recognition systems; Pupil phase

engineered iris biometrics
Definition

Wavefront coded iris biometrics is an imaging method

whereby a suitably designed phase mask, placed in

the pupil of an imaging system, is used to encode the

depth dimension of an extended three-dimensional

scene by means of an approximately shift-invariant

point spread function. Iris images so acquired are

thus deliberately distorted by a known amount in a

way that is insensitive to misfocus blur, within a range
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greater than the system’s depth of field. For sufficient

SNR, these images can be digitally deblurred by stan-

dard image deconvolution algorithms to recover depth

dependent detail, enabling accurate iris recognition

and identification. It is shown that even the intermedi-

ate, distorted iris images maintain sufficient low- and

mid-frequency information to enable increased iris

recognition performance, without resorting to digital

restoration.
Wavefront Coded® Iris Biometric Systems. Figure 1 Iris

recognition imaging volume.
Introduction

The iris is a popular biometric that is gaining increased

attention as a means of identification and verification

of individuals for controlling access to secured areas,

materials, or systems. The popularity of the iris as a

biometric stems from its availability for remote and

noninvasive assessment and the uniqueness of its tex-

ture from one subject to another, making possible a

fully automated recognition and verification system

based upon machine vision [1]. This texture is well

known to provide a signature that is unique to each

subject. In fact, the operating probability of false iden-

tification by the Daugman algorithm [2] can be of the

order of 1 in 1010. Compared with other biometric

signatures, the iris is generally considered to be more

stable and reliable for identification.

However, a major limitation of conventional iris

recognition systems [3] is the inability to obtain in-

focus iris images over an extended distance range. In

order to achieve reasonable lighting levels and expo-

sure times, the optical system must have a high numer-

ical aperture and a corresponding low F-number, to

provide sufficiently high signal-to-noise ratio (SNR) at

the detector, with minimummotion blur. Unfortunate-

ly, a high numerical aperture results in a corresponding

small depth-of-field and small▶ iris recognition operat-

ing range. Often times, end-users are forced to ‘‘play

the trombone’’ in order to present their iris within the

system’s imaging volume. Figure 1 illustrates a typical

iris recognition scenario, where a user must submit a

sample of his iris to the acquisition system, to gain

access to a secured environment. The shaded box indi-

cates the imaging volume that produces an in-focus

acceptable image for processing.

Wavefront coding is a novel technology that

was recently proposed for facilitating interaction of

end-users with an iris biometric system [4, 5]. In
particular, wavefront coding enables the acquisition

of iris data through a large field of view and large

depth of field using relatively fast optical systems.

They do so without compromising optical resolution

and light gathering capacity; a performance that can-

not be achieved using traditional optical designs [4].

Wavefront coding was originally proposed by Dowski

and Cathey [6], fitting within the concept of modern

computational or task-based imaging. Since its origi-

nal proposal, wavefront coding has been extended to

include more general separable and non-separable type

surfaces or phase masks [7, 8]. A more recent develop-

ment includes a novel general framework, known as

▶ pupil phase engineering (PPE), to address high qual-

ity image acquisition from a numerical optimization

perspective [9, 10]. In this framework, image quality

requirements may include extending the depth of field,

controlling or minimizing the impact of aberrations,

motion blur, scattering from the imaging medium,

among others (see, e.g., [10] and references therein).
Wavefront Coding for Extended Focus
and Aberration Correction

Wavefront coding is a novel imaging modality where

a unique aperture configuration is used to increase

the depth of field, without significantly decreasing

the SNR and light gathering capacity. In this modality,

a phase mask is placed in the pupil of an imaging
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system to deliberately distort the image, but in a way

that is relatively insensitive to misfocus. Figure 2 illus-

trates the difference between conventional limited-

focus and wavefront encoded systems. The distorted

image carries depth-dependent intensity information

which can be digitally recovered using standard decon-

volution methods. The most general polynomial

form for the added pupil phase mask f(x,y) is the

following:

fðx; yÞ ¼
X1

m¼1

X1

n¼1

amnx
myn; ð1Þ

The original proposal [5] argued for a cubic phase

mask f(x,y) ¼ a(x3þy3), based on the requirement

that the encoding pupil phase f(x,y) be monomial in

the pupil coordinates (x,y), be separable in those coor-

dinates, and lead to an MTF that is asymptotically

focus-independent. Several other separable and non-

separable, symmetric, and odd phase masks of the

form (1) have been proposed and numerically opti-

mized [11, 12] to achieve desirable characteristics in

the point spread function (PSF). These may include

insensitivity to defocus as well as the control of optical

system aberrations such as spherical aberration, astig-

matism, and curvature (see [10] for details regarding

the numerical optimization of such phase masks using

information theoretic based metrics).

The use of phase masks in iris recognition imaging

systems is a promising approach that could greatly

extend the operational range of iris recognition [4, 5],

thereby facilitating flexibility when an end-user interacts

with the system. The performance of wavefront coded

iris biometric systems has been recently evaluated using

small iris datasets (less than 10 user irises). A more

comprehensive study using simulated unrestored wave-

front coded images evaluated 150 iris images pertaining

to 50 subjects has been recently conducted [13].
Simulation of Iris Biometric Systems

Fourier optics provides a convenient first order ap-

proximation of image formation and computer simu-

lation systems often take advantage of this theory for

efficient design and study of optical systems. The Sim-

ulator of Iris Recognition Imaging Systems (SIRIS) is

one such a tool that was designed to generate conven-

tional blurred and wavefront coded imagery, for a wide

variety of polynomial form phase masks. SIRIS

employs Fourier optics based image formation, PSF,

and noise models to leverage the exploration of sepa-

rable and non-separable phase masks on iris recogni-

tion performance [14].

