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Preface to the Second Edition

This second edition of our book on advanced statistical techniques for
ecologists comes out seven years after the first. We are very pleased with the
reception of the first edition, which has been widely read and used in many
graduate seminars on statistics in ecological research. The enthusiasm expressed
for the book was part of the motivation for this new edition, which updates and
expands on the original. We like to think that this book has played a role in
introducing many previously unfamiliar approaches to ecologists and in setting
higher standards for the use and reporting of more conventional analyses.

This new edition is designed to help continue and propel these trends. Nearly
all of the chapters included from the first edition are revised, several substantially,
to bring them up to date. We added four new chapters that reflect recent advances
in statistical practice, particularly within ecology. The changes result from a com-
bination of new statistical theory, new computer software and hardware capabili-
ties, and evolving practices and improved statistical standards among ecologists.

We are also taking advantage of another important advance in information
technology, the World Wide Web. Oxford University Press has established a
companion Website [http://www.oup-usa.org/sc/0195131878/] that contains the
source code and data sets for many of the chapters. By moving the source code
to a Website, we were able to add a chapter to the book. Readers can now check
their results against the sample data sets on-line.

It is exciting to be publishing a book in 2001. Ecological research and the use
of statistics in ecology continue to evolve rapidly. We hope that this new edition
will prove helpful to established researchers and to those in training, who will

http://www.oup-usa.org/sc/0195131878/
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bring new standards and new insights into the service of the science in the twenty-
first century.

Samuel M. Scheiner
Jessica Gurevitch



Preface to the First Edition

The genesis of this book was the result of a conversation while eating a
bento (a Japanese box lunch of rice, sushi, pickles, and other delicacies) on a
sidewalk in Yokohama in 1990. The conversation had turned to statistics and
both of us were commenting on statistical issues and techniques that were either
underused or misused by ecologists. For some time, Jessica had been contemplat-
ing a book on statistical techniques in experimental design and analysis, written
for ecologists. The goal of such a book was both to encourage the correct use of
some of the more well-known approaches, and to make some potentially very
useful but less well known techniques available to ecologists. We both felt
strongly that such a book was timely, and would be useful to ecologists working
on applied as well as basic problems. Had Sam not intervened, this idea would
undoubtedly have met the fate of many other fine ideas that have never made it
into the light of day.

It was apparent to both of us that we did not have the skills to write such a
book ourselves, nor the time. However, we were able to compile a list of topics
and potential contributors whom we knew were knowledgeable about those top-
ics. (An initial outline for the book was composed while sitting for hours, stalled
in traffic going to and from Mount Fuji. At the next INTECOL meeting keep
your eyes out for "I survived the trip to Mt. Fuji" t-shirts.) We batted (actually
e-mailed) these ideas back and forth for nearly a year. The success of a sympo-
sium organized by Phil Dixon at the 1991 annual meeting of the Ecological Soci-
ety of America on the design of ecological experiments encouraged us to continue
our endeavors, and we managed to secure commitments from many of our con-
tributors during that week. The enthusiasm for this undertaking expressed by
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colleagues we spoke with buoyed us, as did the interest and encouragement of
Greg Payne from Chapman and Hall. Therefore, despite warnings about the tra-
vails of editing a book, we forged ahead. So—beware of the dangers of conversa-
tion over raw fish.

Samuel M. Schemer
Jessica Gurevitch
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I

Theories, Hypotheses,
and Statistics

SAMUEL M. SCHEINER

Picture men in an underground cave, with a long entrance reaching up towards
the light along the whole width of the cave. .. . Such men would see nothing of
themselves or of each other except the shadows thrown by the fire on the wall
of the cave. ... The only truth that such men would conceive would be the
shadows.

Plato, The Republic, Book VII

I hold that philosophy of science is more of a guide to the historian of science
than to the scientist.

Lakatos (1974)

I.I The Purposes of This Book

Ecology is more and more an experimental science. Ecologists are increasing
their use of experiments to test theories regarding organizing principles in nature
(Hairston 1989; Resetarits and Bernardo 1998). However, ecological experiments,
whether carried out in laboratories, greenhouses, or nature, present many statisti-
cal difficulties. Basic statistical assumptions are often seriously violated. Highly
unbalanced designs are often encountered as a result of the loss of organisms or
other biological realities. Obstacles such as the large scale of ecological processes
or cost limitations hinder treatment replication. Often it is difficult to appropri-
ately identify replicate units. Correct answers may require complex designs or
elaborate and unusual statistical techniques. To address these problems, we have
fashioned this book as a toolbox containing the equipment necessary to access
advanced statistical techniques, along with some cautionary notes about their ap-
plication. These chapters are meant to serve as introductions to these topics, not
as definitive summaries. Interested readers are provided with an entree to the
literature on each topic and encouraged to read further.

Most ecologists leave graduate school with only rudimentary statistical train-
ing; they are either self-taught or have taken a basic one-semester or one-year
statistics course. Thus they lack familiarity with many advanced but useful meth-
ods for addressing ecological issues. Some methods can be found only in statistics
journals that are inaccessible to the average ecologist. Other methods are pre-
sented in very general or theoretical terms that are difficult to translate into the
actual computational steps necessary to analyze real data. Developments in apply-

3
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ing these specialized approaches to ecological questions cannot be found in con-
ventional statistical texts, nor are they explained sufficiently in the brief "Meth-
ods" sections of ecological articles. Such barriers put these methods out of the
hands of the majority of ecologists, leaving them unavailable to all but a few.

One result of this gap between need and training has been a spate of notes and
articles decrying the misuse of statistics in ecology. The criticisms include the
improper identification of the nature of replicates and pseudoreplication (Hurlbert
1984; Gurevitch and Chester 1986; Potvin et al, 1990b), the improper use of
multiple comparison tests (Day and Quinn 1989), the use of ANOVA when more
powerful techniques are available (Gaines and Rice 1990), the misuse of stepwise
multiple regression (James and McCulloch 1990), the improper reporting of sta-
tistical parameters and tests (Fowler 1990), and the overuse of significance tests
(Yoccoz 1991).

This book is designed as a how-to guide for the working ecologist and for
graduate students preparing for research and teaching careers in the field. The
ecological topics were chosen because of their importance in current research and
include competition (chapters 5, 11, 16, and 17), plant-animal interactions (chap-
ter 12), predation (chapters 6, 9, and 10), and life-history analyses (chapters 6, 7,
8, and 13). The statistical techniques were chosen because of their particular use-
fulness or appropriateness for ecological problems, as well as their current wide-
spread use or likely use in the future. Some may be familiar to ecologists but are
often misused (e.g., ANOVA, chapters 4 and 5), other approaches are rarely used
when they should be (e.g., power analysis, chapter 2; MANOVA, chapter 6; re-
peated-measures analysis, chapter 7; nonlinear curve fitting, chapter 10), and oth-
ers are either newly developed or unfamiliar to most ecologists and yet are impor-
tant in this field (e.g., nonparametric ANCOVA, chapter 7; spatial analysis,
chapters 15 and 16; Bayesian analysis, chapter 17; meta-analysis, chapter 18).
Some of the statistical approaches presented here are well established within the
field of ecology, whereas others are new or controversial. We have attempted to
mix the tried and true with the innovative. Each statistical technique is demon-
strated by applying it to a specific ecological problem; however, that does not
mean that its use is in any way limited to that problem. Clearly, many of the
approaches will be widely applicable. With this book, we hope to encourage
investigators to expand their repertoire of statistical techniques.

This volume deals primarily with the use of statistics in an experimental con-
text, reflecting the increasing use of experimental studies in ecology, especially
in natural settings. We emphasize manipulative experiments, although many of
the techniques are also useful in the analysis of observational experiments (chap-
ters 6, 11, 12, and 18) and nonexperimental observations (chapters 2, 3, 9, 10,
11, 14, 15, and 16). In doing so, we intend no slight to other forms of ecological
experiments and research programs. Many other books are available that deal
with the analysis of nonexperimental observations (e.g., Ludwig and Reynolds
1988; Digby and Kempton 1987; Manly 1990b, 1997). The list of ecological
problems covered herein is not meant to be prescriptive, but illustrative of the
wide range of problems amenable to experimental analysis. For example, chapter
9 deals with large-scale phenomena not usually covered by manipulative experi-
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ments. Our hope in compiling this book is to demonstrate that even relatively
advanced statistical techniques are within the grasp of ecologists, thereby improv-
ing the ways that ecological experiments are designed and analyzed.

1.2 Theories, Hypotheses, and Statistics

1.2.1 An Error-Statistical Scientific Process

The vast majority of scientists are, consciously or unconsciously, metaphysical
and epistomological realists. That is, we believe that there is an objective universe
that exists independent of us and our observations. Science is, then, a process of
building theories or models of what that universe consists of, how it is put to-
gether, and how it functions. Those theories consist of a set of assumptions about
the universe (Pickett et al. 1994, box 3.2), pieces of the grand truth about the
universe that we strive to discover, with our accumulated theories being the clos-
est that we can ever come to that truth. In building and testing the theories, we
believe that we are making successively closer approximations to the truth, al-
though we can never be certain that we have ever actually arrived at the truth.
We progress by carefully sorting through and eliminating possible sources of
error in our logic and evidence. Science is an experimental process of learning
from error.

Statistics plays a central role in this scientific process. The role of statistics is
explicated by the philosopher Deborah Mayo (1996) in what she terms an error-
statistical approach. Her treatment of this topic consumes a 493-page book, and
I can do no more than sketch her thesis. If you have any interest in the philosophi-
cal underpinnings of our enterprise, I strongly recommend this book. It comes
closer to capturing actual scientific practice than any other account of the philoso-
phy of science that I have read. Most current treatments of the philosophy of
science by ecologists (e.g., Peters 1991; Pickett et al. 1994) still espouse the
falsificationism of Popper (1959) and the social constructivism of Kuhn (1962),
views that are out of step with the realism of actual scientific practice.

The heart of the error-statistical approach is the recognition that scientists
move forward in their search for truth by learning from error using error-probabil-
ity statistics. This approach derives, in part, from what is termed Neyman-Pear-
son statistics, although it differs in significant ways. The approach can be summa-
rized as a hierarchy of models:

Primary
Model

Experimental
Model

Data
Model

This hierarchy is deliberately shown horizontally, rather than vertically, because
you can move in either direction, from the primary model to the data model or
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back. You should not be tempted to equate these directions with deductive and
inductive processes.

This hierarchy is a framework for delineating the complex relationship be-
tween raw data and scientific hypotheses. Primary models concern the process of
breaking down the principal question into a set of tests of hypotheses and esti-
mates of theoretical quantities. Experimental models relate those questions to the
particular experiment at hand. Data models focus on the generation and modeling
of raw data.

Experimental models and their link with data models are the subject of this
book. We explore a range of types of experiments. One type is the manipulative
experiment, the more usual sense of an experiment, including laboratory studies
of behavior (chapter 10), manipulations of growth conditions in environmental
chambers or greenhouses (chapter 4), creation of seminatural environments, and
imposition of experimental treatments on natural environments (chapters 5, 9, 15,
16, and 18). A second type is the observational experiment. This latter type of
experiment is especially important in ecology because the scale of phenomena
addressed or ethical considerations often preclude manipulative experiments. For
example, theory may predict that prairies will be more species-rich than forests.
One could test this hypothesis by measuring (observing) species numbers in each
of those habitats. This procedure is a valid test of the theory, as long as the
observations used for the test differ from the original, nonexperimental observa-
tions used to produce the theory. Intermediate between manipulative and observa-
tional experiments are natural experiments in which one predicts the outcome of
some naturally occurring perturbation (Diamond 1986; time series analysis, chap-
ter 9). [Some (e.g., Hairston 1989) would lump natural experiments in with obser-
vational experiments.]

Statistics plays a key role by linking the parts of the model hierarchy. Mayo
identifies three tasks for error statistics: (1) Statistics provides techniques for data
generation and assumption testing. For example, power analysis (chapter 2) and
examination of residual distributions (chapter 3) fall in this category. (2) Statistics
provides error probabilities (most of this book). (3) Statistics provides ways for
checking on possible errors, such as mistakes about chance correlations, parame-
ter estimates, or experimental assumptions. From a statistical point of view, a
severe test is one in which both the Type I and Type II error probabilities are
small (section 1.2.2; chapter 2). When our data pass these tests, we have learned
something. We have answered one question with high reliability and added one
more piece to the puzzle.

Central to this discussion are three different uses of the concept of "assump-
tion." First are explanatory assumptions, those that we make about the universe
(e.g., the assumption that conspecifics will compete more than distantly related
species). These assumptions make up the theory that an experiment is attempting
to test. Second are simplifying assumptions, those made for analytic convenience
(e.g., the assumptions that mating is completely random). These assumptions ei-
ther were tested by previous experiments or are known not to seriously bias re-
sults if violated. Third are statistical assumptions, those that underlie the statistical
procedure used (e.g., the assumption in parametric statistics that the tested vari-
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able has a normal distribution). The statistical assumptions are the basis for the
stated probability (the P-value) that the deviation of the observed parameter value
from the predicted value is due only to random sampling effects. Meeting these
assumptions is critical if the statistical procedure is to provide a correct answer.
Unfortunately, these statistical assumptions are often not understood or are ig-
nored by the experimentalist, resulting in incorrect conclusions (e.g., chapters
7, 9, and 10). Throughout this book, critical assumptions underlying statistical
procedures are presented, along with warnings about the consequences of a failure
to meet those assumptions. Knowing the consequences of violating such assump-
tions can be very useful because sometimes a reasonably robust answer can be
obtained despite violations of some assumptions.

This one-step-at-a-time process, with statistical inference playing a key role at
each step, characterizes scientific practice. However, statistical inference does not
equate with scientific inference. Nor is scientific inference simply a brand of
formal logic. The error-statistical process is much more complex because it en-
compasses the use of scientists' professional judgment as to which possible
sources of error are plausible and likely. It is also important to recognize that an
error-statistic framework is not a prescription for scientific practice. Unlike most
philosophers of science, Mayo does not claim to present a set of global rules.
Rather, she emphasizes that actual scientific practice is much more piecemeal and
proceeds one question at a time.

1.2.2 Type I and Type II Errors

Two types of errors can arise over the decision to reject a hypothesis being tested.
A Type I error is the declaration of the hypothesis to be false when it is actually
true; a Type II error is the failure to falsify the hypothesis when it is actually
false. Statistical procedures are designed to indicate the likelihood or probability
of those errors. Most familiar is the probability of Type I errors, the a and P-
values reported in "Results" sections in scientific articles. Somewhere along the
way, a value of P < 0.05 became a magic number: reject the hypothesis if the
probability of observing a parameter of a certain value by chance alone is less
than 5%, and do not reject (or accept) if the probability is greater. Although some
sort of objective criterion is necessary so that we simply do not alter our expecta-
tions to meet the results (throwing darts against the wall and then drawing a target
around them), three additional matters must be considered.

First, we must consider the power of the test: the (3-value or probability of a
Type II error (chapter 2). (Technically, the power equals 1 - (3.) Often in ecology,
because of the scale of the phenomena under study, large numbers of replicates
of experimental treatments are often not used and sometimes not possible. In such
situations, it may be acceptable to use a higher a-level, such as a = 0.1, as a
cutoff for a decision of statistical significance because the power of the test is
low. See Toft and Shea (1983), Young and Young (1991), and Shrader-Frechette
and McCoy (1992) for discussions of this issue especially with regard to the
relative importance of each type of error in decision making. A very different
approach to this problem is offered by the Bayesian school of statistics (Bayes
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1763; chapter 17). Its proponents believe that the conventional procedure for deci-
sion making on the basis of error rates is wrong, and they use a different approach
for statistical analysis and the evaluation of results [see Edwards et al. (1983) and
Berger (1985) for more general discussions of Bayesian statistics].

Second, it is important to keep in mind the ultimate goal of any scientific
investigation: deciding which of the hypotheses about the universe are correct.
Ultimately these are yes or no decisions. What the statistical test should indicate
is "Yes, the hypothesis is almost certainly true," "No, the hypothesis is almost
certainly false," or "Maybe, another experiment must be performed." Thus, the
P-values are only guidelines, and results that lie in the region 0.011 < P < 0.099
(to pick two arbitrary values) should be judged with caution.

Third, it is important to distinguish between theory building and theory testing
when we choose the criteria for making a decision. When looking for patterns
and building theories, we want to be less conservative and use a higher a-value
so that we do not overlook promising directions of research. On the other hand,
when testing theories, we should take a more conservative stance; this conforms
to Mayo's need to put a hypothesis to a severe test. (A more conservative proce-
dure, in statistical parlance, is a procedure that is less likely to reject the null
hypothesis.) The cost of making Type I or Type II errors may also be a consider-
ation: if a harmful effect on an endangered species is tested with low statistical
power, it is more cautious to be statistically liberal than statistically conservative
(see chapter 2).

Sometimes it is difficult to determine the actual Type I error rate. This rate is
supposed to be how often, if the experiment were repeated many times, the hy-
pothesis would be rejected incorrectly when it was true. A problem arises if there
is more than one estimation of the same parameter in the course of a study. For
example, suppose we wish to determine whether two plant populations differ. We
might choose some number of individuals in each population, measure 10 differ-
ent traits of each individual, and compare the estimated parameters. Or, suppose
we measure three different species to test the hypothesis in question. Under what
conditions is it necessary to adjust the a-value? Of concern here is whether a
single hypothesis is being independently tested more than once. If that is the case,
then some sort of correction may be warranted, such as the Bonferroni procedure
(Simes 1986; Rice 1990). Another solution, especially if the responses are not
independent, is to use multivariate statistics, reducing the problem to a single
statistical test (chapters 6 and 8).

There has been extensive debate over this issue with regard to the comparison
of multiple means (Jones 1984). One side is concerned that the declaration that
two samples are different can depend on what other samples are included in the
analysis. Advocates of this position say that only individual pairs of means should
be compared and no multiple sample tests such as ANOVA or Tukey's test should
be employed (Jones and Matloff 1986; Saville 1990). The other side is concerned
that such a procedure will cause an inflation of the Type I error rate (Day and
Quinn 1989). Both sides have valid positions, and each investigator must decide
(1) what is the question being addressed and (2) how conservative to be. For exam-
ple, consider an experiment that examines the effects of three pesticides on corn
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earworm populations in six agricultural fields. If the question being addressed is,
"How do corn earworms respond to pesticides?" then the samples are meant to
represent a random sample of a larger set, all populations of the species. In that
instance, a multiple comparison procedure, such as ANOVA, would be appropriate.
If instead the question being addressed is, "Which of these three pesticides is best
for controlling corn earworm?" then each sample is of individual interest, and indi-
vidual comparisons are warranted. Regardless of the position we take, in published
articles it is crucial to state clearly the question being addressed, the statistical
procedure being used to answer it, the magnitudes of the Type I and Type II error
rates, and the criteria for choosing the procedure and rates.

Keep in mind that statistical significance is not equivalent to biological signifi-
cance. A large experiment can detect very small effects, which, in a world where
stochastic factors are present, will just get swamped by environmental variation.
For example, an experiment testing pairwise competitive interactions could be
devised to detect a 0.001% advantage by one species. Such an effect would be
meaningless in a situation in which the actual encounter rate is low and large
disturbances perturb the community every few years. On the other hand, we must
be cautious about failing to recognize the importance of weak processes that can
become consequential over very large scales of space and time. For example,
macroparasites (mites, ticks, and so on) in the aggregate can have large effects
on the population dynamics of their host over long time periods, yet those effects
could be difficult to detect because of low parasitism rates on any given individ-
ual. One technique for detecting such weak processes is meta-analysis (chapter
18), a method of combining the results from different experiments.

1.2.3 Pseudoreplication versus Nonindependence

An important opening salvo in the war against bad statistics in ecology was the
article by Hurlbert (1984) in which he coined the term pseudoreplication, the
statistical treatment of experimental units as independent when they are not. Since
then the problem of pseudoreplication in ecology has decreased, although it has
not entirely disappeared (Heffner et al. 1996). However, we now face the opposite
problem, seeing pseudoreplication where it does not exist. I have frequently heard
the statement, "Oh, that is pseudoreplication" when, in actuality, these are simply
nonindependent observations that can be accounted for in the statistical model.

What is the distinction? Consider an experiment to examine the effects of site
conditions on the size distribution of a gall-making insect. Galls form on the
stems of bushes, with each gall containing multiple chambers each with a larva.
Galls are collected and larva measured in a hierarchical fashion: 3 larva are mea-
sured from each gall, 5 galls are collected from each bush, 20 bushes are sampled
from each site, and 4 sites are sampled. What is the minimal level of true replica-
tion? The answer is, "It depends on the question." For larva within galls, the
growth of one affects the growth of the other. This is a case of pseudoreplication
because the residual errors of the observations are not independent. However,
for the galls growing on different branches, although the observations are not
independent, this is not a case of pseudoreplication because the residual errors
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are independent. Instead, the two observations have a common external factor
(bush) that can be accounted for statistically (that is, included in the model) in this
case by nesting "bush" within "site" in the ANOVA (chapter 4). Other statistical
techniques, such as spatial analysis (chapters 15 and 16), can also be employed.
Hurlbert's original essay on pseudoreplication did not distinguish between these
two types of nonindependence. As a result, many ecologists have taken too ex-
treme a view of the problem.

I also encourage a more moderate stance on two other issues raised by Hurlbert
(1984), extrapolation and demonic intrusion. Extrapolation deals with the problem
of the lack of replication over ecological units. For example, chapter 9 deals with
whole-lake manipulations. Because of cost and feasibility limitations, the experi-
ment is done in only a single lake. One school of thought would claim that the
researchers have no warrant to extrapolate their results to other lakes because they
have no information on lake-to-lake variation in the experimental response. I con-
tend that such an extrapolation is warranted if the researchers can provide enough
additional information to convince us that the treatment response seen in this lake
is similar to what would be seen in other lakes. This is an example of what Mayo
calls the use of error statistics to test data and experimental assumptions.

Demonic intrusion is a related issue. Even if the researchers provide informa-
tion showing that the manipulated lake is typical of other lakes in the region
based on a long list of measured variables, how do they know that some other,
unmeasured variable does not differ? More typically, this issue is raised with
respect to artificial environments, for example, the use of a single pair of con-
trolled-environment greenhouses with all replicates of one temperature treatment
in one greenhouse and all replicates of another temperature in the other green-
house (chapter 4). In this case, practical considerations prevent replication. I con-
tend that at some point we have to let common sense rule. We can measure as
many environmental variables in each greenhouse as possible to convince our-
selves that they are otherwise identical. We can carry out subsidiary experiments
(e.g., grow plants in both greenhouses at the same temperature) to assess among-
greenhouse variability. If that variation is small relative to the treatment effects,
we can safely ignore it. Yes, we can all come up with highly unlikely situations
that might mislead us, and we might even have experienced some of these situa-
tions. But practical considerations often intervene in our attempts to design the
ideal experiment. Scientific progress demands that we allow extra-statistical infor-
mation to play a role in how we interpret our experimental results. The use of
this additional information is why Mayo states that scientific inference is not
identical to statistical inference.

1.2.4 Using and Reporting Statistics

Ultimately, statistics are just one tool among many that we, as scientists, use to
gain knowledge about the Universe. To be used well, these tools must be used
thoughtfully—not applied in an automatic fashion. Our message is that there is
often no single right way to use statistics. On the other hand, there are many
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wrong ways. Several chapters present alternative procedures for analyzing similar
problems (e.g., chapters 4, 7, 15, and 16). Which procedure is best depends on
several factors, including how well the data meet the differing statistical assump-
tions of the various procedures. Most importantly, choosing the statistical
procedure depends on the question being asked. Procedures differ in the types
of question that they are best equipped to address. For example, von Ende
(chapter 8) discusses several different types of repeated-measures analysis that
are alternatively useful for asking such questions as whether treatments differ in
their overall means or whether they differ in the shapes of their response curves.
This book should provide a sense of the wide variety of statistical procedures
available for addressing many common ecological issues. It should encourage a
greater use of less common techniques and a decrease in the misuse of common
ones.

In the design of experiments, it is critical to consider the statistical analyses
that will be used to evaluate the results. Statistical techniques can go only so far
in salvaging a poorly designed experiment. These considerations include not only
the number and types of treatments and replicates (e.g., repeated-measures analy-
sis, chapter 8), but also how experimental units are physically handled. For exam-
ple, Potvin (chapter 4) shows how the physical arrangement of experimental
blocks relative to the scale of environmental heterogeneity can affect the ability
to detect a significant treatment effect. Consultation with a statistician at this
stage is highly recommended.

Equally important to using statistics correctly is thorough reporting. Probably
the most common statistical sin is not describing procedures or results adequately
in publications (Fowler 1990; Gurevitch et al. 1992). It is important to explicitly
report what was done. A scientific publication should permit a reader to draw an
independent conclusion about the hypothesis being tested. Although the ecologi-
cal, or other biological, assumptions behind an experiment are usually explicitly
laid out, statistical assumptions are often not addressed, or worse, the exact statis-
tical procedure is not specified. Thus, when a conclusion is reached that the hy-
pothesis has been falsified, the reader does not know whether it is due to errors in
the ecological assumptions or in the statistical assumptions. This need for accurate
reporting is even more important when nonstandard statistical procedures are
used. No one could hope to publish an experiment that manipulated light and
nutrient conditions without specifically describing each treatment. Yet, the only
statement about statistical procedures is commonly "ANOVA was used to test
for treatment effects." Ellison (chapter 3) discusses some of the simple types of
information that should be reported (and often are not). For example, often only
P-values are reported but information on sample sizes and error variances is not.
If the analysis is done with a computer, identify the software package used. These
packages use different algorithms that can reach different conclusions even with
the same data. Or, at some future date, a bug may be found in a software package
invalidating certain analyses. I hope that an increase in the overall level of statisti-
cal sophistication of writers, reviewers, and editors will bring an increase in the
quality of how statistical procedures are reported.
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i.3 Using this Text

The material presented here presumes a basic knowledge of statistics comparable
to that acquired in a one-semester introductory course. Any basic statistics book
(e.g., Siegel 1956; Snedecor and Cochran 1989; Sokal and Rohlf 1995; Zar 1996)
can be used as a supplement to the procedures presented here and as a source of
probability tables. As this is largely a how-to book, the underlying statistical
theory is not detailed, although important assumptions and other considerations
are presented. Instead, references to the primary statistics literature are presented
throughout the text. Readers are encouraged to delve into this literature, although
it is sometimes opaque, especially when it concerns a technique that is central to
their research program. The effort taken to really understand the assumptions and
mathematical properties of various statistical procedures will more than pay for
itself in the precision of the conclusions based on them.

Each chapter is designed as a road map to address a particular ecological issue.
Unlike most conventional statistics books, each statistical technique presented
here is motivated by an ecological question to establish the context of the tech-
nique. The chapters are written by ecologists who have grappled with the issues
they discuss. Because statistical techniques are interrelated, each chapter provides
cross-references to other relevant chapters, but each can be used independent-
ly. Also, a given statistical technique may be pertinent to a number of ecological
problems or types of data. Each chapter presents a step-by-step outline for the
application of each technique, allowing the reader to begin using the statistical
procedures with no or minimal additional reference material. Some techniques,
however, are difficult and sophisticated, even for someone with more experience.
Readers are encouraged to use the techniques presented here in consultation with
a statistician, especially at the critical stage of experimental design. Because most
statisticians are not familiar with ecological problems and the optimal way to
design and analyze ecological experiments, they would not necessarily arrive at
these methods themselves, nor make them understandable to ecologists. Thus, this
book can be used as a bridge between ecologists and their statistics colleagues.

We also recognize that this is the age of the computer. Many problems can be
solved only by computer, either because of the enormous mass of data or because
of the extensive number of mathematical steps in the calculations. Each chapter,
where appropriate, has an appendix containing the computer code necessary for
applying a specific statistical procedure. For this edition, we have removed much
of this material from the printed text and placed it at a Website [http://www.oup-
usa.org/sc/0195131878/] along with all of the data sets used as examples in this
book. We chose the SAS (SAS Institute Inc. 1989a,b, 1990, 1992, 1996) statistical
package because of its widespread availability on both mainframe and personal
computers and its extensive use by ecologists. In addition, the syntax of SAS is
easy to understand and thus to translate to other statistical packages. For example,
SYSTAT (SPSS, Inc., Chicago, Illinois), a common personal computer package,
has a syntax very similar to that of SAS. In some instances, procedures are not
available in SAS; in those cases, another statistical package is suggested. In no
instances are system commands given. Readers unfamiliar with mainframe or

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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personal computers are advised to check manuals and their local computer consul-
tants, mavens, and hackers. Good sources for information on statistical packages
are the Technological Tools feature in the Bulletin of the Ecological Society of
America (e.g., Ellison 1992), software reviews in the Quarterly Review of Biol-
ogy, and computer magazines.

Acknowledgments I thank Jessica Gurevitch, Andre Hudson, Steve Juliano, Marty Lecho-
wicz, and Mark VanderMuelen for suggestions that greatly improved the previous version
of this chapter.
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Power Analysis and
Experimental Design
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2.1 Introduction

Ecologists conduct research to gain information about ecological patterns and
processes (chapter 1). An underlying, fundamental goal for all research, therefore,
is to generate the maximum amount of information from a given input of effort,
which can be measured as time, money, and other similarly limited resources.
Consequently, after we develop a clear set of questions, objectives, or hypotheses,
the most critical aspect of ecological research is design.

Designing a new study involves making a series of interrelated choices, each
of which will influence the amount of information gained and, ultimately, the
likelihood that study objectives will be met. For a manipulative experiment,
choices must be made about the number of treatments to apply and the way in
which treatments are assigned to experimental units. Similarly, for an observa-
tional study, samples must be selected in some way from the larger population of
interest. In both types of research, a critical decision is the number of replicates
(experimental units receiving the same treatment) or samples to choose. When
considering these issues, it is helpful to have a tool to compare different potential
designs. Statistical power analysis is one such tool.

In this chapter, we focus on the use of power analysis in research design,
called prospective (or a priori) power analysis. We review some basic theory and
discuss the practical details of doing prospective power analyses. We also con-
sider the usefulness of calculating power after data have been collected and ana-
lyzed, called retrospective (or a posteriori or post hoc) power analysis. Power
analysis is most appropriate when data are to be analyzed using formal hypothe-

14
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sis-testing procedures. However, parameter estimation is often a more appropriate
and informative approach by which to make inferences, so we discuss related
techniques when estimation is the main goal of the study. Our discussion stays
within the frequentist statistical paradigm; issues within the likelihood and Bayes-
ian frameworks are considered elsewhere (chapter 17; Berger 1985; Royall 1997;
Burnham and Anderson 1998; Barnett 1999).

Power analysis is increasing in popularity, as evidenced by the spate of intro-
ductory articles recently published in the biological literature (e.g., Hayes 1987;
Peterman 1990; Muller and Benignus 1992; Taylor and Gerrodette 1993; Searcy-
Bernal 1994; Thomas and Juanes 1996; Steidl et al. 1997). These all provide
somewhat different perspectives and, in some cases, different background mate-
rial than we present here. Unfortunately, power is given only cursory treatment
in many biometry textbooks (e.g., Sokal and Rohlf 1995; Steel et al. 1996), al-
though this has been changing to some extent (e.g., Rao 1998; Zar 1996). In
addition, some specialized texts (Kraemer and Thiemann 1987; Cohen 1988; Lip-
sey 1990) and an excellent introductory monograph (Nemac 1991) focus on im-
plementing power analysis using SAS. We provide other selected references
throughout this chapter.

2.2 Statistical Issues

2.2.1 Statistical Hypothesis Testing

The theory of power analysis falls within the larger framework of statistical hy-
pothesis testing (the so-called Neyman-Pearson approach; Neyman and Pearson
1928; Barnett 1999). In this framework, a research question is phrased as a pair
of complementary statistical hypotheses, the null (H0) and alternative (//a) hypoth-
eses. The finding that would be of interest to the researcher is stated typically as
the alternative hypothesis, and a negative finding is stated as the null hypothesis.
For example, suppose we were interested in assessing whether the average amount
of plant biomass harvested per plot differs between control and treatment plots
subjected to some manipulation. Typically, the null and alternative hypotheses of
interest (in this case as two-tailed hypotheses) would be phrased as

H0: jo/r = \ic, which represents the case of equal population means

Ha: u.T # (J,c, which represents the case of unequal population means

Imagine that we have collected data from 20 plots, 10 treatment and 10 control.
We can use these data to calculate a test statistic that provides a measure of
evidence against the null hypothesis of equal means. If we make a few assump-
tions about the distribution of this statistic, we can calculate the probability of
finding a test statistic at least as extreme as the one observed, if the null hypothe-
sis is true. This probability is often called the P-value or significance level of the
test. Lower /"-values suggest that the test statistic we calculated would be an
unlikely result if the null hypothesis were indeed true, whereas higher P-values
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suggest that the test statistic would not be an unlikely result if the null hypothesis
were true.

In this example, imagine that the amount of plant biomass averaged 113
kg/ha on treatment plots and 103 kg/ha on control plots (i.e., estimates of true
population means IIT and p,c are yT =113 and yc = 103, respectively). From these
data, we also determined s= 15, which is an estimate of the pooled population
standard deviation, o. With this information and presuming the data approximate
the necessary assumptions, we can use a two-sample f-test to generate a test
statistic for the null hypothesis of |IT = \ac:

This test statistic, based on a sample size of 20 (and therefore 18 degrees of
freedom for this test) is associated with a two-tailed P = 0.008, indicating that the
probability of obtaining a test statistic at least as extreme as the one we observed
(2.98) if the null hypothesis of equal means is true is about 8 in 1,000—a reason-
ably unlikely occurrence.

If we apply the hypothesis-testing framework rigorously (which we do not
advocate, but which is necessary for this discussion), we would use the value of
the test statistic as the basis for a dichotomous decision about whether to reject
the null hypothesis in favor of the alternative hypothesis. If the test statistic ex-
ceeds an arbitrary threshold value, called a critical value, then we conclude that
the null hypothesis is false because evidence provided by the data suggests that at-
taining a test statistic as extreme as the one we observed is unlikely to occur by
chance. The critical value is the value of the test statistic that yields P = a, where
a is the Type I error rate established by the researcher before the experiment is
performed (see subsequent discussion). In this example, if we had chosen a Type
I error rate of a = 0.05, then fci,t = 2.10. Because the observed f-value is greater
than the critical value, we reject the null hypothesis, which is a "statistically
significant" result at the given a-level.

There is always a chance, however, that no matter how unlikely the test statis-
tic (and therefore, how low the P-value), the null hypothesis may still be true.
Therefore, each time a decision is made to reject or not reject a null hypothesis,
there are two types of errors that can be made (table 2.1). First, a null hypothesis

Table 2.1 Possible outcomes of statistical hypothesis tests3

Decision and result

Reality

Null hypothesis is true
Null hypothesis is false

Do not reject
null hypothesis

Correct (1 - a)
Type II error (P)

Reject
null hypothesis

Type I error (a)
Correct (1 - p)

"Probabilities associated with each decision are given in parentheses.
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that is actually true might be rejected incorrectly (a Type I error; a false positive).
As in the previous example, the rate at which a Type I error will be accepted is
the a-level and is established by the researcher. Sec'ond, a null hypothesis that is
actually false might not be rejected (a Type II error; a false negative). The proba-
bility of a Type II error is denoted as p. Statistical power is equal to 1 —13 and is
defined as the probability of correctly rejecting the null hypothesis, given that the
alternative hypothesis is true (figure 2.1).

The statistical power of a test is determined by four factors in the following
ways: power increases as sample size, a-level, and effect size (difference between
the null and alternative hypothesis) increase; power decreases as variance in-
creases. Some measures of effect size incorporate variance, leaving only three
components. Effect size is the component of power least familiar to many re-
searchers; we discuss this in detail in the next section.

2.2.2 Measures of Effect Size

In the context of power analysis, effect size is defined broadly as the difference
between the null hypothesis and a specific alternative hypothesis. The null hy-
pothesis is often one of no effect, and in these cases effect size is the same as the
alternative hypothesis. For example, in the plant biomass experiment, the null
hypothesis is no difference in mean biomass between treatment and control plots.
One specific alternative hypothesis states that a 20 kg/ha difference between treat-
ment and control plots exists. Effect size, in this case, is (20 — 0) = 20 kg/ha.
However, other measures of effect size could have been used.

Choosing a meaningful effect size (or range of effect sizes) to use in experi-
mental planning is usually the most challenging aspect of power analysis. In gen-

Figure 2.1 Graphical illustration of a, P, power (1 - p), and the critical value for a statisti-
cal test of a null (H0) versus alternative (Ha) hypothesis.
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eral, we want to use effect sizes that are biologically important in the context of
the study. In the plant biomass experiment, a difference of 1 kg/ha is not likely
to be biologically important, but a difference of 20 kg/ha may be, depending on
the goals of the study.

The effect size concept can also be used to quantify the results of experiments
(chapter 18). In these cases, effect size is then defined broadly as the treatment
response (for manipulative experiments) or the degree to which the phenomenon
of interest is present in the population of interest (for observational studies). Ef-
fect size used in power analysis is not a population parameter; rather it is a
hypothetical value that is determined by the null and alternative hypotheses as
specified by the researcher. This point is critical and causes a great deal of confu-
sion when power is examined retrospectively (section 2.3.2).

When discussing results of power analyses, the particular measure of effect
size used must be specified explicitly because there usually are several measures
of effect size available for a given statistical test (Richardson 1996). We introduce
several measures of effect size and comment on their use.

Simple effects. When the question of interest can be reduced to one about a
single parameter, such as questions about the difference between two population
means (or any other parameter) or the difference between a single population
mean and a fixed value, then establishing a meaningful measure of effect size is
straightforward. Most apparent are measures of absolute effect size (or raw effect
size), which are stated as departures from the null hypothesis and have the same
units as the parameters of interest. For example, in a two-sample setting compar-
ing two population means, the null hypothesis typically would be stated as H0:
|j,i - ^2 = 0. A useful measure for specifying absolute effect size, therefore, is the
difference between population means (or equivalently, the difference between the
null and alternative hypotheses): ||J.i - (J,2 • We used this measure of effect size
when establishing the effect size of 20 kg/ha in the previous example. Similarly,
in simple linear regression, one measure of absolute effect size is the difference
between the slope of the regression line and a slope of zero (or any other fixed,
meaningful value, such as the annual rate of change in a monitored population
that would trigger management action). In logistic regression, a measure of abso-
lute effect size is the deviation from an odds ratio of 1 (chapter 11). Because
absolute effect sizes are related directly to measurements made by researchers,
they are the easiest to specify and interpret.

In research studies with a temporal or spatial control, measures of relative
effect size are useful because they represent the change in the response variable
due to a treatment relative to the control (|IT - |J.c)/|̂ c- Relative effect sizes are
usually expressed as percentages, for example, the percentage increase in popula-
tion size due to treatment. In the plant biomass example, we could specify that
we are interested in a 20% increase in yield. This would correspond to a yield of
120 kg/ha if the true average harvest in the control plot were 100 kg/ha ((120 -
100)7100 = 20%). Finally, standardized effect sizes are measures of absolute effect
size scaled by variance (or a related estimate of variation) and therefore combine
these two components of hypothesis testing. In the two-sample setting, a standard-
ized measure of effect size is \\i{- (J,2 |/cr, where o is the pooled within-population
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standard deviation. In the plant biomass example, if the population standard
deviation were 15 and the true yield from control plots were 100 kg/ha, then an
absolute effect size of 20 kg/ha would correspond to a standardi/ed effect size
of 1120- 1001/15 = 1.33. Standardized measures are unitless and therefore com-
parable across studies. They can be useful in research planning as a way to
specify effect size when no previous data exist (for example, when there is no
information about a). However, they may be more difficult to interpret in terms
of biological importance, so we prefer specifying absolute or relative measures
where possible and considering the variance component of power analysis sepa-
rately.

Complex effects. Establishing a meaningful effect size when an experiment
includes multiple factors or multiple levels of a single factor is considerably more
challenging. For example, if the plant biomass experiment were extended to in-
clude additional treatment levels, one possible null hypothesis for this new experi-
ment would be //0: (J-i = M-2 = • • • = M*, where (i, is the control yield and \i2 through
(j,t are the yield of the (k - 1) treatment levels (a one-factor fixed-effect ANOVA).
In this context, a useful absolute effect size can be based on the variance of the
population means:

Subsequently, (cr2,)1'2 or d^ provides an absolute measure of effect size in the same
units as the original data, much like the two-sample measure \\i: - fi2 discussed
previously. Unlike the two-sample case, however, biological interpretation of a^
with more than two groups can be challenging.

Four approaches have been used to establish effect sizes for these more com-
plex situations. The first approach is to specify all of the cell means (the ^,'s). In
an experiment with three treatments and a control, for example, we might specify
that we are interested in examining power given a control yield of 100 kg/ha and
treatment yields of 120, 130, and 140 kg/ha. This approach requires researchers
to make an explicit statement in terms of the experimental effects they consider
to be biologically important. Although this exercise is challenging, these state-
ments are easily interpretable. The second approach is to use measures of effect
size such as c ,̂ but to seek to understand their meaning by experimenting with
different values of the ji/s. For example, yields of 100, 120, 130, and 140 kg/ha,
correspond to a c^ of 7.4. After some experimentation with different yields, we
may conclude that aH > 7 represents a biologically important effect. The third
approach is to simplify the problem to one of comparing only two parameters.
For example, in a one-factor ANOVA, we could define a measure of absolute
effect size as (ja^ - ^J, which places upper and lower bounds on power, each
of which can be calculated (Cohen 1988; Nemac 1991). The fourth approach is
to assess power at prespecified levels of standardized effect sizes (e.g., a/a for
the previous ANOVA example or \\LI- (J,2|/C7 for a two-sample Mest) that have
been suggested for a range of tests (Cohen 1988). In the absence of other guid-
ance, power can be calculated at three levels as implied by the adjectives small,
medium, and large (Cohen 1988). These conventions are used widely in psychol-
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ogy and other disciplines, where a medium standardized effect size may corre-
spond to median effect sizes used in psychological research (Sedlmeier and Giger-
enzer 1989). There is no guarantee, however, that these standardized effect sizes
have any meaning in ecological research, so we recommend this approach only
as a last resort.

2.3 Types of Power Analyses

2.3.1 Prospective Power Analyses

Prospective power analyses are performed when planning a study. They are ex-
ploratory in nature and provide the opportunity to investigate—individually or in
some combination—how changes in study design and the components of power
(sample size, a, effect size, and within-population variance) influence the ability
to achieve study goals. Most commonly, prospective power analyses are used to
determine (1) the number of replicates or samples («) necessary to ensure a speci-
fied level of power for tests of the null hypotheses, given specified effect sizes,
a, and variance, (2) the power of tests of the null hypothesis likely to result when
the maximum number of replicates possible is constrained by cost or logistics,
given the effect sizes, a, and variance, and (3) the minimum effect size that can
be detected, given a target level of power, a, variance, and sample size.

Example 1. Sample sizes necessary to achieve a specified level of power,
where population variance is known. Imagine that we are planning a new plant
biomass experiment. Assume from previous work that field plots yielded an aver-
age of 103 kg/ha under control conditions and that the population standard devia-
tion, a, was 16. In this new experiment, we decide to consider the treatment
effective if it increases or decreases plant biomass on plots by an average of 20%
(i.e., we will use a two-tailed test). The relative effect size of interest, therefore,
is 20%, and the absolute effect size is 20% of control plots or 103 kg/ha x 0.20 =
20.6 kg/ha. After some consideration of the relative consequences of Type I and
Type II errors in this experiment (section 2.5.4), we establish a = (3 = 0.1, so the
target power is 1 - |3 = 0.9. Because the population standard deviation is known,
we use a Z-test for analysis. We then calculate that 22 samples are required (11
controls and 11 treatments) to meet a power of 0.9 for 20% effect size and a =
16 (see http://www.oup-usa.org/sc/0195131878/).

In addition to the challenges involved in choosing biologically meaningful
effect sizes (section 2.3.2), this example illustrates similar challenges establishing
the relative importance of Type I and Type II errors (a and (3, respectively, table
2.1) in power analyses, which we explore in section 2.5.4.

The previous example is somewhat unrealistic because we assumed that the
population variance was known in advance, a rare scenario. In real-world prospec-
tive analyses, we need methods to estimate variance. Undoubtedly, the preferred
method for obtaining a priori estimates of variance for power analysis is to con-
duct a pilot study. Pilot studies offer a number of other advantages, including the
opportunity to test field methods and to train observers. We recommend using

http://www.oup-usa.org/sc/0195131878/
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not just the variance estimated from the pilot study, but also the upper and lower
confidence limits of the variance estimate to assess the sensitivity of the results
and to provide approximate "best case" and "worst case" scenarios (see example
2). A second method for obtaining variances is to use those from similar studies
performed previously on the same or similar systems, which can be gathered from
colleagues or from the literature. Again, it is useful to repeat the power analyses
using the highest and lowest variances available (preferably based on confidence
intervals) or values somewhat higher and lower than any single estimate gathered.
If variance estimates are obtained from systems other than the study system, the
intervals used should be correspondingly wider. Finally, if no previously collected
data are available, then the only choice is to perform power analyses using a
range of plausible values of variance and hope that these encompass the true
value.

Example 2. Sample sizes necessary to achieve a specified level of power, where
a previous estimate of population variance is used. In almost all cases, the pop-
ulation variance used for prospective analyses will not be known. In example 1,
assume the estimated standard deviation is still 16 but was based on a previous
study where the sample size was 20. Because we are not assuming that the vari-
ance is known, we use a f-test for analysis. This means that the sample size
required given a population standard deviation of 16 will be slightly higher than
in example 1—in this case 24 rather than 22 (see http://www.oup-usa.org/sc/
0195131878/).

To assess the sensitivity of this result, we can recalculate the required sample
size using, for example, 90% confidence limits, 12.63 and 22.15, on the estimate
of the standard deviation (see the appendix). These lead to required sample sizes
of 14 and 44, respectively. If the population variance in the new experiment is
the same as in the previous study, then the probability of obtaining a variance
larger than the upper 90% confidence limit is (1 - 0.9)/2 = 0.05. Therefore, if we
are conservative and use the larger sample size, we have a 95% chance of obtain-
ing the level of power desired. Substituting confidence limits on variance into
power calculations in this way leads to exact confidence limits on power for any
Mest or fixed effect F-test (Dudewicz 1972; Len Thomas, 1999, unpublished ms).

If instead we are constrained to a maximum sample size of 24, we can use
confidence limits on the variance estimate to calculate confidence limits on the
expected power given a fixed sample size. Using this approach and n = 24, 90%
confidence limits on power are 0.72 and 0.98. If a power of 0.72 is not acceptable,
then we must use a higher a-level or perhaps reevaluate and increase treatment
intensity (and therefore the likely effect size) used in the study.

Most prospective power analyses are more complex than these examples be-
cause many components of the research design can be altered, each of which can
influence the resulting power of the effort (singly or in combination with other
components). In addition, study goals often are not defined so sharply, and power
analysis begins as an investigation of what is possible. At this stage, therefore,
we recommend producing tables or graphs displaying the interactions among
plausible levels of the design components and their effects on power (e.g., figure
2.2). Further, multiple goals or hypotheses are usually considered in most research

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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Figure 2.2 The influence of number of replicates on statistical power to detect small (0.09),
medium (0.23), and large (0.36) effect sizes (differences in the probability of predation)
between six large and six small trout using a Wilcoxon signed-ranks test. Power was
estimated using a Monte Carlo simulation.

designs. This entails multiple, related power analyses, and the consideration of
the relative importance of these different goals. Finally, study design is usually
more complex than comparing samples from two populations. In these cases,
considering alternative possible designs is important, as power often can be in-
creased within a fixed budget and sample size by imaginative design decisions
(e.g., Steidl et al. 1997). These include increasing the likely effect size by increas-
ing the range or intensity of treatment levels, reducing experimental error by
blocking (chapter 4) or measuring covariables, and selecting an efficient method
of assigning treatments to experimental units (usually the number of replicates
should be highest in treatment combinations where the variance is expected to be
highest). Using a statistical model for data analysis that is consistent with the
design can also have a strong influence on power (Hatfield et al. 1996; Steidl et
al. 1997). These and other techniques for increasing efficiency are discussed in
texts on experimental and sampling design (e.g., Thompson 1992; Kuehl 1994).

2.3.2 Retrospective Power Analyses

Retrospective power analyses are performed after a study has been completed and
the data analyzed. At this point, the outcome of the statistical test is known: either
the null hypothesis was rejected or it was not. If it was not rejected, we may be
concerned with committing a Type II error if the statistical power of the test was
low. At this point, all the information necessary to calculate power is available,
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the design, sample size, and a-level used are known, and the effect size and
variance observed in the sample provide estimates of the effect size and variance
in the population. Whether any of this information is appropriate for estimating
retrospective power is controversial (Thomas 1997). Some researchers believe
that the whole concept of retrospective power is invalid within the hypothesis-
testing framework (Goodman and Berlin 1994; Zumbo and Hubley 1998; Gerard
et al. 1998; Hoenig and Heisey 2001). Others feel that it is informative if the
effect size observed is not used in the calculations (Rotenberry and Weins 1985;
Cohen 1988; Peterman 1990; Muller and Benignus 1992; Searcy-Bernal 1994;
Steidl et al. 1997; Thomas 1997). Although we believe that retrospective power
analyses have a place, we favor alternative approaches such as the use of confi-
dence intervals, for reasons discussed here and in section 2.5.2.

Retrospective power is a concern most often when a statistical test has failed
to provide sufficient evidence to reject the null hypothesis. In this case, we wish
to distinguish between the two reasons for failing to reject the null hypothesis:
(1) the true effect size was not biologically important and therefore the null hy-
pothesis was true or nearly true, and (2) the true effect size was biologically
important but we failed to reject the false null hypothesis (i.e., we committed a
Type II error). To make this distinction, we can calculate the power to detect a
minimum biologically important effect, given the sample size, a-level used, and
variance estimated in the study. If power at this effect size is large, then true
effect sizes of the magnitude of the minimum biologically important effect would
likely lead to statistically significant results. Given that the test was not signifi-
cant, we can infer that the true effect size is likely not this large. Using similar
logic, if power at this effect size is small, we can infer that the true effect size
could be large or small, so the results are inconclusive.

Example 3. Retrospective power analysis. In an attempt to explain regional
differences in reproductive success of ospreys (Pandion haliaetus), thickness of
eggshells (an indicator of organochlorine contamination) was compared between
a colony with low reproduction and one with normal reproduction (Steidl et al.
1991). A two-tailed, two-sample Mest comparing mean thickness between colo-
nies yielded ?49= 1.32, P = 0.19, which is not statistically significant at any rea-
sonable a-level (low reproduction: y = 0.459 mm, n = 10; normal reproduction:
y = 0.481 mm, n = 41; pooled s = 0.0480).

In this case, failing to detect a biologically important difference in eggshell
thickness could lead to incorrect conservation decisions. One way to address the
possibility that a biologically important difference existed but was not detected
by the statistical test is through retrospective power analysis. This raises the ques-
tion of what comprises a biologically important difference. In this case, assume
that previous research has suggested that a 5% reduction is eggshell thickness
would likely impair reproduction. This would translate into an absolute difference
of 0.024 mm (0.481 x 0.05), which gives an estimated power of 0.29 for a two-
tailed ?-test using the observed value of s and a = 0.05, with 95% confidence
limits of 0.20 to 0.39 (see http://www.oup-usa.org/sc/0195131878/). Of course,
power to detect a larger 10% difference (0.048 mm) in eggshell thickness is higher
at 0.80, with 95% confidence limits of 0.61 and 0.92.

http://www.oup-usa.org/sc/0195131878/
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Another relevant approach is to estimate the minimum detectable effect size
for a given level of power, which is the minimum effect size that would have
yielded P < a. In this example (5% reduction) and with a = 0.05, s = 0.048, and
power = 0.8, the minimum detectable eggshell thickness is 0.048 mm (95% confi-
dence limits of 0.040 and 0.060). Similarly, you could also estimate the sample
size that would have been necessary to detect the observed effect size. In this
example, the sample size necessary to detect the observed effect size (0.481 —
0.459 = 0.022 mm) would have been 128 (approximate 95% confidence limits of
90 and 197) (see http://www.oup-usa.org/sc/0195131878/).

Although the use of retrospective power analysis when the null hypothesis is
not rejected has been recommended broadly, a number of problems are commonly
ignored. First, we assume implicitly that the estimate of power at a given effect
size (or effect size for a given power) can be translated into a statement of confi-
dence about the true effect size. For example, "given the null was not rejected
and that retrospective power for effect size x is 1 - a, then we have at least (1 —
00100% confidence that the interval (—x, x) contains the true effect size." How-
ever, such a statement has never been justified formally (Hoenig and Heisey
2001). Second, performing retrospective power calculations only when the null
hypothesis is not rejected compromises these analysis. Third, confidence intervals
about the estimates of power or the detectable effect size are conservative (i.e.,
too wide), although there are methods for correcting them (Muller and Pasour
1997). Fourth, because retrospective power calculations do not use information
about the observed effect size, they are inefficient compared to the inferences that
can be drawn using standard confidence intervals about the estimated effect size
(section 2.5.2). Because of these problems, we believe that estimating power ret-
rospectively is rarely useful, and instead we recommend the use of confidence
intervals about estimated effect size.

One situation in which retrospective power analysis is never helpful is when
power is estimated with the effect size observed in the study (sometimes called
the observed power). The calculated value of power is then regarded as an esti-
mate of the "true" power of the test, i.e., the power given the underlying popula-
tion effect size. Such calculations are uninformative and potentially misleading
(Steidl et al. 1997; Thomas 1997; Gerard et al. 1998). First, they do not take into
account the biological significance of the effect size used. Second, the observed
power estimates are simply a reexpression of the P-value: low f-values lead to
high power and vice versa. Third, even as estimates of "true" power, they are
biased and imprecise.

2.4 Statistical Solutions: Calculating Power

2.4.1 Power Analysis Using Standard Tables or Software

Power can be estimated for common statistical tests using tables or figures in
statistics texts (e.g., Rao 1998; Zar 1996) or specialized monographs (Kraemer
and Thiemann 1987; Cohen 1988; Lipsey 1990). This approach can provide an

http://www.oup-usa.org/sc/0195131878/
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easy way to obtain quick, approximate results but is not ideal for an in-depth
study of power for two reasons. First, estimates of power and related parameters
(such as minimum detectable effect size) often are inaccurate, either because they
must be interpolated from tabulated values or read from a graph, or in some cases
because the tabulated values are themselves based on approximations (Bradley et
al. 1996). Second, an in-depth study requires calculating the desired statistics at
many levels of the other parameters and graphing the results, which is laborious
if done by hand.

Alternatively, a growing number of computer programs perform power analy-
sis (http://www.oup-usa.org/sc/0195131878/). These range from "freeware" pro-
grams to large, relatively sophisticated commercial packages. Further, some
general-purpose statistical and spreadsheet software packages have built-in power
analysis capabilities or add-on modules or macros (e.g., the SAS module Unify-
Pow; O'Brien 1998).Thomas and Krebs (1997) performed a detailed review of
29 programs, comparing their breadth, ease of learning, and ease of use. Although
their specific recommendations about packages will become increasingly outdated
as new software is released, the criteria they used and their general comments
remain relevant. They considered an ideal program to be one that (1) covers the
test situations most commonly encountered by researchers; (2) is flexible enough
to deal with new or unusual situations; (3) produces accurate results; (4) calcu-
lates power, sample size, and detectable effect size; (5) allows easy exploration
of multiple values of input parameters; (6) accepts a wide variety of measures of
effect size as input, both raw and standardized; (7) allows estimation of sampling
variance from pilot data and from the sampling variability statistics commonly
reported in the literature; (8) gives easy-to-interpret output; (9) produces presenta-
tion-quality tables and graphs for inclusion in reports; (10) allows easy transfer
of results to other applications; and (11) is well documented. They recommended
that beginner to intermediate users consider the specialized commercial power
analysis programs nQuery Advisor, PASS, or Stat Power, whereas those on a
budget try some of the freeware packages such as GPower and PowerPlant (see
http://www.oup-usa.org/sc/0195131878/ for an up-to-date list of available soft-
ware).

2.4.2 Programming Power Analysis Using General-purpose
Statistical Software

Most statistical tests performed by ecologists are based on the Z-, t-, F-, or %2-
distributions. Power analysis for these tests can be programmed in any general-
purpose statistical package that contains the appropriate distribution functions
(http://www.oup-usa.org/sc/0195131878/). The advantage of this approach is that
power analyses can be tailored exactly to the experimental or sampling design
being considered. This is particularly useful for relatively complex designs that
are not supported by most dedicated power-analysis software. This approach may
be most convenient for those who already own a suitable statistics package.

Programming your own power analyses for the t-, F-, and %2-tests requires
an understanding of noncentral distributions and noncentrality parameters. The

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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parametric distributions commonly used for testing are known as central distribu-
tions, which are special cases of more general distributions called noncentral
distributions. Whereas central distributions describe the distribution of a statistic
under the assumption that the null hypothesis is true, noncentral distributions
describe the distribution under any specified alternative hypothesis. Compared to
central distributions, noncentral distributions contain one additional parameter,
called a noncentrality parameter, which corresponds to the relevant measure of
effect size. For example, the noncentrality parameter, 8 for the noncentral f-distri-
bution, assuming a two-sample Mest, is

The exact way in which software packages define noncentrality parameters can
vary. As this formula illustrates, the noncentrality parameter can be considered
as a measure of standardized effect size (in this case |jj-i - \II\!G), with an addi-
tional term that depends on the way in which sample units are allocated to treat-
ments (O'Brien and Muller 1993). When the noncentrality parameter is zero (8 =
0), noncentral distributions equal their corresponding central distributions. In gen-
eral, the more false the null hypothesis, the larger the noncentrality parameter
(Steiger and Fouladi 1997). Programming power analyses involves translating the
measure of effect size used into a noncentrality parameter, then using this value
in the appropriate noncentral distribution function. Only central distributions are
required for power analysis using Z-tests or random effects F-tests (Sheffe 1959,
p. 227). SAS code for the examples in this chapter and other relevant SAS proba-
bility functions are provided at http://www.oup-usa.org/sc/0195131878/.

2.4.3 Power Analysis Using Simulation

Sooner or later, we encounter a statistical test for which the previous two ap-
proaches are not appropriate. This may be because the test is not covered by
tables or accessible software, or because there is no agreed-upon method of calcu-
lating power for that test. One example of the second situation is nonparametric
tests, where the distribution of the processes producing the data are not fully
specified so their distribution under the alternative hypothesis is unknown (see
the following example). Specific examples in ecology include analyzing multi-
site trends (Gibbs and Melvin 1997), modeling predator functional responses
(Marshal and Boutin 1999), and assessing trends in fish populations (Peterman
and Bradford 1987).

In these situations, power analyses can be performed using stochastic (Monte
Carlo) simulations. The approach is simple. First, write a computer routine that
mimics the actual experiment, including the analysis. In the plant biomass experi-
ment, for example, the program would use a pseudorandom number generator to
create 10 biomass measurements from a normal distribution with mean \ac and
standard deviation CT for controls, and 10 measurements from a normal distribu-
tion with mean jaT and standard deviation o for treatments. The routine then

http://www.oup-usa.org/sc/0195131878/
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would analyze these data using a f-test. Second, for each level of the input param-
eters (in this case (0,c, |̂ T, and a), program the routine to run many times (see
subsequent discussion), and tally whether the results were statistically significant
for each run. Finally, calculate the proportion of results that were significant. If
the computer model is an accurate representation of the real experiment, then the
probability of getting a statistically significant result from the model is equal to
the probability of getting a statistically significant result in the real experiment,
in other words, the statistical power. Hence, the proportion of significant results
from the simulation runs is an estimate of power.

The number of simulation runs required depends on the desired precision of
the power estimate (table 2.2 and appendix). For precision to one decimal place,
1,000 runs should suffice, whereas for precision to two decimal places, 100,000
runs are necessary.

Example 4. Power analyses by simulation for a nonparametric test. In an
experiment investigating the effect of prey size on predation rates, several repli-
cate groups of six large and six small juvenile fish were exposed to a predatory
fish; the number of small and large fish depredated was recorded for each group.
A Wilcoxon signed-ranks test (a nonparametric equivalent of the one-sample
f-test) was used to test the null hypothesis that the median difference in the num-
ber killed between size classes was zero. Thomas and Juanes (1996) explored the
power of this experiment using simulations. They assumed that, within a group,
the number of fish killed in each size class was a binomial random variable, and
they varied the number of replicate groups (the sample size) and the difference
in probability of predation between large and small fish. Their results (figure 2.2)
suggested that at least 14 groups were necessary to achieve power of 0.8 given a
difference in survival between size classes (effect size) of 0.23.

To simulate experiments analyzed using nonparametric tests, such as the previ-
ous one, we must specify fully the data-generating process. In these situations,
simulations allow us to explore the power of the experiment under a range of
different assumptions. In the example, the probability that a fish is depredated
was assumed to be constant within each size class. We could arguably make the
model more realistic by allowing probability of predation to vary within groups
according to some distribution (for example, the beta distribution). However,

Table 2.2 Dependence of the precision of power
estimates from Monte Carlo simulations on the number
of simulation runs"

Number of
simulations

100
1 000
10000
100 000

SE(P)

0.050
0.016
0.005
0.002

99% CI

0.371-0.629
0.460-0.541
0.487-0.513
0.496-0.504

"Calculations are performed at a true power (P) of 0.5 and therefore
represent minimum levels of precision (see appendix).
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there is always a trade-off between simplicity and realism, and we should be
content to stop adding complexity to models when they adequately mimic the
features of the experiment and subsequent data that are of particular interest. In
the example, the variance of the data generated by the model was similar to that
of the experimental data, providing a degree of confidence in the model.

Another related approach is the use of bootstrap resampling (chapter 14) to
obtain retrospective power estimates from experimental data. In this approach,
many bootstrap data sets are generated from the original data, and the same statis-
tical test is performed on each one. The proportion yielding statistically signifi-
cant results is an estimate of the power of the test for the given experiment.
Unless modified in some way, this approach will estimate power at the observed
effect size, which is not useful (section 2.3.2). Therefore, power must be esti-
mated over a range of effect sizes, by adding and subtracting effects to the ob-
served data (e.g., Hannon et al. 1993).

2.5 Related Issues and Techniques

2.5.1 Bioequivalence Testing

There have been numerous criticisms of the hypothesis-testing approach (e.g.,
Yoccoz 1991; Nester 1996; Johnson 1999; references in Harlow et al. 1997 and
Chow 1998). One criticism is that the null hypothesis can virtually never be
true and therefore is of no interest. For example, no matter how homogeneous a
population, no two samples drawn from the population will be identical if mea-
sured finely enough. Consequently, bioequivalence testing was developed in part
to counter this criticism (Chow and Liu 1999) and is used commonly in pharma-
ceutical studies and increasingly in ecological studies (e.g., Dixon and Garrett
1994).

Bioequivalence testing reverses the usual burden of proof, so that a treatment
is considered biologically important until evidence suggests otherwise. This is
achieved by switching the roles of the null and alternative hypotheses. First, a
minimum effect size that is considered biologically important is defined (say,
Acrit). Next, the null hypothesis in stated such that the true effect size is greater
than or equal to Acrit. Finally, the alternative hypothesis is stated such that true
effect size is less than Acrit. The plant biomass experiment discussed previously,
for example, could be phrased as:

H0: Ijir - Uc | S A,.,!,, which represents the case where a biologically important ef-
fect exists

Ha: |Hr - Uc | < ACIit, which represents the case where no biologically important ef-
fect exists

In this context, a Type I error occurs when the researcher concludes incorrectly
that no biologically important difference exists when one does. This is the type
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of error that is addressed by power analysis within the standard hypothesis-testing
framework; in bioequivalence testing, this error rate is controlled a priori by set-
ting the a-level of the test. Some have argued that this approach is preferable and
eliminates the need for retrospective power analysis (Hoenig and Heisey 2001).
However, Type II errors still exist within this framework when the researcher
concludes incorrectly that an important difference exists when one does not. If
this type of error is a concern, then a retrospective investigation will still be
necessary when the null hypothesis is not rejected.

2.5.2 Estimating Effect Sizes and Confidence Intervals

Another criticism of hypothesis testing is that the statistical significance of a test
does not reflect the biological importance of the result, because any two samples
will differ significantly if measured finely enough. For example, a statistically
significant result can be found for a biologically trivial effect size when sample
sizes are large enough or variance small enough. Conversely, a statistically insig-
nificant result can be found either because the effect is not biologically important
or because the sample size is small or the variance large. These scenarios can be
distinguished by reporting an estimate of the effect size and its associated confi-
dence interval, rather than simply reporting a P-value.

Confidence intervals can function to test the null hypothesis. When estimated
for an observed effect size, a confidence interval represents the likely range of
numbers generated from the data that cannot be excluded as possible values of
the true effect size with probability 1 - a. If the 100(1 - a)% confidence interval
for the observed effect does not include the value established by the null hypothe-
sis, you can conclude with 100(1 — oc)% confidence that a hypothesis test would
be statistically significant at level a. In addition, however, confidence intervals
provide more information than hypothesis tests because they establish approxi-
mate bounds on the likely value of the true effect size. More precisely, on aver-
age, 100(1 - oc)% confidence intervals will contain the true value of the estimated
parameter 100(1 - oc)% of the time. Therefore, in situations where the null hy-
pothesis would not be rejected by a hypothesis test, we can use the confidence
interval to assess whether a biologically important effect is plausible (figure 2.3).
If the confidence interval does not include a value large enough to be considered
biologically important, then we can conclude with 100(1 - 00% confidence that
no biologically important effect occurred. Conversely, if the interval does include
biologically important values, then results are inconclusive. This effectively an-
swers the question posed by retrospective power analysis, making such analyses
unnecessary (Goodman and Berlin 1994; Thomas 1997; Steidl et al. 1997; Gerard
et al. 1998).

Confidence interval estimation and retrospective power analysis are related but
not identical. In the estimation approach, the focus is on establishing plausible
bounds on the true effect size and determining whether biologically important
effect sizes are contained within these bounds. In power analysis, the focus is on
the probability of obtaining a statistically significant result if the effect size were
truly biologically important. Despite these differences, the conclusions drawn
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Figure 2.3 Hypothetical observed effects (circles) and their associated 100(1 - 00% confi-
dence intervals. The solid line represents zero effect, and dashed lines represent minimum
biologically important effects. In case A, the confidence interval for the estimated effect
excludes zero effect and includes only biologically important effects, so the study is both
statistically and biologically important. In case B, the confidence interval excludes zero
effect, so the study is statistically significant; however, the confidence interval also in-
cludes values below those thought to be biologically important, so the study is inconclu-
sive biologically. In case C, the confidence interval includes zero effect and biologically
important effects, so the study is both statistically and biologically inconclusive. In case D,
the confidence interval includes zero effect but excludes all effects considered biologically
important, so the "practical" null hypothesis of no biologically important effect can be
accepted with 100(1 - oc)% confidence. In case E, the confidence interval excludes zero
effect but does not include effects considered biologically important, so the study is statis-
tically but not biologically important.

from both approaches are often similar. Nevertheless, we prefer the confidence
interval approach because interpretation of results is straightforward, more infor-
mative, and viewed from a biological rather than probabilistic context.

Example 5. Confidence intervals in lieu of retrospective power. In the osprey
eggshell study from example 3, the mean difference in eggshell thickness between
regions (the observed absolute effect size) was estimated to be 0.022 mm with a
standard error of 0.0169. In the hypothesis-testing approach (example 3), assume
we established a at 0.05; we would then use a 100(1 - a) = 95% confidence
interval. The 95% confidence interval on this observed effect size (mean differ-
ence) ranges from -0.012 to 0.056 mm. This interval contains the value of 0
predicted by the null hypothesis, so we know the statistical test would not be
rejected at a = 0.05, as we showed previously (P = 0.19). However, our conclu-
sion about the results of this study will depend on the effect size we consider
biologically important. If we consider a relative difference of 10% (0.048 mm)
or greater between colonies to be important, then we can consider the results to
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be inconclusive because the confidence interval includes this value (figure 2.3).
If instead we consider a relative difference of > 20% (0.096 mm) to be important,
then we can conclude with 95% confidence that the study showed no important
effect because this value is excluded by the confidence interval.

2.5.3 Design Using Confidence Intervals

If the results of a study are to be evaluated using confidence intervals about effect
size, then we might design the study to achieve a specified level of precision, or
equivalently, a confidence interval of specified width, rather than a desired level
of power. For example, we could plan a study to attain a confidence interval that
is narrow enough to exclude the null effect size if the true effect size is that
which we establish as the minimum to be biologically important. The confidence
interval width that we determine is a random variable, however, so there is a 50%
chance that it will be wider or narrower than the planned width. Therefore, a
conservative approach to design in an estimation context is important (as it is in
all aspects of design), and power analysis is a useful tool for this approach
(Greenland 1988; Borenstein 1994; Goodman and Berlin 1994).

As mentioned previously, when the realized 100(1 — a)% confidence interval
excludes the null effect size, this is equivalent to rejecting the null hypothesis at
level a. Therefore, the probability that the confidence interval excludes the null
effect size, given some specified true effect size, is equal to the power of the test.
So, to have a (1 - P) probability of achieving 100(1 - a)% confidence intervals
narrow enough to exclude the null hypothesis at a specified true effect size, we
must have (1 - (3) power at that effect size.

Example 6. Prospective power analysis for prespecified confidence interval
width. We are planning to evaluate the results of the next plant biomass experi-
ment using confidence intervals. As in example 2, we will assume that the vari-
ance is not known. For planning purposes, we will base our calculations on a
previous study where the estimated standard deviation was 16 with sample size
20. Assume that we wish to have a 90% chance of obtaining 90% confidence
limits large enough to exclude zero difference should the true difference be 20%
or greater (i.e., > 20.6 kg/ha). Because the confidence limits are symmetric, the
desired confidence interval width is therefore 2 x 20.6 = 41.2 kg/ha.

This scenario leads to exactly the same power analysis as in example 2: the
estimated sample size required is 24, but when we incorporate our uncertainty
about the variance estimate, the sample size required is between 14 and 44. Fur-
ther, calculating the expected confidence interval widths, given the expected vari-
ance and sample size, is instructive. With a sample size of 24 and standard devia-
tion of 16, the expected confidence interval width is 13.5 kg/ha. So, we can be
90% sure of achieving a confidence interval width of less than 41.2 kg/ha, but
50% sure that the width will be less than 13.5 kg/ha. As with all prospective
design tools, figures displaying how these values change as other factors in the
design change prove extremely useful in research planning.
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2.5.4 Consequences and Considerations for Establishing
a and |3

Results of all prospective and retrospective power analyses depend on the levels
at which a and |3 are established. In prospective power analyses, for example,
decreasing a (say from 0.10 to 0.05) or increasing the target level of power (say,
from 0.7 to 0.9) will always increase the sample sizes necessary to detect a given
effect size. As with establishing meaningful effect sizes, choosing these error rates
will forever be a challenge.

In general, establishing a and p requires balancing the costs and consequences
of Type I and Type II errors (Shrader-Frechette and McCoy 1992; table 2.1).
Traditionally, scientists have focused only on Type I errors (hence the impetus
for this chapter). However, when there are considerable risks associated with
decisions based on the results of hypothesis tests that are not rejected, the conse-
quences of Type II errors often can exceed those of Type I errors (Hayes 1987;
Peterman 1990; Steidl et al. 1997). Decisions resulting from hypothesis tests that
were not rejected have an underlying, often unrecognized, assumption about the
relative costs of Type I and Type II errors that is independent of their true costs
(Toft and Shea 1983; Cohen 1988; Peterman 1990). In particular, when (3 = a,
scientists have decided, perhaps unknowingly, that the costs of Type I errors
exceed those of Type II errors when their recommendations assume that a null
hypothesis that was not rejected was actually true (i.e., when the null hypothesis
was inappropriately accepted). Some have suggested that Type II errors be con-
sidered paramount when a decision would result in the loss of unique habitats
or species (Toft and Shea 1983; Shrader-Frechette and McCoy 1992). Other ap-
proaches have been suggested to balance Type I and Type II error rates based on
their relative costs (Osenberg et al. 1994).

As we discussed previously (section 2.5), hypothesis testing has been misused
by scientists too often (see also Salsburg 1985, Yoccoz 1991), especially in the
context of environmental decision making. Hypothesis tests assess only "statisti-
cal significance." The issue of "practical or biological importance" may be better
evaluated using confidence intervals (section 2.5.2, although we must still choose
the level of confidence to use). We suggest that the reliance on hypothesis testing
in decision-making circumstances be decreased in favor of more informative
methods that better evaluate available information, including confidence intervals
(section 2.5.2), bioequivalence testing (section 2.5.1), Bayesian methods (chapter
17), and decision theory, an extension of Bayesian methods that incorporates the
"cost" of making right and wrong decisions (Barnett 1999). Nearly all resource-
based decisions are complex, and reducing that complexity to a dichotomous
yes-no decision is naive. Typically, the relevant issue is a not whether a particu-
lar effect or phenomenon exists, but whether the magnitude of the effect is biolog-
ically consequential. Hypothesis testing should not be the only tool used in deci-
sion making, especially when the risks associated with an incorrect decision are
considerable. In these instances, knowledge of the potential risks and available
evidence for each decision should guide the decision-making process.
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2.6 Conclusions

We recommend that researchers evaluate their study design critically before com-
mitting to a particular scheme. Only before serious data collection has begun
and considerable investment been made can research goals be evaluated freely
and details of the experimental design be changed to improve efficiency. We
recommend power analysis as a tool for evaluating alternatives in design. This
technique forces us to explicitly state our goals (including effect sizes considered
biologically important and tolerable levels of error) and make a plan for the analy-
sis of the data—something done far too rarely in practice. In many cases, the
power analysis will force us to be more realistic about our goals and perhaps
convince us of the need to consult a statistician, either to help us with the power
analysis or to help outline the options for study design and analyses. No matter
how harsh the realism, the insights gained will save much time and effort. As Sir
Ronald Fisher once said, perhaps the most a statistician can do after data have
been collected is pronounce a postmortem on the effort.
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Appendix

Here we present formulae and sample calculations for Examples 1-3. SAS code
for these examples is available at http://www.oup-usa.org/sc/0195131878/. This
appendix also contains the formula for calculating confidence limits for an esti-
mated standard deviation. Confidence intervals on power, required sample size,
or minimum detectable effect size can be calculated by substituting the upper and
lower confidence limits for standard deviation into the power formulas in the
SAS code supplied. Finally, we outline the method used to calculate the precision
of power estimates from Monte-Carlo simulation (Table 2.2).

All of the examples in this chapter are of two-tailed two-sample tests, where
the test statistic is a Z or t value. In these cases, power is calculated as the
probability that the test statistic is greater than or equal to the upper critical value
of the appropriate distribution, plus the probability that the test statistic is less
than or equal to the lower critical value of the distribution. For a Z-test, power
(1 - P) is:

where Fz(x) is the cumulative distribution function of the Z distribution at x, and
Zhyp is the lOOp percentile from the standard normal distribution, calculated as:

http://www.oup-usa.org/sc/0195131878/
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where A is the specified difference between group means, a is the pooled standard
deviation, and «i and «2 are samples sizes for each group. For a f-test, power is:

where F, (x \ v,8) is the cumulative density function of the noncentral t distribu-
tion with v degrees of freedom and noncentrality parameter 8, evaluated at x, and
tp:V is the 100/j percentile from the central t distribution with v degrees of freedom.
The noncentrality parameter 8 is calculated as:

Example 1. Sample sizes necessary to achieve a specified level of power, where
population variance is known. Estimate sample sizes (n = n, + n2; n, = n2) neces-
sary to achieve a specified level of power (1- (3) to detect a minimum biologically
important difference (A) between means of two groups, given a, and the known,
pooled standard deviation, o. Formulas (1) and (2) could be used iteratively using
different values of n\ and n2, however Zar (1996) provides a more direct formula:

In this example, a = P = 0.1, A = 20.6 kg/ha, o = 16 kg/ha; Z01/2 = 1.64 and Z0.i =
1.28. Therefore,

which indicates than 11 samples (rounding up) would be necessary for each group
to meet the specified level of power, yielding a total n = 22.

Example 2. Sample sizes necessary to achieve a specified level of power, where
a previous estimate of population variance used. Because the pooled standard
deviation is estimated rather than known, the f-test rather than the Z-test is appro-
priate, and (5) cannot be used. Instead, we provide an initial estimate of n required
in (4), substitute the calculated noncentrality (8) into (3), and calculate power.
We then continue to adjust our estimate of n until we equal or exceed the level
of power specified. For example, beginning with an estimated n\ = «2 = 11 or M =
22 (from example 1), calculate noncentrality using equation (4):

To estimate power using equation (3), first calculate degrees of freedom v = n\ +
HI - 2 = 20, fo.95,20 = 1-725, and f0.os, 20 = -1.725. Power is then:
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This is slightly less than power of 0.9 specified, so increase the estimate of n to
Mi = /i2=12, which yields 8 = 3.154, v = 22, r0.9s, 22= 1-717, foes, 22 = -1.717, so
power is:

Therefore, 12 samples from each group are necessary to meet the specified level
of power, yielding a total n = 24.

Example 3. Retrospective power analysis. First, estimate power for a hypothe-
sis test already conducted that was not rejected given a minimum biologically
important difference in means between two groups (A= l^li-j^l), sample size,
a, and an estimate (s) of the pooled standard deviation (a). In this example, A =
IHa - Ha | = 0.024 mm, s = 0.048, n\ = 10, «2 = 41, and a = 0.05.

Calculate an estimate of noncentrality appropriate for the two-tailed, two-sam-
ple Mest (4):

Calculate degrees of freedom v = n\ + n2 - 2 = 49, *om 49 = 2.010, and toms, 49 = -
2.010, and estimate power using equation (3):

Minimum detectable effect size (Amde) is estimated iteratively. Begin with an arbi-
trary estimate of detectable effect size, calculate power, then adjust Amde until the
specified level of power is obtained. For example, begin with an estmate of Amde =
0.030 in (4):

Calculate degrees of freedom, v = n{ + n2 - 2 = 49, /•Oi975i 49 = 2.010, and f0.o25,49 = -
2.010, and substitute the estimate of 8 from above into (3) to calculate power:

which is below the power of 0.9 specified. Therefore, increase the estimate of
Amde until you determine that the minimum effect size that could have detected
was 0.0484.

Finally, the sample size that would have been necessary to detect the observed
effect size (A) at the specified level of power (0.80) is also calculated iteratively.
Begin with an arbitrary estimate of sample size, calculate power, then adjust the
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estimated sample size until the specified level of power is obtained. For example,
begin with n\ = n2 = 30 or n - 60 in (4):

Calculate degrees of freedom V = HI + « 2 ~ 2 = 58, f0.97s, 58 = 2.001, and f0.o25, ss-
-2.001, and substitute the estimate of 5 from above into (3) to calculate power:

which is well below the power of 0.9 specified, so we increase the estimate of n
until we determine that n = 128 (64 per group) were necessary to detect the ob-
served effect size at the level of power specified.

Confidence limits for population standard deviation
The (1 - a) confidence limits for the population standard deviation, based on

an estimated standard deviation, s, are given by:

where v is the degrees of freedom (n-- 2 for the examples in this chapter) and
Xp,v is the lOOp percentile from a %2 distribution with v degrees of freedom (e.g.,
Zar 1996, p. 113-115).

Precision of power estimates from Monte-Carlo simulations
Each simulation is assumed to be an independent Bernoulli trial with probabil-

ity of success, p, equal to the true power of the test. Under these conditions,
SE(P) = (3(1 - |3)/n, where n is the number of simulations. SE((3) will be at its
maximum (and so precision at its minimum) when (3 = 0.5.
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Exploratory Data Analysis and
Graphic Display

AARON M. ELLISON

3.1 Introduction

You have designed your experiment, collected the data, and are now confronted
with a tangled mass of information that must be analyzed, presented, and pub-
lished. Turning this heap of raw spaghetti into an elegant fettucine alfredo will
be immensely easier if you can visualize the message buried in your data. Data
graphics, the visual "display [of] measured quantities by means of the combined
use of points, lines, a coordinate system, numbers, symbols, words, shading, and
color" (Tufte 1983, p. 9) provide the means for this visualization.

Graphics serve two general functions in the context of data analysis. First,
graphics are a tool used to explore patterns in data before the formal statistical
analysis (Exploratory Data Analysis, or EDA, Tukey 1977). Second, graphics
communicate large amounts of information clearly, concisely, and rapidly, and
illuminate complex relationships within data sets.

Graphic EDA yields rough sketches to help guide you to appropriate, often
counterintuitive, formal statistical analyses. In contrast to EDA, presentation
graphics are final illustrations suitable for publication. Presentation graphics of
high quality can leave a lasting impression on readers or audiences, whereas
vague, sloppy, or overdone graphics easily can obscure valuable information and
engender confusion. Ecological researchers should view EDA and sound presen-
tation graphic techniques as essential components of data analysis, presentation,
and publication.

This chapter provides an introduction to graphic EDA, and some guidelines
for clear presentation graphics. More detailed discussions of these and related
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topics can be found in texts by Tukey (1977), Tufte (1983, 1990), and Cleveland
(1985). These techniques are illustrated for univariate, bivariate, multivariate, and
classified quantitative (ANOVA) data sets that exemplify the types of data sets
encountered commonly in ecological research. Sample data sets are described
briefly in section 3.3; formal analyses of three of the illustrated data sets can be
found in chapters 14 (univariate data set) and 10 (predator-prey data set), and Pot-
vin (1993, chapter 3, ANOVA data set). You may find some of the graphics types
presented unfamiliar or puzzling, but consider them seriously as alternatives to
the more common bar charts, histograms, and pie charts. The majority of these
graphs can be produced by readily available Windows-based software (Kardia
1998). I used S-Plus (MathSoft, Inc.) and SYSTAT (SPSS, Inc.) to construct the
figures in this chapter.

Guiding Principles. The question or hypothesis guiding the experimental de-
sign also should guide the decision as to which graphics are appropriate for ex-
ploring or illustrating the data set. Sketching a mock graph, without data points,
before beginning the experiment usually will clarify experimental design and al-
ternative outcomes. This procedure also clarifies a priori hypotheses that will
prevent inappropriately considering a posteriori hypotheses (suggested by EDA)
as a priori. Often, the simplest graph, without frills, is the best. However, graphs
do not have to be simple-minded, conveying only a single type of information,
and they need not be assimilated in a single glance. Tufte (1983) and Cleveland
(1985) provide numerous examples of graphs that require detailed inspection be-
fore they reveal their messages. Besides the aesthetic and cognitive interest they
provoke, complex graphs that are information-rich can save publication costs and
time in presentations.

Regardless of the complexity of your illustrations, you should adhere to the
following four guidelines in EDA and production graphics:

1. Underlying patterns of interest should be illuminated, while not compromising
the integrity of the data.

2. The data structure should be maintained, so that readers can reconstruct the data
from the figure.

3. Figures should have a high data-to-ink ratio and no "chartjunk"—"graphical par-
aphernalia routinely added to every display" (Tufte 1983, p. 107), including ex-
cessive shading, grid lines, ticks, special effects, and unnecessary three-dimen-
sionality.

4. Figures should not distort, exaggerate, or censor the data.

With the increasing availability of hardware and software capable of digitizing
information directly from published sources, adherence to these guidelines has
become increasingly important. Gurevitch (chapter 18; Gurevitch et al. 1992), for
example, relied extensively on information gleaned by digitizing data from many
different published figures to explore common ecological effects across many
experiments via meta-analysis. Readers will be better able to compare published
data sets that are represented clearly and accurately.



Exploratory Data Analysis and Graphic Display 39

3.2 Graphic Approaches

3.2.1 Exploratory Data Analysis (EDA)

Tukey (1977) established many of the principles of EDA, and his book is an
indispensable guide to EDA techniques. You should view EDA as a first pass
through your data set prior to formal statistical analysis. EDA is particularly ap-
propriate when there is a large amount of variability in the data (low signal-to-
noise ratio) and when treatment effects are not immediately apparent. You can then
proceed to explore, through formal analysis, the patterns illuminated by graphic
EDA.

Since EDA is designed to illuminate underlying patterns in noisy data, it is
imperative that the underlying data structure not be obscured or hidden com-
pletely in the process. Also, because EDA is the predecessor to formal analysis,
it should not be time-consuming. Personal computer-based packages permit rapid,
interactive graphic construction with little of the effort necessary in formal analy-
sis. Finally, EDA should lead you to appropriate formal analyses and models. A
common use of EDA is to determine whether the raw data satisfy the assumptions
of the statistical tests suggested by the experimental design (see sections 3.3.1
and 3.3.4). Violation of assumptions revealed by EDA may lead you to use differ-
ent statistical models from those you had intended to employ a priori. For exam-
ple, Antonovics and Fowler (1985) found unanticipated effects of planting posi-
tion in their studies of plant competitive interactions in hexagonal planting arrays.
These results led to a new appreciation for neighborhood interactions in plant
assemblages (e.g., Czaran and Bartha 1992).

3.2.2 Production Graphics

Graphics are an essential medium of communication in scientific literature and at
seminars and meetings. In a small amount of space or time, it is imperative to
deliver the message and fix it clearly and memorably in the audience's mind.
Numerous authors have investigated and analyzed how individuals perceive dif-
ferent types of graphs, and what makes a "good" and "bad" graph from a cogni-
tive perspective (reviewed concisely by Wilkinson 1990 and in depth by Cleve-
land 1985). It is not my intention to review this material; rather, through example,
I hope to change the way we as ecologists display our data to maximize the
amount of information communicated while minimizing distraction.

Cleveland (1985) presented a hierarchy of graphic elements used to construct
data graphics that satisfy the guidelines suggested in section 3.1 (figure 3.1).
Although there is no simple way to distinguish good graphics from bad graphics,
we can derive general principles from Cleveland's ranking. First, color, shading,
and other chartjunk effects do not as a rule enhance the information content of
graphs. They may look snazzy in a seminar, but they lack substance and use a
lot of ink. Second, three-dimensional graphs that are mere extensions of two-
dimensional graphs (e.g., ribbon charts, three-dimensional histograms, or pie
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BETTER

t Position along a common scale

2 Position along identical scales

3. Length

4. Angle/Slope

5. Area

6. Volume

7. Shading color, saturation, density

WORSE

Figure 3.1 Ordering of graphic features according to their relative accuracy in representing
quantitative variation (after Cleveland 1985).

charts) not only do not increase the information content available, but often ob-
scure the message (a dramatic, if unfortunate, set of examples can be found in
Benditt 1992). These graphics, common in business presentations and increas-
ingly rife at scientific meetings, violate all of the suggested guidelines. Finally,
more dimensions often are used than are necessary, for example, "areas" and
lines where a point would do. Sirnken and Hastie (1987) discuss exceptions to
Cleveland's graphic hierarchy. In general, when designing graphics, adhere to the
Shaker maxim: form follows function.

High-quality graphical elements can be assembled into effective graphic dis-
plays of data (Cleveland 1985). First, emphasize the data. Lines drawn through
data points should not hide the points themselves. Second, data points should
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never lie on axes themselves, as the axes can obscure data points. If, for example,
there are many points that would fall along a zero line, then extend that axis
beyond zero (figure 3.6). Third, reference lines, if needed (which they rarely are),
should be deemphasized relative to the data. This can be accomplished with dif-
ferent line types (variable thicknesses; dotted, dashed, or solid) or shading. Fourth,
overlapping data symbols or data sets should be clearly distinguishable. You can
increase data visibility and minimize overlap by varying symbol size or position,
separating data sets to be compared into multiple plots, or changing from arithme-
tic <to logarithmic scales. Exemplars include the jitter plot, which avoids overlap
of identical values (figure 3.3B) and spreading of responses to categories across
an axis (figure 3.12D). Fifth, the plot must be easily readable following reduction
for publication or when projected as a slide to a seminar audience. Finally, Cleve-
land recommends using a full rectangular plot frame, not the more common bot-
tom axis/left axis only combination seen in many articles. This, together with tick
marks outside the plot frame (1) emphasize the data and (2) help the reader
accurately place individual data points. Tufte (1983) disagrees, as the extra axes
are an excessive use of ink and convey no information. Examples in this chapter
illustrate most of these possibilities. In the final analysis, many of these rules
reflect not only insight into cognitive perception, but also aesthetic judgments by
you, the author.

From this discussion, we could ask, Isn't all this too much trouble? Should
we dispense with graphs altogether in favor of tables? Because of their concise-
ness, graphics are almost always preferable in oral presentations. Graphs illustrate
more clearly relationships among variables and are a quick means of displaying
multivariate information. However, where exact values are important (as in final
publications), tables are more precise. Although the need for precise tables has
been obviated by the increasing availability of digitizing software and on-line
data archives, data presented graphically must be unbiased and uncensored. A
discussion of what data should be provided, in either graphs or tables, follows in
section 3.4.

3.3 Examples

3.3.1 Univariate Data: Frequency (Density) Distributions

Distributions of height, biomass, or other size metrics are often the primary
descriptor of populations or communities. As an example of size distributions, I
use a data set containing the number of leaf nodes of 75 Ailanthus altissima
plants. The experimental design and formal analysis of these data are given in
chapter 14.

With univariate data, two questions are paramount: (1) How are the data dis-
tributed (including summary statistics such as the mean, variance, and median)?
and (2) Are the data normally distributed or can they be transformed to make
them amenable to parametric analyses? Investigators often explore these ques-
tions via histograms or normality plots.
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A histogram is an example of a density plot; that is, each bar illustrates the
frequency, or density, of the values occurring in the data set between the lower
bound and the upper bound of each bar. Histograms are commonly confused with
bar charts (see section 3.3.4). The latter are used to illustrate some summary mea-
sure (often the mean, sum, or percentage) of all the values within a given treat-
ment category. Histograms of the Ailanthus data are shown in figure 3.2.

A histogram is not the best method for answering the two questions posed
previously, for three reasons. First, the raw data are hidden. In this example, there
are 75 plants, which have been divided into 12 biomass groups, or bins (figure
3.2A). It is impossible to know, for example, if the third bar (range 12-14 nodes)
contains 10 observations of 12 nodes, 10 observations of 14 nodes, or any other
of the possible combinations of 12-14 nodes in 10 observations. Second, the di-
vision into 12 bins is arbitrary; it was the default of the graphics program. We
could just as easily use 24 or 6 bins, both of which change the apparent shape of
the distribution (figures 3.2B,C) without conveying additional information. Third,
summary statistics cannot be computed from the data illustrated in the histogram.
Thus, a histogram does not enable us to answer key questions about univariate
data. In addition, histograms fall low on Cleveland's hierarchy of graphic primi-
tives. Bars in a histogram use vertical lines, horizontal lines, and shading in con-
cert to present information embodied in the single point indicated by the top of
the bar.

Tukey (1977) introduced the stem-and-leaf diagram as the simplest alternative
to the histogram (figure 3.3A). The main advantage of the stem-and-leaf diagram
is that the raw data are presented in toto. Summary statistics can be derived easily
from or incorporated into the figure. Nevertheless, stem-and-leaf diagrams suffer
visually from one of the same drawbacks as histograms: the number of bins is
arbitrary. Two other alternatives to histograms are jitter plots (figure 3.3B) and
dit plots (figure 3.3C). These two figures preserve the underlying data structure
(all values are presented), do not use arbitrary bins, and can be constructed
quickly without additional preparation (e.g., sorting) of the data set. Both plots
permit rapid assessment of density patterns and are simple to understand.

Stem-and-leaf plots and the density diagrams presented in figure 3.3 can be
used as simple alternatives to histograms. However, these plots do not clearly
convey some of the information that ecologists may want to communicate, and it
is difficult to compare the information in two or more of these plots. I suggest
the box-and-whisker plot (Tukey 1977), often called simply a box plot, as a pre-
sentation alternative to the univariate histogram (figures 3.2 and 3.4A). An advan-
tage of the box plot is that it provides more summary statistical information than
a histogram—it includes medians, quartiles, ranges, and outliers (extreme vari-
ates)—in much less space and with much less ink. Box plot construction is not
dependent on arbitrary bins, so these plots do not exaggerate or distort the data
distribution. By notching the box plot (figure 3.12E), you can easily add confi-
dence intervals so that plots of several distributions can be compared easily.

Wilkinson (1990; Haber and Wilkinson 1982) developed the fuzzy gram (figure
3.4B), another alternative to the histogram. Fuzzygrams are histograms with prob-
ability distributions superimposed on each bar. Consequently, fuzzygrams present
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Figure 3.2 Histograms of the number of nodes per plant of 75 surviving Ailanthus altissima
individuals grown in a 5 X 20 plant rectangular array. Each bar represents the frequency
or count (right axis) of observations within the bounds indicated by the ticks on the
*-axis, and the proportion of the total sample (left axis) represented by each bar. The three
plots illustrate the variation in histogram presentation obtained by changing the bin width:
(A) default (bin width = 4); (B) bin width = 2; (C) bin width = 8. At the top of the figure,
a box plot (see figure 3.4 for construction details) illustrates summary statistics and is a
better indication of the true data distribution.
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Figure 3.3 Alternative density plots that convey more information than a histogram. (A)
A stem-and-leaf plot. In this plot, each line is a stem, and each datum on a stem is a leaf.
The label for the stem is the first digit (starting part) of the number, followed by the value
of the leaf. On the first line, the starting part is 0 and the only leaf is 8, indicating a value
of 08 nodes. On the second line, the starting part is 1, and there are four leaves, indicating
four data points: 10, 11, 11, and 11 nodes. The location of the sample median (M) and
upper and lower quartiles (H) are also marked on this plot. (B) A jittered density plot.
Each point is placed along the horizontal scale at the exact location of its value. To keep
points of equal value from overlapping, they are located at random heights above the
x-axis. (C) A dit plot. Each point indicates an individual observation, stacked along the
y-axis at its location along the x-axis. In essence, a dit plot is a stem-and-leaf plot with
symbols substituted for leaves.
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Figure 3.4 Information-rich production alternatives to histograms. (A) A box-and-whisker
plot. The vertical line in the center of the box plot indicates the sample median. The left
and right vertical sides of the box indicate, respectively, the location of the 25th and 75th
percentile of the data (lower and upper quartiles, or hinges). The absolute value of the
distance between the hinges (obtained by subtracting the value of the lower quartile from
the value of the upper quartile) is the hspread. The whiskers of the box extend to the last
point occurring between each hinge and its inner fence, a distance 1.5 hspreads from the1

hinge. Two kinds of outliers can be distinguished on a box plot. Points occurring between
1.5 hspreads and 3 hspreads (the outer fence) are indicated by an asterisk (see figure
3.12E). Points occurring beyond the outer fence are indicated by an open circle. The
various summary statistics are clearly seen in relation to the raw data, which are overlain
on this box plot as a symmetric dit plot. The distance encompassed by the whiskers in-
cludes =90% of the data (Norusis 1990). (B) A fuzzygram (Wilkinson 1990). This plot is
a standard histogram (counts and proportions of each bin indicated by the height of the
vertical line), with a probability distribution superimposed on each bar. The shading of the
bars is based on a gray-scale distribution according to the probability that the fth observa-
tion will occur in that region: Pt = P(pt > 7t,), where p, = n,/n is the sample estimate of
71, (the expected proportion of a sample of n values from a continuous distribution to fall
in the fth bin of the histogram). The more likely that />, > TC,, the lighter the bar. Conse-
quently, for large sample sizes, the bars will appear in sharp focus, whereas for small
counts, the bars will be fuzzy. See Haber and Wilkinson (1982) for a discussion of the
cognitive perception of fuzzygrams.
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not only the data, but also some estimation of how realistically the data represent
the actual population distribution. Such a presentation is particularly useful in
concert with results derived from sensitivity analyses (Ellison and Bedford 1991)
or resampling methods (Efron 1982; chapters 7 and 14). Haber and Wilkinson
(1982) discuss, from a cognitive perspective, the merits of fuzzygrams and other
density plots relative to traditional histograms. Histograms (figure 3.2), stem-and-
leaf plots (figure 3.3A), dit plots (figure 3.3C), and fuzzygrams (figure 3.4B) can
indicate possible bimodality in the data. Bimodal data, observed commonly in
plant ecology, are obscured by box plots and jittered density diagrams.

Probability plots are common features of most statistical packages, and they
provide a visual estimate of whether the data fit a given distribution. The most
common probability plot is the normal probability plot (figure 3.5A). Here, the
observed values are plotted against their expected values if the data are from a
normal distribution; if the data are derived from an approximately normal distri-
bution, the points will fall along a relatively straight diagonal line. There are also
numerical statistical tests for normality (e.g., Sokal and Rohlf 1995; Zar 1996).
If, for biological reasons, the investigator believes the data come from a popula-
tion with a known distribution different from a normal one, it is similarly possible
to construct probability plots for other distribution functions (figure 3.5B).

3.3.2 Bivariate Data: Examining Relationships
Between Variables

Ecological experiments often explore relationships between two or more continu-
ous variables. Two general questions related to bivariate data can be addressed
with graphical EDA: (1) What is the general relationship between the two vari-
ables? and (2) Are there any outliers—points that disproportionately affect the
apparent relationship between the two variables? The answers to these questions
lead, in formal analyses, to investigations of the strength and significance of the
relationship (chapters 6, 9, and 10). Scatterplots and generalized smoothing rou-
tines are illustrated here for exploring and presenting bivariate data. Extensions
of these techniques to multivariate data are presented in section 3.3.3.

Bivariate data sets can be grouped into two types: (1) those for which we have
a priori knowledge about which variable ought to be considered independent,
leading us to consider formal regression models (chapters 8 and 10), and (2) those
for which such a priori knowledge is lacking, leading us to examine correlation
coefficients and subsequent a posteriori analyses. The functional response of No-
tonecta glauca, a predatory aquatic hemipteran, presented experimentally with
varying numbers of the isopod Asellus aquaticus is used to illustrate the first type
of data set; these data are described in detail in chapter 10. For the latter type of
data, I use a data set consisting of the height (diameter at breast height, dbh) and
distance to nearest neighbor of 41 trees in a 625-m2 plot within an approximately
75-year-old mixed hardwood stand in South Hadley, Massachusetts (A. M. El-
lison, unpubl. data, 1993). Data sets of this type are commonly used to construct
forestry yield tables (e.g., Tritton and Hornbeck 1982) and have been used to infer
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Figure 3.5 Probability plots
of the Ailanthus data. (A)
A normal probability plot.
(B) A probability plot with
the predicted values com-
ing from a Weibull distribu-
tion: /<j)= 1 - exp[(-yA)'],
where s is a spread parame-
ter and t is a shape parame-
ter. In this probability plot,
the slope of the line is an
estimate of lit, and the in-
tercept is an estimate of
ln(,s). See Gnanadesikan
(1977) for a general discus-
sion of probability plots.
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competitive interactions among trees (e.g., Weller 1987) and forest successional
dynamics (e.g., Horn et al. 1989).

For both exploration and presentation, scatterplots are the most straightforward
way of displaying bivariate data (figure 3.6A). However, because scatterplots are
merely a display, they do not necessarily reveal pattern. Figure 3.6A illustrates
clearly this idea. Three functional response curves (Holling 1966; chapter 10)
could be fit to these data, but it is not clear from the scatterplot itself which curve
would best fit the data. EDA is particularly useful for dealing with these data,
which show high variability and no obvious best relatiTonship between the two
variables.