SIRIS uses an implementation of Daugman’s algo-

rithm and, among other functionalities, allows the user

to specify optical characteristics and parameters of an

imaging device. These parameters include focal length,

object distance, pupil diameter, pixel pitch, and noise.

Using the specified optical and detector parameters

and input imagery, SIRIS generates corresponding out-

put imagery that includes the effects of a pre-specified

phase mask and noise characteristics. It also provides

the waves of defocus blur corresponding to any specific

distance from the plane of best focus. The result is a

model that summarizes the effects of defocus blur and

the phase mask on the imaging system.
Simulation and Study of Unrestored
Wavefront Coded Iris Imagery

SIRIS was recently employed to simulate, study, and

compare the performance of conventional and wave-

front coded iris biometric systems. A set of 150

in-focus iris images from the Iris Challenge Evaluation

(ICE) dataset [15] were used in this study, pertaining

to 50 different hand-selected users. The selected 150
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in-focus iris images were used as ground truth (refer-

ence images) in the iris recognition process, as well as

an input to SIRIS for the generation of all conventional

out-of-focus blurred and wavefront coded simulated

imagery. Optical and detector parameters were selected

based on the characteristics of the system used to

collect the ICE images at Notre Dame University

[15]. The F-number was set approximately to 1.92 for

iris images placed at 0.5m away from the detector. The

pixel pitch is 5.134 mm. The wavefront coded system

was modeled, having a cubic phase element with a¼ 30.

The system noise, having a Poisson signal dependent

term associated with the light detection process and a

white Gaussian independent term (1% noise), reflect-

ing a camera under ideal lighting and image capture

conditions was modeled.

The blurred images for both conventional and

wavefront coded systems were obtained by modeling
Wavefront Coded® Iris Biometric Systems. Figure 3 Sample

Wavefront Coded® Iris Biometric Systems. Figure 4 Sample
the movement of an iris in 1.13 cm increments

away and towards the imaging device, in a range

from�10.2 cm (away) to 10.2 cm (towards) from

the plane of best focus. This range is significantly

wider than the known imaging volume of the standard

system. Figure 3 shows a sample set of blurred images

obtained with a conventional system for a single input

iris image.

Notice that appropriate magnification of the iris due

to movement away and towards the camera is taken into

account. Figure 4 shows a sample set of blurred images

obtained with a wavefront coded system (a ¼ 30) for

a single input iris image. The wavefront coded images

are unrestored, that is, no digital filter was applied

to reverse the effects of the cubic phase mask. A total

of 427,500 simulated conventional and wavefront

coded images were generated from the 150 input iris

images.
SIRIS simulated standard images.

SIRIS unrestored cubic images.



Wavefront Coded® Iris Biometric Systems. Figure 5 Imposter and genuine score statistics of standard (above) and

unrestored cubic imagery (below) in which the enrollment images are at the plane of best focus.

Wavefront Coded® Iris Biometric Systems. Table 1

Operational range comparison of a conventional versus

a wavefront coded system

System type Distance (cm) Operational range

Conventional �2–2.5 �4.5

Wavefront coded �7–5.8 �12.8

Wavefront Coded® Iris Biometric Systems W 1401
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The blurred images were then processed using a

research implementation of Daugmans algorithm.

Specifically, the Hamming distances for all blurred

images with respect to all reference images were

computed. The enrollment images do not contain

defocus blur. For our dataset, the calculation of Ham-

ming distances implies the computation of a total of

2 � 150 � 150 � 19 matching scores (�855,000

comparisons). Figure 5 shows the results of the

comprehensive analysis (users 1–50) of imposter and

genuine Hamming distance scores for both the con-

ventional and wavefront coded systems. The increased

operational range for iris recognition evident from

these plots is reported in Table 1.

These results are in accordance with the published

literature [5, 7] and highlight the efficacy of the simu-

lation tool in generating imagery useful for research in

this field. Future work will introduce image restoration

of wavefront coded images in the iris recognition pro-

cess. We expect restored images to produce smaller

Hamming distances and further to increase the opera-

tional range of iris recognition of the wavefront coded
imaging system, at the cost of increasing its computa-

tional requirements. However, the extension in the

operational range of iris biometric systems using

blurred wavefront coded imagery is an appealing pros-

pect, since it does not increase the computational

requirements of the system and processing time.
Summary

Depth of field and operational range play a major

limiting role in the application of iris recognition tech-

nology. The addition of a wavefront coding phase

masks was shown, via simulation, to significantly in-

crease the operational range of iris recognition, even in

the absence of restoration schemes. The tradeoff be-

tween degradation in Hamming distance scores and the

inclusion of the cubic phase mask was also demon-

strated. The utility of the simulation software has

been anecdotally verified against actual blurred and

wavefront coded imagery, an investigation on the use

of wavefront coding imaging technology on a large

image collection is needed. Future initiatives would

consider the development of novel pattern recognition

algorithms to capitalize on the information provided

by a wavefront coded element. The use of segmentation

methods that are less reliant on sharp pupil/iris and iris/

sclera boundaries will also help to improve the perfor-

mance. This paper has shown that wavefront coding

technology can improve the operational range asso-

ciated with iris recognition systems accompanied by a
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reduction in SNR that does not dramatically affect the