Recent computer-intensive innovations in smoothing techniques (reviewed by
Efron and Tibshirani 1991) have expanded the palette of smoothers developed by
Tukey (1977). Basically, to construct a smoothed curve through the data, a best-
fit line is constructed through a subset of the data, local to each point along the
jt-axis. This process is repeated for each point, and a smooth line is constructed
by connecting the intersections of each local regression line. The result of this
process, using LOWESS (robust LOcally WEighted regrESSion: Cleveland 1979;
Efron and Tibshirani 1991), is shown for the predator-prey data in figure 3.6B.
In this case, 50% of the data were used to construct each segment of the smoothed
curve. That is, to construct the first segment, the response data from 0 < N0 < 50
were used; to construct the second segment, the response data from 1 < N0 < 51
were used, and so forth. The apparent type III functional response observed in
the smoothed curve is supported by the formal analysis of these data (chapter 10).
The lack of underlying assumptions about the distribution and variance of the
data and the ability to elucidate patterns very noisy data are two advantages of
smoothing over traditional regression techniques. One disadvantage of smoothing
is that relative weighting of data used for each segment must be specified in
advance, usually with little or no rational basis for the decision. Moreover, statis-
tical comparison of different smoothed curves is virtually impossible. Most statis-
tical software packages compute a variety of smoothers (see reviews by Ellison
1992; Kardia 1998).

Smoothers are used appropriately only when there is clear a priori knowledge
of an independent variable and a corresponding dependent variable or variables.
When this is not the case, other exploratory techniques are more appropriate for
examining relationships between variables. In addition, smoothing does not pro-
vide information about potential outliers in the data set. To examine correlations
between variables and to search a posteriori for outliers, influence plots and con-
vex hulls are useful exploratory tools.

A scatterplot of the relationship between tree height and stem diameter (A. M.
Ellison, unpubl. data, 1993) is illustrated in figure 3.7A. The raw data are shown,
and there appears to be an apparent outlier (a 30-m-tall tree with a dbh > 70 cm).
In an influence plot of these data (figure 3.7B), the size of each point becomes
directly proportional to the magnitude of the change its removal would have on
the Pearson correlation coefficient (r) between the two variables. By overlaying
a bivariate 50% confidence ellipse, it becomes obvious that outlying points have
greater influence on r than do points within the ellipse.



Exploratory Data Analysis and Graphic Display 49

Figure 3.6 Scatterplots of the
functional response of Noto-
necta to varying levels of
Asellus. (A) A simple scatter-
plot showing the raw data.
(B) A scatterplot with a
lowess smooth fitted to the
data. Note the apparent type
III functional response re-
vealed by the smoother (see
chapter 10).
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In an influence plot of the logarithmically transformed data (figure 3.7C), the
apparent outliers have all but disappeared (the large outlier in figure 3.7B now
has an influence on r of only .01), and the data are better distributed for formal
analysis. Figure 3.7D supports this notion. The outer ellipse is a 95% confidence
ellipse centered on the sample (dbh and height) means, with the ellipses' major
and minor axes equal in length to the unbiased sample standard deviations of
height and dbh, respectively. The orientation of the ellipse is determined by the
sample covariance. All of the points, expect the apparent outlier, fall within this
confidence ellipse. For comparison, the inner ellipse is a 95% confidence ellipse
with axes computed from the standard errors of the means of each variable and
centered on the sample centroid—a graphic illustration of the real difference
between the standard deviation and the standard error (see section 3.4).

Convex hulls and subsequent peeled convex hulls (Barnett 1976) are useful
exploratory tools when the distribution underlying the data is not normal or not
known. Convex hulls illustrate order in bivariate or multivariate data, and they
are used to distinguish distinct groups, outliers, and general shapes of multivariate
distributions (for a detailed discussion, see Barnett 1976). Peeled convex hulls
are essentially bivariate smoothers. Figure 3.8 illustrates a convex hull and a
subsequent peel around the same data set illustrated in figure 3.7. The initial hull
(figure 3.8A) describes the boundaries of the data—it encompasses the full range
of variation in the data set. The peeled hull, referred to as "peeled to depth 2"
(figure 3.8B), includes all but the most extreme values of the data set (compare
the points outside the peeled hull of figure 3.8B to the points with strong influ-
ence on r in figure 3.7B). This process can be repeated ad infinitum, but normally
does not proceed beyond depth 3. This is analogous to Tukey's (1977) running
median (3R) smoother, extended in two dimensions. Like smoothers, convex hulls
are constructed most easily with pencil and paper, or fast, interactive computer
software (S-Plus). Convex hulls are useful for highlighting patterns within noisy
data; they make no assumptions about the underlying distribution of the data.

Bivariate plots suitable for EDA are also suitable for final presentation. In
preparing these plots for publication, however, several conventions often ob-
served in the literature should be dropped in favor of clarity of presentation. First,
it is common in scatterplots to always start each axis at the origin (0, 0). In fact,
closely adhering to the actual range of the data when scaling axes is far more

Figure 3.7 Scatterplots of tree diameter versus tree height for 41 trees in a mixed hardwood
stand. (A) Raw data. (B) An influence plot, where the size of each point is directly propor-
tional to the magnitude of its influence on r. Shading of the points indicates the direction
of the influence (open circles have a positive influence on r, solid circles a negative influ-
ence). In this case, the putative outlier is shown as a large solid point (influence x 100 =
11). Removal of this point alone, therefore, would increase the value of r from 0.72 to
0.83. A 50% bivariate confidence ellipse is overlain on the figure. (C) An influence plot
of the data following log transformation. (D) Two different 95% confidence ellipses, the
outer constructed based on the variables' standard deviations, and the inner constructed
based on the standard errors of the means of the variables.
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Figure 3.8 A convex hull (A and B, solid line) and a depth-2 peel (B, dotted line) around
the tree size data. The hull is constructed by determining which points are farthest from
the centroid of the data and by joining those points to form a polygon that envelopes the
other points. To peel the hull, all the points that lie on the initial convex hull are deleted,
and a new convex hull is constructed for the remaining points.
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useful and informative than always including 0, especially if the extreme value
of either variable is « 0 or » 0. Restricting the values on the axes to just
beyond the extreme values of the data improves clarity and highlights pattern.
Axis breaks do not always help, and changing the relative scaling after an axis
break usually hinders accurate perception of the data and can stymie future digi-
tizers.

3.3.3 Extensions of Bivariate Techniques to
Multivariate Data Sets

For data sets that include a number of continuous variables, it may not be clear
which, if any, pair(s) of variables should be subjected to bivariate correlation or
regression analysis, or whether you should resort to multivariate techniques (chap-
ter 7). Three-dimensional plots (e.g., figure 3.11 A) are often used to examine and
illustrate higher dimensional data. Although these graphs are aesthetically pleas-
ing and easy to produce with current graphic software, accurate interpretation and
digitizing depend on the perspective and orientation of the plot.

The scatterplot matrix, whose origins are shrouded in mystery, provides an
alternative exploratory and presentation tool for higher dimensional data. A sym-
metrical scatterplot matrix of the tree data is shown in figure 3.9. This is simply
a plot of all possible bivariate combinations of the variables in the data set. Plots
above the diagonal have x- and y-axes transposed relative to those below the di-
agonal, which frees the investigator from preconceived notions of dependent and
independent variables. We can, of course, apply the bivariate exploratory tech-
niques described previously to each of the scatterplots within the matrix. The
possible addition of density plots of each variable along the diagonal gives the
investigator a simultaneous feel for the distribution of individual variables (El-
lison and Bedford 1991). The final construction provides an information-rich, but
rapidly comprehensible, picture of the overall data set. Advanced, interactive data
exploration and visualization techniques have been extended to «-dimensional
data by Cook et al. (1995) and Buja et al. (1996).

3.3.4 Classified Quantitative Data: Alternatives to
Bars and Pies

Classified quantitative data are common in many experimental situations. This
type of data set consists of responses of a given parameter to discrete treatments.
Such experiments may be analyzed by ANOVA (chapters 4 and 5), and the results
expressed in terms of the significance of treatment effects or interaction effects.
Data from these types of experiments often are not explored before the formal
analysis, although the univariate techniques described in section 3.3.1 are appro-
priate for examining the data structure of individual treatment groups. The excep-
tion to this generalization is common tests of the critical assumptions of ANOVA:
homoscedasticity (variances among treatment groups are equal) and normal distri-
bution of residuals within treatment groups. In particular, failure to test for homo-
scedasticity is one of the most common statistical errors (Fowler 1990). Hetero-
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Figure 3.9 A scatterplot matrix of the tree size data. This plot illustrates bivariate relation-
ships between all possible combinations of variables in a multivariate dataset. The variable
name in the boxes along the diagonal corresponds to ;t-axis variables of plots below the
diagonal and v-axis variables above the diagonal.

scedastic (unequal variances) data can complicate or compromise results obtained
from ANOVA (Sokal and Rohlf 1995).

To illustrate EDA and graphical presentation of classified quantitative data, I
used two data sets from Potvin (1993, tables 4.2 and 4.3; see also [http://
www.oup-usa.org/sc/0195131878/]). In one data set, the effects of genotype (the
classifying variable) on fresh mass of Plantago major, were examined. The sec-
ond set comprised data on the interaction effects of bench position and genotype
on stem dry mass of Helianthus annum grown in a Latin square design. In each
of these data sets, there is only one response variable: plant mass. More complex
data sets include responses of several variables to multiple levels of a given treat-
ment. As an example of this latter type of data set, I use data from Ellison et al.
(1993). We measured a number of growth and morphological characteristics of
Nepsera aquatica (an herbaceous species of disturbed areas in tropical wet for-
ests) in response to varying light levels (2%, 20%, and 40% of full sunlight).

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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Spread (some measure of variance) versus level (mean, median) plots (Norusis
1990) are a rapid, graphic way to examine the within- and between-treatment
group variances, as well as to provide clues as to appropriate data transformations
to bring heteroscedastic data into line. Norusis (1990), modifying the technique
of Box et al. (1978), suggests plotting the natural log of the interquartile distance
(i.e., the hspread; fig. 3.4A) versus the natural log of the median for each treat-
ment group. An appropriate transformation of the data to remove dependency of
the spread on the level is then given as 1 minus the slope of the linear regression
line fit to the spread versus level plot. Figure 3.10A illustrates a spread versus
level plot for Potvin's Plantago data. Note that the raw data are not homoscedas-
tic; the variance increases with the mean. Following Norusis (1990) and Box et
al. (1978), the slope of the regression line for this plot is 1.71, suggesting that
the data be transformed by raising each observation to the -0.71 power. After
such a transformation, the spread versus level plot (figure 3.1 OB) illustrates that
the strict dependency of spread on level no longer exists, and the data are some-
what more suitable for ANOVA (the variances are no longer correlated with the
mean, although they are still not equalized). Plant size data are often subject to
logarithmic transformations to equalize variances within treatment groups. A log
transformation of these data is almost as good as the negative exponential trans-
formation in equalizing these variances (table 3.1). Box and Cox (1964) and Zar
(1996) provide detailed methods on determining the "best" transformation to be
used on heteroscedastic data. Such transformations may not make biological
sense, but keep in mind that the role of transformation is to bring your data in
line with the assumptions and requirements of the statistical model(s) you are
testing.

Graphic EDA can also be used to examine interaction effects in data. An
example is illustrated in figure 3.11 for Potvin's Helianthus data. In this experi-
ment, Potvin illustrates how position on a greenhouse bench interacts with geno-
type to determine plant mass. The top figure illustrates the relatively small size
of genotype A and the relatively large size of genotype E. Although a scatterplot
matrix might have made this pattern clearer, there is no real reason to plot row x
column, or row x genotype, or column x genotype when the point is to illustrate
the row x column interaction effect on genotype. The lower figure, a contour plot
of the top figure, illustrates the clear "hot spot" in the upper left corner of the
bench. Because interaction effects often involve visualizing data in more than two
dimensions, you can use many of the techniques normally applied to multivariate
data in the exploration of interactions.

Classified quantitative data are presented poorly in the ecological literature.
These problems are illustrated with the data of Ellison et al. (1993) on resource
allocation and morphological responses to light by Nepsera (figure 3.12). The
most common ways of presenting classified quantitative data are bar charts, sepa-
rated or stacked (figures 3.12A,B), and pie charts (figure 3.12C). Separated bar
charts (figure 3.12A), where a single bar represents the results of a single treat-
ment, suffer from the same problems as histograms. The bars themselves use a
lot of ink—horizontal lines, vertical lines, shading of bars of arbitrary width—to
convey information about only a single point at the top of the bar (compare figure
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Figure 3.10 Spread versus level plots of the Plantago data. Values plotted on (A) are
ln(interquartile distance) on the y-axis versus ln(median plant mass) on the x-axis of seven
replicate individuals of each of five genotypes. Genotype number is indicated on the plot.
(B) Spread versus level plot of data following a negative exponential transformation (Nor-
usis 1990). See text and table 3.1 for further explanation.
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Table 3. 1 Variance (/) of n = 1 observations per genotype of Plantago fresh mass"

Genotype

1
2
3
4
5

Mean

0.198
0.309
0.109
0.298
0.412

Untransformed

0.006
0.034
0.008
0.029
0.039

Variance

Log
transformation

0.179
0.440
0.151
0.354
0.196

Negative
exponential

transformation 0>~°'71)

1.245
1.798
0.710
1.302
0.392

"Variances are shown (1) before transformation, (2) after transformation by natural logarithms, and (3) after trans-
formation by the negative exponential suggested by the spread versus level plot (figure 3.10).

3.12A with 3.12D). Stacked bar charts (figure 3.12B), where treatment groups are
divided into subsets and groups are compared against one another, are virtually
unintelligible and never should be used. In this example, the percent allocation to
leaves, roots, and stems sums to roughly 100% (allowing for error and missing
values). Figure 3.12A (bars side by side) at least clearly illustrates the relative
allocation to each part. It is not so simple, on the other hand, to determine the
relative allocation in figure 3.12B.

Because we use 0 as our reference point, the first guess would be that the
allocation to roots in 2% light is approximately 70% and that to stems is 100%,
when clearly this cannot be true. However, it is difficult to determine visually the
beginning point of any of the stacked segments beyond the lowest one. Although
measures of variance can be placed clearly on side-by-side bar charts, error bars
cannot be placed on stacked bar charts (see section 3.4). Shading, hatching, and
other chartjunk used in bar charts also can interfere with accurate perception of
the data and decrease the data-to-ink ratio. Pies share all of the problems of
stacked bar charts, and none of the advantages of side-by-side bar charts. I can
think of no cases in which a pie chart should be used.

There are several alternatives to bar charts and pie charts. Plots in which the
mean value of the response variable is plotted as a single point, along with some
measure of error, clearly illustrate the same data as in a bar chart with greater
clarity and less ink (figure 3.12D). Sets of box plots better illustrate the underly-
ing data structure and convey more information with less ink and confusion (fig-
ure 3.12E). These box plots have been "notched" (McGill et al. 1978) to show
95% confidence intervals. Polar category plots (with or without error bars; the
latter are shown in figure 3.12F) are the minimalist alternative to bar charts and
are a visually comparable substitute for pie charts. These polar category plots
illustrate the response of eight measured variables to the three light environments
and clearly convey overall differences between treatment groups.
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Figure 3 .11 Two ways of visualizing the effect of bench position and genotype on stem
dry weight of Helianthus. The top figure is a three-dimensional scatterplot, with genotype
letter (A-F) as the plotting symbol. The addition of sticks connecting each point to its
position on the x-y plane permits more accurate perception of the true height along the
z-axis of each point. The lower figure is a contour plot, with intensity of shading indicating
the biomass at a particular row x column location on the bench. These contours were
determined by a negative exponential smoothing routine, where the influence of neighbor-
ing values decreases exponentially with distance. Shading density increases with biomass.
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3.4 A Word About Error Bars

Any reported parameter must include a measure of the reliability of that para-
meter, as well as the sample size. For example, sample means, whether reported
graphically or in tables, must be accompanied by the sample size and some esti-
mator of the variance. Error bars on graphs must be correctly identified. Three
kinds of error bars are seen commonly in the ecological literature: standard devia-
tions, standard errors, and n% confidence intervals. Strictly speaking, the first is
the sample standard deviation. The second, more properly referred to as the stan-
dard error of the mean, is an estimate of the accuracy of the estimate of the
mean. We compute it as the standard deviation of a distribution of means of
samples of identical sizes from the underlying population (see Zar 1996, section
6.3 for a complete description). Thus, calling error bars simply standard deviation
bars confounds the two. Measures of error are used to calculate n% confidence
intervals. We can easily compute confidence intervals of normally distributed
data from the standard error of the mean (Sokal and Rohlf 1995). For other distri-
butions, approximations of confidence intervals can be computed using boot-
straps, jackknifes, or other resampling techniques (Efron 1982; chapter 13). All
of these measures require information about sample size, which must be reported
to ensure accurate interpretation of results.

In general, error bars are useful only when they convey information about
confidence intervals. Typically, in the ecological literature, means are plotted
along with error bars illustrating 1 standard error of the mean. For suitably large
n, or for samples from a normal distribution, 1 standard error bar approximates a
68% confidence interval. This conveys little information of interest, since we are
accustomed to thinking in terms of 50%, 90%, 95%, or 99% confidence intervals.
Further, most ecological samples are small, or the underlying data distributions
are unknown. In those cases, error bars representing 1 standard error of the mean
convey no useful information at all. In keeping with the guidelines for graphical
display presented at the beginning of the chapter, I suggest that sample standard
deviations or 95% confidence intervals be the error bars of choice. Two-tiered
error bars (Cleveland 1985) that display both quantities are an excellent compro-
mise. Meta-analysis (chapter 18) requires sample standard deviations, and if re-
ported together with sample size, they permit rapid calculation of confidence
intervals, standard errors, or most other measures of variation. In the end, the
choice of error bar lies with you. It is most important that they be identified
accurately.

If you transformed the data before analysis, your calculated standard deviation
will be symmetrical only with respect to the transformed mean. If you present
the results back-transformed (as is common practice), the error bars may be asym-
metric.

3.5 Conclusion

Ecologists traditionally have used a limited palette of graphic elements and tech-
niques for exploring and presenting data. We must refocus our vision to grasp
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Figure 3.12 Six alternatives for
presenting classified quantitative

data. Data are from an experi-
ment examining the effect of

three different light levels (2%,
20%, and 40% of full sun) on

growth, resource allocation, and
morphology of Nepsera aquatica.
Each treatment consisted of 20 in-
dividually potted plants, harvested
after 6 months of growth (Ellison

et al. 1993). (A) A side-by-side
bar chart illustrating percent allo-
cation to leaves, roots, and stems
by plants in each light treatment.
Height of the bar indicates mean
percent allocation, and error bars

indicate 1 standard deviation of
the mean. (B) A stacked bar chart
illustrating the same data. (C) Pie
charts illustrating the relative re-

source allocation in the three light
environments (dark shading: 2%
light; intermediate shading: 20%

light; no shading: 40% light).
Note that it is not possible to

place error bars on stacked bar
charts or pie charts. (D) Simple

category plot of the data illus-
trated in figure 3.12A. Each point
represents the mean percent allo-

cation to leaves (circles), roots
(squares), and stems (triangles);
error bars are 1 standard devia-

tion. (E) Notched box plots of the
data. Box plot construction as in
figure 3.4A. Plots are "notched"

to illustrate 95% confidence inter-
vals. Where the box reaches full

width on either side of the me-
dian indicates the limits of the
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confidence interval. (F)
Polar projections of cate-
gory plots (also known as
star plots) of the response
of eight measured param-
eters to the three light
treatments. The radius of
the circle is equivalent to
the y-axis of a rectangular
plot; the distance from
the center of the circle to
each vertex of the poly-
gon is the mean response
of each variable to the
treatment. Variables are
arranged equidistantly
around the perimeter of
the circle (equivalent to
the x-axis of a rectangular
plot). One obtains a pic-
ture of the overall re-
sponse of the plant to
each light treatment by
constructing a polygon
whose vertices are equal
to the value of the re-
sponse variable. Different
shapes in the different
light treatments indicate
overall treatment effects.
For this type of plot to be
effective, all data must be
similarly scaled; for this
plot, root-to-shoot ratio (g
g~!) was multiplied by
102, and specific leaf
weight (g cm"2) was
multiplied by 104. Leaf
area (cm2), is a measure
of total leaf area per
plant.
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new or unfamiliar graphic elements and techniques that will permit clear commu-
nication of our data. We can now use available computer hardware and software
with expanded EDA and presentation capabilities to display our results accu-
rately, concisely, and in aesthetically pleasing ways (Ellison 1992; Kardia 1998).
We can improve our comprehension and appreciation of data by using many of
the graphic techniques presented in this chapter, just as we can increase our ap-
preciation of the diversity of pasta entrees with a trip to a fine Italian restaurant.
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ANOVA

Experimental Layout and Analysis

CATHERINE POTVIN

4.1 Ecological Issues

When the understanding of ecological questions necessitates partitioning the ef-
fects of environmental factors, ecologists rely on experiments. Manipulative ex-
periments, either in the field or in controlled environments, enable ecologists to
vary single factors to isolate their effects. For example, growth cabinets make it
possible to raise organisms at identical temperatures but different photoperiods,
or at identical light intensities but different temperatures. In manipulative experi-
ments, it is often desirable that environmental "background," that is, all the fac-
tors that are not altered voluntarily, be controlled precisely. This ensures that
responses observed when varying a target factor are not confounded with uncon-
trolled sources of variation. Thus, controlled environments, mainly growth cham-
bers and greenhouses, are a frequent tool in plant ecology, as are growth cabinets
and aquariums in animal ecology.

In the first section of this chapter, I present analysis of variance (ANOVA) as
a fundamental tool in experimental ecology. The core of the chapter will address
the design of experiments. Although growth chambers are often perceived as
uniform environments, environmental heterogeneity exists within a single growth
unit, as well as between units (Lee and Rawlings 1982; Potvin et al. 1990a).
Experimental designs that can adequately account for environmental heterogene-
ity will be examined. Although my emphasis will be on growth chambers, the
same principles prevail for research in other types of controlled or field environ-
ments (chapters 5, 15, and 16). I also explore the cost of erroneous designs. This
chapter should be viewed as a point of departure to illustrate the considerations
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that come into play when it is time to design an experiment. Experimentalists
will often have more complex designs than those that are presented here. Once
the underlying principles are understood, it becomes relatively simple to elaborate
the appropriate experimental designs. Sources for more details include Cochran
and Cox (1957) and Winer et al. (1991).

4.2 Statistical Issues: Environmental Variation and
Statistical Analysis

As suggested by Underwood (1997), the first step in the design of an ecological
experiment is formulating a linear model that allows the researcher to isolate the
effect(s) of interest. Formulating a linear model depends on the factors studied and
on a specific design, because experimental design dictates error terms. It is essen-
tial, at the onset of any experiment, to examine patterns of spatial and temporal
variability. Experimental designs provide a way to account for these otherwise
uncontrolled sources of variability. Thus, a good experimental design will reduce
the size of the experimental error. Examining alternative designs will facilitate
the choice of an appropriate experimental design and will clarify the degrees of
freedom associated with each source of variation. Thus, the choice of an appro-
priate experimental design is essential to avoid problems of pseudoreplication and
confounding (Hurlbert 1984). The proper testing of effects depends on an appro-
priate choice of error terms. This discussion assumes a basic knowledge of AN-
OVA, hence I will focus on less familiar aspects. Details of the statistical treat-
ment of ANOVA can be found in Searle (1971).

Analysis of variance (ANOVA) uses sampled data to test hypotheses regarding
a population. ANOVAs are based on the specification of linear models used to
partition the variance attributable to factor(s) (often treatments). A factor may be
represented by any number of levels, that is, categories into which a factor is
divided (Searle 1971). The parameters of the linear model describing the data can
be estimated, among other techniques, by least-square or maximum-likelihood
methods. Least-square estimators, traditionally used in ANOVA, minimize the
sum of squares of deviations of the observed data from their expected values
(Searle 1971). In least-squares analysis, if the data set is balanced (i.e., with an
equal number of observations per cell), the total sum of squared deviations can
be readily partitioned in sums of squares (SS) that contribute to each factor in the
design. As a reminder, a deviate is the difference between an observation and the
mean. The result is minimum-variance, unbiased estimators, which are desirable
properties for estimators (Winer et al. 1991). Mean squares (MS), a measure of
the average variation for each degree of freedom, are then derived by dividing
every SS by its degrees of freedom (SS/df). In that sense, a MS is equivalent to
a statistical variance. An expected value is associated with each calculated MS.
Table 4.1 shows that the expected value of a MS is a linear combination of the
components of the variance. The statistic, F, on which ANOVA relies for hypoth-
esis testing, is obtained from the ratios of two MSs, the treatment MS and the
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Table 4. 1 Expected mean squares and F-ratios for a two-way ANOVA"

Effect

A

A,

B;

ABS

Residual (error)
B

A,

B;

ABS

Residual (error)

Expected mean square F-ratio

MSA/MS,

MSB/MSe

MSAB/MS8

MSA/MSAB

MSeMSAB

MSAB/MSC

"The analysis is for (A) fixed effects and (B) random effects models.

error MS. Thus, the probability of detecting the effect of the factor of interest
hinges on the use of an appropriate error term.

The importance of error terms can be illustrated by the following example.
The theory underlying ANOVA recognizes an essential difference between two
types of effects: random and fixed. We can view levels of a random factor as
being randomly drawn from a larger defined set and levels of a fixed factor
as being deliberately chosen by the experimenter. Biologically, the inferential
aspect of whether an effect is fixed or random is crucial. If an effect is considered
fixed, the conclusions cannot be generalized or extended beyond the levels under
study because the levels of the factor have been deliberately chosen. To infer to
other levels of a treatment factor, the effect of that factor has to be considered
random. Study of increased atmospheric CO2 concentration provides a clear ex-
ample of a fixed-factor effect. Researchers commonly compare the effect of cur-
rent CO2 level (350 ml/1) with the doubling predicted by the middle of the twenty-
first century (650 ml/1). In these experiments, no attempt is made to generalize to
other CO2 levels. However, if the experiment focuses on the response of various
genotypes of Arabidopsis to elevated CO2, it is most likely that genotypes are
selected randomly to represent the general population of Arabidopsis genotypes.
The genotype effect would then be random and the findings could be extended
to all Arabidopsis genotypes.

When the data set is balanced, that is, it has an equal sample size in each cell
of the analysis, computation of the SSs and of the MSs is identical whether a
factor is fixed or random (Herr 1986). However, the expected MSs differ, which
is important since the F-ratios are dictated by expected MSs. The simplest case,
the two-way model, is illustrated in table 4.1. Computer codes for the analysis in
SAS (SAS Institute Inc., 1989a,b) are given in appendix 4.1. In fixed models, the
expected MS for each factor is the sum of the error variance and the constant
effect of that factor. Therefore, the appropriate MS to be used as the denominator
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is always the error MS. In the random model, the expected MS for each main
effect is the sum of the error variance, the interaction variance, and the variance
due to the effect tested. Thus, F-tests of the main factors use the interaction MS
as denominator, but the interaction is still tested over the error MS. In three-way
(and higher order) random or mixed factorial models, the appropriate denominator
is often a combination of MS terms (Winer et al. 1991). I emphasize the central
role of the expected MS in determining the appropriate tests of significance be-
cause practitioners frequently use statistical packages that test all factors over the
error MS as a default. This discussion indicates that the resulting analysis is valid
only for a fixed model, regardless whether this is appropriate. The remaining
sections of the chapter present different experimental designs and point out appro-
priate error terms, emphasizing the distortion that can result from choosing the
wrong error term.

4.3 The Statistical Solution: Designing an Experiment

Data analysis depends on the design of the experiment itself, how the levels
of the factors of interest are assigned to the experimental units. In general, the
smaller the experimental error, the more efficient the design. Designing an experi-
ment also involves choosing the sample size and the physical and temporal layout
of the experiment. A variety of standard experimental designs are available, each
associated with a mathematical model and analysis. Here I examine two such
designs and how each of them can account for specific patterns of variability.
These designs are typical of ecological experiments. Alternative designs that ad-
dress various specific problems can be found in Cochran and Cox (1957), Winer
et al. (1991), and Underwood (1997).

In manipulative experiments, different experimental units receive different lev-
els of the treatment factors. It is then assumed that differences between experi-
mental units represent differences between these levels (Hurlbert 1984). Random-
ization of the levels of treatment factors over the experimental units and treatment
replication are the central tenets of a good experimental design. Sir Ronald Fisher
(1935) was a strong advocate of randomization. He argued convincingly that ran-
domization was a warranty against confounding sources of variation.

Suppose that we are interested in comparing the photosynthetic performance
of three different species and that sampling takes place over three 2-hour periods
between 10:00 A.M. and 4:00 P.M. A good design would randomly assign each
species to each time period on every sampling day. An erroneous design would
systematically measure species A in the morning, species B at noon, and species
C in the afternoon. In the latter design, species photosynthetic rates would be
confounded with the time of day at which they were sampled. It would be impos-
sible to know from statistical inference whether differences were due to differen-
tial species performance or to differential time of day.

The second most important tenet of good experimental design is replication.
According to Fisher (1971), replication has two main purposes: "whereas replica-
tion of the experimental varieties or treatments on different plots is of value as
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one of the means of increasing the accuracy of the experimental comparison, its
main purpose, which there is no alternative method of achieving, is to supply an
estimate of error by which the significance of these comparisons is to be judged."
Hurlbert (1984) introduced the term pseudoreplication as "the use of inferential
statistics to test for treatment effects (factors) with data from experiments where
either treatments are not replicated or replicates are not statistically independent."
The core of Hurlbert's article addresses pseudoreplication in experimental layout.
Often, however, experiments are well laid out but problems arise during data
analysis because the investigator failed to identify the actual experimental units
or replicates and, hence, the appropriate error terms.

4.3.1 Blocking

Blocking, the grouping of like experimental units, can accommodate environmen-
tal heterogeneity and improve statistical power. In keeping with the idea of ran-
domization (Fisher 1971), each level of the treatment factor is randomly applied
to a different experimental unit within each block. In a randomized block design,
experimental units are grouped into blocks within which the environment is rela-
tively constant. Differences between experimental units within a block provide a
measure of the treatment effect, whereas repetition of the blocks provides replica-
tion of the treatments. This design enables us to partition the random deviation
into that due to the treatment factor of interest, the experimental error, and the
undesirable environmental (block) effect. The resulting experimental error term
will be smaller, and the design will be more powerful than in a completely ran-
domized design.

In the classic randomized block design, each level of the treatment factor will
be applied at random to one replicate per block. The number of experimental
units within each block will therefore be equal to the levels of the factor under
study. This design can thus be viewed as a special case of ANOVA with no
replication per cell. Consequently, the model does not include an interaction term.
A randomized block design is described by the following linear model:

where Xijk is the response of the y'th experimental unit under the z'th level of treat-
ment factor T, (J. is the population mean for the response, it is the effect of the z'th
level of treatment T, P, is the effect of the y'th block, and eijk is the random devia-
tion or error. The SAS commands for this design are given in appendix 4.2. Note
that the MS error corresponds to the interaction between block and treatment
(Sokal and Rohlf 1995, pp. 328, 347). The expected error mean square of the
randomized block design (ol + oiB) corresponds to the expected interaction mean
square of a two-way ANOVA.

The analogous completely randomized design is described by

Comparing equations 4.1 and 4.2 further shows that if blocking is done appropri-
ately and if the blocks correspond to the various environmental conditions, the p*;



68 Design and Analysis of Ecological Experiments

term will remove from the error term variability due to environmental heterogene-
ity. As a consequence, the error term will be reduced, and the randomized block
design will be more likely to detect a significant treatment effect than the com-
pletely randomized design.

The classic model, equation 4.1, implicitly assumes the absence of an interac-
tion between the treatment and block effects. Both Underwood (1997) and New-
man et al. (1997) are critical of this assumption for field experiments. They argue
that the presence of an interaction invalidates the test of the treatment effect. This
argument is not a new one. Kempthorne (1975) argued that in the presence of an
interaction, an overall statement about a main factor would have little meaning.
However, as clearly illustrated by Sokal and Rohlf (1995, p. 336) in many cases,
it may be important to test for the overall significance of a main effect despite
the presence of an interaction. It is worth going back to Sheffe (1959) for clarifi-
cation. According to this author, a case of no interaction is a case of additivity
with a simple interpretation: factor A will affect all observations equally regard-
less of the effects of factor B. If an interaction is present, however, the effect of
A will vary according to the various levels of factor B. In controlled environments
where blocks are constituted by trays, plastic containers, and so on, the assump-
tion of independence between blocks and treatments is likely to be true. In other
situations, such as field manipulative experiments, the existence of a treatment
by block interaction is conceivable. However, as demonstrated by Sheffe (1959,
p. 95), the presence of such interaction would not invalidate the randomized block
design, but rather add a caveat to its interpretation. Suppose that two species are
compared in several different locations (blocks) and found to be statistically dif-
ferent despite the presence of a species by block interaction. Our conclusion is
that, averaged over all blocks, species A did better than species B, despite the
fact that in some blocks the reverse could be observed.

A potential drawback to the use of a randomized block design with one obser-
vation per cell is the difficulty of dealing with missing data. Mortality or loss of
any experimental unit will lead to an imbalance in the design through a miss-
ing cell. The main difficulty in an analysis with missing cells is that no informa-
tion is available for the combinations that are not observed (Shaw and Mitchell-
Olds 1993). To get around that problem, we can estimate the missing value using
marginal means (Mead and Curnow 1983), the mean value of a row or column in
a two-way data table.

In the presence of replication, it becomes possible to estimate the interaction
between block and treatment. In this case, the appropriate statistical model is

where i(3,j is the interactive effect of the z'th level of treatment T and the jth block.
Other terms are as defined in equation 4.1. The SAS commands for this design
are given in appendix 4.3. Dutilleul (1993) showed that in a randomized block
design, if blocks are considered random, the treatment and block interaction is
the proper error term for the treatment effect. This latter type of randomized
blocked design has a distinct advantage over the classical design. If there is mod-
erate mortality or other loss of experimental units, the imbalance does not affect
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the higher levels of the analysis. A simple way to analyze such data is to compute
the mean response for each cell. This rebalances the data and does not inflate the
degrees of freedom. The means are then used as observations and the analysis pro-
ceeds according to equation 4.1.

It is important to realize that, although blocking can be a powerful tool to
reduce the size of the error, a cost is also associated with blocking. In the random-
ized block design, for example, partitioning of the variance into three terms (treat-
ment, block, and error) rather than two (treatment and error) reduces the error
degrees of freedom. If blocking is inappropriate and does not account for environ-
mental heterogeneity, a design with blocks may be less efficient than a completely
randomized design. The choice of the most appropriate design and the efficiency
of the blocks in accounting for environmental heterogeneity depend on a good
understanding of the heterogeneity of the environment. Blocking will be efficient
if the variability between the experimental units in a block is smaller than the
variability among blocks. Appropriate blocking will group the experimental units
growing in the poorest environment into a block, those growing in the best into
a second block, and so on. Each level of the treatment factor is then allocated to
both good and poor growth conditions, resulting in a very accurate estimate of
the true difference between the levels of the treatment factor (Mead and Curnow
1983). Another pitfall in using blocks is that the scale of environmental variation
might not match the experimental constraints, such as cart or tray size. Figure 4.1
illustrates optimal and nonoptimal block placement in a randomized block design.
An obvious mistake in selecting block placement is to position blocks across
different environmental conditions. This discussion on the use of blocking refers
to greenhouse and growth chamber experiments, yet the designs illustrated in this
chapter are appropriate and useful for field experiments (see Dutilleul 1993). In
the field, exercise care when blocking. In a blocked design, the treatment should
be applied within natural habitat patches so that they experience the same envi-
ronmental conditions, yet treatment levels should be sufficiently distant from one
another to be independent.

4.3.2 Variation Between Growth Compartments:
The Split-Plot Design

Often, the nature of different treatment factors necessitates that they be applied
at different scales. For example, temperature or atmospheric CO2 concentration
has to be applied to a whole growth chamber, whereas species or soil nutrients
can be manipulated at the pot level within a single chamber. In controlled envi-
ronments, the former factors are referred to as between-chamber factors since
comparison of more than one level requires the use of more than one growth
compartment. In other words, the experimental unit becomes the growth chamber
rather than the individual pot. If a treatment factor is applied to a whole growth
chamber, replication between chambers is essential: the appropriate error term to
test for between-chamber factors is the difference between chambers subjected to
the same treatment level (Winer et al. 1991; Underwood 1997). Therefore, if a
between-chamber factor is represented by two levels, the minimum number of
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Figure 4.1 Examples of a layout for a randomized block design to compare six levels of
a treatment factor (e.g., genotypes of sunflowers): (A) appropriate and (B) erroneous lay-
out in the presence of one environmental gradient; (C) appropriate and (D) erroneous
layout when the environment is patchy.

chambers is four (Potvin and Tardif 1988). Furthermore, even if 100 plants were
grown in each of the four growth chambers, the analysis of the between-chamber
factor would involve 3 degrees of freedom, not 399. This is because the variation
between experimental units within a chamber provides no information on the
between-chamber treatment factor. Physical and financial constraints usually limit
the number of growth chambers available, hence the degrees of freedom for test-
ing between-chamber factors are often small. If replication is either impossible,
as in whole lake (e.g., Schindler 1974) or watershed (e.g., Likens et al. 1977)
studies, or exceedingly costly, as in free air carbon dioxide experiments, "experi-
ments involving unreplicated treatment may be also the only or the best option"
(Hurlbert 1984). Subsequently, I examine the cost, in terms of Type I errors, of
misusing statistical tools to provide a false sense of rigor to the data.

Often, ecological experiments involve both between-chamber and within-
chamber factors, for example, temperature responses of different genotypes where
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temperature is a between-chamber factor and genotype is a within-chamber factor.
Such experiments can be appropriately analyzed with a split-plot design. In a split-
plot experiment, a single level of one treatment factor is applied to a large plot
while all the levels of a second treatment factor are allocated to subplots within
that main plot. Two different randomization procedures are used to allocate the
treatments. The levels of the main plot treatment factor are first allocated at ran-
dom, each to a different growth chamber. Growth chambers are then divided into
subplots, and, in a second randomization procedure, each level of the within-
chamber factor is assigned to a given subplot.

As an example, I use a theoretical split-plot experiment to compare two atmo-
spheric CO2 concentrations and six nutrient concentrations on plant biomass. The
layout of this split-plot design is illustrated in figure 4.2 and is representative of
many growth-chamber studies. The unit of comparison for CO2 concentration is the
entire growth chamber, whereas nutrient levels are compared within each cham-
ber. The general linear model to describe the data obtained by such a split-plot
design is

where a, is the effect of the fth level of CO2 concentration (the between-chamber
factor), e.k(i) is the main plot error term and designates the effect of chamber k
within level a;, v; is the effect of the y'th nutrient concentration (the within-cham-
ber factor), otv,j is the effect of the interaction between the j'th CO2 concentration
and the jth nutrient level, and e\(ij) is the error term associated with the subplot.
Other parameters are defined as in equation 4.1. Artificial data were generated
and analyzed according to this model (table 4.2); the SAS commands are given
in appendix 4.4.

The variance in a split-plot ANOVA is partitioned into two parts, and the
analysis distinguishes two error terms: the whole plot and the subplot errors. The
error term used to test the effect of CO2 is calculated in terms of the variation
between growth chambers. On the other hand, the effect of nutrient levels is
independent of the variation among growth chambers. Consequently, the error
term to test the nutrient effect is determined by the variation between the subplots
within a growth chamber (Winer et al. 1991). The interaction term, av,}, is inde-
pendent of, the variation due to the whole plot effect. The classic split-plot design
illustrated in figure 4.2 assumes that only one observation per cell is present. As
in the case of the randomized block, split-plot ANOVAs can be extended to allow
replication of the experimental units in the subplots. The main advantage of the
split-plot design is the relatively high statistical power for subplot factors. If
main-plot replicates are few, it might be difficult to detect statistically significant
main-plot differences. However, the degrees of freedom available to test for sub-
plot interaction effects could be sufficient for a powerful statistical test.

Results from a split-plot analysis of soybean growth (Lee and Rawlings 1982)
enable us to quantify the most frequent and, I would argue, damaging error that
occurs in the statistical analysis of growth chamber experiments. When the split-
plot nature of an experiment that involves both within- and between-chamber
factors is ignored, the analysis erroneously proceeds using the subplot residual as



Figure 4.2 Example of layout for a split-plot design involving six nutrient levels as a subplot factor and two CO2

concentrations as a main plot factor. A replication (block) consists of two growth chambers, each chamber being
considered as a main plot. Nutrient levels are represented by numbers 1-6 and CO2 concentration by presence or
absence of shading. The chambers are then subdivided into six subplots to which the within-chamber factor is
randomly allocated.
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Table 4.2 A. Artificial biomass data. B. Split-plot ANOVA with
factor and nutrient as the subplot factor

A

CO2 as the main plot

Nutrients

C02

350
350
675
675

B
Source of variation

Main plot
C02

Main plot error
Subplot

Nutrient
Nutrient x CO2

Subplot error

1

13.3
12.4
15.8
13.9

SS

130.67
6.08

3050.44
35.47
15.80

2

19.9
20.5
22.4
21.0

df

1
2

5
5

10

3

24.5
22.1
26.9
27.5

MS

130.67
1.93

610.09
7.09
1.58

4

33.6
29.4
38.0
35.9

F

42.959
.193

386.213
4.491

5

38.9
36.9
44.8
46.8

P

.0225

.196

.001

.021

6

41.4
42.3
49.2
49.0

the error term for all of the main effects. A comparison of the magnitude of
the whole-plot and the subplot error MSs indicates that the use of the subplot
error underestimates the real error. In the soybean experiment, the discrepancy
between the errors was, at times, as large as 400-fold (table 4.3). The opposite
trend can be found when the comparison involves the error degrees of freedom.
In the example, the error degrees of freedom associated with the whole plot is 4
compared to 3960 for the subplot (table 4.3). Therefore, when the subplot error
term is wrongly used to test the chamber and trial main effect, the analysis will
proceed with artificially inflated degrees of freedom and a reduced error MS.
Similar observations arise from examination of table 4.2. Needless to say, such
erroneous use of the subplot in lieu of the whole-plot error term can have a drastic
effect on the conclusions of the ANOVA, often leading to Type I errors.

Underwood (1997) recently provided a discussion of split-plot designs; he em-
phasized the difficulties that arise when the treatment factors are not independent
of the plot effects and recommended that split-plot design should be abandoned.
As we saw for randomized block designs (section 4.3.1), the presence of an inter-
action between plots and treatments would indeed complicate the interpretation
and would only allow examination of the treatment effect averaged over the plots.
I suggest, however, that such interaction is a lesser problem than the widespread
misuse of the error term in designs where treatments are applied at different spatial
scales. As demonstrated very clearly by Lee and Rawlings (1982), growth cham-
ber experiments often dictate the use of split-plot designs.
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Table 4.3 (A) Mean squares in combined split-plot analyses of variance on soybean,
with a comparison of two main effects, growth chambers and trials. (B) Proportional
difference in size of the two error terms"

Source of variation

A
Main plot

Chamber
Trial

Main plot error
Subplot

Truck
Chamber x truck
Trial x truck
Chamber x trial x

truck
Subplot error

B
Proportional

difference

df

3
3
4

23
69
69

292
3960

Plant
height

50.05
48.54

125.72

9.72
7.93
0.48

0.55
0.29

433.5

Leaf
area

197.72
310.83
127.67

16.90
14.59
1.09

1.13
0.71

179.8

Petiole
length

39.30
36.01
50.07

5.04
4.75
0.27

0.26
0.15

333.8

Fresh
weight

320.63
464.54
211.63

30.22
24.10

2.58

2.38
1.62

130.6

Dry
weight

48.10
48.10
31.43

9.14
4.08
0.47

0.43
0.24

131.0

"From Lee and Rawlings (1982).

4.4 Conclusion

This chapter relies on classical experimental designs to account for environmental
heterogeneity in ecological experiments. As an essential initial step for the pursuit
of manipulative experiments, I recommend that both field ecologists and growth
chamber users carry out a field survey or uniformity trial to document environ-
mental variability. The techniques presented here are basic and can be incorpo-
rated into various experimental designs or used in conjunction with a wide variety
of analytic techniques. For example, blocked designs are referred to in several
other chapters (e.g., chapters 5, 6, 8, 15, and 16). This is because blocking, that
is, the grouping of experimental units subjected to similar environmental condi-
tions, is a powerful way to control for unwanted sources of variation. The poten-
tial cost of blocking, a reduction in the degrees of freedom of the error term,
should be kept in mind. In situations where the grouping of the experimental units
does not correspond to the underlying pattern of environmental heterogeneity, the
completely randomized design may be more powerful because of its greater de-
grees of freedom.

I have considered environmental heterogeneity as a function of space alone.
Variability among years is well known to ecologists. An early article on variabil-
ity in controlled environments suggested that growth conditions may vary as
much through time as in space (Potvin and Tardif 1988). In both field and con-
trolled environments, it is possible to consider repetition of an experiment in time
as true replication, which might provide some relief in the design of experiments.
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The comparison of two levels of a treatment factor may properly be assessed by
using two growth chambers or two fields in two successive trials. Whether in
space or in time, replication is essential to provide an error term.

One persistent error in growth chamber experiments is the tendency to rotate
plants between chambers to compensate for the absence of growth chamber repli-
cation. Such an approach loses sight of the fact that testing for a between-chamber
factor can come only from the comparison of different chambers and that be-
tween-plants within-chamber variation is not an appropriate error term for be-
tween-chamber factors. If replication is impossible, it is better to avoid making
statistical inferences with the data than to compute statistical analysis using the
wrong error term.
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Appendix 4. 1 SAS program code for the two-way ANOVA of
table 4.1.

PROC GLM;
CLASS A B;
MODELX = A B A*B/SS3;

/use procedure GLM for unbalanced ANOVAs/
/indicates categorical variables/

/model statement corresponding to Table 4. 1 ,
use type III sums of squares. Warning: results are

only approximate if the design is unbalanced./

*** If factors A and B are random effects use the following
command to obtain the correct F tests ***

RANDOM B A*B/TEST; /Declare sites to be a random effect and ask SAS to
compute the Satterthwaite correction for an

unbalanced design./

Appendix 4.2 SAS program code for a randomized block
design (eq. 4.1).

PROC GLM;
CLASS T B;
MODEL X = TB/SS3;

/T=treatment levels, B=blocks/
/all terms are tested over the error/

Appendix 4.3 SAS program code for a randomized block
design with replication (eq. 4.3).

PROC GLM;
CLASS T B;
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MODEL X = TBT*B/SS3;
RANDOM B T*B/TEST;

/now an interaction term is present/
/the block and block-treatment

interaction terms are random effects/

Appendix 4.4 SAS program code for a split-plot design
(eq. 4.4).

PROC GLM;
CLASS A E N;

MODEL X = A E(A) N A*N/SS3;
RANDOM E(A)/TEST;

/A = CO2 level, E = chamber (main plot error)
N = nutrient level/

/COZ level will be tested over the chamber effect.
Nutrient and the CO2-nutrient interaction will be

tested over the error term./
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ANOVA and ANCOVA

Field Competition Experiments
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5.1 Introduction

Competition has occupied a central place in ecological theory since Darwin's time,
and experiments on competition have been conducted on many different organisms
from many different environments (see reviews in Jackson 1981; Connell 1983;
Schoener 1983; Hairston 1989; Gurevitch et al. 1992). There are many different
kinds of competition experiments. The main focus of this chapter is how to choose
the appropriate designs and statistical analyses for addressing particular kinds of
questions about competition. Such choices depend on many aspects of the questions
and systems under study. Because the basic statistical methods appropriate for most
of the designs we present, analysis of variance (ANOVA) and analysis of covari-
ance (ANCOVA), are thoroughly covered in standard textbooks of experimental
design and analysis, we provide somewhat less emphasis on the nuts and bolts of
the statistical analyses than do other chapters in this volume. For an introduction to
the basics of ANOVA, see chapter 4. Although we focus on competition, many of
the points raised are equally applicable to experiments on other types of species
interactions, such as predator-prey relationships or mutualisms.

5.2 Ecological Questions about Competition

The simplest question we can ask about competition is whether it occurs in the
field. To answer this question, it is necessary to have experimental treatments in
which the absolute abundance of potential competitors is manipulated and to
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test whether organisms in the treatments with a lower abundance of potential
competitors perform better. The difference in performance between such abun-
dance treatments is the magnitude of competition (or magnitude of facilitation if
performance is better with higher abundance). Finding out whether competition
occurs is an important preliminary step in any field investigation of competition,
but, by itself, is rather uninteresting. Most of the important questions about com-
petition involve comparisons of the magnitude of competition and therefore in-
volve more complex experimental designs and analyses than a simple comparison
between two or more abundance treatments (Goldberg and Barton 1992).

One group of questions requires comparing the magnitude of competition
among environments (sites or times). For example, field observations might sug-
gest the hypothesis that the distribution of a species is determined by the sum of
competition from all other species at the same trophic level. A field experiment
to test this hypothesis must compare the magnitude of competitive effects on that
focal species in sites where it is abundant with sites where it is absent or rare
(e.g., Hairston 1980; Gurevitch 1986; McGraw and Chapin 1989). Similarly, to
resolve the current controversy among plant ecologists over whether the impor-
tance of competition increases with increasing productivity or stays constant, it is
necessary to compare the magnitude of competition on populations or communi-
ties among sites that differ in productivity (e.g., Wilson and Tilman 1995; Two-
lan-Strutt and Keddy 1996). Statistical analysis of an experiment to compare mag-
nitudes of competition among sites is described in section 5.4.1.

A second group of questions requires comparing the magnitude of competition
among taxa, such as comparing competitive ability. For example, classical com-
petition theory predicts that, for coexisting species, intraspecific competition is
greater than interspecific competition. Mechanistic models of competition make
predictions about particular traits that are related to competitive ability (e.g.,
Grime 1977; Schoener 1986; Tilman 1988; Werner and Anholt 1993) and these
require comparisons between taxa that differ in these traits. Similarly, quantifying
the magnitude of selection on different traits as a result of the competitive envi-
ronment requires comparing the magnitude of competition among different phe-
notypes or genotypes. Statistical analysis of experiments to test hypotheses about
rankings of competitive abilities and relationship of competitive abilities to traits
of organisms is described in section 5.4.2.

In addition, some questions require comparisons of both environments and
taxa. For example, many of the mechanistic models that generate predictions
about traits related to competitive ability also make predictions about the ways
in which those traits change between environments or about tradeoffs between
competitive ability and response to other processes such as predation or distur-
bance (see previous references). These predictions can be tested by comparing
the magnitude of competition between different taxa in different environments
(e.g., different resource availabilities, natural enemy densities, disturbance rates).
These are necessarily highly complex designs with many independent factors, and
the main points of biological interest will often be statistical interactions between
factors (e.g., taxon X competition X environment interactions to test whether com-
petitive hierarchies change between environments). However, highly multifacto-
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rial designs will often also yield uninterpretable interaction terms, and they re-
quire enormous sample sizes. The addition of such complexity should be carefully
considered in light of the ecological question of interest.

The various questions and associated experimental designs described previ-
ously are discussed in terms of testing predictions derived from models of com-
petitive interactions, because this is the typical goal of most field competition
experiments. However, an equally or perhaps even more important use is to pa-
rameterize particular models of competitive interactions, allowing exploration of
the long-term dynamic consequences of interactions, as well as improving the
formulation of models (Freckleton and Watkinson 1997). A full discussion relat-
ing empirical measures of competition intensity to theoretical models of competi-
tion is beyond the scope of this chapter; Laska and Wootton (1998) discuss many
of the important issues (see also Freckleton and Watkinson 1997, 1999).

It is important to note that the basic competition experiment described pre-
viously cannot by itself address the mechanisms underlying competitive interac-
tions. Negative interactions can occur through direct interactions (interference
competition), through a variety of shared, limiting resources (exploitation compe-
tition), through shared natural enemies (apparent competition), and by means of
other complex routes. Understanding these mechanisms is essential for develop-
ing generalizations about the role of competition in explaining evolutionary and
ecological patterns (Schoener 1986; Tilman 1987). However, a broad diversity of
approaches (field and laboratory, observational and experimental, manipulation
of processes other than competition) is needed to examine specific mechanisms
of interaction, making it difficult to provide a general discussion of experimental
designs and statistical analyses. Therefore, the focus of this chapter will be on
only one part of what is needed for a full understanding of competition: measure-
ment and comparison of the magnitude of competition in the field.

To summarize, we emphasize that almost all of the important ecological ques-
tions about competition entail comparisons beyond simply demonstrating that
competition occurs between a particular pair of species at a particular time and
place. Therefore, the first, and perhaps most important, recommendation of this
chapter is that the first step in conducting a competition experiment be careful
consideration of the goal of the experiment to identify appropriate comparisons.
This may sound trivial and obvious, but the literature is replete with perfectly
designed and analyzed experiments that do little to explain an observed pattern, to
test assumptions or predictions of theory, to parameterize a model, or to provide a
sound basis for management decisions in a particular system.

5.3 Experimental Design

5.3.1 Terminology

Before diving into the details of different types of experimental designs and the
questions for which each is appropriate, we present some basic terminology. A
focal taxon is one whose response to competition we are measuring. An associate
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taxon is one whose effect on the focal taxon we are measuring; that is, it is the
taxon whose abundance is being manipulated. (Note that, in some experimental
designs, the same species can be both a focal and an associate species.) A back-
ground taxon is one that is present in all experimental treatments but is not an
explicitly designated focal or associate group. Background taxa can include other
potential competitors, resources, natural enemies, or mutualists. "Taxon" will of-
ten be species, but could also represent genotypes or groups of species (see sec-
tion 5.3.6).

A response parameter is the aspect of performance of the focal species that is
measured. Individual-level responses include aspects of behavior, morphology,
and physiology, as well as components of the fitness of individuals (e.g., growth
rate, survival probability, or reproductive output). Population-level responses in-
clude population size or growth rate, where population size can be measured as
density, biomass, cover, or other measure of abundance. Community-level re-
sponses include parameters such as taxonomic or functional group composition,
degree of dominance, or diversity.

Competitive abilities can be compared either among focal species (competitive
response) or among associate species (competitive effect) (Goldberg and Werner
1983). The distinction is important because different traits can determine the abil-
ity to suppress other organisms (competitive effect) and to tolerate or avoid sup-
pression (competitive response) (Goldberg and Landa 1991). Competitive effects
can be measured as the natural abundances of the associate or on the basis of a
per-unit amount. Common measures of abundance are density, biomass, and
cover (for sessile organisms), but other measures may also be appropriate (e.g.,
total root length or leaf surface area for plants). The comparison of results using
different measures of associate abundance may be informative in itself. For exam-
ple, the result that species have different per-capita effects but similar per-gram
effects would indicate that the major trait-influencing per-capita competitive ef-
fect is biomass per individual.

5.3.2 Basic Experimental Designs

Competition experiments fall into three general categories defined by the way in
which density is controlled: substitutive designs, additive designs, and response
surface designs (figure 5.1; Silvertown 1987; Gibson et al. 1999). For all catego-
ries, it is essential that densities be experimentally manipulated. If natural varia-
tion in abundance is used to test competition, environmental differences corre-
lated with the natural density gradient of the associate may also directly affect the
focal individuals, thus confounding competitive effects with other environmental
factors, whether biotic or abiotic.

In substitutive experiments (replacement series), total density is kept constant
and frequency of each species is varied (figure 5.1 A). Numerous critiques of
substitutive experiments and constraints on its use have been published over the
last decade or so, and its use is not generally recommended for experiments in
natural communities (Gibson et al. 1999 and references therein). A substitutive
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Figure 5.1 Three categories of design
for competition experiments where den-
sities of two species (or genotypes or
groups of species) are manipulated: (A)
substitutive experiments, (B) additive ex-
periments, and (C) response surface ex-
periments. Each point on the graphs rep-
resents a single experimental treatment.
In part (C), the subsections of the phase
plane that constitute the entire experi-
ment in parts (A) and (B) are shown as
solid lines.
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experiment tests only for the relative intensity of intra- and interspecific competi-
tion. So, even if all of the rather restrictive assumptions of the design are met, it
is never an appropriate design to test for the occurrence of competition or for
comparisons of the absolute magnitude of competition. For questions that require
only the relative magnitude of competition, however, such as whether niche sepa-
ration occurs, substitutive designs can be useful if the assumptions are met (Con-
nolly 1986).

In additive experiments, density of the focal species is kept constant and den-
sity of the associate species is varied experimentally (figure 5. IB). Although usu-
ally described with only two species but many density treatments, this definition
actually fits many field experiments of competition. For example, "removal ex-
periments" typically compare the response of a focal species between a treatment
in which the associate is present at its natural abundance and a treatment in which
the associate is completely removed. If the focal species is at a constant density,
this is a form of additive design with only two associate densities: presence and
absence. Keeping the focal density constant in all treatments is important because
this keeps the number of competing conspecifics constant. However, especially
when also comparing different physical environments, keep in mind that the in-
tensity of intraspecific interactions may vary even with constant initial numbers
of conspecifics as a result of variation in biomass. For this reason, Miller (1996)
recommends using a density of only a single focal individual to eliminate intra-
specific competition entirely in additive designs. For some situations, keeping
focal density constant may mean either removing or introducing some individuals
of the focal species into experimental plots. If focal individuals are added, it is
critical that all focals in all treatments be manipulated the same way, that is, they
must all be introduced or all be naturally occurring individuals.

Section 5.3.5 describes several important considerations in choosing associate
density treatments. The major limitation on additive designs is that they confound
density and frequency effects. As density of the associate increases, it also in-
creases in frequency; in other words, it represents a greater proportion of the total
mixture of the two species because the focal species is kept at a constant density.
If the magnitude of competition is frequency- as well as density-dependent, this
can be a serious problem.

The third design listed, the response surface experiment (or addition series,
Silvertown 1987), gets around this problem by manipulating densities of both
focal and associate species (figure 5.1C). This type of experiment can provide the
data necessary to develop realistic population dynamic models (Law and Watkin-
son 1987; Freckleton and Watkinson 1997). Although this is the ideal two-species
design, the large number of density combinations required makes such an experi-
ment impractical for many field situations, especially when several species com-
binations must be investigated. Even in the laboratory, relatively few experiments
have explored large combinations of densities (see Gibson et al. 1999 for a re-
view). Therefore, we will not address analysis of these experiments further; the
interested reader should refer to Ayala et al. (1973) and Law and Watkinson
(1987).
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5.3.3 Level of Response Variables and Problems of Temporal
and Spatial Scale

Most field experiments on competition use individual-level response parameters
such as foraging behavior or individual growth rate because of constraints on
both the spatial and temporal scales of experimental manipulations. Only for
small, short-lived organisms is it feasible to measure growth rates of entire popu-
lations. This constraint means that conclusions about the population consequences
of competition for distribution or abundance can only be inferred from individual-
level measures rather than directly demonstrated. Because interaction coefficients
can differ considerably with life history stage and the demographic parameter
measured (e.g., DeSteven 1991a,b; Howard and Goldberg 2000), this raises the
important question of which life history stage(s) of focal individuals is most ap-
propriate to use. Ideally, experiments should be conducted with all ages or stages,
in which case models of age- or size-structured population dynamics could be
used to estimate population growth rates under various experimental conditions
(e.g., Gurevitch 1986; McPeek and Peckarsky 1998). In practice, this is not al-
ways feasible and the subset of stages to be studied should be chosen based on
their likely importance in population regulation. Sensitivity analysis of matrix
population models of demographic data can be useful in determining the best
ages or stages to study (Caswell 1989).

Relatively few field experiments have measured community-level responses to
ask how species composition or diversity are affected by competition (Goldberg
and Barton 1992). For analysis of community-level responses, possible ap-
proaches include the use of (1) relative population abundance as the response
variable in univariate analyses like those described in section 5.4, (2) diversity
indices that summarize community properties in such univariate analyses, and (3)
absolute abundances of all species in multivariate analyses of variance (chapter
6). Goldberg and colleagues (Goldberg 1994; Goldberg et al. 1995; Goldberg
and Estabrook 1998) have described several other experimental and analytical
approaches for studying community-level consequences of competition.

5.3.4 Absolute Versus Relative Response Variables:
When to Standardize?

Almost any response variable can be expressed as an absolute value or standard-
ized to the value of that variable in the absence of associates. Which of these is
used in an analysis can have a major impact on the interpretation of comparisons
of the magnitude of competition. Figure 5.2 shows an example in which the
growth responses of two focal species to a density gradient of the same associate
species are compared. Using absolute values of focal response, we find that spe-
cies 2 has lower growth than species 1 in the absence of any associates (lower
intercept) and also has a less steep slope. Thus, species 2 would be considered a
better response competitor (less absolute decrease in growth for each associate
individual added; figure 5.2A). However, when expressed as a percentage of
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Figure 5.2 A hypothetical example
of results of an additive experiment

with two different types of re-
sponse variables for two focal spe-
cies: (A) absolute growth and (B)

percentage of growth in the ab-
sence of the associate. Using abso-
lute response, we find that species

2 is the better response competitor,
whereas species 1 is the better re-

sponse competitor when percentage
of maximum growth is used.

growth in the absence of the associate (intercept for both is 100%), species 1
shows less of a reduction in growth and so would be considered the better re-
sponse competitor (figure 5.2B).

Most plant ecologists have used a percentage-based index to standardize data
from competition experiments. The most common index is RCI = (P, - PJ/P,
where P, is performance in a removal treatment with no associates and Pc is
performance in a control treatment with associates present. However, this index
is not symmetrical with respect to competitive and facilitative outcomes (Mark-
ham and Chanway 1996), and it has poor statistical properties (Hedges et al.
1999; see also Freckleton and Watkinson 1997). Therefore, Hedges et al. (1999)
have recommended the use of the closely related log response ratio, lnRR =
ln(Pc/Pr), instead (either loge or Iog10 can be used). This index has been used
extensively for experimental studies of predator-prey interactions (see Osenberg
et al. 1999 for further discussion of this and other indices).

The potential conflict in interpretation between standardized and unstandard-
ized data is most obvious for comparisons of competitive response of different
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focal species or of the same focal species in different environments (e.g., high
and low productivity) because intercepts will usually be different with unstan-
dardized data. However, it may also appear in comparisons of competitive effect
among associate species. Normally, we would expect a single focal species in a
single site to have the same intercept (performance in the absence of any associ-
ates) in regressions with different associate species, so that standardized and un-
standardized data would yield the same result. However, when the zero-density
treatment is a result of experimental removal of the associates, two factors may
lead to differences in intercepts among associate species. First, there may be
residual effects of the former presence of the associate that could differ between
associate taxa. This result is more likely to occur with sessile organisms that
could have cumulative effects on a single location. For example, plants may have
different residual effects on nutrient availability because of differences in litter
quality and subsequent decomposition rates or soil organic matter accumulation.
In addition, roots can seldom be removed, so the presence of dead and decaying
roots could also have significant residual effects. Second, associates can be re-
moved only where they were initially present. If different associate species were
initially present or abundant in different microenvironments and these microenvi-
ronmental conditions influence the focal species directly, focals may differ in
zero-density treatments for different associates, that is, their intercepts may differ.
Both of these potential problems point out the importance of having separate zero-
density treatments for each of the associate species used in a removal experiment.

There has been remarkably little discussion in the literature about the condi-
tions in which response in the presence of associates should be standardized to
response in the absence of associates; the following recommendations should be
viewed as preliminary. For questions concerning the consequences of competition
for distribution and abundance, relative values are probably most useful. For ex-
ample, suppose that competition reduces individual growth of a focal species by
10 g in an unproductive site and by 100 g in a productive site, suggesting that
competition is more intense in the more productive site. However, if the growth
in the absence of competition were 10 g and 200 g in the unproductive and
productive sites, respectively, the relative responses would be 0% and 50%, sug-
gesting competition is more intense in the unproductive site and, in fact, intense
enough there to exclude the focal species. (See Campbell and Grime [1992] for
an example of contrasting results for standardized and unstandardized data in a
competition experiment.)

On the other hand, if the mechanisms of competition are under investigation,
absolute values may be more useful. For example, it may be of interest to relate
reductions in resource availability because of consumption by an associate species
to changes in resource consumption and growth in the focals. Using standardized
data would make it difficult to understand the processes underlying these relation-
ships. Absolute responses are also necessary when competitive effects and re-
sponses are being quantified to use as input in models of population interactions
because most population dynamic models use absolute, not standardized, parame-
ters. For example, in the Lotka-Volterra competition equations, equilibrium den-
sity in the absence of competition (K) is an explicit parameter, and both K and
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the per-capita competition coefficients (a,j) have an effect on the dynamics and
equilibrium outcome of the interaction.

5.3.5 Manipulation of Competition Intensity:
How Many Density Treatments?

The range of density variation in an additive experiment could be simply presence
versus absence of the associate or several densities could be imposed. Presence/
absence comparisons are appropriate where the total magnitude of competitive
effect under natural conditions is all that is required. However, unless competitive
effects are completely linear, presence/absence comparisons (or comparisons of
any two densities) do not allow accurate calculation of per-capita effects (figure
5.3). Where the density dependence of per capita competitive effects has been
tested, it is rarely constant (e.g., Harper 1977; Schoener 1986; Pacala and Silander
1990), and so interpolating from presence/absence comparisons to per capita ef-
fects across a range of densities is probably not generally safe. Comparing com-
petitive effects between associate species and, especially, relating these competi-
tive effects to traits requires per capita effects so that effects of total density and
per capita effects (or, more generally, total abundance and per-unit amount) are
not confounded.

If multiple densities are chosen, many density treatments with low or no repli-
cation will usually be better than few, well-replicated densities so that any curvi-
linearity can be detected and quantified. The appropriate analysis will then be a
comparison of slopes from regressions of the response variable on density rather
than contrasts between means of different treatments (see section 5.4.2 and chap-
ter 10). Because both the strongest curvilinearities and the greatest variation
among replicates tend to be at the lowest densities, we recommend concentrating
on density treatments at the low end. Densities above natural are also useful
because (1) naturally occurring densities usually fluctuate considerably and (2)
competition might occur only at densities above those normally determined by
other factors such as predators. Regardless of the range of densities used in an

Figure 5.3 An example of inaccurate estima-
tion of per capita competitive effects from
an experiment with two treatments: the as-

sociate present at its natural density and the
associate completely removed. The true per
capita effect is shown as a solid line. A lin-

ear extrapolation from the two treatments
(dashed line) underestimates the true per
capita effect at low associate density but

overestimates the true effect at high
associate density.
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experiment, it is always important in publications to identify the natural density
range so readers can assess the applicability of results to natural conditions.

5.3.6 Pairwise Versus Total Competition:
Which Associate Groups to Use?

The associate group whose abundance is being manipulated can be a single spe-
cies or a group of species considered together. Which is more appropriate depends
both on the biology of the species under study and on the goal of the experiment.
The tendency has been for animal ecologists to measure competition between
pairs of species chosen a priori as likely strong competitors, whereas plant ecolo-
gists have more often quantified total competition on a focal species from the
entire plant community. Because plants all require the same few resources, all
plants are potential competitors and there is often little a priori basis for choosing
subsets. Therefore, the most common type of field competition experiment in
plant communities is a presence/absence additive design where the associate "spe-
cies" is the entire plant community except for the focal individuals (Goldberg and
Barton 1992). For many animal species, on the other hand, more restricted guilds
of potentially interacting species that share resources can often be defined (e.g.,
seedeaters or insect eaters). The danger here is that, although potential competi-
tors are often chosen by taxonomic relatedness (e.g., congeners), distantly related
taxa may just as likely share resources and compete for them (e.g., seed-eating
rodents, ants, and birds in deserts; Brown et al. 1986).

When the question of interest concerns comparisons of competitive ability
among species and relationships of competitive ability to traits, pairwise experi-
ments with single species as associates and focals are usually most appropriate.
The number of species also becomes important because tests of these relation-
ships essentially use each associate or focal species as a "replicate" in a secondary
statistical analysis. Use of only a single species with each value of a trait is
unreplicated for tests of hypothesis about species characteristics related to com-
petitive ability. For example, if only two associate species are compared and the
one with larger leaves has a stronger negative effect, the conclusion that leaf size
confers strong competitive effect is unwarranted because of lack of replication
within each leaf size class. The taxa may also differ in traits such as root length
or nutrient uptake rate. Because leaf size is confounded with these other variables,
assigning a causal effect to leaf size alone is not justified. We recommend either
replicating species within trait classes or using species with a range of values of
a continuous trait.

5.3.7 Direct and Indirect Effects: What to Do
with Background Species?

Response of a focal species to manipulation of abundance of an associate species
represents the sum of the direct effects of the associate plus all the indirect effects
and higher order interactions involving the associate and all the background spe-
cies, the net effect. If no background species are present, only direct effects are
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measured (but see subsequent discussion). Abundance-mediated indirect effects
are defined as changes in the effect of an associate on a focal species when
background species change the abundance of the associate (Abrams et al. 1996).
Trait-mediated indirect effects are defined as changes in the effect of an associate
on a focal species when a background species changes the per-capita effect of the
associate (Abrams et al. 1996).

If the primary question concerns the effect of the associate species on the
distribution and abundance of the focal species, net effect may in fact be what is
desired. For example, suppose removal of a dominant has little effect on a focal
species because other, unmeasured, species respond to its removal more quickly
than does the focal species and thus end up suppressing the focal species just as
much as did the designated associate. The conclusion that competition from that
associate species is unimportant in controlling the abundance of that focal species
is reasonable, even though the associate may have strong direct effects on the
focal species in a pairwise experiment with no background species. However, if
the primary question is which traits of an associate species allow it to become
dominant, measuring its net competitive effect will be misleading because traits
of the background species will also influence the results.

Therefore, our general recommendation is that questions about the relationship
of traits to competitive ability or determination of competitive hierarchies are
usually best addressed in pairwise experiments that minimize the potential for
abundance or trait-mediated indirect effects. In contrast, questions about the con-
sequences of competition for abundance and distribution are usually best ad-
dressed by incorporating any nondirect effects into the response variable, that is,
by leaving background species in all treatments. We point out, however, that
strong nondirect effects restrict generalization across sites or times even more
than is usual in ecological field experiments because the biotic environment and
therefore the complex of nondirect effects differ as well as the abiotic environ-
ment and history of the sites.

In reality, almost any field experiment of any design has background species
and therefore we can never measure only direct effects. It is rarely possible or
even desirable to eliminate completely all the biota except for the designated
focal and associate species. First, exploitation competition itself is an indirect
interaction, mediated through shared food resources. When the resource is a living
organism, even if the food is not an explicitly designated associate or focal spe-
cies, it obviously must be present in the experiment. Similarly, negative interac-
tions may be mediated by shared natural enemies (apparent competition; Holt
1977; Connell 1990) or mutualists, and removing background species would pre-
clude detecting an important interaction between two competitors (but appropriate
if quantification of only exploitation competition is desired). Monitoring the dy-
namics of these intermediary nonmanipulated species, whether resources, natural
enemies, or mutualists, can be an important step toward understanding the mecha-
nisms of interactions. Second, microorganisms are part of the biota and may be
important links in chains of indirect effects, but they are very difficult to remove
completely. In terms of designing and interpreting field experiments, it is critical
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to recognize which background species are present and to incorporate this knowl-
edge when interpreting results.

5.4 Statistical Analysis and Interpretation of Results

5.4.1 Comparison of Habitats: Effects of Competition
on Distribution and Abundance

One of the most common questions about competition is whether it influences
the distribution and abundance of a focal species. The recommended approach to
address this question is to repeat a presence/absence additive design with back-
ground species in differing habitats, those where the focal species is present or
abundant and those where it is absent or rare. This is really a population-level
question, and ideally population-level response parameters should be used (sec-
tion 5.3.3). A minimum of two replicate sites in each habitat category (focal
abundant versus rare) should be used so that the relevance of habitat differences
to focal species distribution can be inferred from the results. With only a single
site in each habitat category (admittedly the most common design actually used),
the only valid inference we can make is whether sites differ in the magnitude of
competition. That is, site is confounded with habitat.

The associate species can be a single species chosen a priori, a subset of
species, or the entire community (see section 5.3.6). Since the question concerns
the net consequences of the presence of some associate species or group of spe-
cies, it is appropriate to leave all other species present as background species in
all treatments, in other words, to quantify the sum of all direct and indirect (both
abundance- and trait-mediated) effects.

The actual experiment would involve establishing an experimental area in each
site within which the focal species would be added and the associate species
removed as appropriate. It is important to add individuals of the focal species
back into its native habitat as well as the habitat from which it is absent to account
for transplanting effects. Such a design also ensures that the density of the focal
species is the same across all treatments (section 5.3.2).

For an experiment with a single focal species, a single associate species or
group, and several sites of each habitat type, the appropriate ANOVA model is

where (j, is the overall mean, t, is the deviation due to the z'th associate treatment
(present at natural abundance or removed), 0, is the deviation due to the/'th habitat
(focal species naturally abundant or rare), T0,j is the deviation due to the interac-
tion of the (th treatment with the j'th habitat, X(0);t is the deviation due to the Mi
site nested within the jth habitat, TE(0),yt is the deviation due to the interaction of
the ith treatment with the Mi site nested in the j'th habitat, and e.iju is the deviation
due to the /th replicate within each site-treatment combination. Treatment and
habitat are both fixed factors and site is a random factor, so the overall model is
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Table 5.1 ANOVA for a completely balanced cross-nested design

Effect

Treatment
Habitat
Treatment x habitat
Site (habitat)
Treatment x site (habitat)
Residual (error)

df

t- 1

h-l

(t-\)(h-\)
h(s-l)

(t-l)h(s-\)
ths(n-\)

E(MS) F-ratio

MST/MSTS(H)

MSH/MSS(H)

MSH/MSS(H)
MSs(H/MSe

MSIS(H/MSe

a mixed cross-nested design. The degrees of freedom, estimated mean squares
E(MS), and F-tests for this model are shown in table 5.1; SAS commands are in
appendix 5.1 A. See Searle (1971) for a detailed explanation of the underlying
statistical theory. More complex designs, which include blocking factors within
sites, can also be used (chapter 4).

The important result from this ANOVA is whether the treatment x habitat in-
teraction is significant, that is, whether the magnitude of competition differs be-
tween habitats where the focal species is abundant and where it is absent or rare.
The expected pattern of results is shown in figure 5.4, with a larger magnitude of
competition where the focal species is absent or rare than where it is abundant.
Notice that, in this analysis, the treatment x habitat interaction is tested over the
treatment x site interaction, and the power of the test is a function of the number
of sites. Thus, the most powerful design in this case maximizes the number of
sites within habitat types (s in table 5.1) and minimizes the number of replicates
within sites (n in table 5.1). Obviously, such a strategy creates the potential for
logistical difficulties if the sites are at any distance apart.

When the number of replicates is not the same for each level of all treatment
factors, the experimental design is termed "unbalanced" (Searle 1987). Unbalanced

Figure 5.4 Pattern of predicted results from
a presence/absence additive design if com-

petition influences the distribution and abun-
dance of the focal species. The key result is

that the magnitude of competition (depres-
sion due to presence of competitors) is

much greater where the focal species is nor-
mally absent than where it is normally pres-

ent (i.e., habitat x competition interaction).
In this case, the focal species also performs

better in the habitat where it is abundant
than where it is absent, even in the absence

of associates. Competition is present in
both types of habitats, so both habitat and
competition would probably be significant

main effects.
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designs are very common in ecological experiments because of insufficient material
(e.g., it may be more difficult to get replicates from one site, species, or genotype
than others) or loss of replicates through mortality. Unbalanced ANOVA designs
are more difficult to analyze, and, unlike balanced designs, there is no single
correct way to analyze them. Readers may wish to consult Milliken and Johnson
(1984), Fry (1992), Shaw and Mitchell-Olds (1993), and Newman et al. (1997).
SAS 6.0 and above will construct an approximate F-test for unbalanced designs
using the Satterthwaite approximation for the degrees of freedom (Satterthwaite
1946; Hocking 1985; see appendix 5.1A). If SAS procedure GLM is used for the
analysis, Type III sums of squares (SS) must be requested; the F-tests provided
by the other types of SSs (I, II, and IV) are incorrect. Because there are several
approaches to this problem and no general agreement, the individual researcher
must evaluate whether the approach taken by SAS is appropriate for the particular
design employed (see chapter 4).

An alternative approach to the analysis of unbalanced designs that contain both
fixed and random effects—mixed models—is maximum likelihood (McLean et
al. 1991), which is implemented in SAS as procedure MIXED (appendix 5.IB).
One potential advantage of this method is that it will likely prove to be more
robust to unbalanced designs than the standard least-squares approach, although
this is not yet proven. A disadvantage is that computations for complex designs
can take a long time and sometimes fail to converge on a solution. Be warned
that the documentation of the technique is not completely clear, especially for
those without extensive statistical training; consultation with a statistician is
highly recommended.

5.4.2 Comparison of Species: The Relationship of Traits
to Competitive Ability

Comparing competitive abilities among species (or other groups) and determining
the relationship of competitive abilities to traits will usually require per capita
measurements. The recommended approach to compare species is an additive
design with multiple densities of the associate, using either a single focal species
and several associate species that differ in value of some trait (comparison of
competitive effect) or a single associate species and several focal species (com-
parison of competitive response; figure 5.2A). A significant relationship (nonzero
slope) between density of the associate and response of the focal species indicates
competition (negative slope) or facilitation (positive slope).

The analysis is stepwise (see Zar 1996, figure 17.1). The first step is to test
for differences in density effects among focal or associate species using a test for
homogeneity of slopes. The ANCOVA model is

where (0, is the mean intercept (the value of the response parameter at 0 density),
A, is the deviation due to the rth density treatment (the average slope of the line
that predicts the effect of associate species density on the response parameter), a,
is the deviation from the mean intercept due to the jth associate or focal species
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(differences in intercepts among associate or focal species), and Aa,} is the devia-
tion due to the interaction of species identity and density (differences in slopes
among species; figure 5.2A). In addition, A, is a continuous variable, and cx^ is a
categorical factor.

In this first analysis, we are concerned only with the interaction term. We
ignore the main effects of density and species identity at this juncture because
such main effects are meaningful only if the interaction effect is declared not
statistically significantly different from 0. The SAS commands for performing
this analysis are given in appendix 5.2. If differences among slopes are found,
then a post hoc multiple comparison test can be performed (Zar 1996, section
17.6) to discover which particular species differ from each other. Alternatively,
one can test a priori hypotheses concerning differences between particular species
or sets of species, by conducting a series of specified comparisons (contrast tests)
rather than a single overall ANCOVA.

A potential problem in this analysis arises if only a single zero-density treat-
ment (no competitors) is used for all associates, because it is impossible to assign
a treatment level (identity of associate) to replicates at this density. In this case,
it is reasonable to randomly allocate all of the zero-density replicates among the
associate species. (For example, if there are three associate species and 30 zero-
density replicates, then 10 replicates would be randomly assigned to each species
treatment.) This problem should arise only when all associate individuals are
added (e.g., to cages or in greenhouse experiments), because in field removal
experiments, there will usually be distinct zero-density treatments for each associ-
ate species (see section 5.3.4).

If slopes are homogeneous, we can then proceed to (1) measure the average
slope (A,) and (2) test for differences in intercepts (a,) among species using the
following model:

Note that the model is identical to that in equation (5.2) except that the interaction
term has been deleted. The SAS commands are given in appendix 5.3. Significant
density effects (a nonzero slope) indicate that competition or facilitation is occur-
ring. The average slope measures the general per capita effect of all associates
on the focal species.

In comparisons of focal species, significant species effects (a,) indicate simply
that the focal species differ consistently across all densities of the associate spe-
cies (e.g., in maximum growth rates or sizes). In comparisons of associate species,
significant species effects are more problematic because the focal species remains
the same and thus should not differ in response to the associates when no associ-
ates are present. Biological interpretations of significant associate main effects
were given in section 5.3.4. An alternative interpretation of either significant focal
or associate effects is that it could be an artifact of using linear regressions on
nonlinear data. Figure 5.5 shows an example where two focal species have the
same slopes but different intercepts in linear regression analyses. However, in-
spection of the graphs shows that the intercepts are actually very similar but that
species B is strongly nonlinear at low associate densities. If transformations do
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Figure 5.5 An example of misleading re-
sults of comparison of slopes (individual
competition coefficients) using linear re-
gression models. Using linear regressions,
the two species appear to have different in-
tercepts, but similar slopes; that is, they
have similar competitive effects if the
curves represent two associate species.
However, inspection of the data reveals the
intercepts are actually very similar, and spe-
cies B (open circles) has a strongly nonlin-
ear effect on the focal species at low densi-
ties. Inspection of the residuals of the linear
regression for species B would show a non-
random distribution with associate density.

not succeed in linearizing the data, a nonlinear regression analysis is warranted
(chapter 10).

Relating per capita effects or responses to values of a particular trait can be
conducted as a second-level statistical analysis by correlating slopes with trait
values (e.g., Goldberg and Landa 1991). With fewer species or with few discrete
values of the trait, slopes can be compared with a priori contrasts among groups
of the associate or focal species (Day and Quinn 1989) or in the context of the
ANCOVA where species are nested within species types in a way exactly analo-
gous to sites nested within habitats (see equation 5.1).

5.4.3 The Boundary Constraint Effect

The performance of an organism is likely to be affected by many factors (e.g.,
genotype, weather, predators) other than the density of competitors. Usually in
field experiments such additional factors are either poorly controlled or not con-
trolled at all, and the effects of competitors may be obscured by the large amount
of variation caused by these other factors. This general problem may arise in
any type of analysis of field experiments; in regression analyses of competition
(including ANCOVAs), it may be manifested as an "envelope effect" (Firbank
and Watkinson 1987; Guo et al. 1998). Competition may act to keep the response
of the focal species below some maximum, while within this competitively deter-
mined envelope other factors act to further depress the focal species. The result
is that a plot of the response variable against density will be a scatter of points
forming a triangle in the lower left-hand portion of the graph (figure 5.6); such
bivariate distributions have also been referred to as "triangular" or "polygonal"
(Scharf et al. 1998), or "factor ceiling" distributions (Thomson et al. 1996) or as
reflecting "boundary constraints" (Guo et al. 1998).

Two general approaches have been used to analyze such envelope effects. The
more traditional approach is to treat this effect as a problem that causes consider-
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Figure 5.6 Example of the "envelope ef-
fect" where the variance in focal species re-
sponse is much greater at low associate den-

sities than at high associate densities. The
solid line at the upper edge of the envelope
represents the constraint on maximum focal

response imposed by competition. The
dashed line represents the competitive ef-
fect estimated by a standard least-squares

linear regression.

able difficulty in quantifying density effects and to search for solutions that allow
the competitive effect to be isolated from other factors. This approach treats rela-
tionships such as those in figure 5.6 as problematic for two reasons. First, the
effect itself will be obscured and the slope of the line will be decreased by the
larger amount of variation caused by other factors at low density. Second, the
important statistical assumption of homoscedasticity—variation around the re-
gression line is the same everywhere—is being violated. Clearly, the variation
decreases with increasing density. In this case, there may very well be no transfor-
mation of the data capable of making the variance homogeneous. Under the tradi-
tional approach, the solution to these problems will require somehow finding the
"true" competitive effect despite the noise and the violation of standard statistical
assumptions. For example, one purely statistical solution was developed by Pacala
and Silander (1990). They note that the residuals (the variation around the regres-
sion line) of such a distribution are distributed as a gamma function, which has
the properties of being unimodal, left-skewed, and bounded at zero (see chapter
13 for a description of the gamma function). In their experiment, competitive
effects followed a hyperbolic function. Thus, rather than the more familiar least-
squares method, they used a maximum-likelihood estimator and iterative Newton
method, as described in chapter 10. A second solution aimed at finding the "true"
competitive effect is to monitor other potentially interacting factors and use them
as covariates in a multiple regression. The possible drawbacks of this approach
are (1) the logistical difficulty of measuring many additional variables, (2) the
potential failure to measure the key factor, and (3) the fact that multiple regression
brings with it an additional host of statistical assumptions and difficulties.

An alternative approach to analyzing data with distributions such as those in
figure 5.6 is to recognize that it implies a different sort of role for competition:
imposing a boundary constraint on maximum potential performance rather than a
deterministic effect that can be applied to every individual in the population. In
the last several years, this notion of boundary constraints has been applied to a
number of problems in ecology besides species interactions, and a number of dif-
ferent statistical approaches have been used to quantitatively describe the bound-
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ary. Thomson et al. (1996) suggested using partitioned regressions, whereby stan-
dard regression techniques are used to partition a data set into those with positive
and negative residuals. A subsequent regression uses only data points with posi-
tive residuals from the first regression, with as many cycles of such regressions
as possible to approach the upper boundary of the data set before sample size
declines to too small levels. Blackburn et al. (1992) suggested dividing a data set
into classes along the abcissa and conducting regressions using only the highest
value within each class. Scharf et al. (1998, p. 451) have promoted the use of
quantile regression, which "estimates quantiles of the dependent variable ranging
from 0 to 100, conditional on the values of the independent variable." Scharf et
al. (1998) compared least-square regressions using maximum values within classes
to quantile regressions (which use entire data sets) and found results of quantile
regressions to be much more consistent and less contingent on arbitrary decisions
on analysis procedures. Finally, Garvey et al. (1998) have suggested adopting an
approach from astronomy based on two-dimensional Kolmogorov-Smirnov tests.
This approach asks whether the distributions of two variables could have arisen
independently as opposed to the usual regression analysis, which asks (in part)
how much variance can be explained in one variable by the values of another.

Boundary constraint analysis is clearly a rapidly expanding area in statistical
ecology; the reader should check for recent literature before beginning any analy-
ses. We expect the development of new techniques and rigorous evaluation of
existing techniques to be an ongoing process.

5.5 Related Techniques

5.5.1 Isotonic Regression

An alternative and intermediate approach to the ANOVA and ANCOVA models
presented in previous sections is isotonic regression, which can be thought of as
a form of ANOVA to be used when there are ordered expectations (Barlow et al.
1972). Gaines and Rice (1990) present a cogent description of this technique and
offer a microcomputer program for implementing it (see also Rice and Gaines
1994a,b and references therein). The advantage of isotonic regression for detect-
ing density-dependent responses is twofold. First, there are no assumptions about
the shape of the density response except that it is monotonic. For this reason,
isotonic regression can be more powerful than standard least-squares regression
analysis when the shape of the response is irregular or a step function. Second,
fewer density treatments are needed than in ANCOVA because the precise shape
of the density effect is not of interest. Instead, replication efforts can be placed
elsewhere in more associate or focal species, more sites, or more replicates per
site. However, several limitations to isotonic regression restrict its usefulness to
relatively simple questions about competition. The most general is that, because
no particular shape of the density response is assumed, per capita effects cannot
be calculated. Therefore, isotonic regression is not appropriate if comparisons of
species effects are necessary independent of their total abundance.
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5.5.2 Spatial Heterogeneity

This chapter has not dealt with the analysis of spatial heterogeneity except when
spatial variation is an explicit part of the ecological question of interest (e.g.,
variation in magnitude of competition between sites or habitats). Chapter 4 dis-
cusses ANOVAs with block designs that explicitly account for variation due to
spatial heterogeneity. Chapter 15 discusses an alternative approach to analysis of
spatial heterogeneity using variograms. Both of these methods require replication
within a treatment, which is impossible using the multiple, unreplicated density
design recommended in this chapter when comparisons of per capita competitive
abilities are required. There is currently no satisfactory general method that can
both account explicitly for spatial heterogeneity and maximize investigation of
potential nonlinearities. Therefore, the individual investigator must decide which
is more important in the study and sacrifice number of blocks (replicates per
density) or number of distinct densities accordingly. If an unreplicated regression
design is chosen and the important environmental variables are known, these can
be measured in individual experimental units and used directly as covariates in
an ANCOVA. A third possible approach for incorporating spatial heterogeneity
in designs with unreplicated densities is the permutation method described in
chapter 16, although this method, to our knowledge, is untried for this application.

5.5.3 Beyond Simple Dependent Variables

The analysis of competitive effects potentially involves examining the response
of many different types of response variables. The previous discussion was in the
context of examining a single variable that most likely meets the standard normal-
ity assumptions of parametric statistics. Time-based response variables such as
survival time or time to emigration, although still single measures, often do not
meet standard normality assumptions and require different analytic methods
(chapter 13).

Often the response variable is more complex than a single measure of focal
performance. If individual-level measures are being used, for plants one might
measure vegetative growth, seed number, and seed size. If community-level mea-
sures are being used, one might measure the densities of several focal species. If
the response variables (traits or species) are likely to be correlated with each other
or to interact with each other, then a multivariate analysis of variance is appro-
priate (chapter 6). If data are collected over time, for example, as growth curves
of individuals or populations, then a repeated-measures analysis should be used
(chapter 8). For long-term experiments, time series analysis may be most appro-
priate (chapter 9).

For all of these techniques, the basic design criteria outlined in this chapter
are still appropriate, although different statistical techniques will be most power-
ful for different numbers of treatment levels versus replicates within treatments.
In all cases, careful thought should be given to the type of analysis to be used
at the time of experimental design, rather than waiting until the experiment is
complete.
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5.6 Some Final Comments on Experimental Design

We have argued that answering questions besides "Does competition occur?" is
critical to developing and testing general models of competition and that answer-
ing these questions will require more complex experimental designs than have
often been used in field competition experiments. Nevertheless, there is a real
danger that experimental designs will become so complex that insufficient re-
sources are available to detect any but enormous effects. Decisions on allocation
of resources will always depend on the details of any particular study, but a few
preliminary steps will aid in the process. We strongly recommend conducting
pilot experiments in the field to estimate variances and thus the replication neces-
sary to detect effects of a given magnitude (chapter 2); results of such power
tests may quickly demonstrate that experiments for some questions are simply
logistically impossible in that system. If several factors are experimentally manip-
ulated, replication should be focused on the factor(s) that will be used as the error
variance(s) (denominator MS) for the most important test(s). As the example in
table 5.1 showed, this is not always at the level of replication of the smallest
experimental units or the most detailed treatment combination (e.g., field plots).
It is critical to work out the estimated mean squares for any design before begin-
ning an experiment so that replication will be done at the proper level. Brownlee
(1965) and Searle (1971) present examples for many common designs; consulta-
tion with a statistician at this stage is also highly recommended. The important
point is simply that there will always be tradeoffs between the complexity of
questions that can be asked from an experiment and the statistical power available
for testing particular effects. Which of these is emphasized and which sacrificed
is the most important decision underlying any experimental design.
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Appendix 5.1 SAS Program Code for Analysis of the
Cross-nested ANOVA Model in Equation 5.1

A. Analysis Using Least Squares

PROC GLM;
CLASS T H S; /T = associate treatment, H = habitat, S = sites within habitat/
MODEL X = T H T*H S(H) /use type III sums of squares. Warning: results are

T*S(H)/SS3; only approximate if the design is unbalanced./

*** If the design is unbalanced use the following command to
obtain the correct F tests for the main effects ***
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RANDOM S(H) T*S(H)/TEST; /Declare sites to be a random effect and ask SAS to
compute the Satterthwaite correction for an

unbalanced design./

*** If the design is balanced use the following commands to
obtain the correct F tests for the main effects ***

TEST H = T E = T*S(H); /test associate treatment over the treatment-site interaction/
TEST H = H E = S(H); /test habitat over site/
TEST H = T*H E = T*S(H); /test treatment-habitat interaction

over the treatment-site interaction/

B. Alternative Analysis Using Maximum Likelihood

PROC MIXED; /mixed model analysis using reduced
maximum likelihood (the default)/

CLASS T H S;
MODEL X = T H T*H; /only fixed effects are placed in the model statement/
RANDOM S(H) T*S(H); /random effects are specified separately/

Appendix 5.2 SAS Program Code for Analysis of the
ANCOVA Model in Equation 5.2

PROC GLM;
CLASS A; /A = associate or focal species treatment/
MODEL X = D A D*A/SS3; ID = density, use type III sums of squares/

Appendix 5.3 Analysis of the ANCOVA Model in Equation 5.3

PROC GLM;
CLASS A; /A = associate or focal species treatment/
MODEL X = D A/SS3; /use type III sums of squares/
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MANOVA

Multiple Response Variables and
Multispecies Interactions

SAMUEL M. SCHEINER

6.1 Ecological Issues

Ecological questions very often ask how multiple components might respond to
some change in the environment or might differ among groups. Ecologists are
often most interested in the interactions among those components and how the
interactions might change as the environment changes. Studies in population biol-
ogy commonly address issues of constraints or trade-offs among traits, for exam-
ple, seed size versus seed number, sprint speed versus endurance, or development
time versus size at maturity. Studies in community ecology often address ques-
tions regarding how a number of coexisting species respond to the removal of a
keystone predator or to a change in the environment. In statistical parlance, these
multiple components are referred to as multiple response variables.

In this chapter, I present situations in which the independent variables (experi-
mental manipulations) consist of categorical variables, for example, competitors
present or absent, or three levels of nutrient availability. When only one re-
sponse variable has been measured, such data are examined by analysis of vari-
ance (ANOVA) (chapters 4 and 5). When more than one response variable has
been measured, the most appropriate method of analysis is usually multivariate
analysis of variance (MANOVA), in which all dependent variables are included
in a single analysis. I am happy to report that the use of multivariate analyses by
ecologists has increased in recent years. For the first edition of this book, I did a
quick survey of volume 72 (1991) of Ecology and found that, of 62 articles that
measured more than one response variable for which a multivariate test would
have been appropriate, only 9 actually used MANOVA. In contrast, in volume
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79 (1998), of 62 papers, 40 used MANOVA, repeated-measures analysis (chapter
8), or another multivariate technique. The other studies all used multiple univari-
ate analyses, with each response variable being examined separately, although
many dealt explicitly with interactions among the response variables.

6.2 Statistical Issues

Multivariate analysis is preferred over multiple univariate analysis for two rea-
sons. First, the ecological questions are often multivariate, involving interactions
among response variables. Differences that exist among groups may not be a fea-
ture of any one response variable alone, but, rather, of the entire suite of variables.
Second, performing multiple univariate tests can inflate the a-value—the proba-
bility of a Type I error—leading us to conclude that two groups or treatments are
different with respect to one or more of the dependent variables, even though the
differences are simply due to chance. I address each of these issues in turn.

6.2.1 Multivariate Responses

We must be concerned about correlations among response variables in two cases
that are opposite sides of the same coin. The more obvious case is when a re-
search question explicitly deals with interactions among response variables. Such
interactions are indicated by either (1) shifts in correlations among variables from
one treatment to another or (2) correlations across treatments that differ from
correlations within treatments. Correlations among response variables can be re-
vealed only by some form of multivariate analysis. This need for multivariate
analysis is especially true when more than two response variables are measured.
Simple pairwise correlations cannot reveal the entire pattern of changing relation-
ships among a multiplicity of variables.

A common alternative to multivariate analysis, especially in community ecol-
ogy, is to analyze a composite variable such as a diversity index (Magurran 1988).
Although such an index has the virtue of simplicity, it can actually hide the
features of the data that we are attempting to discover. For example, two samples
may have identical diversity values even though individual species may have very
different abundances; this would occur if an increase in one species exactly
matched a decrease in another species. Such interactions become apparent only
by following the behavior of individual response variables within a multivariate
analysis.

A not-so-obvious need for multivariate analysis arises when the question is
whether two or more groups or treatments differ. For example, we may measure
abundances of five species of small mammals on plots with and without preda-
tors. Or we may measure 10 aspects of plant morphology in a nutrient and light
manipulation experiment. It is possible that tests of individual response variables
will fail to reveal differences among groups that a multivariate test would reveal.
One form of this effect occurs when the correlation of variables differs in its sign
within and between treatments; this is termed Simpson's paradox (Simpson 1951).
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For example, the number and size of seeds may be positively correlated within
treatments because larger plants have more total resources to devote to reproduc-
tion. However, across different nutrient levels, the correlation may be negative as
plants switch from a strategy of many, small seeds at high resource levels to few,
large seeds at low resource levels.

Conversely, a multivariate test might reveal that what appears to be a number
of independent responses is, actually, a single correlated response. For example,
if the removal of a predator led to (univariate) significant increases in two prey
species, we might be tempted to conclude that the predator affected two indepen-
dent species. However, if the prey species abundances were correlated due to other
interactions (e.g., mutualism), then there is only a single (albeit complex) response.

6.2.2 The Problem of Multiple Tests

The most important statistical issue involves the use of multiple statistical tests
to address a single hypothesis. For example, consider a comparison of two groups
that do not actually differ. If one uses a typical nominal Type I error rate of a =
0.05 and 10 response variables are measured, then the probability of declaring
the two groups different for at least one variable is 40%. Two approaches, plus
one hybrid approach, can be used to solve this problem.

The simplest solution is to conduct the standard univariate ANOVAs but use
a Bonferroni correction in setting the a-level, the probability level at which an
effect is deemed to be statistically significant. For example, if five tests are to
be done, then the correct a' = oc/5 = 0.01. This procedure is actually somewhat
conservative; a less conservative procedure, a sequential Bonferroni correction, is
now recommended (Rice 1990).

The alternative approach is to use MANOVA. Only a single analysis is per-
formed and thus no correction of a is needed. The hybrid approach is to first
perform the MANOVA, proceeding to the ANOVA only if the MANOVA yields
a significant result. This approach is referred to as a protected ANOVA. The
underlying logic is the same as that in which an ANOVA is performed before
doing multiple comparison tests of means (section 1.2.4). The one difficulty is
that, unlike multiple comparison procedures like Tukey's test and the Student-
Newman-Keuls test, there is no generally accepted way to correct for multiple
tests even within the "protected" framework. That is, some spurious significant
differences are still likely to be declared even when the overall rate of such errors
has been lowered. See Harris (1985, section 4.2) and Stevens (1992, section 5.5)
for discussions of these issues.

Considerable debate exists as to the correctness of each of these approaches.
As is often the case in statistics, the best approach depends on the questions
being asked. Those who argue for a strictly multivariate approach emphasize the
interrelatedness of the dependent variables. Univariate analyses are not able to
capture and dissect those relationships except in a very superficial way. On the
other hand, there are instances in ecology when the behaviors of individual vari-
ables are of interest in their own right. For example, theory may make predictions
regarding changes in specific traits across treatments. Or predictions as to the
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probability of local extinction of species require examination of the abundances
of each species in a study. Or further theory development may require a detailed
examination of individual variable behavior as a preliminary to further refinement
of predictions. Huberty and Morris (1989) have a cogent discussion of the rele-
vant considerations regarding the appropriateness of multivariate tests versus mul-
tiple univariate tests.

This discussion of univariate versus multivariate approaches is couched in
terms of determining the effects of individual response variables on the outcome
of the MANOVA. For example, of the many traits that were measured, which
were actually responsible for the differences among populations? Such informa-
tion is available directly from MANOVA; univariate ANOVA is not necessary.
In addition, the carriers of the information, the eigenvectors of the MANOVA,
also contain information on patterns of variable correlations. Thus, properly inter-
preted, a MANOVA can provide all necessary information.