performance of the system. Additional work in systems

engineering and performance optimization is necessary

in order to reap the benefits of this technology.
Related Entries

▶Biometric Sample Acquisition

▶Biometric System Design

▶ Iris Encoding and Recognition
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Wavefront Coding
Wavefront Coding is a computational imaging tech-

nique that relies on the simultaneous optimization of

the pupil function and the image processing of a digital

imaging system to increase its tolerance to optical

aberrations. When the aberration being corrected is

defocus, Wavefront Coding is able to provide the sys-

tem designer with an extension of the depth of field of

the imaging system.

▶Wavefront Coding for Enhancing the Imaging

Volume in Iris Recognition
Wavefront Coding for Enhancing the
Imaging Volume in Iris Recognition

PAULO E. X. SILVEIRA, LU GAO,

RAMKUMAR NARAYANSWAMY

Omni Vision CDM Optics, Boulder, CO, USA
Synonym

Wavefront Coded1 (Wavefront Coded1 is a registered

trademark of Omni Vision CDM Optics, Inc.) biomet-

ric iris recognition
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Definition

Wavefront Coding™ (Wavefront Coding™ is a trade-

mark of Omni Vision CDM Optics, Inc.) is a compu-

tational imaging technique capable of increasing the

depth of field of an imaging system and increasing the

amount of information captured within a given imag-

ing volume. Iris recognition consists of using the

unique texture present in the human iris to perform

biometric identification. The small size of the texture

details compared to the subject standoff distance and

normal human motion makes it challenging to capture

high quality iris images using traditional imaging tech-

niques. The use of Wavefront Coding alleviates these

requirements and shows great performance improve-

ments by reducing the constraints in subject position

while maintaining short exposure times during image

capture.
W

Introduction

The human iris has several unique features that make it

an attractive choice for biometric recognition: (1) the

iris texture is highly unique (possesses high entropy);

(2) the texture is stable over the lifetime of an individ-

ual; and (3) the image of the eye and iris can be

captured from a distance using standard imaging sys-

tems [1–3]. Awide range of imaging systems including

hand-held cameras, miniature cameras, telephoto, and

multi-spectral cameras are currently being considered

for use or are used to capture the image data for iris

recognition. These imaging systems are characterized

by an ▶ imaging volume over which the image of the

iris is captured with adequately high signal quality. The

challenge faced by today’s iris recognition systems is

that subjects must find this rather small imaging vol-

ume by trial-and-error. Then, the iris to be recognized

must remain stationary during the image capture time

to avoid motion blur. Thus, the overall subject experi-

ence is not satisfactory and needs improvement.

Ideally, iris capture systems should operate well

with stationary subjects as with moving subjects, and

the image quality should remain high over the entire

imaging volume. This requirement calls for a relatively

fast optical system (low F/#) which, in traditional

imaging systems, inherently leads to a shallow depth

of field. On the other hand, an ideal system should

have a large field of view and a large depth of field so
that subjects can be identified with minimal coopera-

tion [4, 5]. These seemingly conflicting requirements

can be satisfied by using ▶Wavefront Coding, a

computational imaging technique that is capable of

increasing the depth of field of an imaging system

without needing to increase its F-number. Note that

the traditional method of stopping down the aperture

to increase the F-number is detrimental to iris recog-

nition in two ways: (1) the brightness of the image,

which is proportional to the signal level, drops propor-

tionally to the area of the obscured aperture; and

(2) the optical resolution drops proportionally to the

reduction in diameter of the aperture.
Wavefront Coded Iris Recognition
System

Wavefront Coding relies on the simultaneous optimi-

zation of the pupil function and the image processing

of a digital imaging system to increase its tolerance to

aberrations that would typically degrade the image [6].

For example, when the aberration being corrected is

defocus, Wavefront Coding is able to provide the sys-

tem designer with an extension of the depth of field of

the imaging system [7]. This is done by using non-

conventional aspherical optics to produce point spread

functions (PSFs) that do not vary significantly over

an extended imaging volume compared to traditional

optics. Note that the pupil function can be optimized

by inserting a new element at the exit pupil or, more

practically, by altering the shape of existing optical

surfaces. When the goal is to increase the imaging

volume used for biometric iris recognition, Wavefront

Coding can be employed to provide a modulation

transfer function (MTF) of the system that is consis-

tent over the required range of spatial frequencies and

over a wide range of field points and defocus [8].

Figure 1 shows the main functional blocks of a

Wavefront Coded biometric recognition system. Typi-

cally, the imaging system consists of a low-F/# digital

imaging system in which the pupil function is opti-

mized to produce PSFs that are mostly invariant with

defocus andMTFs that retain the required information

over a sufficiently large range of spatial frequencies.