6.3 Statistical Solution

6.3.1 A Simple Example

To elucidate the basic principles and procedures for MANOVA, I present data
from a study of the herbaceous perennial Coreopsis lanceolata L. (Asteraceae).
These data have been modified to better illustrate several points. We will pretend
that the data are derived from an experiment consisting of plants grown in indi-
vidual pots in a greenhouse at three different nutrient levels, low, medium, and
high, with 67, 48, and 80 plants, respectively. Treatments were randomized on
the bench with no further blocking. The plants were allowed to flower and set
seed. From each plant, one flower head was collected (for simplicity of analysis),
and the number of seeds and mean seed mass were determined. The results are
presented in figure 6.1 A. The data were analyzed using the following model:

where (XUj X2ij) is a vector of measurements of traits 1 (mean seed mass) and 2
(number of seeds) of the y'th replicate in the z'th treatment, T indicates vector
transpose, (I is the grand mean of all measured individuals, T, is the deviation
from the grand mean due to the z'th treatment, and eff is the deviation of the jth
individual from the mean of the z'th treatment. These last deviations (e,j) are as-
sumed to be independently and randomly distributed with mean 0 and variance
O2

e. These are the same assumptions as for ANOVA, except that the error variance
is now assumed to be multivariate normal (see also section 6.4.3). In this instance,
I am interested in whether differences in nutrient levels affect patterns of repro-
ductive allocation.

The first step is to look for overall differences among the treatments. The
basics of MANOVA are just like ANOVA except that, rather than comparing the
means of groups, we compare their centroids. A centroid is a multivariate mean,
the center of a multidimensional distribution. Thus, the programming steps are
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Figure 6.1 (A) Number of seeds and
mean seed mass for each individual
in the three nutrient treatments: high
(•), medium (*), and low (A). (B)
Bivariate means and 95% confidence
intervals for each treatment (note the
change in scale from A). The line is
the first eigenvector, the greatest
characteristic vector.

very simple, although the actual computations are more complex: (1) choose SAS
(SAS Institute Inc. 1989a,b) procedures ANOVA (for balanced data) or GLM
(for unbalanced data or covariate analyses), (2) construct the usual MODEL state-
ment, (3) include all relevant response variables on the left-hand side of the equa-
tion, and (4) add the MANOVA statement (appendix 6.1 A). (See chapters 4 and
5 for details on constructing model statements.) As with ANOVA, the test for
significant differences is based on examining the variation among groups to see
whether it is larger than would be expected by chance given the variation within
groups, using the standard F-statistic. The actual formula is based on the ratio of
the among-group sums-of-squares/cross-product (SS&CP) matrix (H) divided by
the pooled within-group (error) matrix (E) (table 6.1). The diagonals of these ma-
trices are the among-group and error sums of squares of the univariate ANOVAs.
SAS takes care of the actual calculations; for details see Harris (1985, section 4.2).

SAS (and other computer packages) supplies four statistics for the test of sig-
nificant differences among the groups: Wilk's lambda, Pillai's trace, Hotelling-
Lawley trace, and Roy's greatest root. The latter is often referred to as the greatest
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Table 6.1 SAS MANOVA output from the program listed in the appendix"

GENERAL LINEAR MODELS PROCEDURE
MULTIVARIATE ANALYSIS OF VARIANCE

H = TYPE III SS&CP MATRIX FOR TREATMENT
NUM MASS

NUM 24250.912821 -150.8244582
MASS -150.8244582 1.0084091912

E = ERROR SS&CP MATRIX
NUM MASS

NUM 218033.46667 829.14072
MASS 829.14072 18.269723565

MANOVA TEST CRITERIA AND F APPROXIMATIONS FOR
THE HYPOTHESIS OF NO OVERALL TREATMENT EFFECT

H = TYPE III SS&CP MATRIX FOR TREATMENT E = ERROR SS&CP MATRIX
S = 2 M = -0.5 N = 94.5

STATISTIC VALUE F NUM DF DEN DF PR>F
WILKS' LAMBDA 0.782757 12.442 4 382 0.0001
PILLAFS TRACE 0.217648 11.723 4 384 0.0001
HOTELLING-LAWLEY
TRACE 0.277018 13.158 4 380 0.0001
ROY'S GREATEST ROOT 0.275136 26.413 2 192 0.0001

NOTE: F STATISTIC FOR ROY'S GREATEST ROOT IS AN UPPER BOUND.
NOTE: F STATISTIC FOR WILKS' LAMBDA IS EXACT.

"Only those portions of the output directly relevant to the multivariate analysis are shown. H is the among-group
matrix, and E is the within-group matrix.

characteristic root or the first discriminant function. All four measures are based
on the eigenvectors and eigenvalues of the matrix derived from dividing H by E.
Eigenvectors are linear combinations of all dependent variables [see Harris (1985)
or Morrison (1990) for further discussion]. In the analysis of differences among
groups, the first eigenvector is arrayed along the axis of maximal among-group
variation (one can think of it as a least-squares regression of the group centroids)
(figure 6.IB). It is the linear combination of variables that results in the greatest
amount of among-group to within-group variation and, thus, the greatest /''-value.
Subsequent eigenvectors are each orthogonal (at right angles and uncorrelated)
to the previous vector, with each arrayed along the axis of remaining maximal
variation.

The number of eigenvectors will be equal to either the number of response
variables (v) or one less than the number of groups (k - 1), whichever is smaller.
[SAS actually gives you as many eigenvectors as dependent variables, but ifv >
(k - 1) then the last v — (k - 1) eigenvectors will explain 0% of the variation. For
factorial or nested MANOVAs, the number of eigenvectors is based on the nu-
merator degrees of freedom for the test of each factor rather than k- I.]

The eigenvalues (X) indicate the amount of variation explained by each eigen-
vector [r= A7(l +A,)]. The first three MANOVA statistics, Wilk's lambda, Pil-
lai's trace, and Hotelling-Lawley trace, are based on either the sum or the product
of all eigenvalues. Roy's greatest root is the first eigenvalue. As can be seen from
the output in table 6.1, the statistical conclusions about whether the groups differ
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are identical for all four measures, as will usually be the case. [Although SAS
indicates that the F-statistic for Roy's greatest root is an upper bound, SYSTAT
(Wilkinson 1988) uses a different calculation, which provides an exact probability
(theta) value for this parameter.] When they differ, preference should be given to
either Pillai's trace or Roy's greatest root. The former has been shown to be the
most robust to violations of assumptions, whereas the latter has the greatest
power. In addition, Roy's greatest root leads directly and naturally to post hoc
procedures. See Harris (1985, section 4.5) for additional discussion.

6.3.2 Post hoc Procedures

Once a difference among groups has been established (table 6.1), two questions
are immediately raised: (1) Which of the several groups actually differ from each
other? and (2) Which traits and what relationships among them are responsible
for the differences?

The choice of which statistical procedure to use to establish which groups
differ depends on whether the sets of comparisons were decided on prior to ana-
lyzing the data. (In statistical terminology, such comparisons are called contrasts.)
These comparisons can be made either between pairs of groups or between sets
of groups. The procedure will also depend on what combination of response vari-
ables is used. The biggest difference in either case is based on whether the deci-
sions on the form of the comparisons were made a priori or are a posteriori (after
the fact). If they are a posteriori, then you must adjust the a-level used to deter-
mine significance and accept a decrease in power.

Typically, pairwise contrasts would be tested based on the linear combina-
tion of variables obtained from the overall analysis. This procedure will result in
k(k — 1) different pairwise comparisons. A valid statistical test of these compari-
sons requires that the a-level be adjusted to correct for the large number of com-
parisons. The simplest correction to use is the Bonferroni correction mentioned
previously. However, this procedure tends to be conservative, especially if the
number of groups, and subsequently the number of potential comparisons, is
large. For the univariate case, tests such as Scheffe's, Tukey's, and Student-New-
man-Keuls have been developed to specifically correct for these multiple com-
parisons. The closest equivalent in the multivariate case is presented by Harris
(1985, section 4.2). In his procedure, the critical value for the F-statistic is deter-
mined from the formula

where dfeft is the numerator degrees of freedom from the MANOVA and 0 is the
critical value for the greatest characteristic root. A table of critical values is avail-
able in Harris (1985).

This procedure can also be used with other combinations of dependent vari-
ables that might be suggested by examination of the data. For example, an appar-
ent trade-off between two traits or species (X\ and X2) could be tested by creating
a new variable, the difference (Xi — X2) in values for each replicate, and then
performing a univariate ANOVA. This is a valid a posteriori test as long as the
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critical F-value is properly adjusted. Such a procedure greatly strengthens the
potential interpretive power of MANOVA and is especially appropriate if it is
used to generate hypotheses for future experiments.

For the Coreopsis example, I performed two types of follow-up tests, univari-
ate and multivariate. Such follow-up tests should be done only if the MANOVA
indicates the existence of some significant differences. The univariate tests are
not actually necessary, as I indicate, but are included here for comparative pur-
poses (table 6.2A). The pairwise contrasts of the individual response variables,
using a Bonferroni corrected a'= 0.05/3 = 0.017, show that the high and low
treatments differ from each other for both traits and that the medium treatment
differs from neither other treatment for neither variable. (The same results are
obtained using a Tukey's test.) These differences can also be seen by examining
the overlap among confidence intervals (figure 6. IB). Thus, the differences
among groups are ambiguous. More powerful are the multivariate follow-up tests
(table 6.2B). The multivariate comparisons show that the high and medium treat-
ments do not differ from each other and they both differ from the low treatment.
The difference in results for the comparison of the low and medium treatments
shows how univariate tests can be misleading. These conclusions would be the
same using either a Bonferroni correction (a' = 0.017) or the critical value from
Harris (F = 8.5052). Note that the formula from Harris applies only to the greatest
characteristic root, although when there are only two groups, the F- and P-values
will be exactly the same for all four test statistics.

The comparisons were made using the CONTRAST option in the SAS procedure
GLM (appendix). The alternative would be to break the data into three sets contain-
ing each pair of treatments and redo the MANOVA for each pair. (A two-sample
MANOVA is also called a Hotelling's T2-test, just as a two-sample ANOVA is the
equivalent of a f-test.) The advantage of using the CONTRAST statement is the

Table 6.2 Pairwise contrasts of the three treatments (high = H, Medium = M, low = L)
based on individual traits and the combination of both traits using the CONTRAST
statements in the appendix

A. Individual traits

Number of seeds Seed mass

CONTRAST

H VS M
H VSL
M VS L

DP

1
1
1

CONTRAST
ss

3915.907
24083.173
5768.533

B. Multivariate analysis showing

CONTRAST
H vsM
H vsL
M vsL

VALUE
0.02773
0.26597
0.09166

F VALUE

3.45
21.21
5.08

PR>F

0.0648
0.0001
0.0253

CONTRAST
SS

0.02139
0.88943
0.49557

F VALUE

0.22
9.35
5.21

PR>F

0.6359
0.0026
0.0236

Roy's greatest root

F
2.65

25.40
8.75

NUMDF
2
2
2

DENDF
191
191
191

PR>F
0.0734
0.0001
0.0002
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increased power of the test. Note that the denominator degrees of freedom in
the pairwise contrasts is 191, just 1 less than that for the full analysis. When
contrasts are carried out, the pooled error SS&CP matrix is used, just as the
pooled error variance is used in a univariate post hoc Tukey's test. Because this
error matrix is pooled across all groups, the accuracy of the estimation of its
elements is greater, resulting in a more powerful test. The appendix lists the
contrast statements necessary to make these comparisons. If other types of com-
parisons are desired (such as the comparison of high and medium versus low),
those contrast statements can also be added or substituted. See Neter and Wasser-
man (1974), Milliken and Johnson (1984), Hand and Taylor (1987), or Snedecor
and Cochran (1989) for a discussion of how to construct contrast statements (see
also chapter 15).

In some instances, all of the contrasts will be specified before the experiment
is carried out. For example, we might plan to compare each of several treatments
to a single control treatment. In that case, the critical F-value is determined as

where F is an ^"-statistic with degrees of freedom v and dfm-v+ 1, v is the
number of response variables, and dfm is the error degrees of freedom from the
MANOVA.

Determining which combinations of response variables are responsible for the
differences among groups can be done by examining the greatest characteristic
vector and a related parameter, the standardized canonical variate, which are
shown in table 6.3. Examining figure 6. IB, we see that plants grown at low
nutrient levels are ripening fewer and heavier seeds than those grown at higher
nutrient levels. In this case, there are two eigenvectors; the first explains 22% of
the total variation (the "squared canonical correlation" reported in table 6.3B) or
virtually all of the explainable variation (the "percent" reported in table 6.3A).
That is not surprising as the three centroids nearly lie on a straight line (figure
6.1B).

The canonical analysis has the potential for providing a more complete picture
of the statistical significance of the individual eigenvectors and is obtained using
the CANONICAL option of the MANOVA statement (second MANOVA state-
ment in the appendix.) SAS reports a test, given as the likelihood ratio, for the
significance of the sum of the z'th to nth eigenvectors. That is, if there were five
eigenvectors, SAS would sequentially do the following: test all five together, then
delete the first and test the remaining four, delete the second and test the remain-
ing three, and so forth. The first test is the equivalent of Wilk' s lambda (compare
tables 6.1 and 6.3B). However, Harris (1985, section 4.5.3) cautions against the
reliability of such a procedure. Generally, only the greatest characteristic root is
of interest, the significance of which is tested separately as Roy's greatest root.

The numbers in the two right-hand columns in table 6.3A under the headings
NUM and MASS are the coefficients of the eigenvectors. However, they are not
very useful because the magnitudes of the coefficients are dependent on the scale
of the data. A better comparison uses standardized coefficients, obtained by multi-
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Table 6.3 The eigenvector (default) and canonical analyses of the MANOVA option
from SAS procedure GLM showing the parameters and associated statistics of the
characteristic vectors and canonical variates

A. Default eigenvector analysis from the first MANOVA statement in the appendix

CHARACTERISTIC ROOTS AND VECTORS OF: E INVERSE * H, WHERE
H = TYPE III SS&CP MATRIX FOR TREATMENT = ERROR SS&CP MATRIX

CHARACTERISTIC
ROOT

0.27513581
0.00188219

PERCENT

99.32
0.68

CHARACTERISTIC VECTOR V'EV = 1
NUM

-0.00211225
0.00103995

MASS
0.19920128
0.16269926

B. Alternative canonical analysis from the second MANOVA statement in the appendix

CANONICAL ANALYSIS
H = TYPE III SS&CP MATRIX FOR TREATMENT E = ERROR SS&CP MATRIX

1
2

1
2

ADJUSTED APPROX SQUARED
CANONICAL CANONICAL STANDARD CANONICAL

CORRELATION CORRELATION ERROR CORRELATION
0.464510 0.456687 0.056304 0.215770
0.043343 . 0.071661 0.001879

TEST OF HO: THE CANONICAL CORRELATIONS IN THE
CURRENT ROW AND ALL THAT FOLLOW ARE ZERO

LIKELIHOOD
RATIO APPROX F NUM DF DEN DF

0.78275689 12.4419 4 382
0.99812135 0.3614 1 192

STANDARDIZED CANONICAL COEFFICIENTS
CAN1 CAN2

NUM -1.0343 0.5092
MASS 0.8701 0.7107

BETWEEN CANONICAL STRUCTURE
CAN1 CAN2

NUM -0.9949 0.1008
MASS 0.9862 0.1657

PR>F
0.0001
0.5484

plying each of the original coefficients by the standard deviation of each response
variable. (This standardization is the equivalent of going from partial regression
coefficients to standardized regression coefficients in multiple regression.) Unfor-
tunately, SAS does not calculate the standardized coefficients for you; for these
data, the standardized coefficients are -0.075 and 0.063 for number of seeds and
seed mass, respectively.

Most informative are the standardized canonical coefficients of the canonical
variates (table 6.3B). (In the SAS output, the canonical variates are arranged
vertically, whereas the eigenvectors are arranged horizontally.) Canonical variates
are simply eigenvectors scaled to unit variance by multiplying the eigenvector
coefficients by the square root of the error degrees of freedom. Again, the most
useful form is obtained by standardizing the coefficients by multiplying each by
the standard deviation of the variable; in this instance, SAS does the standardiza-
tion for you. For the first variate, the standardized coefficients for NUM and
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MASS are -1.03 and 0.87, respectively (see table 6.3B under the heading CAN1).
The opposite signs indicate that the two variables are negatively correlated across
groups; that is, the pattern of resource allocation is changing across treatments.
This contrasts with the positive correlation within groups (mean r = 0.42), which
is reflected in the similar signs for the coefficients of the second variate. The
greater magnitude of the coefficient for NUM indicates that NUM explains more
of the variation among groups than does MASS. Interpreting eigenvector or ca-
nonical coefficients must be done cautiously because the magnitudes, and even
the signs, can change, depending on what other response variables are included
in the analysis.

SAS also provides information on the canonical structure of the data under
three headings, TOTAL, BETWEEN, and WITHIN. The between canonical struc-
ture is of greatest interest and is shown in table 6.3B. These values are the correla-
tions between the individual response variables and the canonical variates; they
are sometimes referred to as canonical loadings. In this case, because the three
centroids lie nearly on a single line, the magnitudes of the correlations for the
first canonical variate are close to ±1. Whereas the canonical coefficients indicate
the unique contribution of a given variable to the differences among groups (i.e.,
they are analogous to partial regression coefficients), the canonical correlations
indicate how much of the variation each variable shares with the canonical vari-
ate, ignoring correlations among response variables. Such correlations can also
be calculated for the eigenvector coefficients. The canonical correlations are
touted as being more stable to sampling effects than the canonical coefficients;
however, I feel that the canonical coefficients are more informative. See Bray
and Maxwell (1985, pp. 42-45) or Stevens (1986, pp. 412-415) for a discussion
of the use of canonical correlations versus canonical coefficients.

6.3.3 A Complex Example

The above example was simple and straightforward to interpret. As the number
of response variables increases, interpreting differences among groups becomes
more complex, and simple graphic examination becomes very difficult. In addi-
tion, the right-hand side of the equation, the independent variables, can also be-
come more complex. Any model that can be used in ANOVA or ANCOVA (nested,
factorial, and so on; see chapters 4 and 5 for examples) can also be used in
MANOVA. In this example, I present the results from a 2 x 2 x 2 factorial experi-
ment. The data are part of a study on trophic interactions among inhabitants of
pitcher-plant leaves in which changes were examined in the prey species' commu-
nity structure as predator species changed (Cochran-Stafira and von Ende 1998).
In this experiment, the presence of three protozoan predators (Cyclidium, Col-
poda, and Bodo) was manipulated in laboratory test tube cultures. The response
variables were the densities of four bacterial prey species (designated A, B, C,
and D) after 72 hours of growth. There were three replicates per treatment; the
design was completely balanced.

The ANOVAs (not shown) indicate that species A had a significant response
to all treatment effects and interactions, species B did not respond significantly
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to any treatments, species C had a significant response to the main effects of
Colpoda and Bodo and the three-way interaction, and species D had significant
responses only to the main effects of Colpoda and Cyclidium. But this description
does not capture the extent of the interactions among the species. Examination of
the results of the MANOVA (table 6.4) indicates that all the main effects were
significant, the Colpoda-Cyclidium interaction was significant, and the three-way
interaction was significant. Thus, predator-species identity affected prey-species
community structure. (Note that in determining the proper numerator and denomi-
nator matrices for the tests, the same rules as for ANOVA apply; in the current
case, all factors were fixed so the E matrix was used for all tests.)

The canonical coefficients show that significant differences were primarily due
to changes in the abundance of species A (figure 6.2). Additionally, the abun-
dance of species D tended to be positively correlated with that of species A,
whereas species C tended to be negatively correlated with both of them. The
correlation of A and D was reversed, however, for the Colpoda-Bodo and Cyclid-
ium-Bodo interactions. Finally, the full extent of changes in species C and D was
more clearly revealed in the MANOVA as indicated, for example, by the rela-
tively large canonical coefficients for the Colpoda-Cyclidium interaction, which
was not significant for the ANOVAs of either species. This last is an example of
how two variables that are correlated can be important when combined even
though they are not individually significant.

Table 6.4 Multivariate analysis of the effects of protozoan species on bacterial densities"

A. Roy's greatest root

SOURCE

COLPODA
CYCLID
COLPODA*CYCLID
BODO
COLPODA*BODO
CYCLID*BODO
COLPODA*CYCLID*BODO

VALUE

75.9066
8.4839
9.3905
6.5291
0.9522
0.8017
2.5207

F

246.7
27.6
30.5
21.2

3.1
2.6
8.2

NUMDF

4
4
4
4
4
4
4

DENDF

13
13
13
13
13
13
13

P R > F

0.0001
0.0001
0.0001
0.0001
0.0539
0.0848
0.0016

B. Standardized canonical coefficients

COLPODA
CYCLID
COLPODA*CYCLID
BODO
COLPODA*BODO
CYCLID*BODO
COLPODA*CYCLID*BODO

A
7.2868
7.2648
7.5991
4.5085
5.9543
4.5032
6.9132

B
0.2261
0.5033
0.3505

-0.3285
-0.0961
-0.2423

0.2715

C
-1.8530
-2.5893
-2.3772

0.9958
-0.0045
0.9595

-2.6776

D
2.4058
2.3589
2.1048

-0.2532
-0.5063
-0.9633

1.3263

"The significance tests for Roy's greatest root and the standardized canonical coefficients for each main effect and
interaction are shown. Because each main effect has only two levels (treatments), only one eigenvector exists for
each effect.
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Figure 6.2 (A) Bacterial species densi-
ties (mean ± 95% CI) with and without
Colpoda. (B) Bacterial species densities
(mean + 95% CI) with and without Cy-
clidium.

Several different types of ecological interactions could be responsible for these
patterns. The bacterial species could be directly competing for resources. The
bacterial species could be affecting each other—positively or negatively—indi-
rectly through the production of secondary metabolites. The protozoans could
also be producing secondary metabolites, creating indirect correlations; for exam-
ple, as Colpoda eats species A and increases in density, the protozoan's waste
products might benefit species C. At this stage, any ecological interpretations of
the results must be considered tentative hypotheses to be tested by further experi-
ments. The MANOVA indicates which potential interactions are worth pursuing,
information not extractable from the ANOVAs.

In this case, because there are only two treatments (presence versus absence)
for each main effect in the MANOVA, post hoc tests of the main effect differ-
ences are not necessary. However, the three-way effect is significant, and we
might wish to determine which of the eight treatments differ from each other. No
single best procedure exists. Beyond a simple examination of treatment means,
Harris (1985) describes two alternatives: (1) using a method of contrasts (section
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4.7) or (2) receding the data as a one-way MANOVA followed by a series of
appropriate contrasts (section 4.8).

6.4 Other Statistical Issues

6.4.1 Experimental Design and Power

The same basic design considerations that hold for ANOVA and ANCOVA, and
discussed in detail in chapters 4 and 5, also hold for MANOVA. The one addi-
tional consideration is that of power, the ability to detect a true difference. The
power of MANOVA declines with an increase in the number of response vari-
ables. Stevens (1992, sections 4.9, 4.10, 4.12, and 5.15) has a detailed discussion
of power considerations in MANOVA, including tables for suggested sample
sizes for different effect sizes; more extensive tables can be found in Lauter
(1978). For example, the Coreopsis experiment had a 90% probability of detect-
ing a small to moderate difference in the treatment means. (No actual formulas
are available to determine power; rather, values are listed in the appropriate table.)
On the other hand, the power for the protozoa-bacteria experiment was low, so
that conclusions about the lack of significant two-way interactions involving Bodo
must be viewed with caution. In designing an experiment, a priori power analyses
are strongly recommended so that you will have the ability to detect the desired
effect. If a conclusion of no differences is reached, a post hoc power analysis can
assess the robustness of that conclusion.

Because the power of MANOVA declines with an increasing number of re-
sponse variables, the distribution of effort among response variables versus repli-
cates must be carefully considered. Very often experimenters will simply measure
all possible response variables, examine them in a single huge analysis, and hope
that something appears. In addition to problems of power, such an approach will
often lead to results that are hard to interpret. A better approach is to start with
clearly delineated hypotheses involving specified sets of response variables. Be-
cause not all of the response variables would be included in any single analysis,
the power of the analysis would not be overly diminished. The interpretation of
the results would be simplified because they would be compared with prespeci-
fied conjectures.

6.4.2 Missing Data and Unbalanced Designs

Missing data can take two forms in MANOVA: either the value of one or more
response variables is missing for a subject (replicate) or an entire subject is miss-
ing. MANOVA can be performed only when all subjects have been measured for
all response variables. If some measurements are missing, the entire subject is
deleted from the analysis. Because we all are loathe to throw away data, one
solution is to estimate the missing values using some form of multiple regression
analysis of the other response variables. One assumes that the missing values do
not deviate in any unusual way from the general distribution of the other values.
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A graphical analysis (chapter 3) of the other values for that subject is recom-
mended to determine whether that subject was either unusual or an outlier. Other
information should also be considered (e.g., the data are missing because the
animal was sick and died). Such procedures are generally robust as long as the
missing data are sparse (<5% of all data, missing values distributed among all
response variables, and generally no more than one missing value per subject).

When an entire subject is missing, estimating missing values is more problem-
atic because very restrictive assumptions must be made about the entire covari-
ance structure of the data; in particular, we must assume that it is uniform (as
opposed to merely similar) across treatments or groups. However, estimating
missing values is not necessary because SAS procedure GLM (and other com-
puter packages) will handle unbalanced designs. In such a case, one must use
Type III sums of squares as they are designed to account for unbalanced designs.
Generally, unequal sample sizes are not a big problem for one-way MANOVA,
but they might bias the results for factorial or nested designs. Unfortunately, little
work has been done on this problem for MANOVA, thus statements about the
robustness of ANOVA to unbalanced designs (Shaw and Mitchell-Olds 1993)
should be extrapolated to the multivariate case with caution. As a rule, as long as
designs are not too unbalanced (the smallest cell not less than 50% the size of
the largest cell), results are reliable. As always, conclusions based on probability
values close to the critical value (0.01 < P < 0.10) should always be tempered.

A relatively new approach, maximum likelihood (McLean et al. 1991; SAS
procedure MIXED), has the advantage that having complete data for all subjects
is not necessary, so missing values need not be estimated. However, assumptions
about homogeneity of subjects (missing values are not unusual) still hold, so
examination of the data before analysis and consideration of the reasons for the
missing data are still important. A disadvantage is that computations for experi-
ments with either many response variables or complex designs can take a very
long time for MANOVA and sometimes will fail to converge on a solution. Be
warned that the documentation of the technique is not completely clear, especially
for those without extensive statistical training; consultation with a statistician is
highly recommended.

6.4.3 Assumptions

The assumptions of ANOVA also hold for MANOVA: subjects are independent,
all random effects (particularly the within-group or within-cell error effects) are
normally distributed, and the variances of those error effects are equal among
groups or cells (homoscedasticity). In addition, for MANOVA it is assumed that
the error effects are multivariate normal and that the covariances are equal among
groups. These latter two assumptions are just multivariate extensions of the last
two assumptions from ANOVA. Unfortunately, it is virtually impossible to actu-
ally test for multivariate normality because of the very large sample sizes neces-
sary. The best we can do is to test each of the dependent variables separately for
univariate normality and then (reasonably) assume that multivariate normality
holds. There are tests for equality of variance-covariance matrices, but statisti-
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cians are cautious about their use because (1) the tests are sensitive to departures
from multivariate normality and (2) MANOVA is generally robust to deviations
such that a significant departure from equality will be found before it will bias
the conclusions. In particular, Pillai's trace has been found to be very robust.

My general advice is that if visual inspection of the data indicates overall
agreement with the assumptions, go ahead and do the MANOVA. The obvious
case where the assumptions are being violated is when the sign of the correlation
between two dependent variables differs among groups. In that case, the most
appropriate analysis strategies are to (1) specifically address questions regarding
differences in correlations and (2) compare means using univariate analyses or
multivariate analyses that do not use that particular pair of dependent variables
simultaneously. The other situation in which the assumption of normality will
likely be violated is in community-level studies that involve species that are not
being directly manipulated (e.g., the presence of predators is manipulated while
prey species freely move on and off plots). In that instance, several of the species
are likely to have low or very variable abundances, resulting in a data matrix with
many zeros. In such a case, no transformation will succeed in normalizing the
distribution. One potential solution to the general problem of violation of assump-
tions is the use of randomization tests (chapters 7, 14, and 16), which are distribu-
tion-free. Such randomization tests for the case of a one-way MANOVA are
presented by Mielke et al. (1981) and Zimmerman et al. (1985).

6.5 Related Issues and Techniques

I have discussed briefly the very complex subject of multivariate analysis. A
number of books explain the basics and provide an entry into the more esoteric
aspects of this subject. Nontechnical introductions can be found in Barker and
Barker (1984), Bray and Maxwell (1985), and Manly (1986b). More detailed treat-
ments are given in Harris (1985), Stevens (1992), and Morrison (1990). A complete
mathematical treatment can be found in Johnson and Wichern (1988). In chapter
8, von Ende discusses another aspect of this topic, repeated-measures analysis, in
which the same subject is measured more than once. He explains a procedure
called profile analysis, which can also be used with MANOVA to dissect effects
of particular variables (see also Simms and Burdick 1988). More complex situa-
tions in which the same subject is measured more than once for more than one
trait, called doubly multivariate designs, can also be envisaged (see example 9 of
SAS procedure GLM). In some instances, the response variables themselves may
be further related in some cause-and-effect schema; in that case, the problem
should be broken into a series of subanalyses as part of a path analysis (chapter
12). Multiple regression analysis involves independent variables consisting of
several continuous effects. If there are also multiple response variables, the result
is referred to as a canonical analysis. Such an analysis is actually the most general
form of parametric statistical analysis, and all other procedures can be thought of
as special cases of this general approach. See Gittens (1985) for a useful descrip-
tion of canonical analysis in an ecological context.
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The basic message I have tried to convey in this chapter is that MANOVA is
no more difficult, and often more informative, than ANOVA. Its implementation
must be encouraged in ecology because the questions that we ask are very often
multivariate ones.
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Appendix SAS Program Code for Multivariate Analysis of

Variance (MANOVA)

A. Analysis of the Coreopsis Experiment

PROC GLM; /use GLM for unbalance designs/
CLASS TREAT; /TREAT = treatments/
MODEL NUM MASS = TREAT/SS3; /use type III sums of squares

for unbalanced designs/
CONTRAST 'H VS M' TREAT - 1 1 0 ; /contrast statements for
CONTRAST 'H VS L' TREAT - 1 0 1 ; obtaining the tests of
CONTRAST'MVSL'TREAT 0 - 1 I; pairwise differences/
MANOVA H = SITE/PRINTH PRINTE; /MANOVA statement for obtaining the

multivariate and the coefficients analysis of the greatest
characteristic roots. PRINTH and PRINTE request

the among-group and within-group SS&CP matrices/
MANOVA H = SITE/CANONICAL; /alternative MANOVA statement for obtaining

the multivariate analysis and the canonical coefficients/

B. Analysis of the Protozoan-bacteria Experiment

PROC ANOVA;
CLASS COLPODA CYCLID BODO;
MODEL A B C D = COLPODA|CYCLID BODO; /the " j" specifies a model with

all possible interactions/
MANOVA H =_ALL_/CANONICAL; /the "_ALL_" requests multivariate

tests for all model effects/



7

ANCOVA

Nonparametric and
Randomization Approaches

PETER S. PETRAITIS

STEVEN J. BEAUPRE

ARTHUR E. DUNHAM

7.1 Ecological Issues

Ecological data often fail to meet required parametric assumptions. When this
occurs, randomization approaches can provide a good alternative to more familiar
parametric methods such as analysis of covariance (ANCOVA) and regression
analysis. Randomization methods are quite easy to use, and because standard
parametric ANCOVA is well known to ecologists, we use it to motivate our
discussions of the benefits and problems associated with using nonparametric and
randomization methods. We do so by examining randomization and nonparamet-
ric approaches to the analysis of sex-specific and site-specific variation in body
size among populations of rattlesnakes, with age as a confounding factor.

Variation among populations in body size is common in many animals (e.g.,
invertebrates: Paine 1976; Lynch 1977; Sebens 1982; Holomuzki 1989; amphib-
ians: Nevo 1973; Berven 1982; Bruce and Hairston 1990; squamate reptiles:
Tinkle 1972; Dunham 1982; Schwaner 1985; Dunham et al. 1989; mammals:
Boyce 1978; Melton 1982; Rails and Harvey 1985) and has been of great interest
to evolutionary ecologists because body size covaries with many reproductive
traits, such as age at maturity, number and size of offspring, and amount of mater-
nal investment in offspring (Stearns 1992; Roff 1980, 1992). Explanations for
variation in body size include differences in resource seasonality, quality, and
availability (e.g., Case 1978; Palmer 1984; Schwaner and Sarre 1988), size-spe-
cific predation (Paine 1976), population density (Sigurjonsdottir 1984), character
displacement (Huey and Pianka 1974; Huey et al. 1974) and clinal variation in
developmental rate (Roff 1980). Geographical variation in body size, however,

I 16
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may often result from the interplay of size-specific growth rates and population
age structure. King (1989), for example, suggested that population differences in
age structure were an important aspect of the variation in body size of the water
snake Nerodia sipedon insularm. Therefore, making sense out of temporal and
geographic patterns in body size and ultimately growth rate requires knowledge
of, and correction for, the ages of animals so that animals of similar age may be
compared.

Traditionally, patterns of growth and sexual size dimorphism in reptiles have
been analyzed by using nonlinear growth modeling techniques (Andrews 1982;
Stamps 1995). Accurate fit of nonlinear models requires large samples with obser-
vations well distributed over the total size range, a requirement that is frequently
not met in field studies (chapter 10). Furthermore, because a separate model is fit
to each line, the form of the best-fit model (e.g., von Bertalanffy versus logistic
by length, or others) may vary, complicating comparisons. Likewise, as fitted
parameters are compared among several groups, the probability of Type I error
increases, in a manner analogous to multiple pairwise ?-tests.

For small to moderate data sets with multiple groups for comparison, ANCOVA
using age as the covariate seems the best alternative approach for comparing body
size among groups. Yet field data on body size and age are often messy. Analyses
frequently require adjustment for one or more covariates, and residuals of fitted
models rarely meet the assumption that they are independently, identically, and
normally distributed (Sokal and Rohlf 1995; Zar 1996).

Conventional nonparametric statistics based on ranks or other types of random-
ization tests can provide good alternatives to parametric analyses. The parametric
analysis assumes errors are normally distributed, an assumption that is relaxed in
nonparametric tests based on ranks and other randomization tests. On the other
hand, parametric procedures, randomization procedures, and nonparametric tests
based on ranks all require the errors to be independently and identically distributed.
Randomization methods and conventional nonparametric tests are sensitive to heter-
ogeneity of variances, and it is a common misconception that the problem of hetero-
geneity of variances can be solved by using nonparametric tests (Hayes 1996).

Typical nonparametric tests use ranks of the original data; the null hypothesis
specifies that ranks are randomly assigned across treatment levels. For small sam-
ples, the exact probability of the observed ranking can be calculated because all
possible rankings can be enumerated. Thus, a conventional nonparametric test is
a randomization test of the ranking of the original observations. For large sample
sizes, calculation of significance levels for most commonly used nonparametric
tests are estimated using a ^-distribution. The ^-distribution of the test statistic
is based on the assumption that ranked data for each treatment level are samples
drawn from distributions that differ only in location (e.g., mean or median). The
underlying distributions are assumed to have the same shape (i.e., all other mo-
ments of the distributions—the variance, skewness, and so on—are identical).
These assumptions about nonparametric tests are often not appreciated, and ecolo-
gists often assume that such tests are distribution-free.

Other types of randomization tests are based on a reshuffling of the original
data (chapter 14). These tests also require assumptions about the population distri-



I 18 Design and Analysis of Ecological Experiments

bution. There is often confusion about which procedures constitute randomization
tests and which constitute permutation tests. Kempthorne and Doerfler (1969)
use the term permutation for tests based on all possible orderings of the data.
Randomization tests typically use only a randomly chosen subset of all possible
permutations. Conventional nonparametric tests, in the strict sense, are permuta-
tion tests.

In the next section, we discuss the advantages and disadvantages of parametric,
nonparametric, and randomization approaches to problems normally analyzed us-
ing ANCOVA. To illustrate these issues, we use data on sexual and geographical
variation in body size in the mottled rock rattlesnake (Crotalus lepidus). There
are very few data on sexual dimorphism in snakes. Beaupre (1995) undertook a
study of sexual dimorphism in the mottled rattlesnake at two sites in Texas. After
adjusting for age, he found that females were significantly smaller than males at
both sites, and snakes from the low-elevation site were significantly smaller than
those from the high-elevation site (Beaupre 1995). He also detected a significant
site by sex interaction. Beaupre used nonparametric methods because significant
departures from normality were detected.

7.2 Statistical Issues

7.2.1 The Data

The data set we used consists of mark-recapture observations of the age and size
of male and female Crotalus lepidus from two populations at different elevations
in Big Bend National Park, Texas, collected over a 6-year period. Our data set is
not identical to the set used by Beaupre (1995). We included 87 observations of
males and females of which 33 were recaptures. Beaupre (1995) had 99 observa-
tions with 31 recaptures. A more detailed description of the data may be found
in Beaupre (1995). Relative age of each captured snake was estimated from rattle
morphology (i.e., number of rattle segments adjusted for shedding frequency; see
methods in Beaupre 1995), and snout-vent length (SVL) was used as an estimate
of body size. There are four variables: site (Boquillas and Grapevine Hills), sex,
relative age, and size (SVL). Site and sex were treated as fixed effects, with age
as the covariate. Site was considered a fixed effect because of our interest in
microclimatic effects that result from elevational differences between these two
particular localities (Dunham et al. 1989).

7.2.2 Conventional ANCOVA

Tests for significant main effects (sex and site, in this case) and their interaction
can be analyzed as a two-factor ANCOVA, with body size as the dependent
variable and age as the covariate. Before the ANCOVA is ran, tests of the as-
sumption of homogeneity of slopes should be carried out. These are tests of the
similarity of linear dependence of body size on age among the treatment levels.
If the homogeneity of slopes criterion is met, the ANCOVA procedure is valid.
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ANCOVA is known to be robust to minor violations of model assumptions, espe-
cially in tests of significance for fixed effects. Under most situations, ANCOVA
is the favored parametric approach. However, serious violations of the assump-
tions are often encountered with data on field-captured animals.

First, the dependent variable, body size, may not meet the assumptions of
parametric statistics. Distributions of body size in populations of reptiles are often
highly skewed, and the variances of distributions of male and female body size
can differ considerably (e.g., Beaupre et al. 1998). Thus, it is highly unlikely that
the errors are normally distributed as required for parametric analysis. Second,
the covariate, age of each snake, is not known precisely, yet the use of ANCOVA,
as with other model I regression methods, assumes that the error in measurement
of the covariate is small. The estimation of age of field-caught animals, even
under the best of circumstances, is problematic. In most cases, ecologists use a
proxy for age and assume that the proxy has a linear, or at least monotonic,
relationship with age. Model I regression may be used even if the independent
variable is measured with error as long as the error distribution for the indepen-
dent variable (or covariate, in the case of ANCOVA) is much narrower than the
error distribution of the dependent variable (LaBarbara 1989). It may often be the
case, however, that the age of field-caught animals is estimated with as much or
more uncertainty than body size and, as a result, we would expect age to have a
larger measurement error than body size. Third, factorial designs involving field-
caught animals are rarely balanced. It is usually impossible to capture the same
number of males and females at every site. Unbalanced ANOVAs and ANCOVAs
are very sensitive to heterogeneity of variances, which may be an issue when com-
paring males and females.

Experimental ecologists usually try to correct for these difficulties, which in-
volve assumptions about the parametric model itself. The most common approach
is to transform the dependent variable to make the error variances homogeneous
and to use Type III sums of squares for unbalanced designs. Most hope that the
error distribution of the covariate is narrow enough. There are some cases where
the covariate itself is transformed in a mistaken attempt to reduce its variance;
however, such transformations of the covariate should only be applied when rela-
tionships require linearization.

Although it corrects one problem, transforming the dependent variable can
create another. For example, body size may be transformed to reduce the hetero-
geneity among the error variances of the different treatment levels, but the trans-
formation may make the error distributions nonnormal. Transformations also
change the relationships among the dependent and independent variables. Log
transformation of body size may reduce the heterogeneity of the variance and
normalize the error distributions, but the transformation changes the model from
one with additive effects to one with multiplicative effects. This can be a serious
problem, particularly in experiments where ecologists used the tests of interac-
tions within ANOVA and ANCOVA to make inferences about "nonadditive"
ecological effects, such as higher order interactions (Wootton 1994).

The difficulties of unbalanced designs can be easily solved by throwing out
data. Balancing the design reduces the effects of heterogeneous variances. Most
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ecologists, however, loathe discarding hard-won information. A potential pitfall
of discarding data is that the reduced data set may lead to a significant loss of
power. The advantages of creating a balanced design by discarding data rarely
outweigh the disadvantages.

7.2.3 Nonparametric Approaches

Two general approaches to nonparametric analysis of covariance have been devel-
oped. The first, termed matched pairs involves the restriction of the data set to
pairs matched for the value of the covariate and the generation of a transformed
data set based on differences (Quade 1982). The matching approach involves
some arbitrariness in determining which data values constitute a matched set, and
it apparently has not been generalized beyond a one-way analysis.

The second approach, formalized by Shirley (1981), is a nonparametric ANCOVA
based on ranking the dependent variable. Shirley's approach is based on the work
of Bennett (1968), who developed nonparametric tests of general linear hypothe-
ses for ranked data. For two-factor ANOVA, the most familiar example of Ben-
nett's test is the Scheirer-Ray-Hare test (Scheirer et al. 1976), which is an exten-
sion of the Kruskal-Wallis test. The assumption of normality is relaxed in
conventional nonparametric tests based on ranked data. It is not widely recog-
nized that nonparametric tests, such as the Kruskal-Wallis test, may not detect
true differences in location (i.e., differences among average rankings) if the
groups being compared differ in scale (i.e., in variance) or in shape (Lehmann
1975). In extreme cases, the covariate may also need to be ranked (Shirley 1981).

Nonparametric ANCOVA is performed like any ANCOVA except that the
ranks of the observations are used as the dependent variable. As usual, ties are
assigned the average of the spanning ranks. As with the standard ANCOVA
(chapter 5), two models are used: (1) the full model with the interaction between
the covariate and treatment effects as a test of slope heterogeneity (called the
homogeneity-of-slopes model in SAS; equation 5.2) and (2) the model without
these interactions for tests of the adjusted averages (called the analysis-of-covari-
ance model in SAS; equation 5.3).

The test statistic for a fixed effects model is the sum of squares for the appro-
priate main effect or interaction divided by the total mean square (i.e., the total
sums of squares, SS, divided by the total number of degrees of freedom). The
test value is compared to a critical value from a ^-distribution at the desired cc-
level and degrees of freedom of the effect under consideration. Using a ^-distri-
bution to determine the significance level gives us an approximation based on the
assumption that the central limit theorem applies to the ranked data (Lehmann
1975). This can be safely assumed only if the sample size is large and there are
few tied ranks. Procedures for post hoc comparison of adjusted mean ranks are
described by Shirley (1981, 1987).

The test statistics are ^-distributed, not F-distributed, because the parametric
variance is known for ranked data (Mood and Graybill 1963; Lehmann 1975;
Sokal and Rohlf 1995). The parametric variance equals N(N+ 1)/12 where N is
the total number of observations in the experiment. If there are no ties, then the
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total SS from the ANCOVA of the ranked data divided by the total degrees of
freedom equals the parametric variance (e.g., see Sokal and Rohlf's 1995 discus-
sion of the Scheirer-Ray-Hare test). The parametric variance must be corrected
if there are ties; the corrected parametric variance is [N(N+ 1)/12] - C, where
C= (t3

t — ti)H2(N — 1), summing over i from 1 to S, S is the number of sets of
tied values, and ?, is the number of tied values in the z'th set. The total SS/total df =
[N(N+ 1)/12] - C. Note that C is different from the correction D found in Sokal
and Rohlf (1995, box 13.6), but it is easily shown that DN(N+ 1)112 =[N(N +
1)112] - C. The two equations give the same result.

7.2.4 Randomization Approaches

Randomization tests are carried out by randomizing the observations and recalcu-
lating the appropriate test statistic many times, generating a distribution of possi-
ble outcomes. If all possible outcomes are enumerated, a randomization test is a
permutation test. Hypothesis tests are conducted by direct estimation of the proba-
bility of the observed ordering based on the distribution of randomly derived
outcomes (Manly 1997). The outcomes of a parametric test and a randomization
test are asymptotically equivalent if the data meet the assumptions of the paramet-
ric model. See chapters 14 and 16 for other examples of randomization tests.

The test statistic used in a randomization test need not be a conventional one,
such as a r-or F-statistic (Manly 1997). For example, with ANOVA and ANCOVA,
treatment mean squares or sums of squares may be as suitable as F-statistics. In
one-way ANOVAs, the distribution of F-statistics and sums of squares based on
randomizations differ by a constant factor. This is not true for more complex
designs. Edgington (1995) favors using sums of squares, but Manly (1997) favors
using the F-ratio because his simulations suggested that randomizations based on
sums of squares tended to have lower power. We will show subsequently that
sums of squares and the F-ratio will often give different answers because they
test different hypotheses. It is not simply a matter of differences in power.

A more difficult question than the choice of the test statistic is how to random-
ize the observations. There are two different approaches for factorial designs,
depending on the null hypothesis (Manly 1997). On one hand, suppose our null
hypothesis about differences due to sex and site is based on the assumption that
the observation of a particular snake body size for any sex x site combination is
drawn from a single population. To the extent that this assumption is true, we
expect that any observation could be drawn from any sex x site combination and,
thus, we should randomize the observations across all cells. This approach is
advocated by Manly (1997) because of its ease of calculation, and his simulations
suggest that results are similar to the second approach. On the other hand, we
could assume that sex and site should be tested independently. Thus, we would
test for the difference between male and female body size while holding constant
the effect of site. To do this, we randomize the observations between sexes but
within each site separately, and observations from the two sites are not mixed.
This approach, known as restricted randomization, is advocated by Edgington
(1995).
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Two approaches can be used to randomize the residuals rather than the original
data. Ter Braak (1992) suggests calculating the residuals for each observation
from the overall model and then randomizing the residuals. In our example, the
residual body mass would be adjusted for the effects of sex, site, sex x site inter-
action, and age, the covariate. Either complete or restricted randomizations could
be used. A hybrid approach was suggested by Still and White (1981) in which
the main effects are tested using an overall randomization and the interaction
effects are tested using ter Braak's method by randomizing the residuals from the
overall main effect model.

7.3 Statistical Solutions: Comparison of Several Approaches

7.3.1 Parametric ANCOVA

Recall that the data are snout-vent length (SVL) of male and female rattlesnakes
from two sites in Texas. The covariate is age, which is estimated from the number
of rattle segments. The null hypotheses are as follows:

1. no differences in adjusted body size (i.e., SVL adjusted for rattle count) due to
sex or site, and

2. no sex x site interaction. Site and sex are considered to be fixed effects.

The complete data set consisted of 87 observations, of which 33 were re-
captures, so, to avoid nonindependence, each animal was used only once in
the analysis. A single observation for each individual was randomly drawn from
the complete data set. This gave an unbalanced design with 54 rattlesnakes (fig-
ure 7.1).

Preliminary analysis revealed significant slope heterogeneity between sites (ta-
ble 7.1). The ANCOVA showed significant effects of sex, site, and age. There
was no detectable interaction between sex and site. These results must be viewed
with caution for several reasons. First, the heterogeneity of slopes violates the
assumptions of ANCOVA and suggests that the interpretation of differences in
body size between the two sites—Boquillas and Grapevine Hills—depends on
the age of the snake. Second, the covariate, which is the number of rattle buttons
as a proxy for age, is likely to have substantial measurement error. Third, the
residuals show some signs of heterogeneous variances and nonnormality. Plots of
residuals exhibit a systematic increase in the residual with increasing SVL (figure
7.2A) suggesting some heterogeneity of variances. Tests of the residuals for heter-
ogeneity of variances were not significant (Levene's test, P = 0.201; Bartlett's
test, P = 0.087), but lack of significance may be due to the low power of the tests.
More important, the distribution of residuals with respect to values of the covari-
ate is hump-shaped (figure 7.2B), suggesting that the residuals fail to meet the
assumption of normality. Log10-transformation of SVL did not improve the resid-
ual plots.

These observations suggest that the data do not meet the assumptions of para-
metric ANCOVA. Clearly, another approach to analyzing these data is necessary.
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Figure 7.1 Relationship be-
tween SVL and age for
groups of rattlesnakes de-
fined by site and sex. Num-
bers in parentheses are sam-
ple sizes.

7.3.2 Nonparametric ANCOVA

We repeated Beaupre's (1995) analysis and applied Shirley's technique for non-
parametric ANCOVA on the ranked SVL. First, we note that there are three sets
of tied ranks, with two observations in each tie. The correction for the parametric
variance equals 0.028 (table 7.2). Obviously, the correction is very small and will
have little effect on the outcome of the analysis. The importance of tied values
increases with small sample size and the number of tied values.

Table 7.1 Results of tests of homogeneity of slopes and ANCOVA

Test

Slope homogeneity
Age x sex
Age x site
Age x sex x site
Error

ANCOVA
Sex
Site
Sex x site
Age
Error

df

1
1
1

46

1
1
1
1

49

SS

13.07
109.79
<0.01

779.46

218.13
87.61
48.98

2101.08
927.01

MS

13.07
109.79
<0.01
16.94

218.13
87.61
48.98

2101.08
18.19

F

0.77
6.48

<0.01

11.53
4.63
2.59

111.06

P

0.384
0.014
0.989

0.001
0.036
0.114

<0.001
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Figure 7.2 Plots of residuals
from the parametric

ANCOVA. The top panel
(A) suggests systematic

changes in the variance of
model residuals with in-

creases in SVL. The bottom
panel (B) shows distinct non-

normality of residuals over
the values of the covariate

(age class).

Table 7.2 Results of the nonparametric ANCOVA on ranked SVLa

TestsTests

Slope homogeneity
Age x sex
Age x site
Age x site x sex
Total

ANCOVA
Sex
Site
Site xT\sex
Age
Total

df

1
1
1

53

1
1
1
1

53

SS

72.79
293.40

0.60
13116.00

1070.21
525.62

95.86
4852.34

13116.00

MS"

72.79
293.41

0.60
247.47

1070.21
525.62
95.86

4852.34
247.47

x2

0.294
1.186
0.002

4.325
2.124
0.387

19.608

Ff

0.588
0.276
0.961

0.038
0.145
0.534

<0.001

^est values — SS of an effect divided by the total MS. For example, for age x sex test of heterogeneity, 72.797
247.47 = 0.294.
bTotal MS equals the unconnected parametric variance minus the correction. The uncorrected parametric vari-
ance = N(N+ 1)/12 = 54(55)/12 = 247.500. There were three two-way ties, so C = 18/12(54 - 1) = 0.028. Thus
247.5 - 0.028 = 247.475, which is the total MS.
'Probability levels are calculated using the PROBCHI function in SAS (e.g., P = 1 - PROCHI(0.294,1) give
P = 0.587.
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The nonparametric analysis detected no heterogeneity of slopes among groups
(table 7.2). The ANCOVA revealed significant effects of age and sex. There was
no detectable effect of site and no interaction of site x sex (table 7.2). It is note-
worthy that Beaupre's (1995) original analysis using Shirley's method (Beaupre
1995) detected significant effects of age, site, sex, and site x sex interaction. The
differences in results are most likely due to the use of two different subsamples
of data; we did not use the same set of observations used by Beaupre (1995). The
differences are unsettling and raise the question of whether the subsets used by
us or by Beaupre (1995) are representative of the population as a whole. We show
later in this chapter how randomization procedures can be utilized to address this
question.

7.3.3 Randomization Tests

Randomization tests are quite easy to carry out in SAS. It is possible to write a
seamless listing of SAS code so that randomization tests can be carried out in a
single run (see also chapter 14), but for clarity of presentation, we will break the
analysis into four distinct steps. First, a conventional analysis must be run to
obtain the observed values for the test statistic. Table 7.1 gives the SS and F-
ratios for the conventional ANCOVA for SVL of rattlesnakes with age (the num-
ber of rattle segments) as the covariate and the tests for homogeneity of slopes.
Second, the data must be randomized a large number of times and stored in a
form that can be used by SAS. Third, the appropriate SAS procedure (in this
case, procedure GLM) is run many times using the randomized data sets. Finally,
the large number of iterations must be summarized. See the appendix and the
Website [http://www.oup-usa.org/sc/0195131878/] for more details about writing
the SAS code.

The second step, randomization of the data, can be done in a variety of ways.
We chose to assign observations randomly to the four site x sex cells with the
restriction that the design remained unbalanced in the same fashion as the original
data set. A thousand or more sets of randomized data can be created very quickly
with a number of programming languages. Sets of randomized data can also be
created in SAS, but this tends to be slower than doing the randomization using
BASIC or some other programing language and then importing the data sets into
SAS. On the Website, we demonstrate one way to do a randomization within
SAS that is easy to code and comprehend. The biggest problem with conducting
the randomizations entirely within SAS is the sorting of large data files. Proce-
dure SORT maintains two complete files during a sort, and it is very easy to run
out of memory if the data file is large and if the analysis is done on a personal
computer. See the Website for more details.

The randomizations were done differently for each of the tests of homogeneity
of slopes, the test of the covariate, and tests of the effects of sex and site. The
tests of sex, site, and site x sex interaction are concerned with the effect of treat-
ment levels on SVL when adjusted for age. Here we preserved the observed
pairing of age and SVL for each snake, but we randomized snakes across treat-
ments. We did this because we assumed that each snake with its own unique

http://www.oup-usa.org/sc/0195131878/
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combination of SVL and age was the unit of interest. The tests of sex, site, and
site x sex interaction thus hold the effects of age constant. In contrast, for tests
for the covariate and homogeneity of slopes, we randomized age with respect to
SVL but did not randomize SVL with respect to the treatment classes. This re-
stricted randomization tests the hypothesis that there is no effect of age on SVL
while holding the effects of sex and site constant.

Tests for homogeneity of slopes were not significant across sex and across site x
sex, but they were significant across sites (table 7.3). The probabilities from the
F-ratio randomizations tend to match the probabilities from the parametric analy-
ses, whereas those from the SS randomization are always greater. Thus, slopes
between sites are homogeneous based on the SS randomization but are heteroge-
neous based on the F-ratio randomization.

The parametric and randomization ANCOVAs gave similar results for the ef-
fect of sex (always significant) and the site x sex interaction (never significant)
but not for the effect of site (table 7.3). The effect of site was significant at P <
0.05 for the F-ratio randomization but was not significant for the SS randomiza-
tion. Figure 7.3 shows the distribution of the F-ratio and the error mean square
for the test of the effect of site. Although the mean square from the parametric
analysis (18.19) is in the lower tail of the distribution generated by the randomiza-
tion, this is not the cause of the discrepancy between the F-ratio and SS random-
izations. F-ratio randomizations tend to give probability levels closer to those
from the parametric analysis. As shown in figure 7.4, probability levels based on
the SS randomizations were larger.

Age was significant in all analyses. Neither the /''-ratio nor the SS randomiza-
tion gave a single case greater than or equal to the observed test statistic, but this
is not surprising since the probability from the parametric analysis was <0.0001.
It is possible that with more iterations (>10,000), F-ratio and SS randomizations
would differ, but there is no clear advantage of doing more iterations since the
probability levels with 1000 iterations are so small.

Table 7.3 Probability levels from parametric, nonparametric, and randomization
analyses"

Randomization

Slope homogeneity
Age x sex
Age x site
Age x sex x site

ANCOVA
Sex
Site
Sex X site
Age

Parametric

0.384
0.014
0.989

0.001
0.036
0.114

<0.001

Nonparametric

0.588
0.276
0.961

0.038
0.145
0.534

<0.001

Based on F

0.338
0.006
0.989

0.001
0.038
0.129
0.001

Based on SS

0.607
0.112
0.992

0.002
0.063
0.192
0.001

"Probabilities for randomization tests are based on 1000 iterations plus the original observed values (see
table 7.1).
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Figure 7.3 Distributions of F-ra-
tios for the site effect and error
mean squares from 1000 ran-
domizations. The observed
value for the error mean square
in the parametric analysis
(18.19) is well below all 1000
randomizations.

Figure 7.4 Treatment mean
squares for the site effect ver-
sus the error mean squares
from the 1000 randomizations.
Lines for SS = 87.61 and F =
4.63 delineate P = 0.036,
which is the significance level
of the test of a site effect in
the parametric ANCOVA (see
table 7.1).
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With respect to the data at hand and based on the distribution of F-values, we
conclude that there were significant differences between sites and between sexes
in SVL when adjusted for age. Our conclusions are similar to Beaupre's (1995),
although we did not detect a significant site x sex interaction as he did.

7.3.4 Causes for the Differences Between F
and SS Randomizations

The randomizations based on the F-ratio and the SS differed because in factorial
designs they test slightly different hypotheses. Randomization with SS as the test
statistic tests the effect of one factor (e.g., site), ignoring the contributions of all
other effects (e.g., sex and site X sex interaction). In contrast, using the F-ratio as
the test statistic tests the effect of site while partitioning the effects of all other
factors.

The difference between the two is most easily expressed in terms of partial
and unpartial measures of association (Maxwell et al. 1981; Petraitis 1998). As a
test statistic, SS is related to r|2 (eta squared), which Friedman (1968) recom-
mended as a measure of the strength of association (i.e., the proportion of ex-
plained variation; see Petraitis 1998). The estimate of T|2 equals SSTreatment/SSTotai,
and r|2 reflects the strength of a treatment effect relative to the total variance (Max-
well et al. 1981). Since SSTotai is constant, randomization of SS for any treatment
is, in effect, identical to a test for r)2. In contrast, the F-ratio is related to a partial
measure of association, rfpartiab which is a measure of a treatment effect relative to
the error variance (Maxwell et al. 1981). The estimate of T\2paM equals SSTreatmm/
(SSTreatment + SSError). In terms of the F-ratio in a two-way ANOVA, t|2Partiai equals
(dfTratmmt)F/[(dfTreatment)F-l-dfError], where dfTrea,ment and dfElIor are the degrees of free-
dom for the treatment effect and the error, respectively. Figure 7.4 shows how the
treatment and error sums of square covary to produce the differences between the
F-ratio and SS randomizations.

The choice of SS versus F-ratio depends on exactly what you wish to test. If
you wish to test the effect of a treatment regardless of the other factors in the
design, then use the SS. If you wish to hold the effects of other factors constant,
then use the F-ratio. In the tests for homogeneity of slopes, for example, the SS
tests are equivalent to tests of simple regression coefficients, and the F-ratio tests
are equivalent to tests of partial regression coefficients (table 7.3). The outcomes
for the SS and F-ratio randomizations will differ only in complex designs; the
two test statistics give identical results for one-way ANOVAs.

One additional concern with the use of the F-ratio as a test statistic is the
estimate of the error mean square. Estimates of the error mean squares from
randomizations tend to be much larger than the error mean squares from the
original parametric analysis. In our randomizations, the distribution of the error
mean squares did not include the error mean square estimate from the parametric
analysis (figure 7.3). As a result, the F-ratio is small when the estimate of the
error mean square is large. The broad distribution for the error mean square arises
from the fact that randomizations in complex designs alter not only the SS of
the treatment under consideration (e.g., SSsite) but also the other SS values (e.g.,
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SSSex and SSSitsxSJ. Recall that the effect of site, F = (49)SSSiJSSErm[ = (49)SSSite/
(SSTotal - SSSite- SSSex — SSsitexsex)- Randomization breaks up the correct assign-
ment of observations and thus tends to reduce all of the treatment SS values (i.e.,
SSSite, SSSex, and SSSitexsiJx). Since the total sum of squares remains constant, the
estimate of the error mean square increases with a decrease in the other sums of
squares. Restricted randomization has been suggested as a solution to this prob-
lem (Manly 1997), but it does not completely solve it. For example, under re-
stricted randomization for the effect of site, SSSite would vary because of the
randomization and SSSex would remain constant because of the restriction. The
interaction sums of squares, however, would still vary because the interaction of
site and sex would be altered with each randomization, and so the estimate of the
error mean square would remain large and variable.

It is not clear how the distribution of the error mean square would vary in
complex designs and for data in which the errors are not normally distributed.
Also, given that randomizations based on the F-ratio and SS are testing slightly
different hypotheses, we suggest that the error mean square estimates should al-
ways be examined; if these estimates are variable, plots of treatment versus error
mean squares should be made (e.g., figure 7.3). Choose the appropriate statistic
with care, basing your decision not only on the data, but also on the hypothesis
under consideration.

7.4 Related Issues

7.4.1 Is There Something Unusual About the
Chosen Subset of Data?

The results of our nonparametric analysis differ from the results of Beaupre
(1995), who used a nearly identical data set but drew a different subset of obser-
vations for his analysis. Is it possible that we or Beaupre chose an unusual set of
observations drawn from the complete set? One advantage of randomization
methods is that this possibility can be checked by randomly selecting different
subsets of observations.

We did the randomization in two ways. In the first case, 1000 sets of 54
different observations were selected from the whole data set of 88. Each observa-
tion was placed in the sex x site cell to which it rightfully belonged (e.g., an
observation for a male from Grapevine Hills was placed in the male-Grapevine
Hills cell). Thus we had 1000 sets of data in which a conventional ANCOVA
could be carried out, and we asked whether our original selection of data (figure
7.1) was unusual when compared to these 1000 sets. In the second case, 1000
sets of 54 different observations were again selected, but the 54 observations
were assigned to treatment cells at random. This assignment is equivalent to a
single randomization for each random selection. With these 1000 randomizations,
we are asking whether the distribution of the error mean squares seen in the
original randomization (figures 7.3 and 7.4) is unusual.

Both randomizations suggest that the selection of the original subset of data
and the patterns seen in the mean squares were not unusual. When observations
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Figure 7.5 Distributions of F-
ratios for the site effect and

for the error mean squares
from 1000 randomizations

in which observations were
selected from the complete

data set and assigned to the
correct cell. The observed
values for the F-ratio and

error mean square from the
parametric analysis (F = 4.63

and error MS = 18.19) are
very close to the averages of

the distributions.

were assigned to the correct treatment cell, the averages for the F-ratio and the er-
ror mean square were within 5% of the values observed in the original ANCOVA
(compare figure 7.5 with results in table 7.1). Moreover, the plot of the treatment
mean squares against the error mean squares gives an ellipsoid cloud of points
with the original subset of data near the center of the cloud (figure 7.6). All in
all, the original subset of the data that we used appears to be a good representation
of possible subsets. When observations were assigned to treatment cells ran-
domly, the patterns were remarkably similar to the patterns seen in the randomiza-
tion of the original subset of data (compare figures 7.4 and 7.7). It appears that
the variation of the treatment mean squares and the error mean squares is a reflec-
tion of structure found in the entire data set and not simply an artifact of our
subsampling. These two comparisons demonstrate the effectiveness of randomiza-
tion methods for data exploration and their advantages over a single analysis.

7.4.2 Randomization Methods and Statistical Inference

Randomization methods force a researcher to consider how a sample is drawn
from a population and to what extent the sampled population matches the popula-
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Figure 7.6 Treatment mean
squares for the site effect ver-
sus the error mean squares
from the 1000 randomizations
in which observations were
randomly selected from the
complete data set but assigned
to the correct cell. The num-
ber of observations per cell
matched the number of obser-
vations per cell in the original
unbalanced design.

tion that is under consideration. For example, our choice of randomizing the ob-
servations across all cells was based on the null hypothesis that all snakes were
from the same population. Different null hypotheses require different types of
randomization. Although we must be careful how we randomize the data, there
is a real advantage to using randomization methods because the test can be tai-
lored to very specific hypotheses if necessary.

In the last section, we showed how randomizations can be used to ask whether
the data at hand are representative of the population under consideration. There

Figure 7.7 Treatment mean
squares for the site effect ver-
sus the error mean squares
from the 1000 randomizations
in which observations were
doubly randomized. Observa-
tions were first randomly se-
lected from the complete data
set and then randomly reas-
signed to any cell. As in fig-
ure 7.6, the original unbal-
anced design was preserved.
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is always a concern about whether the sample is representative of the target popu-
lation. Often, researchers do not realize that the population sampled should match
the population under consideration (Mood and Graybill 1963). If a random sample
is drawn, then valid probability statements can be made about the sampled popu-
lation. However, Mood and Graybill (1993) note that strict probability statements
about a target population cannot be made unless the target population is the sam-
pled population. The fact that we had additional observations allowed us to ask
whether the subsample we used was in some way unusual compared to the com-
plete data set. Clearly, our subsample was not unusual, so we have some confi-
dence that the inferences based on our sample of rattlesnakes (i.e., snakes are
sexually dimorphic and differ between the sites) can be extended to all rattle-
snakes at Grapevine Hills and Boquillas.

Finally, we should note that some authors take an even more radical view of
statistical inferences. Edgington (1995) asserts that randomization methods can
be used to make statistical inferences about a collection of data without assuming
that the data are a random sample from a known population (also see Lehmann
1975, pp. 63-65, for a very cogent discussion of the problem). However, any
such inferences are specific to that collection of data alone. Inferences that extend
beyond the original data set must, per force, be logical arguments based on the
plausibility that other possible collections of data will be similar. Edgington
(1995) argues quite strongly that most data are not random samples from known
populations and thus randomization methods are far more appropriate than para-
metric tests. More often that not, ecological data are not truly a random sample
from a population that matches the target population, and thus, Edgington's criti-
cisms must be considered. In many situations, truly random samples are impossi-
ble, or unlikely, and ecologists are hard pressed to make inferences beyond the
data at hand (Dunham and Beaupre 1998). Regardless of Edgington's views, the
value of randomization approaches is that they force us to deal with these ques-
tions in an explicit manner. In conclusion, even the simple choice of how the
data should be randomized may not be that simple. The answer depends on our
assumptions about how observations should be randomized across different treat-
ment levels.

Acknowledgments We would like to thank Sam Scheiner and Jessica Gurevitch for their
help and encouragement during the development of this chapter. We also benefited from
the comments of Marti Anderson and thank her for her insights.

Appendix

Once the data file has been made, simply run PROC GLM and save the output
to a separate file. There are several tricks to doing this. The first is to use a BY
statement to ran the 1000 randomized iterations within a single PROC GLM
statement. The second is to suppress the output. The NOPRINT option in the
PROC GLM statement suppresses the description of the analyses, and the NOUNI
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Table Example of output from OUTSTAT option in PROC GLM: the first 15 lines of a
ran of 1000 iterations of PROC GLMa

DBS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C

1
1
1
1
1
2
2
2
2
2
3
3
3
3
3

_NAME_

SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL
SVL

_SOURCE_

ERROR
SEX
SITE

SEX*SITE
AGE

ERROR
SEX
SITE

SEX*SITE
AGE

ERROR
SEX
SITE

SEX*SITE
AGE

_TYPE_

ERROR
SS3
SS3
SS3
SS3

ERROR
SS3
SS3
SS3
SS3

ERROR
SS3
SS3
SS3
SS3

DF

49
1
1
1
1

49
1
1
1
1

49
1
1
1
1

SS

1338.58
20.56
15.62
24.71

2546.22
1333.06

0
0.05

55.34
2880.39
1139.44
133.76
71.08
45.53

2776.46

F

0
0.753
0.572
0.904

93.207
0
0

0.002
2.034

105.876
0

5.752
3.057
1.958

119.398

PROB

0
0.38983
0.45316
0.34628

0
0

0.9918
0.96655
0.16015

0
0

0.02032
0.08666
0.16805

0

"Each iteration cycle is identified in the column labeled "C". Variable C was created with the file of randomized
data. Refer to the Website for instructions on how to create a file of randomization data suitable for PROC GLM.

option in the MODEL statement suppresses the output of the analyses to the
OUTPUT window. If these options are not specified, the output window will
overflow if done on a personal computer. Third and most important, the OUT-
STAT option in the PROC GLM statement creates an output file that can be read
as a data file (appendix table).

The final step involves summarizing the data in the file created by the OUT-
STAT option. In our example, the file contains 5000 lines of observations (i.e.,
the number of sources of variation times the number of iterations), so it must be
simplified in some fashion. To do this, the observed F-ratios and SS values from
the original data ordering are used as cut-off points in a series of IF ... THEN
OUTPUT . . . statements. Values for F and SS from the randomizations that are
greater than the observed values are saved in temporary files. The files are sorted
by the sources of variation, and then the MEANS procedure is used to list the
number of iterations in which the randomized data gave values of F (or SS)
greater than or equal to the observed statistic for the original data. Since 1000
iterations were run, the probabilities are estimated as the number of iterations
with values equal to or greater than the observed outcome plus the observed
outcome divided by 1001. (For example, for the effect of site, the probability that
the observed F of 4.63 could be drawn by chance alone = (37 + 1)/1001 = 0.038;
see figure 7.4.
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Repeated-measures Analysis

Growth and Other
Time-dependent Measures

CARL N. VON ENDE

8.1 Repeated-measures Questions

There are many situations in which ecologists make repeated measurements on
the same individual, on the same experimental unit, or at the same sampling site.
Most commonly, some characteristic or factor is measured at several different
times. For example, we may be interested in how body size, plant size, survivor-
ship, clutch size, population size, nutrient level, or pollutant level change over
time for different populations, locations, or experimental treatments. A second
type of study involving repeated measurements exposes each individual organism
to different levels of some treatment and measures its response at each level. For
example, in plant ecophysiological studies, the same plants often are exposed to
a series of different CO2 levels, and their photosynthetic rate is measured at each
level (Potvin et al. 1990b). In both kinds of studies, there is an explicit interest
in the pattern or shape of the response over time or over the levels of an experi-
mental treatment.

The same questions could be addressed without repeated measurements on
individuals. Assume we want to study the effect of diet on growth in squirrels,
in particular, to examine whether the pattern of growth in squirrels fed acorns is
different from that of squirrels fed hickory nuts over a 3-month period. Assume
the squirrels were fed independently and were weighed on the starting date and
at 2-week intervals for a total of six measurements. With six dates and two feed-
ing regimes, there would be 12 diet x date combinations. The experiment could
be conducted in either of two ways. We could assign, for example, three squirrels
to each diet x date treatment combination. All squirrels would be started at the
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same time and fed regularly, but a different subset of squirrels would be weighed
on each date for each diet. Thus, each squirrel would be weighed only once, and
a total of 36 squirrels would be required for the experiment. Alternatively, six
squirrels could be assigned to each diet and all squirrels measured on each date,
so that each was measured six times. Only 12 squirrels would be required for this
second design, a repeated-measures design.

The first experiment could be analyzed as a two-factor ANOVA (diet, date)
because the squirrels within a diet treatment level at any one date would be in-
dependent of those at other dates, but obviously the experiment would require
many more animals than the repeated-measures design. It would be inappropriate,
however, to analyze the second design as a two-factor ANOVA because the same
animals would be measured repeatedly during the experiment, and the weights of
each squirrel on the different dates would not be independent of one another.
(Independence of replicates is a basic assumption of ANOVA.) Rather, a re-
peated-measures analysis, which takes into account the correlation among dates
because animals are reweighed, should be used for the analysis of the second
experiment. Historically, although many ecologists have collected data in a re-
peated-measures design, they frequently have analyzed them incorrectly with an
"ordinary" ANOVA, "plugged" the data into a repeated-measures analysis in a
statistical package without considering the underlying assumptions of some re-
peated-measures analyses, or thrown out intermediate data and analyzed only the
final measurements with ANOVA. As the level of ecologists' statistical knowl-
edge has increased, the first two alternatives have become unacceptable and the
last undesirable. Repeated-measures designs have been used in psychology and
agriculture for some time (Snedecor and Cochran 1989; Winer et al. 1991), but
they have received the explicit attention of ecologists only relatively recently
(Gurevitch and Chester 1986; Potvin et al. 1990b). In this chapter, I discuss vari-
ous parametric methods of analyzing repeated-measures data.

8.2 Statistical Issues

Repeated-measures designs can be analyzed by parametric methods using either
univariate or multivariate approaches. The univariate analyses are ANOVA de-
signs (randomized block, split-plot) that involve blocking (chapter 4). MANOVA
(chapter 6) is used for the multivariate analyses. Although the univariate approach
is computationally simpler and generally considered to be more powerful than
MANOVA, it also has more restrictive assumptions. However, Mead (1988)
discusses the philosophical problem of treating time as a "split-unit" factor in
which repeated measurements are taken on the same, not different, experimental
units. With the development of sophisticated statistical software over the last
decade, the use of MANOVA is no longer limited by computational complexity.
Both approaches can handle factorial designs. I briefly review the univariate and
the multivariate approaches, highlight important aspects, and then discuss several
examples in more detail.
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8.2.1 Univariate Repeated-measures Analyses

The basic univariate designs for repeated measures are randomized complete block
and split-plot designs. In the simplest repeated-measures designs, we are inter-
ested in whether different treatment levels applied to the same individuals have a
significant effect (the plant photosynthesis example mentioned previously). These
can be analyzed as a randomized block ANOVA (chapter 4). Each individual is
considered a different block within which the treatment is applied. This is analo-
gous to an agricultural experiment in which different fertilizers are applied to
adjacent areas within each of several blocks. In repeated-measures jargon, the
treatment is referred to as the repeated factor or by psychologists as the within-
subject factor. The purpose of blocking is to make the analysis more sensitive by
removing variance among blocks, or among subjects, from the error term. Condi-
tions are assumed to be more homogeneous within a block than between blocks,
so it is within a block, or to the same subject, that the treatment levels are applied.
When time is the within-subject factor, there are observations at different times
for each subject.

The split-plot design (chapter 4) is the natural extension of the randomized
block design. A typical agricultural example would be a situation in which we
are interested in the effect of irrigation on a fertilization treatment. Imagine sev-
eral fields or plots, half of which were irrigated and half of which were not. Each
whole plot would be divided into several subplots, and within each subplot one
of the fertilizer levels described in the randomized block example would be ap-
plied. In repeated-measures jargon, the irrigation/no irrigation treatment is called
the between-subjects (whole-plot) factor, and again, the fertilizer treatment the
within-subject (split-plot) factor. The previous squirrel example in which there
are repeated observations on the same squirrels fed different diets can be treated
as a split-plot design. Diet is the between-subjects factor, individual squirrels are
the whole-plots, or subjects, within each food type, and date is the within-subject
factor. Again, the ecological question is whether the squirrels on the two different
diets have the same patterns of weight change over time.

Although randomized block and split-plot designs differ from ordinary
ANOVA in that they assume some correlation among treatment levels within a
block, many ecologists are unaware that these designs make certain assumptions
about the variances and covariances of the levels of the within-subject factor and
the relationship among these variances and covariances. Specifically, these de-
signs assume what is called circularity among the levels of the within-subject
factor. We can construct a square variance-covariance matrix for the within-
subject factor in these designs. The variances for each level of the within-subject
factor will fall along the diagonal of the matrix, and the covariances between all
the different levels will occupy the remainder of the matrix. A circular variance-
covariance matrix has the property that the variance of the difference between
any two levels of the within-subject factor equals the same constant value (Winer
et al. 1991). This means that if we take two levels of the within-subject factor
and subtract the scores for one level from the scores for another level, the result-
ing scores must have the same variance for every pair of levels (Maxwell and
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Delaney 1990). The assumption of circularity is less restrictive than the assump-
tion of compound symmetry in which the variances are all assumed to be equal
to one another and the covariances are also assumed to be equal to one another.
For many years, it was thought compound symmetry was required for the validity
of the F-statistic in repeated-measures ANOVA; however, Huynh and Feldt (1970)
showed that circularity was sufficient. All matrices that have compound symme-
try are circular, but not all circular matrices have compound symmetry.

Another matrix characteristic, sphericity, is used in assessing the circularity of
a variance-covariance matrix. An orthogonal transformation creates transformed
variables that are independent (orthogonal) of each other. If these transformed
variates are then scaled such that the sum of squares of the coefficients for each
variable is 1, this constitutes a set of orthonormal variables (Stevens 1996). A
circular variance-covariance matrix that is transformed to its normalized orthogo-
nal form is spherical (Winer et al. 1991). The transformation can be accomplished
by first constructing a matrix with the coefficients of orthogonal contrasts as the
rows and then normalizing the coefficients (see Winer et al. 1991, p. 244, for an
example). This matrix is then used to transform the variance-covariance matrix
to an orthonormalized variance-covariance matrix. The circularity of a variance-
covariance matrix can be assessed by testing the sphericity of an orthonormalized
form of the matrix. If the transformed variance-covariance matrix is spherical,
the original variance-covariance matrix is circular. In a spherical variance-covar-
iance matrix, the variances of the transformed variables are equal and their covari-
ances are 0.

There are tests for sphericity, the most popular of which is Mauchly's
(Crowder and Hand 1990). The test statistic W can range from 0 to 1 (equation
in Winer et al., 1991). It uses the orthonormalized form of the variance-covari-
ance matrix. The closer W is to zero, the greater the departure from sphericity
(Winer et al. 1991). Huynh and Mandeville (1979) showed that W is sensitive to
violations of normality and that these tendencies are amplified with increased
sample sizes. O'Brien and Kaiser (1985), Stevens (1996), and Winer et al. (1991)
recommend not using W.

In the case of the plant experiment, if the sequence of the CO2 levels presented
to a plant were randomized and there were no carry-over effects on photosynthetic
rate from one CO2 concentration to the next, the assumption of circularity proba-
bly could be met. However, when time is the within-subject factor, usually data
collected on adjacent sampling dates are more highly correlated than are data
from separated sampling dates, and the circularity condition is not met. There are
numerous instances in the ecological literature in which ecologists have con-
ducted a repeated-measures ANOVA analysis with time as the within-subject
factor without mentioning the assumption of circularity (or sphericity). The conse-
quence of failing to meet the assumption is that F-statistics for the within-subject
factors (and their interactions) are inflated, so we are more likely to conclude that
effects are statistically significant when they are not. When this assumption can-
not be met, we have two alternatives: (1) adjust the degrees of freedom of the F-
test so that it is more conservative or (2) use the multivariate approach to analyze
the data. These are discussed subsequently.
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An additional assumption is involved when using the split-plot design because
of between-subjects factors. The variance-covariance matrices of the differences
among the levels of the within-subject factor should be homogeneous (equal) for
all levels of the between-subjects factor. That is, if we had three levels of a between-
subjects factor and calculated the variance-covariance matrix of differences for
the within-subject factor for each of those levels, those matrices should be identi-
cal because the test of the significance of the within-subject factor (and its interac-
tion with the between-subjects factor) is based on the pooled variance-covariance
matrix. The matrices should be equal to be pooled. This pooled variance-covari-
ance matrix of differences must meet the criterion of circularity. The significance
tests of the within-subject factor, and its interaction with the between-subjects
factor, are sensitive to the circularity assumption as described previously for the
simple within-subject design. They are robust to the second assumption of homo-
geneity of variance-covariance matrices as long as sample sizes are equal. How-
ever, as sample sizes become less equal, the test becomes less robust (Maxwell
and Delaney 1990).

When within-subject or between-subjects effects are found to be significant,
follow-up tests often are desirable. O'Brien and Kaiser (1985), Maxwell and De-
laney (1990), and Stevens (1996) discuss post hoc tests for repeated-measures
designs. It is important to realize that planned (a priori) contrasts involving the
specific error term for each contrast, rather than an overall error term, are not
subject to the circularity assumption. See O'Brien and Kaiser (1985) for an ex-
ample.

Although I have described only the simple experimental designs with a single
within-subject and between-subjects factor, repeated-measures designs can be ex-
panded to include additional within- and between-subjects factors. See Maxwell
and Delaney (1990), Winer et al. (1991), and Stevens (1996), and section 8.4 for
examples.

8.2.2 Multivariate Repeated-measures Analyses

Repeated-measures data also can be analyzed by using MANOVA (chapter 6). In
this approach, the response variable for each level of the within-subject factor is
treated as a different dependent variable. In terms of the previous plant example,
the photosynthetic rate at each of the CO2 concentrations would be considered a
different response variable. So, if there were five CO2 levels, the response of each
plant would be characterized in terms of five photosynthetic rates, one for each
of the CO2 concentrations. MANOVA is designed to simultaneously analyze the
response of several correlated dependent variables. As is usually the case with
repeated-measures data, MANOVA does not require the dependent variables to be
equally correlated as repeated-measures ANOVA does. It assumes what is called
an "unstructured" variance-covariance matrix, which means there is no particular
pattern required of the matrix.

To analyze the squirrel example as a MANOVA, the dependent variables
would be the weights on each of the six dates and the treatment would be diet.
The analysis tests whether the mean response vectors for the two diets are differ-
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ent (chapter 6). Although the problem of circularity inherent in repeated-measures
ANOVA is avoided by doing MANOVA, MANOVA also has its limitations. In
the repeated-measures design for the squirrel example, I suggested the analysis
could be done with six squirrels (ri) for each diet. However, the number of depen-
dent variables (k) that can be analyzed in a MANOVA depends on the total
number of samples (subjects, AO and the number of between-subjects treatment
levels (groups, M) (Potvin et al. 1990b). The constraint is that N — M > k. Because
the squirrel example would have weights on six dates, six squirrels, and two
treatment levels, this condition would be satisfied (12 - 2 = 10 > k = 6). Although
N=12 would satisfy the condition, the test would have a low power. It would be
best to increase the sample size even more or to decrease the number of dates on
which the squirrels were weighed. Power increases as the ratio n:k increases (Pot-
vin et al. 1990b). This limitation on the number of levels of within-subject factors
and associated problems of low power are inherent in using MANOVA (chapter
6). Stevens (1996) has a detailed discussion of power in MANOVA and mentions
the need to use a larger a if low power is suspected. Maxwell and Delaney (1990)
discuss the power of MANOVA in repeated-measures designs and provide tables
of estimated sample sizes for different levels of power for one within-subject
design. They recommend doing MANOVA only when N — M > k + 9 (Maxwell
and Delaney 1990, p. 676). These restrictions highlight the need to consider the
amount of replication and the number of levels of within-subject factors in the
initial stages of experimental design rather than after an experiment has been
completed. Potvin et al. (1990b) recommend using the minimum number of levels
of the within-subject factor required to characterize a response adequately and to
increase the amount of replication to yield a more powerful analysis.

The MANOVA analysis combines two sources of differences in the within-
subject data when comparing the mean response curves of the levels of the be-
tween-subjects treatment: it takes into account differences in the shapes of the
response curves, as well as differences in the levels of the response curves (Harris
1985). Consider the squirrel example, but for only three dates (figure 8.1). The
growth curves could be parallel (figure 8.1 A), indicating the squirrels had similar
patterns of growth on the two diets (shape), or they could diverge (figure 8. IB),
indicating different patterns of growth. If they were parallel and one response
curve was consistently higher than the other (figure 8.1 A), one group of squirrels
would be consistently gaining more weight as time progressed (levels). If the
curves were parallel and nearly overlapping there would be no effect of diet.
Finally, if the curves were parallel, a significant slope (i.e., slope > 0) would
indicate there was a change in weight over time (figure 8.1 A), whereas horizontal
response curves would indicate no effect of time on weight.

Profile analysis, a methodology that enables us to test the significance of these
three aspects of the multivariate response, is the approach most commonly used to
analyze repeated-measures data with MANOVA (Harris 1985; O'Brien and Kaiser
1985). It uses both univariate (ANOVA) and multivariate tests (MANOVA). The
three aspects are examined as tests of specific hypotheses. A comparison of the
shapes of response curves is a test of the parallelism hypothesis; a comparison of
the levels of the curves is a test of the levels hypothesis. Determining whether
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Figure 8.1 Profile analysis: hy-
pothetical weight change over 6
weeks for squirrels fed hickory
nuts (dashed lines) and acorns
(solid lines). (A) Curves show
parallelism and levels effects.

(B) Curves show absence of par-
allelism, that is, diet x time

interaction.

the response curves have an average slope different from zero is a test of the
flatness hypothesis. As implied previously, the parallelism hypothesis should be
tested first because the levels hypothesis becomes moot if the curves are not
parallel. This is similar to examining interactions before main effects in the analy-
sis of factorial designs (Keppel 1991). The plots in figure 8.1 are analogous to
interaction plots for analysis of factorial designs (Keppel 1991). O'Brien and
Kaiser (1985) give an extensive primer on using profile analysis in repeated-
measures analyses. Their approach will be followed in the examples that follow.
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Profile analysis also can be applied to raultivariate analyses other than repeated-
measures (Morrison 1990).

Often an ecologist is interested in measuring more than one response variable
for a subject or experimental unit over time. For example, plant height and leaf
area could respond in some correlated manner that would be of interest in studies
of plant competition. In community ecology studies, an experimental unit (pen,
bag, mesocosm) often has a array of species that is subjected to some treatment.
Analysis by MANOVA is appropriate because of the potential correlation of the
responses of the species co-occurring in the pens. These kinds of examples in
which there is one within-subject factor, but for which more than one response
variable is measured for each subject (experimental unit), are referred to as doubly
multivariate designs and can have any number of between-subjects factors, as in
an ordinary MANOVA. A doubly multivariate example is given in the SAS man-
ual (SAS Institute Inc. 1989b, chapter 24, example 9) and in the Command Refer-
ence section of the SPSS Advanced Statistics manual (Norusis 1990).

8.3 Example: One Between-subjects and
One Within-subject Factor

The first example is a split-plot design (table 8.1). Assume that a plant species
was grown under two nutrient regimes (low, high) in pots in a greenhouse, and
the number of leaves per plant was monitored for five weeks. The example will
be analyzed first by repeated-measures ANOVA (8.3.1) then by MANOVA and
profile analysis (8.3.2).

8.3.1 Repeated-measures ANOVA

Recall that, in a split-plot design applied to repeated-measures data, subjects are
plots and levels of the within-subject factor are subplots. Each subject is assigned

Table 8.1 Growth of a hypothetical plant (number of leaves per plant) over
5 weeks at low (L) and high (H) nutrient levels

Plant

1
2
3
4
5
6
7
8
9

10

Nutrient
level

L
L
L
L
L
H
H
H
H
H

Week 1

4
3
6
5
5
4
3
6
5
5

Week 2

5
4
7
7
6
6
5
8
7
8

Week 3

6
6
9
8
7
9
7

11
9
9

Week 4

8
6

10
10
8
9

10
10
10
11

WeekS

10
9

12
12
10
11
12
14
12
11
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to one of the between-subjects treatment levels. In terms of table 8.1, the within-
subject factor is Time, and the between-subjects factor is nutrient level. The
model for the data in table 8.1 is

where v, is the effect of the nutrient treatment on plant growth, y^) is the subject
effect nested within the respective nutrient levels, T,- is the time effect, vi,y is the
nutrient x time interaction, XI/T^J is the subject x time interaction, and e^jtj is the
error term. In addition, in is a dummy subscript included to indicate that the
experimental error is nested within the individual observation. The subject x time
interaction is included in the model statement to emphasize that the potential
exists for this interaction to be present; however, because there is no replication
of subject X time cells, the interaction cannot be estimated and becomes part of
the error term for testing the within-subject factor and its interaction with the
between-subjects factor (Winer et al. 1991). The expected means squares for this
model assuming nutrient and time are fixed factors, and subjects (plants) are
random, as shown in table 8.2.

When repeated-measures designs (i.e., not doubly multivariate) are analyzed
in SAS (SAS Institute Inc. 1989a,b), both the repeated-measures ANOVA and
profile analysis can be done in one analysis (see the appendix). The steps are
(1) select SAS procedure ANOVA for balanced designs or procedure GLM for
unbalanced designs, (2) include the CLASS statement to list the between-subjects
factor(s), (3) write the MODEL statement in a MANOVA form, with the depen-
dent variables describing the levels of the within-subject factor on the left side of
the equation and the between-subjects treatment on the right, and (4) use the
REPEATED statement to list the "label," and the number of levels, of the within-
subject factor. The results of this analysis of the data in table 8.1 are presented
in table 8.3.

Notice that the sources of variation are divided into between-subjects (nutrient)
and within-subject effects. The latter includes the within-subject main effect (time)

Table 8.2 Expected mean squares for repeated-measures ANOVA
(one between- and one within-subject factor)"

Source of variation

Between-subjects
Nutrient
Subjects within groups

Within-subject

Time

Nutrient x time
Subjects x time within groups

df

np — 1
p-l

p(n-\)
np(q - 1)

9-1
(p - l)(q - 1)

p(n - l)(q - 1)

E(MS)

= variance due to nutrients
variance due to subjects
variance due to time
error variance
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Table 8.3 Repeated-measures ANOVA for a split-plot design8

A. Between-subjects
Source

Nutrient
Error

B. Within-subject
Source

Time
Nutrient x time
Error(Time)

df MS F

1 16.82 2.60
8 6.46

df MS F

4 66.85 158.22
4 1.27 3.01

32 0.42
Greenhouse-Geisser e = 0.5882
Huynh-Feldt e = 0.9531

P>F

0.1453

P>F

0.0001
0.0326

Adj.,

G-G

0.0001
0.0666

P > F

H-F

0.0001
0.0353

"P > F is unadjusted probability, G-G and H-F are Greenhouse-Geisser and Huynh-Feldt adjusted probabilities
respectively based on the respective epsilons (see text for details).

and its interaction with the between-subjects factor (nutrient x time). We usually
use a repeated-measures design because we are interested in the effect of the
between-subjects treatment over time, that is, the nutrient x time interaction.
Hence, it should be the first treatment examined.

The probabilities for the respective F statistics (P > F) in column six (table
8.3) are calculated assuming the data meet the circularity assumption. Based on
these probabilities, there is a statistically significant nutrient x time interaction
(P < 0.0326) that indicates plants in the fertilized conditions added leaves at a
faster rate than the unfertilized plants. The statistically significant time effect
(P < 0.0001) indicates the average number of leaves increased over time. The
nutrient main effect was not statistically significant based on this F-test, which is
not unusual since the interaction was statistically significant.

The F-statistics for within-subject factors (and their interactions) are inflated
when the sphericity condition is not met. Several estimators (epsilons, e) have
been developed for decreasing the degrees of freedom of the /''-statistic according
to the severity of the violation of the sphericity assumption. The degrees of free-
dom for the critical F-statistic are multiplied by the 8. Box (1954) originally pro-
posed the equation for e for a within-subject design (no between-subjects factors)
based on the "population" variance-covariance matrix. Geisser and Greenhouse
(1958) extended this to the split-plot design. However, since e is not known
(because the "population" variance-covariance matrix is unknown), e has to be
estimated from the sample variance-covariance matrices. This introduces the
added complication of not knowing how inaccuracies in the sampling data will
affect the estimate of e, and hence how this will influence the adjustment of the
F-statistic degrees of freedom. For that reason, Greenhouse and Geisser (1959)
suggested the very conservative approach of replacing e with the smallest value
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it could take, !/(&- 1), where k is the number of levels of the within-subject
factor.

Collier et al. (1967) and others have examined the bias introduced by using the
sample variance-covariance matrix for estimating e (Crowder and Hand 1990).
The estimator based on sample data is referred to as e. For e greater than 0.75,
and n (sample size) less than 2k, e tends to overcorrect the degrees of freedom
and produce a conservative test (Crowder and Hand 1990; Winer et al. 1991).
Huynh and Feldt (1976) proposed a less biased estimate of £ based oa sample
data (e) (described in Winer et al. 1991), although it can be overly liberal in some
cases (Type I error). SAS provides estimates of both Box's e (e) and Huynh-
Feldt's adjustment to e (e), as well as the respective probabilities for the adjusted
F-statistics of the within-subject factors, as part of its repeated-measures ANOVA
output (table 8.3). They refer to Box's £ as the Greenhouse-Geisser £ (as I will).
Maxwell and Delaney (1990) call it the Geisser-Greenhouse £. Its value ranges
from 0 to 1, whereas 6 can be greater than 1. When the latter is >1, 1 is used as
the value. The smaller the value of £ and §, the greater the departure from spheric-
ity. As £ > £, generally £ is the more conservative adjustment. They converge as
sample size increases (Maxwell and Delaney 1990).

The epsilons for the analysis of the data in table 8.1 are at the bottom of table
8.3. One can see that the adjustment is greater for £ than for E. The probabilities
for the modified F-statistics are in the two right-hand columns of the within-
subject treatment combinations. When the adjustments are made for the /''-statis-
tics, the nutrient x time interaction is no longer statistically significant according
to the Greenhouse-Geisser adjustment, whereas it is significant for the Huynh-
Feldt adjustment. The probabilities for the time effect are unchanged. There is
not universal agreement among statisticians about the use of these adjustment
procedures, especially compared with the alternative of profile analysis. (See sec-
tion 8.8.2 for a comparison of alternative recommendations.)

8.3.2 Profile Analysis

The MANOVA approach to the analysis of repeated-measures data can consist
of simply estimating the multivariate test statistic for data from all levels of the
within-subject factor considered simultaneously. However, profile analysis is more
informative because it analyzes the pattern of response of the within-subject fac-
tor. Profile analysis addresses hypotheses about parallelism, levels, and flatness
by transforming within-subject repeated-measures data to a set of contrasts or
differences, and then doing univariate (t-test, ANOVA) or multivariate (Hotel-
ling's r2, MANOVA) analyses on the contrasts. Potvin et al. (1990b) termed this
approach MANOVAR. I will present the details of profile analysis of the nutrient
experiment (table 8.1) first using data from the first 2 weeks and then from all
five dates.

For comparative purposes, I will estimate the overall multivariate statistic for
the first 2 weeks of data and then analyze it by profile analysis. The multivariate
comparison of the number of leaves in the low and high nutrient levels for the
first 2 weeks (two dependent variables) using Hotelling's T2 gives F= 5.69, df =
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Figure 8.2 Growth of hypothetical plants grown
under high-nutrient (dashed lines) and low-
nutrient (solid lines) conditions for 5 weeks.

2,7, and P = 0.034. This shows that the number of leaves is different between low
and high nutrient levels when weeks 1 and 2 are considered simultaneously.

To analyze the first 2 weeks of data by profile analysis, first the "parallelism"
hypothesis will be addressed by testing whether the shapes or slopes of the re-
sponse curves are the same for both groups (figure 8.2). In terms of repeated-
measures ANOVA, this is a test of whether there is a significant nutrient x time
interaction. Comparing the shapes of the response curves is equivalent to asking
whether the mean change in number of leaves between weeks 1 and 2 is the same
for both nutrient levels; in other words, how do the mean differences (d) compare
for the two groups (table 8.4)?

The hypothesis tested is H0: (|iNi — tiN2) = (|%i -1%2)> where the first (z'th) sub-
script refers to low and high nutrient and the second (/th) to week 1 and week 2.

Table 8.4 Difference in number of leaves per plant for the example
in table 8.1

Difference between adjacent weeks

Plant

1
2
3
4
5

Mean

6
7
8
9

10
Mean

Nutrient level

L
L
L
L
L

H
H
H
H
H

2-1

1
1
1
2
1

1.2

1
9£,

2
2
3

2.0

3-2

1
2
2
1
1

1.4

3
2
3
2
1

2.2

4-3

2
0
1
2
1

1.2

0
3

-1
1
2

1.0

5-4

2
3
2
2
2

2.2

2
2
4
2
0

2.0
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For weeks 1 and 2, d is 1.2 for the low-nutrient treatment level and 2.0 for the
high-nutrient treatment level. A f-test shows that the two groups are significantly
different 0=3.54, df=8, P = 0.008) in terms of the means changes. This indi-
cates that there is a significant nutrient x time interaction and that the number of
leaves increased faster in the high-nutrient treatment level.

Since the nutrient x time interaction was found to be significant, the tests of
the levels and flatness hypotheses are less meaningful, but both will be explained
for demonstration purposes. The test of the levels hypothesis is a test of the
nutrient main effect. The week 1 and week 2 values are averaged for each subject
[(week 1 + week 2)/2], and then the means compared between groups with a t-
test. One is asking whether the levels of the response curves are different, that is,
whether, when averaged over weeks 1 and 2, the high-nutrient plants had more
leaves than the low-nutrient plants. In this example, there was no uniform effect
of the nutrient treatment in the first 2 weeks 0 = 0.66, df=8, P = 0.53), which
was consistent with the significant nutrient x time interaction.

Finally, for a test of the flatness hypothesis, or the time effect, the contrast
variable (differences between weeks 2 and 1) is used again, but it is averaged
over nutrient levels. The test is whether the grand mean of the contrast variable
is different from 0, which is essentially a paired Mest (Zar 1996, chapter 9), but
without regard to the nutrient treatment grouping. In terms of the original re-
sponse variables, it is a test of whether there is an increase in the number of
leaves between weeks 1 and 2 (slope > 0) when all plants are averaged together
for each week. In our example, time was statistically significant between weeks
1 and 2 (t = 7.97, df = 9, P < 0.0001), so there was an overall slope different from
0. In summary, in the multivariate analysis of a simple design with one between-
subjects factor (nutrient) and a within-subject factor with two levels (weeks 1, 2),
we can use (1) Hotelling's T to test for an overall difference between groups or
(2) profile analysis (three separate univariate tests) to separately examine the
parallelism, levels, and flatness hypotheses.

Next, I will analyze the data in table 8.1 for all five dates using profile analy-
sis, because this is the more informative approach and is used by SAS (procedure
GLM and procedure ANOVA). Profile analysis of the time effect (flatness) and
the nutrient x time interaction (parallelism) is based on differences (contrasts) of
adjacent weeks. There are four differences because there are data for 5 weeks.
Because these differences can be treated as four dependent variables, MANOVA
is appropriate for the analysis. SAS refers to these differences (contrasts) as a
transformation of the original within-subject data. This is somewhat different
from the kinds of transformation most ecologists are familiar with in statistical
analyses, for example, log, square root, and arcsine. In the difference transforma-
tion, the values of two levels of the within-subject factor are transformed to one.
For a test of the parallelism hypothesis, the set of differences used is week 2 -
week 1, week 3 - week 2, week 4 - week 3, and week 5 - week 4 (table 8.3).
The desired transformation is identified for the within-subject factor in the
REPEATED command (appendix). PROFILE is used for this analysis because it
generates the contrast variables based on differences of adjacent levels of the
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within-subject factor. Other transformations available in SAS are described subse-
quently.

Table 8.5A shows the results of the MANOVA analysis of the differences.
The values of four different multivariate test statistics are shown in the second
column and their equivalent /''-statistics in the third. The probabilities for the F-
statistics are in the last column. The probabilities (P = 0.025) indicate that the
nutrient x time interaction is statistically significant. Therefore, the slopes of the
growth curves in the high- and low-nutrient levels are different according to pro-
file analysis, which agrees with the repeated-measures ANOVA analysis (table
8.3). (A discussion of the different multivariate test statistics is presented in chap-
ter 6.)

The test for the flatness hypothesis (time effect) tests whether there is a signifi-
cant increase in the number of leaves over time when averaged over both nutrient
levels. This is a test of whether the grand mean (averaged over nutrient levels)
of the set of the four time differences is zero. Again, the statistically significant
F-values in the MANOVA analysis indicate that there is a increase in the number
of leaves over time (P < 0.0001) (table 8.5B).

The test for the between-subjects effect(s) in profile analysis (e.g., nutrient
levels) is the same as in repeated-measures ANOVA: both are based on a compar-
ison of the mean within-subject response across the levels of the between-subjects
factor (time) (SAS Institute Inc. 1989b; Potvin et al. 1990b).

If we are interested in identifying the particular time intervals in which the
treatment effects are different, individual ANOVAs (/''-tests) can be done on each
of the contrasts. For example, we can test the significance of the nutrient X time
interaction or the time effect for each contrast in table 8.4. The results of such an
analysis are shown in table 8.6. Mean refers to a test of the flatness hypothesis
of whether there was a significant time effect, and nutrient refers to the test
of the parallelism hypothesis of whether there was a significant nutrient x time

Table 8.5 MANOVA of the nutrient x time interaction and the time effect of the data
in table 8.1"

Statistic

A. Nutrient x time
Wilks' lambda
Pillai's trace
Hotelling-Lawley trace
Roy's greatest root

B. Time
Wilks' lambda
Pillai's trace
Hotelling-Lawley trace
Roy's greatest root

Value

0.14477212
0.85522788
5.90740741
5.90740741

0.00848656
0.99151344

116.83333333
116.83333333

F

7.3843
7.3843
7.3843
7.3843

146.0417
146.0417
146.0417
146.0417

Num. df

4
4
4
4

4
4
4
4

Den. df

5
5
5
5

5
5
5
5

P>F

0.0250
0.0250
0.0250
0.0250

0.0001
0.0001
0.0001
0.0001

aNum. df and Den. df refer to numerator and denominator degrees of freedom, respectively.
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Table 8.6 ANOVAs on each of the contrasts of within-subject
factor, time, for the data in table 8.1

Source

Contrast variable:
Mean
Nutrient
Error
Contrast variable:
Mean
Nutrient
Error

Contrast variable:
Mean
Nutrient
Error

Contrast variable:
Mean
Nutrient
Error

df

week 2 — week 1
1
1
8

week 3 - week 2
1
1
8

week 4 - week 3
1
1
8

week 5 — week 4
1
1
8

MS

28.9
2.5
0.2

32.4
1.6
0.5

12.1
0.1
1.6

44.1
0.1
1.1

F

144.50
12.50

64.80
3.20

7.56
0.06

40.09
0.09

P>F

0.0001
0.0077

0.0001
0.1114

0.0251
0.8089

0.0002
0.7707

interaction in the respective ANOVAs for each contrast variable. Notice that al-
though the multivariate F-statistics (MANOVA) for the nutrient x time interaction
as well as the time effect were both statistically significant when all four contrasts
were analyzed together (table 8.6), the latter was only significant for week 2 -
week 1 in the individual ANOVAs. This indicates that a significant difference in
the change in the number of leaves due to the nutrient treatment occurred only
between week 1 and week 2, which can be seen when the means for the contrasts
are compared (table 8.3). The differences between the mean differences for the
low- and high-nutrient levels for the other dates were not sufficiently large them-
selves, but they contributed to an overall difference when all were analyzed si-
multaneously.

Because repeated ANOVAs are done when individual contrasts are analyzed,
the experimentwise error rate should be adjusted according to the number of tests
run. To maintain an overall a of 0.05, a Bonferroni adjustment of a = 0.05/4 =
0.0125 for each contrast could be used for table 8.6. If the investigator is inter-
ested in testing only a single contrast, then a would not be adjusted. Although a
statistical package such as SAS automatically does the MANOVA and ANOVAs
for all contrasts, we could examine the ANOVA only for the contrast of interest.

It should be emphasized that different transformations (contrasts) can be used
for the within-subject factor(s), and this will not affect the outcome of the
MANOVA (multivariate F) because of the invariance property of the multivariate
test statistic (Morrison 1990). The particular transformation used depends on the
patterns we are looking for in the within-subject effect(s). SAS gives five choices
of the transformation: Profile, Contrast, Helmert, Means, and Polynomial. As
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described previously, I used the Profile transformation in which differences were
constructed from adjacent levels of the time factor. The Contrast transformation
is the default condition, one level of the within-subject factor is considered the
control and all other levels are compared to it. Potvin et al. (1990b) used the
Helmert transformation: it compares the level of a within-subject factor to
the mean of subsequent levels. The Mean transformation compares each level of
the within-subject factor to the mean of all the other levels of the within-subject
factor.

The Polynomial transformation is particularly useful if we are interested in
examining trends in the within-subject data to see whether they conform to a
particular form. For example, does the number of leaves per plant change in a
linear, quadratic, or cubic manner over time? This method relies on a set of
polynomials of increasing order that are constructed as a set of independent (or-
thogonal) contrasts and often is referred to as trend analysis (Winer et al. 1991).
Orthogonal polynomials enable us to ask whether there is a significant linear
(first-order), quadratic (second-order), or cubic (third-order) trend in the data
(Gurevitch and Chester 1986; Hand and Taylor 1987). If k is the number of
levels of the within-subject factor, k — I polynomials can be constructed, although
usually we would be interested in the lower order (linear or quadratic) trends
only. In the analysis of the within-subject factor(s), MANOVA considers simulta-
neously all orders of the polynomials that can be obtained from the data. As with
the profile transformation, we can examine particular polynomials by individual
ANOVAs. In examining orthogonal polynomials, normally we proceed from
higher to lower order polynomials in testing for significance, and we stop at the
order of polynomial at which significance is found. Because higher order polyno-
mials would seem inappropriate for most ecological data and examining more
tests increases our chance of committing a Type I error, it would be appropriate
in many cases to begin with the cubic or quadratic analysis for testing for signifi-
cance.

The plant growth data from table 8.1 were analyzed using orthogonal polyno-
mials (table 8.7). Only the individual /-"-tests are shown because the multivariate
F-values are the same as in table 8.5. Only the quadratic and linear trends were

Table 8.7 Individual ANOVAs for first- and second-order
orthogonal polynomials for the data in table 8.1

Source

Contrast variable:
Mean
Nutrient
Error

Contrast variable:
Mean
Nutrient
Error

df

first order
1
1
8

second order
1
1
8

MS

265.690
2.890
0.615

0.007
2.064
0.232

F

432.02
4.70

0.03
8.89

P>F

0.0001
0.0620

0.8651
0.0175
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examined in this example, although SAS also gives the cubic trend. Also, a was
set at 0.025 because there were two separate analyses (0.05/2). There was a signif-
icant quadratic trend for the nutrient X time interaction (P = 0.0175). Remember
that nutrient in the SAS output indicates the nutrient x time interaction. So the
low- and high-nutrient treatment levels differed significantly in their quadratic
responses of number of leaves over time. Time (mean) did not have a significant
quadratic response, but the linear trend for time was statistically significant (P <
0.0001), indicating there was an overall linear increase in the number of leaves
during the experiment.

8.4 Multiple Within-subject Factors

Situations often arise in ecological experiments and data collection in which re-
peated observations on the same individual can be classified factorially or the
same individual is observed under more than one set of conditions. In terms of
the plant growth experiment (table 8.1), it may be of interest to run the experiment
for a second year to see whether the high-nutrient plants also produced more
leaves than the low-nutrient plants in the second year (table 8.8). This would be
a design with two within-subject factors, weeks and years, and one between-
subjects factor, nutrient.

The within-subject factors are treated as follows: (1) averaging over years, we
can test whether there is a significant week effect; (2) averaging over weeks, we
can test whether there is a significant year effect; (3) using the appropriate con-
trasts, we can test whether there is a significant week x year interaction, or, in
other words, averaging over the nutrient treatment, did the plants grow differently
between years?

Table 8.8 Growth of plants in table 8.1 for years 1 and 2"

Plant

1
2
3
4
5
6
7
8
9

10

Nutrient

level

L
L
L
L
L
H
H
H
H
H

1

4
3
6
5
5
4
3
6
5
5

2

5
4
7
7
6
6
5
8
7
8

Year 1

3

6
6
9
8
7
9
7

11
9
9

4

8
6

10
10
8
9

10
10
10
11

5

10
9

12
12
10
11
12
14
12
11

1

4
3
3
3
5
4
5
4
3
5

2

4
4
4
4
5
4
5
4
4
5

Fear 2

3

5
6
6
6
6
5
6
6
5
7

4

7
8
7
8
7
7
8
7
7
9

5

9
10
9

10
10
10
11
10
9

11

aNumber of leaves per plant over 5 weeks at low- (L) and high-nutrient (H) levels for years 1 and 2. Plants add
leaves for a 5- to 6-week period each spring, with an initial flush of leaves within the first week of emergence.
Leaves die back during the winter.
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The between-subjects factor (nutrient) is cross-classified with each of these,
so we must examine the interactions of each of the within-subject main effects
(week, year), and their interaction (week x year), with the nutrient treatment. In
fact, it is the three-factor interaction (nutrient x year x time) that we should exam-
ine first. It should be emphasized that designs with greater than one within-subject
factor can be analyzed both by repeated-measures ANOVA (Winer et al. 1991)
and profile analysis (MANOVA) (O'Brien and Kaiser 1985).

Although the analysis at first may seem complicated, it really is not if we keep
track of between- and within-subject factors (table 8.9). In the MODEL statement
in the SAS program, each of the weeks is treated as a different dependent variable
for a total of 10 when data for both years are combined (appendix, part B). Also,
the number of levels of each of the within-subject factors is listed in the
REPEATED command. I have included only the results of the profile analysis
(MANOVA) in the results of the analysis (table 8.9) and have condensed the SAS
output. Under the within-subject effect, the three-way interaction (nutrient x week
x year) was statistically significant. The interpretation of that significance is that
the high-nutrient plants produced more leaves than low-nutrient plants during
year 1, but not during year 2, so the treatment produced different effects in differ-
ent years. As in the analysis of the first year's data, the nutrient main effect
was not statistically significant. The ANOVA or orthogonal polynomials analyses
would result in the same conclusions. See O'Brien and Kaiser (1985) for a de-
tailed example with two between-subjects factors and two within-subject factors.

8.5 Other Ecological Examples of Repeated Measures

I have concentrated on repeated-measures analyses in which time is the repeated
(within-subject) factor. Other repeated-measures situations arise in ecological

Table 8.9 Results of a profile analysis (MANOVA) of the data
in table 8.8"

A. Between-subjects
Source
Nutrient (N)
Error

B. Within-subject
Source
Year (Y)
Week (W)
Year x week
Nutrient x year
Nutrient x week
N x Y x W

MS
13.69
3.58

F
14.47

135.14
14.34
0.97
0.52
5.66

df
1
8

Num. df
1
4
4
1
4
4

F
3.83

Den. df
8
5
5
8
5
5

P>F
0.0861

P>F
0.0052
0.0001
0.0060
0.3530
0.7301
0.0425

"The /-"-statistics for all four MANOVA test criteria were identical for all treatment
combinations. Num. df and Den. df are numerator and denominator degrees of free-
dom, respectively.
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studies in which individual organisms or experimental units are exposed to sev-
eral different conditions and some response is measured. In the example used by
Potvin et al. (1990b), the photosynthetic rate of the same plants exposed to differ-
ent concentrations of CO2 was compared (within-subject factor). There were two
between-subjects factors: plants were from two different populations and were
either chilled or kept at the ambient temperature before measurement of photosyn-
thetic rates.

Investigators of plant-herbivorous insect interactions often are interested in
the fitness of different populations of an insect species on different plant species
or on different plant populations. A typical protocol is to raise siblings from the
same egg masses (subjects) from different populations (between-subjects factor)
on leaves of different plant species or plant populations (within-subject factor).
Horton et al. (1991) give a detailed analysis of the increase in power when
such data are analyzed as a repeated-measures design. The egg mass is considered
the block or subject, and there are replicate egg masses from each insect popula-
tion.

In some frog species, males and females are different colors, and many also
change color on different colored backgrounds. King and King (1991) examined
differences in color between male and female wood frogs (Rana sylvatica) (be-
tween-subjects) in which the same individuals were exposed to different colored
backgrounds (within-subject). Because color was assessed in terms of three re-
sponse variables, this was a doubly multivariate design.

8.6 Alternatives to Repeated-measures ANOVA
and Profile Analysis

The power of MANOVA decreases as the number of dependent variables in-
creases and the sample size decreases. One reason for the low power of
MANOVA is the lack of restrictions on the structure of the variance-covariance
matrix (Crowder and Hand 1990). Repeated-measures ANOVA may have more
power in some circumstances, but also has much more restrictive conditions for
the variance-covariance matrix (Khattree and Naik 1999). One alternative has
been to fit curves using the general linear model and then to compare parameters
of these curves by multivariate procedures, what statisticians regard as the analy-
sis of growth curves (Morrison 1990; Khattree and Naik 1999). An obvious ad-
vantage of fitting data to a curve it that it reduces drastically the number of
parameters to be compared for within-subject effects. Also, neither repeated mea-
sures ANOVA nor profile analysis can handle missing data for subjects, whereas
curve fitting can.

Another alternative, which has been an active area of statistical research, is
to take the structure of the variance-covariance matrices into account in the anal-
ysis (Crowder and Hand 1990; Hand and Crowder 1996). These regression-based
methods often are referred to as random effects models, random coefficient mod-
els, or the general linear mixed model (Littell et al. 1996). The advantage of the
approach is that it makes available a variety of covariance matrices whose struc-
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ture is intermediate between the unrestrictive multivariate approach (unstructured)
and the restrictive univariate approach (compound symmetry). An additional ad-
vantage of the mixed model approach is that it can accommodate subjects with
missing data (assumed randomly missing), as well as repeated observations that
are unequally spaced (Littell et al. 1996).

Just as the general linear model is a generalization of the basic fixed-effect
ANOVA model, the general linear mixed model is a generalization of the mixed-
model ANOVA. Repeated measures data are handled easily by the mixed-model
approach, since subjects usually are considered a random effect and the within-
subject effects a fixed factor (Winer et al. 1991). The method relies on computer-
intensive likelihood estimation techniques, rather than those of analysis of vari-
ance. The development of software specifically designed for the analysis of data
using the mixed model (e.g., procedure MIXED) now makes the method readily
accessible to ecologists.

The mixed model analysis involves two basic steps: first, a variance-covari-
ance matrix appropriate for the analysis is selected by comparing fit criteria for
alternative covariance structures (>20 available in procedure MIXED), then an
analysis of the fixed effects is evaluated using the selected covariance structure.
Procedure MIXED is described with examples in SAS/STAT 6.12 Software and
Changes and Enhancements (SAS Institute, Inc. 1996). Wolfmger and Chang (1995)
give a detailed comparison of a repeated-measures analysis using procedure GLM
and procedure MIXED for a classical data set, pointing out important differences
and similarities. Littell et al. (1996) compare repeated-measure analyses using
procedure GLM and procedure MIXED for a variety of examples and also de-
scribe how procedure MIXED can be used for repeated-measures data with obser-
vations that are heterogeneous within subject and between subjects. Wolfinger
(1996) has a more detailed discussion of the subject with examples and procedure
MIXED SAS code. Khattree and Naik (1999) present examples of the classical
repeated-measures analyses using MANOVA, ANOVA, and growth curve fitting,
emphasizing how subtle difference in the analyses may be required, depending
on the experimental design and how data are collected. This is followed by exam-
ples of how to formulate analyses of repeated-measures data analysis using proce-
dure MIXED. Dawson et al. (1997) present two graphical techniques to help
assess the correlation structure of repeated measures data to aid in selecting the
best covariance structure for mixed model analyses. When designs are unbalanced
and group covariance matrices differ, based on simulations and observed power
differences, Keselman et al. (1999) recommend using the Welch-James type
test described by Keselman et al. (1993). The general linear mixed model anal-
ysis is an active and evolving area of theoretical and applied statistical research
that has many potential applications in ecological research. Ecologists should
become familiar with the methodology and should monitor developments in the
applied statistical literature that may be appropriate for the analysis of their data.

Potvin et al. (1990b) also used nonlinear curve fitting for repeated-measures
analysis and discussed the pros and cons of the procedure. A problem with curve
fitting is how sensitive the fitted parameters are to significant changes in the data.
See Cerato (1990) for an analysis of parametric tests for comparing parameters
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in the von Bertalanffy growth equation. Potvin et al. also used a nonparametric
approach suggested by Koch et al. (1980), which avoids assumptions of normal-
ity, but generally has less power. Manly (1997) describes two examples of using
bootstrapping and randomization methods for comparing growth curves. Edging-
ton (1995) also discusses randomization tests for simple repeated-measures de-
signs.

Muir (1986) presents a univariate test for the linear increase in a response
variable with increasing levels of the within-subject factor (e.g., selection over
time). The advantages of this test are that it increases in power as the number of
levels of the within-subject factor increases and it does not have to meet the
assumption of circularity because it is testing a specific contrast (see section 8.2.1
and O'Brien and Kaiser 1985). Because the analysis is not straightforward using
SAS, a statistician should be consulted when using this technique.

Crossover experiments are considered by some to be related to repeated-mea-
sures experiments (Mead 1988; Crowder and Hand 1990, chapter 7; Khattree and
Naik 1999, chapter 5). As a very simple example, a group of subjects is first
exposed to condition A and then to condition B. A second group is treated in just
the opposite sequence. Feinsinger and Tiebout (1991) used such a design in a
bird pollination study.

Categorical data also can be analyzed as repeated measures (Agresti 1990,
chapter 11). Contingency tables can be analyzed as repeated-measures data based
on Mantel-Haenszel test statistics for a single sample, that is, a single dependent
variable and one or more explanatory variables (Stokes et al. 1995). Weighted
least squares can handle multiple dependent variables (repeated measures) for
categorical explanatory variables (Stokes et al. 1995). Both procedures are avail-
able in procedure CATMOD (SAS Institute Inc. 1989a). The generalized estimat-
ing equation (GEE) approach is a recent methodology for regression analysis of
repeated measurements that can be used with categorical repeated-measures data
and continuous or discrete explanatory variables. GEE is available in procedure
GENMOD (SAS Institute Inc. 1996). Johnston (1996) has an introduction to the
procedure that preceded the availability of GEE in procedure GENMOD. Final-
ly, time series analysis is a special kind of repeated-measures analysis in which
there are many repeated measurements and may be appropriate in some cases
(chapter 9).

8.7 Statistical Packages

Repeated-measures analyses can be done with the major mainframe computer
statistical packages: SAS and SPSS. Crowder and Hand (1990) and Hand and
Crowder (1997) summarize the methods and capabilities of the routines and give
examples. Both packages automatically generate the appropriate contrasts neces-
sary for multiple within-subject factor designs (O'Brien and Kaiser 1985). Win-
dows versions are available for all these programs. Statistica, SYSTAT, and IMP
are other statistical packages that run on personal computers and do both univari-
ate and multivariate repeated-measures analyses.
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8.8 Conclusions

8.8.1 Texts

Many of the texts and much of the statistical research on repeated-measures anal-
ysis over the past several decades have been associated with the psychological
literature. The current texts span the spectrum in terms of their coverage of the
topic: Winer et al. (1991) present primarily the univariate approach and Maxwell
and Delaney (1990) give an extensive discussion of both the univariate and the
multivariate approaches. Harris (1985) and Stevens (1996) concentrate on the
multivariate approach, but give summaries of the univariate. Hand and Taylor
(1987) introduce the multivariate approach with an extensive discussion of con-
trasts and detailed analyses of real examples. Crowder and Hand (1990) present
a statistician's review of the topic at a more technical level than the others and
cover techniques not covered in the other texts. Hand and Crowder (1997) focus
on the regression (general linear model and general linear mixed model) ap-
proaches to repeated-measures analysis. It is mathematically friendlier than
Crowder and Hand (1990) but still is intended for statisticians and uses matrix
algebra notation. The introductions to the topic in the articles by O'Brien and
Kaiser (1985), Gurevitch and Chester (1986), and Potvin et al. (1990b) have been
described previously. See also Koch et al. (1980). With the exception of Winer
et al. (1991), the trend in the psychologically oriented texts is toward greater
reliance on the multivariate approach. Crowder and Hand (1990) and Hand and
Crowder (1997), however, do not show this same preference. Zar (1996) has a
clear introduction to univariate repeated-measures ANOVA. Milliken and John-
son (1992) have a more extensive discussion, including the effects of unbalanced
and missing data, and a brief introduction to the multivariate approach. Hatcher
and Stepanski (1994) discuss one-way and two-factor ANOVA repeated-measures
designs in detail, as do Cody and Smith (1997), who also include three-factor
designs. Both provide SAS code and output for their examples.

8.8.2 Recommendations: Repeated-measures ANOVA
Versus Profile Analysis

There is no unanimity among statisticians in recommending which approach to
take in repeated-measures analyses. The alternative views are summarized here.

1. The general opinion seems to be not to use Mauchly's sphericity test as the basis
for whether to use univariate repeated measures (O'Brien and Kaiser 1985;
Winer et al. 1991; Stevens 1996).

2. If you agree with Mead's (1988) criticism of using time as the within-subject
factor, the multivariate approach seems preferable (profile analysis) (O'Brien and
Kaiser 1985; Maxwell and Delaney (1990):
a. Maxwell and Delaney (1990) recommend using MANOVA only when (N —

M> k + 9), so the test has sufficient power. These conditions may be hard to
meet in some ecological systems.
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b. If you cannot meet these criteria and cannot increase replication or reduce the
number of levels of the within-subject factor, you can follow the recommen-
dation of Maxwell and Delaney (1990) and set up individual multivariate
contrasts.

c. Alternatively, the multivariate analysis can be done with low replication, but
with a set at 0.1 or 0.2 to compensate for the low power, especially if it is
an exploratory study (Stevens 1996).

d. If neither of these is feasible, then a nonparametric approach (Potvin et al.
1990b) can be used.

e. As alternatives to repeated-measures ANOVA when time is the within-subject
factor, Mead (1988) suggests individual contrasts on the different time inter-
vals, MANOVA, or curve fitting.

3. If one does not accept Mead's criticism and there is sufficient replication to use
the multivariate approach, then there are three different opinions on what to do.
The recommendations depend primarily on the authors' views of the respective
overall power of the univariate and multivariate approaches for different experi-
mental designs and tests:
a. O'Brien and Kaiser (1985) prefer, and Maxwell and Delaney (1990) give a

"slight edge" to, the multivariate approach over the adjusted univariate ap-
proach, including performing individual multivariate contrasts if there is trou-
ble meeting the criteria for MANOVA.

b. Stevens (1996) recommends doing both the multivariate and the adjusted uni-
variate tests (a = 0.025 for each test), especially if it is an exploratory study.

c. Finally, Crowder and Hand (1990) say to use either if it is possible to do
MANOVA.

Given this variation in opinion, Stevens' (1996) recommendation seems a safe
option.

4. There also are several options when you do the univariate repeated-measures
analysis:
a. The conservative approach is to use the Greenhouse-Geisser corrected proba-

bility. Maxwell and Delaney (1990) recommend this because the Huynh-
Feldt adjustment occasionally can fail to properly control Type I errors (over-
estimates e).

b. The more liberal approach is to use the Huynh-Feldt adjustment.
c. Stevens (1996) suggests averaging the e-values of the two corrections.

5. Because there are limitations of both the standard univariate and multivariate
techniques, you should consider fitting response curves, nonparametric analysis,
and especially the mixed linear model approach described previously (section
8.6). Continued advancements in the theory and applications of the general
mixed linear model, along with the development of appropriate software, are
expected to make this an important statistical methodology for ecologists in the
future.
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Appendix. SAS Program Code for ANOVA and MANOVA
(Profile Analysis) Repeated-measures Analyses

A. Analyses of Data in table 8.1;
Output in tables 8.2, 8.3, 8.5, 8.6, 8.7

PROC ANOVA; /use procedure ANOVA for balanced designs/
CLASS NUTRIENT;
MODEL WKI WK2 WK3 WK4 WKS /NOUNI suppresses ANOVAs

= NUTRIENT/NOUNI; of dependent variables/
REPEATED TIME 5 ( 1 2 3 4 5 ) /REPEATED = repeated-measures factor label

PROFILE/SUMMARY; TIME. 5 indicates levels of TIME. ( 1 2 3 4 5 ) are
intervals of TIME, which can be unequally spaced, default

is equally spaced intervals. PROFILED profile transformation.
SUMMARY prints the ANOVA for each contrast/

REPEATED TIME 5 ( 1 2 3 4 5 ) /POLYNOMIAL = polynomial transformation/
POLYNOMIAL/SUMMARY;

B. Repeated-measures Analysis Data in table 8.8
(Two Within-subject Factors): Output in table 8.9

PROC ANOVA;
CLASS NUTRIENT;
MODEL YIWI YIW2YIW3 /YIWI .. .YIW5, Y2WI .. .Y2W5 identifies the

YIW4 YIW5 Y2WI Y2W2 10 dependent variables for the five weeks
Y2W3 Y2W4 Y2W5 = in the two years/
NUTRIENT/NOUNI;

REPEATED YEAR 2, WEEK 5 /YEAR = first within-subject factor with 2 levels,
POLYNOMIAL/SUMMARY; WEEK = second within-subject factor with 5 levels.

See SAS Institute Inc. (I989b, p. 926) for an
explanation of how to define dependent variables

when there are two within-subject factors./
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9.1 Unreplicated Studies

Some important ecological questions, especially those operating on large or
unique scales, defy replication and randomization (Schindler 1987; Frost et al.
1988; Carpenter et al. 1995). For example, suppose we are interested in the conse-
quences of lake acidification on rotifer populations. Experimental acidification of
a single small lake is a major undertaking, so it may be possible to manipulate
only one lake. Even with baseline data from before the application of the acid,
such a study would have no replication, and thus could not be analyzed with
classical statistical methods, such as analysis of variance (chapter 4).

An alternative approach might be to use some biological or physical model of
the system of interest that allows for replication. For example, we could construct
small replicated enclosures in lakes, and acidify some of them. Although this
would (with proper execution) permit valid statistical analysis of differences
among units the size of the enclosures, it is questionable whether this model
allows valid ecological generalization to the lake ecosystem (Schindler 1998). For
large-scale phenomena, experiments on small-scale models may not be a trust-
worthy ecological substitute for large-scale studies (although they may provide
valuable supplementary information).

In this chapter, we examine how certain types of unreplicated studies can be
analyzed with techniques developed for time series data. Time series are repeated
measurements, or subsamples, taken on the same experimental unit through time.
Time series analysis techniques include methods for determining whether nonran-
dom changes in the mean level of a series have occurred at prespecified times.

158
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The results of such analyses can help determine whether other changes or manipu-
lations occurring at those prespecified times may have caused changes in the ob-
served series.

The methods we describe take advantage of the long-term data available for
many large-scale studies (see also Jassby and Powell 1990; Stow et al. 1998).
Previous authors have proposed a variety of techniques for assessing such studies,
ranging from graphical approaches (Bormann and Likens 1979) to more sophisti-
cated statistical analyses (Matson and Carpenter 1990). These techniques share
an emphasis on time series data and usually involve comparing a series of pre-
and posttreatment measurements on a treatment and a reference system (e.g.,
Stewart-Oaten et al. 1986; Carpenter et al. 1989). We will confine our discussion
of time series methods to the use of ARIMA modeling techniques, although many
other time series methods are available.

We first consider how time series data affects the use and interpretation of
classical statistical analysis methods (section 9.2). Section 9.3 presents some ex-
amples of unreplicated time series designs. Section 9.4 introduces some of the
key ideas of time series analysis. Section 9.5 describes intervention analysis, an
extension of time series analysis useful for examining the impact of a treatment
or natural perturbation. Section 9.6 illustrates the application of intervention anal-
ysis to data from a whole-lake acidification experiment. (If you are not an aquatic
ecologist, mentally replace "rotifer" and "lake" with your favorite organism and
ecosystem, respectively, in our examples. The principles and potential applica-
tions are general.) We discuss some general issues in section 9.7.

9.2 Replication and Experimental Error

We first return briefly to the lake acidification example. The prescription in clas-
sical experimental design for testing the effect of lake acidification on rotifer
densities would be similar to the following:

1. Identify all lakes to which we want our inferences to apply.
2. Select, say, four lakes at random from this population.
3. Randomly select two of the four lakes to be acidified.
4. Use the other two lakes as reference, or control, lakes.

Suppose estimates of pre- and posttreatment rotifer densities are available for
all four lakes; for each lake, we can compute the change (difference) between the
pre- and posttreatment periods for further analysis. Classical analysis then pro-
ceeds to examine the question of whether the changes in the acidified lakes are
consistently different from the changes in the reference lakes, judged in light of
the typical lake variability. This typical lake variability, or experimental error,
can be estimated only by having replicate lakes within each group. (Two lakes
per group is the minimum that permits estimation of experimental error, although
a design with only two lakes per group would normally return a rather poor es-
timate of experimental error [Carpenter 1989].) An important feature of the classi-
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cal approach is that we can specify the probability of mistakenly declaring an
acidification effect when none exists.

Although it may be difficult to acidify more than one lake, getting a long time
series of pre- and posttreatment data from a single acid-treated lake may be feasi-
ble. With such a series, we can examine the related question of whether there
was an unusual change in the series at the time of the treatment, judged in light
of normal variation in the series through time. The hypothesis tested here is
weaker than the classical hypothesis. A test of this hypothesis can answer only
the question of whether a change occurred at the time of the treatment; it cannot
resolve the issue of whether the change was due to the treatment rather than to
some other coincidental event (Frost et al. 1988; Carpenter et al. 1998). Making
the case for the change being due to the treatment in the absence of replication
is as much an ecological issue as a statistical one; such arguments can often be
supported by corroborating data, such as from enclosure experiments. In the next
section, we discuss time series designs that to some extent guard against the de-
tection of spurious changes.

Determining the normal variation through time of a time series is a more
difficult issue than determining experimental error in a replicated experiment. In
a replicated, randomized, experiment, the experimental units are assumed to act
independently of one another, which greatly simplifies the statistical models. On
the other hand, measurements in time series are usually serially dependent or
autocorrelated; the future can (at least in part) be predicted from the past. The
variation of a system through time depends on its autocorrelation structure, and
much of time series analysis focuses on constructing and evaluating models for
such structure.

We caution the reader to guard against treating subsampling through time as
genuine replication and then analyzing the unreplicated experiment as if it were
replicated. In some cases, it may turn out that a classical test, such as a Mest, can
be applied to a time series. Such a test could be used if analysis indicated that
the measurements were not autocorrelated (Stewart-Oaten et al. 1986). Even then
it must be remembered that the hypothesis tested has to do with a change in level
at the time of the treatment application, and that such a change may not be due
to the treatment. A basic understanding of these issues is necessary for conducting
effective ecological experimentation; see the discussions in Hurlburt (1984) and
Stewart-Oaten et al. (1992).

We do not advocate unreplicated designs as a matter of course, but they are
sometimes necessary. Even with the detailed machinery of time series, some cau-
tion will be required in the interpretation of results. Without replication, we can-
not be sure that we have an adequate understanding of the underlying error
against which treatment effects should be judged. Increasing confidence in mak-
ing such an interpretation can be developed in several ways, however. These
include (1) considering information on the natural variability that is characteristic
of the types of systems being manipulated, (2) integrating smaller scale experi-
ments within the large-scale manipulations, and (3) developing realistic, mecha-
nistic models of the process being evaluated (Frost et al. 1988).
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9.3 Unreplicated Time Series Designs

Suppose an ecologist monitors rotifer densities in a lake biweekly for 5 years,
then acidifies it and continues to monitor the lake for an additional 5 years. In
this example, there is a sequence of observations over time (a time series) on a
single experimental unit (the lake). We refer to such a single series with an inter-
vention as a before-after design. (Acidification is the intervention).

Sometimes nature, perhaps unexpectedly, applies a perturbation to a system.
This can be called a natural experiment. In such a case, there may be no choice
but to use a simple before-after design. Such designs are most prone to having
coincidental "jumps" or trends spuriously detected as intervention effects. When
the treatment is under the investigator's control, improvements in the before-after
design are possible. One simple modification is to have multiple interventions or
to switch back and forth between the treatment and control conditions. If each
intervention is followed by a consistent response, the likelihood that the observed
responses are merely coincidental is reduced.

A design with paired units is also useful. One unit receives a treatment (interven-
tion) during the course of the study, and the other serves as a reference, or baseline,
and is never treated. Both units are sampled repeatedly and at the same times before
and after the treatment is applied. This design has been discussed by Stewart-Oaten
et al. (1986), and earlier by Eberhardt (1976), although it had been in use among
field biologists before either of these discussions (see Hunt 1976). We will refer to
this design as the before-after-control-impact (BACI) design, following Stewart-
Oaten et al. (1986). In a BACI design, the reference unit provides a standard against
which to compare the treatment unit. This helps to determine whether changes seen
in the treatment unit are due to the treatment itself, long-term environmental trends,
natural variation in time, or some other factor.

Two important decisions involved in implementing a BACI design are the
selection of experimental units, and the timing and number of samples per unit.
The treatment and reference units should be representative of the systems to
which an observed treatment effect is to be generalized, and they should be simi-
lar to one another in their physical and biological characteristics. Typically, sam-
ples are evenly spaced, with the time between samples dependent on the rate of
change in the population or phenomenon studied (Frost et al. 1988). For instance,
rapidly changing populations of insects or zooplankton are often sampled many
times a year, whereas slowly changing vertebrate or plant populations are usually
sampled only once a year. The sampling frequency will depend on both the sys-
tem studied and the specific questions asked. The duration of each evaluation
period (before or after treatment) is determined by the periodicity of natural cy-
cles, the magnitude of random temporal fluctuations, and the life span of the
organisms studied. Longer sampling periods are necessary when random fluctua-
tions are greater, cycles have longer periods, or study organisms are longer-lived.

We will use an example of a BACI design with multiple interventions to dem-
onstrate in some detail the analysis and interpretation of a "real" Unreplicated
design. This concerns the effect of acidification on Little Rock Lake, a small,
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oligotrophic seepage lake in northern Wisconsin (Brezonik et al. 1986). Since
1983, it has been the site of an ecosystem-level experiment to investigate the
responses of a seepage lake to gradual acidification (Watras and Frost 1989). Little
Rock Lake was divided into a treatment and a reference basin with an imperme-
able vinyl curtain. After a baseline period (August 1983 through April 1985), the
treatment basin was acidified with sulfuric acid in a stepwise fashion to three
target pH levels, 5.6, 5.1, 4.7, each of which was maintained for 2 years. The
reference basin had an average pH of 6.1 throughout the experiment. Details on
the lake's limnological features are provided in Brezonik et al. (1986). Our analy-
sis here will focus on populations of the rotifer Keratella taurocephala, which
exhibited marked shifts with acidification (Gonzalez et al. 1990; Gonzalez and
Frost 1994).

Creating good unreplicated designs requires some creativity. So does the anal-
ysis of the resulting data. The analytical methods for most studies with genuine
replication (e.g., analysis of variance) are quite straightforward. However, much
of the analysis of unreplicated experiments is less clear-cut and tends to be more
subjective. With time series data of sufficient length (at least 50 observations),
it may be possible to use statistical techniques that have a rigorous theoretical
underfooting. We discuss some of these techniques in sections 9.4 and 9.5. The
general goal of such statistical modeling is to find a parsimonious model, a simple
model that fits the data well. By simple, we mean a biologically and physically
reasonable model with a small number of parameters to be estimated. We will
use analytical techniques appropriate to time series with an intervention. As will
be seen in the next two sections, proper use of these techniques requires mastery
of certain fundamentals and considerable care. Unless you are quite skilled in the
area, we recommend consultation with a statistician when conducting the analysis.
(Such consultation at the design phase is also strongly recommended.)

9.4 Time Series

Time series analysis encompasses a large body of statistical techniques for analyz-
ing time-ordered sequences of observations with serial dependence among the
observations. We will focus on a subset of time series techniques developed for
autoregressive integrated moving average (ARIMA) models. The classic refer-
ence for ARIMA modeling is Box and Jenkins (1976). Other references include
McCleary and Hay (1980), Cryer (1986), Diggle (1990), and Wei (1990).

ARIMA models are valuable because they can describe a wide range of pro-
cesses (sequences of events generated by a random model) using only a few para-
meters. In addition, methods for identifying, estimating, and checking the fit of
ARIMA models have been well studied. These models are appropriate for model-
ing time series where observations are available at discrete, (usually) evenly spaced,
intervals.

ARIMA models include two basic classes of models: autoregressive (AR) and
moving average (MA) models. AR models are similar to regression models in
which the observation at time t is regressed on observations at earlier times. First,
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we introduce some notation. Let y, be the original time series, say, rotifer density
at time t. It is convenient to work with the series centered at its mean, say, z, -
y, - (i; z, is the deviation of the density at time t from the long term mean jj,. An
AR model of order p = 2 [denoted AR(2)] for the centered rotifer density is of
the following form:

where the 0's are coefficients (like regression coefficients) and e, is a random
error at time t (usually assumed to be uncorrelated with mean 0 and variance 02).
This model states that the present rotifer density is a linear function of the densi-
ties at the previous two sampling times plus random error.

An MA model relates an observation at time t to current and past values of
the random error e,. For example, an MA model of order q = 2 [denoted MA(2)]
has the form:

where the 0's are coefficients.
More general models can have both AR and MA terms, so-called ARMA

models (note that ARIMA models include ARMA models, as described subse-
quently). The goal of fitting an ARMA model is to describe all of the serial
dependence with autoregressive and moving average terms so that the residuals,
or estimated error terms, look like uncorrelated random errors, or "white noise."

ARMA processes have the same mean level, the same variance, and the same
autocorrelation patterns, over whatever time interval they are observed. This is
an intuitive description of a fundamental property known as stationarity. (More
rigorous definitions can be found in the references). Stationarity allows valid
statistical inference and estimation despite a lack of genuine replication. A sta-
tionary process exhibits the same kind of behavior over different time intervals,
as if replication were built into the process. Because the autocorrelation between
observations depends on the number of time steps between them, the observations
usually must be equally spaced. For some biological processes, however, it is not
clear that this is necessary. For instance, the autocorrelation among zooplankton
abundance estimates 2 weeks apart may be larger in the winter when the popula-
tion is changing slowly than in the summer when it changes more quickly.

Because many processes observed in nature are clearly not stationary, it is
desirable to find a way to modify an observed time series so that the modified
series is stationary; then ARMA models with few parameters can be fit to the
modified data. There are two primary ways to do this. One is to incorporate
deterministic functions into the model, such as a linear trend over time, a step
increase at a known time, or periodic functions, such as sines and cosines, to
represent seasonal behavior. The other way is to difference the series, that is, to
compute new observations such as z, - z,-\ (first difference) or z, - z,-n (seasonal
difference with period 12). Differencing is a more general approach because it
can represent both deterministic and random trends. On the other hand, when
deterministic trends are of special interest, it may make more sense to fit them
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than simply to remove them by differencing. Because of its greater generality,
we will focus on achieving stationarity by differencing.

Describing some processes may require both AR and MA parameters as well
as differencing. This leads to ARIMA models with/? AR parameters, q MA parame-
ters, and d differences [denoted AR}MA(p,d,q)]. For instance, an AREVIA( 1,1,1)
model is of the form

where x, = zt- zt-\ and e, is uncorrelated error as previously stated.
Box and Jenkins (1976) developed methods for identifying appropriate forms

for ARIMA models from data. Their methods require computing sample autocor-
relations and related functions from the data and using the properties of these
functions to identify possible ARIMA models. Each sample autocorrelation, rh at
lag k (i.e., the correlation among observations k time steps apart) is computed for
lags 1, 2 , . . . to obtain the sample autocorrelation function (ACF). A related func-
tion, the sample partial autocorrelation function (PACF), represents the sample
autocorrelation among observations k time steps apart, when adjusted for autocor-
relations at intermediate lags.

The model identification process involves identifying a subset of ARIMA
models for fitting from the ACF, the PACF, and plots of the original series. The
original series may show a long-term trend or seasonal behavior and thus suggest
nonstationarity. The ACF for nonstationary series also declines very slowly to
zero. If the series appears nonstationary, it should be differenced until it is station-
ary before examining the ACF and PACF further.

The theoretical ACF and PACF give distinctive signatures for any particular
ARIMA model. In ARIMA modeling, the sample ACF and PACF are estimated
from the (perhaps differenced) data with the hope of recognizing such a signature,
and thereby identifying an appropriate ARIMA parameterization. The theoretical
ACF for pure MA models has large values only at low lags, whereas the PACF
declines more slowly. The number of lags with autocorrelations different from
zero suggests q, the order of the MA model. The opposite is true for pure AR
models, where the PACF has large values at low lags only and the ACF declines
more slowly. In this case, the order p of the AR model is suggested by the number
of partial autocorrelations different from zero. Often AR or MA models of low
order (1 or 2) provide good fits to observed series, but models with both AR and
MA terms may be required. The adequacy of fit of the model can be checked by
examining the residuals. The sample ACF and PACF of the residuals should not
have large values at any lags and should not show strong patterns of any sort.
Box and Pierce (1970) suggested an overall test for lack of fit, which has since
been refined (Ljung and Box 1978).

9.5 Intervention Models

Intervention analysis extends ARIMA modeling methods to investigate the effects
of known events, or interventions, on a time series. The response to a treatment,
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or intervention, can have a number of forms. The two simplest forms are a perma-
nent jump to a new level after the intervention and a temporary pulse, or spike,
at the intervention. For example, a step change in an ARIMA model can be re-
presented by a model of the form

where S, = 0 before intervention and S, = 1 at and after intervention, co is a coeffi-
cient, and N, is an ARIMA model. In this representation, z, is the suitably differ-
enced series if the original series was not stationary. To model a spike or pulse
response, S, = 1 at the intervention and 0 otherwise. Box and Tiao (1975) discuss
more complicated models such as linear or nonlinear increases to new levels.
Examples are illustrated in McCleary and Hay (1980). The lag between the inter-
vention and the response can also be examined by fitting models with different
lags.

There is usually no direct way to identify the ARIMA form of the intervention
model from the observed time series itself. Typically, a plausible ARIMA model
is developed for the series as a whole or separately for the series before and after
the intervention. The form of the response to intervention may be suggested by
examination of residuals from the ARIMA model without the intervention or from
theoretical knowledge about the expected response. Usually a number of plausible
models must be examined and the best chosen from among them. If the interven-
tion form is unknown, McCleary and Hay (1980) suggest first trying the spike
model, then the gradual increase model, and finally the step model. Box and
Jenkins (1976) have emphasized the iterative approach to model building, where
the goal is to obtain a model that is simple but fits the data adequately and that has
a reasonable scientific interpretation. In following this iterative model-building
philosophy, a series of decisions is made, thus analyses of different data sets will
proceed in different ways. Although we can give a general outline of the steps
involved in intervention analysis, we cannot exactly prescribe a method that will
work for all data sets.

Although each analysis is unique, the following sequence of steps is useful in
carrying out intervention analysis:

1. Plot the time series.
2. Choose a transformation of the original series, if necessary.
3. Determine whether the series must be differenced.
4. Examine the sample ACF and PACF of the (possibly) transformed and differ-

enced series to identify plausible models.
5. Iterate between fitting models and assessing their goodness of fit until a good

model is obtained.

We emphasize that the way an analysis proceeds depends on the data set. The
following example should not be viewed as a prescription for intervention analy-
sis, but as an example of a general process. Other examples of the use of interven-
tion analysis in ecology and environmental monitoring have been discussed
by Pallesen et al. (1985), Madenjian et al. (1986), van Latesteijn and Lambeck
(1986), Noakes (1986), Bautista et al. (1992), and Rudstam et al. (1993).
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9.6 Example

9.6.1 Data

We will analyxe abundance data (animals/liter) for the rotifer Keratella tauro-
cephala from Little Rock Lake, Wisconsin. Sampling methods are described in
Gonzalez et al. (1990). Data were collected every 2 weeks when the lake was ice
free, and every 5 weeks when the lake was ice covered. There were slight varia-
tions from this schedule during the first years of monitoring; we have dropped
extra observations or used an observation for two consecutive sampling dates
when necessary to produce the same schedule during all years (we dropped a
total of eight observations, and used six observations twice). We will discuss the
effects of spacing the observations, as well as ways to obtain equal spacing, in
section 9.6.5. The example data set includes 19 observations per year (106 total),
with observations on approximately the same dates during all years. We will
examine the effect of two interventions: the pH drop from 6.1 to 5.6 on 29 April
1985 and from 5.6 to 5.1 on 27 April 1987. We have not used data collected after
the third intervention on 9 May 1989.

One of the early steps in any data analysis should be careful examination of
plots of the data. The plot of the abundance series for both basins (figure 9.1 A)
suggests that there is little change in K. taurocephala abundance in the reference
basin over time, but there is an increase in both the level and variability of abun-
dance in the treatment basin after the interventions.

9.6.2 Derived Series

The first decision is whether to analyze the series for the two basins separately
or to analyze a single series derived from the two original series. There are advan-
tages to both approaches. The single derived series may be simpler to analyze:
not only is there only one series, but the derived series may have less serial
autocorrelation and less pronounced seasonal behavior than the original series
(Stewart-Oaten et al. 1986). In addition, the analysis of the derived series may
lead to a single direct test of the intervention effect, whereas separate analyses of
the treatment and reference series would have to be considered together to evalu-
ate the effect of the intervention. On the other hand, the derived series is more
remote from the observed data, and we may wish to model the serial dependence,
seasonal behavior, and effects of interventions in the original series themselves.
If temporal patterns in the two units are quite different, it may be essential to
analyze the two series separately. In many cases, both approaches may be appro-
priate. We will discuss both here.

Two forms of derived series are possible: (1) the series of differences between
the treatment and reference observations at each sampling date and (2) the series
of ratios of the treatment to reference observations at each date. Most discussions
of this topic in the ecological literature have argued that the log-transformed ratio
series (equivalent to the difference of the two log series) best meets the assump-
tions of statistical tests (Stewart-Oaten et al. 1986, Carpenter et al. 1989; Eber-
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Figure 9.1 Time series for
Keratella taurocephala in
Little Rock Lake, Wisconsin,
during acidification treat-
ments. (A) The abundance
series for both the treatment
and reference basins shown
on the original scale, ani-
mals/liter. (B) The same se-
ries shown on a Iog10 scale.
(C) The series derived as a
logIO of the ratio of the treat-
ment series over the refer-
ence series.
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hardt and Thomas 1991). The issue in part revolves around the assessment of
whether factors leading to change in the response are additive or multiplicative.
Because factors that affect populations often have multiplicative effects, the series
of ratios may work best for abundance data. It is usually best to examine both
derived series. For the K. taurocephala data, both derived series showed similar
patterns, with the mean level and variability of the series increasing after each
intervention. The increase in variability was much greater for the series of differ-
ences; we chose to work with the ratio series because we could find a transforma-
tion that more nearly made the variance of that series constant. Note that we
added one to each value to avoid dividing by zero.

9.6.3 Transformations

A fundamental assumption of ARIMA models, as well as of many standard statis-
tical models, is that the variance of the observations is constant. The most com-
mon violation of this assumption involves a relationship between the variance
and the mean of the observations. We will use a simple method for determining
a variance-stabilizing transformation when the variance in the original series is
proportional to some power of the mean (Box et al. 1978). Poole (1978) and
Jenkins (1979) have described the use of this procedure in time series analysis.
Jenkins (1979) recommends dividing the series into subsets of size 4 to 12, related
to the length of the seasonal period (we used 6-month intervals). Then the mean
and variance are calculated for each subset, and the log standard deviation is
regressed on the log mean. The value of the slope (b) from this regression sug-
gests the appropriate transformation (see SAS commands in appendix 9.1). The
assumption that the variance is proportional to some power of the mean deter-
mines the form of the transformation:

For the ratio series, the slope from the regression of log standard deviation on
log mean was 1.33. The estimate of 1.33 has some associated error; we tradition-
ally use a value near the estimate that corresponds to a more interpretable trans-
formation rather than the exact estimate. Thus, we might consider either the recip-
rocal square-root transformation (the reciprocal of the square root of the original
value; appropriate for a slope of 1.5) or the log transformation (for a slope of
1.0). We carried out analyses on both scales and found that conclusions were
similar, although the reciprocal square-root scale did a slightly better job of stabi-
lizing the variance. We will report analyses of the log ratio series (we used logs
to the base 10), since that transformation is more familiar and somewhat easier
to interpret.

9.6.4 ARIMA Models

The plot of the abundance series on a Iog10 scale for both basins (figure 9.IB)
presents a very different appearance than that of the abundance series (figure
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9.1 A). The large increase in both level and variability of the treatment basin series
on the original scale is much reduced on the log scale. The reference basin series
may show a slight increasing trend on the log scale. The log ratio series (figure
9.1.C) appears to have increased in level after the first intervention and perhaps
in variability after the second intervention. These subjective impressions should
be kept in mind while carrying out the statistical analyses.

Methods for identifying ARIMA models require that the series be stationary.
If an intervention changes the level of a series, that series is no longer stationary,
and standard model identification procedures may be difficult to apply. One ap-
proach to determining the ARIMA form for an intervention series is to fit models
to the segments of the series between interventions. Before discussing the results
of this process for the log ratio series, we will first demonstrate model identifi-
cation procedures on the longest stationary series available, the log reference
series.

The first step in ARIMA model identification is to examine the sample ACF
and PACE of the series (appendix 9.2A). The sample ACF and PACF are usually
presented as plots (see SAS output in table 9.1) in which each autocorrelation or
partial autocorrelation is a line extending from zero, with 2 standard error (SE)
limits (approximate 95% confidence limits) indicated on the plot. The sample
ACF for the log reference series has large values for lags 1, 2, and 3, and values
less than the 2 SE limits elsewhere; the sample PACF has a single large value at
lag 1. This pattern suggests an AR(1) process, since the PACF "cuts off" at lag
1, whereas the ACF declines more slowly to zero. The PACF for an AR(2) pro-
cess would have large values at both lags 1 and 2, for instance. Both the sample
ACF and PACF have values at lags 18 or 19 that almost reach the 2 SE limits;
this suggests that there may be a weak annual cycle.

Once a model form has tentatively been identified, the next step is to fit that
model to the series (appendix 9.2B) and examine the residuals. In this case, the
residuals from fitting an AR(1) model have the characteristics of random, uncor-
related error (white noise): there are no large values or strong patterns in the
sample ACF or PACF, and a test of the null hypothesis that the residuals are
random and uncorrelated is not rejected [SAS procedure ARIMA carries out this
test whenever the ESTIMATE statement is used to fit a model (SAS Institute Inc.
1988)]. The AR(1) model produced estimates for the mean of 1.44 (SE = 0.08),
an autoregressive coefficient ($) of 0.65 (SE = 0.07), and a residual variance of
0.084 (these estimates and standard errors are included in the output produced by
SAS procedure ARIMA when the ESTIMATE statement is used).

Carrying out the same procedure on the three segments of the log ratio series
between interventions suggests that all three can be fit by AR(1) models. This
leads to the following parameter estimates (SE values are in parentheses):

Segment

1: pH 6.1
2: pH 5.6
3:pH5.1

A

-0.10 (0.05)
0.37 (0.09)
0.54 (0.19)

$

0.28 (0.18)
0.47 (0.15)
0.62 (0.13)

Variance

0.04
0.09
0.21
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Table 9.1 Plots of the autocorrelation function (ACF) and partial autocorrelation function
(PACF) from the program listed in appendix 7.2A

ARIMA Procedure

Name o£ variable = LOGREF.

Mean of working series - 1.443589
Standard deviation = 0.379975
Number of observations = 106

Autocorrelations

Lag Covariance
n n 1 Ad 7fliU U • 14 1 JO J.

I n no^T inU < \)y J 1 JU

2 0.049058
3 0.028400
4 0.010254
5 0.0034776
6 0.0010632
7 -0.0067425
8 -0.0084151
9 -0.0005594
10 -0.0014308
11 -0.0089326
12 -0.0090990
13 -0.0028932
14 0.00078262
15 0.0053034
16 -0.0010200
17 0.00089464
18 0.022174
19 0.026635
20 0.010681
21 -0.0084435
22 -0.026879
23 -0.026095
24 -0.023388

Lag

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Correlation - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std

O t*tl Q 1 fi. OH? ID
0.33978
0.19670
0.07102
0.02409
0.00736
-0.04670
-0.05828
-0.00387
-0.00991
-0.06187
-0.06302
-0.02004
0.00542
0.03673
-0.00706
0.00620
0.15358
0.18448
0.07398
-0.05848
-0.18617
-0.18074
-0.16199

U
0. 097129
0.131855
0.139871
0.142457
0.142791
0.142829
0.142833
0.142977
0.143201
0.143202
0.143208
0.143460
0.143721
0.143747
0.143749
0.143838
0.143841
0.143844
0.145382
0.147574
0.147924
0.148142
0.150333
0.152369

" . " marks two standard errors
Partial Autocorrelations

Correlation - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

-o'.14114
0.06457
-0.09598
0.04833
-0.01962
-0.07093
0.01676
0.07100
-0.06325
-0.07167
0.02016
0.05950
-0.00623
0.02763
-0.09466
0.10644
0.20260
-0.05757

13497
-0.12215
-0.11148
0.08049
-0.09544
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Although all three segments have the same AR(1) form, parameter estimates and
variances may differ. These estimates may be poor because the series are short
(between 31 and 38 observations), but the differences suggest some caution when
interpreting the intervention model. Differences between the mean levels for the
three segments provide estimates for the effects of the interventions (see subse-
quent discussion). Notice that if the reference and treatment series had the same
mean level initially, the estimated mean for the log ratio series would be zero at
pH6.1.

The preceding analyses indicate that we can begin fitting intervention models
for all series by assuming an AR(1) form. We also must specify the form for the
interventions. The acid additions to the treatment basin were step changes, so
they may be represented by variables that take the value of zero before, and one
after, the intervention. These variables are just like dummy variables used in
regression (Draper and Smith 1981). We have constructed two dummy variables,
one for each intervention. The first has the value of one between 29 April 1985
and 27 April 1987, and zero elsewhere, the second has the value of one after 27
April 1987 and zero elsewhere. In this parameterization, the parameter for the
mean estimates the initial level of the series, and the intervention parameters
estimate deviations from that initial level to the levels after the interventions.
Alternative dummy variables can be used and will lead to the same predicted
values, although the interpretation of the intervention parameters will differ. The
dummy variables are treated as input variables when using the ESTIMATE state-
ment in SAS procedure ARIMA to fit the model (appendix 9.3).

We fit intervention models to the log ratio series and also to the log treatment
basin and log reference basin series separately (appendix 9.3). In all cases, the
simple AR(1) model fit well, although for the log treatment series there was also
some evidence for an annual cycle. We also fit models for more complicated
responses to intervention, but the additional parameters were not significantly
different from zero. Results for the three series are presented here (SE values are
in parentheses after each estimate; obi and o>2 are coefficients for the first and
second intervention parameters):

Series

Ratio
Treatment
Reference

A
-0.06 (0.13)

1.40 (0.12)
1.46 (0.12)

$

0.57 (0.08)
0.56 (0.08)
0.60 (0.08)

eb,

0.40 (0.17)
0.23 (0.15)

-0.16 (0.16)

&2

0.60 (0.18)
0.69 (0.16)
0.09 (0.16)

Variance

0.12
0.09
0.08

We can construct statistics similar to ^-statistics for the parameter estimates by
dividing each estimate by its SE, just as in linear regression. Approximate tests
can be based on the standard normal distribution; f-values can be determined
from the Z-score using a table or software package.

Models for all three series have similar autoregressive coefficients; the value
of approximately 0.6 indicates that there is strong serial correlation in all series.
The intervention coefficients provide estimates of the shift in level from the initial
baseline period. Thus, for the log ratio series, 0.4 is the shift from the initial level
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of -0.06 to the level after the first intervention, and 0.6 is the shift from the initial
level to the level after the second intervention. Both of these coefficients are
significantly different from zero (Z=2.35, P = 0.02; and Z=3.33, P = 0.001).
Shifts at the time of the second intervention can be computed as the difference,
62 - cbj. The largest shift in level for the log ratio series was at the first interven-
tion, whereas for the log treatment series it was at the second intervention.

Notice that the differences between intervention parameters for the treatment
and reference series approximately equal the parameters for the log ratio series
[i.e., 0.23 - (-0.16) = .39 and 0.69 - 0.09 = 0.60]. The larger shift at the time of
the first intervention for the log ratio series is due to an increase for the log
treatment series and a decrease for the log reference series, whereas the smaller
shift in the log ratio series at the time of the second intervention is due to in-
creases in both the log reference and treatment series. [Such additivity of the
individual series and the derived, transformed series should not be expected in
general. It occurs with the log ratio because \og(x/y) = log(jc)—log(y).]

The intervention parameters are more easily interpreted when converted back
to the original abundance scale. For the log ratio series, the initial predicted level
is logw(t/r) = -0.06, which implies / = 0.87r (t is the treatment basin value and r
is the reference basin value). Thus, the treatment abundance is 0.87 as large as
the reference abundance before the first intervention. After the first intervention,
the level of -0.06 + 0.40 = 0.34 implies that t = 2.19r, and after the second inter-
vention, the level of -0.06 + 0.60 = 0.54 implies that t = 3.47r. The shift in level
of 0.23 at the time of the first intervention in the log treatment series corresponds
to a multiplication of 10°'23= 1.70 in the abundance of the rotifer. The shift at
the second intervention represents a multiplication of 10069 = 4.9 times the initial
abundance.

9.6.5 Spacing of Observations

We analyzed our series as though the observations were equally spaced when in
fact the spacing differed between summer and winter. To investigate how the
spacing of observations may have affected our analyses, we constructed two se-
ries with equally spaced observations from the log ratio series and fit intervention
models to them. Some approaches to constructing series with equally spaced ob-
servations are as follows:

1. Interpolate to fill in missing observations.
2. Aggregate data to a longer sampling interval (Wei 1990).
3. Use a statistical model to fill in missing observations (Jones 1980).

We used method 1 to construct a series with 24 observations per year by interpo-
lating between winter observations taken at 5-week intervals. We also used method
2 to construct a series with 13 observations per year by averaging all observations
within each 4-week time period.

Both of these constructed series were adequately fit with AR(1) models, and
estimates of intervention effects were very similar to those from the model for
the original series. The variance was smaller for the two constructed series be-
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cause the process of constructing them involved smoothing. The size of the auto-
regressive parameter increased as the frequency of observation increased. The
important point here is that the intervention parameter estimates were not much
affected by the spacing of observations. Thus, we can feel comfortable that the
unequal spacing has not distorted our estimation of the intervention parameters.
We chose to describe analyses of the data set that corresponded most closely to
the actual observations.

9.6.6 Comparison with Other Analytical Procedures

If we ignore the serial dependence among observations over time, we can com-
pare the postintervention data with the preintervention data using Mests. Recall
that a fundamental assumption of the Mest and similar classical statistical proce-
dures is that the observations are independent. The K. taurocephala series we
analyzed had autocorrelations of about 0.57 for observations 1 time unit apart,
with the autocorrelations decreasing exponentially as the number of time units
between observations increased. The f-statistic is positively inflated when obser-
vations are positively correlated, and the degree of inflation increases as the auto-
correlation increases (Box et al. 1978; Stewart-Oaten et al. 1986). For the log
ratio series, the Z-statistics calculated for the intervention coefficients were one-
third to one-half the size of the f-statistics calculated by standard f-tests comparing
the preintervention period to either of the postintervention periods. In this case,
all tests are significant, but in situations where the intervention has a smaller
effect, the f-test could lead to misleading conclusions.

Randomized intervention analysis (RIA) has been proposed as an alternative
approach for analyzing data from experimental designs, such as we have dis-
cussed here (Carpenter et al. 1989). Randomization tests involve comparing an
observed statistic with a distribution derived by calculating that statistic for each
of a large number of random permutations of the original observations (chapter
7). Although randomization tests do not require the assumption of normality, they
may still be adversely affected by the lack of independence among observations
(chapter 14). Empirical evaluations suggest that RIA works well even when ob-
servations are moderately autocorrelated (Carpenter et al. 1989), although Stew-
art-Oaten et al. (1992) question the generality of these evaluations. Conclusions
drawn from RIA for the Little Rock Lake K. taurocephala data parallel those we
found (Gonzalez et al. 1990).

Although his approach is not possible when there is only one reference unit,
Schindler et al. (1985) used conventional statistical methods to compare a single
manipulated system with many reference systems. This may be useful when stan-
dard monitoring can provide data from a number of reference systems (Under-
wood 1994).

9.6.7 Ecological Conclusions

Based on our intervention analysis, we conclude that there have been nonrandom
shifts in the population of K. taurocephala in Little Rock Lake's treatment basin
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with acidification. However, the question is whether these shifts can be attributed
to the acidification or whether they reflect natural population shifts coincident
with the pH manipulations.

Information on the ecology of K. taurocephala provides strong support for the
conclusion that the increases in acidification in Little Rock Lake reflect a re-
sponse to the pH manipulation. In surveys across a broad sample of lakes, K.
taurocephala showed a strong affinity with low pH conditions (Maclssac et al.
1987). Such previous information on the distribution of K. taurocephala led to
the prediction, before any acidification, that its population would increase at
lower pH levels in Little Rock Lake (Brezonik et al. 1986). Detailed mechanistic
analyses of the response of K. taurocephala to conditions in Little Rock Lake's
treatment basin revealed that its increased population levels were linked with
reductions in the population levels of its predators under more acid conditions
(Gonzalez and Frost 1994).

9.7 Discussion

Intervention analysis provides three major advantages over other analytical meth-
ods that have been used to analyze similar time series data sets. First, it provides
good estimates of intervention effects and standard errors even in the presence of
autocorrelation among observations. Second, intervention analysis requires that
the autocorrelation structure of the data is modeled explicitly, and this may pro-
vide additional information about underlying processes. Third, the iterative
model-building approach that is inherent in intervention analysis is itself a way
of learning about characteristics of the data that may otherwise be difficult to
discover. It is certainly a very different approach from that of simply carrying out
a standard test to compute a P-value. The disadvantages of intervention analysis
are that it requires long series of observations (usually 50 or more) to determine
the pattern of serial dependence and it involves a large investment of time on the
part of the data analyst, both in becoming familiar with the methodology and in
carrying out each analysis.

We have not covered all of the complexities of intervention analysis. We ana-
lyzed time series with weak seasonal behavior, where nonseasonal models were
adequate. In many data sets, seasonal behavior may be pronounced and thus will
have to be incorporated into ARIMA intervention models. We have used methods
appropriate for univariate time series. Our series was initially bivariate with one
series for the treatment and another for the reference. We transformed the prob-
lem to a univariate one by taking the ratio of the two series at each sampling
period. In general, such a combination of series requires that the series be syn-
chronous, that is, one series does not lag or lead the other. Such a combination
also requires that the two processes are operating on the same scale; Stewart-
Oaten et al. (1986) discuss this in some detail within the context of achieving
additivity. Bivariate approaches allow these assumptions to be relaxed to some
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extent but at the expense of ease of model identification and interpretation. One
such approach is to use a general transfer function model (Box and Jenkins 1976),
of which intervention models are a special type. The methods of identifying and
estimating such models can be quite involved and are well beyond the scope of
this chapter, but they are worth considering if the assumptions required for the
univariate approach are suspect.

Despite our emphasis on unreplicated studies, replication should always be
employed when possible. Replication is the only way of reducing the probability
of detecting a spurious treatment effect in a manner that is readily quantifiable.
A detailed treatment of replication is beyond the scope of this chapter, but we
will mention some basics. A design with replicated time series is referred to as a
repeated-measures design; repeated, or sequential, measurements are taken over
time within each experimental unit (in an unreplicated time series, there is just
one experimental unit). The usual approach to analyzing repeated-measures de-
signs relies on applying a standard multivariate analysis of variance (chapter 8).
Such an approach requires estimating a moderate number of parameters, which
might be a problem if the amount of replication is not fairly substantial. This
problem can be reduced to some extent by using repeated-measures models with
structured covariance matrices; such models are hybrids of ARIMA models and
multivariate analysis of variance models (Laird and Ware 1982; Jennrich
and Schluchter 1986). The advantage of such repeated-measures models over
standard multivariate ANOVA models are (1) they allow hypothesis-testing about
the nature of the serial dependencies within units just as in ARIMA modeling
and (2) they require the estimation of fewer parameters and hence demand less
data for estimation. Software implementations of such procedures are relatively
recent (e.g., SAS procedure MIXED, Littell et al. 1996).

Time series methods have broad potential applicability in ecology; intervention
analysis is a relatively small facet. Poole (1978) gives an interesting review and
summary of time series techniques in ecology, including transfer function models.
Because of their underlying statistical similarities, time series models are also
useful in understanding spatial statistical techniques. Time series techniques typi-
cally receive little or no attention in the basic statistics courses that most graduate
ecology programs require. Many universities offer applied time series courses
that are accessible to students with an introductory statistics background. Consid-
ering the frequency with which ecologists deal with time series data, graduate
ecology programs should encourage such formal training. We also encourage
ecologists who are designing or analyzing time series studies to seek the collabo-
ration of their statistical colleagues.
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Appendix 9.1 SAS Program Code for Data Input and
Determination of Value for Transformation

DATA ABUN; /input data/
INPUT MONTH /month sampled/

DAY /day sampled/
YEAR /year sampled/
PERIOD /six-month period dating from the start of monitoring/
1I /dummy variable—has value of I while treatment

basin pH is 5.6, value of 0 otherwise/
52 /dummy variable—has value of I while treatment

basin is pH 5.1, value of 0 otherwise/
REF /abundance of K. taurocephala in reference basin/
TRT; /abundance of K. taurocephala in treatment basin/

RATIO = (TRT + I )/(REF + I); /compute ratio of treatment to reference abundance/
LOGRATIO = LOG I O(RATIO); /compute log transformation of ratio/
LOGREF = LOG I O(REF); /compute log transformation of original data/

PROC SUMMARY NWAY; /calculate mean and SD of ratios for each year/
CLASS YEAR; VAR RATIO;
OUTPUT OUT = SUMRY /output SDs/

MEAN = MRATIO STD = SD;
DATA SUMRY; SET SUMRY; /calculate log of mean and SD/

LOGRATIO = LOG I O(MRATIO);
LOGSD = LOGIO(SD);

PROC PLOT; /plot log SD vs log mean/
PLOT LOGSD*LOGRATIO;

PROC REG; /regress log SD on log mean/
MODEL LOGSD = LOGRATIO;

Appendix 9.2 SAS Program Code for Fitting the ARIMA Model
to the Log Reference Series. Note That the
Data Must Be Sorted by Sample Date

A. Initial Analysis for Examining the ACF and PACF Ratios

PROC ARIMA; /compute the ACF and PACF/
IDENTIFY VAR = LOGREF; /ACF and PACF plots produced automatically/

B. Based on the Initial Analysis, a Model of Order p- 1
is Fit to the Data

PROC ARIMA; /fit an AR(I) model/
IDENTIFY VAR = LOGREF;
ESTIMATE P = I /P = order of model/

MAXIT = 30 /maximum number of iterations = 30/
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METHOD = ML /use maximum likelihood/

PLOT; /plot ACF and PACF residuals to test for model fit/

*** Similar analyses of reference and treatment basins not shown for brevity ***

Appendix 9.3 SAS Program Code for Fitting an Intervention

Model to the Log Ratio Series

PROC ARIMA;
IDENTIFY VAR = LOGRATIO

CROSSCOR = (SI S2);
ESTIMATE P= I INPUT = (SI S2)

MAXIT = 30 METHOD = ML
PLOT;

/fit intervention model/

/indicate intervention variables/
/list input variables/
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Nonlinear Curve Fitting

Predation and Functional Response Curves

STEVEN A. JULIANO

10.1 Ecological Issues

10.1.1 Predation and Prey Density

The number of prey that an individual predator kills (or the number of hosts a
parasitoid attacks) is a function of prey density and is known as the functional
response (Holling 1966). In general, the number of prey killed in a fixed time
approaches an asymptote as prey density increases (Holling 1966). There are at
least three types of curves that can be used to model the functional response
(Holling 1966; Taylor 1984; Trexler et al. 1988) that represent differences in the
proportion of available prey killed in a fixed time. In type I functional responses,
the number of prey killed increases linearly to a maximum then remains constant
as prey density increases (figure 10.1 A). This corresponds to a constant propor-
tion of available prey killed to the maximum (density independence), followed
by a declining proportion of prey killed (figure 10.IB). In type II functional
responses, the number of prey killed approaches the asymptote hyperbolically as
prey density increases (figure 10.1C). This corresponds to an asymptotically de-
clining proportion of prey killed (inverse density dependence; figure 10.ID). In
type III functional responses, the number of prey killed approaches the asymptote
as a sigmoid function (figure 10.IE). This corresponds to an increase in the pro-
portion of prey killed (density dependence) to the inflection point of the sigmoid
curve, followed by a decrease in the proportion of prey killed (figure 10.IF).

Most ecological interest in functional responses has involved types II and III.
At a purely descriptive level, it is often desirable to be able to predict the number

178
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Figure 10.1 Three types of functional responses. The relationships between number of prey
eaten (AQ and number of prey present (AO are depicted in parts A, C, and E. The corre-
sponding relationships between proportion eaten (NJN) and number of prey present (N)
are depicted in parts B, D, and F.
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of prey killed under a given set of circumstances. Type II functional responses
especially have figured prominently in behavioral ecology, serving as the basis for
foraging theory (Stephens and Krebs 1986; Abrams 1990). Mechanistic models of
population dynamics of resource-limited consumers (e.g., Williams 1980) and
predation-limited prey (e.g., Hassell 1978) have also made extensive use of type
II functional responses. Biological investigations of functional responses may ad-
dress these different questions:

1. What is the shape (type) of the functional response? This question is often of
interest in attempting to determine whether density-dependent predation is a sta-
bilizing factor in predator-prey population dynamics, and should also be an-
swered before fitting any specific mathematical, model to the functional response
(van Lenteren and Bakker 1976; Hassell et al. 1977; Trexler et al. 1988; Casas
and Hulliger 1994; Kabissa et al. 1996).

2. What are the best estimates of parameters of a mechanistic model of the func-
tional response? This question must be answered by investigators who wish to
use functional responses in mechanistic models of resource competition or preda-
tion (e.g., Hassell 1978; Williams 1980; Lovvorn and Gillingham 1996).

3. Are parameters of models describing two (or more) functional responses signifi-
cantly different? Such a question may arise when different predator species or
age classes are being compared to determine which is most effective at killing a
particular prey (Thompson 1975; Russo 1986; Kabissa et al. 1996; Nannini and
Juliano 1998), when different species or populations of prey are being compared
to test for differential predator-prey coevolution (Livdahl 1979; Houck and
Strauss 1985; Juliano and Williams 1985), or when different environments are
being compared for predator effectiveness (Smith 1994; Messina and Hanks
1998; Song and Heong 1997).

These three questions require different methods of statistical analysis; these
analytical methods are the subject of this chapter. The general approach described
in this chapter comprises two steps: model selection and hypothesis testing.
Model selection involves using a logistic regression of proportion of prey killed
versus number of prey to determine the general shape of the functional response
(Trexler et al. 1988; Trexler and Travis 1993; Casas and Hulliger 1994; see also
chapter 11). Hypothesis testing involves using nonlinear least-squares regression
of number of prey eaten versus number offered to estimate parameters of the
functional response and to compare parameters of different functional responses
(Juliano and Williams 1987).

Both of these statistical methods are related to more typical regression models,
and I will assume that readers have some familiarity with regression analyses and
assumptions (see Neter and Wasserman 1974; Glantz and Slinker 1990). Al-
though the methods described in this chapter may have other applications in ecol-
ogy (section 10.4), the descriptions of procedures given in this chapter are fairly
specific to analyses of functional responses. General descriptions of methods for
logistic regressions are given by Neter and Wasserman (1974) and Trexler and
Travis (1993) and in chapter 11, and descriptions of methods for nonlinear regres-
sions are given by Glaritz and Slinker (1990) and Bard (1974).
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10.1.2 Mathematical Models of Functional Responses

Because most interest has centered on types II and III functional responses, the
remainder of this chapter will concentrate on these. Numerous mechanistic and
phenomenological models have been used to describe functional responses. Hoi-
ling's (1966) original model assumed that asymptotes were determined by time
limitation, with predators catching and eating prey as rapidly as they could. Hoi-
ling also assumed that (1) encounter rates with prey were linearly related to prey
density, (2) while predators were handling prey they could not make additional
captures, and (3) prey density was constant. He modeled type II functional re-
sponses using the Disc Equation:

where Ne - number eaten, a = attack constant (or instantaneous search rate),
which relates encounter rate with prey (=aN) to prey density, N= prey density, T =
total time available, and 7J, = handling time per prey, which includes all time
spent occupied with the prey and unable to attack other prey. This model is the
most widely used representation of the type II functional response. Although the
ecological literature contains numerous citations of this model with alternative
symbols, Holling's symbols are used throughout this chapter.

Type III functional responses can be modeled using equation 10.1 if the attack
constant a is made a function of prey density N (Hassell 1978). In the most
general useful form, a is a hyperbolic function of N:

where ft, c, and c? are constants. This is a more general form of the hyperbolic
relationship postulated by Hassell (1978), which was equivalent to equation 10.2
with d = Q. Substituting equation 10.2 into equation 10.1 and rearranging yields

In general, type III functional responses can arise whenever a is an increasing
function of ./V, Numerous mathematical forms could describe the relationship be-
tween a and N, and it is difficult to know beforehand which form will be best for
a given data set. The form given in equation 10.2 has the advantage that if certain
parameters are equal to 0, the expression reduces to produce other likely relation-
ships of a and TV (table 10.1). However, if both b and d are 0, then a is 0 and
there is no functional response.

These models describe predation occurring at a constant prey density N. For
experimental studies of predation, this assumption is often not realistic. In typical
functional response experiments, individual predators in a standardized state of
hunger are offered a number of prey (initial number = N0) under standardized
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Table 10.1 Various forms of the relationships between a and N produced by
equation 10.2"

Parameters
equal to 0

None

c
d

d and c

Resulting equation
for a

d + bN

1 + cN
d+bN

bN

\ + cN
bN

Relationship of a to N

Increasing to asymptote; intercept ̂  0

Linear increase; intercept * 0
Increasing to asymptote; intercept = 0

Linear increase; intercept = 0

"It is assumed that the functional response is known to be type III; hence at least b > 0.

conditions of temperature, light, container size, and shape. Usually prey are not
replaced as they are eaten, or they are only replenished at some interval. Although
it would be desirable for experimenters to replace prey as they are eaten (Houck
and Strauss 1985), this would obviously become prohibitive because it would
require continuous observation. After a set time (T), the number of prey eaten
(Ne) is determined. This process is repeated across a range of numbers of prey,
usually with replication at each number of prey. The resulting data set contains
paired quantitative values, usually (No, Ne). Investigators then attempt to answer
one or more of the three questions outlined in the first section by statistical analy-
sis of these data. Thus, in typical functional response experiments, prey density
declines as the experiment proceeds. Under such circumstances, equations 10.1
and 10.3 do not accurately describe the functional response, and parameters esti-
mated using these models will be subject to errors that are dependent on the
degree to which prey are depleted (Rogers 1972; Cock 1977; Juliano and Wil-
liams 1987; Williams and Juliano 1996). When prey depletion occurs, the appro-
priate model describing the functional response is the integral of equation 10.1 or
10.3 over time to account for changing prey density (Rogers 1972). For the type
II functional response (equation 10.3), integrating results in the random predator
equation,

where N0 = the initial density of prey.
For type III functional responses, the precise form of the model incorporating

depletion depends on whether the attack constant a is a function of initial density
(N0) or current prey density (N) (Hassell et al. 1977; Hassell 1978). The simplest
form arises when a is a function of initial density, as in equation 10.2:

We will use this form throughout this chapter.
Other mathematical forms have been used to model functional responses. Ivlev

(1961) used an exponential model based on the assumption of hunger limitation
of the asymptotic maximum number eaten to generate type II functional re-
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sponses. Several authors (e.g., Taylor 1984; Williams and Juliano 1985) have
used phenomenological models derived from Michaelis-Menten enzyme kinetics
to model type II functional responses (eq. 10.2 is such a model). Trexler et al.
(1988) showed that several phenomenological models could generate type II and
III functional responses. Although different models may be employed, the general
issues involved in statistical analyses of functional responses are similar. In this
chapter, I will concentrate on models derived from Holling's case of limited han-
dling time.

10.2 Statistical Issues

Many investigators have analyzed experiments done without replacement of prey,
but they have used models appropriate for predation with constant prey density
(equations 10.1 and 10.3; e.g., Livdahl 1979; Juliano and Williams 1985; Russo
1986). Such analyses are of questionable value because parameter estimates and
comparisons are sure to be biased and the shape of the functional response may
be incorrectly determined (Rogers 1972; Cock 1977). Although the biases associ-
ated with fitting equations 10.2 and 10.3 to data that incorporate prey depletion
have been well known since 1972 (Rogers 1972), this inappropriate approach
continues to be used and advocated (Fan and Pettit 1994, 1997) primarily because
fitting models such as equations 10.2 and 10.3 to data is a simpler task than
fitting models such as equations 10.4 and 10.5 (see Houck and Strauss 1985;
Williams and Juliano 1985; Glantz and Slinker 1990). Such models involving no
prey depletion have the desirable property of giving the correct expectation for
stochastic predation (Sjoberg 1980; Houck and Strauss 1985). However, if experi-
ments are conducted with prey depletion, prey depletion must be incorporated
into the statistical analysis, using equations 10.4 and 10.5, to reach valid conclu-
sions (Rogers 1972; Cock 1977). The wide availability of powerful statistical
packages makes fitting impicit functions like equations 10.4 and 10.5 rather
simple.

The most common method used to analyze functional responses is some form
of least-squares regression involving N0 and Ne (e.g., Livdahl 1979; Livdahl and
Stiven 1983; Juliano and Williams 1985, 1987; Williams and Juliano 1985; Trex-
ler et al. 1988). Some authors have used linear regressions, especially on linear-
ized versions of equations 10.1 and 10.4 (Rogers 1972; Livdahl and Stiven 1983).
However, these linearizations often produce biased parameter estimates, and com-
parisons of parameters may not be reliable (Cock 1977; Williams and Juliano
1985; Juliano and Williams 1987). Linearized expressions are also unsuitable for
distinguishing type II from type III functional responses.

Nonlinear least squares has proved effective for parameter estimation and com-
parison (Cock 1977; Juliano and Williams 1987), but it seems to be a less desir-
able choice for distinguishing types II and III functional responses (Trexler et al.
1988; Casas and Hulliger 1994). Distinguishing the curves in figure 10.1C and E
using nonlinear least squares could be done by testing for a significant lack of fit
for models using equations 10.4 and 10.5 (Trexler et al. 1988). Significant lack
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of fit for equation 10.4 but not for equation 10.5 would indicate a type III func-
tional response. These two types could also be distinguished by fitting a nonlinear
model using equation 10.5 and by testing H0: b - 0 and c = 0. Rejecting the null
hypothesis that b < 0 is sufficient to conclude that the functional response is of a
type III form. However, comparison of figure 10.1C and E illustrates why nonlin-
ear regressions involving NO and Ne are unlikely to distinguish the two types. In
many type III functional responses, the region of increasing slope is quite short,
hence the difference between the sigmoid curve of figure 10.IE and the hyper-
bolic curve of figure 10.1C is relatively small and will be difficult to detect in
variable experimental data (Porter et al. 1982; Trexler et al. 1988; Peters 1991).

Another difficulty in using equation 10.5 to distinguish type II and III func-
tional responses is that the parameter estimates for b, c, and d may all be nonsig-
nificant when incorporated into a model together despite the fact that a model
involving only one or two of these parameters may yield estimates significantly
different from 0. This may occur because of reduced degrees of freedom for
error in more complex models and inevitable correlations among the parameter
estimates.

10.3 Statistical Solution

10.3.1 Experimental Analysis

Analyzing functional responses and answering questions 1, 2, and 3 posed in
section 10.1.1 require two distinct steps. The methods best suited for answering
question 1 are distinct from those best suited for answering questions 2 and 3.
Further, question 1 must be answered before questions 2 or 3 can be answered.

Model selection: Determining the shape of the functional response. Trexler et
al. (1988) demonstrated that the most effective way to distinguish type II and III
functional responses involves logistic regression (Neter and Wasserman 1974;
Glantz and Slinker 1990) of proportion of prey eaten versus number of prey
present. Casas and Hulliger (1994) reached a similar conclusion using a more
complex approach to logistic regression. Logistic regression focuses the compari-
son on the curves in figures 10. ID and F, which are clearly much more distinct
than their counterparts in figures 10. 1C and E. Logistic regression involves fitting
a phenomenological function that predicts proportion of individuals in a group
responding (in this case, being eaten) from one or more continuous variables
(Neter and Wasserman 1974; SAS Institute Inc. 1989b; Glantz and Slinker 1990).
The dependent variable Y is dichotomous, representing individual prey alive (Y =
0) or dead (Y= 1) at the end of the trial. In this case, the continuous variable is
NO- The general form of such a function is

where P0, PI, PZ, PI, • • • , Pz are parameters to be estimated. In most statistical
packages, the parameters are estimated using the method of maximum likelihood
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rather than least squares (e.g., SAS Institute Inc. 1989a, procedure CATMOD;
see also chapter 15). In this method, rather than minimi/ing sums of squared
deviations of observed from expected, the probability of the observed values aris-
ing from the parameter estimates is maximized (Glantz and Slinker 1990). This
involves an iterative search for the parameter values that maximize the likelihood
function L:

where k is the subscript designating individual observations in the data set, and
Yt is the value of the dichotomous variable (1 for prey eaten, 0 for prey surviving).
For further details, consult Glantz and Slinker (1990, pp. 520-522).

The strategy is to find the polynomial function of NO that describes the relation-
ship of NJNo versus NO. The curves depicted in figures 10.ID and F may both be
fit by quadratic (or higher order) expressions. However, in figure 10.ID, the linear
term would be negative (initially decreasing), whereas in figure 10.IF the linear
term would be positive (initially increasing). Thus, one criterion for separating
type II and III functional responses by analyzing the proportion of prey eaten is
to test for significant positive or negative linear coefficients in the expression fit
by the method of maximum likelihood to data on proportion eaten versus NO- A
cubic expression will often provide a good fit to a type III functional response
(Trexler et al. 1988), and cubic expressions provide a good starting point for
fitting a logistic regression (Trexler and Travis 1993). Higher order expressions
will, of course, fit even better, but this improved fit is usually the result of a
better fit to points at higher values of N0 (see subsequent discussion). It is likely
that the initial slope of the curve will have the same sign. Whatever the order of
the expression that is fit, plotting observed and predicted values versus NO and
observing the slope near the origin is desirable for distinguishing type II and type
III functional responses (see chapter 3). At the model selection stage, significance
testing is not as important as is obtaining a good description of the relationship
of proportion eaten versus NO-

Distinguishing between type II and III functional responses requires determin-
ing whether the slope near N0 = 0 is positive or negative (figure 10.1). In design-
ing experiments, this is an important consideration in the choice of values for N0.
If values of A/o are too large, any region of density-dependent predation may be
undetected. Because the dependent variable is a proportion, the relative variability
of observations will necessarily increase at low NQ. Replication of observations
at very low NO should therefore be greater than replication of observations at
higher N0.

One alternative method for determining the shape of the functional response
curve is LOWESS (LOcally WEighted regrESSion, chapter 3). This computer-
intensive smoothing technique has the advantage of less restrictive assumptions
than regression techniques.

Hypothesis testing: Estimating and comparing functional response parameters.
Although logistic regression is the most useful technique for distinguishing the
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types of functional responses, many investigators want to fit the mechanistic mod-
els given in equations 10.1, 10.3, 10.4, or 10.5 to data to obtain estimates of the
parameters. Nonlinear least squares is the preferred method for obtaining such
estimates (Cock 1977; Williams and Juliano 1985, 1996; Juliano and Williams
1987). Because most experiments are done without prey replacement, equations
10.4 and 10.5 are appropriate. Both of these equations give only an implicit func-
tion relating Ne to N0 (with Nc on both sides of the expressions). Thus, iterative
solutions are necessary to find the predicted values of Ne for any set of parame-
ters. This can be done using Newton's method for finding the root of an implicit
equation (Turner 1989). Equation 10.4 can be rewritten as

The problem is to find the value of Ne that satisfies equation 10.8. Graphically,
this problem is represented in figure 10.2, in which the value of Ne at which
/(AQ = 0 is the value that satisfies equation 10.8. Newton's method approaches
this value iteratively, by using the first derivative of /(AQ [=/We)]- This deriva-
tive defines the slope of a line that crosses the horizontal axis at some point
(figure 10.2). The slope of this line can also be estimated from any two points (i,
i + 1) on the line by calculating the difference in the vertical coordinates over the
difference in the horizontal coordinates, or in this case

where Nei+i is the next value of Ne that serves to start an iteration. Each successive
step in the iterative process brings NeM closer to the true value that makes equa-
tion 10.8 true (figure 10.2). Ne is then the value of NeM at which the value of the
function /(AQ is sufficiently close to 0.

Using this procedure to run a nonlinear regression on an implicit function with
a software package such as SAS requires first substituting initial parameter esti-

Figure 10.2 Graphic representation of
how Newton's method is used to find

N,, the root of the implicit equation de-
scribing the functional response with

prey depletion (eqs. 10.4 or 10.5). The
point at which the function/(Ay

crosses the horizontal axis is the true
solution. Starting from Nei, new ap-

proximations of N,, are made using the
derivative of /(Afd): NeM = Nei - \f(Nei)l

f(Nd)}. The process is repeated at
each new approximate Ne until the

approximation is arbitrarily close to
the true value [i.e., fiWe) = 0]. See text

for details.
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mates into equation 10.8 and obtaining an initial estimate of JV,.. The nonlinear
least-squares routine then computes sums of squares and modifies parameter esti-
mates so that the residual sum of squares is minimized. With each new set of
parameter estimates, Newton's method is reemployed to determine Ne.

Using nonlinear least squares assumes normally distributed, homogeneous er-
ror variance over the range of N0 (Bard 1974; Glantz and Slinker 1990). Most, if
not all, real data fail to meet these assumptions because variance typically in-
creases with N0 (Houck and Strauss 1985; Juliano and Williams 1987; Trexler et
al. 1988). Violating these assumptions in analyses of functional responses may
result in confidence intervals that miss the true parameter values more often than
expected (Juliano and Williams 1987). It appears, however, that even fairly se-
vere departures from these assumptions distort the results only slightly and non-
linear least squares is thus relatively robust (Juliano and Williams 1987). Residual
plots (Neter and Wasserman 1974) can be used to examine these assumptions
graphically. In extreme cases, other remedial measures may be necessary, such
as using a gamma distribution of residuals (Pacala and Silander 1990), nonpara-
metric regressions (Juliano and Williams 1987), or weighted nonlinear least
squares, which may be implemented in the SAS procedure NLIN (SAS Institute
Inc. 1989b).

10.3.2 Examples and Interpretation

The following two examples illustrate how to go about answering the three ques-
tions described in section 10.1.1. Both are based on published functional response
data.

Example 1. Notonecta preying on Asellus. Notonecta glauca is a predatory
aquatic hemipteran. Asellus aquaticus is an aquatic isopod crustacean. This origi-
nal experiment was described by Hassell et al. (1977). Raw data are given by
Trexler et al. (1988) and Casas and Hulliger (1994). Individual Notonecta were
exposed to a range of densities of Asellus from 5 to 100, and allowed to feed for
72 hours, with prey replaced every 24 hours. Substantial prey depletion occurred
over the 24-hour periods. At least eight replicates at each density were run. The
questions of interest were questions 1 and 2 in section 10.1.1: What is the shape
of the functional response? and, What are the best parameter estimates for the
function describing the functional response?

The first step in analyzing the data is to use logistic regression to determine
whether the functional response is type II or type III. Data input for this analysis
using the SAS procedure CATMOD features the following: (1) two data lines for
each replicate are given, one for prey eaten (FATE = 0) and one for prey alive
(FATE =1); (2) when FATE = 0, the variable NE is equivalent to Ne (prey eaten);
and (3) for a given replicate, NE sums to NO. This data structure allows both
analysis of proportions using logistic regression in CATMOD and, with minor
modification, analysis of number eaten using nonlinear least squares.

The first step in evaluating the shape of the functional response is to fit a
polynomial logistic model. Cubic models are likely to be complex enough to
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describe most experimental data, hence the specific form of the logistic equation
is

where P0, Fb P2, and P3 are parameters to be estimated. Program steps to fit this
model to data are given in appendix 10.1A at the book's companion Website [see
http://www.oup-usa.org/sc/0195131878/]. Once estimates of parameters from the
logistic regression have been obtained, observed and predicted mean proportions
eaten can be plotted (figure 10.3).

After information concerning the data set are input and iterative steps toward
the solution are taken (not shown), CATMOD produces maximum likelihood tests
of hypotheses that the parameters are zero, along with a likelihood ratio test,
which tests the overall fit of the model (table 10.2A). A significant test indicates
lack of fit. In this example, all parameters are significantly different from 0, and
even this cubic model still shows significant lack of fit. Next, the output shows
the actual parameter estimates with their standard errors (table 10.2B). The inter-
cept is not particularly informative. Because the linear parameter (labeled NO in
the output) is positive and the quadratic parameter (labeled N02 in the output) is
negative, these results indicate a type III functional response, with proportion
eaten initially increasing then decreasing as N0 increases, as in figure 10. IF. A
simple verification of this can be obtained by plotting observed mean proportions
eaten along with predicted proportions eaten (program steps not shown), which
clearly indicates a type III functional response (figure 10.3). The scatter of the
observed means around the predicted curve is consistent with the significant lack-
of-fit test. A better fit would likely be obtained by fitting quartic or higher order
equations to the data. Fitting a quartic equation (results not shown) to this data

Figure 10.3 Observed mean pro-
portions of prey eaten at each

initial prey density in the Noto-
necta-Asellus example, and the
fitted relationship produced by

logistic regression. Parameter es-
timates for the logistic regres-
sion are given in table 10.2B.

http://www.oup-usa.org/sc/0195131878/


Table 10.2 SAS Output for example 1, analysis of Notonecta-Asellus data'

A. Procedure CATMOD: Maximum-likelihood analysis of variance table

Source DF Chi-Square Prob.

INTERCEPT
NO
N02
N03
LIKELIHOOD
RATIO

1
1
1
1

85

28.68
6.66
7.52
5.67

206.82

0.0000
0.0098
0.0061
0.0172

0.0000

B. Procedure CATMOD: Analysis of maximum-likelihood estimates

Effect Parameter Estimate Standard Error Chi-Square Prob.

INTERCEPT
NO
N02
N03

1
2
3
4

-1.3457
0.0478

-0.00103
5.267E-6

0.2513
0.0185
0.000376
2.21 1E-6

28.68
6.66
7.52
5.67

0.0000
0.0098
0.0061
0.0172

C. Procedure NLIN: Full model

Nonlinear Least-Squares Summary Statistics
Dependent Variable NE

Sum of
Source

Regression
Residual
Uncorrected Total
(Corrected Total)

Parameter

BHAT
CHAT
DHAT
THHAT

DF

4
85
89
88

Estimate

0.000608186
0.041999309
0.003199973
3.157757984

Squares

9493.754140
1766.245860

11260.000000
4528.808989

Asymptotic
Std. Error

0.0246696938
2.6609454345
0.0591303799
1.7560019268

Mean Square

2373.438535
20.779363

Asymptotic 95%
Confidence Interval

Lower Upper

-0.0484419866 0.0496583578
-5.2486959321 5.332694549
-0.1143675708 0.1207675172
-0.3336593588 6.6491753258

D. Procedure NLIN: Reduced model 1

Source

Regression
Residual
Uncorrected Total
(Corrected Total)

Parameter

BHAT
DHAT
THHAT

Nonlinear Least-Squares Summary Statistics
Dependent Variable NE

Sum of
DF Squares Mean Square

3 9526.797240 3175.599080
86 1733.202760 20.153520
89 11260.000000
88 4528.808989

Estimate

0.000415285
0.000835213
4.063648373

Asymptotic
Std. Error

Asymptotic 95%
Confidence Interval

Lower Upper

0.00022766485 -0.0000373001 0.0008678694
0.00380836014 -0.0067355902 0.0084060158
0.35698844155 3.3539756864 4.7733210598
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Table 10.2 Continued

E. Procedure NLIN: Reduced model 2

Nonlinear Least-Squares Summary Statistics
Dependent Variable NE

Sum of
Source

Regression
Residual
Uncorrected Total
(Corrected Total)

DP

2
87
89
88

Squares

9525.757196
1734.242804

11260.000000
4528.808989

Mean Square

4762.878598
19.933825

Asymptotic 95%

Parameter

BHAT
THHAT

Estimate

0.000460058
4.104328418

Asymptotic
Std. Error

0.00010357262
0.28920091748

Confidence Interval

Lower

0.0002541949
3.5295076540

Upper

0.0006659204
4.6791491819

"Only the analysis and final parameter estimates are shown; output from the iterative phases of NLIN is omitted for
brevity.

set yields a significant fourth-order term, but does not alter the general shape of
the curve and does not alter the conclusion that Notonecta shows a type III func-
tional response to Asellus. Independent logistic analysis using more complex
methods (Casas and Hulliger 1994) and analysis using LOWESS (chapter 3) also
yield the conclusion that Notonecta shows a type III functional response.

If a cubic equation yields a nonsignificant cubic parameter (labeled N03 in the
output), then even if all other parameters are nonsignificant, it is desirable to
reduce the model by eliminating the cubic term from equation 10.10 and to retest
the other parameters. Models fit with excess nonsignificant parameters may be
misleading.

The utility of determining by logistic regression whether a functional response
is type II or type III is apparent when attempting to answer the second question
and determining values of the parameters. If logistic regression indicates a type
II functional response, a simpler model can be fit. In this case, the more complex
type III model is known to be necessary.

To fit a mechanistic model to the data and to estimate parameters, nonlinear
least-squares regression is used (SAS procedure NLIN, SAS Institute Inc. 1989b).
Several methods are available in this procedure, some of which require the partial
derivatives of the nonlinear functions with respect to the parameters of the model.
A simpler derivative-free procedure (referred to as DUD in SAS) is also available,
and because of its simplicity, this procedure will be used. In many cases, different
methods within the procedure NLIN will yield similar results. However, investi-
gators may wish to try two or more methods on the same data set to determine
whether the solution is independent of the method used. NLIN allows program-
ming steps to be incorporated into the procedure, and this makes it possible to
use Newton's method to solve the implicit functions given in equations 10.4 or
10.5.
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If the experiment had been done with prey replacement (constant N), NLIN
could be used to fit one of the explicit nonlinear relationships given in equations
10.1 or 10.3. For this circumstance, the lines from the "Define implicit function"
comment through the MODEL statement (appendix 10.1 A on Website) would be
eliminated and replaced with a simple model statement representing equation 10.1
or 10.3.

In this example, because logistic analysis indicates a type III functional re-
sponse, the general function given in equation 10.5 is the starting point. This
initial model involves the estimation of four parameters. Three parameters (b, c,
and d), which are defined in equation 10.2, also define the relationship between
the attack constant, a, and N0. Because the functional response is type III, at least
the parameter b in equations 10.2 and 10.5 must be greater than 0. This will prove
important in defining reduced models if the full model is not satisfactory. The
fourth parameter is Th.

The original data set must be modified to use nonlinear least squares. Data
lines enumerating prey alive (FATE = 1) are deleted, resulting in one paired ob-
servation, with values (N0, Ne).

NLIN, like other nonlinear procedures, is iterative and requires initial estimates
of the parameters. In many cases, the success of nonlinear regression depends on
having reasonably accurate estimates of the parameters. In functional response
models, handling time (T^) can be approximated by T/Ne at the highest N0. In this
model of type III functional responses, initial estimates of the other parameters
are less obvious. The parameter d is likely to be small in many cases, hence an
initial estimate of 0 usually works. For b and c, it is usually best to select several
initial estimates varying over as much as two orders of magnitude and to let the
procedure find the best initial estimate. This is illustrated in appendix 10,1 A (on
Website) for initial values of the parameter b. Multiple initial parameter values
may be useful for Th and d as well; however, using multiple initial values for all
four parameters may require long computation time. Values of all parameters
depend on the time units chosen.

NLIN allows bounds to be placed on parameters, and this step should always
be used in the analysis of functional responses. This will help to avoid nonsensical
results, such as negative handling times. In type III functional responses, the
parameters Th and b must be greater than 0, and the parameters c and d must be
nonnegative. In appendix 10.1A and B, a BOUNDS statement is used to set these
limits.

Use of Newton's method to find A\ also requires an initial estimate of A\ For
simplicity, observed values of Ne may be used, as in appendix 10.1. Mean Nc at
each value of N0 could also be used and would likely be closer to the final value
of Ne, hence it would reduce the number of iterations necessary to reach a solu-
tion.

The strategy for obtaining parameter estimates is to begin with the full model
(four parameters) and to eliminate from the model the parameters c and d (one
parameter at a time) if these are not significantly different from 0 (appendix
10.1 A, B). For a type III functional response, the minimal model includes T"h and
b. In the output from NLIN, significant parameters have asymptotic 95% confi-
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dence intervals that do not include 0 (table 10.2C). For the full model (input in
Appendix 10.1A), estimates of b, c, and d were not significantly different from 0
(table 10.2C). The next step is to eliminate the parameter c, resulting in a linear
relationship of a to N0, and rerun the model (program steps not shown). Again,
all parameters except Th were not significantly different from 0 (table 10.2D).
The final step is to eliminate the parameter d, resulting in the minimal model for
a type III functional response, and rerun the model (appendix 10. IB on Website).
In this case, the parameters b and TJ, were both significant (table 10.2E), indicat-
ing that the relationship of a to NO is linear with a slope (+SE) of 0.00046 ±
0.00010 and the line passes through the origin. Handling time is estimated to be
4.104 ± 0.289 h.

Graphic presentation of observed and predicted values (figure 10.4) indicates
a very short region of density dependence and a reasonably good fit of the model
to the data. A residual plot (not shown) indicates that variance increases with N0,
as is common in functional response data sets. Weighted least squares may be
needed to remedy this problem.

Because this type III response is described by a two-parameter model, it can be
compared to the alternative two-parameter model for a type II functional response
(constant a). Fitting a type II functional response results in parameter estimates ±
SE of d = 0.0240 ± 0.0043 and fh = 0.908 ±0.161. Both parameters are signifi-
cantly different from 0. However, residual sum of squares for the type II model
is 1813.5—considerably greater than that for the minimal type III model (table
10.2E). Thus, a type III functional response fits the data better than a type II
functional response, even though the number of parameters is the same. This
example also illustrates the value of using logistic regression to establish the type
of functional response, even if the primary interest is in estimating the parameters.
Once it is known that this is a type III functional response, the decision of which

Figure 10.4 Observed numbers
of prey eaten in the Notonecta-
Asellus example, and the func-

tional response curve fit by non-
linear least squares. Parameter
estimates for the functional re-

sponse are given in table 10.2E.
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two-parameter model to choose is simplified. Finally, this example illustrates how
models with excess parameters (the four- and three-parameter models) may give
misleading conclusions.

Example 2. Toxorhynchites preying on two strains of Aedes triseriatus. Aedes
triseriatus is a tree-hole dwelling mosquito from eastern North America. In the
southern part of its range, larval A. triseriatus are preyed upon by larvae of Toxor-
hynchites rutilus, a large predatory mosquito. In the northern part of its range,
larval A. triseriatus do not encounter this predator. Livdahl (1979) conducted
functional response experiments in which single first-instar T. rutilus were offered
3 to 48 first-instar larvae of one of two strains of A. triseriatus, one from northern
Illinois, where T. rutilus is absent, and one from North Carolina, where T. rutilus
is abundant. Predation proceeded for 24 hours, with prey not replenished. The
primary question of interest was number 3 in section 10.1.1: Do the functional
responses of the predator to the two prey strains differ, and, if so, which parame-
ters differ?