A digital sensor captures an intermediate (Wavefront

Coded) image and a processed image is generated by

post-processing this image. The processing may be as

simple as a linear filtering step, with filters that are



Wavefront Coding for Enhancing the Imaging Volume in Iris Recognition. Figure 1 Block diagram of a

Wavefront Coded biometric recognition system. The Wavefront Coded imaging system captures an intermediate image,

which is decoded during post-processing. The processed image is then passed along to the biometric recognition

algorithm.
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designed in tandem with the Wavefront Coded optics

and have as a goal the conversion of the defocus-

invariant PSFs into diffraction-limited PSFs. The filter-

ing step consists of a small fraction of the processing

steps required for conventional iris recognition algo-

rithms and, therefore, contributes with minimal pro-

cessing overhead (e.g., see [1–3] for comparison).

The resulting processed image has an extended

depth of field and is provided as an input to a biometric

recognition algorithm that uses the same range of spa-

tial frequencies used in the design of the modified

imaging system including theWavefront Coded element

and deconvolution filter. An example of experimental

results obtained using a Wavefront Coded biometric

recognition system for performing robust iris recogni-

tion is detailed below.
Experimental Example

In this example, the performance of a traditional (non-

Wavefront Coded) iris recognition imaging system is

compared with that obtained with a Wavefront Coded

imaging system. In both cases the subject stands at a

distance of about 2.2 m from the imaging system

and the performance is compared in terms of the

range of subject distances over which iris recognition

can be correctly performed. In both cases the image of

the subject’s iris is captured and compared with that

of a pre-enrolled iris, providing a match in terms of a

modified (normalized) Hamming distance (HD).

The HD is a measure of the number of bits that are

different between any two given ▶ iris codes. A HD of

zero represents a perfect match while a HD of 0.5

is equivalent to randomly varying bits and, therefore,
corresponds to a complete mismatch. In practical

applications, a HD below 0.2 or 0.3 corresponds to a

match between the image of a captured iris and a pre-

enrolled image.

Figure 2 shows a plot of the HD as a function of the

subject position. At each position ten images of two

eyes (a genuine eye and an impostor eye) are captured

in rapid succession. The images are then processed and

compared to a pre-enrolled iris code. All the calculated

HDs for the genuine (impostor) iris are plotted as

triangles (stars) and the minimum HDs are connected

by a solid (dotted) line. Ten images were collected in

order to provide us with an estimate of the statistical

variation of the HD at each position. In reality, a single

match (a HD below 0.2) would be sufficient to identify

a subject as genuine, making it unnecessary to capture

additional images. Because imperfect image segmenta-

tion is the main cause of variation in the HD, the mini-

mumHDs are selected to aid in isolating this effect when

comparing the performance of the two systems. Note

that in the traditional system the solid line has the

shape of a narrow valley with sharp transition regions,

corresponding to the distances at which defocus causes

a drop in modulation at the spatial frequencies used by

the recognition algorithm. The flat region close to the

best-focus position corresponds to the distances at

which defocus does not impact the spatial frequencies

of interest significantly. Beyond this range the image of

the iris becomes so defocused that it is no longer possible

to resolve the details necessary to correctly perform iris

recognition. Using a threshold HD of 0.2, an operating

range of about 16.5 cm is measured for this traditional

imaging system.

Figure 3 shows a plot of the HD as a function of

the iris distance for a Wavefront Coded system with



Wavefront Coding for Enhancing the Imaging Volume in Iris Recognition. Figure 2 Iris recognition range of a

traditional imaging system. The iris recognition (measured in terms of a modified HD) is plotted as a function of subject

distance showing a narrow recognition range (16.5 cm). Ten measurements are taken at each position and images of a

genuine iris (triangles) are compared to those of an impostor iris (stars). A solid (dotted) line connects the lowest HD of

the genuine (impostor) iris.
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the same characteristics as that of the traditional imag-

ing system providing the data for Fig. 2. The imaging

system providing the data for Fig. 3 uses the same

detector, same biometric algorithm, and same optical

elements as the one used for the data of Fig. 2, except

for the inclusion of a Wavefront Coded element at the

aperture stop and a decoding step of the intermediate

image before biometric processing. In this case, the

solid line defines a shallow and broad valley, effectively

demonstrating the trade-off of the lowest HD for an

extended depth of field. In this example, Wavefront

Coding provides us with a recognition range of almost

40 cm at a threshold HD of 0.2, providing an extension

of the depth of field 2.4 times greater than that which

was achieved with the traditional system while main-

taining a sufficiently large discriminatory capacity be-

tween genuine and impostor irises. This extension in the

depth of field can be tuned by the system designer and it

translates into greater usability of the iris recognition

system, possibly representing the difference between a

useful system and a system that is so constrained that

has little practical use. In this example, the Wavefront

Coded element was fabricated separately to simplify the
comparison of the traditional test system with the

Wavefront Coded one. In practice, however, it would

be more advantageous to simply modify the shape of

one or more of the existing optical surfaces.
System Design

As mentioned above, the system designer can tune the

extension of the depth of field to match the needs of

the intended application. Therefore a discussion of the

tradeoffs is warranted. The tradeoffs may be well un-

derstood in terms of the signal-to-noise ratio (SNR)

available to the designer, as explained by the HD curve

of a hypothetical biometric recognition system shown

in Fig. 4.