Analyses of these functional response data have already appeared in the litera-
ture (Livdahl 1979; Juliano and Williams 1985). Both of these analyses were
conducted assuming a type II functional response and using equation 10.1, the
model appropriate for experiments done at constant prey density (no depletion).
However, the experiments were conducted with prey depletion (Livdahl 1979),
hence equation 10.4 is in fact the appropriate model. It also appears that explicit
tests of the form of the functional responses have never been done (Livdahl 1979;
Juliano and Williams 1985). Hence, the conclusion from prior analyses (Juliano
and Williams 1985) — that the two populations do produce significantly different
functional responses, with attack constants (a), but not the handling times (rh),
significantly different — may be based on inadequate analyses.

To test for differences in the parameters of the functional response, nonlinear
least squares will again be used. However, we will use indicator variables (Neter
and Wasserman 1974; Juliano and Williams 1985; Juliano and Williams 1987) to
test the null hypotheses that the parameters for the two groups differ. Such a test
could also be implemented by fitting two separate regressions to the data and
then comparing parameter estimates (see Glantz and Slinker 1990, pp. 500-505).
The indicator variable approach has the advantage of producing an explicit test
of the null hypothesis of equal parameters (Neter and Wasserman 1974). The
indicator variable approach is analogous to the computational method employed
by SAS in the procedure GLM for linear models with categorical and continuous
variables, such as analysis of covariance models (chapter 5).

To compare type II functional responses of two groups, the implicit function
with indicator variables is

where j is an indicator variable that takes on the value 0 for population 1 and the
value 1 for population 2. The parameters Da and Dn estimate the differences
between the populations in the values of the parameters a and Th, respectively. If
these parameters are significantly different from 0, then the two populations differ
significantly in the corresponding parameters. For population 1, a and fh are the
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estimates of the population parameters ai and Thi. For population 2, a + Da and
fh + Dfk are the estimates of the population parameters a2 and Th2.

To employ this model, the variable j must be present in the data set. The model
is implemented in NLIN in the same way that the previous models for a single
population were implemented, using Newton's method. Initial estimates of Da =
0 and D-[ = 0 usually are adequate. The estimates of a and Th for the two popula-

tions take on the same values that would be obtained from separate regressions
on the two populations (Juliano and Williams 1987).

In analyzing this experiment, it is, again, first necessary to determine the shape
of the functional response. CATMOD was used to fit equation 10.10 to the data
for each of the two populations (not shown). For both populations, the cubic
coefficient was not significantly different from 0. Fitting a quadratic model to the
data resulted in quadratic and linear coefficients that were significantly different
from 0 in both populations (not shown). The estimates of the linear terms were
significantly less than 0, whereas the estimates of the quadratic terms were signif-
icantly greater than 0, indicating a shape similar to that illustrated in figure 10.ID,
as well as type II functional responses. Plots of observed mean proportions eaten
and predicted values (not shown) support this conclusion. These results indicate
that fitting the indicator variable model in equation 10.11 is appropriate.

Input for fitting the indicator variable model is given in appendix 10.2 at the
Website, and partial output is in table 10.3. In this example, the North Carolina
population is arbitrarily designated as population 1 0 = 0) and the Illinois popula-
tion is designated as population 2 (/'=!). The populations do not differ signifi-
cantly in values of a or Tk (asymptotic 95% confidence intervals for Da and Z)T

include 0). From this output, f-tests can be conducted for the null hypotheses that
£>„ and £>T are 0 (t = parameter/asymptotic standard error, degrees freedom = DF

Table 10.3 SAS output from procedure NLIN for example 2, analysis of
Toxorhynchites—Aedes data"

Nonlinear Least-Squares Summary Statistics
Dependent Variable NE

Source

Regression
Residual
Uncorrected Total
(Corrected Total)

Parameter

AHAT
THHAT
DA
DTH

DF

4
79
83
82

Estimate

0.057857039
2.040486509
0.186433867

-0.016849199

Sum of Squares

5362.8970908
293.1029092

5656.0000000
964.7228916

Asymptotic
Std. Error

0.01527262547
0.25143619643
0.11875924855
0.29005690323

Mean Square

1340.7242727
3.7101634

Asymptotic 95%
Confidence Interval

Lower Upper

0.0274575315 0.0882565457
1.5400135252 2.5409594925

-0.0499513330 0.4228190660
-0.5941950459 0.5604966480

The output from procedure CATMOD is omitted.
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RESIDUAL). For the North Carolina population, aNC = 0.058 and for the Illinois
population, a,L = 0.244 (=dm + Da = 0.058 + 0.186). Da = 0.186, with £7, = 1.57,
indicating a nonsignificant difference at P = 0.10. Thus the attack constants do
not differ significantly. This conclusion differs from that reached by Juliano and
Williams (1985), who used an indicator variable model that did not incorporate
prey depletion (equation 10.1) and who concluded that the two populations had
significantly different values of a. The results of the analysis in table 10.3 actually
produce values of a that differ in the same direction (dNC < OIL) and by a greater
absolute amount (aNC = 0.058, d^ = 0.244) than the values of a from the analysis
by Juliano and Williams (1985) (aNC = 0.040, a[L = 0.068). The conclusions based
on the model incorporating prey depletion are more realistic, and the earlier re-
sults of Juliano and Williams (1985) appear to have been biased by the use of a
model that did not incorporate prey depletion.

Using this indicator variable approach, it is possible to fit models with some
parameters in common between the populations (e.g., by dropping the parameter
DT , a model with common Th would result). In this example, such a model yields

h

the same conclusion regarding the difference between aNC and a^ (not shown).
Although the results of this analytical approach are often clear, some experi-

ments can yield analyses that are harder to interpret. Functional response curves
may not reach asymptotes (Nannini and Juliano 1998) either because predator
behavior changes to partial consumption of prey at high prey density or because
prey densities are simply not sufficiently high. Direct comparisons of parameters
may be difficult when the form of the functional responses (type II versus type
III) differs between predators (Kabissa et al. 1996) or between conditions (Mes-
sina and Hart 1998). Nonetheless, application of these methods has been success-
ful in several cases (Kabissa et al. 1996; Messina and Hanks 1998), enabling
investigators to estimate and to compare functional responses.

10.4 Related Techniques and Applications

A nonparametric method for estimating parameters for the implicit form of the
type II functional response has been described (Juliano and Williams 1987). This
method is based on earlier work describing nonparametric methods for estimating
nonlinear enzyme kinetics relationships (Porter and Trager 1977). This nonpara-
metric method has the advantage of not requiring the assumption of normally
distributed error. In simulated data sets, parameter estimates from the nonpara-
metric method are comparable in variability and low bias to those produced by
nonlinear least squares (Juliano and Williams 1987). The nonparametric method
has several disadvantages: (1) direct comparisons of parameters between experi-
mental groups is difficult; (2) few, if any, statistical packages implement this
procedure directly; and (3) computational time and programming effort required
are considerably greater than those associated with nonlinear least squares.

The general approaches outlined in this chapter have other applications in eco-
logical studies. Logistic regression has been used to test for density-dependent
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survival in field experiments that manipulate density (e.g., Juliano and Lawton
1990) and for comparing survivorship curves under different, naturally occurring
conditions (e.g., Juliano 1988). Nonlinear least squares can be used to fit growth
curves (e.g., Sedinger and Flint 1991; see also chapter 8) and to estimate parame-
ters for lognormal distributions of species abundances (e.g., Ludwig and Reynolds
1988).
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II

Logit Modeling and
Logistic Regression

Aphids, Ants, and Plants

TED FLOYD

I I. I Ecological Issues

11.1.1 Example

Ecological data are often discontinuous or categorical. This means that measure-
ment variables tend to have values like "present vs. absent" or "treatment
vs. control." The example that I consider in detail in this chapter involves categor-
ical data at nearly every level of analysis: patterns of association among preda-
tory ants in the genus Pheidole, herbivorous aphids in the genus Aphis, and host
plants in the genus Piper. Categorical measurements include experimental manip-
ulation of ant abundance (ants present vs. ants removed), experimental manipula-
tion of host plant quality (fertilized plants vs. control plants), observations
of aphid abundance (colony present vs. colony absent), characterization of aphid
diet breadth (specialist vs. generalist), year of study (year 1 vs. year 2), and so
forth.

An important topic in categorical data analysis is causality. In some cases,
the direction of causality is obvious. For example, year of study cannot be influ-
enced by aphid abundance, but the reverse is theoretically possible. In other cases,
however, causal order is far from obvious, and the ant-aphid-plant system pres-
ents a good case study for distinguishing among alternative causal models. I will
focus primarily on the hypothesis that aphid abundance is influenced by the other
factors in the system, but a proper justification of this view awaits further discus-
sion.

197
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11.1.2 Definitions

In the broadest sense, categorical data analysis seems to refer to any situation
where one or more variables are discontinuous. Such situations are ubiquitous in
nature. However, I will restrict this discussion primarily to cases were the distri-
bution of a categorical response variable is influenced by one or more predictor
variables that can be either categorical or continuous. In the ant-aphid-plant
system, for example, we might wish to know whether the presence or absence of
aphid colonies (a categorical response variable) can be explained by the presence
or absence of predatory ants (a categorical predictor variable) and/or by the total
phenolic content of the aphid host plant (a continuous predictor variable). Tradi-
tional ANOVA, in which a continuous response variable is modeled on a categori-
cal predictor variable, is not usually viewed as a type of categorical data analysis.
A summary of widely used names for major families of causal analyses of cate-
gorical and continuous data is given in table 11.1. In this chapter, 1 discuss two
major related topics (logistic regression and logit modeling) that fall under the
general rubric of categorical data analysis.

The distinction between categorical and continuous variables can be blurred—
sometimes by semantics, but sometimes by legitimate mathematical considera-
tions. Truly continuous and unbounded random variables (of the sort that ordinary
least-squares (OLS) regression technically requires) are rather uncommon in ecol-
ogy. Conversely, many discrete measurement classifications represent underlying
continuous variables that are difficult or impossible to measure (e.g., deterrent vs.
neutral vs. attractant). In other cases, we may know the underlying continuous
distribution, but find it necessary to create artificial categories (e.g., higher than
median vs. lower than median); this may be due to a paucity of data or to nonran-
dom sampling across the domain of the distribution. In any case, it is desirable
to view the problem along a broad spectrum, rather than as a clear dichotomy.

This spectrum of random variable distributions along the continuous-categori-
cal axis should be apparent to anyone who has ever examined an aphid (table
11.2). The midgut redox potential of an aphid is an example of a continuous
random variable that is unbounded, because it can theoretically take all values
between +°° and —°°. Body mass is also continuous, because it has a lower bound
of zero. Crawling speed, another continuous random variable, is likewise bounded
from below by zero, but it also bounded from above by the speed of light (and,
practically, at lower velocities by other factors). The number of setae is an inter-

Table I I . I Commonly used names of analyses of categorical and continuous data

Response
Variable

Continuous

Categorical

Predictor Variables

Continuous

OLS regression

logistic regression

Categorical

analysis of
variance

logit modeling

Mixed

analysis of
covariance

logistic regression
or logit modeling
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Table 11.2 Characteristics of an aphid, showing a broad range of random variable
distributions

Distribution Example

Continuous, unbounded rnidgut redox potential
Continuous, upper or lower bound body mass
Continuous, upper and lower bounds crawling speed
Categorical, many regular intervals seta number
Categorical, few regular intervals generation
Categorical, ordinal with fairly evenly distributed rankings instar
Categorical, ordinal with unevenly distributed rankings diet breadth
Categorical, nominal with no apparent ranking species

val variable with so many regular divisions as to resemble a continuously distrib-
uted variable. However, the numbers of generations (say, in a population study),
although also divisible into regular intervals, are typically so few that the continu-
ous approximation is risky. The instars (first, second, third, and so forth) of an
individual aphid are ordinally distributed, in rankings that are not perfectly regu-
lar, even though the biological "distances" between adjacent instars may be
roughly equivalent. However, the categorization of aphid diet breadth (monopha-
gous, oligophagous, polyphagous, and so on) implies no such equivalency be-
tween adjacent rankings. Finally, the classification of aphids as different species
is truly nominal and imparts no information whatsoever about relative ranking.

There are pedagogical and analytical advantages to be gained from viewing
this spectrum of random variables as a hierarchy (Agresti 1990) in which un-
bounded continuous distributions are highest and pure nominal distributions are
lowest. Analytical methods are nested within this hierarchical framework, such
that statistical procedures for any given situation can be used lower in the hierar-
chy, but not higher in the hierarchy. For example, methods for ordinal variables
can be used on interval variables, but not vice versa.

I will focus on causal categorical models that are best suited to the analysis
of purely nominal data where there is no intrinsic ranking of the variable levels
(as in the case of the different species of aphids). Fortunately, these methods
are fairly robust and can accommodate many classes of ordinal categorical vari-
ables. Moreover, there has been considerable recent progress toward the develop-
ment of analyses that are explicitly designed for ordinal data (Ishii-Kuntz 1994).
But unless otherwise indicated, my approach throughout will be to focus on nomi-
nal data, which is at the extreme categorical end of the spectrum of random
variable distributions (table 11.2). The approach is idealized, but it is conceptually
straightforward and it is robust.

11.1.3 Causality

Categorical data analyses typically distinguish between cause and effect (section
11.1.2, table 11.1). For example, I have assumed (thus far without justification)
that the presence or absence of an herbivore is determined by two factors: (1) the
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presence or absence of natural enemies, and (2) total phenolic content of the host
plant. We might represent causal direction in this system as

(phenolics, predators) (herbivores)

There is no a priori reason to believe that the preceding model is correct. Perhaps
the system is controlled by bottom-up forces,

(phenolics) (herbivores) (predators)

or perhaps it is controlled by top-down forces,

(predators) (herbivores) (phenolics)

Any of the preceding scenarios, or a combination of them, is plausible.
How do we know which model is correct? There are three approaches to the

problem of determining causal order, and the best idea is to draw from the
strengths of all three, described here:

1. The first approach is to rely on statistical methods, such as path analysis (chapter
12) or graph theory (Christiansen 1997), that partition complex models into ex-
planatory and response factors. This approach is especially successful in restro-
spective and observational studies.

2. The second approach is to conduct an experiment. Experiments have the power-
ful advantage of controlling the direction of causality, but it is important to real-
ize that experiments do not necessarily prove that a particular causal hypothesis
is correct. The advantages and disadvantages of ecological experiments are dis-
cussed by Diamond (1986), Hilborn and Mandel (1997), and Houston (1997).

3. The third approach is to rely on knowledge and familiarity of the study organ-
isms. Sometimes ecological theory can guide us toward one causal model or
another; but in many cases, there are well-established theories for more than one
causal model. Thoughtful perspective on the importance of "a feeling for the
organism" is given by Keeler (1983).

Intrinsic causal direction is probably far less straightforward than is often imag-
ined (Bungs 1959; Davis 1985), and we will pay careful attention to causality in
the development of categorical data models. In turn, we will see that modern
methods of categorical data analysis have very handy properties vis-a-vis the
problem of causality.

I 1.2 Statistical Issues

11.2.1 Overview

Consider two straightforward sets of data (table 11.3). In the first case (table
11.3A), we might test the association between host chemistry and herbivore pref-
erence using a %2 goodness-of-fit test. In the second case (table 11.3B), we would
probably use OLS regression to test the relationship between caloric intake and
body mass. Typically, these two procedures are presented as mathematically unre-
lated. However, we will see that the two methods are, in fact, closely related, and
that similar methods can be used for either type of data.
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Table 11.3 Relationship between two variables

A. Categorical variables

Host Chemistry Herbivore Preference

toxic
palatable
toxic
toxic
toxic
palatable
palatable
toxic
palatable
toxic

B. Continuous variables

rejects
accepts
accepts
rejects
rejects
accepts
accepts
rejects
rejects
rejects

Caloric Intake (Kcal) Body Mass (kg)

901
844
910
1005
970
726
906
1029
930
986

72
64
80
73
71
55
76
89
72
78

11.2.2 OLS Regression Revisited

It may seem odd to review OLS regression—the workhorse of continuous data
analysis—in a chapter on categorical data analysis. However, the basic OLS re-
gression model provides the fundamental statistical framework on which categori-
cal data modeling is based. The regression model, F; = SpjXa + u,, places no re-
strictions on the X values (i.e., the predictor variables), except that they be
noncollinear. Otherwise, the values of the X values are totally unconstrained: they
can be continuous or categorical, or anything in between. One consequence of
this is the fact that ANOVA (X1 s are categorical) and regression (X' s are continu-
ous) are really the same statistical procedure. A good treatment of this subject
can be found in Hamilton's (1992) text.

The central problem in OLS regression is to model, or predict, the response
variable Y in terms of k X's, by estimating the unknown k (3-coefficients. In other
words, the goal is to make the predicted value of 7, as represented by the sum of
the (3X's, as close to the observed value of Y as possible. No other manipulation
or transformation is required. Therefore, we say that the response variable and
the predictor variables are connected, or related, via the identity link.
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The identity link imposes certain restrictions on the distribution of the Y val-
ues. Since the X's are unconstrained, the Fs must be unconstrained, too. That is,
the Fs must be continuously distributed along the entire domain of X's. But
ecology is full of cases where the Fs are strongly constrained. For example, we
have already asked whether the probability of occurrence (i.e., presence/absence
data) can be related to one or more predictor variables. The problem is that proba-
bility, p, is a highly constrained response variable: 0 <p < 1. This constraint intro-
duces several severe violations of the assumptions of OLS regression (Aldrich
and Nelson 1984), and it is unadvisable to attempt to transform the data to meet
OLS regression assumptions (Trexler and Travis 1993). In particular, the popular
angular transformation (i.e., siiT'Vp) is recommended against, especially in cases
where/? is close to 0 or 1 (J. C. Trexler, written commun., 1999).

It is therefore necessary to remove the constraints on the Fs — or in the present
case, the p's. We can remove the upper bound by dividing p by 1 —p. This
manipulation is well known to gamblers and is termed the odds transformation,
O. The odds are unbounded from above and span this range of values: 0 < O < +
oo. To remove the lower bound, we take the logarithm of the odds and call the
result the logit transformation (whence "logit modeling" and "logistic regression"
in table 11.1). The logit transformation has the very useful property of being
continuous, unbounded, and symmetrical around zero. We can now rewrite the
transformed regression function as

which relates the Fs and X's according to the logit link. The logit link restores
the assumptions of the regression model, and it powers categorical data analysis.

11.2.3 Odds Ratios

The simplest possible categorical data model is a 2 x 2 array. For example, the
data in table 11. 3 A could be conveniently reconfigured as a 2x2 array (table
11.4) in which host chemistry (palatable vs. toxic) would be plotted against herbi-
vore preference (accepts vs. rejects). The marginal odds that an herbivore will
accept a host are 4 to 6 (0.67). The conditional odds that an herbivore will accept
a palatable host are 3 to 1 (3.00), and the conditional odds that an herbivore will
accept a toxic host are 1 to 5 (0.20). In direct comparison, it is 15 times more
likely that an herbivore will accept a palatable host than a toxic host. The ratio
of two conditional odds (here, 3.00/0.20) is called the odds ratio. The odds ratio
is a very important quantity with some rather unusual properties.

The odds ratio is important, because it provides a measure of association
within a table; if there is no association (i.e., if there is independence), the odds
ratio is equal to one. A test of significance is given by dividing the logarithmic
odds ratio by its asymptotic standard error and comparing the result against the
Z-distribution (standard normal). The asymptotic standard error is equal to die
square root of the sum of the reciprocals of the cells in the 2 x 2 array. In the
present example, the Z-statistic is given by
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Table I 1.4 Relationship between host chemistry (palatable vs. toxic)
and herbivore preference (accepts vs. rejects)

Herbivore Preference

Host Chemistry Accepts Rejects Total

Palatable
Toxic
Total

3 1 S = 4
1 5 1 = 6

E = 4 E = 6 12=10

which is not statistically significant (P = 0.0889). The same result can be obtained
by computing a %2-statistic for the association, but comparison against the Z-
distribution has a powerful pedagogical advantage: it disabuses us of the notion
that contingency table analysis is somehow nonparametric. In fact, contingency
table analysis is based on the standard normal distribution.

The odds ratio is unusual because it is invariant under marginal transposition
(rows and columns can be interchanged) and because it is invariant under mar-
ginal multiplication (each entry in a row or column can be multiplied by a con-
stant). These are special properties of odds and odds ratios; probabilities do not
exhibit these properties. A more complete treatment is given by Edwards (1963).
In addition to whatever intrinsic mathematical appeal these properties may hold,
they also have practical consequences for statistical analysis and interpretation,
which can be summarized as follows:

1. Marginal transposition results from switching the axes of a 2x2 array, as would
happen if we reversed the causal order of a model. The odds ratio, and all other
test statistics and parameter estimates are unaffected, whether the model is (x)
—> (y) or (y) —> (x). However, probability ratios and differences usually vary
between alternative causal models.

2. Marginal multiplication arises when we sample disproportionately on one level
of a variable. Such a scheme is often desirable or necessary because of the cost,
difficulty, or feasibility of sampling. Odds ratios are unaffected by marginal mul-
tiplication, but probability ratios and differences usually are.

Typically, these features are more useful in observational studies than in experi-
mental studies because a good experiment controls causal direction and samples
adequately across all levels of each variable. However, it is important to remem-
ber that careful observations often precede experimental studies and inform exper-
imental design. An observational study, with ambiguous causal direction and
unbalanced sampling, is discussed in section 11.4.2. First, we return to our experi-
ment on aphids, ants, and plants.

I 1.3 Statistical Solution

11.3.1 Experimental Design

A good first step in experimental design is to determine which variables are
predictors and which variables are responses. The variables of interest are herbi-
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vore distribution, predator distribution, host plant chemistry, and year of study.
As we have already seen, it is unlikely that year of study would be a response
variable; for example, it is hard to imagine how host plant chemistry could deter-
mine what year it is. However, the causal relationships among the remaining three
variables are not necessarily obvious. At this point, it is appropriate to turn to
ecological theory as a guide for experimental design. One particularly powerful
view of tritrophic interactions is that populations are influenced simultaneously
(and sometimes interactively) by top-down and bottom-up forces (Hunter and
Price 1992). This view has the very handy property of automatically ascribing
cause and effect in our system: predators are a top-down influence, plant chemis-
try is a bottom-up influence, and herbivores are caught in the middle as a response
variable. In the simplest possible form, the model could be written as

(predator distribution, plant chemistry, year of study) —> (herbivore distribution)

It is important to recognize that this model is based both on ecological theory
(with regard to the three biotic variables) and on physical fact (time is an indepen-
dent variable). It is equally important to remind ourselves that the experimental
approach is designed to control causal direction, not to prove that the causal
model is the right one.

The second step is to design the experiment. We can manipulate predator
abundance by removing or excluding ants from experimental plants, we can ma-
nipulate host chemistry by fertilizing plants, but we cannot do a thing about what
year it is. A similar experiment was performed by Krebs et al. (1995).

The third step is to describe the random variable distributions in this system
and to characterize the analytical design of the experiment. In the ant-aphid-
plant system, all three predictor variables are categorical. Predator occurrence is
a nominal categorical variable (present vs. absent) and so is host chemistry (fertil-
ized plants vs. control plants). Study year could be an ordinal categorical variable
(year 1 vs. year 2 vs. year 3); however, it simplifies matters to restrict the analysis
to only 2 years of study. The response variable (herbivore occurrence) is also a
nominal categorical variable: aphid colonies present versus aphid colonies absent.
The data constitute a 2 x 2 x 2 x 2 array, which is difficult to depict graphically.
A more typical presentation is given in table 11.5. There are approximately 40
replicates for each combination of treatment effects. The number of replicates is
not always 40 because a few plants may be lost or destroyed during the course
of the experiment.

11.3.2 Data Analysis: Log-linear Modeling

Categorical data are usually analyzed by a family of methods called log-linear
models. In their most general form, log-linear models do not distinguish between
predictor variables and response variables. When a model contains both categori-
cal response variables and predictor variables, it is usually called a logit model.
When a model contains a categorical response variable and continuous predictor
variables, it is usually called logistic regression. These distinctions are somewhat
semantic; logit modeling and logistic regression utilize similar analytical proce-
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Table 11.5 Four-way association among year of study (1 vs. 2),
fertilizer treatment (fertilized plants vs. control plants), predator
occurrence (ants present vs. ants removed), and herbivore occur-

rence (aohid colonies present vs. aphid colonies absent)

Year

1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

Plants

control
control
control
control
fertilized
fertilized
fertilized
fertilized
control
control
control
control
fertilized
fertilized
fertilized
fertilized

Ants

absent
absent
present
present
absent
absent
present
present
absent
absent
present
present
absent
absent
present
present

Aphids

absent
present
absent
present
absent
present
absent
present
absent
present
absent
present
absent
present
absent
present

N

31
9

22
18
27
12
17
23
31

8
22
19
26
13
15
24

dures and are based on similar assumptions, just as regression and ANOVA for
continuous response variables really are equivalent procedures (see Nelder and
Wedderburn 1972; Dobson 1990). In some treatments (e.g., Agresti 1990), the
difference among types of log-linear models has to do primarily with sampling
distributions. In other treatments (e.g., DeMaris 1992), the role of causality is
emphasized. We will develop an understanding of analytical methods for categori-
cal data by first examining simple two-factor tables and then working our way
up to three-factor and higher factor tables.

Two-way tables. As we have already seen, the simplest possible categorical
data model is a 2 x 2 array. In this situation, the null hypothesis of no relationship
is tantamount to an assumption of independence between two variables. The ex-
pected cell counts under the null hypothesis can be estimated from the marginal
proportions, in the following manner:

where m,j denotes the expected count in cell m,j, ZEm^ denotes the total sample
size, Em,+ denotes the subtotal in row i, and Im+j denotes the subtotal in column
j. To simplify matters, we can refer to the three terms on the right-hand side of
the equation as n (total sample size), pi+ (the marginal proportion in row i), and
p+j (the marginal proportion in column f), respectively, as follows:

We can now represent my as a linear function of the new terms on the right-hand
side of the equation, via logarithmic transformation, as follows:
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Intuitively, the preceding equation tells us that the logarithm of the expected cell
count can be partitioned into three additive components: an effect associated with
location in row z, an effect associated with location in column j, and a constant
term. The logarithms of the variables have been expressed as a linear function of
each other; this is why we refer to the result as a log-linear model. The similarities
among the present derivation, the logit transformation (section 11.2.2), and the
OLS regression model should be apparent.

In addition to the model of independence, there is a slightly more complex
model that admits the possibility of interaction between the rows and columns.
Using an even more simplified terminology, we can write this equation as

where [z] denotes an effect of variable z, [/'] denotes the effect of variable j, and
[y] denotes the effect of variable [z/]. This model, with all terms present (both
main effects plus their interaction) is called the saturated model. By definition,
the saturated model provides a perfect fit to the data. But it is not necessarily the
simplest or most correct description of association. In fact, it may be unnecessar-
ily complex and quite incorrect. Instead, a lower order model may be superior.
In fitting log-linear models, an important objective is to identify the most parsi-
monious model that fits the data. Model-fitting procedures are sometimes confus-
ing to newcomers to categorical data analysis, but the basic approach is straight-
forward: a model "fits" if the model ^-statistic is greater than the critical cc-value
(usually 0.05 or 0.10). Practically speaking, a model with a good fit is one that
yields estimated cell frequencies that are statistically indistinguishable from the
null hypothesis of no association among variables. In the case of a two-way
relationship, model selection is trivial: either the most parsimonious model—the
model of independence, ln(m,y) = [z] + [j] fits or it does not. In the case of higher
order relationships, model selection is not nearly so trivial.

Three-way tables. In the case of a three-way analysis, the saturated model is

Although there were only two possible two-way log-linear models (the saturated
model, ln(mij) = [z] + [/'] + [y'], and the model of independence, ln(m,;/) = [z] + [/']),
there are nine possible three-way log-linear models (table 11.6). The nine differ-
ent log-linear models refer to at least five different general patterns of association
among three factors. Model 1 is called complete independence, and it means that
everything is independent of everything else. In model 1, the observed cell counts
do not differ significantly from the expected cell counts. Models 2, 3, and 4 are
the three models of joint, or marginal, independence. For example, the model
}n(mijk) = [i ] + [/'] + [k] + \jk] tells us that factor i is independent of factors j and
k. Models 5, 6, and 7 are the three models of conditional independence. For
example, if factors j and k are independent of each other at each level of factor i,
then this relationship is given by the model ln(m,#) = [z] + [j] + [k] + [y'] + [z'fe].
Model 8 does not have a name; it has posed something of a pedagogical chal-
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Table I 1.6 Hierarchical log-linear models for a three-way association

Model Interpretation

1. ln(mijt) = [i] + [j] + [k]
2. \n(mljt) = [i] + (j] + M + L/fc]
3. \n(m,Jt)=[i] + U] + m + [ik]
4. ln(m,Jt) = [i] + [/'] + [k] + [ij]
5. In(ms4) = [i] + [/I + W + ['*] + [/*]
6. InKO = [i] + [/] + [k] + [i/] + [/fc]
7. ln(mst) = [i] + [/] + [fc] + [y] + [ife]
8. ln(mp) = [i] + [/] + M + [17] + [ifc] + Ijk]
9. ln(msi) = [i] + [/] + [fc] + [ij] + [ifc] + [/*] + (ijk]

i, j, k completely independent
j marginally independent of j and k
j marginally independent of i and k
k marginally independent of i and j
i and j conditionally independent of k
i and k conditionally independent ofj
j and k conditionally independent of i
see text
saturated model

lenge, ever since it was first brought to light by Bartlett (1935). Tautologically,
it is the model with no three-way interaction term; substantively, it is the model
in which no pair of variables is conditionally independent. Finally, model 9 is the
saturated model, which we have already considered.

Four-way and higher way tables. As we have just seen, three-way tables are
considerably more complex than two-way tables. And the jump to four-way tables
is vastly more complex: whereas a three-factor analysis contains 9 log-linear
models, a four-factor analysis contains 114 log-linear models. A five-factor analy-
sis contains thousands of log-linear models, and nobody has even bothered to
determine the number of log-linear models in a six-factor analysis. This is sober-
ing news for ecologists, especially in light of Kareiva's (1994) view that higher
order interactions are the rule, not the exception, in ecology.

Recall that an important goal in higher order categorical data analysis is to
find the most parsimonious model that fits the data. To do so, it is not necessary
to diagnose the hundreds or thousands of possible models. A particularly elegant
solution to the problem of higher order model selection comes from graph theory,
which is discussed in a general context by Fienberg and Kim (1999) and in an
ecological context by Boecklen and Niemi (1994). Readers who are unfamiliar
with graph theory can instead use stepwise procedures, which are conceptually
straightforward. We can either add terms in stepwise fashion, via stepwise for-
ward selection, or delete terms, via stepwise backward elimination. Stepwise
methods are highly sensitive to the cutoff values (i.e., critical cc's) for inclusion
or exclusion of a term, so it is advisable to compare methods from different
selection procedures (Christiansen 1997). Further details are given in SAS
(1989a).

11.3.3 Worked Example: Logit Modeling

Let's return to the experiment on aphids, and see how the principles of model
selection can be put into action. It is tempting simply to report a four-way
model with all terms and interactions present. But as we will see, the saturated
model can be unnecessarily complex and misleading. Instead, let's work through
the data, moving from simple associations to more complex ones. We will use
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logit modeling, because our experiment on aphids involves (1) only categorical
variables and (2) an assumption about causality. There are strong similarities
between a logit analysis and a log-linear analysis of these data, but the logit
analysis is simpler, shorter, and easier to understand. An excellent exercise would
be to compare the results between a logit analysis (see subsequent discussion)
and a log-linear analysis (the SAS code in appendix 11.2 at the Website can be
used for this purpose). DeMaris (1992) provides a comparison between the two
methods.

We begin with an analysis of the effect of ant removal on aphid occurrence,
restricting our attention to ants and aphids on control plants in year 1. The odds
ratio is (31/9)7(22/18) = 2.82. Note the direction of this relationship: aphid colo-
nies are 2.82 times more likely to be present on plants from which ants were not
removed—the opposite of what was predicted. Perhaps the ants are beneficial
mutualists, instead of predators on the aphids. According to the output from the
SAS program in appendix 11.1, the relationship is statistically significant (%2 =
4.39, df = 1, P = 0.0361). The preceding results can also be generated by a two-
factor log-linear model or with a hand calculator. Recall that a test of significance
can be obtained by dividing the logarithmic odds ratio by its asymptotic standard
error and comparing the result against the standard normal distribution (Z = 2.10,
df= 1, P = 0.0361). The output from the SAS program in appendix 11.1 yields
the following logit model:

where [H] denotes the occurrence of aphid colonies and [P] denotes the effect of
ant removal. A precise interpretation of the numerical coefficients will be taken
up in section 11.3.4.

We can now expand the year 1 analysis to include the effect of fertilizer addi-
tion. The saturated model for this association is

Note that the only lower order model,

provides an excellent fit to the data (model P = 0.9102). (Recall that a model fits
if its %2-value is greater than critical a). In the present case, the lower order model
is a simpler and better description of the effects of ant removal and fertilizer
addition on the presence or absence of aphid colonies. From the SAS output, we
see a positive effect of having ants present (P = 0.0016) and no effect of adding
fertilizer(F = 0.1660).

Finally, we conduct a four-factor analysis, involving one response variable
(presence or absence of aphid colonies) and all three predictor variables (ant
removal, fertilizer addition, and year of study). We assume that the organisms in
year 1 are not the same as the organisms used in year 2; if this were not the case,
we would need to use a repeated-measures approach (section 11.4.6). The rather
ungainly saturated model is
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Fortunately, all eight of the lower order models fit the data, so it is best to report
the simplest of these. This is the model of complete independence, which can be
written as

This model fits the data quite well (P — 0.9964), and it tells us that the occurrence
of aphid colonies is dependent on having ants present (P < 0.0001) and fertilizing
plants (P = 0.0220), but independent of year of study (P = 0.7779). An obvious
implication of this result is that an even simpler final model, [H] = [P] + [F], is
appropriate, but see section 11.4.4 for a cautionary note.

11.3.4 Interpretation of the Results of the Analysis:
Parameter Estimates

One of the strengths of the log-linear model approach is its interpretability. In
particular, log-linear modeling emphasizes the selection of simple models with
high interpretative power. At this point, then, we should have a good grasp of the
qualitative nature of the relationships in our model; specifically, the presence of
aphid colonies is positively affected by the main effects of having ants present
and adding fertilizer to plants, but unaffected by year of study. Now it is appro-
priate to consider the quantitative nature of association in categorical data anal-
ysis.

Parameter estimates provide quantitative measures of association among vari-
ables in a log-linear model and serve as clear analogs to regression (P) coeffi-
cients in OLS regression. We begin by rewriting the original two-way log-linear
model, ln(m,j) = [i] + [/'] + [ij], as

The ^-coefficients that provide unique estimators of the expected cell frequencies
are given by

Using the data in table 11.5, we proceed to obtain parameter estimates for the
case of aphid colonies absent, given ant removal. To keep matters simple, we
will restrict our analysis to control plants in year 1. The parameter estimates are
as follows:
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Substituting the ^-coefficients into the saturated log-linear model yields

Taking the exponent gives

which, conveniently, is the actual cell count.
We can now expand our treatment of parameter estimates to encompass the

logit model. The response variable, [H], is linked to the predictor variable, [P],
as follows:

Note the analogy with the regression equation:

We obtain parameter estimates as we did previously, for factor [H] conditional
on either level of factor [P]. For example, the parameter estimates for factor [H],
given ant removal, were shown in section 11.3.3 to be

Substituting the ^-coefficients into the equation yields

ln[H] = 0.5180 + 0.7187 = 1.2367

which is identical to the logarithm of the conditional odds of the absence of
aphids, given the removal of ants:

Finally, it can be shown that the odds ratio (2.82) is the ratio of the antilogarithms
of the two expected logics: exp(1.2367)/exp(0.2007).

11.3.5 Other Issues: Sample Size and Sampling Distribution

In any cross-classified data analysis, the fundamental unit of analysis is the cell
count, which is the number of observations of a particular combination of levels
of the variables in a study. The higher the cell count, the better. Of course, many
readers will wish to know just how low they can go, especially when dealing
with large and expensive organisms or study subjects. Fienberg (1979) provides
some basic guidelines that will be welcomed by those accustomed to the arbitrary
rule that each expected cell count must be >5; Molenberghs et al. (1999) give a
more general overview of the problem.

A particularly thorny problem is that of cell counts of zero, which can arise
for two reasons. The most common situation is the sampling (or random) zero,
in which one or more cells contain no observations because of insufficient sam-
pling. For example, an observational study of the associations among butterfly
coloration (bright vs. cryptic), toxicity (toxic vs. palatable), and response by pred-
ators (attacked vs. ignored) may fail to turn up any observations of brightly col-
ored toxic butterflies that are attacked by birds — even though this combination
may occur in the wild. Unfortunately, maximum-likelihood estimates cannot al-
ways be obtained for sampling zeros (Christiansen 1997). One approach is to
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transform the sampling zeros by adding a small constant to each cell (as suggested
by Haldane 1955 and SAS 1989a), but this can result in significant departures
from the correct asymptotic estimates (Knoke and Burke 1980). An alternative
approach, which may seem drastic but which sometimes makes good intuitive
(not to mention statistical) sense, is simply to exclude effects and interactions
with sampling zeros. In the previous hypothetical case, we might exclude toxicity
from the analysis and concentrate only on the association between butterfly color-
ation and the response of predators.

The other type of empty cell is called the structural (or fixed) zero. In this case,
a cell contains no observations because it is impossible for it to do so. There are
two ways in which structural zeros can occur. First, a particular cell may represent
an impossible combination of variable levels. For example, our study of butterflies
and predators may fail to turn up any observations of cryptic butterflies that happen
to be toxic—because this combination of factors is impossible in the particular
system we are studying. Second, a particular cell may contain no observations be-
cause it was lost or destroyed during the course of an experiment. Recall, for exam-
ple, that several of the plants were lost during the experiment on aphids, ants, and
plants (table 11.5). When analyzing cross-classified data with structural zeros, it is
usually necessary to exclude all empty cells from the analysis. When SAS is used
to analyze cross-classified data with empty cells, SAS assumes that all empty cells
refer to structural zeros unless instructed to do otherwise.

The various analytical methods for cross-classified categorical data are broadly
equivalent to one another, but they may assume different sampling distributions.
In most cases, the sampling distributions are either Poisson, if the total sample
size is random, or multinomial, if the total sample size is fixed. Technically, log-
linear models are appropriate for Poisson sampling, whereas logit models are
used for multinomial samples. Random sample sizes arise from situations where
the total sample size is not fixed by the observer; for example, our sample might
include all the butterflies that we were able to catch. In contrast, we might deter-
mine beforehand that our experiment is to involve 50 toxic butterflies and 50
palatable butterflies; mis would be an example of a fixed sample size. In the
aphid data (table 11.5), the total sample size is fixed, which provides another
justification for having used a logit analysis. Advanced discussion of fixed and
random samples is provided by Sokal and Rohlf (1995) and Underwood (1997).
Although these authors' conclusions refer explicitly to OLS regression, they are
broadly applicable to categorical situations as well. Note that the sampling distri-
bution (which refers to how the data were collected) is not the same thing as the
intrinsic distribution of the different levels of the study variables (nominal, ordi-
nal, continuous, and so on).

I 1.4 Related Issues and Techniques

11.4.1 Logistic Regression

Ecologists use the term logistic regression to refer to situations where we wish
to model a categorical response variable on a continuous predictor variable or
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variables, or on a mixture of continuous and categorical predictor variables. How-
ever, this usage is not universal. Regardless of what the procedure is called, it is
important point to know how to regress a categorical response variable on a
continuous predictor variable. Menard (1995) provides a good introduction to
logistic regression, and the sections on standardized regression coefficients and
indices of predictive efficiency are especially useful. For a review with specific
relevance to ecology, see Trexler and Travis (1993).

We can explore the properties and advantages of logistic regression by reexam-
ining our experiment on aphids. Until now, we have viewed fertilizer addition as
a categorical predictor variable: either plants receive fertilizer or they do not.
Another approach, however, would be to measure leaf nitrogen (presumably
higher in fertilized plants) and to use this information to predict the presence
or absence of aphid colonies. Data are given in table 11.7, and a SAS program
is provided on-line in appendix C. Leaf nitrogen is a continuous variable, so
logistic regression is appropriate. Hypothesis tests and parameter estimates are
generated using the same procedures we used previously, and the logistic regres-
sion is given by

where [H] denotes the logarithm of the odds that aphid colonies are present, as
previously, and [F] denotes the amount of nitrogen in a leaf sample. Thus, the
odds that an aphid colony is present on a plant with 13 g N/kg leaf dry mass are
given by

Note that the ^-coefficient (here, 0.3108) is a measure of unit change. Specifi-
cally, the odds that an aphid colony are present increase by exp(0.3108) for each
unit increase in [F]. This unit increase (1.36) is the odds ratio for logistic regres-
sion.

Table I 1.7 Effect of leaf nitrogen content on
aphid occurrence

Leaf nitrogen content
(g N/kg leaf dry mass)

11
11
12
14
17
16
20
22
23
24

Aphid colonies

absent
absent
absent
present
absent
present
absent
present
present
present
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11.4.2 Simpson's Paradox

In our previous treatment of higher way tables, we saw that the saturated model
and other complex models can be unnecessarily complex. Now we will see that
the saturated model can be plain wrong. Consider an observational study of the
association among herbivore occurrence (present vs. absent), parasitoid occur-
rence (present vs. absent), and host plant quality (low vs. high). Data are pre-
sented in table 11.8, and further reading on this interesting subject can be found
in Turlings et al. (1990).

This is an observational study with random sampling and no assumption of
causal order, so a log-linear model is appropriate. In the saturated three-way
model, the association between occurrence of herbivores and parasitoids is not
statistically significant (%2 = 0.08, df = 1, P = 0.7718). But when we collapse
across the effect of host plant quality and consider the simpler two-way log-linear
model, we do find a statistically significant association between the occurrence
of herbivores and parasitoids (%2 = 7.58, df = 1, P = 0.0059). We can look at this
another way: the two-way model without the interaction term does not fit (%2 =
7.77, df = 1, P = 0.0053). Examination of the odds ratio of the association be-
tween parasitoids and hosts also confirms this result:

The association is statistically significant (Z=2.75, df = 1, P = 0.0059).
In this case, parasitoid occurrence and herbivore occurrence exhibit conditional

independence but marginal association. Parasitoids and herbivores occur indepen-
dently of one another within either host plant category, even though the overall
pattern of occurrence is nonrandom. This phenomenon is termed Simpson's para-
dox, and it frequently arises in situations where marginal sample sizes are un-
equal. Simpson's paradox has received considerable attention from workers out-
side the biological sciences, and an interesting example from the ecological
literature is given by Horvitz and Schemske (1994).

Table 11.8 Three-way association among host plant quality (high
vs. low), occurrence of parasitoids (present vs. absent), and
occurrence of herbivores (present vs. absent)

Plant Quality

low
low
low
low
high
high
high
high

Parasitoids

absent
absent
present
present
absent
absent
present
present

Herbivores

absent
present
absent
present
absent
present
absent
present

N

48
17
27
11
3

11
9

37
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11.4.3 Hierarchical Log-linear Models

How can we resolve this paradox? The answer lies in making use of the fact that
log-linear models are nested, or hierarchical: ^-values and df values for higher
order models are composed of the additive %2-values and df values of lower order
models. In the present case, we wish to compare the %2 of the log-linear model
that contains the herbivore x parasitoid interaction term with the %2 of the log-
linear model that does not contain the term. The relevant models correspond to
model 1 and model 2 for the full log-linear model of association (appendix B at
the Website) among parasitoid occurrence [P], herbivore occurrence [H], and
plant quality [Q]:

By subtracting the model 2 parameters from the model 1 parameters, we get

These parameters are identical to the model parameters for the two-factor log-
linear analysis.

The take-home lesson is this: the saturated model (main effects plus interac-
tions) does not necessarily include all the statistically significant associations in
a system. Indeed, the saturated model masks a potentially interesting and statisti-
cally significant association between herbivores and parasitoids. This is not to say
the three-factor approach is wrong in this situation; rather, the best three-factor
model happens to be something other than the saturated model. In the present
case, it is necessary to consult one of the three models of marginal independence
(table 11.6). The preceding caveats apply to OLS regression and ANOVA as
well.

11.4.4 Nonhierarchical Log-linear Models

We have just seen that it is advantageous to view log-linear models as hierarchi-
cal, but it is also possible to test hypotheses about nonhierarchical log-linear
models. Any log-linear model that does not contain all the terms nested within a
higher order interaction term is nonhierarchical. An example of a nonhierarchical
log-linear model is

because it does not contain the [jk] term that is nested within [ijk]. Nonhierarchi-
cal log-linear models have peculiar interpretations (Knoke and Burke 1980), and
they should be used with caution. However, nonhierarchical models seem to hold
some promise for ecologists, and the interested reader would do well to consult
the recent work of Dyer (e.g., Dyer 1995) on this matter.

11.4.5 Polytomous Response Variables

The examples we have encountered to this point involved dichotomous categori-
cal variables. Fortunately, all of the methods discussed thus far extend readily to
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situations where a categorical response variable is polytomous. If, however, a
polytomous variable is ordinal, then we can increase the power of statistical tests
by making use of our knowledge of the known or suspected ranking of the various
levels of the variable. Although most methods for ordinal data are fairly new, it
is interesting that the problem dates back at least to Yule (1912). For a more
recent treatment, see Ishii-Kuntz (1994), who shows that, under many circum-
stances, ordinal log-linear models can be surprisingly powerful and highly flex-
ible.

11.4.6 Repeated-measures Analysis

Another area of recent activity by applied statisticians has been the case of re-
peated-measures categorical data modeling, in which multiple measurements are
made on the same individual or subject. The discussion in Vermunt (1997) pro-
vides a good introduction to the topic. In a typical application, a categorical re-
sponse variable might be measured at different points in time on the same individ-
ual or at different locations on the same individual. Recent inroads against the
problem of repeated-measures categorical data modeling have been admittedly
modest, in comparison with progress on analogous problems for continuous data
(chapter 8). However, it seems likely that the methods of generalized linear mod-
eling theory will prove useful in the development of a comprehensive and power-
ful approach to repeated-measures categorical data modeling.

11.4.7 Computational Issues

Parameter estimates and hypothesis tests for all but the simplest of categorical
data analyses cannot be calculated except with computer-intensive techniques. In
particular, iterative fitting procedures are required to obtain maximum-likelihood
estimates in log-linear models, and, more generally, in generalized linear models.
Fortunately, the major statistical packages can handle most problems in categori-
cal data analysis. For example, GLIM, BMDP, SPSS, MINITAB, and SAS can
be used for any of the topics discussed in this chapter.

The CATMOD procedure in SAS has gained some popularity among ecolo-
gists, and most of the SAS programs in the online appendix to this chapter use
CATMOD. CATMOD is satisfactory for most problems, but beware of the pa-
rameter estimates; curiously, they are reported in alphabetical order (as opposed
to the order in which they were entered), and all redundant parameters are omitted
from the standard report. The LOGISTIC procedure is useful for, not surprisingly,
logistic regression; what is surprising, however, is that parameter estimates and
logarithmic odds ratios are reported with the wrong signs, unless the DESCEND-
ING option is used in the PROC statement. The newer GENMOD procedure
seems to hold considerable promise for a wide variety of GLMs, including all of
the methods handled by the CATMOD and LOGISTIC procedures. In particular,
the GEE (generalized estimating equations) macro in GENMOD is highly flexible
and can handle repeated-measures and other problems that other categorical data
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procedures in SAS cannot (SAS 1989b; SAS 1996). For an application with spe-
cific relevance to ecology, consult Crawley's (1993) text on GLIM.
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Path Analysis

Pollination

RANDALL J. MITCHELL

12.1 Ecological Issues

Naturalists have recognized the importance of pollination in plant reproduction
for more than 2500 years (Baker 1983). However, modern attempts to understand
the details of this interaction have faced numerous difficulties. The major compli-
cation is that plant reproduction involves a number of sequential and relatively
distinct stages, and experimental investigation of all the stages simultaneously is
not feasible. Consider, for example, reproduction of the herbaceous monocarp
(dies after reproducing) scarlet gilia (Ipomopsis aggregata, Polemoniaceae), found
in mountains of western North America. Reproduction for this self-incompatible
plant depends on pollination by broad-tailed and rufous hummingbirds (Selas-
phorus platycercus and S. rufus) that probe the red tubular flowers to extract the
nectar produced within.

Because of the timing of events and the basic biology involved, a logical first
hypothesis about the factors influencing plant reproduction might be summarized
as follows:

plant traits visitation pollination reproduction

Each arrow indicates an effect of one class of traits on another. Other interactions
are possible (e.g., direct effects of plant traits on reproduction, or of traits such
as density or location on visitation), but I will ignore them for this initial example.

One way of determining whether this general hypothesis is correct is to mecha-
nistically (and especially experimentally) assess the effects of each component in
isolation from the others. Assuming that the components can be combined linearly

217
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and additively, the expected overall effect of each trait can be calculated using
the mean effects from different experiments. For example, three experiments on
three different groups of plants might indicate that (1) plants producing more
nectar receive more hummingbird visits, (2) plants receiving more visits receive
more pollen per flower, and (3) plants receiving more pollen per flower tend to
mature more seeds per flower. Multiplication of the numeric estimates for these
components predicts the effect of nectar production on seed production. For exam-
ple, (visits/mg nectar sugar) x (pollen deposited/visit) x (seeds/pollen deposited) =
(seeds/mg nectar sugar). Combining these estimates is intuitively satisfying but
depends on an untested assumption: each step in the pathway is independent of
(uncorrelated with) those preceding it, except for the causal linkages (Welsh et al.
1988). When this assumption is violated, estimated effect sizes can be misleading.
Unfortunately, violation may be common; for example, large plants may produce
both more nectar and more seeds/fruit (even with equivalent pollen/flower), so
that predictions based on the separate estimates would be inaccurate. Such corre-
lations among traits are common (e.g., Campbell et al. 1991), and current under-
standing of the factors causing the correlations is poor, so the assumption of in-
dependence is probably not justified in many cases.

12.2 Statistical Issues

Field biologists generally use two major approaches to deal with intertrait correla-
tions and complicated causal relationships: experimental manipulation and statis-
tical control. Experimental manipulation of suspected causes is a very effective
way to draw strong inferences about causality (e.g., Hairston 1989), primarily
because experiments eliminate correlations among traits through randomization
(but see Bollen 1989, p. 73, for some qualifications). However, experiments are
not always logistically possible, ethical, or even a reasonable place to start (Wright
1921). So, as effective as the experimental approach can be, it is not always
appropriate.

Statistical control is another way to deal with correlations among traits (Pedha-
zur 1982). A common example is multiple regression, which accounts for correla-
tions among causal variables to estimate the effect of a particular trait with all
else statistically held constant. Statistical control is especially suited for observa-
tional data, where we can capitalize on natural variation in the putative causal
variables. Multiple regression as a method of statistical control has one disadvan-
tage: it cannot directly handle complicated causal schemes, such as those outlined
previously for pollination, because it only deals with one dependent variable and
does not allow effects of dependent variables on one another. This same problem
applies to factor analysis and similar multivariate approaches.

Path analysis. Path analysis, the focus of this chapter, is a more general form
of multiple regression that allows consideration of complicated causal schemes
with more than one dependent variable and effects of dependent variables on one
another. Path analysis deals with intertrait correlations in the same way as does
multiple regression, thus providing statistical control. Though not a substitute for
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experimental research, path analysis (and other methods of statistical control)
can be especially valuable when used in combination with judiciously chosen
experiments, or as a way to analyze experimental data when some variables can-
not be randomized (e.g., sex) or when experiments are not possible (Hayduk 1987,
p. xii), provided that treatment levels can be ordered (e.g., amounts of fertilizer)
or that there are only two levels per treatment (e.g., pollinated vs. not; Schemske
and Horvitz 1988). The main difference is that the experimental method mini-
mizes correlations between the manipulated variables, so no correlation among
treatments need be hypothesized (see subsequent discussion).

Path analysis was originally developed by Sewall Wright (1920, 1921, 1934)
as a way to partition variation from observational data into causal and noncausal
components, according to a particular hypothesis. Along with the required mathe-
matics, Wright introduced the valuable concept of a path diagram, which summa-
rizes an overall hypothesis about how different variables affect one another (as
in the previous simple hypothesis). Before conducting a path analysis, you must
have at least one specific diagram in mind. In proposing the basic causal hypothe-
ses that make up the path diagram, use all the information available. As Wright
(1921, p. 559) noted, "There are usually a priori or experimental grounds for
believing that certain factors are direct causes of variation in others or that other
pairs are related as effects of a common cause." The diagram reflects natural
history, temporal sequence of events, intuition, and experience with the system.
Having clear causal hypotheses in mind before beginning the analysis is a critical
part of the process. After the fact, it is remarkably easy to change your ideas in
response to the data, but this compromises significance tests, as do a posteriori
comparisons in ANOVA. This is not to say that you should not have several
alternative hypotheses in mind; indeed, this is to be encouraged (Breckler 1990).
Methods for comparing different models will be discussed subsequently.

12.3 Statistical Solution

To demonstrate the implementation of path analysis, I use data from a study of
Ipomopsis aggregata. The original choice of traits and structure of the path dia-
gram were made a priori, but here I analyze a subset of traits chosen for instruc-
tive value. To test the very general hypothesis about pollination described pre-
viously, I have first customized the hypothesis to more specifically fit the biology
of Ipomopsis. Flowers of this species are hermaphroditic, so a full accounting of
reproductive success would consider both seeds mothered and seeds sired by a
plant. Budgetary and logistic considerations prevented estimation of the number
of seeds sired, so I only consider a measure of female reproductive success. The
customized path diagram is shown in figure 12.1. In path diagrams, a one-headed
arrow represents a causal effect of one variable on another (e.g., nectar production
affects approach rate), a curved arrow represents a correlation, and "U" represents
unexplained causes.

Three dependent variables (approaches, probes/flower, and proportion fruit set)
are shown in figure 12.1, and I will justify the causal relationships for each. In
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Figure 12.1 Hypothesized relationships determining hummingbird visitation and fruit pro-
duction for Ipomopsis aggregata (model 1).

some cases, several alternative causal hypotheses are possible; one major goal of
my analysis is to use the observed data to compare the explanatory value of those
alternatives.

Approach rate. Hummingbirds may respond to a wide variety of cues when
deciding which plants to visit. In this example, I consider two plant traits and one
indicator of local density of conspecifics. Based on foraging theory, on the work
of others, and on observation in the wild (Pyke et al. 1977; Wolf and Hainsworth
1990; Mitchell, unpublished data), I hypothesize that birds will preferentially ap-
proach and begin to forage at plants with high nectar production rates and many
flowers. For similar reasons, birds may more often approach plants in denser
clumps. Because little is known about the effects of clumping for Ipomopsis, this
path is not as well justified as the others; its usefulness will be considered in
section 12.3.4. Thus, the diagram includes causal arrows leading to approach rate
from plant traits (flower number and nectar production) and from nearest neigh-
bor distance.

Probes/flower/hour. The proportion of flowers probed might also be affected
by the same characters as approach rate, for similar reasons. Furthermore, before
a bird can decide how many flowers to probe on a plant, it must choose to
approach a plant, so an effect of approach rate is also hypothesized.

Proportion fruit set. Logically, the chance that a flower matures into a fruit
should increase with visitation rate, since each visit deposits additional pollen
(Mitchell and Waser 1992). I use two estimates of visitation rate, each with
slightly different properties. The first is approach rate, which may indicate the
ability of plants to attract hummingbirds from a distance. Such plants also might
consequently receive more cross-pollen and receive a higher diversity of pollen
genotypes, because each approach represents a new opportunity for pollen to
arrive from different plants. The second is probes/flower/hour, which represents
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the chance that a particular flower will be visited in a given time period. More
probes/flower/hour should deposit more pollen, which increases fruit (and seed)
set for Ipomopsis (Kohn and Waser 1986). Thus, I included both causal pathways
in the model.

Pollination is not the only factor affecting fruit set. Among many other poten-
tial factors, I have chosen to consider the effects of near neighbors. The proximity
of neighbors may indicate the extent of competition among conspecific plants for
resources (Mitchell-Olds 1987), and competition might influence the ability of
plants to mature fruits. I have therefore hypothesized effects of neighbor distance
on fruit set. Admittedly, little is known of the effects of neighbors for this species,
and I will consider these results with caution.

Correlations. Full analysis of a path diagram requires that the pattern of
unanaly/ed correlations among variables (the curved arrows) be explicitly stated.
Traits such as flower number and nectar production may be correlated with one
another for both genetic and environmental reasons. With detailed genealogical
information, the genetic components of that correlation could be directly analyzed
(Wright 1920; Li 1975). Likewise, detailed knowledge of the microenvironment
experienced by each plant might allow a causal interpretation of this correlation,
but that information also is unavailable. Consequently, I have hypothesized that
the two traits are correlated for unanalyzed reasons. Nearest neighbor distance
may be one cause of correlation between the plant traits (through effects on re-
source availability), but, since other interpretations are possible, I have modeled
its relationships with flower number and nectar production as unanalyzed correla-
tions.

12.3.1 Design of Observations

To test the causal hypothesis in figure 12.1, I measured floral traits, visitation,
and reproduction for a sample of plants in a natural population. Observation of
all these variables on the same individuals is required to apply the technique,
partly for reasons mentioned in section 12.1. Measurement methods are described
elsewhere (Campbell et al. 1991; Mitchell 1992). After deciding which variables
to consider, my primary consideration was sample size. A good rule of thumb for
both multiple regression and path analysis is to have, at minimum, 10-20 times
as many observations as variables (Harris 1985, p. 64; SAS Institute 1989a, p.
140; Petraitis et al. 1996; section 12.3.5). For this example, there are six variables,
so a sample size of >60-120 is reasonable. With this in mind, several assistants
and I recorded pollinator visitation simultaneously for five distinct subpopulations
of 23-30 plants each, for a total of 139 plants.

For each plant, I counted the number of flowers open on each day of obser-
vation and used the mean across days in the analysis. Mean nectar production
rate and mean distance to the three nearest neighboring conspecifics are straight-
forward to measure and calculate (Campbell et al. 1991). For visitation, I calcu-
lated number of approaches/hour of observation, then took the mean across seven
observation periods (about 70 minutes each). Likewise, for each observation pe-
riod, I divided the total number of flower probes/hour for each plant by the num-



222 Design and Analysis of Ecological Experiments

her of flowers open that day to measure probes/flower/hour, and I used the mean
across all observation periods. Proportion fruit set was calculated as fruits/total
flowers.

Like many parametric techniques, path analysis assumes that the distribution
of residuals is normal (section 12.3.5). Meeting this assumption is more likely if
the variables themselves are normally distributed. To this end, I transformed most
variables and tested the transformed and untransformed variables for deviation
from normality using the SAS procedure UNIVARIATE with the NORMAL op-
tion (appendix 12.1 at the book's Website). Transformations were natural loga-
rithms for flower number and nearest neighbor distance, square root for nectar
production, and arcsin-square root for proportion fruit set (also see table 12.1).

Path analysis, like other techniques, can be sensitive to missing data. For ex-
ample, some of my plants were eaten or trampled by animals before I could
measure all of the traits mentioned. There are two ways to deal with missing data.
First, do nothing (this is the default method for SAS). The result is that for some
traits there are observations from all plants and for others the sample size is
smaller. However, this method of "pairwise deletion" can occasionally make ma-
trix inversion impossible (SAS Institute 1989a, p. 287; Hayduk 1987, p. 327;
matrix inversion is a mathematical operation used in solving the regressions). A
second method is to completely ignore individuals with incomplete data by de-
leting plants for which there are no data for any one of the six variables. Most of
us are naturally reticent to discard any data, but such "listwise deletion" is gen-
erally the safest and most conservative approach (Hayduk 1987, p. 326). Un-
fortunately, there also are drawbacks, especially if the missing individuals are
not a random sample of the population (Bollen 1989, p. 376). Hayduk (1987,
p. 327) suggests a practical way to determine whether the method of deletion
matters: do the analysis once using each method. If the results do not differ
appreciably, there is no problem; otherwise, listwise deletion is preferable. For
the Ipomopsis data, I found no substantial difference between results from the
two deletion methods, and therefore I used listwise deletion for the nine plants
with incomplete data.

The observations of plants and pollinators can be summarized in a correlation
matrix (table 12.1). In some respects, this matrix answers some questions: there
is a significant positive correlation between nectar production rate and proportion
fruit set, which agrees with the idea that nectar production rate is important for
reproduction. Unfortunately, these simple correlations alone do not provide direct
information on the causal relationships. That is where path analysis comes in.

12.3.2 Data Analysis

A simple example. Consider the simple path diagram in figure 12.2, which rep-
resents a portion of figure 12.1. The diagram is a symbolic representation of the
following equations:

approaches = /?APH,NPRNPR + pAPH,u U

probes =/?PPF>NPR NPR + /?PPF,APH APH + /?PPF>U U
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Table 12.1 Observed and expected correlations8

FLR
NPR
NND
APH
PPF
PROPFS

FLRb

1.000
0.156
0.148
0.248

-0.145
-0.102

NPR

1.000
-0.130

0.271
0.141
0.213

NND

1.000
0.035

-0.064
-0.298

APH

1.000
0.676
0.182

PPF

1.000
0.247

PROPFS

-0.052
0.082

1.000

"Observed correlations are below the diagonal. The two expected correlations that deviate from observed
values are shown above the diagonal, in boldface (section 12.3.4). The expected correlations are derived from
model 1 (figure 12.3), using the SAS procedure CALIS.
bAbbreviations: FLR = ln(mean number of open flowers each day), NPR — (nectar production rate)1/2, NND =
ln(mean of distances to three nearest neighbors), APH = mean approaches/plant/hour, PPF = Mean probes/
open flower/hour, PROPFS = Arcsin(Proportion fruit set)"2.

The first equation states that all the variation in approach rate is accounted for by
nectar production and all other causes (U). The second equation states that the
observed variation in probes per flower is due to effects of nectar production and
approach rate. These equations may readily be solved as regressions: in SAS, you
simply state

PROC REG; MODEL APH = NPR/STB; MODEL PPF = NPR APH/STB

where APH = approaches/hour, NPR = Vnectar production, and PPF = visits/flower/
hour; these and other abbreviations are defined in table 12.1. SAS implicitly
assumes random errors of estimation due to all other unmeasured causes (U). The
option STB requests the standardized regression coefficients in addition to the
unstandardized output.

Path coefficients are standardized regression coefficients and, therefore, indi-
cate the number of standard deviations of change in the dependent variable ex-
pected from a unit change in the independent variable, with any effect of other
independent variables statistically held constant. For more on the interpretation
of standardized coefficients and statistical control, see Li (1975, p. 170) and Hay-
duk (1987, p. 39). In this simple example, SAS provides estimates of 0.27 for the
path from NPR to APH, -0.04 for /?PPF,NPR, and 0.69 for />PPF,APH-

NECTAR PRODUCTION
RATE APPROACHES

U

PROBES / FLOWERS

,U

Figure 12.2 Path diagram of a simple multiple regression.
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A useful way to think about the analysis so far is to focus on the fact that
SAS was effectively presented with a 3 x 3 matrix of correlations among three
variables:

NPR APH PPF

NPR
APH
PPF

1.00
0.27
0.14

1.00
0.68 1.00

Consider the correlation between nectar production and probes/flower. Under
the hypothesis embodied in figure 12.2, rNPRPpp (=0.14) consists of two compo-
nents: a direct effect and an indirect effect (Li 1975, p. 114). The direct effect is
the variation in probes that is uniquely attributable to variation in nectar, and the
optimal estimator of this is the path coefficient (partial regression coefficient)
from nectar to probes (/JPPF.NPR; -0.04 in this example). The indirect effect repre-
sents the portion of variation in probes jointly determined by nectar and ap-
proaches. The indirect effect occurs because nectar affects approaches directly
(PAPH.NPR = 0.27), so that a change in nectar should result in a correlated change
in approaches, which itself directly affects probes. A useful feature of path analy-
sis is that the direct and indirect effects can be read directly from the diagram by
tracing the two paths connecting nectar to probes [the rules for tracing paths are
described by Li (1975, p. 162)]. Thus, the correlation between nectar and probes/
flower can be decomposed into a direct effect (/?PPF,NPR) and an indirect effect
mediated through approaches (PAPH.NPR X£"PPF,APH)-

In equations, this is stated as

correlation of NPR and PPF = direct effect + indirect effect

or, in symbols,

Using the SAS estimates, we get

This decomposition indicates that the direct effect of nectar on probes (-0.02)
differs in magnitude and sign from the indirect effect (0.27 x 0.69 = 0.18).

A more complicated example. More complicated path diagrams are similarly
treated. Model 1 (figure 12.1) is an elaboration of the simple example, modified
to include more variables, as well as effects of dependent variables on one another
(e.g., nectar production affects approaches, which in turn affects probes/flower/
hour). Just as with the simple example, it is straightforward to write one equation
for each dependent variable in the model. Each equation includes a term for every
variable affecting that dependent variable, one term for each of the arrows leading
to that dependent variable.
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approaches = /?ApH,FLRFLR + PAPH.NPR NPR +PAPH.NND NND + pAPH,u U

probes/flower = /7PPF,FLR FLR + /?PPF,NPR NPR + />PPF]NND NND

+ PPPF.APH APH + />PPFiu U

proportion fruit set = /?PROPFS,APH APH + />PROPFS,PPF PPF

+ _PPROPFS,NND NND + /?PROPFS,U U

These equations and the model in figure 12.1 are synonymous, because the corre-
lations among the variables on the far left-hand side are assumed in the mathemat-
ics of regression.

One of the advantages of path analysis is that complicated equations can be
summarized in fairly simple diagrams. Relationships excluded from the diagram
(and therefore forced to equal zero) dictate the structure of the equations as much
as do those included. For instance, model 1 specifies that nectar does not directly
affect fruit set but may have indirect effects through approaches and probes/
flower; this is reflected by the fact that PPROPFS.NPR is fixed at zero and therefore is
not in the diagram or equations.

For three of the dependent variables (approaches/hour, probes/flower/hour, and
proportion fruit set), there are no unanalyzed correlations (i.e., no curved arrows
lead to them). The implicit assumption is that any correlations involving those
variables are completely accounted for by the hypothesized causal scheme. How-
ever, there can sometimes be substantial deviations between the correlations im-
plied by the model and the actual correlations, and these deviations can be used
to assess the agreement between the model and the observed data (section 12.3.4).

12.3.3 Worked Example

Solving the equations for model 1 is straightforward using SAS procedure REG
as outlined in section 12.3.2. The SAS code is on-line in appendix 12.1, and the
results are summarized in table 12.2 and figure 12.3. The path coefficients (dire
effects) in table 12.2 can be read directly from the SAS regression output (one

Table 12.2 Direct, indirect, and total effects for model la

Variable

FLR
NPR
NND
APH
PPF
R2

APH

DE" IE

0.20 —
0.24 —
0.04 —
— —

TE

0.20
0.24
0.04
—
—

0.12

DE

-0.32
-0.02
-0.04

0.76
—

Effect on

PPF

IE

0.15
0.18
0.02
—
—

i

TE

-0.17
0.16

-0.02
0.76

0.56

DE

—
-0.29

0.07
0.18

PROPFS

IE

-0.02
0.05

-0.00
0.14

TE

-0.02
0.05

-0.29
0.21
0.18
0.14

^Direct effects are path coefficients.
Abbreviations: DE = direct effect, IE = indirect effect, TE = total effect; other abbreviations as defined in table 12.1.
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Figure 12.3 Solved path diagram for model 1 (figure 12.1). Solid lines denote positive
effects, dashed lines denote negative effects. Width of each line is proportional to the
strength of the relationship (see legend), and paths significantly greater than 0 (P < 0.05)
are indicated with an asterisk. Actual values for path coefficients are in table 12.3.

regression for each of the three dependent variables) in the column labeled "stan-
dardized estimate." Figure 12.3 also presents the solution, and for ease of interpre-
tation, arrow width represents the magnitude of each path. The simple correlations
are provided by the SAS procedure CORR. The magnitude of the arrows from
"U" (unanalyzed causes) indicate influences on each dependent variable that are
unexplained by the causal diagram. Since the total explained variance in a depen-
dent variable is defined to be R2 (Li 1975, p. 178), the magnitude of the path
from U to any variable (px,u) is calculated as (1 - R2)112. Since R2 for PROPFS =
0.14 (table 12.2), PPROPFS,U = (1 - 0.14)"2 = 0.93. Calculation of total and indirect
effects is laborious but straightforward (Li 1975, p. 161; Pedhazur 1982, p. 590;
section 12.3.4).

12.3.4 Interpretation of Results

Once you have performed the path analysis, you must interpret it. What does the
diagram as a whole tell you? Which paths are especially important? Was your
original hypothesis correct? Path analysis has many applications, and each of the
questions just raised corresponds to one of the major uses of the technique (Sokal
and Rohlf 1995, p. 634).

Heuristic description. A path diagram is a compact method of presenting
abundant information that may not be easily absorbed from regression tables
(compare table 12.2 and figure 12.3, which are basically synonymous). Even a
brief glance at a path diagram such as figure 12.3 can give a substantial under-
standing of the results: nectar production has a strong effect on approach rate;
there are correlations among independent variables; approach rate has little direct
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effect on fruit set; and so forth. Because path diagrams are easily grasped intu-
itively, they can be very useful in data presentation (chapter 3).

Estimation of effect sizes. Sometimes we are primarily interested in the mag-
nitude of the direct effect of a particular variable when the effects of other vari-
ables are statistically held constant (Wright 1983). Since path coefficients are
really multiple regression coefficients, they fit this requirement nicely. Of course,
just as with multiple regression, the path solution is contingent on which variables
are included in the model. Inclusion of other independent variables might well
change the significance, size, and even the sign of coefficients (e.g., Mitchell-
Olds and Shaw 1987).

Testing hypotheses. Wright (1920, 1921, 1934) originally proposed path
analysis as a way to test explicit hypotheses about causal relations, but achieve-
ment of this goal was not generally practical until the advent of powerful comput-
ers. It now is possible (1) to actually test the hypothesis that a particular path
diagram is an adequate description of the causal processes generating the ob-
served correlations and (2) to compare the descriptive power of alternative models
(see subsequent discussion). Aside from directly testing hypotheses, path analysis
also can help indicate which experiments might be especially useful. For instance,
if path analysis indicates that pollinators respond strongly and directly to nectar
production, an experiment to verify that conclusion might be warranted.

Data dredging. This approach is tempting, but it should be used with caution
(Kingsolver and Schemske 1991). Data dredging is the opposite of hypothesis
testing: after the data have been collected, we look for interesting correlations
and assume that the strongest correlations are causal. There is nothing in the
mathematics that prevents us from then solving for a path diagram that allows
direct effects between strongly correlated variables, but the search through the
data has eliminated any element of hypothesis testing. Just as with a posteriori
comparisons in ANOVA, significance levels are not trustworthy for a posteriori
data dredging. Furthermore, the resulting causal interpretation will not necessarily
be accurate; simulation studies of artificial data reveal that data dredging seldom
arrives at the correct causal model (MacCullum 1986).

Some forms of data dredging are justified, however. For example, pilot studies
are often used to generate hypotheses and develop intuition about a system. Fur-
ther, cross-validation of a dredged model (i.e., attempting to fit the model sug-
gested by the data to an independent data set or to a previously unanalyzed por-
tion of the original data) also is acceptable and useful (Mitchell-Olds and Shaw
1987; Bollen 1989, p. 278; Breckler 1990).

Interpretation of the Ipomopsis model. If the diagram in figure 12.3 is cor-
rect, we can easily see the following: (1) there are strong effects of plant traits
on approach rate; (2) probes/flower is largely determined by approach rate and
(negatively) by number of flowers; and (3) nearest neighbor distance has strong
negative effects on fruit set.

Next, I evaluate those interpretations of the individual coefficients. But what
about the first proviso: is this diagram correct? This question has been a stum-
bling block in other fields (e.g., psychology, sociology, economics), as well as in
biology, and social scientists have made notable progress toward quantitatively
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assessing the agreement between the path diagram and the observed data. They
do this using the computer-intensive technique of "structural equation modeling,"
a more general form of path analysis. These analyses involve such complications
as latent factors, specification of errors, and correlation of errors, and also allow
tests of the goodness of fit of the model to the data. Although some of these
improvements are applicable in the simpler causal structures of most biological
applications and are incorporated in this chapter, it is not possible to cover this
enormous topic in this space. An overview of the field is provided in any of the
excellent general texts (e.g., Hayduk 1987; Loehlin 1987; Bollen 1990), and there
are a growing number of biologically oriented introductions to some aspects as
well (Maddox and Antonovics 1983; Johnson et al. 1991; Mitchell 1992; Pugesek
and Tomer 1995, 1996). For now, it is sufficient to discuss the agreement between
model and data.

In structural equation modeling, a goodness-of-fit statistic is used to assess the
agreement between the correlations actually observed in the data and the correla-
tions that would theoretically occur if the path diagram were correct (i.e., if the
causal structure in the path diagram were the actual causal structure). The good-
ness-of-fit statistic is calculated from the difference between the observed and
expected correlations (table 12.1). It is distributed approximately as a %2, with
degrees of freedom equal to the difference between the number of unique ob-
served correlations and the number of coefficients estimated. In the example,
there are 21 observed correlations and 19 estimated coefficients: 10 direct effects,
3 correlations, and 6 variances. That leaves 2 degrees of freedom for comparing
the observed and expected correlations.

Several computer programs quantify goodness of fit (e.g., EQS, LISREL;
Bentler 1985; Joreskog and Sorbom 1988), including a new procedure in SAS
version 6 known as CALIS (Covariance Analysis of Linear Structural Equations;
SAS Institute 1989a). Programming statements to implement CALIS for the ex-
ample are given on-line in appendix 12.2. The resulting output includes direct,
indirect, and total effects, as well as correlations, so it is not necessary to use the
REG procedure. However, to use CALIS and structural equation modeling, you
must learn the rather confusing jargon (Loehlin 1987; SAS Institute 1989a).

The observed and expected correlation matrices for the Ipomopsis data are
shown in table 12.1. The observed correlation matrix simply comes from the raw
data, and the expected correlation matrix is provided by CALIS in the standard
output. There are only two elements that are free to differ between these matrices,
corresponding to the 2 degrees of freedom for comparison. CALIS calculated the
%2 goodness-of-fit statistic for model 1 (figure 12.3) to be 3.71, with 2 df, P =
0.16, so the lack of fit of model to data is not significant. In this case, nonsignifi-
cance is good for the model; a nonsignificant %2 indicates that there is no signifi-
cant deviation between the observed and expected correlation matrices under this
model. In other words, the model in figure 12.3 has survived an attempted dis-
proof and remains as a potential explanation of the interaction. Whether such
agreement between model and data also indicates agreement between the model
and the actual causal structure is discussed by Bollen (1989, p. 67), but at least
the possibility has not been eliminated.
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The details of how the goodness-of-fit statistic is calculated are presented else-
where (e.g., Hayduk 1987, p. 132); the important point is that we now have a
way to determine whether the path diagram is reasonable. And for this example,
the hypothesis that this is a correct description of the interaction cannot be dis-
proved.

Not all path diagrams can be tested in this manner—the model must be "over-
identified." At a minimum, overidentification requires that there be more ob-
served correlations than estimated coefficients (i.e., there must be more knowns
than unknowns), but there are other requirements. A full discussion of model
identification is beyond the scope of this chapter; see Hayduk (1987), Loehlin
(1987), and Bollen (1989).

If the diagram as a whole had a poor fit to the data, it would be premature to
place much importance on the values of individual paths, because the model
might be of little descriptive value and the magnitude of individual paths might
therefore be misleading. But given that the goodness-of-fit test indicates that
model 1 might be reasonable, inspection of the individual paths is in order. In
many cases, this may suggest relevant experiments, and results from experiments
may suggest improvements or modifications to the path diagram. Such feedback
among observations, experiments, and hypotheses is an important part of the
strong inference approach to science (Platt 1964; chapter 1).

In model 1, nectar production has a significant effect on approach rate by
hummingbirds. One interpretation is that hummingbirds somehow identify or re-
member plants with high nectar production rates, and they preferentially approach
them. Because other evidence suggests that identification from a distance is un-
likely (Mitchell 1992), I have experimentally investigated the possibility that
hummingbirds actually remember the location of individual plants (Mitchell
1993); I found that birds do not seem to remember high nectar plants, although
they do respond after arriving and sampling some flowers. Since those results
disagree with the hypothesis that birds remember individual plants, my current
working hypothesis is that bird use spatial location as a cue to identify clumps of
plants with high or low nectar production rates. Note that nearest neighbor infor-
mation is apparently not used (figure 12.3). Although this seems a plausible ex-
planation after the fact, I would not have favored this hypothesis without the path
analysis and subsequent experimentation.

Flower number significantly affected both approach rate and probes/flower.
Although plants with many flowers were approached more often, flower number
negatively affected probes/flower. This decrease in probes may represent a pro-
portional cost to plants having many flowers if it lowers seed production.

Nearest neighbor distance had no significant effects on visitation behavior, but
had strong, negative effects on proportion fruit set. One potential explanation is
that short nearest neighbor distances indicate more intense intraspecific competi-
tion (Mitchell-Olds 1987; see Brody 1992 for an alternative explanation). As with
the previous examples, this prediction is amenable to experimental investigation.

The largest paths in all cases involve the unexplained influences on each de-
pendent variable (U), indicating that much of the variance in dependent variables
cannot be explained by this model, even though the goodness of fit is acceptable.
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This may be becaus any potentially important variables have not been included
(e.g., plant resources), but it also may mean that chance variation plays a large
role.

Comparing alternative path diagrams. Often, several different models are
considered feasible a priori. In the past, there was no quantitative way to choose
among models, but the goodness-of-fit test changes this by greatly increasing the
usefulness of path analysis. For instance, model 2 (figure 12.4) is an alterna-
tive to model 1 (section 12.3). Model 2 hypothesizes that nearest neighbor dis-
tance has no direct effect on hummingbird visitation behavior. The observed data
do not deviate significantly from what would be expected if model 2 were correct
(%2 = 4.44, 4 df, P = 0.35), so it also is an adequate description of the interaction.
Deciding which of these two acceptable models is a better description of the
interaction is facilitated by the fact that they are "nested." Nested models are
identical except that one does not include some effects hypothesized in the other.
Here, model 2 is nested within model 1 because it can be derived from model 1
by constraining the direct effect of neighbors on visitation to zero (by not estimat-
ing that path). To compare nested models, the difference in goodness of fit is
used, employing the fact that the difference between two %2-values also is distrib-
uted as a %2, with degrees of freedom equal to the difference in degrees of free-
dom between the two models (Hayduk 1987). There is a nonsignificant difference
in % between model 1 and model 2 (table 12.3). Because model 2 is simpler than
model 1 (it estimates fewer paths), we may prefer it based on the principle of
parsimony. But, given the fairly strong theoretical justification for estimating the
effects of neighbors on visitation, I will retain the more general model 1 for now.
Observations or experimental manipulations of nearest neighbor distance would
be useful in further evaluating model 2. Although these particular acceptable
models did not differ significantly, in general, there may be strong and significant

Figure 12.4 Solved path diagram for model 2, modified from model 1 to include no effects
of nearest neighbor distance on visitation. Conventions follow figure 12.3.
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Table 12.3 Nested comparison of alternative models with model 1 (figure 12.3)

Model
number

1
2

3

Goodness of fit

Description

See figure 12.3
Same as model 1, but no effects
of neighbors on visitation
Same as model 2, but no effects
of neighbors on fruit set

x2

3.71
4.44

16.28

df

2
4

5

P

0.16
0.35

0.006

Nested comparison
with model 1

X2 df P

0.73 2 0.7

12.57 3 0.01

differences among acceptable models. Indeed, social scientists frequently com-
pare nested models to choose among several otherwise acceptable hypotheses
(e.g., Loehlin 1987, p. 106).

Model 3 is another nested model, going one step further than model 2 by
proposing that nearest neighbor distance does not affect fruit set (figure 12.5).
The fit of model 3 is far inferior to that of model 1 (table 12.3), indicating that
effects of neighbors on fruit set are very important to an acceptable description
of the interaction. As mentioned previously, this may indicate the importance of
intraspecific competition (e.g., for nutrients, space, light, or pollination), among
other possibilities. Experimental manipulation of one or more of these potential
influences could be pursued, perhaps after some are eliminated by further obser-
vational study.

Model 3 illustrates an important difference between structural equation model-
ing and traditional approaches to path analysis. Without the goodness-of-fit test,

Figure 12.5 Solved path diagram for model 3, modified from model 2 to include no effects
of nearest neighbor distance on visitation or fruit production. Conventions follow figure
12.3.
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there would be no reason to reject model 3. Just as with model 1, some paths of
biological interest are large and /^-values for some dependent variables are rea-
sonable (for model 3, R2 = Q.12, 0.56, and 0.06 for approaches, probes/flower,
and proportion fruit set, respectively; compare to table 12.2). There would be no
real clue that a potentially important path is ignored in model 3 and no quantita-
tive method for deciding which is a more reasonable model. Without a way to
compare the fit of models, I probably would only have presented results from
one model and ignored those I did not consider likely. Because of this, the possi-
bility of alternative models should be carefully considered by both authors and
readers, even when goodness of fit is not assessed.

12.3.5 Other Issues

Path analysis relies on a number of assumptions. The assumptions of normal
distribution of residuals, additive and linear effects, and inclusion of all important
variables are discussed here. Other assumptions commonly made are that residual
errors are uncorrelated and that there is no measurement error. The latter assump-
tions may be relaxed when using structural equation modeling (section 12.4).

First, as with multiple regression, path analysis assumes that the residuals from
estimation are normally distributed. Appendix 12.1 (found at the book's Website)
demonstrates how to test this assumption using the SAS procedures REG and
UNIVARIATE. The same approach can be used to test residuals from GLM and
other SAS procedures. For the Ipomopsis data, residuals for several variables
departed significantly from normality, despite my transformations. Violation of
this assumption does not affect the magnitude of the path coefficients (Bollen
1989, p. 126), but significance tests may be untrustworthy. To deal with this, I
have compared the traditional significance levels for individual paths with those
from a delete-one jackknife test that does not assume normality (Mitchell-Olds
1987; chapter 14). In no case did significance values differ between the two
methods. This robustness gives me confidence in traditionally derived signifi-
cance levels for these data. If there had been disagreement between the two ap-
proaches, the jackknifed significance levels would probably be preferable.

The goodness-of-fit test assumes multivariate normality and, further, depends
on large sample sizes to utilize the asymptotic %2-distribution of the goodness-of-
fit statistic. Surprisingly, the assumption of multivariate normality is not very
restrictive, because it is a sufficient but not necessary condition for the goodness-
of-fit test (Cloninger et al. 1983), and the test is robust to skew and kurtosis
(Muthen and Kaplan 1985). Bollen (1989, p. 79) also argues that this assumption
is no more restrictive than those made for ANOVA. However, for field ecologists,
small sample size will often be a more pressing problem, since observations on
100-200 individuals (sampling units) are usually required to have confidence in
the goodness-of-fit test (Tanaka 1987). Because of both these limitations, %2-
values should generally be used more as an index of fit than as a rigorous statisti-
cal test. For example, model 3 does not fit the data well at all, whereas model 1
is reasonable; those conclusions are unlikely to be influenced qualitatively by
deviations from multivariate normality or by small sample size.
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Second, the analysis assumes that the causal relationships are additive and
linear. Wright (1960, 1983) claims that this assumption commonly is met. To test
for curvilinearity, inspection of raw data plots or residuals can be useful (Cohen
and Cohen 1983, p. 126; chapter 3; see also appendix 12.1). Curvilinear relation-
ships often can be modeled using quadratic and higher terms, as in multiple re-
gression (Sokal and Rohlf 1995, p. 609; Cohen and Cohen 1983, p. 369; Hayduk
1987, p. 219; Scheiner et al. 2000).

Third, the analysis assumes that information on all variables having strong
causal effects have been included in the analysis. The reasons for and conse-
quences of violating this assumption are covered in Cohen and Cohen (1983, p.
129) and Mitchell-Olds and Shaw (1987). Note that the assumption is not that all
traits are included (an impossibility), but instead that all traits with strong causal
effects are included (Cohen and Cohen 1983, p. 354). This assumption should be
taken as a warning that the solution may depend on which variables are consid-
ered (contrast the significance of the path from probes/flower/hour to fruit set in
figures 12.3 and 12.5). Just as with experiments, if important variables are omitted
or ignored, the answer may be misleading or wrong.

12.4 Related Issues and Techniques

Multiple regression is covered by Cohen and Cohen (1983), among many others.
Good introductions to path analysis and its applications are in Li (1975), Pedhazur
(1982), Loehlin (1987), Schemske and Horvitz (1988), Crespi and Bookstein
(1989), Crespi (1990), and Kingsolver and Schemske (1991). Currently, the only
introduction to CALIS is the SAS manual (SAS Institute Inc. 1989a). Consulting
the readable introductions to structural equation modeling and LISREL (a pro-
gram similar to CALIS) of Hayduk (1987) and Loehlin (1987) will be helpful in
deciphering the SAS text, which assumes familiarity with the subject. The advan-
tages and disadvantages of structural equation modeling are discussed in Clon-
inger et al. (1983), Karlin et al. (1983), Wright (1983), Bookstein (1986), and
Breckler (1990). If variables are strongly intercorrelated (multicolinear), inclusion
of latent factors may be useful, and these, as well as correlated residuals and
measurement error, can be incorporated as an integral part of a structural equation
model; see Hayduk (1987), Loehlin (1987), and Bollen (1989), but be sure to
read and heed the cautions of Bookstein (1986) and Breckler (1990).

Path analysis has been applied to many other ecological topics, including eco-
system modeling (Johnson et al. 1991), species interactions and community struc-
ture (Arnold 1972; Weis et al. 1989; Wootton 1990; Weis and Kapelinski 1994;
Grace and Pugesek 1997, 1998; Smith et al. 1997), plant growth rates (Shipley
1995), and phenotypic selection (Maddox and Antonovics 1983; Mitchell-Olds
1987; Schemske and Horvitz 1988; Crespi 1990; Herrera 1993; Mitchell 1994;
Jordano 1995; Conner et al. 1996; Murren and Ellison 1996; Sinervo and De-
Nardo 1996; Bishop and Schemske 1998; Scheiner and Callahan 1999).

Recent developments in biological usage of path analysis center on two topics.
First, path analysis is commonly misused. A review of the ecological literature
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by Petraitis et al. (1996) revealed that sample sizes are usually too small, colinear-
ity is common, and incomplete information is presented in most published studies.
They also point out some useful diagnostics for these problems. Second, new
methods of path analysis may help with small data sets. Shipley (1995, 1997) has
developed bootstrapping methods for evaluating small data sets, an especially
exciting turn of events because of the notoriously small sample sizes in many
important ecological applications. Shipley (1997) advocates exploratory uses of
path analysis, as opposed to the predictive uses I advocate here, whereas Petraitis
et al. (1996) argue against the use of goodness-of-fit tests in path analysis (but
see Pugesek and Grace 1998).
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Failure-time Analysis

Studying Times to Events and Rates
at Which Events Occur

GORDON A. FOX

13.1 Ecological Issues

Do differences among treatments lead to differences in the time until seeds germi-
nate, foragers leave patches, individuals die, or pollinators leave flowers? Do
treatment differences lead to differences in the number of events that have oc-
curred by some time or to differences in the rates at which these events occur?
Questions of this kind are at the heart of many studies of life history evolution,
demography, behavioral ecology; and pollination biology, as well as other ecolog-
ical subdisciplines. In all of these cases, researchers are concerned either with the
time until some event occurs in individual experimental units or with the related
problem of the rate at which these events occur.

Ecologists are interested in these types of data for several different reasons.
One reason is that time itself is sometimes limiting for organisms because their
metabolic clocks are constantly working. For example, animals that do not ac-
quire food quickly enough may become malnourished. Time may also be limiting
because of external environmental factors. For example, annual plants that do not
flower early enough may be killed by frost or drought without successfully setting
seed. Time may also be important because of population-level phenomena. For
example, in age-structured populations, individuals that reproduce at a late age
will leave fewer descendants on average than those that reproduce at an early
age, all else being equal. If resource competition is partly age-dependent, on the
other hand, early reproducers may sometimes be poor competitors and therefore
may actually have fewer descendants. Finally, there are many situations in which
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ecologists are interested in knowing how many events have occurred by a particu-
lar time, such as the number of flowers that have been visited by insects by the
end of the day or the number of animals that survive a particular season.

Many ecologists study failure-time by visually comparing survivorship curves.
Although this is often a useful part of any exploratory data analysis (chapter 3),
it requires that we make a subjective decision as to whether two survivorship
curves are "really" different from one another. I suspect that ecologists do this so
frequently because courses in population ecology usually treat survivorship and
life tables as fixed features of populations. This makes it easy to forget that
failure-time data must be treated statistically.

This chapter discusses data on the timing of events and special methods for
their analyses. These methods originated in several diverse fields in which similar
statistical problems arise—for example, clinical medicine, human demography,
and industrial reliability testing—and consequently are quite well developed.

Recent ecological applications. There are many ecological applications of
methods of failure-time analysis. My own research—as reflected in the example
developed in subsequent sections—has concerned the timing of life history
events, but recent authors have applied failure-time methods to a wide variety of
problems. Newman (Dixon and Newman 1991; Newman and McCloskey 1996)
made an important contribution to ecotoxicology by showing that studies of time
until effect can be much more powerful (and biologically meaningful) than tradi-
tional studies of LD50. Petraitis (1998) used failure-time methods to study rates
of predation on intertidal mussels. Clark (1989) studied the time between forest
fires and how it has changed over the centuries.

Are there costs to sex? In a study that received considerable attention, van
Voorhies (1992) used failure-time approaches to show a cost of spermatogenesis
in the nematode Caenorhabditis elegans. Males with normal spermatogenesis, he
showed, have substantially reduced survivorship as compared with males with
mutations that stop the chain of events leading to sperm production. To show that
dominance rank is of considerable importance in chimpanzees, Pusey et al. (1997)
used failure-time methods to show greater survivorship in female chimps with
higher rank.

A number of recent studies have focused on problems related to our under-
standing of aging and senescence. Adult birds (especially Passerines) have long
been thought not to senesce, that is, they do not have a classic Type II survivor-
ship curve. By using failure-time approaches, McDonald et al. (1996) were able
to show that, in fact, Florida scrub jays do senesce, and Ricklefs (1998) general-
ized this result to numerous species. Is menopause in mammals an adaptive trait,
as suggested by some sociobiological arguments? Using failure-time methods,
Packer et al. (1998) were able to show that menopause in baboons and lions (at
least) is a senescent trait—postmenopausal females do not increase the fitness of
their offspring or grandchildren. Finally, failure-time methods have been impor-
tant in studies of the factors leading to senescence (e.g., Carey et al. 1998; Vaupel
et al. 1998).

Perhaps the most unusual recent application of these methods is to learning
and spatial memory. Capaldi and Dyer (1999) studied the ability of honeybees to
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orient to new landscapes by examining the time it takes until a bee returns to its
hive. Naive bees returned faster than others if they were able to see landmarks
near the hive, but when removed to distant sites, resident bees returned more
quickly, suggesting an important role for spatial memory.

There are many other potential applications of failure-time analysis to ecologi-
cal data. We can get an idea of these applications (as well as of the origins of
these methods) from the examples in Kalbfleisch and Prentice (1980), Lawless
(1982), and Collett (1994). In addition to being well developed statistically, this
field of statistics has evolved its own jargon. I introduce this jargon in the follow-
ing section in the context of a discussion of the peculiar nature of this kind of
data.

13.2 Statistical Issues

13.2.1 Nature of Failure-time Data

Ecologists get data on the timing of events by repeatedly observing uniquely
identified individuals. As with repeated-measures analysis of variance (ANOVA;
see chapter 8), this repeated-observations structure leads to special statistical
methods. These observations may take place continuously (as would be necessary
in studying giving-up times of foragers in patches) or may be in the form of
censuses at intervals (as would be appropriate for studying survival of marked
plants). At each observation time, the researcher determines whether the event of
interest has occurred for each individual. In simple studies, three general out-
comes are possible:

1. The event has not yet occurred, and the individual is still in its original state. In
this case, the individual is said to have survived. In this sense, survival can refer
to remaining alive as well as to remaining in a patch, remaining ungerminated,
and so on.

2. The event has observably occurred. In this case, statisticians speak of failure and
of the timing of the event as the individual' & failure time. This term originated
in industrial reliability testing. In an ecological setting, a failure refers to the
individual having been observed leaving the patch, being observably dead, or
having observably begun to flower.

3. Finally, the individual may have been lost from the study without a failure being
observed. This kind of data point is called a right-censored data point, because
the researcher can be certain only that the actual failure time is greater than the
last recorded survival time. For example, a failure time (in this case, a giving-up
time) cannot be assigned to a forager that was still in a study patch when a
predator was observed to eat it, but the researcher knows that the time of aban-
doning foraging (i.e., the failure time) would have been at least as great as the
time of predation (i.e., the censoring time). Similarly, a flowering time or death
time cannot be assigned to a plant that has lost its marker, because the researcher
is uncertain as to its fate at any time later than the prior census, although it is
clear that the failure time was later than the prior census.
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Researchers often discard right-censored data points either because they as-
sume that these data are not useful or because they believe that methods for
handling censored data are unnecessarily complex. Both beliefs are wrong. The
former belief leads researchers to discard potentially important data and can con-
tribute to highly biased results. To understand this, consider a simple example
from clinical medicine. In a study of the effect of a drug on tumor regrowth,
some patients are killed by heart attacks or accidents, with no regrowth at time
of death. Discarding these cases would not only be an inefficient waste of data,
but more important, it could bias results because those in whom the treatment has
been effective are more likely than others to be killed by causes other than cancer.

It is also possible to have left-censored data points. This is the case when
failures have already observably occurred for some individuals when the study
begins (Kalbfleisch and Prentice 1980; Lawless 1982). An example is pupal
eclosion times for a Lepidopteran population in which there are open chrysal-
ises present at the beginning of the study. Left-censoring can frequently be
avoided by careful planning (e.g., by beginning the study earlier). In many con-
trolled experiments, left-censoring is not even possible because failures cannot
occur before the beginning of the experiment (e.g., because seeds cannot germi-
nate before the researcher plants them). Left-censoring is sometimes unavoidable
in observational studies. Since this book concerns experimental studies, however,
I will not discuss left-censoring further; see Collett (1994) for a useful discussion.
In the examples of both left- and right-censoring discussed so far, individuals are
not censored as a planned part of the experiment.

Finally, interval-censoring occurs when measurements are taken at intervals
large enough so that we only know that the event occurred within a particular
interval. Obviously, since we always record data at discrete intervals, we might
regard most right-censored data as being interval-censored. There are both biolog-
ical and statistical issues to consider here. Biologically, if I record data daily, I
know only that the event occurred between yesterday and today. Is the hourly
data meaningful and important? This is not likely for plant mortality, but perhaps
so in studies of animal behavior. It seems reasonable to say that we should design
studies so that sampling is on a timescale relevant to the questions of interest.
Statistically, as measurements occur at shorter intervals, the results of the two
kinds of analyses (treating the data as interval-censored and treating them as right-
censored) converge (Collett 1994). The best advice is probably this: if the sample
interval is long (in a biological sense), regard the data as interval-censored, other-
wise regard them as right-censored. If in doubt, analyze the data both ways.
Professional packages like SAS and S-Plus have the built-in ability to handle
interval censoring.

Experimental designs often include censoring: researchers may often plan to
end studies before all individuals have failed. This is obviously necessary when
individuals have very long lives. Two types of designs can be distinguished. With
Type I censoring, we can plan to end a study at a particular time, in which case
the number of failures is a random variable. With Type II censoring, the study is
completed after a particular number of failures, in which case the ending time of
the study is a random variable (Lawless 1982). In ecological studies, Type I
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censoring is more common because studies often end when field seasons, gradu-
ate careers, or grants end. In most ecological studies, some of the censoring is
unplanned and random; for example, some experimental individuals die or are
otherwise lost to the study at random times during the course of the study. Conse-
quently, the discussion in this chapter assumes that censoring is Type I and/or
random. For discussion on data analysis with Type II censoring, see Lawless
(1982).

This kind of structure means that there are three important elements that re-
quire consideration in event time studies. First, measurements are repeated over
time. Second, most studies include censored data points. Finally, even if no data
are censored, failure times are usually not normally distributed under any standard
transformation.

The nonnormality of failure-time data can be partly a consequence of the nec-
essary experimental structure. Normal distributions are symmetric, with infinitely
long tails on both sides. But by beginning axontrolled experiment at a particular
time, the researcher establishes a sharp line of demarcation: no failure can occur
prior to the beginning of a controlled study. In many ecological settings, this
cutoff line is actually further along in time. For example, in studies of flowering
time that begin when the researcher plants seeds, there is usually some minimum
time that must elapse before any plant begins to flower. In this sense, failure-time
data are often intimately related to the particular time at which the experiment is
begun, unlike most other kinds of data. In my studies of the desert annual plant
Eriogonum abertianum, time to flower in the greenhouse was very far from a
normal distribution; plant size at flowering time, plant fecundity, and related traits
fit normal distributions after undergoing a log transformation (Fox 1990a).

There are also ecological and biological reasons why failure-time data may
not be normally distributed. In studies of the survival of marked plants, for exam-
ple, there is no reason to expect a normal distribution of time to death. In most
populations, deaths are likely to be concentrated by the timing of major environ-
mental events such as frosts, droughts, or herbivore migrations. Failures that oc-
cur when some biological threshold is reached—for example, onset of reproduc-
tion or deaths due to senescence—are also likely to lead to data sets that are not
normally distributed. Finally, there are theoretical reasons why failure times are
usually not normally distributed. These involve the nature of the risk of failure,
as discussed in the appendix.

13.2.2 How Failure-time Methods Differ from
Other Statistical Methods

Failure-time data are frequently of interest to ecologists, but some experimental
designs and statistical analyses are better than others. Using what Muenchow
(1986) called the classical approach, many ecologists have analyzed failure-time
data by counting the number of failures among a fixed number of experimental
units over a fixed interval. They then compare groups for the mean number of
failures, using any of several statistical approaches. In a widely used alternative
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approach, ecologists conduct experiments designed to measure the failure times
of individuals, but then analyze these data with ANOVA.

Special methods have been designed to deal specifically with failure time data.
These failure time methods differ from classical and ANOVA approaches in both
experimental design and statistical analysis. Using a failure-time approach, an
ecologist measures the time to failure of each uncensored individual. Statistical
tests designed for this problem are then used to compare groups over the entire
distribution of failure times.