When designing a Wavefront Coded imaging sys-

tem, the system designer is given the choice of how

much to reduce the SNR at best focus in order to

convert it into an extended depth of field. As it turns

out, this SNR can be precisely calculated [9] and it is

directly proportional to the square of the MTF of the

imaging system. Figure 4 shows a plot of the HD as a



Wavefront Coding for Enhancing the Imaging Volume in

Iris Recognition. Figure 4 HD as a function of SNR for a

hypothetical biometric recognition system. Note the

existence of three regions of operation: (I) a low SNR

region, where the SNR is so low that identification is

not possible, (II) a mid-SNR region, where a decrease in

the SNR is accompanied by a proportional decrease in the

HD; III) a high SNR region, where a decrease in SNR

produces a negligible decrease in the HD.

Wavefront Coding for Enhancing the Imaging Volume in Iris Recognition. Figure 3 Iris recognition range of a

Wavefront Coded imaging system. The iris recognition (measured in terms of a modified HD) is plotted as a function

of subject distance showing a broad recognition range (40 cm). Ten measurements are taken at each position and

images of a genuine iris (triangles) are compared to those of an impostor iris (stars). A solid (dotted) line

connects the lowest HD of the genuine (impostor) iris.
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function of the SNR. In general, the HD is a non-linear

but monotonically decreasing function of the SNR.

The binomial distribution of error bits in the iris

provides us with three distinctive regions of interest.

In Region I, the low-SNR region, the SNR is suffi-

ciently low that the HD is approximately constant at

0.5. In Region II, the mid-SNR region, the decrease in

the SNR is proportional to the decrease in the HD. In

Region III, the high-SNR region, the SNR is sufficiently

high that a decrease in the SNR results in a negligible

decrease in the HD. The existence of Region III is

generally possible due to the non-linear processing

used in the generation of the iris codes (e.g., the thresh-

olding step that is typically used to produce the binary

iris code). Region III is clearly the preferred region of

operation, and it demonstrates the fact that it is possi-

ble to extend the depth of field of an imaging system

without any noticeable degradation of the HD at best

focus. Then, the job of the system designer consists of

(1) selecting an initial imaging system that operates

preferably in Region III; and (2) simultaneously opti-

mizing the pupil function and the deconvolution filter

so that the HD is maintained above a threshold.
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It should be noted that this threshold is application-

specific, and that the optimization should be simulta-

neously performed over the entire imaging volume.
Summary

Wavefront Coding can be used to increase the depth of

field of an imaging system by making the system more

tolerant to defocus. This may be done without reducing

the light collection ability of the system or its optical

resolution, as would be the case when using the tradi-

tionalmethod of stopping down the aperture.Moreover,

the additional steps required in image processing are a

small fraction of the total number of steps required for

biometric recognition, translating in an increase in sys-

tem robustness with little overhead. The experimental

example described above demonstrates how Wavefront

Coding can be used to increase the depth of field of an

iris recognition system and, by doing so, reduce the

constraints on the subject’s position and effectively in-

crease the usability of the system. Finally, the tradeoff

between the SNRof an imaging system and the extension

of its depth of field has been presented and discussed in

association with designing a Wavefront Coded system

for a given biometric application.
Related Entries

▶Biometric Sample Acquisition

▶Biometric System Design, Overview

▶ Iris on the Move

▶ Iris Recognition, Overview
W
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Wavelength
Electromagnetic radiation includes visible light, ultravi-

olet light, infrared radiation, and radio waves. In classi-

cal electromagnetic field theory, electromagnetic

radiation propagates as a pair of coupled electrical and

magnetic fields. A time varying electrical field creates

a time varying magnetic field that in turn creates a

time varying electrical field that creates a time varying

magnetic field that creates a time varying electrical field,

and so on. The distance over which the electri-

cal (or magnetic) field at a given instant varies from its

maximum to its minimum and back is the wavelength

of the radiation. Interactions between radiation and

matter depend on wavelength. In the human visual

system, wavelength is intimately connected with color.

Awavelength of the order of 440 nm is perceived as blue,

740 nm as red and the human eye is relatively insensitive

to wavelengths longer than 800 nm. On fundamental

physical grounds, the resolution of optical systems is

generally limited to features of the order of the wave-

length of the light used. There are some special cases in

which resolution can be extended beyond these limits.

▶Biometirc Sample Acquisition

▶Biometric Sensor and Device, Overview
Wavelet Transform
Wavelet transform divides a given data into different

frequency components at different scales. In biometrics,
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operating in wavelet domain provides additional edge

and frequency information useful for fusion and

recognition.

▶ Fusion, Sensor Level
Web Services
The W3C defines a Web service as ‘‘a software system

designed to support interoperable Machine to Ma-

chine interaction over a network.’’ Web services are

frequently just Web APIs that can be accessed over a

network, such as the Internet, and executed on a re-

mote system hosting the requested services.

▶Biometric Interfaces
Work-sharing On-card Matching
The reader side executes part of the calculation (such

as alignment) to assist the smartcard to have a faster

biometric verification time. The final matching score

calculation shall be executed on-card.

▶On-Card Matching
World Model
▶Universal Background Models



X

XML Schema Definition

XML Schema definition is a notation (using the XML

syntax) for defining the form of an XML-encoded

message (similar to ASN.1, but with a different syntax

and supporting only XML encoding of the data).

▶Biometric Technical Interface, Standardization
# 2009 Springer Science+Business Media, LLC
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Synonym

Zero effort impostor attempt
Definition

An impostor attempt is classed as ‘‘zero-effort’’ if the

individual submits his/her own biometric feature as if

he/she were attempting successful verification against

his/her own template, but the comparison is made

against the template of another user. In the case of

dynamic signature verification, an impostor would

therefore sign his/her own signature in a zero-effort

attempt. In such cases where impostors may easily

imitate aspects of the required biometric, a second

impostor measure based on ‘‘active impostor attempts’’

may be required [1]. The active impostor attempt

is the one in which an individual tries to match the

stored template of a different individual by present-

ing a simulated or reproduced biometric sample or

by intentionally modifying his/her own biometric

characteristics [1].
Introduction

The concept of zero-effort forgery centers around

an individual’s capability to submit his/her own bio-

metric feature as if he/she were attempting a successful

verification against his/her own template. Zero-effort

is a typical methodology of extracting perfor-

mance rates (false accept, false reject) of a biometric

system. However, in the realm of dynamic signature
# 2009 Springer Science+Business Media, LLC
verification, the concept of the impostor distri-

bution, hence zero effort, is often overlooked. This

definition is broken into two parts:an overview of

dynamic signature verification (to explain the con-

cept of the modality that has the exception for zero

effort) and a discussion of the importance of the

impostor dataset (as it relates to dynamic signature

verification and the concept of zero-effort as explained

earlier).
Overview of Dynamic Signature
Verification

Biometrics can be divided into two main categories:

behavioral andphysiological. Fingerprint and iris are

examples of physiological biometrics, whereas voice

and signature are examples of behavioral biometrics.

Signature verification aims at authenticating an indi-

vidual, based on their signing characteristics. Appli-

cations such as document authenticity, financial

transactions, and paper-based transactions have all,

at one time, used the signature to convey the intent

to complete a transaction [2,3]. Signature verification

can be divided into two classes, depending on how the

signature data are collected and analyzed. The first is

the digitized signature. Here, the input is a static

image, extracted from a document, check, or receipt

that is verified after being scanned. The second type is a

dynamic signature, where the user signs on a digitizer,

and the signature, along with traits or characteristics, is

collected in real time.

Dynamic signature verification has a number of

statistical features that can be derived from the basic

set of data that a digitizer provides, and these vary

significantly across algorithms. The typical consensus

is that these input variables are gathered from a dig-

itizer and include x, y (Cartesian co-ordinates), p (pres-

sure or force), and t (time) [4]. These input variables

are then used to create the global and local features
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described in various accounts in the literature [4–6].

Fairhurst and Ng [7] outlined 61 features [8], Nalwa [9],

observed that the temporal ‘‘characteristics of the pro-

duction of an online signature are the key to the

signature’s verification’’ (p. 5). Typical signature func-

tions include pressure vs. time, horizontal and vertical

components of position, velocity, acceleration, and

force, all against time. Another way of characterizing

a signature is through the analysis of the ‘‘stroke’’ that

is, the pen down–pen up movement of the pen on the

digitizer. All these various dynamic traits that are col-

lected during the act of signing are said to make an

impostor signature easier to detect.
Forgery Levels – The Impostor
Data Set

One of the interesting characteristics of dynamic sig-

nature verification is the concept of an impostor

attempt. An impostor attempt is defined as a ‘‘zero-

effort’’ if the individual submits his/her own biomet-

ric feature as if he/she were attempting successful

verification against his/her own template, but the

comparison is made against the template of another

user [1]. This makes sense for an opportunistic forger

for almost all biometrics, barring dynamic signature

verification. In the case of dynamic signature verifica-

tion, ‘‘B’’ would sign ‘‘B’’’s name trying to get into

‘‘A’’’s account. Thus, zero-effort forgery, on the part of

the imposter, makes no sense. ‘‘B’’ would not have

any information about the signature that ‘‘A’’ pro-

vides. Therefore, in order to examine the FAR and

FRR of a dynamic signature verification system, an

examination of the impostor dataset construction is

of great importance. In the literature, there are several

different examples of the impostor dataset. Biometric

testing and evaluation typically create a probability of

an impostor signature getting accepted as a genuine

signature. These outcomes are generally denoted by a

False Accept, or a False Reject under conditions of

zero effort. Such an attempt is defined as ‘‘where an

impostor uses his or her own biometric sample and

claims the identity of a different enrollee’’ [10].

The determination of the forger in dynamic signa-

ture verification is somewhat a challenge, as a zero

effort forgery would require the impostor to sign his

or her own name while claiming the identity of a
different enrollee. Therefore, understanding how to

test and evaluate the signature in a forgery setting is

an interesting research question. In the literature,

there is no real consensus on how best to challenge

a signature. Impostor datasets are created in numerous

ways and have the effect of changing the respective

performances of algorithms. This change can be done

through a different generation of the impostor signa-

tures. A review of the literature shows various perfor-

mance results from several studies, all of which have

different methodologies for collecting impostor signa-

ture datasets. The various studies and their respective

error rates (false accept, false reject, and the equal error

rate where appropriate) have been outlined earlier

[11]. The variances in error rates shown (0% to 50%

false accept rate and 0% to 20% false reject rate) can be

explained by a number of factors, one of which has to

do with how an imposter signature dataset is created.

Komiya and Matsumoto’s [12] study is particularly

interesting. This study had a database consisting of

293 genuine signatures and 540 forgery signatures

from eight individuals [13] study dataset was com-

prised of 496 original signatures from 27 people.