There are several reasons to prefer the failure-time approach. First, the classi-
cal approach can compare groups only on a single time scale. This is because
the classical approach compares groups for the cumulative number of failures that
have occurred by a single point in time: the time for the experiments' end set by
the scientist. By contrast, the failure-time approach compares the groups' survi-
vorship curves over all failure times. Second, ANOVA assumes that the groups'
failure times are normally distributed with equal variance and compares their means:
the shapes of the failure-time distributions are assumed to be identical. By con-
trast, failure-time approaches allow us to compare the shapes of these distribu-
tions. Third, neither the classical approach nor the ANOVA approach can account
for censored data. Fourth, under the classical approach, it is not clear what to do
with multiple failures of an individual—for example, multiple insect visits to a
single flower—because these may not be independent. Finally, ANOVA and t-
tests can be seriously biased methods of analyzing failure-time data, because these
tests require approximate normality of the data. This bias can lead to spurious
results. Worse yet, the direction of the bias depends on the shapes of the distribu-
tions of failure times and on the pattern of data censoring. Consequently we
cannot say in general whether ANOVA would be biased for or against a particular
hypothesis.

Consider a hypothetical case. Figure 13.1A shows clearly that type A plants
have a strong tendency to begin flowering before type B plants. Estimates of the
mean flowering date depend strongly on the completeness of the data set (figure
13.IB). Most notably, there are times during the season that if we truncated the
study, we could conclude that the mean flowering date of type B plants was
actually earlier than that of type A plants! Figure 13.1C shows a failure-time
approach, based on life tables. Not only is the correct relationship between flow-
ering dates of the two types always preserved; the graph itself provides important
information about the timing of events, and we can test for differences at any
point.

13.3 Example: Time to Emergence and Flowering

13.3.1 Study Species

As part of a larger study on the ecology and evolution of flowering time and
other life history traits in wild radish Raphanus sativus (Brassicaceae), I studied
the time to emergence and flowering in three populations of wild radish and in
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Figure 13.1 A hypothetical example. (A)
Type A plants tend to begin flowering be-
fore type B plants. (B) Estimates of the
mean flowering date depend on when we
truncate the study. During part of the sea-
son, the estimated mean for type B would
be earlier than for type A. (C) A survivor-
ship curve plotting the fraction of plants
that have not yet flowered. The relation-
ship between the two types is always pre-
served correctly, and much more informa-
tion is provided than a simple comparison
of means.

two domestic radish cultivars. Wild radish is a common annual (sometimes bien-
nial) weed in many parts of the northern hemisphere. In North America, R. sativus
is especially common in coastal areas of California and in the Sacramento Valley.
There are two principal sources of these old world natives: inadvertent introduc-
tions by European settlers and escapees from cultivated radish varieties. The latter
are of the same species as wild radish. There are also hybrids with a closely
related introduced weed, R. raphanistrum.

In this chapter, I will discuss two relatively narrow questions from this re-
search: (1) What are the distributions of emergence and flowering times in these
populations? and (2) Do these differ among populations? I consider these ques-
tions by using two different statistical methods: life table analysis and accelerated
failure-time models. These methods are complementary, each having distinct ad-
vantages: life tables and associated statistical tests are quite useful for exploratory
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data analysis, but they lack the statistical power of accelerated failure-time mod-
els. On the other hand, accelerated failure-time models require more assumptions
than life-table methods. I illustrate the use of a third method, proportional hazards
models, with a data set from Muenchow (1986). The power of this method is
similar to that of accelerated failure-time models, but it depends on somewhat
different assumptions.

13.3.2 Experimental Methods

Seeds were collected from randomly selected individuals in populations around
Santa Barbara, California. The Campus Point site is on a bluff overlooking the
Pacific Ocean, and the Coal Oil Point site is several hundred meters from the
ocean. Both sites are consequently subjected to cool fog during much of the year.
The third site, Storke Road, is several kilometers inland and is therefore drier and
warmer. The domestic cultivars used were Black Spanish, a late-flowering crop
cultivar, and Rapid Cycling, a product of artificial selection for short generation
time (Crucifer Genetics Cooperative, Madison, Wis.).

In designing failure-time experiments—either in field of laboratory settings—
it is important to consider the shapes of failure-time distributions, and the patterns
and magnitudes of data censoring. For example, if there is much data censoring,
large samples, often involving hundreds of individuals, are necessary to compare
treatments. The reason for this is simple: to compare groups, we need at least a
minimum number of actual event times, as opposed to censoring times. If all data
points are censored, no between-group comparison is possible. Large samples are
also necessary if the tails of the distribution are of particular ecological interest
(Fox 1990b).

Because the present study was a pilot experiment, I had no a priori estimate
of either the number of censored data points to expect or the shapes of the failure-
time distributions. Consequently, I used relatively large samples, planting 180
seeds from each of the two domestic cultivars, 140 from both the Storke Road
and Campus Point sites, and 130 from the Coal Oil Point site, or a total of 770
seeds.

One seed was planted in each 10-cm pot. Positions on the greenhouse benches
were randomized in advance. Because the hypotheses of interest concern differ-
ences among populations in the timing of emergence and anthesis, seeds were
considered as the experimental units and individual seeds from the same popula-
tion as replicates.

Seeds were planted in late October. Plants experienced natural photoperiod in
Tucson, Arizona, in a greenhouse with untinted windows, throughout the experi-
ment. A sterile 1: 1 mix of peat and vermiculite was used as a growing medium.
Watering before emergence was always frequent enough to keep the soil surface
wet. After emergence plants were fed weekly with a solution of 20:20:20
N-P-K. Temperatures were allowed to vary between approximately 15° and
27°C. Time constraints dictated that the experiment end by mid-March 1992.

For each individual seed, I recorded an emergence time TEMERG and an
anthesis time TANTH. Each TEMERG and TANTH could be either an actual
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emergence or anthesis time, respectively, or a censoring time. I also recorded
variables EMRGCENS and ANTHCENS, assigning values of 0 for uncensored
data points and 1 for censored data points. Each data record also included a column
for population. In general, we could include other variables of interest, such as
treatment factors.

The next section discusses general methods for analysis of failure-time data.
These methods are then illustrated by applying them to the radish data.

13.4 Statistical Methods

There is no doubt that the anthesis data require some special handling, because
many of these data points are censored. But in the emergence data, the small
number of censored data points (figure 13.2) might lead us to believe that
ANOVA would be a useful way to compare populations. However, there are
biological reasons to expect these data to depart from a normal distribution. The
germination process began sometime after water was first applied. Since there is
no evidence for seed dormancy in this species, we might expect emergence events
to be clustered at some point after the start of the experiment and to trail off after

Figure 13.2 Survival curves
for radish seedling emergence.
Bars are for standard error of
the life table estimate. Each
curve ends when all seeds had
emerged (curves intersecting
x-axis) or when last seedling
emerged (all other curves).
(A) Santa Barbara populations.
(B) Crop cultivars.
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that point. This pattern is suggested by the data in figure 13.2, and normal scores
plots of the data showed strong departures from normality. No standard transfor-
mations succeed in normalizing these data. Thus, even though there is very little
censoring in the emergence data (figure 13.2), comparison of means using
ANOVA would be inappropriate.

Fortunately, there are several well-developed methods for analyzing failure-
time data that can handle censored data properly and that do not require normally
distributed data. These include life table analysis and two different types of re-
gression models, accelerated failure-time models and proportional hazards mod-
els. In the following subsections, I describe each of these methods and then apply
them in turn.

13.4.1 Life Table Methods: Description

Life tables are a convenient starting point for understanding failure-time statistics.
Because life tables historically preceded regression models, they provide a basis
for many of the ideas used in regression models. Moreover, life tables are a useful
way to begin exploratory data analysis.

Formulas for cohort life table estimates are given in table 13.1. From measure-
ment of the failure rate, it is simple to estimate the proportion of those failing in
each interval. There are four other statistics that can be derived from this informa-
tion. The estimated cumulative survival function, St, is the fraction of the cohort

Table 13.1 Definitions of life table statistics

t = time at beginning of ith interval
b, = width of the ith interval, tM - lt

Wi = number lost to follow-up
d, = number dying in interval

"' = effective population in interval, n,^ - WM - 

1i = estimated conditional mortality rate, 

Pi = estimated conditional proportion surviving, 1 — g:

Si = estimated cumulative survival function,

Pi = estimated probability density function (unconditional mortality rate), the probability of

dying in the ith interval per unit width,

hi = estimated hazard function (conditional mortality rate, force of mortality, log killing power),
the number of deaths per unit time in the ith interval divided by the number of survivors

in the interval, -

e, = estimated median life expectancy, 

interval in which — occurs.

, where the subscript j refers to the
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that has not yet failed. The estimated probability density function, Ph gives the
probability that an individual alive at time 0 will fail in the z'th interval. Hence,
Pi is also called the unconditional mortality rate. The estimated hazard function,
hi, is sometimes called the conditional mortality rate; it estimates the chance of
failure in the «'th interval given that an individual has survived to the beginning
of that interval. Finally, the estimated median life expectancy, e,, gives the median
time to failure of an individual that has survived to the beginning of the z'th
interval; eg gives the median life expectancy of a newborn.

The ecological significance of the cumulative survival function 5, is obvious.
Insight into the probability density and hazard functions can be gained by realiz-
ing that if measurements are continuous or nearly so

In other words, the probability density function reflects the rate at which failures
accumulate, whereas the hazard function reflects the per capita risk of failure
among those remaining.

Median, rather than mean, life expectancies are calculated because the median
is often a more useful and robust estimate of central tendency when the data are
not symmetrically distributed. Life tables allow for the use of censored data by
treating these data points like any other until they reach the censoring interval
and then discounting them in the censoring interval.

Formulas for calculation of standard errors of life table estimates are shown
in table 13.2. Because life table estimates are population-level statistics, standard
errors and sample sizes should always be reported so that readers can judge for
themselves how much confidence to place in the estimates. Approximate vari-
ances for the life table estimates are given by the terms under the square-root
signs in table 13.2.

Life table analyses are always informative in examining failure-time data: their
descriptive nature makes them easy to interpret. Consequently, I recommend them

Table 1 3.2 Standard errors for life table data"

"From Lee (1980).
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as a first step in the analysis of most kinds of failure-time data. Hypotheses can
also be tested with life table estimates.

There are several ways to compare populations or treatments statistically. Stan-
dard errors of the life table estimates can be used for pairwise comparisons. If
data are uncensored, standard nonparametric tests such as G-tests or %2-tests can
be used to test for independence of groups. With censored data, Wilcoxon or log-
rank tests [see http://www.oup-usa.org/sc/0195131878/] can be used on the fail-
ure-time data to test for heterogeneity among groups. Both of these tests compare
observed with expected numbers of deaths in each interval.

The log-rank test is more powerful than the Wilcoxon when the hazard func-
tions of the different samples are proportional to one another and when there is
no censoring or random censoring only. The Wilcoxon test is more powerful in
many other situations (Lee 1980). In many cases, the tests are likely to give similar
results. Lawless (1982) notes that there are circumstances under which neither
statistic is likely to be very useful, particularly when distributions are different
but the cumulative survivorship or hazard functions cross. Any test is likely to
lack power when only a few censuses occur or data are lumped into few intervals
and when distributions differ over time but lead to a similar total number of
failures (Hutchings et al. 1991). Therefore, if the shapes of the curves are likely to
be important, censusing must occur frequently enough to detect these differences.
Another way of stating this problem is that ties seriously reduce the power of
these tests. Muenchow (1986) observed that, in her study of waiting times to
insect visits at flowers, she would have had greater statistical power had she
recorded times to the nearest second rather than the nearest minute, because she
would have had many fewer ties.

These tests, as well as the life table analyses themselves, can be performed
with the SAS LIFETEST procedure [which uses the / -approximation to the log-
rank and Wilcoxon tests described in Fox (1993, appendix 1; an updated discus-
sion is at http://www.oup-usa.org/sc/0195131878/)]. If these tests reveal heteroge-
neity and there are more than two groups, we can use the Wilcoxon or log-rank
scores to construct Z-statistics for multiple comparisons among groups [see http://
www.oup-usa.org/sc/0195131878/]. SAS code for doing this is available online
at http://www.oup-usa.org/sc/0195131878/.

There is one important alternative nonparametric method for analyzing event-
time data. The Kaplan-Meier (KM) method (the default in the SAS LIFETEST
procedure) differs from the life table method used here in that the cumulative sur-
vival function changes only when an event is actually observed. Although this is a
maximum-likelihood estimate of the survival function, in practice life table and KM
estimates are usually almost the same, and life table estimates allow us to estimate
the hazard function. The most important negative side of the life table method is
that our choice of time intervals can be arbitrary. Resulting problems can be mini-
mized by trying several intervals and asking whether the answers change.

13.4.2 Life Table Methods: Application

Emergence data for the radish study are shown in figure 13.2. Cumulative survi-
vorship (i.e., the fraction of plants that had not yet flowered) and its standard

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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error were calculated by the SAS LIFETEST procedure, using the code shown
on-line at http://www.oup-usa.org/sc/0195131878/. The separation of the survi-
vorship curves implies that the populations may differ in emergence time. This is
supported by both the Wilcoxon and log-rank tests [see http://www.oup-usa.
org/sc/0195131878/] calculated by the SAS LIFETEST procedure: Wilcoxon
f = 439.1, df = 4, P = 0.0001, log-rank f = 335.8, df = 4, P = 0.0001. These tests
tell us that the five populations are heterogeneous, but they do not tell us which
populations differ from one another. To answer that question, I used the covari-
ance matrix for the Wilcoxon statistic that is automatically generated by the SAS
LIFETEST procedure, and calculated Z-statistics for each pairwise comparison
[see http://www.oup-usa.org/sc/0195131878/ for a description of the Z-statistic
and for SAS code to conduct the multiple comparisons]. As noted in the on-line
material for this volume [http://www.oup-usa.org/sc/0195131878/], these multiple
comparisons are not conducted automatically by SAS, and performing them re-
quires a small amount of manual data manipulation. These multiple comparisons,
conducted at the 0.05 significance level, suggest that all populations differ from
one another except possibly Black Spanish and Rapid Cycling (which was a mar-
ginally significant comparison) and Coal Oil Point-Campus Point.

Emergence and germination data present a special statistical problem: in gen-
eral, we do not know whether remaining seeds are capable of germinating, are
dormant, have germinated and then died, or were always dead. Inviable seeds
should obviously not be considered as part of a study population. In the present
case, very few seeds did not emerge, so I analyzed the data by assuming first that
these were viable. This means that they were treated as censored data points, with
the end of the study as the censoring date. A second analysis assumed that the
seeds had always been inviable, so seeds that did not emerge were excluded from
the analysis. The results were qualitatively the same; figure 13.2 is based on the
first analysis. An alternative approach would be to examine the unemergent seeds
for viability using a tetrazolium test (Scott and Jones 1990), and thereby correctly
classify each seed. This would be necessary if the two statistical analyses differed
qualitatively.

Anthesis data for the radishes are shown in figure 13.3. These cumulative
survivorship data and their standard errors were also calculated by the SAS
LIFETEST procedure [see http://www.oup-usa.org/sc/0195131878/]. In this case,
there is considerable censoring, because many plants had not yet flowered by the
time the study had to end, and some deaths did occur. Moreover, the censoring
affected some populations much more strongly than others. Many more Rapid
Cycling plants than others had flowered by the end of the study. Nevertheless,
the survivorship curves again imply that the populations differ. This conclusion
is supported by the Wilcoxon and log-rank tests calculated by the LIFETEST
procedure: Wilcoxon %2 = 582.2, df = 4, P = 0.0001, log-rank %2 = 580.6, df =4,
P = 0.0001. Given that these five populations are heterogeneous, which ones are
different from one another? To examine this question, I again used the covariance
matrix for the Wilcoxon statistic that is automatically generated by the LIFETEST
procedure, and I calculated Z-statistics for each pairwise comparison [see http://
www.oup-usa.org/sc/0195131878/ for a description of the statistic and for SAS

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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Figure 13.3 Survival curves for
radish anthesis. Bars are for

standard error of the life table
estimate. All curves end at cen-
soring date. (A) Santa Barbara

populations. (B) Crop cultivars.

code to conduct the multiple comparisons]. These multiple comparisons, con-
ducted at the 0.05 significance level, suggest that Rapid Cycling differs from all
other populations and that Black Spanish differs from Coal Oil Point and Storke
Road. There were marginally significant differences between Campus Point on
the one hand and Coal Oil Point, Storke Road, and Black Spanish on the other.

These life table analyses suggest that Raphanus populations differ in time to
emergence and flowering. Moreover they have provided a useful description of
the populations' responses. There are many cases in which life table analyses and
associated significance tests are fully adequate to examine ecological hypotheses
(Fox 1989; Krannitz et al. 1991).

However, two difficulties commonly arise with the use of life tables. First,
statistical tests based on life table approaches are sometimes lacking in power.
Second, life table methods are difficult to use when there are multiple covariates
(Kalbfleisch and Prentice 1980). For example, emergence time seems likely to
affect anthesis time, but there is no simple way to account for this effect using life
table methods. SAS allows for the calculation of relevant tests (generalizations of
the Wilcoxon and log-rank tests), but the algorithms are complex, requiring rela-
tively large amounts of computation, and the results are not easy to interpret in
biological terms (see pp. 1046-1048 in version 6 of the SAS/STAT user's guide
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(SAS Institute 1989a). The methods discussed in the following section overcome
these difficulties, but at the cost of added assumptions.

13.4.3 Regression Models

There are two general types of regression models for censored data: accelerated
failure-time models and proportional hazards models. These models make differ-
ent assumptions about the affect of covariates such as treatment or initial size.

Accelerated failure-time models assume that treatments and covariates affect
failure-time multiplicatively (i.e., the lives of individuals are "accelerated"). An
alternative interpretation (Kalbfleisch and Prentice 1980) is that under accelerated
failure-time models, covariates make the clock run faster or slower, so that any
period of high hazard will shift in time when the covariates shift. Thus the com-
parisons of Raphanus population time to emergence and anthesis are good candi-
dates for accelerated failure-time models. Allison (1995) observes that a classic
example of an accelerated failure-time model is the conventional wisdom that 1
dog year is equal to 7 human years.

Proportional hazards models assume that covariates affect the hazard functions
of different groups multiplicatively. Under proportional hazards models, the peri-
ods of high hazard stay the same but the chance of an individual falling in one
of those periods will vary with the individuals' covariates. A good candidate for
a proportional hazards model might be a predation experiment in which the preda-
tor density or efficiency changes seasonally: individuals with a "bad" set of covar-
iates do not make the predators arrive sooner, but they are more vulnerable to
predation when the predators do arrive. Thus, comparisons of Raphanus popula-
tion time to emergence and anthesis are poor candidates for proportional hazards
models.

How do we choose between accelerated failure-time and proportional hazard
models? Probably the most useful approach is to consider the ecological hypothe-
ses and ask whether treatments are expected to actually change the timing of
periods of high hazard (suggesting the use of accelerated failure-time models) or
whether treatments merely change the chance of failure (suggesting the use of
proportional hazards models). An additional check on the appropriateness of the
proportional hazards model is to plot logj-logtSX?)]} against time. If the propor-
tional hazards model is appropriate, the curves of different groups should be
roughly parallel to one another for a given level of a covariate (Kalbfleisch and
Prentice 1980). This approach has one limitation: comparisons must be conducted
between treatment groups within levels of a covariate. If all of the predictor
variables are covariates, no comparison can be made, regardless of whether the
proportional hazards model is appropriate. Consequently, it is probably best to
rely most heavily on the examination of the ecological hypotheses. Allison (1995)
suggests that one might profitably use the proportional hazards model as a default
model. This may be a useful guideline for the sociological examples he considers
(where there are few a priori considerations to influence a decision), but it is
unlikely to be appropriate in most biological situations.
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Both kinds of models have been applied in ecological settings; see Muenchow
(1986) for proportional hazards models, and Fox (1990a,b) for accelerated failure-
time models. These models are closely related; a lucid derivation showing the
mathematical relationship between the models is given by Kalbfleisch and Pren-
tice (1980).

Description of accelerated failure-time models. In an accelerated failure-time
model, failure times T are modeled as

where X is a matrix of covariate values and X' is its transpose, p is a vector of
regression parameters, 8 is a vector of errors from a specified survival distribu-
tion, and 0 is a parameter. The covariates in X can be dummy variables corre-
sponding to categorical effects, or continuous variables, or both, or their interac-
tions. For example, X for the radish emergence data is a 5 x 5 matrix of dummy
variables for the five populations of origin, and there are five regression coeffi-
cients in p. For the flowering data, X includes an additional variable, emergence
date, and there is an additional regression coefficient for emergence date in p.

Consequently, each model consists of two steps: (1) choosing a survival distri-
bution and (2) estimating the parameters for the survival distribution and the
regression coefficients p. The most commonly used survival distributions are de-
scribed in the appendix. All of these are available in the SAS LIFEREG proce-
dure. Some additional distributions are discussed by Lawless (1982) and Kalb-
fleisch and Prentice (1980).

There are three different ways to choose a survival distribution. First, we could
choose a distribution based on a priori ecological or biological grounds. Second,
we could take an empirical approach: after the data have been gathered, compare
life table estimates of their hazard or survival functions with the hazard or sur-
vival functions of various distributions. Several rough empirical methods for do-
ing this are listed in the appendix. We could also use goodness-of-fit tests, but
these require modification if any of the data are censored (Lawless 1982). A third
method for choosing a distribution is suggested by Kalbfleisch and Prentice (1980).
These authors propose using a general form (the generalized F-distribution) that
encompasses all of the distributions in the appendix as special cases to determine
numerically which distribution best fits the data.

It is often biologically important in its own right that a data set is, say, gamma-
rather than Weibull-distributed. For example, the difference among the classic
Deevey Types I, II, and III survival functions is precisely that a Type II implies
constant risk of mortality (an exponential distribution), whereas Types I and III
imply increasing and decreasing risks, respectively. Recent ecological research in
which the nature of the failure-time distribution has been important includes work
on senescence in birds (McDonald et al. 1996; Ricklefs 1998), the response of
plant populations to environmental variation (Bullock et al. 1996), the risk of
predation to marine gastropods (Petraitis 1998), and the interval between forest
fires (Clark 1989).

To understand the importance of the shape of a survival distribution, we need
some model of the failure process. For example, many developmental processes
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are likely to be gamma-distributed because a sum of exponential distributions (as
in waiting times for cell divisions or other developmental steps) yields a gamma
distribution. Kalbfleisch and Prentice (1980) discuss examples in other fields.
Additionally, knowledge of the survival distribution may sometimes suggest can-
didates for underlying mechanisms (Lindsey 1995).

Having chosen a survival distribution, the parameters of the distribution and
the regression coefficients are determined numerically, using a maximum-likeli-
hood approach. Maximum-likelihood methods in statistics involve two steps.
First, we select a statistical model and assume that it is a correct description of
the data. The same assumption is made in regression and ANOVA models. Sec-
ond, we find the model parameters that would make it most probable that we
would observe the data. This is done by numerically maximizing a likelihood
function, the form of which depends on the model. For more information on
construction of likelihood functions for failure-time models, see Kalbfleisch and
Prentice (1980) and Lawless (1982). Edwards (1972) provides a comprehensive
introduction to likelihood methods, and Shaw (1987) provides an overview of
likelihood methods as applied in quantitative genetics.

These methods lead naturally to a set of %2-tests for regression coefficients.
These test the significance of the covariate's additional contribution to the maxi-
mized-likelihood function, beyond the contributions of the other covariates al-
ready in the model. Thus, a nonsignificant value of %2 means that the model is
adequate without that particular covariate, but it does not imply that all covariates
with nonsignificant %"-values can be deleted. In fact, it is possible for a set of
covariates to be jointly significant, even though none of them is individually
significant. To examine the possible importance of covariates with nonsignificant
%2~values, we must delete the nonsignificant terms one at a time, reevaluate the
model each time, and examine the changes in the other terms.

When there are multiple levels of a categorical covariate like treatment or popu-
lation, one level is chosen arbitrarily as a reference level with a regression coeffi-
cient of 0. The regression coefficients for the other levels therefore provide compar-
isons with the reference level. Thus, a significant %2-value for a particular level
means that only that level is significantly different from the reference level. It may
or may not be significantly different from levels other than the reference level; we
must perform multiple comparisons to examine this hypothesis. The method for
multiple comparisons is analogous to that for life table analyses: we construct Z-
statistics from the estimated regression coefficients and the asymptotic covariance
matrix generated by SAS [see http://www.oup-usa.org/sc/0195131878/ for a de-
scription of the method and for SAS code for its implementation].

These %2-tests can also be useful when choosing between two distributions,
one of which is a special case of the other. The adequacy of the restricted case
can be examined by fitting a model to the more general model, subject to an
appropriate constraint. For example, to choose between the Weibull and exponen-
tial distributions, we can fit a Weibull model and subject it to the constraint p =
1. The result is, of course (see appendix), an exponential model, but SAS auto-
matically calculates a test (called a Lagrange multiplier test) that tests the effect
of the constraint on maximizing the likelihood function.

http://www.oup-usa.org/sc/0195131878/
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Application of accelerated failure-time models. For the radish emergence
data, it seemed reasonable to choose either the log-logistic or lognormal distribu-
tion: Because the species has little or no seed dormancy, we can expect that the
rate of germination and subsequent emergence will increase quickly after applica-
tion of water, reach some maximum rate, and then decline. I chose the log-logistic
model because, as noted in the appendix, it has several properties that make it
more useful. An a posteriori comparison showed that the log-logistic model pro-
vided a better fit to the data than the lognormal.

For the radish anthesis data, I thought it likely that the data might best fit a
gamma distribution. The gamma hazard monotonically approaches a constant
value, and therefore gamma models may often provide good fits for inevitable
developmental processes (see the appendix). Moreover, a gamma distribution is
a sum of exponentially distributed variables; if we think of plastochrons or inter-
vals between cell divisions as being reasonably approximated by an exponential
distribution, we would again expect a higher level developmental stage like flow-
ering time to be gamma-distributed. Such intuition is often wrong, so I tested the
gamma model against Weibull and lognormal models. As shown in the appendix,
the Weibull and lognormal distributions are special cases of the three-parameter
gamma.

There are several ways to make this test, including a Lagrange multiplier test
and a likelihood ratio test. In principle, they are equivalent, but the likelihood
ratio test may be more robust for small samples (Collett 1994).

As an example of a Lagrange multiplier test, I constrained the gamma shape
parameter to yield the lognormal distribution by assigning a value of 0 to "shapel"
(see the appendix) and then setting the option "noshapel" to instruct the LIFEREG
procedure not to change this value. SAS code for doing this is available at http://
www.oup-usa.org/sc/0195131878/. The Lagrange multiplier test was highly sig-
nificant (%2 = 22.68, df= 1, P< 0.0001). This means that constraining the value
of "shapel" to 0 had a significant effect on the likelihood function; thus the
gamma model does provide a significantly better fit than the lognormal.

I compared the gamma and Weibull distributions with a likelihood ratio test
[see http://www.oup-usa.org/sc/0195131878/]. This test is easy to compute by
hand, because the test statistic is just twice the logarithm of the ratio of the two
maximized likelihood functions. Since I already had estimates of the two maxi-
mized likelihood functions, it was simple to calculate

which, with 1 degree of freedom, has a large probability of occurring by chance
(P > 0.83). Thus, the fit of the three-parameter gamma distribution to the data is
slightly, but not significantly, better than the fit of the Weibull distribution.

These formal comparisons of models depend on the models being nested. That
is, we can use either the Lagrange multiplier method or the likelihood ratio test
to compare the gamma with the Weibull or the lognormal distribution, because
the latter are special cases of the gamma: they are nested within it for special,

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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Table 13.3 Analysis of accelerated failure-time model for Raphanus

sativus emergence time, using 764 noncensored values, 6 right-censored

values, and a log-logistic distribution"

Variable

Intercept
Population
(Black Spanish)
(Coal Oil Point)
(Campus Point)
(Rapid Cycling)
(Storke Road)
Scale parameter

df

1
4
1
1
1
1
0
1

Estimate

1.868

-0.254
-0.072
-0.084
-0.298

0
' 0.100

SE

0.014

0.018
0.020
0.019
0.018
0
0.003

x2

17442.78
395.671
194.03
13.09
19.63

250.84

P

0.0001
0.0001
0.0001
0.0003
0.0001
0.0001

"Log-likelihood =116.3.

fixed values of certain parameters. There is no formal way to test the goodness
of fit of nonnested models; in any event, biological criteria are often preferable.

Choosing between the gamma and Weibull distributions based on the present
data set requires a biological, rather than a statistical, rationale. The gamma distri-
bution seems a more biologically reasonable description of the time to anthesis
of an annual plant, because the gamma hazard tends toward a constant as time
becomes large, whereas the Weibull hazard goes to either zero or infinity.

Analyses of the radish failure-time models are shown in tables 13.3 and 13.4,
and the SAS code that generated these analyses is available at http://www.oup-
usa.org/sc/0195131878/. In both of these examples, the regression coefficients for
the Storke Road population are zero. The reason for this is that accelerated fail-
ure-time models make the clock run slower or faster for some groups. As men-

Table 13.4 Analysis of accelerated failure-time model for Raphanus

sativus anthesis time, using 210 noncensored values, 554 right-censored

values, and a gamma distribution"

Variable df Estimate SE S P

Intercept
Emergence time
Population
(Black Spanish)
(Coal Oil Point)
(Campus Point)
(Rapid Cycling)
(Storke Road)
Scale parameter
Shape parameter

1
1
4
1
1
1
1
0
1
1

4.975
0.019

0.449
0.124
0.324

-0.682
0
0.394

-0.822

0.090
0.010

0.069
0.058
0.063
0.054
0
0.021
0.179

3047.02
3.68

495.43
42.90

4.579
26.70

154.35

0.0001
0.06
0.0001
0.0001
0.03
0.0001
0.0001

"Log-likelihood = -232.48.

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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tioned previously, when there are multiple levels of a class variable (in this case,
population), one level (the last one) is taken by SAS as a reference level, and all
others are compared to this level. The Storke Road population is thus taken to be
the reference population by virtue of its order. The coefficients for other popula-
tions are therefore compared to Storke Road, and the significance tests for each
population test whether it differs from Storke Road.

The analysis of the emergence data (table 13.3) shows that population of origin
contributes significantly to the model. The fact that each population's regression
coefficient is independently significant shows that each differs from the reference
(Storke Road) population. Which other populations differ from one another? To
examine this question, I conducted multiple comparisons with Z-statistics [see
http://www.oup-usa.org/sc/0195131878/ for a description of the method and for
SAS code to implement the multiple comparison]. These multiple comparisons
are analogous to the ones used in the life table analyses of section 13.4.2, except
that in this case I used regression parameters as the statistics for comparison, rath-
er than Wilcoxon rank scores. As with the life table statistics, the multiple com-
parisons require a small amount of manual data-handling [see http://www.oup-
usa.org/sc/0195131878/].

The life table analyses showed significant heterogeneity among populations,
and pairwise comparisons suggested that all pairs differ except Coal Oil Point-
Campus Point and possibly Black Spanish-Rapid Cycling. The regression coeffi-
cients in table 13.3 and their estimated covariance matrix led to a somewhat
different conclusion: the Coal Oil Point-Campus Point comparison still results in
a high probability of being from the same population, but the Black Spanish-
Rapid Cycling comparison now shows significant differences between these pop-
ulations. All other comparisons remained qualitatively unchanged. The acceler-
ated failure-time model has thus confirmed the general patterns suggested by the
life table analysis, but its greater statistical power has also made it possible to
find significant differences among populations that were not revealed by the life
table analysis.

To interpret the regression parameters in table 13.3, recall that they corre-
spond to multiplicative effects of covariates on the probability of seedling emer-
gence. The average time to emergence for a Rapid Cycling plant is el'm~°'mp0(t) =
4.807/?0(0, whereas for a Storke Road plant it is el'mp0(t) = 6A75p0(t). The more
negative the coefficient, then, the earlier the average emergence time. The refer-
ence distribution p0(t) is the log-logistic distribution with the scale parameter
shown in table 13.3.

Analysis of the anthesis data (table 13.4) also shows that each population
contributes significantly to the model. Late emergence probably tends to delay
anthesis. This is to be expected, because the dependent variable is time from
planting to anthesis, which must be greater than time from planting to emergence.
Including emergence time in the model is thus analogous to including block ef-
fects in ANOVA.

The regression coefficients are interpreted in the same manner as they were
for the emergence time data. Only the reference probability distributions differ
(emergence is distributed as log-logistic, whereas anthesis is taken to be gamma-

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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distributed). However, this does not affect the qualitative interpretation of the
regression parameters. For example, analysis of the anthesis data shows that
Rapid Cycling plants reach anthesis much earlier and Black Spanish plants much
later than all others. This corresponds well with the results shown in figure 13.3.

The significant coefficient for the Coal Oil Point population indicates that it
differs significantly from the Storke Road population. By contrast, the pairwise
comparisons used following the life table analysis suggest that these populations
did not differ. As with the emergence data, multiple comparisons conducted with
Z-statistics from this analysis [see http://www.oup-usa.org/sc/0195131878/] point
to more among-population differences than were revealed with life table analysis.
These comparisons, conducted at the 0.05 significance level, suggest that all pop-
ulations differ from one another, except possibly the Black Spanish-Campus
Point pair, the differences among which were marginally significant. Which anal-
ysis is correct? The accelerated failure-time model has more statistical power,
and, therefore, it is reasonable to have more confidence in these results than in
the life table analysis.

Because the accelerated failure-time model is able to include the effect of
emergence time explicitly, we can have more confidence that differences among
populations in anthesis time are not simply due to differences in emergence time.
Moreover, the accelerated failure-time model—because of its greater statistical
power—has revealed several among-population differences that were not identi-
fied by life table analysis. Accelerated failure-time models can often provide
greater clarity in failure time studies than life table analysis alone. In the follow-
ing subsection, I illustrate the use of a somewhat different regression model, the
proportional hazards model.

Description of proportional hazards models. As mentioned previously, in a
proportional hazards model, the effect of covariates is to change the chance of
falling in a period with high hazard. The covariates act multiplicatively on the
hazard function, rather than on the failure time (as in accelerated failure-time
models). The hazard function for the rth group is thus

where h0(t) is a reference hazard function that is changed by the covariates X and
regression coefficient (3.

The Cox proportional hazards model, which is very widely used in epidemiol-
ogy (see Muenchow 1986 for an ecological application), estimates the reference
hazard function nonparametrically. The regression coefficients |3 are then esti-
mated numerically with a maximum-likelihood procedure. The Weibull distribution
(see the appendix) can also be used for proportional hazards models comparing two
groups, by treating the parameter p as the ratio of two regression coefficients
(Kalbfleisch and Prentice 1980).

Because covariates act on the failure time in accelerated failure-time models
and on the hazard function in proportional hazards models, the regression coeffi-
cients can have opposite meanings. A positive coefficient in a proportional haz-

http://www.oup-usa.org/sc/0195131878/
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ards model means that the covariate increases the hazard, thereby decreasing the
failure time. A positive coefficient in an accelerated failure-time model means
that the covariate increases the failure time. The interpretation of the coefficients
can also vary with the particular parameterization used by a statistical package:
the best advice is to check the documentation to be sure how to interpret the
results and to try a data set with a known outcome.

Applicaton of proportional hazards models. Muenchow (1986) was inter-
ested in testing whether male and female flowers of the dioecious plant Clematis
lingusticifolia are equally attractive to insects, against the alternative hypothesis
that males are more attractive. She recognized that this could be treated as a
failure-time problem because differences in attractiveness should lead to differ-
ences in time to the first insect visit. By treating this as a failure-time problem,
Muenchow was able to examine these hypotheses with a creative experimental
design: she watched pairs of flowers on the same plant and recorded waiting
times until the first insect visit. For each observation, she also recorded the time
of day, air temperature, and a categorization of the flower density within ~ 1 m
of the target plant. An important part of the design is that, unlike the radish study
discussed previously, Muenchow was not following a single cohort through time.
Waiting times were recorded to the nearest minute.

This study is one in which the assumptions of the Cox proportional hazards
model appear reasonable a priori. If there are differences in attractiveness, they
would likely act to increase the hazard (i.e., the chance of a visit) of the attractive
gender, relative to the hazard for the less attractive gender. Another way of look-
ing at this is that being a member of the attractive gender should have no effect
on the number of insects in the area, but it does affect the chances of a visit once
an insect is within some distance of the plant.

Muenchow's estimate of the survival function is shown in figure 13.4. She
noted that these data appear to have been drawn from an exponential distribution,
but she preferred to use a Cox model for her statistical tests.

An important part of Muenchow's study is the way in which she analyzed the
four covariates: gender, flower density category, temperature, and time of day.
She reported that the starting time and temperature coefficients were not signifi-
cantly different from zero; in other words, these factors do not appear to influence
waiting time to visitation. Because male plants had more flowers, gender and
flower density were correlated. Consequently, Muenchow analyzed the data by
stratifying: she examined the effect of flower density within each gender and the
effect of gender within each category of flower density.

Both gender and flower density independently had significant effects: within
a gender, insects visited dense flower groups faster than other groups, and within
a density category, insects visited males faster than females. Muenchow con-
cluded that males were more attractive both because they bore flowers more
densely and because they had some unknown attractive character.

SAS has recently developed a PHREG procedure to analyze this model. The
PHREG procedure is incorporated in SAS versions 6.07 and later, and it is docu-
mented in the SAS/STAT User's Guide for these versions.
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Figure 13.4 Product-limit esti-
mates of the survival function
recalculated from Muenchow's
(1986) study of waiting times
to insect visits at flowers of
Clematis lingusticifolia. See
http://www.oup-usa.org/sc/
0195131878/for discussion of
product-limit estimates. Sam-
ple sizes are 47 female (8 cen-
sored) and 49 male (2 cen-
sored) flowers. Nonparametric
tests show the genders to be
significantly different: log-
rank, x2 = 5.96, 1 df, P = 0.01;
Wilcoxon, x2 = 5.46, 1 df, P =
0.01.

13.5 Discussion

13.5.1 Assumption of Independence

In the statistical methods discussed here, we assume that the experimental units
are independent, that is, we assume that the individuals do not interact. This is
certainly a reasonable assumption for the case examined here, time to emergence
and flowering of a randomly selected set of seeds grown in individual pots in a
greenhouse. However, there are many cases in ecology where this assumption of
independence presents problems. Time to flowering in a natural setting often
depends on the number and sizes of neighbors of a plant. Consequently, we would
have to measure plants that are spaced widely enough that they do not interact.
Time to fruit set can depend on the availability of pollen and pollinators and can
therefore be strongly frequency- and density-dependent. In this case, it may not
always be possible to satisfy the assumption of independence. Life table estimates
of survival may still be useful in such situations as descriptions. However, the
significance tests discussed here will no longer be valid.

When data cannot be treated as independent, it is usually necessary to treat
aggregate measurements of treatment groups (e.g., mean sizes of individuals) as
single data points. With uncensored failure-time data, we might take the median
failure time of each treatment group as a data point. This approach cannot be
used if some data points are censored before 50% of individuals have failed,
because then only an estimate of the median and its variance would be available.
There are currently no methods for appropriately analyzing failure times in this
situation. Rather than comparing failure times, it may be more useful to compare
groups for the probability of failing within a specified time.

http://www.oup-usa.org/sc/0195131878/
http://www.oup-usa.org/sc/0195131878/
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13.5.2 Data Handling

The assumption that individuals are the experimental units has implications for
the treatment of data. Perhaps the most common question I have answered since
the first edition of this book is, Why won't SAS handle my data properly? In
every case, the data had been aggregated, so that the input data file provided
something close to a life table (something the software is better at doing than
we are). That is, many ecologists assume that data should be reprocessed so that
the software is told that, on day X, nx individuals died, and the like. A look at the
SAS code [see http://www.oup-usa.org/sc/0195131878/] should clarify this. The
data set should have an entry for each individual, giving the time to event for
each individual.

13.5.3 Problems with Data Censoring

Informative censoring. One kind of censoring must be avoided at all costs: in-
formative censoring. This is defined as a correlation between the chance that an
individual is censored and the individual's prognosis, conditioned on its covari-
ates (Cox and Oakes 1984). In other words, if we know that the individual was
censored, we can predict the likely time to event, beyond knowing its treatment
group, family, or other covariate. A classic example occurs in some agricultural
studies (with a close analog in some medical studies). For example, in studying
time to fruit ripening, an investigator removes plants that appear sick or stressed
from the study because she is interested in "normal" behavior. The problem is
that these plants are likely to have a rather different time to event than those that
are not censored. Informative censoring biases the results. In some cases, biologi-
cal information can tell us the direction of the bias. In the present example, it
seems likely that the stressed plants would have delayed event times; thus censor-
ing them serves to underestimate the median event time. In most cases, however,
the direction of bias is not known, and as a result, informative censoring invali-
dates most analyses.

There is no statistical test for informative censoring. Allison (1995) suggests
(p. 249 ff.) a kind of sensitivity analysis to assess the potential importance of
informative censoring. The data are analyzed under two alternative extreme as-
sumptions: censored individuals are at the greatest/lowest risk of an event occur-
ring. By using Allison's SAS code, we can then compare the results to gain insight
on how informative censoring might be biasing the results.

Large numbers of censored data points. If a large portion of the data are
censored, analysis can be difficult. Consider the extreme case: all data are cen-
sored. Obviously, we would never do this by design, but it certainly is possible
to have, for example, all our plants die before any of them flower. In this case,
we could not do much to analyze data on flowering time. To understand this,
consider a life table analysis: in each interval, the probability of flowering would
be estimated as zero, so the cumulative survival function would always be esti-
mated as 1. Thus, we must have a sufficient number of actual events.

http://www.oup-usa.org/sc/0195131878/
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Some ecological studies have sufficiently intricate designs so that it is possible
for some groups to be 100% censored. For example, a common design is the
cross-nested design: there are families nested within populations, with one or
more treatments applied to replicates within families. It is not difficult to have all
of the individuals in some of these cells be censored.

If nearly all of the data in some cells are censored, there are still problems.
Clearly, we cannot estimate means and variances with, for example, one noncen-
sored point in a cell. An additional problem is that some distributions in acceler-
ated failure-time models require numerical integration (especially the gamma dis-
tribution), and these estimates can be numerically unstable when there are few
uncensored points. There is no solution to this problem except to use larger sam-
ples.

Truncating an experiment. Most ecologists instinctively want to get as much
data as practical, so the idea of censoring data voluntarily is not appealing to most
of us. However, there are times when censoring makes a lot of sense. Consider a
simple germination experiment. The last seed that germinates does so on day 10,
but to be sure, an ecologist checks the pots every day for 500 days. Analyzing
all 500 days would then mean that the flat tail of the distribution will dominate
the data, because we are fitting a curve to the data. If we want to compare the
rate of germination among those that germinated, it makes sense to truncate the
analysis (if not the data observation) when the tails become flat. In other words,
we can impose Type I censoring after the fact. Whether to do so, and when to do
so, depends, as always, on what we want to know. Many of us have followed
cohorts of marked individuals to the death of the last one, and it may sometimes
be informative to do so. But it is worth bearing in mind that survival estimates
on the tail of the survival curve must, by their nature, have enormous standard
errors.

Censoring at time zero. What if some individuals are censored at time zero?
SAS, and probably most other packages, will not gracefully handle this situa-
tion—in fact, it can cause programs to crash. Biologically and statistically, this
makes sense: an individual censored at time zero might as well not be in the
study at all. If an individual is truly censored at time zero—a marked individual
is never again seen—it provides no information.

13.5.4 Hidden Heterogeneity

An important issue arises when there is heterogeneity in the sample population
(Keyfitz 1985). For example, if some individuals are inherently more prone to
have a failure than others, many of the estimates may be biased. Consider a
population with two types of individuals, lucky and unlucky, with lucky individu-
als always having lower mortality probabilities. Also assume that mortality in-
creases with age for both types. As time proceeds and we watch a cohort, more
of the unlucky than the lucky individuals have died. Estimates of the population's
mortality rate can actually decrease even though every individual has an increased
chance of death with age, because those with the highest risk are no longer
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strongly represented in the denominator. Thus, hidden heterogeneity can lead to
answers that are qualitatively wrong.

There are times when we can directly model this sort of heterogeneity. This
leads to so-called frailty models, which include a term describing each individu-
al's inherent "frailty" or "proneness." Obviously, we cannot estimate such quanti-
ties when each individual has only a single event (as in mortality). With repeated
events, however, this is possible (Lindsey 1993); standard SAS procedures cannot
presently analyze such models, but S-Plus can do so quite easily.

In cases where we can observe only a single event (like mortality), we can use
the approach employed by several researchers studying senescence in Drosophila
(e.g., Service et al. 1998). They fit models that assume heterogeneity in mortality
rates, and find a maximum-likelihood estimate of the variance in frailties. They
are then able to compare the fit of a model that incorporates these frailties with
one that assumes no heterogeneity.

Another way to minimize problems that arise from heterogeneity is to include
heterogeneity in the experimental design. For example, even if the questions of
interest are not principally genetic, if we sample by units like families and then
include family in the analysis, we have accounted for much of the heterogeneity
resulting from either genetic variation or common environments.

13.6 Conclusion

The kinds of studies discussed in this chapter—time to emergence and flowering
in a cohort of experimental plants, and time to insect visits for male and female
flowers—illustrate some of the types of questions that can be addressed with
failure-time approaches. Research in areas like life history evolution can clearly
benefit from using these approaches. However, Muenchow's (1986) insect visita-
tion study also shows how failure-time methods can be used to bring a lot of
statistical power to bear on problems that may not initially seem to be failure-
time problems.

This said, it is important to note that failure-time methods are not as well de-
veloped as ANOVA. We cannot use failure-time methods to estimate variance
components. Erratic patterns of censoring and the nonnormality of-most distribu-
tions of failure times makes such advances seem quite unlikely. Nor is the statisti-
cal power of failure-time methods well understood, except for the simple kinds
of cases used in much of clinical medicine (e.g., two groups only and no other
treatment factors—the survival analog of a simple /-test).

On the other hand, there are many types of ecological experiments for which
failure-time methods are the best approach, both in terms of experimental design
and statistical analysis. As shown in this chapter, the designs are generally quite
simple once we acknowledge that censored data points are still data points. Statis-
tical analyses are accessible to ecologists, especially inasmuch as the analyses
can generally be related to the study of life tables. In addition to the SAS imple-
mentation discussed in this chapter, all of the methods are available in S-Plus,
most of them are available in SPSS and BMDP, and many are available in SAS
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JMP and in Systat. FORTRAN programs for performing many of these analyses are
provided by Kalbfleisch and Prentice (1980) and Lee (1980). These methods should
be more widely used by ecologists, and their availability in user-friendly software
means that they can be used in undergraduate classes. Several issues related to the
presentation of results of failure-time analyses are discussed in Fox (1993).
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Appendix: Distributions of Failure Times

Failure-time distributions can be compared in many ways. For ecologists, the
most useful are probably comparisons of the hazard functions associated with
each distribution, because the assumptions about the failure process are made
explicit. Comparisons of the cumulative survivorship function and the probability
density function for lifetimes can also be useful, especially because some distribu-
tions do not have closed-form expressions for the hazard but do for one or both
of these functions.

A number of failure-time distributions have been used in empirical studies of
failure times. Although in principle any distribution can be used with an acceler-
ated failure-time model, some are more likely than others to be ecologically rele-
vant. Some of the most important distributions are described in this appendix.
Most statistical packages offer a limited choice of distributions. Note that the
SAS manual uses considerably more complex, but equivalent, notation. These
differences should be taken into account in interpreting SAS output. Other distri-
butions are discussed by Lawless (1982).

Analytical expressions for the hazard, survival, and probability density func-
tions are shown in table 13.5. Kalbfleisch and Prentice (1980) provide readable
derivations for these expressions. Representative cases are illustrated for each
distribution.

Exponential Distribution

Under the exponential distribution, the hazard function is constant (table 13.5).
Fitting data to the exponential thus requires estimation of only the single parame-
ter A,, which must be >0. This generates the cumulative survivorship and probabil-
ity density functions shown in figure 13.5.

A constant hazard generates a Type II survivorship curve. There are probably
few ecological situations in which hazards are truly constant for very long periods
of time. However, it may be realistic to treat some hazards as approximately
constant.

The exponential distribution is probably of greatest use as a starting point
for understanding failure-time distributions. The constant hazard means that the
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Table 1 3.5 Functions of failure-time distributions: h, P, and S are the hazard,
probability density, and survival functions, respectively3.

Distribution Parameters

Exponential 

Weibull 

2-parameter Gammab 

3-parameter Gammab 

LognormaT 

Loglogistic 

h(t) P(t) 5(0

aSAS uses these parameterizations, but this is not always obvious from their documentation: in describing the
gamma distribution, they fix all but the shape parameter at 0 or 1 so that the other two parameters do not appear
in their description.
br(jc) is the gamma function j u*~le~"du; T(k,x) is the incomplete gamma function

) is the cumulative normal distribution function

exponential distribution plays a role in failure-time models that is somewhat simi-
lar to that of the normal distribution in linear statistical modeling: the exponential
provides a simple null model and a point of departure for more complex failure
processes.

A simple empirical check for the exponential distribution is to examine
whether a life table estimate for the hazard function is approximately constant.
Equivalently, if the exponential distribution adequately describes the data, a plot
of logfSXf)] versus / should be approximately linear through the origin. The SAS
LIFETEST procedure produces this plot if you specify Plots = LS in the PROC

Figure 13.5 Hazard, survival,
and probability distribution

functions for the exponential
distribution for X = 0.1.
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Figure 13.6 Hazard, survival,
and probability distribution
functions for the Weibull dis-
tribution. (A) A, = 0.1, p = 0.7;
(B) 1 = 0.1, p= 13.

statement. Such empirical tests are quite important, because significance tests
assuming exponentially distributed data are less robust than tests assuming other
distributions (Lee 1980).

Weibull Distribution

The Weibull distribution is a generalization of the exponential. In the Weibull
distribution, the hazard function is a power of time (table 13.5). The two parame-
ters p and A, are >0. If p = 1, the Weibull distribution reduces to the exponential
distribution. Otherwise, the hazard is monotonically increasing for p > I and de-
creasing for p < 1. Considering its effect on the hazard function, we should not
be surprised that the shape of P depends on p, and p is often referred to as a
shape parameter. Figure 13.6 shows examples of the hazard, survival, and density
functions.

The monotonic trend in the Weibull model means that it can be realistic in
many systems. For example, epidemiological models use a Weibull distribution
with p > 1 for time of onset of fullblown AIDS in HIV-infected patients. Mortal-
ity in humans and many other mammals can sometimes be approximated with a
Weibull distribution, if only adults are considered. Weibull distributions have
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Figure 13.7 Hazard, survival,
and probability distribution

functions for the two-parame-
ter gamma distribution.

(A)X = 0.5,p = 0.7;(B)X =
0.5, p= 1.9.

Figure 13.8 Hazard, survival,
and probability distribution
functions for the lognormal

distribution for A. = 0.2,
p=l.l.
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been used recently by Petraitis (1998) to model predation rates on mussells, by
Ricklefs (1998) to model senescence in birds, and by Bullock et al. (1996) to
model aging in plants.

A simple empirical check for the applicability of the Weibull distribution to a
data set can be derived from the Weibull survival function: using life table esti-
mates for the survival function, a plot of log{-log[S(t)]} against log(?) should be
approximately a straight line, with the slope being an estimate for p and the log(0
intercept an estimate for -log(^). This plot is produced by the SAS LIFETEST
procedure by specifying the Plots = LLS option in the PROC statement.

Gamma Distribution

The gamma distribution is another generalization of the exponential. In contrast
to the Weibull distribution, the hazard function in the gamma distribution either
increases or decreases monotonically toward a constant as t approaches to infinity.
The monotonic nature of the gamma hazard makes it particularly useful for some
developmental processes. In addition to examples in this chapter, I have found
flowering time (Fox 1990a) and senescent mortality (Fox 1990b) in other plants
to be well-described by gamma distributions.

Figure 13.9 Hazard, survival,
and probability distribution
functions for the log-logistic
distribution. (A) A, = 0.5, p =
0.9; (B) A, = 0.5,p=1.3.
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The two parameters k and A, (table 13.5) are both >0; k determines the shape
of the distribution and A, its scale. The complicated SAS parameterization allows
the shape parameter to be negative. If k > 1, the hazard function is 0 at t = 0 and
increases monotonically toward A,. If k < 1, the hazard function is infinite at t = 0
and decreases monotonically toward A, with time. If k— 1, the gamma reduces to
the exponential distribution. Examples are shown in figure 13.7.

The gamma distribution can be made even more flexible by generalizing to a
three-parameter model (table 13.5). This three-parameter gamma includes all of
the preceding distributions as special cases: the exponential ((3 = k = 1), Weibull
(fc= 1), and two-parameter gamma (P = 1). The lognormal distribution (next sec-
tion) is the limiting case when k goes to infinity. Clearly, a very wide range of
survival data can potentially be fit with this distribution.

Lognormal Distribution

Analytical expressions for the lognormal distribution involve indefinite integrals
(table 13.5), but the salient feature of the lognormal is that the hazard function is
0 at time zero, increases to a maximum, and then decreases, asymptotically ap-
proaching 0 as t goes to infinity. The latter property means that the lognormal is
probably not useful for studies involving long lifetimes (although these are quite
rare in ecology) because a hazard of 0 is implausible. The lognormal is a two-
parameter distribution in which both p and A, are assumed >0. See figure 13.8 for
representative examples of the hazard, survival, and density functions.

As you might guess from the name, under the lognormal distribution the log
failure times are normally distributed. This suggests that simple empirical checks
for the lognormal distribution can be done by log-transforming the data and using
any of the standard methods of testing for normality.

Log-logistic Distribution

The log-logistic distribution is roughly similar in shape to the lognormal, but it
is often easier to use the log-logistic, primarily because the functions of interest
have closed-form expressions (table 13.5). Especially when there are censored
data, the lognormal can involve considerable computation because of the indefi-
nite integrals in the hazard and survival functions. The log-logistic distribution
can also be somewhat more flexible than the lognormal, as can be seen by consid-
ering the hazard, survivorship, and probability distribution functions (table 13.5,
figure 13.9). If p < 1, the hazard function is infinite at 0 but decreases monotoni-
cally with time. If p > 1, it decreases monotonically from A.. When p > 1, the
hazard is similar to the lognormal hazard: it increases from zero to a maximum
att=(p— 1)1/P/A,, and then decreases toward zero.

The humped nature of the log-logistic and lognormal hazards may make them
especially useful for describing an organism's response to environmental factors.
The seedling emergence data analyzed in this chapter is one example. On the
other hand, few mortality hazards are likely to begin as very small, reach a maxi-
mum, and then decline.
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The Bootstrap and the Jackknife

Describing the Precision of Ecological Indices

PHILIP M. DIXON

14.1 Introduction

Quantitative ecology uses many indexes and coefficients, including diversity indi-
ces (Magurran 1988), similarity indices (Goodall 1978), competition coefficients
(Schoener 1983), population growth rates (Lenski and Service 1982), and mea-
sures of size hierarchy (Weiner and Solbrig 1984). All of these indices are statis-
tics, calculated from a sample of data from some population and used to make
conclusions about the population (chapter 1). To help a reader interpret these
conclusions, good statistical practice includes reporting a measure of uncertainty
or precision along with a statistic. Although it is easy to calculate the values of
many ecological statistics, it is often difficult to estimate their precision. This
chapter discusses two techniques, the bootstrap and jackknife, that can be used to
estimate the precision of many ecological indices.

14.1.1 Precision, Bias, and Confidence Intervals

To understand how the bootstrap and jackknife work, we must first review some
concepts of statistical estimation. Consider how to estimate the mean reproductive
output for a species in a defined area. The statistical population is the set of
values (number of seeds per plant) for every plant in the area. The mean reproduc-
tive output is a parameter; it describes some interesting characteristic of the popu-
lation. This parameter is known exactly if every plant is studied, but completely
enumerating the population is usually impractical.

267
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Instead, a random sample of plants are counted. The average reproductive output
for the plants in the sample is an estimate of the parameter in which we are inter-
ested. How accurate is this estimate? Plants have different reproductive outputs; a
different sample of plants will provide a different estimate of average reproductive
output. Some estimates will be below the population mean, whereas other estimates
will be above (figure 14.1). The set of average reproductive output from all possible
samples of plants is the sampling distribution of the sample average; characteristics
of this distribution describe the accuracy of a statistic.

The accuracy of a statistic has two components: bias and precision (Snedecor
and Cochran 1989). Bias measures whether a statistic is consistently too low or
too high. It is defined as the difference between the population value and the
average of the sampling distribution. If the sampling distribution is centered
around the population value, then the statistic is unbiased. Precision depends on
the variability in the sampling distribution and is often measured by the variance
or standard error. Bias and precision are separate components of accuracy. A
precise statistic may be biased if its sampling distribution is concentrated around
some value that is not the population value.

The distribution of estimates from all possible samples is a nice theoretical con-
cept, but an experimenter has only one sample of data and one value of the estimate.
If the method used to sample the population has well-defined characteristics (e.g.,

Figure 14.1 Relationship be-
tween population distribution

and sampling distribution. If the
values in the population were

known, then the sampling distri-
bution of the estimate could be
obtained by repeatedly drawing

samples from the population
and calculating the statistic from

each sample.



The Bootstrap and the Jackknife 269

Figure 14.2 Use of data and statistical theory to infer a sampling distribution from one
sample of data. The sampling distribution of certain statistics is known theoretically. State-
ments about the precision can be made from sample information (e.g., sample mean and
standard deviation).

simple random sampling), the sampling distributions of sample averages and a few
other statistics can be calculated from one sample of data because there are known
mathematical relationships between the properties of the sample and the properties
of the population (figure 14.2). For example, the sample average from a simple
random sample is unbiased and its standard error, ss, can be estimated by sx = sj
(n)112, where st is the sample standard deviation and n is the sample size.

Confidence intervals can also be calculated if the sampling distribution is
known. Under certain assumptions about the observations, the sample mean and
sample variance are independent estimates with known distributions, so that a
95% confidence interval is given by x — tn^ss, x + tn^ss, where £„_) is the critical
value for a two-sided 95% confidence interval from a ^-distribution with n—\
degrees of freedom. Confidence intervals are commonly misunderstood. Remem-
ber, a confidence interval is a random interval with the property that it includes
the population mean, which is fixed, with a given frequency. A 95% confidence
interval of (1, 2) does not mean that 95% of possible sample values are between
1 or 2, and it does not mean that 95% of possible population means are between
1 and 2. Instead, it means that 95% of the time, the confidence interval will
include the population mean.
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14.1.2 Precision and Bias of Ecological Indexes

Many useful ecological indexes are more complicated than a sample mean, and a
sampling distribution cannot be calculated mathematically. However, it is more
important to choose an ecologically useful coefficient rather than a statistically
tractable one. The sampling distributions of many ecologically useful coefficients
can be estimated using the bootstrap or the jackknife. The jackknife estimates the
bias and variance of a statistic. In addition to estimating the bias and variance,
the bootstrap also determines a confidence interval.

The jackknife and bootstrap have been used in many ecological applications,
such as the following: population growth rates (Meyer et al. 1986; Juliano 1998),
population sizes (Buckland and Garthwaite 1991), toxicity assessment (Bailer and
Oris 1994), ratios of variables (Buonaccorsi and Liebhold 1988), genetic distances
(Mueller 1979), selection gradients (Bennington and McGraw 1995), diversity
indexes (Heltshe and Forrester 1985; Heltshe 1988), species richness (Smith and
van Belle 1984; Palmer 1991), diet similarity (Smith 1985), home ranges (Rempel
et al. 1995), and niche overlap indexes (Mueller and Altenberg 1985; Manly
1990). General introductions to the bootstrap and jackknife can be found in Manly
(1997), Crowley (1992), and Stine (1989). More of the statistical theory can be
found in Hall (1992), Shao and Tu (1995), and Davison and Hinkley (1997).
Useful surveys of applications and problems include Leger et al. (1992), Young
(1994), and Chernick (1999).

In this chapter, I will describe the jackknife and bootstrap and illustrate their
use with two indices: the Gini coefficient of size hierarchy and the Jaccard index
of community similarity [see http://www.oup-usa.org/sc/0195131878/ for the com-
puter code]. I also describe some of the practical issues applying the techniques
to answer ecological questions. The focus is on nonparametric methods for inde-
pendent observations, but some approaches for more complex data are discussed
at the end.

14.1.3 Gini Coefficients and Similarity Indices

The Gini coefficient, G, is a measure of inequality in plant size (Weiner and Sol-
brig 1984). It ranges from 0, when all plants have the same size, to a theoretical
limit of 1, when one plant is extremely large and all other plants are extremely
small. The coefficient G can be calculated from a set of data:

where n is the number of individual plants and Xi is the size of the z'th plant, when
plants are sorted from smallest to largest, Xi < X2 < .. . < Xn. The bootstrap can be
used to estimate the precision of G (Dixon et al. 1987).

A similarity index describes the similarity in species composition, which can
be estimated by sampling the species in each community and computing the simi-

http://www.oup-usa.org/sc/0195131878/
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larity between a pair of samples. Many similarity indexes have been proposed
(see Goodall 1978 for a review); the Jaccard (1901) index, which depends on the
similarity in species presence, is computed as

where a is the number of species found in both communities, b is the number of
species found only in the first, and c is the number of species found only in the
second. The coefficient is ecologically useful, but its precision is difficult to cal-
culate analytically. The bootstrap and jackknife are methods to describe the accu-
racy of similarity indexes (Smith et al. 1986).

14.2 The Jackknife

The jackknife procedure (Miller 1974) is a general technique to answer the ques-
tion, How precise is my estimate? It can estimate bias or standard error for a
statistic, but not for a confidence interval (Efron 1982). The basic idea is that the
bias and standard error can be estimated by recalculating the statistic on subsets
of the data. Although the bootstrap has theoretical advantages, the jackknife re-
quires considerably less computation and includes no random component. The
jackknife can also be used in conjunction with the bootstrap (see sections 14.4.3
and 14.5.6).

14.2.1 Ecological Example: Gini Coefficients to Measure
Size Hierarchy in Ailanthus Seedlings

The tree-of-heaven, Ailanthus altissima, is an aggressive introduced tree. Evans
(1983) studied whether seedlings grown in a competitive environment have a
stronger size hierarchy (higher size inequality) than individually grown plants.
Six seeds were randomly chosen from a large collection of seeds and planted in
individual pots. Another 100 seeds were planted in a common flat so that they
could compete with each other. After 5 months, each survivor was measured
(table 14.1). The Gini coefficient for the individually grown plants (G- 0.112)
was smaller than that for the competitively grown plants (G = 0.155), consistent
with the hypothesis that competition increases the inequality in the size distribu-
tion (Weiner and Solbrig 1984). The sample sizes are small, especially for the
individually grown plants, so it is important to estimate the precision of each
estimate and calculate a confidence interval for the difference.

14.2.2 Jackknifing the Gini Coefficient

The jackknife estimates of bias and standard error (Miller 1974) are calculated
by removing one point at a time from the data set. Consider the Gini coefficient
for individually grown plants (table 14.1). The observed value, based on all six
plants is G = 0.112. If the first point is removed, G^ calculated from the remain-



272 Design and Analysis of Ecological Experiments

Table 14.1 Number of leaf nodes for 5-month-old Ailanthus
altissima grown under two conditions: in individual pots and
in a common flat

6 plants grown individually:
18 18 20 23 25 28

75 surviving plants grown together in a common flat:
8
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
30

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27

11
12
13
14
15

17
18
19
20
21
22
23
24
25

27

13
14
15

18
19
20

22
23

25

13 13 13
14
15 15 15 15

18

20 20

22
23 23 23

ing five data points is 0.110. If the fourth point is removed, G_4 calculated from
the remaining five data points is 0.124. Each perturbed value is combined with
the original statistic to compute a pseudovalue, pt, for each of the n data points:

The six jackknife samples for individually grown Ailanthus, their G_, values, and
their pseudovalues are given in table 14.2.

Table 14.2 Jackknife samples with Gini coefficients for
individually grown Ailanthus

Jackknife sample

18
18
18
18
18
18

20
20
18
18
18
18

23
23
23
20
20
20

25
25
25
25
23
23

28
28
28
28
28
25

Gini
coefficient

0.110
0.110
0.120
0.124
0.117
0.091

mean p:

Pseudovalue

0.124
0.124
0.070
0.053
0.089
0.216
0.1128
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The jackknife estimates of bias (Efron 1982) are

where G is the sample Gini coefficient and p is the mean of the jackknife pseudo-
values. For the individually grown Ailanthus, the jackknife estimate of bias is
0.1121 - 0.1128 = -0.0007. This bias is very small, but if it were larger, it could
be subtracted from the observed value to produce a less biased estimate. The
jackknife is especially effective at correcting a statistic for first-order bias, a bias
that is linearly proportional to the sample size (Miller 1974).

The jackknife estimate of the standard error is just the standard error of the
pseudovalues,

where n is the sample size and p is the mean of the pseudovalues. From the data
in table 14.2, the estimated standard error (s.e.) is 0.024. For the 75 plants grown
in competition, the s.e. is estimated to be 0.010. The two samples are independent,
so the s.e. of the difference is (si + &l)m. This is estimated to be 0.026, which
is about half of the observed difference (0.043). These calculations have been
demonstrated using a small sample of data, but estimates of bias and standard
error from small samples must be treated with caution. As with most statistical
techniques, estimates from larger samples are more precise.

In general, the jackknife cannot be extended to calculate confidence intervals
or test hypotheses (Efron 1982). Some attempts have been made to construct
confidence intervals by assuming a normal distribution (Meyer et al. 1986; Smith
et al. 1986). Such confidence intervals would have the form (G ± 4%, where tk is
a critical value from a ^-distribution with k degrees of freedom. The problem with
this approach is that the appropriate number of degrees of freedom is unknown,
in spite of a lot of theoretical research (Efron and LePage 1992). However, using
n — 1 degrees of freedom, where n is the original sample size, has worked well
in some cases (Meyer et al. 1986).

The jackknife has also been used to estimate the precision of various similarity
measures, including measures of diet similarity (Smith 1985), community similar-
ity (Smith et al. 1979; Smith et al. 1986; Heltshe 1988), and niche overlap (Muel-
ler and Altenberg 1985). Because these methods require comparing two-samples,
the jackknife procedure is slightly different. Details of the two-sample jackknife
can be found in Dixon (1993) or in the original articles.

14.3 The Bootstrap Method

The bootstrap has become a popular method for estimating confidence intervals
and testing hypotheses about many ecological quantities. Although the bootstrap is
applicable to many ecologically problems, it is not appropriate for everything. I will
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describe the principles of bootstrapping, compare some of the many varieties of the
bootstrap procedure, and discuss when the bootstrap is not appropriate.

The bootstrap is a two-step procedure to approximate the unknown sampling
distribution. First, the unknown distribution of values in the population is approxi-
mated using information from the observed sample (figure 14.3). Then, many
bootstrap samples are drawn from this distribution. The unknown sampling distri-
bution is approximated by the distribution of estimates from many bootstrap sam-
ples (figure 14.3). The bootstrap distribution is used to calculate a confidence
interval, test a hypothesis, and estimate the standard error and bias for a statistic.

Figure 14.3 Use of data and the
bootstrap distribution to infer a sam-

pling distribution. The bootstrap
procedure estimates the sampling

distribution of a statistic in two
steps. The unknown distribution of

population values is estimated from
the sample data, then the estimated

population is repeatedly sampled, as
in figure 14.1, to estimate the sam-

pling distribution of the statistic.
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Although the concepts are very simple, there are many possible varieties of boot-
straps. These differ in three characteristics: (1) how the population is approxi-
mated, (2) how bootstrap samples are taken from the population, and (3) how the
endpoints of confidence intervals are calculated.

14.3.1 Approximating the Population: Parametric and
Nonparametric Bootstraps

The first step in the bootstrap is using information in the observed sample to
approximate the unknown distribution of values in the population. A parametric
bootstrap approximates the population by a specific distribution (e.g., a lognormal
or Poisson distribution) with parameters that are estimated from the sample. For
example, the number of leaves on the competitively grown plants fits a Poisson
distribution with a mean of 18.4 reasonably well. There are only six individually
grown plants, so almost any discrete distribution can fit those data. A Poisson
distribution with a mean of 22 is not an unreasonable choice. These parametric
distributions are used to describe the unknown populations. Each parametric boot-
strap sample of competitively grown plants is a random sample of 75 observations
from a Poisson distribution with a mean of 18.4; each parametric bootstrap sam-
ple of individually grown plants is a random sample of six observations from a
Poisson distribution with a mean of 22.

In a nonparametric bootstrap, the population is approximated by the discrete
distribution of observed values (figure 14.3). The estimated population of individ-
ual Ailanthus sizes is a discrete distribution in which the value 18 occurs with
probability 2/6 (because 2 plants had 18 leaves) and the values 20, 23, 25, and
28 each have probability 1/6. Most ecological applications use the nonparametric
bootstrap because it requires fewer assumptions about the population. However,
the nonparametric bootstrap assumes that the observed sample is representative
of the population. With very small samples, the parametric bootstrap is often
better, as long as the assumed distribution is not wildly incorrect (Davison and
Hinkley 1997).

14.3.2 Drawing a Bootstrap Sample From the Population:
Ordinary, Balanced, and Moving Block Bootstraps

Once the population is approximated, samples must be drawn from this popula-
tion. The simplest way is to draw a simple random sample, with replacement,
from the values in the population. If a nonparametric bootstrap is used, the boot-
strap sample is a simple random sample of the observed values. The statistic,
(e.g., the Gini coefficient) is then calculated from the values in the bootstrap
sample. Five bootstrap samples and Gini coefficients are shown in table 14.3,
which illustrates an important characteristic of bootstrap samples. Each bootstrap
sample omits some observed values and repeats others because the observed data
are sampled with replacement. Some of the bootstrap samples have Gini coeffi-
cients larger than the observed value, G = 0.112, whereas other samples have
smaller coefficients.
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Table 14.3 Five bootstrap samples for the data from
individually grown plants

Bootstrap sample

18
18
18
18
18

18
18
18
18
18

23
18
23
18
20

25
25
23
20
23

28
25
28
23
25

28
25
28
28
28

Gini
coefficient

0.117
0.098
0.116
0.107
0.112

This process is repeated for many bootstrap samples. Typically, 50 to 100
bootstrap samples are used to estimate a standard error; 1000 or more bootstrap
samples are recommended to calculate a confidence interval (Efron and Tibshirani
1993). The number of bootstrap samples will be discussed further in section
14.5.5.

One potential concern with simple random sampling is that each observation
may not occur equally often in the bootstrap samples. In the five samples illus-
trated in table 14.3, the value 20 occurs a total of two times, but the value 28
occurs a total of six times. Hence, the aggregated bootstrap samples do not repre-
sent the population, in which the values 20 and 28 are equally frequent. The
balanced bootstrap forces each value to occur equally frequently. One algorithm
to draw 100 balanced bootstrap samples is to write down 100 copies of the ob-
served data. For the six individually grown plants, this population has 600 values,
200 of which are 18, 100 are 20, 100 are 23, 100 are 25, and 100 are 28. Ran-
domly permute the 600 values, then take the first 6 as the first bootstrap sample,
the next 6 as the second, and so on. The balanced bootstrap can markedly increase
the precision of bias calculations, but it is less useful for confidence interval
calculations (Davison and Hinkley 1997).

Both the simple random sample and balanced bootstraps assume that there is
no temporal or spatial correlation among the values. If there is any correlation, it
is eliminated by the randomization used in the ordinary and balanced bootstraps.
The moving block bootstrap generates bootstrap samples that retain some of the
correlation (Davison and Hinkley 1997). It, and other methods for bootstrapping
correlated data, are discussed in section 14.5.4.

14.3.3 Estimating Bias and Standard Error From
the Bootstrap Distribution

The bootstrap distribution provides the information necessary to estimate the bias
and standard error of a statistic like the Gini coefficient. The bootstrap estimate
of bias is simply the difference between the average of the bootstrap distribution
and the value from the original sample. For the individually grown Ailanthus
plants, the sample Gini coefficient is 0.1121 and the average Gini value in the
five bootstrap samples of table 14.2 is 0.1099. Hence, the bootstrap estimate of
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bias is 0.1099 - 0.1121 = -0.0021. In practice, you should use 50 to 100 bootstrap
samples to estimate the bias (Efron 1987). Using 1000 bootstrap samples (data
not shown), the biases for the individually and competitively grown Ailanthus are
estimated to be -0.018 and -0.0020, respectively. In both cases, the bias is small.
If the bias were larger, the estimate of bias could be subtracted from the observed
value to produce a less biased estimate.

The standard error of the sample Gini coefficient is estimated by the standard
deviation of the bootstrap distribution. For the five bootstrap samples shown in
table 14.2, the estimated standard error is 0.0079. Again, I use only five bootstrap
samples to demonstrate the calculations. Using 1000 bootstrap samples (data not
shown), the estimated standard errors for the Gini coefficient of individually and
competitively grown plants are 0.022 and 0.0097, respectively. These numbers
are not too different from those estimated by the jackknife. This is often the case;
theoretical calculations show that the jackknife is a linear approximation to the
bootstrap (Efron 1982).

A standard error is a single measure of precision. It can be turned into a
confidence interval if we assume a particular distribution, such as the normal.
However, confidence intervals can be estimated from the bootstrap distribution
without assuming normality.

14.4 Calculating Confidence Intervals From
the Bootstrap Distribution

Confidence intervals can be calculated from the bootstrap distribution in at least
five different ways: the percentile bootstrap, the basic bootstrap, the studentized
bootstrap, the bias-corrected bootstrap, and the accelerated bootstrap (Davison
and Hinkley 1997). Different authors have used other names for some of these
methods, which increases the confusion. Some of the synonyms are given in the
documentation to the SAS JACKBOOT macro (SAS Institute 1995). These differ-
ent methods, which are discussed subsequently, represent a trade-off between
simplicity and generality. No method is best for all problems.

14.4.1 Percentile Bootstrap

The percentile bootstrap is the simplest, and most commonly used, method to
construct bootstrap confidence intervals. In this method, the 2.5 and 97.5 percen-
tiles of the bootstrap distribution are used as the limits of a 95% confidence
interval. To calculate the 2.5 percentile from TV bootstrap replicates, sort the esti-
mates from the bootstrap samples in order from smallest to largest. The p\h per-
centile is the (N+ l)p/100th largest value. A histogram of 999 bootstrap Gini
coefficients for competitively grown Ailanthus is shown in figure 14.4. The 2.5
and 97.5 percentiles ofN= 999 observations are given by the 25th and 975th largest
values. They are 0.133 and 0.171, respectively, so (0.133, 0.171) is the 95% con-
fidence interval using the percentile method.
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Figure 14.4 Histogram of 999 bootstrap values for competitively grown. Ailanthus. Arrows
below the histogram mark the 25th and 975th largest values. Arrow above the histogram
marks the Gini coefficient for the observed data (G = 0.155).

Percentile bootstrap confidence intervals can be calculated for any statistic,
but they do not always work very well (Schenker 1985). A confidence interval
can be evaluated by simulating many data sets from a population with some
known parameter, calculating a confidence interval from each data set, and count-
ing how many confidence intervals bracket the true parameter. A 95% confidence
interval should include the true parameter in 95% of the simulated data sets.
When sample sizes are small (i.e., less than 50), the percentile confidence inter-
vals for the variance (Schenker 1985) and Gini coefficient (Dixon et al. 1987)
are too narrow. For example, with samples of 20 points, 90% confidence intervals
for the variance include the true variance only 78% of the time, and 95% confi-
dence intervals for a Gini coefficient of a lognormal population include the true
value of 0.30 only 85% of the time (Schenker 1985; Dixon et al. 1987).

The percentile bootstrap produces correct confidence intervals when the boot-
strap distribution is symmetrical and centered on the observed value (Efron 1982).
This is not the case for the Gini coefficient in this example, where 56% of the
bootstrap values are smaller than the observed value (figure 14.4). For individu-
ally grown Ailanthus, 74% of the bootstrap values are smaller than the observed
value. In both cases, the observed values are larger than the median of the boot-
strap distribution, so the upper and lower confidence bounds are too low.
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The plethora of bootstrap confidence intervals comes from different ways of
adjusting the percentile bootstrap confidence intervals to improve their coverage.
The bias-corrected bootstrap adjusts for bias in the bootstrap distribution and the
accelerated bootstrap adjusts for both bias and skewness. The studentized boot-
strap is based on the bootstrap distribution of the statistic adjusted by its mean
and standard error. The ratio (G, — G)/sf is like a Student's f-statistic, hence the
name of the method. This approach is especially useful when the variability in the
data depends on the mean, as is common in ecological data. The basic bootstrap, a
"turned around" version of the percentile bootstrap, is based on the fundamental
relationship between hypothesis tests and confidence intervals.

14.4.2 Bias-corrected and Accelerated Bootstraps

The bias-corrected percentile bootstrap adjusts for a bootstrap distribution that is
not centered on the observed statistic. The bounds of the bias-corrected intervals
are found by determining F, the fraction of bootstrap replicates that are smaller
than the observed value and the value, Za, the probit transform of F. The appro-
priate percentiles for a 95% confidence interval are calculated as follows:

where <\> is the normal cumulative distribution function (c.d.f.). The normal c.d.f.
and probit transformation are available in many statistical packages, or they can
be computed from tables of areas of the normal curve (e.g., Rohlf and Sokal
1995, table A). The values ±1.96 are the critical values for a 95% confidence
interval of a statistic with a normal distribution. They can be changed to generate
other confidence intervals. The upper and lower bounds of the bias-corrected
confidence interval are given by the values in the bootstrap distribution that match
the calculated percentiles, PI and Pa. When the observed value is the median of
the bootstrap distribution, there is no difference between the bias-corrected and
percentile confidence intervals.

For the bootstrap distribution shown in figure 14.4, 56.4% of the values are
smaller than the observed Gini coefficient of 0.1548, so F = 0.564 and z0 = 0.166.
The desired percentiles of the bootstrap distribution are Pl = <|)(— 1.628) = 5.181%,
and Pu = $(2.29) = 98.91%. The number of bootstraps (1000) times the percentiles
(5.181% or 98.91%) are not exact integers, so the observations corresponding to
the next most extreme integer are used. The bounds of the bias-corrected 95%
confidence interval are the 5 1 st and 990th largest values in the bootstrap distribu-
tion, which are (0.136, 0.176). Note that the values of the upper and lower bounds
are both larger than those for the percentile bootstrap, which were (0.133, 0.171).
The bias-correction procedure has shifted the confidence interval upward to adjust
for bias.

The accelerated bootstrap makes a second correction that is helpful when boot-
strapping statistics like the variance or the Gini coefficient, where a few extreme
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points will have a large influence on the observed value. This technique is so
named because it "accelerates" the bias-correction (Efron 1987). These confi-
dence intervals depend on two constants, z0 used to correct for bias and the accel-
eration factor, a, which corrects for skewness. The a coefficient is nonzero when
a few points have a large influence on the observed estimate. It can be estimated
nonparametrically using the jackknife (see Dixon 1993, p. 302, or Efron and
Tibshirani 1993, p. 186, for the details). The percentiles for the upper and lower
95% confidence bounds are calculated as

where § is the normal cumulative distribution function, as with the bias-corrected
confidence intervals, and the value 1.96 is the normal critical value for a 95%
confidence interval.

Using the number of leaf nodes of competitively grown Ailanthus (table 14.1),
the constant a was estimated to be 0.0193, using the method described in Dixon
(1993). For the bootstrap distribution in figure 14.4, z0 = 0.166, so P, = (j)(-1.568) =
5.85%, and Pu = <|>(2.383) = 99.14%. Hence, the bounds of the accelerated confi-
dence interval were the 59th and 992nd largest values in the set of 1000 bootstrap
replicates: (0.137, 0.176). For these data, both the bias-corrected and accelerated
bootstrap procedures adjust the confidence interval upward to account for the
skewed and biased sampling distribution.

14.4.3 Studentized Bootstrap

The percentile and bias-corrected bootstraps assume that the sampling distribution
has constant variance. In many practical cases, the variance of the sampling distri-
bution depends on the mean. Some ecological examples include average plant
sizes, average survival time under exposure to some toxicant, and estimated pro-
portions. The variance of the observations is related to the mean, so the variance
of the sampling distribution is related to the mean. The acceleration constant, a,
used in the accelerated bootstrap confidence interval is one way to adjust for this
unequal variance. A second way is the studentized bootstrap.

When a statistic, g, has a normal sampling distribution, the bounds of a confi-
dence interval are given by

where sg is the standard error of g, and ±t are quantiles of a ^-distribution with
the appropriate degrees of freedom. The idea behind the studentized bootstrap is
to compute a confidence interval with the same form as equation 14.10, but use
different critical values and relax the assumption of normality. The studentized
bootstrap confidence intervals are given by
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where b\ and foh are percentiles from the bootstrap distribution of a studentized
version of the statistic.

This bootstrap distribution is computed by drawing a bootstrap sample of ob-
servations and calculating the statistic, G;, and its standard error, s,-. The student-
ized statistic is then

where G is the value observed in the original sample. Note that a standard error
is calculated for each bootstrap sample. A large number (e.g., 999) of values of
bj are calculated from a large number of bootstrap samples. For a 95% confidence
interval, bi and &h are the 2.5 and 97.5 percentiles. If N = 999, estimates of bt are
sorted from smallest to largest; these percentiles are the 25th and 975th observa-
tions. These percentiles are combined with the observed statistic, g, and observed
standard error, seg, to compute the studentized confidence interval (equation 14.11).

Unlike the other bootstrap methods, the studentized bootstrap requires the stan-
dard error of the statistic. For some statistics, standard errors can be computed
using appropriate formulas. The Gini coefficient is one of many statistics for
which there is no formula for the standard error. A second bootstrap could be used
to estimate the standard error (see section 14.3.3), but this requires considerable
computation to estimate a standard error for each bootstrap sample. A more prac-
tical approach is to use the jackknife (section 14.2.2) to estimate the standard
error of the observed statistic and each bootstrap statistic.

The bootstrap distribution of studentized Gini statistics for the 75 competitive-
ly grown individuals has a median of 0.26 and is slightly skewed (figure 14.5).
The observed Gini coefficient is 0.155 with a jackknife standard error of 0.0102.
The 2.5 and 97.5 percentiles are -1.80 and 2.48, respectively, so the 95% stu-
dentized bootstrap confidence interval is (0.155-1.80x0.0102, 0.155 +2.48 x
0.0102) = (0.137, 0.180).

Figure 14.5 Histogram of 999
studentized bootstrap values
for competitively grown Ailan-
thus. Arrows below the histo-
gram mark the 25th and 975th
largest values.
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14.4.4 Basic Bootstrap

The percentile bootstrap is quite easy to interpret but somewhat controversial. The
bootstrap distribution approximates the sampling distribution when the unknown
parameter, 0, is set equal to the observed value, G. The controversial part is how
to calculate an appropriate confidence interval from the bootstrap distribution
(Davison and Hinkley 1997). The basic bootstrap determines confidence interval
endpoints by exploiting the fundamental connection between hypothesis tests and
confidence intervals. One way to find the endpoints of a 95% confidence interval
is to use a test of the hypothesis 0 = x to find the values x = 1 and x = u for which
the hypothesis is rejected at exactly P = 5%. Using the bootstrap to test these
hypotheses requires estimating the sampling distribution when 0 = 1 and the sam-
pling distribution when 0 = u. Under the assumption that the s.e. of the sampling
distribution is not related to the mean, the sampling distribution when 0 = u is
estimated by shifting the observed sampling distribution by u - G. The hypothesis
that 0 = u is rejected at P = 5% when the observed value, G, is exactly the 2.5th
percentile of the shifted sampling distribution. Similarly, the hypothesis that 0 =
1 is rejected at p = 5% when the observed value, G, is exactly the 97.5th percen-
tile. Hence, the basic confidence interval bounds are given by (2G - GMli, 2G -
Go.025), where G is the observed statistic and G0.025 and Go.975 are the 2.5th and
97.5th percentiles of the bootstrap distribution.

For the competitively grown individuals, the 2.5th and 97.5th percentiles of
the bootstrap distribution are 0.133 and 0.171, respectively, so the basic 95%
confidence interval is (2x0.155-0.171, 2x0.155-0.133) = (0.139, 0.177).
When the sampling distribution is symmetrical about the observed value, G, the
basic intervals and percentile intervals are the same. Because the sampling distri-
bution of the Gini coefficient is slightly asymmetric, the endpoints of the basic
interval are adjusted slightly upward from those for the percentile interval.

14.5 Practical Details

14.5.1 Choice of Method

The bootstrap and the jackknife are two techniques that answer the same question,
How precise is a particular statistic? The bootstrap estimates either a standard
error or a confidence interval, but the jackknife is most appropriately used to
estimate a standard error. Confidence intervals based on the jackknife standard
error assume that the statistic has a normal distribution. If the distribution is
skewed or heavy tailed, then jackknife confidence intervals are likely to be inac-
curate.

In extremely large samples, theoretical results show that both techniques give
the same answers (see Efron 1982 and Efron and Tibshirani 1986 for details). For
realistic data, the two techniques usually give slightly different answers. Which is
better? The jackknife is often simpler to compute, but that is less important with
modern computers. Often, both techniques give similar answers, but if the differ-
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ences are important, the performance of the two techniques should be evaluated
on a case-by-case basis.

14.5.2 Choice of Bootstrap Method

As stated in section 14.3, the choice of bootstrap specifies three characteristics:
how to approximate the population, how to draw a bootstrap sample, and how to
construct a confidence interval. Some decisions are more important than others.
Most ecological applications use the nonparametric percentile bootstrap. It is cer-
tainly the simplest method to implement or describe. The choice of parametric
or nonparametric bootstrap is not very important when the assumed parametric
distribution is reasonable and the sample size is sufficiently large. If the sample
size is small, the parametric bootstrap may provide more reliable answers. The
choice of ordinary or balanced bootstrap rarely affects confidence intervals (Davi-
son and Hinkley 1997).

The appropriate choice of which method to use to calculate the bootstrap confi-
dence interval can be more difficult, but this also may not make much difference.
For the competitively grown plants, all five methods for calculating endpoints
give very similar confidence intervals (table 14.4). This is not always the case,
especially if the sample size is small (e.g., Efron and Tibshirani 1993, p. 183;
Davison and Hinkley 1997, p. 231; Manly 1997, p. 55).

When the differences between intervals are large enough to matter, it may help
to consider the characteristics of the problem and each method. The percentile,
bias-corrected, and accelerated confidence intervals are restricted to valid parame-
ter values. For example, the Gini coefficient must be between 0 and 1. The end-
points of confidence intervals from these three methods will always fall between
0 and 1. The basic and studentized methods can lead to confidence interval end-
points that are negative or are larger than 1.

Theoretical arguments suggest that the accelerated bootstrap is generally better
than the bias-corrected or percentile methods (Efron 1987). However, simulation
studies suggest that the practical differences among bootstrap techniques are often
small. If there is a difference, the studentized bootstrap has the best coverage
(Davison and Hinkley 1997, p. 231 for ratios and P. M. Dixon, unpubl. data,
1999, for Gini coefficients and log-normal means). The adequacy of a method

Table 14.4 Lower and upper endpoints of 95%
confidence intervals for the Gini coefficient in
competitively grown Ailanthus

Bootstrap method 95% confidence interval

Percentile
Bias-corrected
Accelerated
Studentized
Basic

(0.133,
(0.136,
(0.137,
(0.137,
(0.139,

0.171)
0.176)
0.176)
0.180)
0.177)
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can be evaluated by repeatedly simulating samples from some population, calcu-
lating a confidence interval for each sample, and counting the number of confi-
dence intervals that included the true population parameter. Ideally, a 95% confi-
dence interval includes the true parameter in 95% of the samples. However,
studentized bootstrap confidence intervals are usually longer than the other confi-
dence intervals. In some cases, the studentized intervals are ridiculously long, so
some people prefer the percentile or accelerated methods (e.g., Efron and Tibshir-
ani 1993).

14.5.3 What Should I Bootstrap?

The key assumption behind the bootstrap is independence. The observations are
assumed to be independent samples from some population. The choice of what
to bootstrap becomes very important in more complicated problems. For example,
consider bootstrapping a regression or correlation coefficient. Bootstrapping a
correlation coefficient between two traits on individuals is relatively easy (Efron
1982). If individuals were randomly sampled from some population, then the
bootstrap replicates are formed by randomly choosing individuals with replace-
ment from the sample, just as was done for Gini coefficients in my example.
Bootstrapping a regression is more complicated because it can be done in two
different ways (Efron and Tibshirani 1986, section 5). We can fit a regression,
estimate the residuals and predicted values, and generate bootstrap replicates by
adding randomly sampled residuals to the predicted values. This procedure esti-
mates the precision of the regression coefficients, assuming that the regression
model is correct (Efron and Tibshirani 1986). The other procedure is to randomly
select individuals, just like bootstrapping a correlation coefficient. This procedure
estimates the precision of the regression coefficients, even if the regression model
is not correct (Efron and Tibshirani 1986). This bootstrap can also be used to
estimate the precision of model selection procedures like stepwise selection and
nonparametric regressions (Efron and Tibshirani 1991). It is also more appro-
priate when the independent variables are random, not fixed in advance by the
investigator.

Bootstrapping is also more complicated when the data include multiple sources
of variation (Davison and Hinkley 1997). Although bootstrapping complex survey
data has received some attention (Sitter 1992), methods for bootstrapping com-
plex experimental data are not well developed. For example, the zooplankton
example had two sources of variation: between samples and between individuals
in a sample. Samples could be bootstrapped, or individuals could be bootstrapped.
This decision can be made based on what constitutes independent observations.
If there is any patchiness in the zooplankton, individuals are unlikely to be inde-
pendent, so bootstrapping individuals is not appropriate. Bootstrapping samples
is more appropriate if the observed samples can be assumed to be random samples
from locations in the reservoir. This approach ignores the variability between in-
dividuals in a sample.
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Consider bootstrapping data with two sources of variation: samples and indi-
viduals. One obvious approach is to bootstrap both samples and individuals. First,
generate a bootstrap sample by randomly selecting samples with replacement
from the collection of samples, then bootstrap individuals (again with replace-
ment) in each one of the selected samples. Theoretical calculations for simple
problems (e.g., estimating the mean of all observations) show that this approach
tends to overestimate the variance (P. M. Dixon unpubl. data, 1999, using results
from Davison and Hinkley 1997, p. 101). Another simple approach is to bootstrap
only samples, the highest level in the hierarchy of sources of variation. Theoreti-
cal calculations show that this approach underestimates the variance by a consis-
tent factor of (p - l)/p, where p is the number of samples. Bootstrap confidence
intervals with the correct width can be calculated (Davison and Hinkley 1997, p.
102), but it is not clear how such adjustments would be made in more complex,
more realistic problems. Some preliminary work suggests that a generally appro-
priate approach is to bootstrap at all levels of the hierarchy and use studentized
bootstrap to calculate confidence intervals (P. M. Dixon, unpubl. data, 1997).
Although the bootstrap estimates are more variable than they "should be," this is
corrected by the studentized bootstrap.

14.5.4 Bootstrapping Correlated Data

Another practical issue is how to bootstrap data that are spatially or temporal
correlated. The ordinary and balanced bootstraps ignore any correlation and treat
all observations as independent. Two approaches can be used to generate boot-
strap samples from correlated data. If the correlation structure can be modeled
using a time series or spatial correlation model, a model-based bootstrap can
generate bootstrap samples that maintain the correlation structure. The process is
similar to bootstrapping regression residuals. Fit the time series or spatial model
to the data to estimate the correlation parameters and a set of independent residu-
als, bootstrap the residuals, then use the model to generate a correlated sample
(Stoffer and Wall 1991; Davison and Hinkley 1997). This approach assumes that
the correct model is used for the correlation structure. If so, this approach works
well.

The moving blocks bootstrap is a nonparametric approach to generating boot-
strap samples that maintain some of the correlation in the original data. The idea
is more clearly explained with time series data. The observed sample is divided
into b blocks each with of / sequential observations. A moving blocks bootstrap
sample is constructed by randomly sampling the b blocks, with replacement, and
concatenating them to form a bootstrap sample of bl observations. The idea is
that the correlation among observations is strongest within each block of I obser-
vations and that observations in different blocks are (or are almost) independent.
The choice of b and / are crucial. If b is too small, there are very few possible
patterns of observations in the bootstrap samples. If / is too small, observations
in different blocks are no longer independent. These and other practical details
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implementing the moving blocks bootstrap and moving tiles bootstrap for spatial
data are discussed in Davison and Hinkley (1997).

14.5.5 How Many Bootstrap Replicates Should I Use?

Increasing the number of bootstrap replicates increases both the precision of the
estimated standard error or confidence interval and the cost of computing it. Efron
(1987, section 9) recommends using approximately 100 bootstrap replicates to
estimate a variance or standard error and 1000 or more to estimate a confidence
interval. Variances can be estimated more precisely because the variance is an
average of squared deviations, whereas the endpoints of the confidence interval
are individual data points. If the bias-corrected or accelerated techniques are used,
more bootstrap replicates are necessary. For 95% confidence intervals, about 50%
more (i.e., 1500) bootstrap replicates should be used (Efron 1987, section 9). The
extra replicates are necessary because the estimation of the za and a constants
introduces extra variability into the endpoints of the confidence intervals.

Although more bootstrap replicates increase the precision of the estimated
standard error or confidence interval, there is a limit. Bootstrap estimates have
two sources of variability, one due to variability among the bootstrap replicates
and one due to sampling variability in obtaining the original data. More bootstrap
replicates can not substitute for more observations in the original data.

14.5.6 Diagnostics for Bootstraps

Bootstrap diagnostics are tools to assess whether the bootstrap confidence inter-
vals reflect the entire sample or whether they are heavily dependent on one or a
few observations (Efron 1992). One diagnostic method combines the jackknife
and the bootstrap: remove points one at a time and calculate a bootstrap confi-
dence interval from each reduced data set. If all the bootstrap confidence intervals
are similar, then the bootstrap results are indeed summarizing all the observations.
If one or a few bootstrap confidence intervals are very different from the rest,
then the bootstrap is heavily dependent on the associated observations. Further
details and some other diagnostics are illustrated in Davison and Hinkley (1997,
pp. 113-120) and Efron and Tibshirani (1993, pp. 271-280).

14.5.7 Computing

Both the jackknife and the bootstrap are easy to use. All that is required is some
way to draw random samples of observations and compute the desired estimates
from multiple data sets. These computations can be programmed into many statis-
tical packages (e.g., Dixon 1993), but macros and functions to simplify the pro-
cess are increasingly available. Some of the more complete implementations
include the SAS JACKBOOT macro (SAS Institute 1995), the boot library for S-
Plus (Davison and Hinkley 1997), and the bootstrap functions for S-Plus (Efron
and Tibshirani 1993).
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14.5.8 Testing Hypotheses

The focus in this chapter has been statistical estimation, especially calculating
confidence intervals, because estimation is generally more useful than hypothesis
testing (Gardner and Altman 1986; Salsburg 1985). However, the bootstrap proce-
dure can be used to test hypotheses by estimating the sampling distribution of a
test statistic under some null hypothesis, but, considerable care is required (Hall
and Wilson 1991; Tibshirani 1992; Becher 1993). Solow and Sherman (1997)
illustrate the difficulty in simulating data from ecologically relevant null hypothe-
ses. A related computer-intensive technique, Monte Carlo randomization (see chap-
ter 16) can also be used to test simple statistical hypotheses.

14.5.9 When Does the Bootstrap Fail?

The bootstrap method does not always work (Chernick 1999). Although it pro-
vides standard errors and confidence intervals for many problems that are other-
wise intractable, it can fail because of asymptotic properties, inherent inaccuracy,
or wild data. In "well-behaved" problems, the bootstrap (in any flavor) has many
desirable asymptotic properties (characteristics of the procedure as the sample
size gets very large). One of these is that the bootstrap sampling distribution
converges to the true sampling distribution sufficiently quickly. For some prob-
lems described in Shao and Tu (1995, section 3.6), the bootstrap "fails" because
it does not converge on the true sampling distribution "fast enough."

Users of the bootstrap should be more concerned about types of problems
where the bootstrap is inherently inaccurate. These are problems where some (but
not necessarily all) types of bootstrap will give incorrect answers because of the
characteristics of the problem. One important ecological problem that requires the
use of caution is the estimation of species richness. Consider sampling N individ-
uals (or N quadrats) and counting the total number of species observed. This is
likely to be an underestimate of the true number of species in the population,
because some species (especially rare species) were not sampled. However, boot-
strap samples of N individuals or N quadrats will never include more species than
were observed in the original data. Hence, percentile bootstrap confidence inter-
vals are inherently incorrect. Other cases that require careful application include
prediction of maxima or minima (Bickel and Freedman 1981), smoothing and
other nonparametric regression methods (Davison and Hinkley 1997), kernel den-
sity estimation (Leger et al. 1992), and some multivariate problems (Milan and
Whittaker 1995).

Finally, a bootstrap may fail because of "wild" data. All the bootstrap methods
use the sample data to reconstruct the properties of the underlying population. If
the sample is unusual in some way, then the bootstrap confidence intervals based
on that sample will be unusual. The parametric bootstrap methods require only
that the parameters estimated from the sample data are close to the true population
parameters, but the nonparametric bootstrap methods require that the entire dis-
tribution of values in the sample is close to that in the population. One numeri-
cal illustration of this problem is given in the documentation for the SAS
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JACKBOOT macro (SAS Institute 1995). The only solution is to have a suitably
large sample of data. The criteria for a suitably large sample depends on the
problem and the characteristics of the population.

Unusual samples and "wild" data are likely to be a serious problem when the
population of values has a very skewed distribution. Bootstrap confidence inter-
vals for Gini coefficients from lognormal distributions do not have the appropriate
coverage because lognormal distributions with large variance parameters are very
skewed. Similar problems can be demonstrated using a simpler example: the
mean of a lognormal distribution. It is quite dependent on infrequent very large
values. For example, the true mean of a lognormal ((.t = 0, a2 = 3) distribution is
4.48. If the largest 1% of values are removed, the mean of the remaining 99%
values is only 3.27. Bootstrap confidence intervals for the mean have relatively
poor coverage (P. M. Dixon, unpubl. data, 2000) because samples of 20, 50, or
even 100 observations are unlikely to include very large values.

Both the jackknife and the bootstrap solve an otherwise extremely difficult
problem: estimating the precision of a complicated statistic. However, the accu-
racy of inferences made by either technique is limited by the amount of informa-
tion in the original data. Neither technique is a panacea for small sample size or
poor study design.
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Spatial Statistics

Analysis of Field Experiments

JAY M. VER HOEF

NOEL CRESSIE

15.1 Field Experiments

More and more, ecologists are turning to designed field experiments. Earlier in
the history of ecology, it was enough to collect field observations to generate
reasonable hypotheses (Mclntosh 1985). However, as these hypotheses multi-
plied, they needed to be rigorously tested. A glance at any current ecological
journal reveals that many ecologists are designing and analyzing field and labora-
tory experiments to test such hypotheses.

There are several difficulties associated with conducting field experiments.
One is that they are usually expensive. Another is that true replication may be
unattainable (e.g., Carpenter 1990). Finally, there is often considerable "noise" in
the data, both because the environment is heterogeneous at many scales (e.g.,
Dutilleul 1993; Legendre 1993), and because field measurements are often crude
compared to those achieved under laboratory conditions, resulting in greater mea-
surement error in field studies (Eberhardt and Thomas 1991). Even at smaller
scales, it can be difficult to find relatively homogeneous areas. All of these factors
contribute unwanted variability to the experiment. Hence, ecologists typically use
as many experimental units as they can afford and hope for the best. Too often,
natural variability simply swamps many of the treatment effects that we try to
detect.

In light of the need for ecological experiments and the expense and difficulty
in conducting them, it is imperative that the designs and analyses of field experi-
ments maximize the ability to detect treatment effects. One of the common mis-
uses of statistics is the use of less powerful techniques when more powerful tech-
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niques are available. Most ecological field experiments are spatial in nature, yet
spatial information is not used in a classical analysis of variance (ANOVA; chap-
ter 4). This chapter reviews the generalized-least-squares-variogram method and
its heuristic value. In addition, the methods of spatial maximum-likelihood (ML)
estimation and spatial restricted maximum-likelihood (REML) estimation are in-
troduced. Each of the spatial methods use the underlying spatial variation to esti-
mate treatment contrasts (contrasts will be described in greater detail in section
15.3.2) with greater precision than estimates using classical ANOVA.

The example used in this chapter is a designed experiment that examines the
effect of time of burn on plant species diversity. The data consist of the numbers
of different vascular plant species, or species richness, in a 5 x 5 grid of 7 x 7-m
contiguous plots (figure 15.1 A). The data come from a glade in the Ozark Plateau
area of southeastern Missouri. Glades are grassy openings, usually caused by
shallow and droughty soils, in a predominantly forested landscape (Kucera and
Martin 1957). This particular glade is on a relatively steep slope of 14% (based
on the average of 25 measurements from the center of each plot) and has a dolo-
mitic substrate that often weathers into exposed bedrock "benches" in a stairstep
fashion. These 25 plots came from the center of the glade and are as homoge-
neous as possible from this particular glade. There were scattered small trees in
the plots, but the main forest vegetation was at least 14 m from the edge of the
plots in each direction.

Actually, the number of different plant species per plot was recorded from the
plots before any fire treatments, so the underlying natural variability was obtained
without any treatments applied (called a uniformity trial in the statistical litera-
ture). The overall mean was 24.08 species per plot. Treatment effects were artifi-
cially added to the real data to simulate a real experiment for the purposes of
demonstration and to evaluate the classical ANOVA and spatial analysis methods.
A completely randomized design was employed (chapter 4). Thus, according to
table 15.1, we chose the number of species to change by +6 if the plot were
randomly assigned a November burn, we chose the number of species to change
by -3 if a plot were randomly assigned a May burn, and so on. Therefore, the
treatment effect of a November burn is T4 = +6, that of a May burn is T4 = -3, and
so forth. The reason for simulating the experiment, rather than actually conduct-
ing it, is to have known treatment effects. In a real experiment, the treatment
effects are superimposed on the natural variability among the plots and hence are
unknown parameters to be estimated. By analyzing the experiment and estimating
the parameters (treatment effects) as if they were unknown, the "closeness" of
the treatment effects to the true values can be compared for a classical ANOVA
and for the spatial methods introduced in this chapter.

Although the effect of fire on species diversity was chosen to illustrate the
spatial analysis of designed experiments, the method is not specific to any particu-
lar ecological problem. Spatial analysis may be applied to any field experiment
where spatial coordinates are available (in one, two, or three dimensions) and
where you would ordinarily use a classical ANOVA. Three-dimensional examples
include the assignment of treatments to fish in a lake or to insects in a tree,
followed by a spatial analysis.
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Figure 15.1 (A) Uniformity trial data set of species richness in a 5 x 5 grid of plots; each
plot was 7 x 7 m. (B) Uniformity trial data set with treatment effects from table 15.1 added
randomly. The treatment number is given in the upper left corner of each plot.

Table 1 5. 1 Treatment effects

Treatment Treatment

Control
May burn
August burn
November burn
February burn

TI
T2

t3

T.4

ts

for simulated data

Symbol Treatment Effect

0
-3
-5
+6
+6
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15.2 Statistical Issues

A field experiment has spatial components; that is, the experimental units are
located in one-, two-, or three-dimensional space. This spatial environment is
usually heterogeneous. Typically, locations that are close together tend to have
more similar values, or are more positively correlated, than those that are farther
apart; this tendency is termed spatial autocorrelation. (It is also possible to have
temporal autocorrelation, often manifest as a time series; chapter 9.) A cursor}'
inspection of the data (figure 15.1 A) seems to indicate that plots closer together
have more similar values.

Well-designed experiments classically rely on three basic concepts: random-
ization, blocking, and replication (chapter 4). In general, an experimental unit is
the unit to which treatments are applied according to some design. In the example
from the Ozarks (figure 15.1A), the experimental units are 7 x 7-m plots, to which
fire treatments are applied. Replication is obtained by the repeated application of
the set of treatments to all of the experimental units. Replication allows us to
estimate treatment effects by averaging over the underlying variability in the ex-
perimental units (see discussion in chapter 4). Blocking helps control natural het-
erogeneity by assigning experimental units to relatively homogeneous groups.
Blocks may consist of experimental units that are spatially close or related in
some other way. For example, if a field lias a shallow center drainage, it might
be blocked into those areas that are higher and drier and into those that are lower
and wetter. Randomization is the process of assigning treatments, at random ac-
cording to some design, to experimental units. Randomization helps to provide
unbiased estimates of parameters.

Next we discuss a subtle concept. Suppose that the pretreatment responses on
the experimental units are themselves random variables. For example, if we were
to go back in time, to, say, 10 years before the Ozark data were collected and let
time start over again, the number of species in each plot would be slightly differ-
ent as a result of the random or stochastic processes of nature. If we could gener-
ate species numbers for the same set of plots again and again by going back in
time repeatedly, then we would obtain a statistical distribution for the number of
species in each plot, as well as autocorrelation values among all pairs of plots. In
this case, the data from the experimental units are the result of what is termed a
spatial stochastic process. The alternative view is that if we went back in time
again and again, we would always get exactly the same number of species per
plot—nature is inherently deterministic. In the latter case, all of the "randomness"
in an experiment comes from assigning treatments at random to experimental
units. In other words, all of the probability statements (e.g., P-values, tests of
significance, confidence intervals) must come only from the randomness in the
design of the experiment.

If nature is inherently stochastic, a randomized design has two sources of
randomness: the design and the experimental units. These experimental units may
be autocorrelated. Even Fisher (1935), the father of modern experimental design
based on randomization, noted "After choosing the area we usually have no guid-
ance beyond the widely verifiable fact that patches in close proximity are com-
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monly alike, as judged by the yield of crops, than those which are far apart."
Randomization helps neutralize the effect of autocorrelation (Yates 1938; Gron-
dona and Cressie 1991; Zimmerman and Harville 1991). Intuitively, however,
there is a cost to randomization. If the experimental units are considered to be
random variables with their own natural variability, then randomization intro-
duces more variability. This additional variability allows us to use classical the-
ory, which assumes the random variables are independent.

An alternative approach to classical ANOVA is to model the spatial autocorre-
lation among the experimental units, making possible a more powerful analysis
of the experiment. This is a relatively new approach to analyzing designed experi-
ments in a spatial setting, and several recent articles show it is very powerful in
a variety of data sets (Baird and Mead 1991; Cullis and Gleeson 1991; Grondona
and Cressie 1991; Zimmerman and Harville 1991). In this chapter, we model the
spatial autocorrelation with variograms that contain information on the spatial
autocorrelation among the experimental units.

15.3 Example

Suppose we conducted an experiment to examine the effect of fire, at different
times of the year, on species richness in the Ozark glade (figure 15.1 A). Also
suppose that there were four treatments where plots were burned at four different
times of the year: May, August, November, and February. Species richness was
measured in the summer following the February burn. There was also a control,
with no burn, so there were a total of five treatments. For illustration purposes,
suppose that the true effects of burn time are those given in table 15.1. These
treatment effects allow our artificial experiment to be conducted as follows. To
the 25 original plots (figure 15.1A), 5 replications of each treatment were as-
signed randomly (figure 15. IB). The only information available to the scientist is
the plot location, the treatment applied to each plot, and the datum at each plot
(with treatment effect added), in other words, the information in figure 15.IB.
Hence, we will analyze the data of figure 15.IB with a classical ANOVA, the
GLS-variogram method, spatial ML estimation, and spatial REML estimation.

15.3.1 Statistical Model and Assumptions

The following statistical model summarizes the experiment:

where Yijt is a random variable (species richness), i is the rth row ( (= ! , . . . ,5,
numbered from top to bottom), j is the jth column (/' = 1, . . . ,5, numbered from
left to right), and k is the kth treatment (£=! , . . . ,5); ik is the Mi treatment
effect, and 8,̂  is the random error for the (i, y)th plot, with possible spatial autocor-
relation among the 8,j. The statistical distribution of 8,j provides probability state-
ments about estimates of treatment effects or combinations of treatment effects
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(e.g., TI or TJ - T2). For a classical ANOVA, all 8,7 are assumed to be independent,
normally distributed, have zero expectation, and have constant variance (a2).

The randomization distribution yields random errors 6^ that have small auto-
correlation, hence allowing us to use classical theory (Grondona and Cressie
1991), as confirmed by several simulations (Besag and Kempton 1986; Baird and
Mead 1991; Zimmerman and Harville 1991). However, only one randomization
actually occurs. If we ignore all possible randomizations and just concentrate on
the one that occurred, then natural variation in the plots implies that the 8, are
autocorrelated (see section 15.3.3). The problem then is how to model the auto-
correlation and subsequently use this information to obtain the best parameter
estimates and associated probability statements. This problem will receive further
attention in section 15.3.4.

15.3.2 Treatment Contrasts

Often, the ultimate goal of an experiment is to estimate a treatment contrast (some-
times called a planned comparison). If the initial hypothesis—no significant dif-
ference among treatment means—is rejected, the next step is to ask, How differ-
ent are the treatment means? (Snedecor and Cochran 1989, p. 224; Hicks 1982,
p. 46; Day and Quinn 1989). Treatment contrasts express the difference in treat-
ment effects, or the difference of a combination of treatment effects. For the
Ozark example, we might be interested in how a summer burn affects the subse-
quent summer's species diversity. In terms of the treatments listed in table 15.1,
this is expressed as the average of May and August burns minus the control.
Using the mathematical notation from table 15.1, this contrast becomes

From table 15.1, the true value is

This means that the actual effect of a summer burn was to decrease by 4 the
number of species per plot in the subsequent summer. In the case of ci, the
multiplying coefficients for all treatment effects t,, / = ! , . . . ,5, are {—1, 0.5, 0.5,
0, 0}. It is characteristic of treatment contrasts that the coefficients sum to zero.
Several more contrasts, and their true values, are given in table 15.2.

Next, we will see how a classical ANOVA compares to the spatial methods
for estimating the five treatment contrasts in table 15.2. Recall that the known
treatment effects (table 15.1) were added to the original, untreated data (figure
15.1A) in a completely randomized design (figure 15.IB). Now the data in figure
15.IB will be used to estimate contrasts with classical ANOVA, GLS-variogram,
spatial ML estimation, and spatial REML estimation. Because the experiment was
conducted artificially, the estimated values can be compared to the known values.
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Table 15.2 Contrast estimates for example data (figure 15.IB)"

True
Contrast Value

Ci = (T2 + T3)/2 - TJ -4.00
c2 = (T4 + T5)/2 - TI 6.00

C3 = (T4 + T5)/2 - (T2 + T3)/2 10.00

A = (T2 - T3) 2.00
C5 = (T4 - T5) 0.00

OLS
est.

-2.40
6.60*
9.00*
0.40

-2.40

GLS
est.

-2.80*
6.69*
9.49*
0.45

-2.07

Iterl
GLS
est.

-2.82*
6.71*
9.53*
0.46

-2.04

ML
est.

-2.89*
6.76*
9.65*
0.49

-1.98

REML
est.

-2.95*
6.81*
9.77*
0.53

-1.94

The true values are given first. The next column contains the classical ANOVA estimate (ordinary least squares
est). The next two columns contain contrast estimates from the GLS-variogram method for two iterations(GLS est.
and Iterl GLS est.). Spatial maximum-likelihood contrast estimates are denoted by ML est., and spatial restricted
maximum-likelihood contrast estimates are denoted by REML est. Contrast estimates that test as significantly differ-
ent from 0, at P < 0.05, are marked with an asterisk.

15.3.3 Comparing the Methods

Before giving details on the spatial methods, we provide reasons for their use by
comparing them with classical ANOVA. For each method, contrast estimates are
shown in table 15.2 and their estimated standard errors in table 15.3. For a classi-
cal ANOVA, table 15.2 shows that the null hypothesis of zero would be rejected
at P < 0.05 for only the second and third contrasts. For example, to test whether
the first contrast is significantly different from zero, the t-value is (-2.4 - 0)71.29 =
-1.86. Because

the first contrast is not declared to be significantly different from zero for a two-
tailed test at significance level a = 0.05. Of course, we would not want to reject
the hypothesis that contrast cs equals zero (but we will, 1 out of 20 times on
average, when a = 0.05). Therefore, of the four contrasts that had true values not
equal to zero, the classical analysis had enough power to detect only two of them.

Table 15.3 Contrast standard errors for example data (figure 15.1B)'

OLS
Contrast s.e.

ci = (T2 + T3)/2-T! 1.29
C2 = (t4 + t5)/2-T, 1.29
C3 = (T4 + T3)/2 - (T2 + T3)/2 1 .05

C4 = (T2-T3) 1.49
C5 = (T4-T5) 1.49

GLS
s.e.

0.96
1.09
0.88
1.15
1.60

Iterl
GLS
s.e.

0.94
1.07
0.86
1.13
1.60

ML
s.e.

0.83
0.97
0.78
1.00
1.50

REML
s.e.

0.87
1.05
0.84
1.07
1.68

"The first column contains the classical ANOVA estimate of standard errors for the contrasts (OLS s.e.).
The next two columns contain estimated contrast standard errors from the GLS-variogram method for two
iterations (GLS s.e. and Iterl GLS s.e.). Spatial maximum-likelihood standard error estimates are denoted
by ML s.e., and spatial restricted maximum-likelihood contrast standard errors are denoted by REML s.e.
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With the GLS-variogram method, with each iteration, the contrast estimates
generally migrate from the classical ANOVA contrast estimates toward the true
contrast values, and the standard errors decrease in size. Further iterations only
changed the estimates past the second decimal place. The estimated standard er-
rors reflect the fact that the contrast estimates using the GLS-variogram method
are better than the classical contrast estimates. For the contrast estimates using
the GLS-variogram method, the null hypothesis of zero contrast values can be re-
jected at a = 0.05 for the first three contrasts. For example, to test whether the first
contrast c\ is significantly different from zero, the Z-value is (-2.8 - 0)/0.96 =
-2.92. Because

the first contrast is declared to be significantly different from zero at a = 0.05. In
fact, the true value is -4. The inference procedure for the GLS-variogram method
is only approximate. We defer further discussion on distributions until section
15.3.4. Alternatively, a 95% confidence interval for GI is

which does not contain the value 0.
For the spatial ML, the estimates generally move even closer to the true values

than the GLS-variogram method. The estimated standard errors indicate that the
contrast estimates using ML are better than the estimates from ANOVA and the
GLS-variogram. For ML, the null hypothesis of zero contrast values can be re-
jected at a = 0.05 for the first three contrasts using the Z-value in the same way
as we did with the GLS-variogram method.

Of all the methods, the REML estimates generally move the closest to the true
values. However, notice that the standard errors for REML are larger than for
ML and GLS-variogram. We discuss the reasons for this subsequently.

In general, the spatial methods have more power than the classical ANOVA
to detect contrast c\. Also, the absolute values of the true contrast values increase
by increments of two (table 15.2). Basically, the classical ANOVA had enough
power to detect contrasts with absolute values greater than or equal to six,
whereas all three spatial methods had enough power to detect contrasts with abso-
lute values greater than or equal to four. No methods had enough power to detect
contrast c4 with a magnitude of two, and no methods committed the Type I error
of falsely rejecting the null (true) hypothesis that contrast cs is equal to zero.

It is interesting and instructive to compare the standard error estimates of con-
trasts €4 and c5 for both classical ANOVA and the spatial methods. For cs, the
spatial methods give a higher estimated standard error than classical ANOVA
(table 15.3). Inspection of figure 15. IB shows why. The randomized assignments
for treatments 4 are clustered in the upper right, whereas those for treatments 5
are clustered toward the left. The spatial methods account for the "poor" random-
ization for contrast c5; that is, treatment effects may be confounded with local
variation. On the other hand, for contrast c4, treatments 2 and 3 are dispersed and
intermixed throughout the plots—a "good" randomization (Hurlbert 1984)—and,
consequently, the standard errors estimated from the spatial methods are lower
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than those from classical ANOVA. Because classical ANOVA relies on the aver-
age over all randomizations, it does not recognize the singular features of this
particular randomization and hence does not differ in the standard errors for the
two contrast estimates. It is also apparent that contrast c5 is farther from its true
value than contrast c4 is from its true value, which is reflected in the standard
errors of the spatial methods but not in the classical ANOVA standard error.

15.3.4 Statistical Methods

Parameter estimation presents several problems. Two groups of parameters can
be discussed in the context of the linear model (for more discussion, see Ver Hoef
et al. 2001). Equation 15.1 can be written for all of the data as a set of equations
in matrix notation,

where y is the data vector, X is the design matrix containing O's and 1's, (3 is the
parameter vector (Th 12, ̂ 3, ^4, ^sY, and 8 contains the random errors. We assume
that the random errors are normally distributed, with £(8) = 0 and var(S) = Se,
where 9 is a vector of the covariance parameters that defines £e.

The two groups of parameters we wish to estimate are p and 0. In the case of
classical ANOVA, 0 contains a single parameter, a2, for the variance, and Ee =
<72I, where I is the identity matrix. In this case, it turns out that P can be estimated
without knowledge of a2; the estimate is the ordinary least-squares solution p =
(X'X)~'X'y. However, var (P) = O2(X'X)~1, so we must estimate o2 to assess the
uncertainty in p. There are two obvious estimators of o2. Let the sum of squares
error be SSE = (y - X P)'(y - XJ3). Then the maximum-likelihood estimator of o2

is SSE/w. However, this estimator is biased. The unbiased estimator is SSE/(n -
p), where p is the number of linearly independent rows in X (equal to the number
of parameters in P if the model is not overparameterized); in our example, p = 5.
It turns out that this is an REML estimator. Of course, as n gets large, the differ-
ences become small.

If we wish to make an inference on J3, or some function of P such as a linear
contrast, then we must know something about the distribution of J3. When o2 is
known and we divide each element in P by its standard error, we obtain a standard
normal distribution (Z-distribution) that can be used to test hypotheses. However,
when o2 is unknown (the usual case) and we divide each element in P by its
estimated standard error, we obtain a /-distribution that can be used to test hypoth-
eses. The /-distribution has slightly heavier tails than the Z-distribution to account
for the fact that a2 is estimated.

Now we generalize this discussion to the spatial setting. Again, we must esti-
mate the two groups of parameters P and 0. For the spatial setting, 0 typically
contains several parameters where the values of S9 depend on the spatial rela-
tionships among the data. For spatial models, estimation of p depends on 0, and
the generalized least-squares estimate is p = (X' 2TjX)"'X' 1T]

e y and var (P) =
G2(X' 2Te X)"1. Again, we can consider maximum-likelihood and REML estima-
tors, but we cannot, in general, write down their explicit forms. Instead, we use
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numerical solutions such as those found in the procedure MIXED in SAS (Wol-
finger et al. 1994). As was the case previously, for small sample sizes, spatial
ML estimation is biased for 0 (Mardia and Marshall 1984) and spatial REML
estimation is less biased. As for classical ANOVA, ML estimation typically un-
derestimates the variability (see also Ver Hoef et al. 2001). That is why the
standard errors for the GLS-variogram method and ML estimation are smaller
than the standard errors for REML in table 15.3, even though REML estimators
are usually closer to the true values (table 15.2).

As for classical ANOVA, if 9 is known for the spatial models, then dividing
each element in (3 by its standard error yields a standard normal distribution (Z-
distribution) that can be used to test hypotheses on functions of p, such as linear
contrasts. However, when 0 is unknown, then dividing each element in J3 by its
estimated standard error does not necessarily yield a ^-distribution like it did with
classical ANOVA. There are two main approaches to this problem. One is to use
the ^-distribution anyway, hoping that the fatter tails in the distribution account
for the fact that 0 is estimated rather than known. This is the approach SAS uses
in the procedure MIXED. The other approach is to further inflate the variance of
estimating [3 to account for the fact that 0 is estimated (e.g., Harville 1985; Prasad
and Rao 1990; Cressie 1992; Zimmerman and Cressie 1992; Ghosh and Rao
1994) and use the Z-distribution. However, we are unaware of any software that
does this.

15.3.5 The GLS-variogram Method

The GLS-variogram method will be used to illustrate some of the principles of
the spatial methods [see http://www.oup-usa.org/sc/0195131878/ for the computer
code]. From equation 15.1, we can see that if ik is known, we can calculate 8,y:
8j/ = Yijk - Tt. The autocorrelation can be estimated by fitting a variogram based
on all 8,y. The variogram is a function that contains information on the spatial
autocorrelation among the experimental units; more details are given subse-
quently. On the other hand, if the distribution and autocorrelation for all 8,y are
known, then statistical methods that rely on the variogram can be used to estimate
I* optimally (Cressie 1991, p. 328). So we can envision an iterative approach. In
step 1, a classical ANOVA is performed to estimate ik. Then, the 8ff are estimated
with the residuals from the classical ANOVA, 8,y = /?//, where

and tjt is the classical ANOVA estimate (the average for the Mi treatment). Next,
a variogram is modeled from the R^. The variogram is then used to obtain better
estimates of tt. The whole procedure goes through another iteration by starting with
R'i = Yijk ~ %, where t* is the new estimate of ik. A detailed description of the GLS-
variogram method was given in the previous edition of this book. Computer pro-
grams are available on the Website. Here, we briefly describe the method.

The results for the Ozark data are given in table 15.2 and figure 15.2. If the
parameters ik have been estimated well, the residuals (figure 15.2B) should be
close to the original data (figure 15.1 A) with the overall mean subtracted from it

http://www.oup-usa.org/sc/0195131878/
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(figure 15.2A). Figure 15.2B does resemble, reasonably well, the spatial pattern-
ing in figure 15.2A. That is, the residuals contain spatial patterning that may be
modeled as autocorrelated.

The GLS-variogram method should yield better parameter estimates for the
following reason. Suppose that by chance, due to the completely randomized
design, several of the values of ik were assigned to plots close together; for exam-
ple, refer to treatment 5 in plots (2,1), (2,2), and (3,1) of figure 15.IB. Then,
rather than estimating I5 with the simple average of all plots assigned treatment
5, a weighted average is used that gives smaller individual weights to those plots
close together because they are likely to have similar values. That is, they have
little extra information beyond that of a single plot in the same local region. On
the other hand, a plot assigned treatment 5 that is spatially isolated from the other
plots assigned treatment 5, for example, plot (4, 3) in figure 15.IB, would get a
higher weight because it "represents" a larger region. The optimal weights are
obtained through formulas that use the semivariogram.

To use the GLS-variogram approach, the semivariogram of residuals must be
estimated. The semivariogram can be used to estimate contrasts as shown by
Cressie (1991, p. 328). To estimate the semivariogram from the residuals, it is
necessary for the residuals to exhibit approximate intrinsic stationarity (Matheron
1963; Journel and Hiujbregts 1978; Cressie 1991). Simply stated, this means that
if the spatial data were collected repeatedly, the values at all locations would
average toward some constant value and that the variogram between two sites
does not depend on their exact locations, only on the relative displacement be-
tween them. We will assume further that the variogram actually depends only on
the distance between any pair of locations, which is called the isotropy assump-
tion. These assumptions are impossible to test, because it is impossible to go back
in time again and again and generate the experiment each time to check whether
each experimental unit has the same mean value or whether the correlation is the
same for all pairs of plots that are at some fixed distance from each other. How-
ever, any gross spatial trends in the residuals (e.g., high values at one end of the
study area gradually shifting to low values at the other end) would cause suspi-
cion that they are not stationary. To check these conditions, use the methods of
exploratory data analysis for spatial data (e.g., Cressie 1991, section 2.2; see also
chapter 3). The residuals (figure 15.2B) for these data appear satisfactory, except
possibly the residual at (1, 1), which seems to be rather large (in absolute value)
compared to most others.

For step 2, the empirical semivariogram is used:

where Rtj is the classical ANOVA residual in the ith row and jth column, M(h) =
{[('j), (s,t)]: [(i- s)2 + (J - ?)2]1/2 = h} (the set of all pairs of data that are at a
Euclidean distance of h apart), and N(h) is the number of pairs in M(h). An in-
tuitive way to write equation 15.5 is

where R:j and Ra are at a distance h from each other; h is often called the lag.
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Figure 15.2 (A) Uniformity trial data (figure 15.1 A) with the overall mean subtracted from
each plot. (B) Residuals from the classical ANOVA.

An example will help illustrate how to use equation 15.5. Let h = l. Then
M(l) is the set of all pairs of plots that are 1 unit apart, for example, plots (1, 1)
and (1, 2), plots (1, 1) and (2, 1), and so on; there are 40 such pairs in figure
15.2B. Thus, N(l) = 40. The empirical semivariogram y(l) is one-half the average
over all 40 pairs where each pair is differenced and squared. Figure 15.3A shows
that plots close together have more similar residuals than those that are farther
apart because j(h) is generally smaller for smaller values of h.

Next, a model must be fit to the empirical semivariogram. If the raw empirical
values were used, the variance estimate may be negative, which is wrong. There-
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Figure 15.3 Empirical and fitted semivario-
grams. The solid circles are the empirical
semivariogram values (equation 15.5) for
the raw data (figure 15.1 A) and open cir-
cles are the empirical semivariogram values
for the residuals of the simulated experi-
ment (figure 15.2B). The numbers above
each symbol indicate the number of pairs
used to compute each lag of the variogram.
The solid line is the fitted semivariogram
model (equation 15.6) for the raw data and
the dashed line is the fitted semivariogram
model for the simulated experiment. (A)
GLS-variogram method. (B) Spatial ML es-
timation. (C) Spatial REML estimation.

fore, in step 3, a model was fit to j(h) that satisfies conditional negative-definite-
ness properties (Cressie 1991, section 2.5). Several models are possible (e.g.,
Cressie 1991, section 2.3); we chose the exponential model after inspecting a plot
of the empirical semivariogram values. Zimmerman and Harville (1991) indicate
that the choice of model does not matter greatly as long as it fits the data reason-
ably well. A spherical model might also have been chosen for these data. But the
model "linear with sill" cannot be used for two-dimensional data because it may
yield negative variances; however, it may be used for one-dimensional (e.g., tran-
sect) data (Webster 1985). Webster (1985) and Cressie (1991, section 2.3) men-
tion several "safe" models that can be used for spatial data in one, two, or three
dimensions.

For step 3, the exponential semivariogram model was fit to the empirical semi-
variogram. The exponential semivariogram is
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where oc0, ab and oc2 > 0. Notice that h is always nonnegative (because it is dis-
tance) and y(/z) = 0 when h = 0. In step 3, nonlinear regression (weighted least-
squares) with weights proportional to N(h) (the number averaged for each h in
equation 15.5) was used, as recommended by Cressie (1985), to fit the exponen-
tial variogram model equation 15.6 to the empirical variogram equation 15.5. The
following estimates were obtained: 6c0 = 0, &i = 5.633, a2 = 1.203; the fitted curve
is given in figure 15.3A. The empirical and fitted semivariogram (figure 15.3A)
on the residuals (figure 15.2B) can be compared to the empirical and fitted semi-
variogram of the raw data (figure 15.1 A).

The semivariogram estimates were used to generate a matrix of semivariogram
values between all pairs of experimental units. In the final step, the formulas of
Cressie (1991, p. 328) that rely on the semivariogram matrix were used. Contrasts
and their standard errors were estimated (tables 15.2 and 15.3). For large samples,
a test for a nonzero contrast can be obtained as follows. Construct a confidence
interval around the contrast estimate by taking the standard error multiplied by
some Z^, and if the confidence interval does not include zero, the contrast is
declared significant at that a-level. It is possible to stop here, but, as was men-
tioned previously, residuals can again be formed from the current estimates of ij
by taking 7?,̂  = Yijk - t'k and then starting the procedure over again at step 2. A
stopping rule can be chosen, such as when the contrast estimates stop changing
at some decimal place.

15.3.6 Maximum-Likelihood and Restricted
Maximum-Likelihood Estimation

Recall the multivariate normal distribution,

This distribution is very general, allowing a separate mean (j,, for each v, and a
separate covariance among all pairs of data. We can adapt equation 15.7 to a spa-
tial model for designed experiments by replacing (I with Xp from equation 15.3
and replacing £ with Z9, where E6 is obtained from equation 15.6 as follows. If
the covariance between two locations separated by distance h is denoted C(h),
then the semivariogram is j(h) = C(0) - C(h), where C(0) = y(°°) for variogram
models that have sills (Cressie 1991, p. 67). Thus,

From equation 15.8, E9 is controlled by only three parameters: 0 = (o(o, oci, OC2)-
Therefore, we can think of equation 15.7 as a function of the unknown parame-
ters p and 9, called the likelihood L(p,0;y); once the data have been observed,
L(p,0;y) is maximized for P and 0, yielding the maximum-likelihood estimates.
Because the analytical solution is intractable, this is done numerically. The fol-
lowing estimates were obtained: a0 = 0.001, al = 6.079, d2= 1.787. The fitted
curve is given in figure 15.3B. The empirical semivariogram on the residuals and
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raw data can be compared to the fitted semivariogram of the experimental and
raw data (figure 15.3B). Spatial ML estimation of 0 is biased because we are
estimating (3 simultaneously.

The basic idea behind spatial REML is that, by taking an appropriate linear
combination of data, we can create a (restricted) likelihood L(0;y) that is free
from (3. Using this likelihood, L(0;y), to estimate 0 should decrease bias for 0.
The theory of REML is beyond the scope of this chapter, but interested readers
are referred to Cressie (1991, p. 93) and references therein. The following spatial
REML estimates were obtained from the example data (figure 15.IB): da = 0.002,
d( = 13.541, oc2 = 3.733. The fitted curve is given in figure 15.3C. The empirical
semivariogram on the residuals and raw data can be compared to the fitted semi-
variogram of the experimental and raw data (figure 15.3C). Spatial ML and
REML are available in the procedure MIXED in SAS.

15.3.7 Simulation Experiment

To compare the four estimation methods for the five contrasts in table 15.2, a
simulation experiment was conducted. Data were randomly generated 2000 times
exactly as was done to create figure 15.IB; that is, the true treatment effects were
added randomly to the underlying pattern in figure 15.1 A. The results are given
in table 15.4.

The mean squared error (MSB) is the first category given in table 15.4. For
each contrast, the true value was subtracted from the estimated value, the differ-
ence squared, and then the squared differences were averaged over all simula-
tions. The smaller the MSB, the closer the estimated value was to the true value,

Table 15.4 Simulation results

MSB

Coverage

Power

ANOVA

ci 1.810
c2 1.822
c3 1.139
c4 2.364
c5 2.433
ci 0.9450
c2 0.9495
c3 0.9575
c4 0.9500
c5 0.9435
c, 0.8255
c2 0.9960
c3 1.0000
ct 0.2155
c5 0.0565

GLS-
variogram

1.166
1.183
0.766
1.546
1.608
0.9440
0.9415
0.9495
0.9390*
0.9385*
0.9750
1.0000
1.0000
0.3370
0.0615

Spatial ML
Estimation

1.103
1.105
0.724
1.457
1.551
0.9300*
0.9240*
0.9365*
0.9250*
0.9215*
0.9845
1.0000
1.0000
0.4095
0.0785

Spatial REML
Estimation

1.037
1.040
0.687
1.380
1.461
0.9505
0.9500
0.9560
0.9490
0.9465
0.9825
1.0000
1.0000
0.3560
0.0535

*Coverage outside 95% validity limit.
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on average. For all contrasts, it is clear that REML gave the best estimation, and
all three spatial methods were significant improvements over ANOVA.

The next category in table 15.4 is coverage, which reports the proportion of
times the 95% confidence interval covered the true value. For the spatial methods,
confidence intervals were developed using a f-distribution with 19 degrees of
freedom, as implemented in SAS. Because we used 2000 independent replica-
tions, if the confidence intervals are valid, then coverage should follow a binomial
distribution and the intervals should approximately cover the true value within
the proportions

95% of the time. Therefore, we might declare the confidence intervals invalid if
the actual coverage was less than 0.94 or greater than 0.96 for all simulations.
All such coverages that are outside the validity limits are indicated with (*). Note
that spatial ML estimation only covered the true value about 92-93% of the time.
The estimated variance is too small, causing confidence intervals that are too
short and causing us to reject a true null hypothesis too often. The GLS-variogram
also appears to have confidence intervals that are a bit too short, but not as
bad as those using spatial ML estimation. Classical ANOVA and spatial REML
estimation appear to produce valid confidence intervals.

The final category in table 15.4 is power. During the simulations, we recorded
the percentage of times that we could reject the null hypothesis that each contrast
was 0. Notice that for cl to c4, we do want to reject the null hypothesis, but for
cs, which was truly 0, we get an indication of the Type I error rate (with a set at
0.05). From table 15.5, it is clear that spatial ML estimation has the greatest
power, followed by spatial REML estimation and GLS-variogram, with ANOVA
a distant fourth. However, the reason spatial ML estimation has the greatest power
is that, as we saw for coverage, it underestimates the variance of the contrasts.
Hence, it is not a fair comparison, because it does not stick to the 0.05 Type I
error rate (seen for c5). Given that spatial ML estimation is invalid, spatial REML

Table 1 5.5 Comparison of assumptions when performing a classical ANOVA versus
the spatial analyses introduced in this chapter

Classical ANOVA Spatial Methods

Responses from experimental units are fixed in Responses from experimental units are random
value or they are random variables variables

Expectation of random errors = 0 Expectation of random errors = 0"
Constant variance for random errors Constant variance for random errors*
Independent random errors Autocorrelated random errors* — variogram and

covariance only depend on the spatial dis-
placement between errors

Normally distributed random errors'" Normally distributed random errors'"

"Forms the second-order stationarity assumption.
bNot strictly necessary for estimation; only necessary for inference, for example, for confidence intervals and tests
of hypotheses.
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estimation provides a bit more power than GLS-variogram, even though GLS-
variogram seems to slightly underestimate its variability.

These simulations indicate that spatial REML estimation may be the best
choice for the spatial analysis of designed experiments. Spatial REML estimation
has the smallest MSB, the confidence intervals and tests of hypotheses are valid,
and it provides the greatest power among valid tests. Of course, we worked with
only one spatial pattern (figure 15.1A) and a single set of true treatment effects
(table 15.1), so we do not wish to make sweeping generalizations. However,
others have found that spatial REML estimation often outperforms other methods
(e.g., Zimmerman and Harville 1991; Ver Hoef et al. 2001), and it is the default
method of procedure MIXED in SAS.

15.4 Discussion

This chapter showed how a spatial analysis from a classically designed field ex-
periment can increase the precision of estimating treatment contrasts. It is worth-
while to discuss all of the assumptions for both methods here (table 15.5). There
are two main differences. First, as was mentioned in section 15.2, for a spatial
analysis, it is assumed that the data are the result of a spatial stochastic process
with possible autocorrelation. We believe that this is a realistic assumption for
most ecological problems; in fact, ecologists also associate the word "process" to
spatial pattern, beginning with Watt (1947). An advantage of classical ANOVA
is that the data may be assumed either to be the result of a spatial stochastic
process or to be fixed in value. The second main difference is that, for the spatial
methods, the random errors need not be assumed independent, only second-order
stationary, which allows more precise contrast estimates. We also note that meth-
ods are being developed for nonnormal data, such as extending generalized linear
models to the spatial setting (e.g., Gotway and Stroup 1997).

The example presented in this chapter consisted of only 25 plots, which kept
the illustration simple. This is the minimum number of plots we consider neces-
sary to do an adequate job estimating the variogram and covariances. Spatial
REML performed well in our simulations with 25 plots, but small-sample proper-
ties and more extensive simulations are lacking. We recommend having more
experimental units if possible—as usual, the more the better. Also, to get residu-
als that reflect the underlying spatial variability, it is important that the initial
(i.e., classical) parameter estimates are fairly accurate. Their accuracy depends on
the number of replications of each treatment, and we recommend a minimum of
about five replications; again, the more the better.

This chapter can be compared to the Mantel method of correcting for spatial
effects described in chapter 16. There are two main differences between the spa-
tial methods we present and the Mantel method. First, the Mantel test is nonpara-
metric in comparison to this one with no assumptions about the distribution of
variables or the form of their autocorrelation (e.g., the variogram). Here, a covari-
ance or variogram model must be chosen and the random errors must be roughly
normally distributed. No formal comparison of the two methods was conducted.
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However, we might expect the usual results when comparing nonparametric and
parametric methods. The parametric method will be more powerful if the data
follow the assumed model, whereas the nonparametric method gives some protec-
tion against incorrect model assumptions. The second main difference from the
Mantel test is that, here, we are estimating treatment contrasts. That is, we go
beyond the question of "Are there differences among treatment effects?" to "What
are the specific differences among treatment effects?"

In general, spatial methods that account for autocorrelation appear to be quite
robust. Several authors have carried out simulations and tried spatial methods on
a variety of data sets, with good results. Zimmerman and Harville (1991) used
spatial REML estimation. They examined three different data sets with a total of
11 different blocking configurations and found that spatial REML estimation re-
duced estimation variance between one-fifth and four-fifths of that of a classical
analysis. This translates to much more powerful tests of hypotheses and shorter
confidence intervals. Grondona and Cressie (1991) took one large data set, broke
it into six subsets, and used a robust semivariogram estimator (Cressie and Hawk-
ins 1980). Their results indicated reduced estimation variance to 75% that of a
classical analysis. We point out that it is also possible to use the spatial methods
for blocked designs (chapter 4). Both Zimmerman and Harville (1991) and Gron-
dona and Cressie (1991) examined similar spatial methods for blocked designs.
In this chapter, we used a completely randomized design to keep the illustration
simple.

Using a slightly different methodology of blocking by columns and using a
time series type of analysis within blocks, Cullis and Gleeson (1989), in a study
of over 1000 variety trials, reduced estimation variance, on average, to 58% that
of a classical analysis. Cullis and Gleeson (1991) extend their models to two
dimensions. Baird and Mead (1991) simulated data from several models rather
than use real data, so they controlled the variability and autocorrelation in the
experimental units as well as the variability in the design. They found the spatial
methods of Cullis and Gleeson (1989) to be valid over a wide range of simulation
models. Additional references for the interested reader are Bartlett (1978), Kemp-
ton and Howes (1981), Wilkinson et al. (1983), Green et al. (1985), and Besag
and Kempton (1986).

Besides the spatial analysis of an experiment, there is also the notion that, for
spatially correlated variables, there are better designs than the classical ones based
on randomization. For example, figure 15.IB shows that all applications of treat-
ment 4 were assigned to the upper right corner. This is undesirable, due to the
spatial autocorrelation. A better design would spatially distribute the treatments
evenly. For example, first-order nearest neighbor balanced block designs (Kiefer
and Wynn 1981; Cheng 1983) can be shown to be optimal under certain condi-
tions (Kiefer 1975; Grondona and Cressie 1993), and they contain good intersper-
sion of treatments (Hurlbert 1984). Despite the advantages, the theory is rather
difficult, and there is no guarantee that an optimal design will exist for a given
number of replications, treatments, and experimental units. The advantage of the
classical designs is that they are very easy to construct and well understood. The
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compromise presented in this chapter is to construct classical designs and analyze
them spatially.

In this chapter, we presented model-based spatial methods for analyzing classi-
cally designed experiments. That is, the random errors were considered to be the
result of a spatially autocorrelated process. The spatial methods did considerably
better than a classical ANOVA. In particular, spatial REML estimation provided
the best estimation, valid confidence intervals, and increased power. The increased
power of the spatial methods can allow ecologists to detect more real treatment
effects for a limited amount of time and money.
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Foundation and the Environmental Protection Agency.
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Mantel Tests

Spatial Structure in Field Experiments

MARIE-JOSEE FORTIN

JESSICA GUREVITCH

16.1 Ecological Issues

Landscapes are composed of mosaics of patches, with different degrees of spatial
autocorrelation within and among them. The phenomenon of spatial autocorrela-
tion, the spatial dependence of the values of a variable, has been widely reported
(chapter 15; Cliff and Ord 1981; Upton and Fingleton 1985; Legendre and Fortin
1989). Positive spatial autocorrelation may result from the microenvironment or
from dispersal of offspring near the maternal parent, among other causes. Nega-
tive spatial autocorrelation may result, for example, from competition for re-
sources. In the case of positive spatial autocorrelation, plants near one another
are more similar than are distant plants. In this event, the results of an analysis
of variance (ANOVA) will be affected by the spatial pattern because the data
violate one of the basic assumptions of parametric inferential methods: the inde-
pendence of the observations (Cliff and Ord 1981; Legendre et al. 1990).

The use of nonindependent observations affects the estimation of degrees of
freedom: because each observation is not independent of the others, it does not
contribute a full degree of freedom (Legendre et al. 1990). Furthermore, with
positively spatially autocorrelated data, the differences within groups will appear
small, which can result in a Type I error such that the differences among groups
are declared significant when in fact they are not (Cliff and Ord 1981; Legendre
et al. 1990; Sokal et al. 1993). The implications and problems of the use of
spatially autocorrelated data for experiments and subsequent statistical analyses
have been the focus of several studies (Legendre et al. 1990; Legendre 1993;
Sokal et al. 1993).

308
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With field experiments on plants, an additional problem exists: the degree of
spatial heterogeneity already present in the field is rarely assessed in advance.
This inherent spatial heterogeneity can result in unequal plant responses to the
experimental treatments. Even when small-scale pre-experimental sampling or
trials can be carried out, there is no guarantee that the nature of the spatial auto-
correlation will be the same in response to the actual experimental treatments or
when the spatial scale is expanded for the full experiment. Furthermore, when
experimental manipulations of resource availability or competitive effects are
conducted on spatially autocorrelated plants and the results analyzed with conven-
tional statistical methods, such as ANOVA, it is difficult to disentangle whether
the outcome is due to the responses to treatments or to the inherent spatial struc-
ture.

Problems caused by spatial and temporal heterogeneity are familiar to field
experimentalists (Hurlbert 1984; Mead 1988). Randomized blocks are perhaps the
most common experimental design used in ecology to minimize the effects of
spatial and temporal heterogeneity (chapter 4). However, even the use of random-
ized block designs does not guarantee that the block size employed matches the
inherent spatial pattern of the plants or their spatial responses to the treatment
(van Es et al. 1989; chapter 4). In the worst cases, blocking reduces the power of
the analysis without necessarily removing all or even some of the effects of spa-
tial heterogeneity. Other types of experimental designs such as the GLS-vario-
gram method of ANOVA (chapter 15), nearest neighbor analysis (Wilkinson et
al. 1983; chapter 15), trend analysis (Tamura et al. 1988), analysis of covariance
(chapter 5), and Latin squares (Mead 1988) have been used instead of the random-
ized block design.

The methods presented in this chapter, the Mantel and partial Mantel tests
(Mantel 1967; Sokal 1979; Hubert 1987; Legendre and Fortin 1989; Manly 1997),
are based on distance matrices and permutation tests. These methods differ from
those just cited primarily in that they are nonparametric and rely on fewer as-
sumptions. Although in this chapter we discuss the use of these methods to ac-
count for the presence of underlying spatial autocorrelation of the data, they also
can be used to account for other types of autocorrelation. In fact, autocorrelation
exists not only in space but genetically, through species dispersal and clonal
spread, and temporally, through daily, seasonal, and yearly cycles (chapter 9). In
the present study, we will illustrate how these methods can be used first to detect
the presence of inherent spatial autocorrelation and then to distinguish the effects
of treatments on plant growth (i.e., experimental design factors) from the effects
of spatial autocorrelation in a field competition experiment.

16.2 Statistical Solution

Analysis of variance is usually the most powerful statistical method used to test
whether there are significant treatment effects. However, in a field experiment,
the appropriate statistical method to use depends foremost on whether the data
satisfy the specific assumptions of ANOVA such as normality, homogeneity of
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the variance, and independence of observations. Thus, preliminary tests should
be carried out to verify that the data have normally distributed residuals and
homogeneity of variances among groups (Sokal and Rohlf 1995). Independence
of the observations can be insured by gathering the data using random assignment
of experimental units to treatments (Sokal and Rohlf 1995; chapters 4 and 15).
However, randomization procedures do not ensure that neighboring units are spa-
tially independent of one another (Fortin et al. 1989; van Es et al. 1989). Day
and Quinn (1989) pointed out the importance and statistical implications of devia-
tions from the assumptions of parametric tests such like ANOVA. Although
ANOVA has been found robust to deviations from the assumptions of normality
and in some cases of homogeneity of variances, it is quite sensitive to noninde-
pendence of the observations (Bradley 1978; Hays 1981; Posten 1984; Kenny and
Judd 1986; Milligan et al. 1987). When the data do not satisfy the assumption of
normality, nonparametric procedures, such as Mann-Whitney, Kruskal-Wallis,
and Friedman tests, or resampling techniques, as suggested by Dixon (chapter
14), should be used; when the data are spatially autocorrelated, Mantel tests may
be more appropriate.

When data from a field experiment on plants, for instance, are analyzed by an
ANOVA and the treatment effects are not significant, this implies either that the
treatments have no influence on the outcome or that the treatment effects are
canceled by the spatial responses of the plants or by other unmeasured and uncon-
trolled factors (Sokal et al. 1993). However, when the differences are significant,
there are three possible reasons: (1) the plants show no significant spatial pattern
and the treatments really affect plant responses; (2) the degree of spatial autocor-
relation of the plants is significant and is inducing spurious significant treatment
effects; and (3) both the degree of spatial autocorrelation of the plants and the
treatment effects are significant. Mantel and partial Mantel tests enable the inves-
tigator to distinguish which of these three cases is occurring.

16.2.1 Mantel Test

To analyze disease patterns through space and time, Mantel (1967) developed a
randomization test that takes the spatial and/or the temporal autocorrelation of
the data into account by computing the relationship between two distance matri-
ces. The null hypothesis is that the observed relationship between the two distance
matrices could have been obtained by any random arrangement in space (time or
treatment assignment) of the observations through the study area. The Mantel test
has been used by ecologists to evaluate the relationship between ecological data
and their spatial structure (Douglas and Endler 1982; Burgman 1987; Legendre
and Fortin 1989; Leduc et al. 1992) or to test the goodness of fit of data to a
model or hypothesis (Sokal et al. 1987; Legendre and Troussellier 1988; Sokal et
al. 1990; Livshits et al. 1991). Previous uses of Mantel and partial Mantel tests
have concentrated on detecting existing patterns in sampled populations. We ex-
tend this approach to analyze the outcome of designed experiments, given that
there may be an underlying spatial pattern in the data.
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A Mantel test examines the relationship between two matrices. The entries in
the matrices are actually values (such as physical distances) measured between
individual "points," which might be sampling or experimental units. In the exam-
ple we discuss subsequently, the points are individual bunchgrass plants. By car-
rying out the Mantel test, we are testing the relationship between two different
kinds of variables measured on the sampling units, much as we compute and test
a conventional correlation coefficient. What actually goes into these matrices?
Rather than using the original measurements for the elements of each matrix, we
calculate some measure of distance (or similarity) between each point and all of
the others. The Mantel test computes a correlation between the two n x n distance
matrices, where one matrix might represent spatial distances, for example,
whereas the other represents differences between pairs of plants in some measure
of plant status (e.g., mass).

The results of such a test reveals whether small plants are located near other
small plants, whereas large ones have large neighbors, as opposed to the null
hypothesis of no relationship between spatial location and plant size. In calculat-
ing the Mantel statistic, the products of corresponding elements of the distance
matrices (A,, and B,;) summed as follows,

where the variable distance matrix (A) might contain some measure that repre-
sents the differences in the outcome of the experiment among all n experimental
units and the distance matrix (B) might contain the actual Euclidean (spatial)
distances among the n experimental units. The matrices must be square (i.e.,
same number of rows as columns): when the square matrices are symmetric, the
computation is carried out only on the lower, or upper, diagonal matrices. This is
because the distance between points 1 and 2 is exactly the same as the distance
between points 2 and 1, so we must include that distance only one time in the
matrix. When one of the matrices is asymmetric, the computation has to be car-
ried out on the whole matrix.

A major advantage of using distance matrices is that the values of the matrix
elements can be computed using the distance measurements of your choice. This
allows us to test the effects of spatial structure or experimental treatments on
various types of outcome measurements (qualitative or quantitative), as well for
one or more variables at once. The difference in spatial locations can be thus
compared with differences in size or in genetic relatedness. The disadvantage of
using distances is that by summing the cross products of ecological and geograph-
ical distances, the Z-statistic is unbounded and cannot be compared from one
study to another. To overcome this, the Z-statistic can be normalized (r) such that
it behaves as a product-moment correlation coefficient (similar to Pearson's r,
representing a linear relationship), which ranges from -1 to +1. The normalization
of each distance matrix is carried out separately using the standard normal trans-
formation, subtracting the mean of that matrix from each element, and then divid-
ing by the standard deviation of the elements in that matrix. This normalized
Mantel statistic (r) can be used to compare results from different variables, or studies,
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by means of confidence limits, as described by Manly (1986b, 1997). When the
r-statistic is calculated between a variable distance matrix and a geographical
distance matrix, the value of r corresponds to the average magnitude of spatial
autocorrelation of the variable for the entire study area.

Once the Mantel statistic has been calculated, we usually wish to test its statis-
tical significance. Unfortunately it is not possible to use the familiar statistical
tests for this purpose. In fact, the Mantel statistic, Z or r, cannot be tested as an
ordinary product-moment correlation because the distances in each matrix are not
independent of one another. Therefore, the significance is assessed either by using
a permutation test to construct a reference distribution or by using an asymptotic
^-approximation test (Mantel 1967). In a permutation test, the statistic calculated
on the actual data is compared with what happens when the elements of the
matrices are shuffled at random. If there is a strong spatial pattern in the data,
shuffling the data points will eliminate that pattern.

In practice, only one of the matrices must be reordered to accomplish the task.
The reference distribution obtained by permutation is constructed by randomly
reassigning the rows and columns of one matrix, each time computing a new
Mantel correlation. This randomization procedure creates a population of "experi-
ments," although only one experiment has actually been carried out (Edgington
1985; Manly 1997). Under the null hypothesis of no relationship between the two
distance matrices, the observed Mantel statistic is expected to have a value lo-
cated near the mode of the reference distribution obtained by randomization of
the data; that is, the correlation between the two matrices should have neither an
extremely low nor an extremely high value. With no relationship between spatial
values and sizes, we expect a random reshuffling of the data to result in about as
many higher values of the Z-statistic as lower ones. On the other hand, if there is
a strong relationship (positive or negative) between the two matrices, the observed
Mantel statistic (on the actual data) is expected to be more extreme (either higher
or lower) than most of the reference distribution values.

For small sample size (n < 10), all the possible permutations (n\) can be com-
puted (for the exact probability level). However, with a sample size that small, it
is difficult to detect significant spatial patterns, and this is true not only for Mantel
tests, but for other spatial analysis methods as well (Legendre and Fortin 1989).
Legendre and Fortin (1989) recommended sample sizes of at least 30 to detect
significant spatial autocorrelation with Moran's /-coefficients. Likewise, it is rec-
ommended that we use as large a sample size as possible (e.g., 20 and more) to
detect significant patterns with Mantel test (P. Legendre, oral, 1999). Therefore,
when patches and spatial autocorrelation are suspected to be important, the exper-
imental design should incorporate a relatively small number of treatments so that
there are as many replicates as possible (e.g., van Es et al. 1989). With larger
sample sizes, the observed Mantel statistic can be tested against a null distribution
generated using random sampling (with replacement) of all possible permutations
of the data (Smouse et al. 1986). The minimum number of permutations recom-
mended by Manly (1997) is 1000—the higher the number of permutations, the
more accurate the significance test.
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When n is very large (n > 40), the Mantel statistic, Z or r, can by transformed
into a f-statistic as follows:

where the expectation of Z is

and its standard error is

The significance of the r-statistic is achieved using an asymptotic t-approximation
test (Mantel 1967). The larger the number of observations (n), the more reliable
is the significance level of the asymptotic approximation test.

16.2.2 Three-matrix (Partial) Mantel Test

The Mantel test allows for a comparison between only two variables or two sets
of variables by means of multivariate distance coefficients (Legendre and Le-
gendre 1998). In ecology, this can be quite a limitation, however, when several
processes interact with each other. Furthermore, as discussed previously, with
field data, space can create spurious relations between two variables that are in
fact driven by a spatial gradient or by a third variable that follows the spatial
gradient. For example, a positive relationship between plant growth and geo-
graphical distances can exist simply because both are related to environmental
conditions. But genetic relationships or experimentally imposed treatment factors
might also be responsible for differences in plant response. For such cases, we
must disentangle the relative contributions of the various factors influencing the
outcome measurement.

To address this issue, the Mantel test has been modified in different ways to
allow the comparison among three or more distance matrices (Dow and Cheverud
1985; Hubert 1987; Manly 1986b, 1997; Smouse et al. 1986). The third distance
matrix, C, can be (1) another variable (species, environmental condition, genetic
data) collected independently at the same locations, (2) a design matrix that refers
to a structure imposed on the data by an experimental design or by a hypothesis
to test, or (3) a matrix of the geographical distances (Sokal et al. 1987; Legendre
and Troussellier 1988). Usually, for the geographical distances matrix, Euclidean
distances are used, but other distance measures can also be used, such as 1/d2,
which will take into consideration nonlinear relationships (e.g., patchy structure)
between the geographic locations. The third matrix, the one being factored out,
can also be a model (contrast) matrix to test the causality between spatially auto-
correlated variables (Leduc et al. 1992; Sokal et al. 1993) or a weight (connec-
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tion) matrix to compute a multivariate correlogram (Oden and Sokal 1986; Le-
gendre and Fortin 1989).

In this study, we use the method originated by Smouse et al. (1986). In this
approach, a partial correlation, r^.c, that establishes the degree of relationship
between two matrices is calculated, keeping the effects of the third matrix con-
stant. This partial correlation is computed by first constructing a matrix of residu-
als, A', of the regression between A and C, and a matrix of residuals B' of the
regression between B and C. These are linear regressions based on the standard-
ized matrices. Then the partial Mantel test is computed as in equation 16.1 but
using the two residual matrices A' and B'. The resulting partial Mantel statistic,
JAB.C. corresponds to a partial product moment varying from -1 to +1. Its signifi-
cance in the two-way Mantel test is assessed by either permutation or by the
asymptotic ^-approximation test. According to Oden and Sokal (1992), the method
of Smouse et al. (1986) has the best statistical properties for analyzing the rela-
tionship among three distance matrices when spatial autocorrelation is present.

16.2.3 Limits and Other Methods

Mantel tests may not always work well in detecting spatial autocorrelation where
the spatial pattern is complex and not easily modeled with distance matrices.
Examination of a variogram or correlogram of the data (chapter 15) is useful where
spatial relationships are expected to exist; this may, in such cases, reveal strong
spatial patterning even in the absence of significant Mantel test results. One limi-
tation of the use of Mantel tests for field experimental data is that a larger number
of data points than are typically available may be necessary for a satisfactory
analysis.

Another major problem with the statistics in the Mantel and the partial Mantel
tests is that multivariate data are summarized into a single distance, or dissimilar-
ity, value such that the resulting relationship is a global outcome for all of the
variables; thus, it is not possible to identify which variable(s) contributed the
most to its intensity. Partial Canonical Correspondence Analysis (Partial CCA;
ter Braak 1987, 1988; Borcard et al. 1992; Legendre 1993; Palmer 1993) can be
used to circumvent this problem when attempting to elucidate the relationship
between species' abundances and environmental factors while controlling for the
effects of some covariable. Partial CCA is like the partial Mantel test in that it
quantifies the relationship between two matrices (i.e., Canonical Correspondence
Analysis, CCA), holding the effects of a third matrix constant (partial CCA). In
CCA, species ordination axes (i.e., the species matrix) are constrained, using mul-
tiple regression, to be linear combinations of the environmental variables (i.e., the
environmental matrix) in maximizing species variance. This method is an iterative
procedure that estimates the best linear fit between two data sets. Hence, the
outcome will be the best possible linear relationship between species and environ-
mental ordination axes. The resulting biplot allows us to identify by which envi-
ronmental variable(s) each species is the most affected (ter Braak 1994). The
outcome of this method is, however, very sensitive to measurement errors in the
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environmental data and is limited to the environmental variables included in the
analysis.

Often the relationship between species and environmental data is induced by
other underlying factors such as climate, topography, geographical locations, or
historical events and can be controlled for using a third matrix as in the partial
Mantel test (ter Braak 1988; Borcard et al. 1992; Legendre 1993; Palmer 1993).
Again, the resulting triplet of a partial CCA allows us to disentangle the relative
contributions of the factors of a third matrix considered as covariables. Random-
ization tests are then used to assess the significance of the relationship. As with
the partial Mantel test, the use of this third matrix allows us to test specific
hypotheses, by coding it as a contrast matrix in ANOVA, or to quantify the
relative importance of spatial structure in the data by using the geographic coordi-
nates of the samples (Borcard et al. 1992; Harvey 1996).

Other permutation methods have been developed to address the problem of
spatially autocorrelated data in the context of analysis of variance. For example,
MRPP (MultiResponse Permutation Procedures) and MRBP (MultiRandomized
Block design Procedure) can handle nonlinear data (Biondini et al. 1988; Gure-
vitch and Collins 1994). Also, as an alternative to the analysis of variance,
ANOSIM (ANalysis Of SIMilarities) was developed by Clarke (1993) and is
comparable to a Mantel test where the distances are transformed into ranks.

16.3 Example

Ideally, data should be obtained from an experiment where the spatial structure
is known, so that an optimal experimental design could have been created and
carried out to account for the spatial effects (chapters 4 and 15). However, the
real world is not ideal, and it is often difficult or impossible to account accurately
for the underlying spatial structure in plant characteristics in nature. Field workers
may be forced to compromise, doing their best to carry out the most appropriate
experimental design according to the information available. The necessity for
compromise being the most common case, the following example will illustrate
how the Mantel and partial Mantel tests can be used to test for the presence of
and to distinguish the relative contributions of the treatment effect from the effect
of spatial structure.

16.3.1 Data

Data from an experiment on plant competition (Gurevitch 1986) will be employed
to illustrate these methods. Gurevitch used removal experiments carried out at
three sites along a topographic gradient (near Sonoita, Santa Cruz County, Ari-
zona), to test whether the growth of the C3 grass Stipa neomexicana was limited
by competition from perennial C4 grasses. The response of Stipa was compared
with that of a C4 grass, Aristida glauca. The two species were subjected to several
experimental treatments (partial or complete removal of neighbors) and followed
over a period of 20 months. We will present the results from the midslope site
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for only two of the four experimental treatments used by Gurevitch (1986): all
neighboring plants within a 0.5-m radius of the target plant (Stipa or Aristida)
were removed (treatment), or neighboring plants were left alone (control). The
size (basal area, cm2) of each target plant was recorded at the beginning (January
1980, hereafter referred to as initial size) and at the end of the experiment (August
1981, hereafter referred to as final size).

A randomized block design was used to assign, at random, two replicates per
treatment within each block (figure 16.1). Note that the experimental design was
less than perfect, because it would have been better to assign Stipa and Aristida
plants as targets within the same blocks rather than in adjacent ones. We empha-
size that the Mantel approach discussed in this chapter can be used with a variety
of experimental designs, including completely randomized designs as well as ran-
domized blocks, and with more than two levels per treatment. The experimental
unit was an individual mature grass plant, located near the center of a 1.0 x 1.0-
m plot. For each species, there were ten blocks, for a total of n = 40 replicates
(20 controls and 20 removal treatments for each of the two species).

The following examples were computed using the Stipa neomexicana data, as
shown in table 16.1. The Mantel (two-matrix) and partial Mantel (three-matrix)

Figure 16.1 Experimental replicates. Each block (solid rectangle) contains eight replicates
(1.0 x 1.0 m), where C indicates controls and T indicates removal treatment replicates used
in this study. In the gray blocks, the target species is Stipa neomexicana, and in the white
ones, it is Aristida glauca. The squares with a diagonal were not usable in the experiment.
The blocks where Stipa neomexicana is the target species are numbered as in table 16.1.
In block 1, the replicate numbers are indicated by subscript.
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Table 16.1 Initial and final size (basal area, cm2) of Stipa neomexicancf

Block

1

2

3

4

5

6

7

8

9

10

Treatment
and Initial

replicate size

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

28.34
30.63
75.87
11.94
53.60
39.25

4.32
5.36

22.89
17.59
13.21
28.84
21.32
15.90
4.40

33.93
58.50
26.30
7.66
8.29

Final
size

23.13
22.97
39.80

7.59
49.01
68.61

3.41
9.53

13.62
0.07

30.04
33.13
27.43
6.48

14.42
16.87
15.55
23.50

5.93
10.05

Geogaphical
coordinates

X

3.0
7.0
3.0
9.0
7.0
3.0

11.0
17.0
15.0
17.0
23.0
23.0
21.0
25.0
21.0
25.0
31.0
33.0
27.0
31.0

y

5.0
7.0

13.0
15.0
19.0
25.0
11.0
9.0

17.0
19.0
3.0
1.0

13.0
13.0
21.0
21.0
9.0
9.0

19.0
19.0

Treatmeni
and

replicate

T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2
T 1
T 2

t
Initial
size

79.73
12.02
29.15

5.18
8.95

32.99
23.28

5.37
22.78
26.14

4.90
9.24

46.73
6.03
6.44

11.64
8.95

27.57
14.07
6.57

Final
Size

85.88
32.45
58.61
19.15
24.57
78.11
61.38
18.85
33.57
50.08
33.60
25.92
67.80
26.30
50.80
30.63
28.65
53.85
29.99

9.33

Geographical
coordinates

X

5.0
9.0
5.0
7.0
7.0
9.0

13.0
15.0
13.0
17.0
23.0
25.0
19.0
25.0
19.0
23.0
27.0
29.0
27.0
31.0

y

7.0
7.0

15.0
15.0
17.0
17.0
11.0
11.0
17.0
17.0
3.0
1.0

13.0
15.0
23.0
23.0
11.0
11.0
17.0
17.0

T - removal treatment; C = controls. For geographical coordinates, (0, 0) is the bottom left corner of the field
pictured in figure 16.1.

statistics, as well as their associated significance values, were computed by the
MANTEL program of "The R package: multidimensional analysis, spatial analy-
sis" of Legendre and Vaudor (1991). This package is available for the Macintosh
at http://alize.ere.umontreal.ca/~casgrain/R/.

Other software, all for personal computers, can also be used to compute matrix
relationships. The Mantel (two-matrix) statistic can be computed with the
MXCOMP (for Matrix COMParison) program of the NTSYSpc package. NT-
SYSpc is marketed by Exeter Software [http://users.AOL.com/ExeterSftw/]. RT,
Randomization Tests (Manly 1997), computes Mantel test (MANT2) as well as
Manly's regression approach for a three-matrix (or more) partial Mantel test
(MANCOR: Manly 1986b, 1997); it is available at http://ourworld.compuserve.
com/homeoages/BManly/. STAT! computes Mantel tests as well as several other
types of space-time matrix relationship. STAT! is marketed by BioMedware
[http://ic.net/~biomware/]. Two-matrix Mantel tests and MRPP can be computed
using PC-Ord marketed by MjM Software [http://www.ptinet.net/~mjm/wins-
pec.htm/]. ANOSIM can be computed with the PRIMER package (Clarke and
Warkick 1994). Partial CCA can be computed using CANOCO (ter Braak 1988).
CANOCO, available for both Macintosh and personal computers, is marketed by
Microcomputer Power [http ://ww 1 .microcomputerpower.com/webpages/mcp/].

http://www.ptinet.net/~mjm/winspec.htm/
http://www.ptinet.net/~mjm/winspec.htm/
http://ww1.microcomputerpower.com/webpages/mcp/
http://alize.ere.umontreal.ca/~casgrain/R/
http://users.AOL.com/ExeterSftw/
http://ourworld.compuserve.com/homeoages/BManly/
http://ourworld.compuserve.com/homeoages/BManly/
http://ic.net/~biomware/
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16.3.2 Building the Distance Matrices

Given the data from this study, three n x n distance matrices can be computed: the
variable distance matrix, the geography distance matrix, and the design matrix.

1. The variable distance matrix, A, refers to the differences in the measure-
ments (here, size) of the plants between all possible pairs of replicates where i
and j represent different experimental units (here, each plant is an experimental
unit). Since we are interested in any treatment effects on size, we compute the
distance as the absolute difference between all pairs of replicates as follows:

For example, from table 16.1, the difference between the final size of the first
control plant, Q, and the second control plant, C2, in the first block (C],C2) =

1 23. 13 -22.97 1 =0.16. The variable distance matrix can be computed not only
for the final size but for the initial size as well. Indeed, the variable distance
matrix of the initial size can be used to test whether there was already a signifi-
cant spatial pattern in plant size at the beginning of the experiment.

According to the hypothesis under study, as well as the type of data available,
different distance coefficients can be used to establish the variable (or outcome)
distance matrix, A. For guidelines to select the appropriate distance coefficient
for the type of data (qualitative or quantitative) and for the biological context
(community structure, genetic distance), consult Legendre and Legendre (1998)
or Gower and Legendre (1986). The actual computation of the distance matrix
can be carried out with the program SIMIL of the "R package" (Legendre and
Vaudor 1991), which offers 15 distance (dissimilarity) coefficients. The input
data for the SIMIL program is an ASCII file containing the raw data where the
"rows" are the objects (here, n rows for the n replicates), and the "column" holds
the values of a given variable (here, the plant size). The output from SIMIL is
the upper triangle of an n x n distance matrix written in SIMIL binary format.
This SIMIL binary file can be used directly with the MANTEL program. An
ASCII file of the SIMIL binary file can be obtained by the LOOK program. If
the SIMIL program does not have the specific distance coefficient desired, the
distance matrix can be computed by another software program. In such cases, the
ASCII distance matrix file can be rewritten into the SIMIL binary format using
the IMPORT program.

2. The geography distance matrix, B, contains the physical location distances
between each point (here, each plant) and all the others. It can be computed using
the Euclidean distance (i.e., the actual physical distance), between the spatial
coordinates of all possible pairs of plants as follows:

So, the geographic distance between the two control replicates of the first block
(table 16.1) is
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that is, the distance between plants Q and C2 in the field is 4.47 meters (see
figure 16.1).

When the relationship between plant response and geography is known not to
be linear, other types of distance measures can be used. Choices include the
inverse of the Euclidean distance, which makes small distances more important
than large ones (Estabrook and Gates 1984) and relative position given by a
nearest neighbor network (Upton and Fingleton 1985; Harvey et al. 1988).

3. The design matrix, C, expresses the differences in the treatments to which
the plants (experimental units) were exposed. It allows us to test whether plants
subjected to different treatments were any different from those with the same
treatment. This matrix is coded analogously to a set of contrasts in ANOVA:
when two replicates have received the same treatment, their difference is coded
0; when two replicates have received different treatments, their difference is
coded 1. A similar type of coding can also be used to test the differences in
responses between the two species:

C treatment C species

Ci
C2

T,
T2

Ci C2

0 0
0

Ti

1
1
0

T2

1
1
0
0

Stipa

Stipa 0
Stipa

Aristida
Aristida

Stipa

0
0

Aristida

1
1
0

Aristida

1
1
0
0

Because the coding of the design matrix is specific to the experimental hypoth-
esis and the data, this matrix should be created as an ASCII file and then rewritten
in SIMIL binary format using the IMPORT program. Coding the treatment matrix
requires careful thought so that the test really makes the comparison you want.
When there are more than two treatment levels, we can code as we did previously:
0 when replicates received the same level of a treatment, and 1 when replicates
received different treatment levels, regardless of the level. This coding provides
the same weight to all treatments, as does the null hypothesis of an analysis of
variance. When directional differences among several treatment levels are to be
tested, the coding has to be such that it gives appropriate weights to different
pairs of treatment levels.

The interactions among factors, here the interaction between species and re-
moval treatment, can also be tested by appropriately coding the design matrix.
For example, within-species coding between the treatment types can be done this
way, whereas between-species coding uses opposite signs to test for an interaction
between-species and treatment:
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Stipa Aristida

Control Treatment Control Treatment

Stipa

Aristida

Control
Treatment
Control
Treatment

0
1
1

-1

1
0

-1
1

1
_j

0
1

-1
1
1
0

Here, we used the same the code, 1, for the distance between the plants of differ-
ent species but having the same treatment, and for plants of the same species but
with different treatments. Different weights could have been used to test other
hypotheses (Livshits et al. 1991). However, given that the design matrix, C, must
be a distance matrix, it may be difficult to code complex designs.

16.3.3 Computing the Mantel Statistic

The measure of the correlation between two matrices, such as between the vari-
able and the geography matrices, can be computed using the Mantel test (Mantel
1967; Sokal 1979). The Mantel statistic allows us to evaluate whether there is
significant spatial autocorrelation over the entire stand of plants. Thus, we are
interested in assessing the correlation between the distance (difference) in size
among all pairs of plants, contained in the variable matrix (A), and the actual
Euclidean distances among the respective pairs of plants contained in the geogra-
phy (spatial distance) matrix (B). If the spatial location of the plants does not
affect plant size, the observed Mantel statistic (r) should not be statistically differ-
ent from zero.

For example, to compute the Mantel statistic between the initial size and the
geographical distances of the four replicates of Stipa in the first block (replicates
Ci, C2, Tb- and T2; see table 16.1), we used the following distance matrices:

A: Initial size

c,
C2

T,
T2

C, C2 T,

0.00 2.29 51.39
0.00 49.10

0.00

T2

16.32
18.61
67.71
0.00

c,
C2

T,
T2

B: Geography

C, C2 T,

0.00 4.47 2.82
0.00 2.00

0.00

T2

6.32
2.00
4.00
0.00

A x B

C, C2 T!

C, 0.00 10.24 144.92
C2 0.00 98.20
TI 0.00
T2

T2

103.14
37.22

270.84
0.00

The matrix A x B is the element-by-element cross product of the values in the
two distance matrices A and B. For example, the first element of A (above)
multiplied by the first element of B, 0 x 0, equals the first element in A x B which
is zero, whereas the second element in A multiplied by the second element in B
gives 2.29 x 4.47 = 10.24, which is the second element in the A x B matrix. The
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Mantel statistic Z, as mentioned in section 15.2.1, is the summation of the cross-
product elements of the matrix A x B excluding the diagonal (i =f) because the
distance of a replicate with itself is zero:

Of course, ordinarily Z would be calculated across both species and all blocks,
but this small part of the data set is useful for illustrating the method. Given that
the distance between- i and j equals that between j and i (in symmetric matrices),
the Mantel statistic is evaluated by using only the upper (or lower) diagonal
matrices without affecting the relative strength of the relation between the two
matrices.

To compute the normalized Mantel statistic, r, each distance matrix is first
standardized individually by subtracting the mean of all the elements in the matrix
from each observation and then dividing by the standard deviation. The mean
distance for this first block of the variable matrix A (initial size) is 34.24 cm2 and
the standard deviation is 25.38 cm2, whereas for the distance matrix B (geographic
distance), the mean is 3.60 m and the standard deviation is 1.68 m. So, for exam-
ple, to standardize the second element in the first row of A, the calculation is
(2.29 - 34.24)725.38 = -1.26. The r is calculated in the same way as the Z-statistic
by summing the cross products of the standardized matrices (here abbreviated as
"std") and dividing by (n — 1):

Thus, for the initial size, the normalized Mantel statistic is computed for the first
block from the following matrices:

A: Initial size

c,
C2

T,
T2

C, C2

0.00 -1.26
0.00

T,

0.68
0.58
0.00

T2

-0.71
-0.62

1.32
0.00

c,
C2

T!
T2

B: Geography

C, C2

0.00 0.52
0.00

T,

-0.46
-0.95

0.00

T2

1.62
-0.95

0.24
0.00

c,
C2

T,
T2

A x B

C, C2

0.00 -0.65
0.00

T,

-0.31
-1.15

0.00

T2

-0.55
0.58
0.31
0.00

The normalized Mantel statistic equals

r = (-0.65 + (-0.31) + (-0.55) + (-1.15) + 0.58 + 0.31)/
(6-!) = -!.77/5 =-0.354

if calculated for the first block only.
We can also test for treatment effects using the same approach. We would

expect no significant correlation between the initial size and the treatments, be-
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cause the treatments were assigned to plants at random and were not begun until
after the initial sizes were measured. The example yields the following:

A: Initial size

c,
C2

T,
T2

C, C2 T,

0.00 2.29 51.39
0.00 49.10

0.00

T2

16.32
18.10
67.71
0.00

B: Treatment

C, C2

C, 0 0
C2 0
T,
T2

T,

1
1
0

T2

1
1
0
0

A x C

C, C2 T,

C[ 0.00 0.00 51.39
C2 0.00 49.10
T! 0.00

T2

T2

16.32
18.10
0.00
0.00

We calculate Z= 0.00 + 51.39 + 16.32 + 49.10 + 18.10 + 0.00 = 134.91, whereas
r = -0.023. As anticipated, this value is very close to zero.

16.3.4 Assessing the Significance of the Mantel Statistic

As for any statistical test, the significance of the observed value of the Mantel
statistic, Z or r, is assessed by comparing it to the reference distribution obtained
under the null hypothesis. In practice, the reference distribution can be obtained
by permuting the arrangement of the elements of one of the distance matrices
randomly at least 1000 times, each time computing the Mantel statistic. The sig-
nificance of the observed Mantel value is obtained by comparing it with the
number of times that the permuted Mantel values are smaller, equal to, or greater
than the Mantel statistic for the actual data.

As mentioned previously, the null hypothesis refers to the absence of signifi-
cant relationship between the two matrices. The alternative hypothesis can be
evaluated using either a one- or a two-tailed test. The one-tailed probability of
any positive observed Mantel statistic (i.e., right-hand tail probability) is given
by first adding the number of equal or greater magnitude than the calculated
(actual) value and then dividing by the total number of permutations. Similarly,
the one-tailed probability of a negative observed Mantel value (i.e., left-hand tail
probability) is given by adding the number of equal and smaller values and then
dividing by the number of permutations. In the MANTEL program, the observed
value is added to the number of equal values, so to have a reference distribution
of 1000, we need ask only for 999 permutations. Although, MANTEL (Legendre
and Vaudor 1991) and MXCOMP (NTSYS-pc) programs provide only the num-
ber of permutations that are smaller than, equal to, and greater than the observed
value, and hence one-tailed probability levels, the MANT2 subroutine provides
one-tailed as well as two-tailed probabilities, where the two-tailed probability is
given by the number of permutations that, in absolute value, are greater than or
equal to the observed statistic.

Using the MANTEL program and thus conducting one-tailed tests, the follow-
ing relationships were computed for the 10 blocks of Stipa across the entire mid-
slope site:
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Initial x Geography
Initial x Treatment
Final x Geography
Final x Treatment

r

0.1381
-0.0011

0.0389
0.1396

Smaller

977
647
736
996

Equal

1
1
1
1

Greater

22
352
263

3

P(r)

0.023
0.648
0.264
0.004

The results reveal that spatial location (geography) had a significant effect (r =
0.1381, P < 0.05) on the initial size of Stipa plants (above and table 16.2A). Note
that each design factor is tested independently; each line in this table (and in
tables 16.2 and 16.3) represents a complete Mantel test of 999 permutations. As
expected, competition treatments did not affect the initial size of Stipa plants,
because treatments were assigned at random after initial size was measured (this
table and table 16.2A, r = -0.0011, p > 0.05). By the end of the experiment, the
treatment (removal of competitors) had a highly significant effect on Stipa plant
size (this table and table 16.2B, r = 0.1396, P < 0.004).

In a more complete analysis, we included the entire data set for both Stipa and
Aristida. There were large differences in initial size between the two species
(table 16.3A, r = 0.2208, P < 0.001). There were also highly significant differ-
ences in final plant size between the two grass species (table 16.3B, r = 0.2891,
P < 0.001), a highly significant species x treatment interaction on final size (r =
0.0496, P < 0.001), and a marginally significant effect of blocks at the end of the
experiment (r = -0.0184, P < 0.05).

Table 1 6.2 ANOVA and Mantel Tests on the Sizes (basal area, cm2) of Stipa
neomexicana Plants

ANOVA Mantel tests

Factor

A. Initial Size
Block
Treatment
Treatment.Block
Treatment.Geography
Geography
Geography .Treatment
B. Final Size
Block
Treatment
Treatment.Block
Treatment.Geography
Geography
Geography .Treatment

F P R

1.17 0.3629 0.0147
0.99 0.3323 -0.0011

0.0024
0.0044
0.1381
0.1382

1.31 0.2920 -0.0002
10.73 0.0038 0.1396

0.1409
0.1414
0.0389
0.0451

P

0.2240
0.3650
0.3120
0.2850
0.0230
0.0270

0.5100
0.0010
0.0010
0.0010
0.2640
0.2300
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Table 1 6.3 ANOVA and Mantel Tests on the Sizes (basal area, cm2) of Stipa
neomexicana and Aristida glauca plants

ANOVA

Factor

A. Initial Size
Species
Block
Treatment
Species x Treatment
Geography
Treatment.Geography
Geography.Treatment
B. Final Size
Species
Block
Treatment
Species x Treatment
Geography
Treatment.Geography
Geography.Treatment

F

43.56
2.26
0.02
0.35

70.94
0.84

29.55
10.61

P

0.0001
0.0284
0.9003
0.5541

0.0001
0.5422
0.0001
0.0025

Mantel tests

R

0.2208
0.0046

-0.0092
-0.0065

0.0071
0.0067
0.0069

0.2891
-0.0184
0.0876
0.0496

-0.0387
0.0501

-0.0371

P

0.0010
0.2700
0.0810
0.2810
0.3890
0.3910
0.4250

0.0010
0.0370
0.0010
0.0010
0.1730
0.0010
0.1730

16.3.5 Computing Partial Mantel Tests

The partial Mantel statistic, rABC (the correlation between matrix A and B given
C), can be computed to test whether there are significant treatment effects (design
matrix) on plant size (variable distance matrix) when the effects of the spatial
location are kept constant (geography distance matrix). We might also wish to
investigate whether plant size (variable distance matrix) is spatially autocorrelated
(geography distance matrix) while the treatment effects are kept constant (design
matrix). Thus, the partial Mantel test can be carried out to ensure that the effects
of the treatments are not canceled by spatial effects. We used the three-way (par-
tial) Mantel test to examine some of the questions that are probably of greatest
interest to the experimentalist; for example, what are the effects of the treatments
when spatial effects are taken into account? This may be thought of as being
analogous to an analysis of covariance, where spatial effects are "held constant"
while the effects of the experimental treatment are examined.

When the results were analyzed for Stipa alone, taking spatial location into
account strengthened the already strong effect of the treatment on final plant
size (table 16.2B, Treatment.Geography, r = 0.1414, P < 0.001, compared with
Treatment, r = 0.1396), whereas there was no significant effect of the treatments
on initial size when geography was held constant (table 16.2A, Treatment.Geogra-
phy, r = 0.0044, NS). Partial Mantel tests could be used to test many relationships
of interest: for example, we could test for the effect of the treatments on final
plant size, holding initial plant size constant (Treatment.Initial, r = 0.5518, P<
0.001). For the entire data set including both Stipa and Aristida (table 16.3), the
effects of the experimental treatment on final plant size again remained statist!-
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cally significant when spatial effects were held constant (table 16.3B, r = 0.0501,
P < 0.001). Spatial location (geography) did not affect plant size, even when treat-
ment effects were taken into account (table 16.3B, r = -0.0371, p > 0.05).

16.3.6 Mantel Tests versus ANOVA

The results of the previous experiment using the Mantel tests were compared with
the results from a standard ANOVA. The results were similar for the two tests
(tables 16.2A and 16.3), which is to be expected because strong spatial depen-
dence was not detected in this data set. Therefore, the ANOVA assumption of no
spatial autocorrelation (i.e., independence of observations) was not seriously vio-
lated in the present study. Nevertheless, the Mantel and partial Mantel tests can
bring out complementary information that ANOVA cannot provide, such as the
detection of a significant underlying spatial autocorrelation for Stipa at the begin-
ning of the experiment (initial size, table 16.2A), which did not hold at the end
(final size, table 16.2B). This loss of significant spatial pattern in final sizes offers
insight into the spatial responses of Stipa and indicates that the treatment effects
were strong enough to override the initial spatial pattern. Notice that the Mantel
tests were able to detect the spatial pattern regardless of the block size used.

Furthermore, the Mantel approach seems better than ANOVA at detecting
block effects and the species x treatment interaction at the end of the experiment
as indicated by small P-values, although these relationships were not strong (table
16.3B). The same trend held for the partial Mantel tests (tables 16.2 and 16.3).
Recall that even though the spatial effects (geography) were not statistically sig-
nificant, holding the effects of space constant using the partial Mantel test resulted
in a higher r-value (i.e., a stronger relationship) for treatment effects (table 16.2B,
r = 0.1396 for treatment alone, whereas r- 0.1414 for treatment with geography
held constant). The stronger treatment effect when spatial effects were held con-
stant was not apparent when Stipa and Aristida were analyzed together, however
(table 16.3B), perhaps because the spatial patterns for the two species differed.

16.4 Conclusion

In this chapter, we have emphasized the importance of detecting and taking into
account the underlying spatial pattern in the analysis of field data to obtain a
better understanding of the plants' responses. Our results emphasize the value of
using larger and simpler experiments to reveal a pattern that may otherwise be
obscured (chapter 18; Gurevitch et al. 1992). The trend in ecological experiments
is to include many experimental treatments with few replicates, but because the
ability to detect spatial pattern increases with sample size, fewer treatments and
a larger number of replicates may sometimes be preferable.

Other approaches to the design and analysis of ecological data when spatial
autocorrelation is present have also been proposed (e.g., chapter 15; Besag and
Kempton 1986; Legendre et al. 1990; Borcard et al. 1992; Legendre 1993). Al-
though we have used Mantel tests to analyze spatially autocorrelated variables,
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these tests are not restricted to that use and can be implemented to analyze other
types of data or used in other contexts (Sokal et al. 1990, 1993). The usefulness
and flexibility of the Mantel and partial Mantel tests make them good exploratory
tools to detect a posteriori the scale of the spatial pattern or to test the goodness
of fit of an alternative hypothesis or model (Legendre and Troussellier 1988;
Legendre and Fortin 1989; Sokal et al. 1987).

The extension of the Mantel and partial Mantel tests presented here offers a
promising approach in designed experiments where spatial heterogeneity may
pose problems for the analysis of the results. Using this approach, it is possible
to distinguish the effects of spatial pattern from those of experimentally imposed
treatment effects. Therefore, this offers an alternative to classical experimental
design and parametric analysis of variance in ecology, especially when the extent
and pattern of spatial heterogeneity are not known in advance.
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Bayesian Statistics

Estimating Plant Demographic Parameters

JAMES S. CLARK

MICHAEL LAVINE

17.1 Introduction

There are times when external information should be brought to bear on an eco-
logical analysis. Experiments are never conducted in a knowledge-free context.
The inference we draw from an observation may depend on everything else we
know about the process. Bayesian analysis is a method that brings outside evi-
dence into the analysis of experimental and observational data.

With the increasing use of Bayesian methods in ecology, our science has co-
opted the philosophical controversy that attended the twentieth-century rise of
"classical" statistics (Stigler 1986). Limitations of classical hypothesis testing and
P-values (Berger and Berry 1988) on the one hand, or of Bayesian priors and
subjective probability (Dennis 1996) on the other, allow smart people to come
down on either side of a polarized debate (Edwards 1996). The debate will un-
doubtedly continue.

This chapter is not one of the battlegrounds over Thomas Bayes' thinking
when he described his famous "billiard" example or its application since (Bayes
1763; Fisher 1959; Stigler 1986). Although we are not always enamored with
classical hypothesis testing in general, we often use it. And, although priors can
sometimes sound like a bad idea in theory, it is usually harder to abuse them than
some people think. Regardless of whether it is always sensible to regard an un-
known parameter as having a distribution of values (in a Bayesian sense), this
can be the best way to model many ecological problems. For those of us most
interested in interval estimation, the fact that both methods usually give similar
answers tends to be lost in the fray. The large divergences that can occur with
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small sample sizes or strong prior opinions are less common than the impression
left by some authors. We leave these arguments for others, but refer readers to
the lively treatments in the Special Feature of Ecological Applications (Dixon
and Ellison 1996). Hilborn and Mangel (1998) lay out the utility of Bayesian
methods as part of a set of tools for analysis of ecological data. An overview of
Bayesian statistics is given in Berger (in press).

Bayesian analysis differs from other topics in this book, so we approach it in
a different way. Our gentle introduction is intended for the ecologist who might
find either Bayesian or classical approaches useful, depending on the application
at hand. So our chapter includes some comparisons, but they are not the insidious
examples that rely on strange or unrealistic distributions to generate discord. Al-
though most of this book is designed for the practitioner, providing the bridge
from concept to software, Bayesian analysis still requires programming. Thus,
although we cannot direct the reader to a broad range of software options, we
adopt the general philosophy of this volume by providing a simple and practical
introduction to a topic that is generally treated at a more advanced level in gradu-
ate statistics courses and beyond.

We cannot go far using Bayesian methods without the routine application of
calculus (including numerical methods that require an understanding thereof).
Models with multiple parameters get complicated fast, but the conceptual back-
ground laid by simpler models generally applies. Rather than attempt a broad
survey that would risk losing the reader in technique, we limit this chapter to one
sampling distribution (the binomial). This limited scope allows us to introduce a
number of concepts (the basic elements of Bayesian methods, conjugacy, compar-
ison with classical methods) that apply generally. Useful introductory texts in-
clude Berry (1996), Lee (1989), and Box and Tiao (1973).

17.2 The Basic Elements

Bayesian statistics has two distinguishing characteristics:

1. It combines, in a formal way, data from the experiment at hand with data from
any other experiment or information deemed relevant.

2. It summarizes the analysis with a probability distribution that shows how well
the various values of the parameter are supported by all of this information.

For the purpose of illustrating concepts, we begin with a simple example. To
understand the dynamics of plant populations, ecologists estimate survival from
census data. Because annual rates tend to be high (often >95% per year for trees),
it can be difficult to obtain data sufficient to make confident estimates (i.e.,
enough deaths). Information that is external to the study at hand can help to
sharpen estimates. This Bayesian example combines census data from a typical
field study with external information to evaluate survival of Acer rubrum trees in
the southern Appalachian Mountains (Wyckoff and Clark 2000).

The probability density in figure 17.1A summarizes the analysis of tree sur-
vival. The data include annual censuses of trees; the parameter of interest is the
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Figure 17.1 The elements of a Bayesian analysis. The posterior density (A) represents the
support of values of the survival rate 9 in light of data at hand (B) and prior inputs (C).

probability 6 that a randomly selected tree survives from one year to the next.
Figure 17.1 A shows that values of 0 around 0.95 are most likely, but all values
from about 0.91 to about 0.98 are plausible. The data support the value 6 = 0.95
about twice as well as 0.93 or 0.97 and about ten times as well as 0.91 or 0.98.

Where did figure 17. 1A come from? The repeated censuses of Wyckoff and
Clark (2000) included 127 survivors from a total of 132 individuals. The chance
of 127 survivals from 132 total trees is calculated from a binomial distribution as
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This function of 0 is called a likelihood function and is plotted in figure 17.IB.
The likelihood function indicates how well the data support each value of 6. In
this example, the data best support the value 9 = 127/132, and they lend decreas-
ing support to values on either side. The value best supported by the data has the
maximum likelihood and is termed the maximum-likelihood (ML) estimate. The
likelihood function in figure 17.IB shows only the support from the data, so it is
not yet a Bayesian analysis.

A Bayesian analysis combines the likelihood function of figure 17.IB with
other information, which could be data from other experiments or scientific in-
sight. The other information is summarized by a function /(0) called the prior
density. For example, if we had reason to believe, say, from previous experi-
ments, that 9 was most likely to be about 0.9 and very likely to be somewhere
between 0.85 and 0.95, then we might use a prior density that looks like figure
17.1C. The name prior is used because the other information usually comes to us
prior to the information from the experiment we are analyzing. But priority in
time is not necessary. Perhaps a better term would be external information (Raf-
tery and Zeh 1993).

The likelihood function and prior density are combined according to Bayes'
theorem,

The left-hand side is called the posterior density and is the combination of likeli-
hood and prior. The theorem says that the posterior density is calculated by multi-
plying the prior density by the likelihood. (The integral in the denominator is just
a normalizing constant.) The posterior represents, at least approximately, how
well various values of 9 are supported by all the information, including data at
hand and the prior information. The prior and likelihood pictured in figures 17.IB
and 17.1C, respectively, combine to give the posterior in figure 17.1A.

In summary, a Bayesian analysis takes as inputs both data, by way of a likeli-
hood, and additional information, summarized by the prior, to produce a posterior
density. The posterior expresses how the combination of data and prior together
support values for the unknown parameter.

17.3 A Few Details

To introduce some of the techniques necessary to arrive at a posterior, we pursue
a bit further the example from Wyckoff and Clark (2000), who compared maxi-
mum-likelihood and Bayesian approaches to estimate how survival rates change
over time.

17.3.1 Arriving at a Posterior

Let « be the number of trees counted at a first census, and k be those that survive
to be counted in the second census. For the Acer rubrum example, with n = 132
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and k = 127, intuition tells us that the best estimate of 0 is simply k/n = 0.96, the
fraction that survive. The strong intuitive sense we have about this simple prob-
lem helps us grasp the basics of a Bayesian approach. Recall the two ingredients,
a likelihood and a prior density for the parameter of interest 0. Rewriting equation
17.1 in terms of generic parameters gives the binomial likelihood,

where 0 is the probability of survival, and the combinatorial
n

,kl
is the binomial

coefficient. The prior /(0) depends on insights about 0 other than those obtained
from the data. The flat prior, representing the view that all values of 0 are equally
probable, is a uniform density on the interval (0, 1):

(dashed line in figure 17.2A). We might use a flat prior if we desire an outcome
that is influenced by the data alone and not by external information. To write

Figure 17.2 Bayesian analyses for uniform (A) and nonuniform (B) priors. In part (A) the
posterior coincides with the likelihood. The cumulative plots at right are the cumulative
posterior distributions with vertical dashed lines enclosing 95% of the posterior densities.
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Bayes' rule (equation 17.2), we note that the combinatorials in the numerator and
denominator cancel, leaving

B(», •) is the beta function. The final step in equation 17.5 makes use of some
well-known relationships among beta functions, gamma functions, and factorials
that can be found in standard probability texts.

The posterior in equation 17.5 is a beta density, /(0 \k) = B(k +1, n - k + 1),
and expresses the level of certainty assigned to values of 0. The mode of this
density is the most probable value of 0 and occurs at the critical point, where
df(Q\k)/dQ = 0. Differentiation is simplified if we first take logs, dlnf(Q\k)/dQ =
k n — k

. Setting this derivative equal to zero shows that the mode of the poste-
n 1-0
rior agrees with our intuitive estimate k/n (figure 17.2A). We can summarize our
degree of confidence in 0 with quantiles that contain the central 100(1 - oc)% of
the posterior. The right-hand side (figure 17.2B) is the cumulative distribution for
the posterior showing 95% quantiles (dashed lines).

Now consider how our noninformative (flat) prior affects the result. The uni-
form prior density means that the posterior beta density (equation 17.5) has the
same shape as the likelihood function (equation 17.3); the two differ only by a
constant and, thus, contain the same information about the parameter 0. The nor-
malized likelihood (divide the likelihood function by the denominator of equation
17.1) coincides with the posterior in figure 17.2A. Because we had no prior in-
sight, the census data governed the result. Before considering how the posterior
is influenced by the particular choice of the prior, we compare the Bayesian
method with a classical approach.

17.3.2 Comparison with a Classical Approach

How does this Bayesian approach differ from a classical view? A classical (fre-
quentist) approach might involve fitting the parameter 0 to data and then deriving
a probability statement (a P-value) based on a comparison of that result with
some alternative null model. The maximum-likelihood (ML) estimate of 0 is that
which maximizes the probability of the data set, assuming the model to be correct.
By differentiating the likelihood of equation 17.3 with respect to 0, we find the
ML estimate of 0 to be 0ML = k/n. A classical confidence interval is based on the
comparison of this ML estimate with other possible values of the parameter using
P-values.

We refer to all such intervals, be they classical or Bayesian, as "confidence
intervals"; ecologists do not use the Bayesian jargon "credible interval." To com-
pare confidence intervals, we describe a "likelihood profile" approach. Likelihood
profiles are being used increasingly by ecologists; a full description of likelihood
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profiles can be found in Hilborne and Mangel (1997). The summary of likeli-
hood profiles that follows illustrates the link between classical and Bayesian ap-
proaches represented by the likelihood function.

Within a classical context, a probability statement about an estimate requires
some alternative hypothesis against which it can be compared. Because there
might be many such alternatives, let's consider a broad range. This range is the
basis for a classical confidence interval, which we obtain by constructing a likeli-
hood profile. The method involves successively calculating two likelihoods for
the same data set, one for each competing hypothesis about 0 against the ML
estimate, that is, the value obtaining most support from the data. The likelihood
ratio (LR) is simply the ratio of the likelihoods of the two models,

The deviance is the test statistic. It is twice the difference in log likelihoods

nd is distributed as %2 with 1 degree of freedom (there is one parameter at issue).
The deviances increase (figure 17.3A) and associated P-values decrease (figure
17.3B) as the hypothesized value of 0 deviates from the ML estimate (9 = 0.96).

Figure 17.3 Classical confi-
dence intervals for the exam-
ple in figure 17.2A. The devi-
ance (A) has a horizontal
dashed line corresponding to
likelihood profile values of P =
0.05. The plot of P-values (B)
includes the P = 0.025 horizon-
tal line and the 95% Bayesian
confidence interval (vertical
lines) from the example in fig-
ure 17.2A.
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We might conclude from this example that the data allow us to reject, at the a =
0.05 level, the hypothesis that 9 lies outside the interval bounded by the horizontal
dashed line at P — 0.025 in figure 17.3B. We can represent the same interval by
the horizontal line through the deviance plot at 3.84 (figure 17.3A): the %2-value
that yields P = 0.95 with 1 degree of freedom. For comparison, we include in
figure 17.3B the Bayesian confidence interval obtained with a uniform prior in
figure 17.2A (the vertical dashed lines in figure 17.3B).

How different are the interpretations derived from these approaches? The as-
tute reader will note that the confidence intervals from the Bayesian (vertical
lines in figure 17.3B) and the classical method (horizontal line in figure 17.3B)
nearly coincide. Indeed, with large n, they converge. The lower limits are equiva-
lent, and the upper limits differ slightly. If both methods yield the same confi-
dence intervals, then how important is the distinction? From equation 17.1 (and
17.5), we note that a uniform prior (a reflection of prior ignorance about 6) means
that the posterior is simply a normalized likelihood function. Because the like-
lihood and posterior bear the same shape (we cannot distinguish them in figure
17.2A), they contain the same information about 9. The posterior is completely
controlled by the data, without prior bias. And the posterior (normalized likeli-
hood) yields about the same confidence interval as the likelihood profile. This
example is general; with large sample size, a noninformative prior produces a
confidence interval that converges with the classical one.

Despite similarities, statisticians talk about these two confidence intervals in
different ways. The classical confidence interval is taken to cover the fraction of
repeated experiments in which the interval would contain the true value of the
fixed parameter. If we were to conduct a large number of identical experiments
on survival of trees that are subject to the same set of risks, our survival estimate
would fall above the dashed lines in figure 17.3A in 95% of those experiments.
The Bayesian confidence interval represents our belief that the random parameter
spans a certain interval. Here, survival is viewed as random with a density given
in figure 17.2A. There are cases where the two approaches can yield importantly
different answers (e.g., Cousins 1995). However, from a practical standpoint, it
is worth remembering that much of the time the confidence intervals nearly coin-
cide.

17.3.3 An Informed Prior

For problems like tree survival, where estimates suffer from inadequate data, prior
(external) knowledge about 9 can sharpen our inference. Wyckoff and Clark
(2000) incorporated estimates obtained from U.S. Forest Service (USFS) invento-
ries as prior estimates of survivorship. The USFS data might not provide the best
estimate for Wyckoff and Clark's (2000) study site, because the data come from
a broad region, but they do represent a prior estimate of survival that might be
worth combining with field data from their more restricted study area.

USFS data contained k0= 137 of n0= 142 surviving Acer rubrum trees from
the region that includes the study area of Wyckoff and Clark (2000). The prior



Bayesian Statistics 335

density, likelihood function, and posterior density are compared in figure 17.2B.
For convenience, the prior is taken to be a beta density,

Note that the parameters of this density are simply the numbers of total and
surviving trees. Because the prior from USFS data in equation 17.6 (shown in
figure 17. 2C) contains far more information about 0 than does the uniform one
(figure 17. 2A), the posterior in figure 17. 2C is concentrated about the most proba-
ble estimate (still 0 = 0.96) to a greater degree than in figure 17. 2A. The posterior
splits the difference between prior and likelihood, because it incorporates infor-
mation from both. The greater information that results from the informed prior is
reflected in the narrower confidence intervals shown on the right-hand side of
figure 17.2.

The beta-binomial example makes obvious the importance of sample size. In
our example, the weight of the prior evidence (n0 = 142) and of the new data
(«= 137) are about the same. The exact solution for the posterior is the beta
density with parameters obtained by summing the prior information and data:

Because the parameters in equation 17.7 are simply the sums of total and surviv-
ing trees, it is clear that both contribute similar weight to the posterior. For a
small sample size, an informed prior (n0 > ri) dominates the posterior; the likeli-
hood (i.e., the data) has minimal impact. With increasing sample size (n > «o)>
the likelihood dominates the prior, and the posterior approaches the likelihood.
The example using a flat prior (figure 17.2A) is an extreme case, where the
weight of the evidence is concentrated in the likelihood. Thus, the impact of
the prior is felt most when sample size is low. With an increasing sample size,
the posterior tends to normality, with the mean approaching the "true" value of
00, and the parameter variance is determined by the curvature of the likelihood
surface at GO. Thus, with a large sample size, the likelihood alone can be used to
estimate the mode and curvature. Provided that the prior assigns nonzero proba-
bility to the true value 00, the curvature increases with increasing n until the mass
of the posterior is concentrated at the point 00.

One objection to Bayesian methods is that subjectivity may creep into the
analysis through the choice of the prior. In the hope of reducing subjectivity,
some practitioners recommend using a flat prior. As we have seen, this approach
yields a posterior density of the parameter based on the data and on an initial
belief that all values are equally probable. (The foregoing section explains simi-
larities to a classical approach.) Although some strict subjectivist Bayesians might
disagree, it is generally good practice to consider several different priors, repre-
senting different evaluations of outside information, use them each to compute a
posterior, and compare the posteriors. Often the posteriors that result from differ-
ent priors will be similar (Crome et al. 1996). Wyckoff and Clark (2000) deter-
mined how the survival estimates changed when using priors obtained from dif-
ferent data sources. In their analysis, changing the prior had little effect on the
posterior, because there were not large discrepancies between the priors obtained
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from different sources and the likelihood. But, in some cases, they can be quite
different, meaning that people can disagree. Wolfson et al. (1996) provide an ex-
ample of how sample size can be adjusted to ensure a decisive experimental
outcome when different parties bring to a problem very different priors. A larger
sample size might be needed to demonstrate an outcome that is at odds with
strong prior evidence.