Each person signed 11 to 20 times. The database

contained 48 forgeries that ‘‘fulfill the requirement on

the visual agreement and the dynamic similarity with

the original signature’’ (p. 5). [14] trained the algo-

rithm using 250 signatures per writer; of these 250

signatures, 100 were authentic signatures and 150

were random forgeries, classified as the genuine signa-

tures of other writers. [15] used 27 people in their

study, with the participants writing their own signa-

ture. The study also used 4 people who imitated the

signatures of these 27 people. Unfortunately, no fur-

ther information is provided on the selection of the

impostor or on what knowledge the forgers possessed

in order to forge the signatures. [2] used genuine

signatures from other individuals as forgeries. In addi-

tion, a group of synthesized signatures was created by

distorting real signatures through the addition of low

level noise and dilation or erosion of the various struc-

tures of the signature. [16] motivated the forgers by

offering a cash reward. [17] examined people’s signa-

tures over a four-month period to assess variability

over time. In the Signature Verification Competition,

genuine signers created signatures other than their

own [18]. In [19], the authors defined three different

levels of forgeries: the simple, statically skilled, and
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timed (p. 643). [3] used signatures that ‘‘on casual

visual inspection would pass as authentic’’ (p. 201).

[20] provides three characteristics of forgery: the

random forgery defined as one that belongs to a differ-

ent writer of the signature model; simple forgery

represented by a similar shape consistency with the

genuine signers shape; and the skilled forgery (p. 2).

[8] described two classes, the skilled forgery and

the random or zero effort forgery. For the skilled

forger, it is ‘‘signed by a person who has access to a

genuine signature for practice’’. In addition, it is

important to understand the handedness of the

genuine signer, and sometimes, the gender. Again,

the literature sometimes provides insights into the

impostor, and to some extent, the genuine data-

sets, all to varying degrees. For example, Lee, Berger,

Aviczer [19] collected 5,603 genuine signatures from

105 people, including 22 women and 5 individuals

who were left handed.

Therefore, when assessing the impostor datasets for

dynamic signature verification, there are probably

many different levels from ‘‘zero-effort’’ at the lowest

level through to trained and skilled forger. This all

depends on the level of information given to the im-

postor. For example, level 0 would be the ‘‘zero-effort’’

where ‘‘B’’ has no relevant knowledge of ‘‘A’’. The

knowledge is zero; there is no knowledge of name:

verbal, printed, or signed. The next level is that ‘‘B’’

knows ‘‘A’’’s name – this information is revealed ver-

bally. Therefore, the forger might mistake ‘‘Stephen’’

for ‘‘Steven’’ or ‘‘Steve,’’ depending on the formality or

ceremony of the signature. Level 2 would be that ‘‘B’’

has seen a static image of ‘‘A’’’s signature prior to the

impostor attempt. Level 3 is that ‘‘B’’ can see a static

image of ‘‘A’’’s signature at the time of signing. Level 4

is that ‘‘B’’ is able to trace a sample of ‘‘A’’’s signature.

Level 5 is where ‘‘B’’ has recently witnessed a sample of

‘‘A’’’s signing, and level 6 is where ‘‘B’’ has repeatedly

witnessed ‘‘A’’ signing. Even this methodology takes

into consideration neither the Perceived Signature

Strength (PSS) of the original signature nor the moti-

vation of the impostor. The PSS is a concept that

indicates that an ‘‘opportunistic forger’’ will not forge

a signature that is ‘‘hard’’ to forge, as their success at

the point-of-sale may be not as high as an ‘‘easy’’

signature. This is more of an ‘‘opportunistic’’ forgery

as opposed to a more sophisticated attack on the

signature as outlined in previous research. For the
case of this study, an opportunistic forger is analogous

to an ‘‘opportunistic thief ’’ – working on their own

without any equipment [16].
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Zero Effort Impostor Attempt
▶Zero Effort Forgery
Zone
The print Roman characters usually occupy three

zones: the upper, the middle and the bottom zones.

For instance, letters ‘‘a,’’ ‘‘c,’’ ‘‘e,’’ ‘‘m,’’ etc., appear in

the middle zone; ascendant letters ‘‘b,’’ ‘‘d,’’ ‘‘h,’’ etc.,

occupy both the upper zone and the middle zone;

descendent letters ‘‘g,’’ ‘‘p,’’ etc., occupy both the mid-

dle zone and the bottom zone. There are some letters

that may cover all the three zones such as ‘‘f ’’ and ‘‘j.’’

▶ Signature Sample Synthesis
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Ear Biometrics, 3D

BIR BHANU, HUI CHEN

Ear Recognition

Earmark(s)

Earprints

Earprints, Forensic Evidence of

CHRISTOPHE CHAMPOD

e-Authentication, Remote Access (Partial)

Eigenface

Elastically Adaptive Deformable Model

Electromagnetic Radiation

Electromagnetic Resonance

Electromagnetic Spectrum

Embedded Processor

Embedded Software

Embedded Systems

NAOHISA KOMATSU, MANABU NAKANO

Embedding Space

Empirical Analysis

Empirical Statistical Models

Encoded Finger Data

Encoder

Encoding of Hand Geometry Information

Encryption, Biometric

ANN CAVOUKIAN, ALEX STOIANOV

Enhancement

Enrollment

Enrollment Time

Enrollment Transaction Duration

Ensemble Learning

ZHI-HUA ZHOU

Entropy, Biometric

ePassport

Epidermis

Ergonomic Design for Biometric Systems

ERIC P. KUKULA, STEPHEN J. ELLIOTT

Ergonomics

Error Probability Non-Accumulation

Evaluation of Gait Recognition

SUDEEP SARKAR, ZONGYI LIU

1420 X List of Entries



Expected Performance or Utility of Fingerprint Image

in an Automated Comparison Environment

Expression

Extended Enterprise

External Identification

External Operation Time

Extra-Class

Eye Centers

Eye Tracking

Face Acquisition

Face Aging

Face Alignment

LEON GU, TAKEO KANADE

Face Alignment Error

Face Biometric

Face Camera

Face Databases and Evaluation

DMITRY O. GORODNICHY

Face Detection

MING-HSUAN YANG

Face Device

MASSIMO TISTARELLI

Face Identification

Face Image Data Interchange Formats

Face Image Data Interchange Formats,

Standardization

PATRICK GROTHER, ELHAM TABASSI

Face Image Quality Assessment Software

Face Image Synthesis

Face Localization

Face Matching

Face Misalignment Problem

SHIGUANG SHAN, XILIN CHEN, WEN GAO

Face Photograph

Face Pose Analysis

IOANNIS PATRAS

Face Pose Estimation

Face Pose Recognition

Face Processing

Face Recognition

Face Recognition From Image Sequences

Face Recognition in Near-Infrared Spectrum

Face Recognition Performance Evaluation

Face Recognition Using Local Features

Face Recognition, 3D-Based

IOANNIS A. KAKADIARIS, GEORGIOS PASSALIS, GEORGE

TODERICI, TAKIS PERAKIS, THEOHARIS THEOHARIS

Face Recognition, Component-Based

ONUR C. HAMSICI, ALEIX M. MARTINEZ

Face Recognition, Geometric vs.

Appearance-Based

LIOR WOLF

Face Recognition, Near-Infrared

STAN Z. LI, DONG YI

Face Recognition, Overview

ALEIX M. MARTINEZ

Face Recognition, Thermal

GEORGE BEBIS

Face Recognition, Video-Based

RAMA CHELLAPPA, GAURAV AGGARWAL

S. KEVIN ZHOU

Face Reconstruction

Face Registration

Face Sample Quality

KUI JIA, SHAOGANG GONG

Face Sample Standardization

Face Sample Synthesis

SAMI ROMDHANI JASENKO ZIVANOV

Face Sample Utility

Face Sketching

Face Tracking

AMIT K. ROY-CHOWDHURY, YILEI XU

Face Variation

CARLOS D. CASTILLO, DAVID W. JACOBS

Face Verification

Face Warping

Face, Forensic Evidence of

MICHAEL C. BROMBY

Facial Action Coding

Facial Changes

Facial Expression Analysis

Facial Expression Recognition

MAJA PANTIC

Facial Landmarks

Facial Mapping

Facial Motion Estimation

Facial Photograph

Factor Analysis

Failure to Acquire Rate

Failure-to-Enrol Rate

Fake Finger Detection

False Match Rate

False Negative Rate

False Non-Match Rate

False Positive Rate

Feathering

Feature Detection

Feature Extraction

List of EntriesX1421



Feature Fusion

Feature Map

Feature Selection

Feature Vector

Features

Features vs. Templates

Fidelity

Field of View (FOV)

Finger Data Interchange Format,

Standardization

RAUL SANCHEZ-REILLO, ROBERT MUELLER

Finger Geometry, 3D

SOTIRIS MALASSIOTIS

Finger Pattern Spectral Data

Finger Vein

HISAO OGATA MITSUTOSHI HIMAGA

Finger Vein Authentication Device

Finger Vein Biometric Algorithm

MITSUTOSHI HIMAGA

Finger Vein Feature Segmentation

Finger Vein Imaging Device

Finger Vein Pattern Imaging

MITSUTOSHI HIMAGA

Finger Vein Reader

MITSUTOSHI HIMAGA

Finger Vein Scanner

Fingermark Identification Procedure

Fingerprint

Fingerprint Analysis

Fingerprint Authentication

Fingerprint Benchmark

Fingerprint Binarization

Fingerprint Biometric

Fingerprint Capture

Fingerprint Characteristics

Fingerprint Classification

XUDONG JIANG

Fingerprint Comparing

Fingerprint Compression

NIGEL M. ALLINSON

Fingerprint Contrast Enhancement

Fingerprint Corpora

Fingerprint Data Interchange Format

Fingerprint Databases and Evaluation

FERNANDO ALONSO-FERNANDEZ, JULIAN FIERREZ

Fingerprint Device

Fingerprint Encryption

Fingerprint Fake Detection
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JEAN-FRANÇOIS BONASTRE, DRISS MATROUF

Speaker Model

1430 X List of Entries



Speaker Parameters

Speaker Recognition Engine

Speaker Recognition, One to One

Speaker Recognition, Overview

JEAN HENNEBERT

Speaker Recognition, Standardization

JUDITH MARKOWITZ

Speaker Segmentation

LAURA DOCIO-FERNANDEZ, CARMEN GARCIA-MATEO

Speaker Separation

Speaker Tracking

Speaker Verification

Spectral Analysis of Skin

Specular Reflection

Specularity

Speech Analysis

DOROTEO T. TOLEDANO, DANIEL RAMOS, JAVIER

GONZALEZ-DOMINGUEZ,
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