17.3.5 Conjugacy

If a probability statement about parameters is the only objective, then a Bayesian
analysis can often be done without resorting to the mathematical details behind, say,
equation 17.7. Indeed, increasing complexity, such as in the example that follows,
demands a computer-intensive approach. Numerical techniques^ such Markov
Chain Monte Carlo (MCMC) simulation, are well suited to analyzing such models
and calculating posterior distributions for the parameters of interest. Gelman et
al. (1995) provide an introduction to these methods. The route to the posterior is
intractable, and the nonparametric nature of the posterior means that it is not
readily transported from one application to the next.

Much ecological investigation is concerned with developing models for under-
standing and prediction. Knowing the numerical techniques for extracting confi-
dence intervals from high-dimensional posteriors is often not enough. The devel-
opment of minimal models that permit transparent error propagation and analysis
is a goal of ecological research (Hilborne and Mangel 1997; Burnham and Ander-
son 1998).

A special class of models is analytically tractable when the number of parame-
ters is small and provides a powerful technique for data assimilation. It involves
a special relationship between prior and likelihood termed conjugacy. A conjugate
prior-likelihood pair is one for which application of Bayes' rule results in a poste-
rior having the same form as the prior. Conjugate prior-likelihood pairs can be
found for many low-dimensional problems. The beta-binomial is a common ex-
ample: the prior (equation 17.6) and posterior (equation 17.7) have the same form,
and only the parameter values are updated. There are a number of conjugate pairs
(we mention the inv%2-Gaussian conjugate pair subsequently), and their use al-
ways simplifies the analysis. Conjugacy is a valuable tool, because it permits an
exact result that can be updated repeatedly. For example, a model of forest dy-
namics can be implemented in fully parametric form. A standard model of this
sort using, say, a ML (point) estimate of survival probability does not reflect the
uncertainty described by figure 17.2B. The conjugate pair model allows us to
draw survival estimates directly from equation 17.7, thus propagating uncertainty
in the parameter estimate directly to the model output. Moreover, the next occa-
sion to update the data set requires only a change in the parameters of equation
17.7. Although their calculation requires some math, conjugate pairs provide the
most transparent view of the relationship between priors and posteriors, and,
when available, they provide a powerful way to assimilate data in ecological
models. Of course, in the many cases where a conjugate pair is not available, the
analysis must proceed numerically.
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17.4 Bayesian Estimation in a Dynamic Model

The methods outlined previously can be extended to more complex ecological pro-
blems. Here we provide an example that uses the binomial sampling distribution
to estimate the dynamics of seedlings. Ecologists typically study such dynamics
by tagging every seedling in a study plot and, through censuses, determining
survival probabilities. Such studies are so labor-intensive that few data sets exist
(Clark et al. 1999). Moreover, the heavy loss of tags and failure to relocate seed-
lings necessitate far more complex statistical models than investigators actually
use to analyze such data. The following example from Lavine et al. (in press)
illustrates how the Bayesian approach can be implemented in a dynamic model
to incorporate different types of error and, in the process, extract parameter esti-
mates without the intensive labor required by the standard approach. The model
is based on identification of only two classes of seedling age, and it uses local
densities at each stage rather than individually tagged seedlings.

Tree seedlings can be conveniently separated into a first-year class and a
>first-year class, which is presumably less susceptible to mortality risks. A dy-
namic model based on this two-stage classification is readily applied to field data,
because the two classes of seedlings are distinguished by the presence of bud-
scale scars on >first-year seedlings. The data consist of seedling densities of the
two classes counted in 1-m2 quadrats. First-year and >first-year seedlings are
termed New (N) and Old (O), respectively. Each class has its own survival proba-
bility, QN and Q0- The number of new seedlings entering the population in year j,
NJ, is determined by input of new seeds. The number of old seedlings, 0,-, is the
sum of both new and old seedlings from last year that survived to this year. To
simplify notation in the equations that follow we define the numbers of both
classes that survivor to year j as

The first of these equations says that the number of survivors is a random variable
drawn from a binomial distribution with parameters NH (the number of potential
survivors) and QN (the probability that any one individual survives). The total
number of old seedlings is the sum of old and new seedlings that survived from
year j - 1, O, = Xj + Yj. In other words, the number of old seedlings is the sum of
two binomial variates, each with its own survival probability. Data from one of
the 1-m2 quadrates are shown in table 17.1.

Table 1 Numbers of first-year (new) and >first-year (old) Acer rubrum
seedlings censused in quadrate 9 from Lavine et al. (in press)

Year

Number of new seedlings, Nj
Number of old seedlings, 0;

1993

1
1

1994

0
1

1995

2
1

1996

0
1

1997

0
0
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In 1996 (call this year f), one old seedling was observed. We do not know
whether this survivor was old or new in 1995 (year j— 1). To estimate the two
survival probabilities, we must enumerate the possibilities. As many as 1 or as
few as 0 could have been old; the remaining 0 or 1 was new in 1995. From 1 old
and 2 new in 1995, the probability (i.e., likelihood) that exactly 1 survived to
become old seedlings in 1996 is

This likelihood is the sum of two binomial probabilities. The summation from
x = 0 to 1 adds the two ways we could observe one old seedling. If the old
seedling was new last year (x = 0 in the summation), we have the probability that
the single old individual died (the first binomial) times the probability that one
of the two (Oj ; - x = I - 0 = 1) N^i survived. [Lavine et al. (in press) provide sim-
ple rules for obtaining the summation limits.] By adding to this value the proba-
bilities that would apply if a single O^\ survived (x = 1), we obtain the total
probability of obtaining the data. The likelihood function for the whole data set
is the product over all <2 quadrats and all T years,

In this particular likelihood, we treat each plot in each year as independent. [Lav-
ine et al. (in press) relax this assumption].

Because of the number of parameters involved, calculating a posterior can re-
quire some numerical tools. As written, the posterior can thus far be calculated
exactly. Combining the likelihood of equation 17.8 with a flat prior results in a
posterior density for QN and Q0 (figure 17.4A). The posterior shows how well each
combination of (0jv, BO) is supported by the evidence. To examine QN only, we
integrate over 00 to obtain the marginal density of 8N:

1

This integration is necessary because parameters in complex models can often be
correlated (a type of ill conditioning we mention subsequently). Because the two
parameters are largely independent (there is little sign of correlation in figure
17.4), the marginal density obtained from this integration might not be too differ-
ent from a conditional density (at, say, the ML estimate of the other parameter).

In the real world, other sources of error require parameterization. Because not
all seedlings will be found in all years, there is random "findability," which can
be thought of as the probability that a seedling is counted at all. In particular,
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Figure 17.4 (A) Contour plot of the posterior density /(0jv, 9o|O) shows that values near
0.32 are the best support for both parameters. Marginal posterior densities for the survival
parameters 9^ (B) and 60 (C) obtained by Gibbs sampling from the joint posterior density
for the model that includes a findability error (Lavine et al. 2000) are in agreement with
those obtained by the simpler model (A).

new seedlings can be small and hard to find. If, for example, there is a Poisson
distribution of new seedlings with parameter (mean value) A, and a probability /
that a new seedling is actually found, then the problem is too complex to pursue
analytically. For the data set considered by Lavine et al. (in press), the marginal
posteriors for the survival probabilities are shown in figure 17.4B.C. The marginal
distributions are bumpy because they are obtained by numerically (Gibbs) sam-
pling from a joint posterior having these extra parameters to accommodate addi-
tional sources of error. Gibbs sampling is a MCMC technique that simulates a
posterior and, in the process, accomplishes the integration described previously
(without actually integrating anything; see Gelman et al. (1995) for an introduc-
tion). The posteriors indicate that survival rates between 0.25 and 0.40 for both
new and old seedlings are most likely. This result ran counter to our expectation
that survival would be lower for new seedlings, but it may be explained by the
fact that some seedlings may still emerge after the July censuses. Note too that
the values do not greatly differ from those obtained from the simple model in
figure 17.4A.
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The biplots for parameter pairs show that there can be substantial correlation
between some parameters (figure 17.5). Especially strong correlation occurs be-
tween the parameters A, and /. This negative correlation can be understood if we
reconsider the verbal model of the foregoing paragraph. The number of new seed-
lings recorded in a census is the true number of seedlings (with mean value A,)
times the probability that a given seedling is observed, /. Because neither quantity
is directly observed, both parameters can trade off to yield a particular observed
number of seedlings. The correlation evident in the biplot represents a corre-
sponding ridge in the likelihood surface: the fit (i.e., the likelihood) for a high
value of / and a low value of A, can be just as good as the fit for low / and high
A,. The posterior densities in figure 17.4B.C integrate over such correlations, but
it is still important to know that such correlations exist.

Few data sets have sufficient sample size and duration to estimate seedling
survival rates. The majority of studies last a year or less, involve sampling from

Figure 17.5 Parameter pairs for Q0 (9.old), QN (0.new), /(f.new), and X (lambda) showing
tendency for correlation among some parameters.
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a single stand, and examine effects on a single cohort (Clark et al. 1999b). The
lack of adequate data for parameter estimation results from the intense labor re-
quired to census tagged seedlings. Comparing data sets obtained from tagged and
untagged seedlings, Lavine et al. (in press) showed that this Bayesian approach
provides only slightly less information than would the laborious practice of tag-
ging all seedlings. Thus, the method makes it far easier to obtain much larger
data sets.

The seedling example demonstrates the common challenge: estimation is based
on a dynamic process and a particular observation can be obtained in different ways.
By enumerating all of the ways by which a particular observation might arise
(equation 17.8), we can accommodate far more complex problems than could
be approached using a simple sampling distribution (e.g., equation 17.3). With
increasing model complexity, the possibility of ill-conditioning increases,
whereby the model asks for more information than the data contain. The parame-
ter trade-offs evident here can be detected by calculating correlation coefficients
between pairs of parameters or by examining biplots of the posterior (figure 17.5).
Figure 17.4A indicates almost no correlation between Q0 and QN, but parameter
correlations do arise between some parameters when the model is expanded to
include other types of error (Lavine et al. in press). Although ill conditioning
arose here in the context of a posterior density, the problem must be considered
in any data modeling exercise, not just in Bayesian analysis.

17.5 Some Additional Ecological and Environmental Examples

17.5.1 Incorporating Different Types of Data

Population densities of bowhead whales are difficult to estimate, because the
whales move from place to place and they are often underwater. The problems
with counting whales motivated Raftery and Zeh (1993) to use a Bayesian analy-
sis that accommodates counts of whales both seen and heard as they migrate past
Point Barrow, Alaska. The likelihood function comes from the counts in the 1988
census. The prior takes into account the physical considerations related to loca-
tions of observers and sonar arrays, visibility, the physics of sonar location, and
the knowledge of bowhead migratory behavior. The posterior that combines this
information suggests that the most likely number of bowhead whales is about
7500, but that any size between 6500 and 9000 is reasonably well supported by
the data. In listing the advantages of a Bayesian analysis, Raftery and Zeh (1993,
pp. 166-168) state the following:

• "It enables us to use a realistic, scientifically relevant model, rather than forcing
us to make artificially simple assumptions for the sake of mathematical tracta-
bility."

• "It permits us to incorporate the available external, or 'prior' information."
• "It makes elaboration and refinement of the underlying physical assumptions rela-

tively straightforward."
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• "It is very hard to develop a non-Bayesian approach that takes account of all the
important sources of error."

17.5.2 External Evidence can Change the Inference

Global warming of the oceans could have a large impact on fisheries and coastline
management. Change in ocean temperature is difficult to document, because tem-
perature varies with depth, and data sets of the duration needed to document the
temperature rise are hard to obtain. An analysis of temperature measurements
along the 24.5°N transect at a depth of 1000 m in the Atlantic Ocean suggest that
a 0.1 °C warming occurred during the time between two voyages completed dur-
ing the period 1957-1981 (Parilla et al. 1994). Lavine and Lozier (1999) reana-
lyzed the data using Bayesian methods that allowed them to determine the historic
trend in ocean temperatures and to incorporate additional data. The Bayesian
approach allowed Lavine and Lozier to consider data from other voyages that
were near the 24.5°N transect and thereby to reconstruct the temperature history
through time. The temperature history revealed by the Bayesian approach re-
vealed the following:

• 1957 was an unusually cold year in the historical record at 1000 m and, thus, the
"trend" resulted in large part to the fortuitous timing of the first voyage,

• Temperatures of isopycnals (surfaces of constant density) are much more constant
over time than temperatures at fixed depth.

• The temperature fluctuations are likely due to vertical movement of isopycnals
up and down past the fixed depth rather than to a simple increasing trend.

Thus, incorporating the additional evidence brought perspective that changed our
interpretation of long-term change in ocean temperatures.

17.5.3 Parametric Empirical Bayes

Parametric empirical Bayes is a term applied to models for data that arise from
several sources of variability (see Ver Hoef 1996 for an ecological example). To
understand why we say that parametric empirical Bayes is not truly Bayesian, we
must discuss mixtures. To demonstrate both the utility of the method and its non-
Bayesian nature, we refer to a seed dispersal example of Clark et al. (1999),
where both methods were used.

Ecologists have long suspected that seed shadows might have long, "fat" tails,
meaning that small numbers of seeds might be dispersed far from the parent
plant (e.g., Portnoy and Willson 1993). Recent studies emphasizing how fat-tailed
kernels produce patterns of spread that differ qualitatively from traditional models
(Kot et al. 1996, Clark 1998, Lewis 1997, Clark et al. 2001) make it important
to determine whether fat-tailed dispersal is common. Traditional dispersal kernels,
such as Gaussian or exponential, have tails that approach zero rapidly. Unfortu-
nately, kernels with fat tails are difficult to fit to data, and there have not been
decisive tests among competing models (i.e., those that assume fat-tailed kernels
versus those that do not). Mechanistic models of dispersal are hard to apply to
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trees, because seeds emanate from broad and diffuse sources (tree crowns) and
are released over time, as wind fields and animal dispersers vary. To determine
whether seed dispersal data are best described by fat-tailed kernels, Clark et al.
(1999a) used more empirical models and the method that is sometimes referred
to as parametric empirical Bayes.

Both Bayesian and parametric empirical Bayes involve densities of a parame-
ter /(6) and a likelihood function/(0|data). In the beta-binomial example, no
matter how uncertain we are about a parameter (summarized by the prior /(0) in
equation 17.4 or 17.6), the data themselves are assumed to have a binomial distri-
bution (the likelihood/(data 16) in equation 17.3). The prior expresses our uncer-
tainty about 0. Uncertainty diminishes as data accumulate. The posterior becomes
concentrated at the value of 0 that describes the precise binomial distribution that
"best" describes the data.

Instead of the binomial of equation 17.3, the dispersal example of Clark et al.
(1999a) uses the likelihood for a Gaussian (normal) kernel, /(r|0)=AT(r|0, 02),
where 0 is a dispersion parameter, and r is a vector of dispersal distances (i.e.,
the "data"). A conjugate prior for this Gaussian likelihood is an inverse chi-square
density for the parameter 0, /(0) = Inv%2(w0, Po), which is shown as a dashed line
in figure 17.6B. The parameters u0 and p0 determine the spread and shape of the
density. The results are insensitive to the precise shape of this prior in this exam-
ple because it is given low weight, with parameters u0 — 25 and p = I .

As in the beta-binomial example, application of Bayes' rule (ignoring the con-
stant denominator in equation 17.2),

yields a posterior having the same form (Inv%2) as the prior,

(the definition of conjugacy). From prior to posterior, only the parameter values
change: the first parameter is increased by adding to it the squared observations,
and the second parameter is increased by the sample size n. The combined effect
is a posterior that is more "peaked" than the prior, which makes us more certain
that we know which Gaussian kernel best describes the data. In figure 17.6B, the
posterior lies between the prior and likelihood. It is much closer to the likelihood
than the prior, because the prior is "weak." As with the beta-binomial example,
our uncertainty about a parameter 0 does not affect our assumption about the
distribution of data (the likelihood is Gaussian).

Parametric empirical Bayes differs from true Bayes in that the variability in 0
is assumed to affect the distribution of the data themselves and not just our under-
standing of model parameters. Suppose that the Gaussian density (defined by a
value for 0) describes dispersal for a given seed released from a particular canopy
location at a specific time. Because the canopy, seeds, and transport conditions
all vary, there might be a different Gaussian distribution for each seed (repre-
sented by a density of values for 0). Unlike the Bayesian case, the density of
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Figure 17.6 A comparison of Bayes and parametric empirical Bayes for seed dispersal
data. (A) Dispersal locations of 15 Fraxinus americana seeds released from coordinate (0,
0). (B) Bayesian analysis. Symbolism follows figure 17.2. (C) Comparison of the ML
dispersal kernel using the mixture model that assumes an Inv%2 density of dispersal param-
eter values (solid line) and the Gaussian kernel corresponds to the most probable Bayesian
estimate of 9. (D) The Inv%2 density of 0 for ML estimates of « and p corresponding to
the 2Dt dispersal kernel in figure 17.7C.

0-values represents variability in the data, not our range of belief about 9-values.
We incorporate this variability into the likelihood itself, because it is part of the
process that produces the data. Both r and 0 are random variables, and the likeli-
hood that includes both of their effects on the observations is a marginal density
(mixture) obtained by integrating over the variability in 0:

This expression says that the probability (likelihood) of observing a given dis-
persal distance r, when r depends on a random variable 0, is their joint probability
(their product), accumulated (integrated) over all possible values that 0 might
assume. Upon integration, the likelihood is Student's t with parameters u and/?.
The next step generally involves fitting the Student's ^-parameters (u, p) directly
to data (e.g, using maximum likelihood).
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The analysis of Clark et al. (1999a) demonstrated the tendency of dispersal
kernels to have long, fat tails (small values of the shape parameter p) (figure
17.6C), which implied that the density of 0 values also had a long tail (figure
17.6D). The mixture model provided a test among competing models, which can
be represented by different values of the parameter p. Results suggest that the
dispersion parameter of the Gaussian density can be viewed as sometimes having
large values that correspond to times of high winds or dispersal by animal vectors
(the tail of figure 17.6D). This variability can produce a fat-tailed kernel (solid
line in figure 17.6C), which, in turn, suggests the plausibility of rapid population
spread (Clark 1998).

In summary, although the term parametric empirical Bayes sounds Bayesian,
it does not involve priors and posteriors. With large sample size, the Bayesian
posterior converges to a point mass centered at a single value of 9. This posterior,
in turn, implies a Gaussian dispersal kernel, regardless of whether the data better
support the fatter-tailed two-dimensional t-distribution 2Dt (which, in fact, they
did in the analysis by Clark et al. 1999a). Parametric empirical Bayes assumes
the data are distributed as 2Dt, because the variability in 9 affects the actual
process. The 2Dt does not converge to a Gaussian kernel with increased sample
size, because the data are better described by the 2Dt. In other words, the poste-
rior density of 9 in figure 17.6B would become increasing peaked with additional
data, whereas we can expect the density of 9 in figure 17.6D to retain its spread.

17.5.4 Classical Significance versus Bayesian Support

Crome et al. (1996) compared a classical intervention analysis and a Bayesian
approach to assess the impacts of logging on recapture rates of birds and small
mammals in eastern Queensland. The likelihood of the data set is the product of
two lognormal distributions, the joint probability of observing a set of differences
between the logged and unlogged sites before and after logging. This is the
Before-After-Control-Impact-Pairs (BACIP) model of Stewart-Oaten et al. (1986,
1992; see chapter 9). The Bayesian analysis included three priors, representing
expectations about logging impact that ranged from a 25% reduction to a 25%
increase in capture rates. Although the mean values differed by these percentages,
the priors possessed broad overlap and thus did not represent large differences in
perspective.

The classical analysis showed so few significant results as to be unhelpful—
because the notion of no logging effect in this context is silly. It would be difficult
to convince any ecologist that birds and mammals failed to notice that the trees
had vanished. A nonsignificant result does not alter this view; rather, it points to
the need for larger sample sizes to obtain a "significant" result.

By contrast, Bayesian confidence intervals help sharpen our understanding of
the logging impact. Due to broadly overlapping priors, the posteriors obtained for
a given species did not show large differences. The authors refer to these similari-
ties as examples of "concensus" among those bearing different prior views. Poste-
riors suggest the degrees to which different species responded to the intervention
and how those responses differed among habitats.
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17.6 Getting the Analysis Done

Unlike most classical statistical methods, the availability of software for Bayesian
analysis is limited. Most practitioners program their own models. This is most
easily done using a high-level language, such as S-Plus, or specialized Bayesian
software, such as BUGS [http://www.mrc-bsu.cam.ac.uk/bugsAVelcome.html],
for graphical models, or BATS, for time series [http://www.stat.duke.edu/~mw/
bats.html]. More complicated problems require programming in low-level lan-
guages, such as C++ or Fortran.

17.7 Conclusion

A Bayesian approach allows us to incorporate external information in the inter-
pretation of experimental or observational data. This approach can place data in
perspective of prior insights, it can provide for probability statements in situations
that do submit to simple, classical frameworks, and it can minimize sample sizes
and study durations necessary to arrive at experimental outcomes. This chapter
scratches the surface of a broad and complex topic—one that cannot be ignored,
regardless of philosophical leanings, because all ecologists must judge for them-
selves the increasing number of Bayesian studies in the ecological literature.
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18.1 Ecological Issues

In this chapter, we examine methods to statistically combine the results of sepa-
rate studies to reach general conclusions. The statistical synthesis of the results
of independent experiments is known as meta-analysis. These relatively new sta-
tistical techniques have been introduced fairly recently to the field of ecology
(Gurevitch et al. 1992; Arnqvist and Wooster 1995), although they have had
considerable influence on research synthesis in medicine (e.g., Sacks et al. 1987;
Chalmers et al. 1989) and in the social sciences (e.g., Glass et al. 1981; Hyde
and Linn 1986). The handbook edited by Cooper and Hedges (1994) provides a
general reference on statistical, methodological, and other aspects of the subject.

At the heart of meta-analysis is the concept that the progress of science de-
pends on the ability to reach general conclusions from a body of research.
Scheiner (chapter 1) raised the basic question, What, after all, are the purposes
of carrying out experiments in ecology? An experiment is designed to test a
particular hypothesis or set of hypotheses. The results formally provide a test of
these hypotheses only for specific individual organisms in one place at one time.
The information provided by the experiment is limited to those particular circum-
stances. Experiments can be exactly replicated in different laboratories in some
sciences, confirming the general applicability of the results. This is not possible
in ecology, but that does not make it any less pressing to evaluate the generality
of the findings of an experiment.

In ecology, basic and applied research differ in that in applied work, informa-
tion about particular local systems that leads to better management may be useful
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in itself. In basic ecological research, the results of testing hypotheses with indi-
vidual experiments are of no interest if they cannot be generalized. What can the
outcome of any one experiment tell us about nature? To what extent can we
extrapolate from the results? Do the results seem to support or refute the conclu-
sions of previous studies? Under what conditions do other studies come to the
same or to contradictory conclusions? There are widely divergent views among
ecologists on how to answer such questions.

The need to generalize is implicit in the way experimental results are inter-
preted in research articles, in textbooks, and in communicating the findings of
ecological research to the general public. Textbooks commonly generalize from
the results of single experiments to general truths about ecological processes and
interactions or to entire species or even trophic levels. Some ecologists are hesi-
tant to extrapolate results beyond individual experiments or across studies. Rau-
denbush (1991, p. 33), however, points out that "summarizing may be regarded
as the essential subject matter of statistical science," and that, whether the sum-
mary is based on the results of a single study or many studies and is qualitative
or numerical, summarizing evidence is a fundamental task in all research. Rauden-
bush raises interesting issues about the tension between completeness and parsi-
mony in generalizing results from data, suggesting that if parsimony were not
important, the best summary would simply be the raw data. Most importantly, we
risk missing the patterns and truths that may be contained in the results of a group
of studies when we concentrate only on the individual details in each one.

Meta-analysis allows us to reach general conclusions about a domain of re-
search differently than the manner with which most ecologists are familiar. In a
conventional review, we compare the results of different studies verbally in a
research review, yet it is often desirable to compare and synthesize results quanti-
tatively. When a number of independent studies have been carried out on a partic-
ular question, it might be important to assess, for example, the overall impact
of doubling atmospheric CO2 levels on plant growth or to evaluate whether the
survivorship of juveniles is affected on average by competitors. Usually we would
like to know the magnitude and direction of the effect (Does the experimental
treatment have a positive or negative effect? Is this effect significantly greater
than zero? Is the effect small or large?), and how variable that effect is among
studies (Do the results of the studies seem to agree, or are there statistically
significant differences among them?). In many cases, differences among classes
of studies in the magnitude of the effect are of the most interest. Are the effects
of predation different at different trophic levels? Do C3 plants respond differently
to CO2 enrichment than C4 plants, as predicted by theory? Is competition among
plants greater in productive habitats than in unproductive habitats? In the field of
ecology, these kinds of questions have been addressed using a number of different
approaches.

18.2 Statistical Issues

At first, it might seem obvious that we could just count up the number of statisti-
cally significant results in the various studies to get some idea of the importance
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of an effect (i.e., how large it is), how frequently it occurs, and the magnitude of
the effect among different kinds of studies. Quantitative ecological reviews have
commonly employed this method in recent years. Unfortunately, this "vote-count-
ing" approach is subject to serious flaws, because the significance level of a study
is a function not only of the magnitude of the effect, but also of its sample size.
Studies with small sample sizes are less likely to have statistically significant
results than large studies, even when both have effects of exactly the same magni-
tude. In fact, because small studies are less likely to produce significant results
(i.e., they have low power), it has been shown that vote counting is strongly
biased toward finding no effect (e.g., see Hedges and Olkin 1985).

The problems associated with vote counts are particularly acute when effects
and sample sizes are modest—almost always the case in ecological experiments.
Counting up the number of significant results is not a reliable indication of
whether an effect is real (that is, different than zero), how important the effect is,
how frequently or under what circumstances it exists, or whether the studies are
in agreement in their assessment of the magnitude of the effect (e.g., Hunter et
al. 1982; Hedges and Olkin 1985). Narrative reviews may also suffer from a
subtle form of vote counting, in that they are also likely to base their conclusions
about the existence and frequency of ecological phenomena on the statistical sig-
nificance of the outcomes or on authors' summaries of their own results based on
probability levels, without considering sample size and statistical power.

Typically, a meta-analysis begins by representing the outcome of each experi-
ment by a quantitative index of the effect size. This effect size is chosen to reflect
(1) differences between experimental and control groups or (2) the degree of
relationship between the independent and dependent variables in a way that is
independent of sample size and of the scale of measurement used in the experi-
ment. Meta-analytic techniques most commonly serve to estimate the average
magnitude of the effect across all studies, to test whether that effect is signifi-
cantly different from zero, and to examine potentially causative differences in the
effect among studies. Because effect size is not dependent on sample size (in
contrast to the dependence of significance level on sample size), meta-analysis
procedures are not subject to the problems of vote counting.

Meta-analysis offers a potentially invaluable tool for ecological research. Al-
though ecological experiments are essentially never replicated in any strict sense,
it has become increasingly critical to be able to understand what an entire body
of experimental data addressing conceptually similar questions tells us. How im-
portant and how consistent is a particular effect across a wide variety of systems?
Does the effect differ substantially in aquatic and terrestrial habitats, or in dis-
turbed and undisturbed environments, or in large versus small patches? Most
ecologists can probably think of questions like this for systems with which they
are familiar, where a substantial body of data already exists or could be collected.
Furthermore, it is likely to become increasingly urgent for ecologists to be able
to generalize from the results of studies conducted in different systems as we are
increasingly called upon to address the consequences of global change. Data col-
lected in diverse locations with similar research objectives will have to be summa-
rized to understand emerging patterns and to detect outliers. Quantitative general-
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izations can help us track both stability and change; outliers may be populations,
species, or ecosystems in imminent danger or those that are unusually resilient.

Some of the specificity and richness of detail of individual studies is necessar-
ily overlooked in a meta-analysis for the sake of being able to generalize across
studies. Depending on the questions being asked, this may or may not be appro-
priate. For example, in one of the studies included in the example of a meta-
analysis herein (Gurevitch 1986), the effects of competition on two grass species
was examined at three positions along an environmental gradient. Although the
contrast between these responses was an important part of the primary study, it
was ignored in the meta-analysis. Because the meta-analysis seeks to estimate the
effect of competition on the growth of terrestrial plants and all of the measure-
ments offer information on this, the particular details about the influence of the
environmental gradient are sacrificed. It is always true that when summarizing
the behavior of a population, the individual characteristics of members of that
population are overlooked, whether the population consists of a group of individ-
ual studies or the population is a group of individual animals whose responses
are summarized using conventional statistics.

18.3 Statistical Solution

18.3.1 Necessary and Usual Ingredients in Meta-analysis

Carrying out a meta-analysis requires, like any statistical analysis, both data and
statistical models to analyze the data. The data in a meta-analysis generally takes
the form of standardized metrics of effect size and their associated sampling vari-
ances. A number of different metrics of effect size are typically used in meta-
analyses. Effect size metrics that have been used in ecological and evolutionary
meta-analyses include the standardized mean difference, d (detailed subsequently),
Pearson's correlation coefficient, r (analyzed as the z-transform), and Ir, the log
response ratio (the natural log of the ratio between the mean of the experimental
and control groups; Hedges et al. 1999). Other measures of effect size also exist,
such as the odds ratio for categorical outcomes (Cooper and Hedges 1994; Rosen-
berg et al. 1999; chapter 11). The example presented in this chapter uses d, but
the analysis is essentially the same for other standard effect size measures. It is
important that the statistical properties of the metric of effect size used be well
understood. Using well-established measures also makes the results much more
readily understandable and useful to readers.

Once we obtain a measure of the effect size from each experiment, the analysis
can be carried out. Both continuous and categorical models have been developed
in meta-analysis, and both approaches generally depend on weighting by the in-
verse of the sampling variances of each data point (i.e., each effect size). It is not
generally appropriate to use familiar methods such as ANOVA and regression for
a meta-analysis; doing so risks serious inaccuracies and bias. Effect sizes have
different properties than do measurements made on individuals, and it is highly
likely that this will result in serious violations of the assumptions of these familiar
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parametric tests. Gurevitch and Hedges (1999) explain these issues in detail. For-
tunately, alternatives exist that are relatively easy to use and that take the proper-
ties of meta-analytic data into account properly. In the present chapter, we will
only discuss the analysis of categorical (ANOVA-like) models, but continuous
models (based on weighted regression approaches) can also be employed in meta-
analysis (e.g., Hedges and Olkin 1985, 2000; Rosenberg et al. 1999).

Both categorical and continuous approaches to meta-analysis can rely upon
fixed, random, or mixed models. We explain those differences and outline a method
for each of these. In addition, statistical tests of significance can be carried out
using parametric or randomization approaches (Adams et al. 1997; Rosenberg et
al. 1999). We present only a parametric approach here, but readers are encouraged
to investigate the use of randomization techniques as well. New methods for the
analysis of meta-analytic data are still being developed. For example, a recent
development is a method for the meta-analysis of simple factorial experiments,
where the same two factors are manipulated in all studies (Gurevitch et al. 2000).

18.3.2 Statistical Models for Meta-analysis:
Fixed Effect and Mixed Models

One common metric of effect size in meta-analysis is d, the difference between
the means of two groups of individuals (typically, an experimental group and a
control group), divided by their pooled standard deviation to standardize the effect
among studies. The effect size then is the difference in standard deviation units
between the experimental and control groups. This number is multiplied by a
correction factor, J, to correct for small-sample bias (see subsequent discussions;
Hedges and Olkin 1985). Cohen (1969) provides a conventional interpretation of
the magnitude of effect sizes: 0.2 is a "small" effect, 0.5 is "medium" in magni-
tude, 0.8 is "large," and presumably any effect greater than 1.0 standard devia-
tions difference between experimental and control groups would be "very large."
The sampling variance of the effect size from each experiment provides a measure
of its sampling uncertainty, which is used in subsequent calculations, and can
also be used to construct a confidence interval around the effect size. The data
necessary from each study to calculate d and its variance are the means of the
two groups (e.g., experimental and controls), the standard deviations about these
means* and the number of individuals in each group. Thus, it is not necessary to
have access to the original raw data to perform a meta-analysis; the basic informa-
tion and simple statistics which should be reported in published articles are suffi-
cient.

Unfortunately, articles published in even the most selective ecological journals
may be lacking this basic information on the outcome of the experiments they
report; for example, sample size is often omitted. It is also often difficult to un-
derstand how numbers in published articles were obtained. Authors should
include means, standard deviations (or other measures of variation from which
standard deviations can be derived), and sample sizes (describing the units, i.e.,
n = 30 snails, or n = 5 cages, with 6 snails per cage; mean weights per cage were
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used in the analysis) when publishing the results of experiments, and reviewers
should look for this information when evaluating articles for publication. We
cannot overemphasize that it is insufficient to report probability levels alone as
the outcome of an experiment, because they are insufficient to evaluate the re-
sults.

Most meta-analyses have been based on fixed effects models. That is, it is
assumed that a class of studies with similar characteristics share a common true
effect size. (Another assumption made in the models discussed here is that the
data in the experimental and control groups are normally distributed.) Differences
among studies in the actual effect size measured are assumed to be due to sam-
pling error. This assumption is probably rarely justified in ecology, and in many
instances may not be very reasonable in other fields either. In a mixed model, it
is assumed that the studies within a class share a common mean effect but that
there is also random variation among studies in a class, in addition to sampling
variation. Another way of picturing a mixed model is to think of the effect size
of a particular study as being composed of various components: part of the effect
is "fixed," or characteristic of all studies in a class (all herbivores share certain
characteristic responses, for example), part of the effect is due to the particular
characteristics of that one study in which it differs at random from other studies,
and part of the effect is due to "error," or sampling variation. Mixed models in
meta-analysis are analogous to mixed models in ANOVA (for a discussion of
fixed and random effects in primary studies, see chapter 4). Mixed models are
often preferable to fixed effects models in ecological data synthesis because the
assumptions of the mixed model are more likely to be satisfied. Strict random
effects models (in which all variation among studies is random variation) have
been previously used in other fields in meta-analysis (Hedges 1983), but they are
generally not of interest for ecological research. Both fixed effect and mixed
effect models in meta-analysis are demonstrated in this chapter.

18.3.3 Conducting the Meta-analysis: Gathering the Data

The process of gathering references and making decisions regarding the studies
to include in a meta-analysis involves complex issues to which we cannot hope
to do justice in a short chapter. In many ways it is no different than in any other
review of research literature, although the quantitative nature of the review brings
certain problems into sharper focus. Many substantive publications offer specific
suggestions on gathering and handling the data for a meta-analysis (e.g., Cooper
1989; Cooper and Hedges 1994; Light and Pillemer 1984). If the meta-analysis
does not include every article published on a topic, the criteria for inclusion
should clearly be reasonable and scientifically defensible. Publication bias exists
if articles that demonstrate no effect are less likely to be published than those that
come up with statistically significant effects. In that case, a meta-analysis—or
any other review—of the published literature will overestimate the effect under
consideration. If publication bias exists, it can clearly result in inaccurate conclu-
sions, and should be carefully considered in carrying out a meta-analysis or any
other type of review. Problems associated with publication bias have been dis-



Meta-analysis 353

cussed at length among meta-analysts, and various approaches have been pro-
posed to estimate its magnitude and counter its influence (e.g., see Hedges and
Olkin 1985; Cooper and Hedges 1994; Rosenberg et al. 1999).

The extent to which we can extrapolate the conclusions drawn from a research
review, whether quantitative or narrative, depends in part on the quality and na-
ture of the data that are collected. As every ecologist who has gathered data is
aware, carefully and properly setting up the experiments or observations and col-
lecting the measurements are of the greatest importance in getting good results.
Good analysis cannot lead to sound conclusions from bad data. This is true re-
gardless of whether we are carrying out a single study, a conventional research
review, or a meta-analytic research synthesis. If the collection of studies is biased
or incomplete, the conclusions drawn from a meta-analysis (or any other analysis)
of that collection will be suspect or at least limited. Some controversy exists
regarding whether all studies on a topic should be included in the analysis, or
whether "low-quality" studies (e.g., medical studies in which the treatments were
not assigned to subjects randomly) should be excluded. One option is to include
all studies, noting which ones are of low quality by some a priori criteria, and to
test whether the results of these studies differ from those of higher quality, reject-
ing them if they do.

Ecological data are often published in the form of graphs rather than tables.
The best way to access such data is by digitizing the graph; this is now a simple
matter using a scanner with digitizing software such as TechDig (Jones 1999).
Some suggestions on how to obtain sample sizes and standard deviations from
ecological articles when they are less than obvious have been offered elsewhere
(Gurevitch et al. 1992). Once collected, descriptive information and data can be
recorded on data sheets and entered onto a spreadsheet. Careful checking and
rechecking of the data sheets and computer entries is critical. Although it is not
difficult to carry out a small, fixed effects meta-analysis directly on a spreadsheet,
as the data set becomes larger, it becomes almost impossible not to incorporate
errors (as we did, sorry to say, in the first edition of this book). Mixed model
analysis is much more complicated on a spreadsheet, and resampling tests require
extensive programming. For this reason, one of us (JG) worked with two col-
leagues to develop a software package for meta-analysis that was appropriate for
ecological and other data (Rosenberg et al. 1999). This software, MetaWin 2.0
(Rosenberg et al. 1999), will carry out all of the analyses described here in addi-
tion to other approaches; the results are more accurate and reliable than doing the
analyses on a spreadsheet.

Careful thought must be given as to how each experiment should be recorded.
The "control" identified by the author may not be what the meta-analyst identifies
as a control for the purposes of research synthesis. In the following example, the
"control group" was made up of those organisms with natural densities of compet-
itors, whereas the "experimental group" had experimentally manipulated densities
of competitors, regardless of what the authors called the groups (this more uni-
form organization of the data allows us to address additional questions; see Gure-
vitch et al. 1992). Because competitor densities can be reduced or increased, the
expected sign of the response to the manipulation will vary accordingly, if compe-
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tition has been demonstrated. To make it possible to combine the estimates of the
effect of competition, the sign of the response was reversed if competitor density
was increased (reduction is much more common). The sign of the response in a
meta-analysis can and often be confusing and must be carefully considered and
explained. Here, for example, a positive response indicates that organisms re-
sponded positively to the removal of competitors, not that they responded posi-
tively to competition. Another issue is specifying the units for which the effects
are being evaluated and identifying the appropriate measures to use from each
study. Although in many cases it is the effect on individual organisms that is
summarized by the effect size (as measured by characteristics of the organisms
such as growth or seed production), in other cases the "individual" is a plot or
other unit (such as when survivorship or density is the measure of outcome). All
of these issues must be considered and specified explicitly in a meta-analysis.

Another statistical issue in meta-analysis is the lack of independence among
the effect size measures being combined. There are various sources of noninde-
pendence. One simple source of nonindependence is that more than one kind of
response (e.g., growth and mass) may be measured on the same organisms. These
measurements are not independent and should not be included in the same meta-
analysis, but it might be reasonable to conduct separate syntheses for each com-
mon measure of response in a group of studies. Not only may several different
kinds of measurements be made on each organism, but the same measurements
may be repeated over time (chapter 8). In the latter case, it is not correct to use
more than one measurement per individual as if they were independent observa-
tions on different individuals, and so we may choose to take the final measure-
ment made at the end of each experiment (e.g., Gurevitch et al. 1992). In complex
experiments in which various manipulations are compared to a single control
(e.g., competition of a target species with several different species of competi-
tors), there may be no way to avoid including the same control group a number
of times as the basis for calculating more than one effect size (the effect of each
of the competing species) even though this is not ideal. In ecological experiments,
more than one species may often be measured. Such cases of nonindependence
are less clear; being too conservative will cause the loss of too much valuable
data. If the proportion of comparisons in which there is nonindependence (e.g.,
use of a control group mean for more than one comparison) is small or if the
degree of nonindependence is relatively small (i.e., correlations among responses
of different species are small), there will be little effect on the conclusions drawn
from the meta-analysis. However, a great deal of nonindependence will inflate
the significance levels of statistical tests and underestimate confidence intervals.
Currently, no clear consensus exists as to the best ways to handle nonindepen-
dence in meta-analytic data (nor in primary data, for that matter), and the degree
to which the conclusions are robust or sensitive to these problems is not well
understood.

The results of an experiment may be tested and reported using many different
statistical approaches. We would usually not include results reported using differ-
ent kinds of statistics (e.g., means, slopes, correlations) in a single meta-analysis.
The most common forms of data reported in ecological studies are means and



Meta-analysis 355

some measure of variance based on data that are assumed to be normally distrib-
uted; we use these data here to calculate effect sizes. Most meta-analysis ap-
proaches, including the fixed effects and mixed effects models presented here,
assume normally distributed data. Resampling methods relax some of these as-
sumptions (Adams et al. 1997; Rosenberg et al. 1999).

Although the scale of the measurements is standardized in calculating effect
sizes (so that the responses of large organisms become comparable with those of
small ones), the decision about whether to combine results is really a scientific
rather than a statistical one. For example, it might not be very meaningful to
combine experiments using very different sorts of measurements (such as biomass
and survivorship) in a single meta-analysis. It would probably also make little
sense to combine experiments conducted under starkly contrasting conditions,
such as field and lab experiments, in a single meta-analysis. It is assumed that
the measurements can be equated linearly among the studies, and this may not be
a biologically reasonable assumption for very different sorts of responses. The
decision about what to combine is a substantive one that depends on the general-
ity of the questions the summary is designed to answer. If a very general summary
of many different kinds of evidence is the goal, then results measured in many
different ways may be combined. Most verbal reviews and vote counts in ecology
have taken this approach, combining all measures of outcome in a single sum-
mary of the effects. However, combining only those studies that measure similar
quantities (e.g., biomass, growth, or survivorship) allows us to ask more specific
questions. There may also be biological reasons to expect that different kinds of
responses may reveal different information about the phenomena being investi-
gated.

18.3.4 An Example

Data were collected as part of a larger study on the effects of competition as
studied in field experiments. The larger study included all measures of outcome
(survivorship, reproductive output, density, and so on) in response to the manipu-
lation of competitors for organisms in a wide range of trophic levels and systems.
An analysis of organisms' responses measured as biomass has been published
(Gurevitch et al. 1992) and includes a detailed description of how articles were
selected for inclusion in the study and how the data were collected. For the exam-
ple presented here, we chose a small part of the larger data set for convenience
in demonstrating the methods involved. The data that we examine are for the
responses of primary producers to competition, where the responses were mea-
sured as recruitment (an increase in the number of individuals) or growth (an
increase in the size of individuals). The data set is original and has not been
edited other than arbitrarily selecting organisms of only one trophic level. Much
more can be done with the data in a full meta-analysis than is attempted here,
where we address only a small number of issues so that we can focus on how to
actually carry out the analyses.

The studies were categorized a priori into three classes (terrestrial, lentic, and
marine) that we wished to compare. The basic information taken from the studies
can be found in columns E-J in table 18.1.
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First, we calculate the unbiased standardized mean difference, dy, for each
study,

where d is calculated for the y'th study in the z'th class, and

Xy = mean of the control group
X? = mean of the experimental group
N£= total number of individuals in the control group
Af = total number of individuals in the experimental group
Su = pooled standard deviation of the control and experimental groups

Thus,

where

Sy = standard deviation of the individuals in the control group
sfj = the standard deviation of the individuals in the experimental group

(Note that we use the terms study, experiment, and comparison interchangeably
to indicate a comparison between a single experimental group and its control;
several such comparisons may be used from a single published article.) The term
J corrects for bias due to small sample size:

(Hedges and Olkin 1985). As the sample size increases, J approaches 1. In the
majority of these experiments, the experimental group represents a decrease in
the density of the hypothesized competitors, and a positive effect size indicates a
positive response to this decrease—that is, a positive value for d indicates compe-
tition. In those cases in which the experimental group represents an increase in
competitor density, the sign of d is reversed in the table (for a complete discus-
sion, see Morrow 1990). Finally, the variance in the effect for they'th study in the
z'th class is approximated by

(Hedges and Olkin 1985). This term may be used for comparing effect sizes
among studies directly, for calculating a confidence interval around the effect
sizes for each study to evaluate its magnitude (e.g., is the effect significantly
greater than zero?), and for combining effect sizes across studies (see next sec-
tion). The values calculated from the example can be found in table 18.1.

Another common measure of effect size for ecological studies is the log re-
sponse ratio, Ir, where
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(Hedges et al. 1999). If Xf and Xy and below are normally distributed and both
are greater than zero, then Ir is approximately normally distributed with variance

The mean effect size of Ir in a meta-analysis can be calculated in the same way
as when using d as the measure of effect size, using the reciprocal of the variance
of each Ir as the weight, w,j. Likewise, confidence intervals, homogeneity tests,
and so on are calculated in the same fashion, substituting Ir and its sampling
variance for d and its variance.

18.3.5 Combining Effect Sizes in the Fixed Effects Model

The cumulated (i.e., combined) mean effect size across studies for the fixed ef-
fects model within the ith class, di+, is a weighted average of the effect size
estimates for the studies in that class. The weights wtj used for combining effect
sizes are the reciprocals of the sampling variances, wtj = l/v,j. The weighted esti-
mate of the true effect size 5, is:

where kt equals the number of comparisons in class i (Hedges and Olkin 1985).
The cumulated effect size is a weighted average in which larger studies are count-
ed more heavily than smaller studies, on the assumption that larger sample sizes
will yield more precise results (Hedges and Olkin 1985). The variance of di+,
s\d,+) is

The lower and upper limits for the 95% confidence interval for di+, dL and dv,
respectively, are:

where Z is the two-tailed critical value of the standard normal distribution. (The
tests presented throughout this chapter for comparing effect sizes are all two-
tailed, but calculation of one-tailed tests of particular hypotheses would be a
straightforward extension of this approach.) Taking the sums needed in equation



Table 18.1 Data and calculations for the fixed effects model

A
Publication

Fowler 1986
Fowler 1986
Platt & Weis 1985
Platt & Weis 1985
Platt & Weis 1985
Platt & Weis 1985
Gross & Werner 1982
Gross & Werner 1982
Gross & Werner 1982
Gross & Werner 1982
Pons & van der Toom

1988
Pons & van der Toorn

1988
Burton & Mueller-

Dombois 1984
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
McCreary et al. 1983

McCreary et al. 1983
Stimson 1985
Stimson 1985

B
Species

Bouteloua rigidiseta
Aristida longiseta
Mirabilis hirsuta
Verbena stricta
Solidaga rigada
Asclepias syriaca
Verbascum thapsus
Oenothera biennis
Verbascum thapsus
Oenothera biennis
Plantago major

Plantago lanceolata

Metrosideros
polymorpha

Stipa neomexicana
Stipa neomexicana
Stipa neomexicana
Aristida glauca
Aristida glauca
Aristida glauca
Eleocharis

acicularis
Juncus pelocarpus
Acropora spp.
Pocillopora

verrucosa

C
Category

terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial

terrestrial

terrestrial

terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
terrestrial
lentic

lentic
marine
marine

D
Source

Table 2
Table 2
Table 1
Table 1
Table 1
Table 1
Table 8
Table 8
Table 8
Table 8
Table 4

Table 4

Table 2

Fig. 4 (log)
Fig. 4 (log)
Fig. 4 (log)
Fig. 4 (log)
Fig. 4 (log)
Fig. 4 (log)
Fig. 1A&B

Fig. 1A&B
Table 7
Table 7

E
Nc

7
7
6
5
7
6
3
3
3
3
5

5'

4

18
20
18
20
20
20
4

4
7
3

F
Ne

7
7
6
5
7
6
3
3
3
3
5

5

4

20
20
20
20
20
20
4

4
7

10

G
Xc

78.14
18.86
-1.8
-2.2
-2.1
-2.3
85.3

0
0
0

17

47

87

-0.113
-0.163

0.140
-0.184
-0.075

0.147
281.11

187.31
11.8
0.4

H
Xe

79.71
26

-2.1
-2.8

-3
-4.2

285.7
3

2.00
1.67

17

37

272

0.294
0.412
0.632
0.259
0.354
0.541

-201.03

-155.32
16.0
9.5

I
Sc

40.650
9.170
0.490
0.224
0.265
0.490

115.008
0.000
0.000
0.000
7.603

10.286

37.712

0.255
0.588
0.380
0.326
0.487
0.340

158.038

80.163
3.080
1.470

J
Se

40.650
9.170
0.490
0.447
0.529
1.225

153.806
2.425
2.078
1.732
5.367

9.391

183.532

0.215
0.218
0.359
0.238
0.182
0.299

27.520

41.252
3.370
7.230

K
J

0.936
0.936
0.923
0.903
0.936
0.923
0.800
0.800
0.800
0.800
0.903

0.903

0.870

0.979
0.980
0.979
0.980
0.980
0.980
0.870

0.870
0.936
0.930

L
d

0.036
0.729
0.565
1.533
2.014
1.880
1.181
1.400
1.089
1.091
0.000

M
v«

0.286
0.305
0.347
0.517
0.431
0.481
0.783
0.830
0.765
0.766
0.400

-0.917 0.442

1.214

1.694
1.273
1.303
1.519
1.144
1.206
3.696

4.674
1.218
1.288

0.592

0.143
0.120
0.128
0.129
0.116
0.118
1.354

1.865
0.339
0.497

N
wa

3.499
3.282
2.885
1.932
2.322
2.081
1.277
1.205
1.306
1.306
2.500

2.262

1.689

6.977
8.316
7.818
7.762
8.595
8.461
0.739

0.536
2.953
2.011

O
wd

0.127
2.392
1.631
2.962
4.677
3.912
1.508
1.687
1.422
1.424
0.000

-2.075

2.051

11.821
10.586
10.190
11.789
9.829

10.206
2.730

2.506
3.596
2.592

P
wd2

0.005
1.744
0.922
4.540
9.421
7.356
1.780
2.361
1.548
1.554
0.000

1.903

2.490

20.029
13.476
13.283
17.904
11.240
12.310
10.091

11.711
4.380
3.339

Q
k

1
1
1
1
1
1
1
1
1
1
1

1

1

1
1
1
1
1
1
1

1
1
1



Reed & Foster 1984

Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Johnson & Mann 1988
Johnson & Mann 1988
Johnson & Mann 1988
Turner 1985
Turner 1985
Turner 1985

Turner 1985
Turner 1985
Turner 1985
Turner 1985
Turner 1985
Dungan 1986
Dungan 1986
Dungan 1986

Pterygophora
califomica

Macrocystis pyrifera
Desmarestia ligulata
Desmarestia ligulata
Desmarestia kurilensis
Nereocystis luetkeana
Laminaria longicruris
Laminaria longicruris
Laminaria longicruris
Rhodemela larix
Cryptosiphonia woodii
Phaeostrophion

irregulare
Odonthalia floccosa
Microcladia borealis
Fucus distichus
Iridaea heterocarpa
Bossiella plutnosa
Ralfsia pacifica
Ralfsia pacifica
Ralfsia pacifica

marine

marine
marine
marine
marine
marine
marine
marine
marine
marine
marine
marine

marine
marine
marine
marine
marine
marine
marine
marine

Table 1

Table 1
Table 1
Table 3
Table 3
Table 3
Table 2
Table 2
Table 2
Table 4
Table 4
Table 4

Table 4
Table 4
Table 4
Table 4
Table 4
Table 2
Table 2
Fig. 3B

20

20
20
10
10
10
2
2
2
4
4
4

4
4
4
4
4
4
4
5

20

20
20
10
10
10
2
2
2
4
4
4

4
4
4
4
4
4
4
5

0

0
0

82.2
8.3

0
3.63

0
3.63

0
0

5.4

1.8
0
0
0

10.8
21.25
40.25

15.8445

14.1

7.1
1.4
94

10.5
20

18.5
0.25
2.25
34.8
25.3
23.6

10.5
10.3
8.7
5.7
5.4

37.25
20.25

11.9533

7.603

3.130
1.789

29.093
14.546
42.691
3.352
0.000
3.352
0.000
0.000

10.880

5.200
0.000
0.000
0.000

15.800
9.540
8.780

10.787

terrestrial
lentic

marine

7.603

3.130
1.789
9.171

11.068
42.691
4.257
0.354
0.707

58.200
35.800
47.000

24.200
17.400
17.000
14.000
8.800

22.020
9.000
6.240

0.980

0.980
0.980
0.958
0.958
0.958
0.571
0.571
0.571
0.870
0.870
0.870

0.870
0.870
0.870
0.870
0.870
0.870
0.870
0.903

d+
1.167
4.107
0.798

1.818 0.141

2.223 0.162
0.767 0.107
0.524 0.207
0.163 0.201
0.449 0.205
2.218 1.615
0.571 1.041
-0.3261.013
0.735 0.534
0.869 0.547
0.463 0.513

0.432 0.512
0.728 0.533
0.629 0.525
0.501 0.516
-0.367 0.508
0.820 0.542
-1.9560.739
-0.3990.408
s*(d+) Q
0.014 23.301
0.784 0.300

7.077 12.864

6.182 13.742
9.315 7.145
4.834 2.533
4.983 0.812
4.877 2.188
0.619 1.373
0.961 0.549
0.987 -0.321
1.873 1.378
1.827 1.588
1.948 0.902

1.954 0.845
1.876 1.365
1.906 1.199
1.939 0.971
1.967 -0.722
1.845 1.513
1.353 -2.646
2.451 -0.978
Sums:
73.783 86.138

1.275 5.236
0.015 43.61265.739 52.488

23.384 1

30.547 1
5.481 1
1.327 1
0.132 1
0.982 1
3.046 1
0.314 1
0.105 1
1.013 1
1.380 1
0.417 1

0.365 1
0.994 1
0.755 1
0.486 1
0.265 1
1.240 1
5.177 1
0.390 1

123.864 19
21.802 2
85.520 22
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18.7 from the bottom of columns N and O in table 18.1, the values for the cumu-
lated effect sizes for the three classes in the example are

di+ (terrestrial producers) = 86.138/73.783 = 1.17
di+ (lentic producers) = 5.236/1.275 = 4.11

di+ (marine producers) = 52.488/65.739 = 0.80

and from equations 18.8, 18.9a, and 18.9b, using the sums at the bottom of col-
umn N in table 18.1, their variances and 95% confidence intervals are, respec-
tively,

We conclude from these results that when examined across all studies, terrestrial,
lentic, and marine plants all exhibited statistically significant effects of competi-
tion on average. The values are significantly greater than zero (at P < 0.05) be-
cause the 95% confidence intervals for the effect sizes do not overlap zero. The
effects of the removal of competitors (the di+) are considered to be large for
marine plants, and very large for terrestrial and lentic plants (Cohen 1969).

The grand mean effect size across all classes, d++, is

where m is the total number of classes (here, m = 3: terrestrial, lentic, and marine).
The variance of the grand mean,

can also be calculated. In the example,

(L= 143.862/140.797 =1.02
s\d^) = 1/140.797 = 0.007

Thus, the mean effect of competition across all studies was large. The previous
calculations could have been carried out by substituting Ir (or any other effect
size metric) and its variance, if that was judged to be more appropriate for the
data being analyzed.

The null hypothesis that all effect sizes are equal, versus the alternative hy-
pothesis that at least one of the true effect sizes in a series of comparisons differs
from the rest, can be tested with the homogeneity statistic Q which has approxi-
mately a %2-distribution with degrees of freedom equal to 1 less than the total
number of studies. The greater the value of Q, the greater the heterogeneity in
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effect sizes among comparisons. The total homogeneity, Qf, can be partitioned
into within-class homogeneity, <2W, and between-class homogeneity, Qs, much as
one can partition variance in an ANOVA,

Within-class homogeneity, <2W,

is a measure of the variation among studies within classes (across all of the
classes), whereas the between-class homogeneity, QB, is a measure of the varia-
tion between classes in mean effect size,

which is distributed as a %2-statistic with degrees of freedom equal to the number
of classes minus 1 (Hedges and Olkin 1985). A computational formula for the <2T

statistic is

The within-class homogeneity statistic across all studies, Qw, is calculated as the
sum of the within-class statistics QW1, <2W2, . . ., QVm for the m classes. Each
within-class statistic <2W, can be calculated using the computational formula

with (k — 1) df, QB is obtained by subtracting <2W from <2T, and wi+ is the sum of
the fixed effects model weights for each class.

The values for the fixed effect <2wrstatistics within each class in our example
are found using equation 18.15 and the sums at the bottom of table 18.1:

terrestrial: Qm = 123.864 - (84.618)2/73.783 = 23.301, 18 df, 0.5 > P > 0.1
lentic: gW2 = 21.802 - (5.236)2/1.275 = 0.300, 1 df, 0.9 > P > 0.5
marine: QW3 = 85.520 - (52.488)2/65.739 = 43.612, 21 df, P < 0.005

The statistical significance of these statistics is evaluated using a standard j(2-
table. We interpret these results to mean that the studies in the first two classes
are homogeneous: within these classes, the effect sizes differ by no more than
would be expected due to random sampling variation. (Although it is possible
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that true differences between the two lentic studies could not be detected due to
lack of power, we have both observed many instances in which a small number
of studies resulted in significant values for the Q-statistic.) Studies in the third
class (marine producers) apparently exhibited more variation than can be attrib-
uted to sampling error. The variation among studies within classes, even for ma-
rine plants, is actually quite small for ecological studies, particularly in light of
the rather stringent assumption here that the studies within a class share a com-
mon true effect size. Next we calculate

QT = 231.185 - (143.862)2/140.797 = 84.192, 42 df, P < 0.001
2w ;: 23.301 + 0.297 + 43.614 = 67.212, 40 df, P < 0.005
2B = 84.192 - 67.212 = 16.980 2 df, P < 0.001

across the three classes of primary producers. There is a highly significant differ-
ence between the three classes (QE = 16.98, 2 df, P < 0.001). Therefore, we con-
clude that in these studies there is a statistically significant difference among the
responses of terrestrial, lentic, and marine producers to competition, when mea-
sured in terms of growth and recruitment. The confidence intervals for terrestrial
and marine producers overlapped, but the confidence interval for lentic producers
did not overlap either of the other classes, suggesting that lentic producers experi-
enced greater competitive effects than terrestrial or marine producers, which did
not differ from one another. In addition to an informal evaluation based on confi-
dence intervals, formal procedures for constructing contrasts for mean effect sizes
have been developed (section E in chapter 7 of Hedges and Olkin 1985).

18.3.6 The Mixed Model Analysis

The fixed effect variance of dis, or v,y, is actually a conditional variance, because
it depends on the assumption that there is one true effect size, 8, shared by all of
the studies in the same class. The unconditional variance of dtj, vtj* (which can
also be thought of as the mixed model variance), assumes that there is random
variation among studies in the effect of interest, which therefore do not share a
common true effect size. (The asterisk here indicates the mixed model version of
a term.) To get v* we must add a term for the pooled within-class variance
component, 6p00icd, to the usual v,y.

To carry out the mixed model analysis (table 18.2), several additional terms
must be calculated. First, we calculate a constant c, for each class,

where i is the class and kt is the number of experiments in class i (note that this
formula has been corrected from the original version published by Gurevitch and
Hedges 1993). Then we compute the estimate of ap0oW via



Table 18.2 Calculations for the mixed model

A
Publication

Fowler 1986
Fowler 1986
Platt & Weis 1985
Platt & Weisl985
Platt & Weis 1985
Platt & Weis 1985
Gross & Werner 1982
Gross & Werner 1982
Gross & Werner 1982
Gross & Werner 1982
Pons & van der Toorn 1988
Pons & van der Toorn 1988
Burton & Mueller-Dombois
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
Gurevitch 1986
McCreary et al. 1983
McCreary et al. 1983
Stimson 1985
Stimson 1985
Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Reed & Foster 1984
Johnson & Mann 1988
Johnson & Mann 1988
Johnson & Mann 1988
Turner 1985
Turner 1985
Turner 1985
Turner 1985
Turner 1985
Turner 1985
Turner 1985
Turner 1985
Dungan 1986
Dungan 1986
Dungan 1986

B
d

0.036
0.729
0.565
1.533
2.014
1.880
1.181
1.400
1.089
1.091
0.000

-0.917
1984 1.214

1.694
1.273
1.303
1.519
1.144
1.206
3.696
4.674
1.218
1.288
1.818
2.223
0.767
0.524
0.163
0.449
2.218
0.571

-0.326
0.735
0.869
0.463
0.432
0.728
0.629
0.501

-0.367
0.820

-1.956
-0.399

terrestrial
lentic

marine

grand sums

C
va

0.286
0.305 .
0.347
0.517
0.431
0.481
0.783
0.830
0.765
0.766
0.400
0.442
0.592
0.143
0.120
0.128
0.129
0.116
0.118
1.354
1.865
0.339
0.497
0.141
0.162
0.107
0.207
0.201
0.205
1.615
1.041
1.013
0.534
0.547
0.513
0.512
0.533
0.525
0.516
0.508
0.542
0.739
0.408

w«
73.783

1.275
65.739

140.797

D
W,j

3.499
3.282
2.885
1.932
2.322
2.081
1.277
1.205
1.306
1.306
2.500
2.262
1.689
6.977
8.316
7.818
7.762
8.595
8.461
0.739
0.536
2.953
2.011
7.077
6.182
9.315
4.834
4.983
4.877
0.619
0.961
0.987

.873

.827

.948

.954

.876

.906
1.939
1.967
1.845
1.353
2.451

w/
447.185

0.833
302.582

750.600

E
W

12.246
10.772
8.322
3.734
5.393
4.329
1.632
1.452
1.706
1.706
6.250
5.117
2.852

48.679
69.148
61.120
60.249
73.875
71.593
0.546
0.287
8.717
4.045

50.083
38.213
86.767
23.369
24.835
23.788

0.383
0.923
0.974
3.510
3.340
3.794
3.820
3.518
3.632
3.761
3.869
3.404
1.830
6.009

Ci

67.722
0.621

61.136

F
v*

0.514
0.533
0.575
0.746
0.659
0.709
1.011
1.058
0.993
0.994
0.628
0.670
0.820
0.372
0.348
0.356
0.357
0.345
0.346
1.582
2.093
0.567
0.725
0.370
0.390
0.336
0.435
0.429
0.433
1.843
1.269
1.241
0.762
0.775
0.742
0.740
0.761
0.753
0.744
0.737
0.770
0.967
0.636

Wit

33.859
1.110

35.016

G
w*

1.946
1.876
1.740
1.341
1.518
1.411
0.989
0.945
1.010
1.009
1.592
1.492
1.219
2.691
2.870
2.808
2.801
2.902
2.887
0.632
0.478
1.764
1.379
2.706
2.564
2.980
2.298
2.332
2.308
0.543
0.788
0.805
1.312
1.290
1.348
1.352
1.313
1.328
1.344
1.357
1.298
1.034
1.572

w£«
36.642
4.569

24.517

H
w*d

0.070
1.368
0.983
2.056
3.057
2.653
1.168
1.323
1.099
1.111
0.000

-1.368
1.480
4.560
3.653
3.660
4.254
3.319
3.482
2.336
2.233
2.148
1.776
4.919
5.700
2.286
1.204
0.380
1.036
1.203
0.450

-0.262
0.965
1.121
0.624
0.584
0.956
0.836
0.673

-0.498
1.064

-2.022
-0.627

wi+*di+*2
39.654
18.809
17.166
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where m is the number of classes and <2w is the within-class homogeneity from
the fixed effects analysis. From our example, taking the data from the sums at
the bottom of table 18.2, for the terrestrial class,

c, = 73.783 - 447.185/73.783 = 67.722

and c; = 0.621 for lentic and 61.136 for marine producers. Continuing with the
example,

Now we can find v* for each study,

From the example, in the first data line of table 18.2, v*= 0.514 (taking v,y in the
column C + 0.228). The weights used to carry out the meta-analysis are the recip-
rocals of the random effects variance estimates (just as the weights in the fixed
effects model are the reciprocals of the fixed effects variance estimates),

and are found in the column G of table 18.2. These are multiplied by the effect
sizes (dy from the column B), as in column F of table 18.2.

The cumulated effect sizes for each class in the mixed model, d$, and their
variances, s2(d$), are calculated as in the fixed effects model (equations 18.7 and
18.8). From the example (table 18.2), the values for the mixed model cumulated
effect sizes (d$) for the three classes are

terrestrial = 36.642/33.859 = 1.08
lentic = 4.569/1. 110 = 4. 12
marine = 24.517/35.016 = 0.70

and their variances and 95% confidence intervals are, respectively,

terrestrial = 1/33.859 = 0.030; (0.754, 1.427)
lentic = 1/1.110 = 0.901; (2.256, 5.977)
marine = 1/35.016 = 0.029; (0.370, 1.031)

It is reassuring that the values are very similar to those for the fixed effects model.
As expected, the confidence intervals are somewhat larger because an additional
variance component is included. The conclusions regarding the effects of compe-
tition are essentially the same for the mixed effects model as for the fixed effects
model, except that in this case we have not made the conventional assumption
that all studies in a class share a common true effect size.

An estimate of the within-class variance component d?+ can be calculated for
each class:
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The grand cumulated effect size, d£, and its variance, s2(d£), are calculated as

and

(Note that this is slightly different than in the fixed effects model.) From the
example,

d* = (36.642 + 4.569 + 24.517)7(33.859 + 1.110 + 35.016) = 0.939
s\d*) = 17(33.859 + 1.110 + 35.016) = 0.014

The effect of competition across all studies was large. Finally, the homogeneity
among classes can be tested using

where w,f is the sum of the mixed model weights (the w*-values) for each class.
Note that this equation is also calculated somewhat differently than in the fixed
effects model. From the example,

with 2 degrees of freedom, which is significant at P< 0.001. The conclusions
again are the same as for the fixed effects model, that is, the effects of competi-
tion are not the same for terrestrial, lentic, and marine primary producers. In the
mixed effects model, we do not calculate Qw, because we are no longer making
the assumption that all studies in a class share a common true effect. The test of
the homogeneity of the effect sizes within a class, using <2W from the fixed effects
model, can, however, be interpreted in the mixed effects model, as a test that the
within-class variance component o2 is larger than zero. This test would rarely be
useful because it typically leads to rejection of the hypothesis that o2 = 0, and so
is not likely to be informative.
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18.4 Resampling in Meta-analysis

The tests presented previously are parametric tests. Resampling methods offer an
alternative to parametric techniques. Resampling statistics are computer-intensive
techniques that allow us to evaluate the significance of a given test value (Manly
1997; Crowley 1992). Resampling tests are often useful when the original data do
not conform to the distributional assumptions of parametric tests (Manly 1997).
Ecologists are becoming familiar with resampling methods in primary analyses,
and these methods have been extended to meta-analytic data as well (Adams et
al. 1997).

Resampling is performed by calculating a statistic from the original data and
evaluating it by permuting the original data in some way, recalculating the test
value of interest, and then repeating this procedure many times. The test values
from all of the iterations are then used to generate a distribution of test values,
and the original test value is compared to this generated distribution to determine
the statistical significance of the original data (e.g., chapters 7 and 14). One type
of resampling, randomization tests, are most frequently used to determine the
significance level of a given test statistic. For each iteration, the original data are
randomly reassigned to the treatment classes. A test statistic is then calculated
using the randomly shuffled data. This represents one possible outcome based on
the data. By performing many iterations, a frequency distribution of possible out-
comes (i.e., test statistics) is generated. The actual test statistic is then compared
to this frequency distribution of randomly generated statistics, and the proportion
of randomly generated statistics more extreme than the actual statistic is taken to
be the significance level for that data set. Randomization tests have been used to
calculate the significance levels for the homogeneity statistic, QE. This can be
done by randomly reassigning the effect sizes among studies, recalculating <2B

each time, to determine whether the actual differences among categories are
greater than if the categories were based on chance assignment of the effect sizes.

The second common use of resampling methods is to generate confidence
intervals around a given statistic using bootstrapping. Bootstrapping works by choos-
ing (with replacement) N studies (from a sample size of N) and then calculating
the desired statistic. For example, if there were 20 studies in total, 20 studies
would be chosen for each bootstrap iteration. However, because bootstrapping is
sampling with replacement, some of the studies from the original sample would
be chosen more than once, whereas others would not be chosen at all. This proce-
dure is repeated many times to generate a distribution of possible values. The
lowest and highest 2.5% values are then chosen to represent the lower and upper
95% bootstrap confidence limits.

Bootstrapping can be used to calculate confidence intervals around the mean
effect size in meta-analysis. Confidence intervals generated in this way are called
percentile bootstrap confidence intervals, because they are calculated by merely
choosing certain percentile values, in this case the upper and lower 2.5% (chapter
14). These confidence intervals assume that the distribution of bootstrap values
is centered around the original value. When this is the case, the percentile boot-
strap is known to produce the correct confidence intervals (Efron 1982; chapter



Meta-analysis 367

14). However, when more than 50% of the bootstrap replicates are above or
below the original value, the bootstrap confidence interval must be corrected for
this bias. This is done by first finding the fraction (F) of bootstrap replicates
smaller than the observed value. The probit transform of F is then found. Finally,
the upper and lower bias-corrected bootstrap confidence limits are calculated as
±<&(2zo- 1.96), where <E> is the normal cumulative distribution function (chapter
14).

Those well-versed in computer programming can write software to analyze
their data using randomization and bootstrapping techniques. Alternatively, the
program MetaWin 2.0 (Rosenberg et al. 1999) will calculate both the uncorrected
percentile bootstrap confidence intervals and the bias-corrected bootstrap confi-
dence intervals, as well as conduct randomization tests on homogeneity statistics.

18.5 What Can be Done When Published Primary Data
Lack Standard Deviations or Sample Sizes?

Conventionally, meta-analysts omitted these data because the common tests
depended on having these values to conduct the basic analyses: determining
weighted means, confidence limits around those means, and homogeneity tests
for differences among kinds of studies. Ecological data is poorly reported so
commonly, however, that many people wish to have some way of using studies
where means are reported but other basic statistics are lacking. The recent devel-
opments reported here present one possibility for carrying out meta-analyses us-
ing poorly reported studies. That is, we can do an unweighted analysis (i.e., the
weights of all studies are equal to 1.0) using Ir, calculating bootstrapped confi-
dence limits and using randomization tests for the homogeneity statistics. This
approach requires only that we have means, but not standard deviations or sample
sizes. It is less accurate and less powerful than the approaches presented pre-
viously, but it may be the only choice in some cases (see Gurevitch and Hedges
1999). We recommend that the rneta-analysis be carried out using those studies
that are reported adequately (i.e., studies that include means, sample sizes, and
variances) first, and the results of studies with poorer reporting procedures com-
pared with those with better reporting.

18.6 Interpretation and Conclusions

In the analysis we conducted, there was a large effect of competition on growth
and recruitment of primary producers, with lentic plants experiencing very large
effects and terrestrial and marine organisms lesser, but still large, effects. The
results here contrast to some degree with the results of a meta-analysis of the
effects of competition on biomass (Gurevitch et al. 1992). In that study, primary
producers shared a common, small to medium effect of competition (d+ = 0.34),
which did not differ among terrestrial, freshwater, or marine organisms. It seems
reasonable that a change in size and number, as in the present study, might be
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expected to show a greater response to an experimental manipulation than the
total size of the organisms, as in the previous study. The number of experimental
comparisons in the three systems was similar in the previous and present studies
for primary producers. It would be interesting to investigate lentic plants further,
because the large effects of competition in freshwater are based on only two
experimental comparisons by a single author in the present meta-analysis. How-
ever, we can be fairly confident about the conclusions regarding the generally
substantial effects of competition on primary producers found here.

These results are difficult to compare with those of narrative and vote-count
reviews of competition in field experiments, for the reasons discussed at the be-
ginning of the chapter. Nevertheless, the results agree in broad terms with those
of Connell (1983), Schoener (1983), and Goldberg and Barton (1992), in conclud-
ing that competition among primary producers was common. Previous reviewers
have been unable to accurately assess the magnitude of competitive effects across
studies, or to compare the intensity of competition among categories of studies.

It is reassuring to note the general agreement between the results of the more
conventional fixed effects model and the mixed effects model presented here. As
we would expect, the major difference between the two is the larger confidence
intervals in the mixed effects model, which reflect the additional source of error
included in that model. The mixed effects model assumption of random variation
between studies within a class is in many cases a much more reasonable one than
the fixed effects model assumption of all studies within a class sharing a single
true effect size. For that reason, the more widespread use of the mixed effects
model is to be strongly encouraged.

18.7 An Overview of the Potential Role of Meta-analysis
in Ecology

Underlying the motivation for both the original and revised edition of this book
has been the explosion of interest in experimental ecology, particularly in the
field, within the past 20 years or so. The preceeding chapters all attempt to assist
experimentalists engaged in designing and analyzing their experiments. The so-
phistication of the statistical tools available to ecologists for analyzing the results
of experiments has increased exponentially in recent years, and this book is an
effort to make some of those tools more widely available. Before the introduction
of meta-analysis, the tools that existed to make the best use of the wealth of
ecological data provided by the outcome of these efforts were crude, inaccurate,
and inadequate to the task. Meta-analysis establishes a new standard in the tools
available to synthesize data gathered in different studies. However, meta-analysis
itself, particularly as applied to ecological research, is still in its infancy. Al-
though numerous developments have been made in the years since the first edition
of this book was published, there is no question that great potential still exists to
develop and improve the statistical models used to conduct meta-analyses in ecol-
ogy and in other fields.
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In the first edition of this book, we predicted that meta-analysis would have a
substantial impact on the field of ecology over the next few years. This has been
borne out by publications that have increased exponentially over the seven years
since that prediction was made, as well as by workshops, special features, review
articles on the subject, and a statistical software package designed primarily with
ecological meta-analysis as its focus. There are several reasons for this increasing
interest in meta-analysis in this field. First, ecologists are now becoming aware
of these techniques, which are not difficult to use. In fact, the statistics presented
here are perhaps the easiest ones to compute in this entire volume. More substan-
tively, the number of experimental studies in various subdisciplines of ecology
has probably reached a critical mass: there is abundant material to summarize.
Most critically, the ever-increasing impact of humans on the natural world has
made the need to make sense of this growing body of data increasingly urgent.
Meta-analysis presents compelling opportunities for revealing the broad patterns
contained in the accumulated body of experimental ecological research.
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Index

a-level (See also p-value; Significance, sta-
tistical)

adjusting 8
bioequivalence testing 29
defined 16
establishing 32
known 23
models, fitting 206
power, relationship to 17
statistical significance, decision 7

Accelerated failure-time models (See Fail-
ure-time analysis)

Acer rubrum 328, 330, 337
Aedes triseriatus 193-4
Ailanthus altissima 41-5, 275
Analysis of covariance (ANCOVA)

analogy for Mantel test 324
competition experiments 84-7
nonparametric and randomization tests

116ff
spatial pattern 309

Analysis of variance (ANOVA) (See also
Assumptions, Fixed effects, Interac-
tions, Mixed models, Multivariate
analysis of variance, Random ef-
fects)

assumptions 135, 305-6, 308-10
compared with GLS-variogram 295-

297
compared with Mantel test 323-5
compared with tests on pairs of means 8
distinguished from multivariate analysis

of variance (MANOVA) 99-104
field competition experiments 89-91
fixed effects models 65-6
ordinary vs. repeated measures analysis

135
principles of 64
protected 101
random vs. fixed factors 65-6
repeated measures 136-8, 141-4, 155-6

(See also Experimental design,
Multivariate analysis of variance,
Split plot)

Anthesis
failure-time analysis 249, 252-5
life table analysis 246-8

Aphis 197, 198, 208
Aristida glauca (now Aristida purpurea)

315, 323-4
Artifacts, of subsampling 130
Asellus aquaticus 46, 187-190

403



404 Index

Assumptions
analysis of covariance (ANCOVA)

116-7, 118-9
analysis of variance (ANOVA) 135,

305-306, 308-310
autoregressive integrated moving aver-

age (ARIMA) models 168
circularity 136-7, 154
compound symmetry 137
concept 6-7
explanatory 6
fixed effects models, meta-analysis 352
functional response models 181
homogeneity of variances (homoscedas-

ticity)94, 117, 309-10
independence

among experiments 354
among observations (individuals) 9-

10, 135, 257, 284, 354
ANOVA, sensitivity to 310
between variables, testing (categorical

data) 205
bootstrapping 283
path analysis 218
randomization 159-60, 310
in RIA (time series) 173
spatial autocorrelation 292-3, 308,

310
treatment by block interaction,

vs. 68
linearity, path analysis 233
meta-analysis 352, 355, 362, 368
multivariate analysis of variance

(MANOVA) 102, 113-4
noncollinearity, OLS regression 201
nonlinear least squares 187
nonparametric tests 117
normal distribution

failure times 239, 243-4
meta-analysis 354
multivariate 113

path analysis 219, 222, 232-3
randomization tests 117-8
randomized block designs 136-7
regression (OLS) 116, 118-9, 198,

201-2
repeated measures (MANOVA) 138
reproduction, plant, separate experi-

ments 218
sphericity 137, 143

split-plot designs 136-7
statistical inference, effects on

132
survival analysis 237-9
testing, in ANCOVA 122, 125
violation

functional response analysis 186-7
general consequences 7
revealed by exploratory data analysis

(EDA) 39
sphericity 143

Autocorrelation
function 164
genetic 309
spatial

causes 292, 308
experimental design 306
sample size 305-6, 312

temporal 160, 309
time series (ARMA) processes 163
type I error, resulting in 308

Autoregressive integrated moving average
(ARIMA) models

ARM A models 163
autoregressive (AR) models, described

162
moving average (MA) models, de-

scribed 162
parameter number 164
strengths 163
techniques, time series 159

(3-value (See also Type II error; Power, sta-
tistical)

establishing 32
power 7

Bar charts 53
alternatives 53
disadvantages illustrated 60

Bayesian statistics 7-8, 15, 32, 327ff (See
also Beta function, Confidence in-
tervals, Conjugacy, Likelihood
function, Likelihood profile, Para-
metric Empirical Bayes, Posterior
density, Prior density)

Beta function (Bayesian statistics) 332,
335

Bias
accelerated correction 279-80
bootstrapping 276, 279



Index 405

due to small sample size 356
explained 268
Greenhouse-Geisser correction (repeated

measures) 143-4
jackknifing 271
modeling functional responses (preda-

tion) 183, 191-2
power estimation 24
publication 352

Big Bend National Park (Texas) 118
"Billiard" example, of Thomas Bayes

327
Bioequivalence testing 28-9, 332
Blocking

applicability 74-5
benefits and costs 67-9
incomplete 74
repeated-measures designs 136
spatial patterns 324-5

Bodo 109
Body size, correlates, animal 116
Bonferonni correction

multiple univariate analyses of variance
101

multivariate tests, vs. 8
pairwise comparisons in multivariate

analysis of variance 105-6
profile analysis 148

Bootstrapping
accelerated 279-80
bias corrected 276-7, 279
definition of 270
sampling 274-5

Box-and-whisker plots
alternative to histograms 42-6
illustrated 45, 61
notched 57
obscuring bimodality 42-6

Bud-scale scars, tree seedlings, aging
337

Canonical analysis 107-9
canonical correlations and canonical co-

efficients 108-9
related to other procedures 114

Carbon dioxide (CO2)
atmospheric 348
greenhouses 70-1, 134
photosynthetic rate 137-8

Causality 199-200

Centroid
data set 106
defined 102

^-distribution (See Distributions; Good-
ness of fit)

JC2-statistic 203
Circularity (See Assumptions)
Clematis lingusticifolia 256
Collinearity (See also Correlation)

OLS regression, 201
warnings regarding 233

Colpoda 109-11
Community interactions, top-down vs. bot-

tom-up control 204
Competition

among plants, review of 355, 360-2,
364-5

Aristida glauca, field experiment 323
ecological questions 77-9
effects on plant growth 350
exploitation 88
functional responses of predators 180
general effects, plants in field experi-

ments 167-8
mechanisms 78-9, 180
productive vs. unproductive habitats

(plants) 77, 348
relative, indices 83-86
resource, and fruit set 220
Stipa neomexicana, field experiment

316, 323-5
Competitive effect

defined 80
per-unit measures 80, 86, 92

Competitive response
complex 96
defined 80

Confidence interval (Confidence limits)
Bayesian statistics, compared with classi-

cal 332-5
bootstrapped 277-9, 366-7
definition 269
estimating, and power analysis 29-31
meta-analysis 357, 360-2, 364, 366-7
population standard deviation 36
retrospective power analysis, vs. 23
variance 21

Confounding factors 116
Conjugacy (Bayesian statistics) 328,

336



406 Index

Contour plot 58
Contrasts

alternative to repeated-measures analysis
of variance 156

analysis of variance (ANOVA) 294
multivariate analysis of variance

(MANOVA) 105-7, 112
profile analysis 144-50

Convex hulls
correlations, relationship 48
illustrated 52
nonnormality of data 48
peeled 51

Coreopsis lanceolata 102, 112
Corn earworms 9
Correlation (See also Collinearity)

canonical (See Canonical analysis)
direct and indirect effects 223-5
matrix 221-2, 224, 226
path analysis 221
plant traits, between 218, 220-1
response variables, among 100-1

Cox proportional hazards models 255
Critical value, (See Value)
Crossover experiments (See Experimental

design)
Crotalus lepidus (mottled rock rattlesnake)

116, 122-8, 132
Curve fitting, repeated measures designs

152-3
Cydidium 109-10

Data
balanced 65
categorical 197
censored 237-8
dredging 227
heteroscedastic (See Transformations,

data; Assumptions)
long term 159
missing

listwise deletion 222
multivariate analysis of variance

(MANOVA) 112-13
pairwise deletion 222
path analysis 218-9
randomized blocks 67-8

smoothing
vs. conventional regression 48

lowess (locally weighted regression)
48, 185, 190

techniques 48
Decision theory 32
Deduction, building and testing theory

5-7
Defenses, plant (See Herbivory)
Degrees of freedom, path analysis 228
Demonic intrusion 10
Density plot 42, 44
Designs (See Experimental design, Unbal-

anced designs)
Diet breadth 198
Differencing (See Transformations)
Digitizing, obtaining data from graphs 39,

353
Direct effects (See Effects, direct and indi-

rect)
Disc equation, Rolling 181
Distance matrices

constructing 318-20
described, Mantel test 311-12

Distributions
central and noncentral 26
^-distribution 117, 120
exponential 261-2
F-distribution 120
gamma 264, 265-6
log-logistic 262, 265-6
lognormal

definition 262, 264, 266
species abundances, estimating param-

eters 195-6
multinomial 211
Poisson 211
Weibull 262-5

Dit plots
alternative to histograms 42
displaying bimodality 46
illustrated 44

Diversity (See Indices, diversity)

Ecology (See also Experiments, Unbal-
anced designs)

applied 347-8
behavioral 178
evolutionary, 116
experiments 11, 368-9
intervention analysis 165
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Effect size
estimated average, fixed effects, meta-

analysis 356
grand mean, meta-analysis 360
magnitude, defined 349-350
path analysis, pollination experiments

218, 227
power analysis 17-20

absolute or raw 18
complex 19
estimating 29-31
minimum detectable 24, 35
relative 18
simple 18
standardized 18, 19

Effects, direct and indirect
competition experiments 87-90
separating, path analysis 219-224,

226-7
Eggshell thickness 23-24, 30-1
Eigenvalue (See also Multivariate analysis

of variance), definition 104
Eigenvector 103-4
Emergence, seedling

failure-time analysis 253-4
life table analysis 243, 244-9

Empirical semivariogram (See also GLS-
variogram) 298

Envelope effect 93-5
Environment, decision-making 32
Eriogonum albertianum 239
Error (See also Residuals, Type I error,

Type II error)
bars 59

-statistical scientific approach 5-7
Euclidean distance, Mantel test 320
Evolutionary ecology 116
Experimental design

before-after-control-impact (BACI) 161
censored data 238-9
completely randomized 66, 292-3
crossover experiments 154
paired 161
randomized block 67-9, 135-6
split plot 69-74, 135-6, 141-4
unbalanced (See Unbalanced designs)

Experiments
design (See Experimental design)
disadvantages 217-8

enclosure 158
field, manipulating density 80-2, 196
intervention 161-2, 164-5, 173-5
manipulative and observational, 6, 218
natural 6, 161
observational study, after 232
pilot 21, 227
pollination 217
unreplicated 160
strong inference 218

Exploratory data analysis (EDA)
definition 37
violation of assumptions, revealing 39

Exponential distribution 262
Exponential semivariogram (See also

GLS-variogram) 301
Extrapolation, research review 353

F-distribution (See Distributions)
^-statistic

analysis of variance (ANOVA) 64-6
fixed, random, and mixed models 65-6
randomization tests, vs. sums of squares

125-9
repeated-measures analysis of variance

243-4
F-tests

fixed effects, power analysis 21
random effects, power analysis 26

Factor analysis, limitations 218
Failure-time analysis

accelerated failure-time models 250-1
data types 237-9
definition 237
life table analysis 244-6, 254
proportional hazard models 249, 255
regression analysis 249

Fish, mortality of large vs. small 27
Fixed effects models

analysis of covariance (ANCOVA)
118

analysis of variance (ANOVA) 64-6
meta-analysis

described 352
cumulating effect sizes 357

Foraging
giving up time 237
theory 220

Fraxanus americana 344
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Fruit set, path analysis 220
Functional response (predators; See also

Predation)
comparing 180, 193
distinguishing 184-5
type I, description 178-80
type II

description 178-80
indicated by data analysis 194
models 181-3, 194

type III
description 178-9
estimating parameters 191
example 188-90
models 181-3
revealed, logistic regression 190-1
suggested by lowess 49, 185, 190

Fuzzygrams
alternative to histograms 42
described 42
displaying bimodality 46
illustrated 45

Gamma distribution
definition 262
description 265-6
illustrated 264
residuals 94, 187

General linear models (See Models, analy-
sis of variance)

Gibbs sampling (Monte Carlo technique)
339

Gini coefficient
bootstrap analysis 273-7
definition 297
jackknife analysis 271-3

Global change 342, 349-50
GLS-variogram

assumptions 305-6
calculated 299-302
compared with analysis of variance

(ANOVA) 295-7
compared with Mantel test 305
definition 297
illustrated 301
method 298-302

Goodness of fit
meta-analysis 361, 365
path analysis 228-32
regression, OLS, compared 200

Graph theory 207
Greenhouse-Geisser correction 143-4, 156
Growth curves

curve fitting 152
multivariate analysis 147-50
nonlinear least squares 153, 195-6
nonlinear models, fitting 117
profile analysis 144-7

Hazard function 244-255
Helianthus annuus (sunflower) 54-8
Herbivory

missing values, causing 222
plant defenses (plant chemistry,

quality)
categorical data analysis 197, 204
parasitoid occurrence, effects on 213

Heterogeneity
controlled environments 63-4
field experiments, spatial 289, 308-9
hidden, failure time analysis 259

Heteroscedastic data (See Transformations,
data; Assumptions)

Histograms
alternatives (See Box and wisker plots,

Dit plots, Fuzzygrams, Jitter plots,
Stem-and-leaf plots)

bar charts vs. 42
bimodality, displaying 46
illustrated 43
problems 42

Homogeneity of variances (See Assump-
tions)

Homogeneity statistic (Q; in meta-analy-
sis) 361, 365

Hotelling-Lawley trace (See Multivariate
analysis of variance)

Hotelling's T2 (See Multivariate analysis
of variance)

Huynh-Feldt adjustment 143-4, 156
Hypotheses

a priori vs. a posteriori 38, 105
functional responses, predators 180, 193
null

alternative, and 15, 17
decision-making, power analysis 16
functional response 184
Mantel test 310, 313
meta-analysis, fixed effects model

361
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possible, specifying 19
randomization tests, for factorial de-

signs 121
path analysis

alternative, multiple 219
causal 218-9
first, pollination study 217
testing 227
working 229

process of testing 6
profile analysis 139, 144-6
scientific 6
testing

criticisms, and bioequivalence testing
28-9

Neyman-Pearson approach 5, 15

Importance, biological vs. statistical 23,
29, 30, 32 (See also Significance)

Independence (of observations) (See As-
sumptions)

Indices
competition 83-86
diversity 100, 267
similarity 267, 270-1, 273

Indirect effects, competition experiments
87-8

Induction, building and testing theory 5
Inference

randomization and 130-2
scientific vs. statistical 10
strong 218

Influence plots 50-1
Interaction, ecological (plant reproduction)

217-8
Interaction, statistical

blocks 67-9
competition experiments 78-9
displaying 54-5
mean squares (MS) for 64-6, 73
multivariate analysis of variance

(MANOVA) 109-12
profile analysis 140, 144-50
repeated measures, analysis of variance

(ANOVA) 150-1, 213
testing, Mantel test 320
treatment by habitat 89

Ipomopsis aggregata
clumping 220
correlation matrix 223

fruit set, causes 219-21
path analysis example 225-6
pollination 217

Isopycnals (surfaces of constant density,
measuring global warming) 342

Jaccard index (See Indices, similarity)
Jackknifing (See also Randomization,

tests)
bias 273
definition 271
independence of samples 273
path coefficients 232

Jitter plot
alternative to histograms 42
bimodality, obscured 46
described 42
illustrated 44

Keratella taurocephala 162, 166, 167,
173-4

Kruskal-Wallis test 120

Lag
distance 299-301
moving average (MA) and autoregres-

sive (AR) models 162
time series (ARIMA models) 162-4

Lagrange multiplier test 251-2
Lakes

acidification 158-60, 171
Keratella abundance 167, 174

Latin square design
displaying results 54-5
spatial pattern 309

Leaves, nitrogen 212 (See also Herbivory)
Life expectancy 238, 245
Life history stages, responses measured 83
Life table analysis (See Failure-time anal-

ysis)
Likelihood function (Bayesian analysis)

330, 334
Likelihood profile (Bayesian analysis)

332-4
Linear models, mixed 152-3
Linearity (See Assumptions)
Log-linear models

described 204-10
hierarchical 214
non-hierarchical 214-5

jamesraja
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Log-logistic distribution (See Distributions)
Log-rank test, life table analysis 246
Logistic regression (See Regression)
Logit models 204, 207-10
Lognormal distribution (See Distributions)
Lotka-Volterra models, competition 85
Lowess (See Data smoothing)

Mantel test
compared with GLS-variogram 305-6
description 310-11
null hypothesis 310, 312
partial (three-matrix)

uses 313-4
calculations 324-5

statistical significance, determining
311-12, 322-3

uses 310
Matched pairs, in nonparametric

ANCOVA 120
Matrix

correlation 222-5
distance, building (Mantel test) 318-20
inversion, and missing values 222

Maximum likelihood estimation
analysis of variance (ANOVA) 64, 91
failure-time analysis 246, 251, 255, 260
functional response analysis 185
multivariate analysis of variance

(M ANOVA) 112-13
repeated measures 155
spatial analysis (GLS-variogram ap-

proach) 302-3
survival rates, vs. Bayesian approaches

330-4
unbalanced univariate designs 91

Mean squares (MS)
analysis of variance (ANOVA) 64
erroneously reduced 71, 73
error, experimental design 97
interaction 64-6, 67
repeated-measures analysis of variance

141-4
Meta-analysis

data 352-5
definition 347
detecting weak effects 9
fixed effects models

described 352, 356-7
cumulative effect sizes 357, 360

mixed effects models 352, 362, 364-5
multiple comparisons 360, 361, 364-5
standard deviation for original data 59

Michaelis-Menten kinetics, functional re-
sponse models 183

Missing values (See Data, missing)
Mixed models

analysis of variance (ANOVA) 66, 91
meta-analysis 352

Model (See also Mixed models, Fixed ef-
fects models, Null model)

data
agreement with, path analysis

227
fitting 187-93
ill-conditioning 341

identification, path analysis 228-9
nested, path analysis 230-2
saturated, in log-linear models 206
selection 180

Monte Carlo tests 22, 26, 336, 339
Mortality rate, unconditional 245
Multicollinearity (See Collinearity)
Multiple comparisons (See Bonferonni cor-

rection, Meta-analysis)
Multivariate analysis of variance

(MANOVA)
assumptions 113-4
distinguished from analysis of variance

(ANOVA) 99
greatest characteristic root (See Roy's

greatest root)
Hotelling-Lawley trace 103
Hotelling's T2 106, 144, 146
missing data 112-13
Pillai's trace 103, 114
post-hoc tests 105-9
power 112, 152
repeated-measures designs

described 138-41
power 139
profile analysis 139-41, 144-50
recommendations concerning 155-6
sample size 139

Roy's greatest root 103-5
Wilk's lambda 104-5

Nearest neighbor
designs 309
distance 220, 229-30
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Nerodia sipedon insularm (water snake) 117
Nespera aquatica 55, 60
Newton's method (root of implicit equa-

tion) 186-7, 191
Noncentrality parameter (See Parameter,

noncentrality)
Nonparametric statistics (See also Assump-

tions, Kruskal-Wallis test, Mantel
test, Randomization, Scheirer-Ray-
Hare test, Wilcoxon test)

ANCOVA 116ff
confidence intervals, bootstrapped

279-80
functional responses 187, 195
power 27-8

Normality (See Assumptions)
Notonecta glauca 46, 49, 187-8
Null hypothesis (See Hypothesis, null)

Odds, conditional 202
Odds ratio 18, 202-3, 212
Optimal foraging theory (See Foraging)
Orthogonal polynomials 149
Orthonormal variables 137
Ospreys (see Pandion)
Outliers, searching for 50-1
Overidentification (See Path analysis)

Pandion haliaetus (Osprey), eggshell thick-
ness 23, 30-1

Parameter, noncentrality 26, 35
Parameter estimation 15, 209
Parametric Empirical Bayes (vs. Bayesian

methods) 342-5
Parasitism 9
Parasitoid occurrence 213
Path analysis

assumptions (See Assumptions, path
analysis)

complicated 224-5
description 141-4
features, useful and beautiful 224-5
interpretation 226-7
multiple regression 218
Overidentification 229
path coefficients 223, 225-6
path diagram 219-21
statistical control 218

Permutation tests
defined vs. randomization tests 118

statistical significance in Mantel test
312-13, 322-23

Pesticides 9, 23
Pheidole (ants) 197
Pie charts 55

alternatives to 55, 57
disadvantages illustrated 60

Pillai's trace (See Multivariate analysis of
variance)

Pilot experiments (See Experiments, pilot)
Piper 197
Plant chemistry (See Herbivory)
Plant-insect interactions

categorical data analysis 197, 204
repeated-measures experiments 151-2

Plantago major 54-5
Polar category plots 57, 61
Pollination

approach rate 220, 222-4, 229
complications in studying 217-8
crossover experiment 154
effects of gender 256
timing, analysis of 256
visitation rate 221-22

Population
comparison (See Failure-time analysis)
dynamics 9

Post-hoc tests, repeated measures 138 (See
also Multivariate analysis of vari-
ance)

Posterior density (Bayesian analysis) 330,
334

Power, statistical 7
analysis, prospective 14, 20-22
analysis, retrospective 14, 22-24, 34
analysis of variance (ANOVA) 97
meta-analysis 349
multivariate analysis of variance

(MANOVA) 112, 152-3
repeated-measures analysis of variance

138-9, 156
type H error 7-9

Precision, definition 268
Predation (See also Foraging theory, Func-

tional response, Herbivory, Prey
density)

density dependence 178
experiments 204
functional response, modeling 178-80,

183, 191-2
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Predation (Cont.)
rate, and body size 27, 116
response to prey color 211

Prey density
Asellus aquaticus 187
constant, in models 181-2
functional response, predator 178

Prior density (Bayesian analysis) 330
Probability level 6-8
Probability plots

illustrated 47
normal 46

Profile analysis
relation to other approaches 114
repeated-measures designs 139-41,

144-50
Proportional hazard model (See Failure-

time anlaysis)
Prospective power analysis (See Power)
Pseudorandom numbers, generating 26
Pseudoreplication 9-10, 67
Publication bias (See Bias, publication)

Queensland (Australia) 345

Rana sylvatica (wood frog) 152
Raphanus sativus (radish) 240-1
Random effects

analysis of variance (ANOVA) 65
models 65-6

Randomization (See also Assumptions,
Bootstrapping, Jackknifing)

experimental design 66, 158, 290, 306
residuals 122
tests

ANCOVA 116ff
approaches 121-2
comparison with parametric and non-

parametric ANCOVA 126
meta-analysis 366-7
methods 125-8
multivariate designs 114
restricted 121

time series analysis 173
Randomization intervention analysis (RIA)

173
Randomized block designs 67-9, 306, 309
Regression

envelope effect 93
failure times 250-1, 255

isotonic 95
least squares 183
linear, effect size 18
linear vs. nonlinear 92, 183-4
logistic

described 211-12
effect size 18
logit models, vs. 204
modelling functional responses 180,

187
testing for density-dependent survival

195-6
model I 119
multiple

disadvantage 95, 218
path analysis and 218, 223
statistical control 94-5, 218, 223

nonlinear least squares 180
nonparametric 187
ordinary least squares, comparison with

categorical analysis 201
Repeated measures, in categorical data

modeling 215 (See also Assump-
tions, ANOVA, Bias, Curve-fitting,
Interaction, Maximum Likelihood,
Post-hoc tests, Replication)

Replication
competition experiments, multiple densi-

ties 86
experimental design 68, 175
experimental error 159-60
experiments 347
growth chambers 69
predation experiments 186
repeated-measures experiments 138-9,

156
sites 89
species 87
time 74-5
treatments, hindered by cost and scale

69, 158
Reproduction

body size, and 116
estimating output 267-8
maternal investment 116
ospreys (Pandion haliaetus) 23-4
plant 101, 217-18, 219

Residuals (error) (See also Gamma distri-
bution)

ARM A (time series) models 163
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fitting 169
normality, path analysis 222, 232
plotting 187, 192

Retrospective power analysis (See Power)
Review

extrapolation from data 353
literature, narrative 348-9

Ridge regression (See Regression, ridge)
Rotifers 159, 162
Roy's greatest root (See Multivariate analy-

sis of variance)

Sample size (See also Power)
categorical analysis 210-11
failure time 242
multivariate analysis of variance

(MANOVA) 112, 139
necessary for specified power level 32
path analysis 221-2
reporting 11, 59, 351
spatial autocorrelation 306, 311
statistical significance 349

Sampling
costs and difficulties 203
data, inaccuracies 143
distribution (bootstrap and jackknife pro-

cedures) 268-9, 274, 280, 282, 287
error, cause of differences among stud-

ies 352
fixed vs. random, in OLS regression and

categorical analysis 211
frequency and duration, time series de-

signs 161-2, 172-3
random 276

Scale, experimental 158-9
Scatterplot

bivariate data, exploring and presenting
46, 48, 51

illustrated 49, 50, 54
symmetrical matrix 53
three dimensional 58

Scheirer-Ray-Hare test 120
Seed production

Ipomopsis aggregata 219-21
pollination experiments 218

Seed shadows 342
Seedling emergence (See Emergence, seed-

ling)
Selasphorus platycercus 217
Selasphorus rufus 217

Sensitivity analysis 21
Signal-to-noise ratio, in data 39
significance, statistical (See also Type I

error)
vs. biological 9, 23
"data dredging" 227
Mantel test 310-12, 322-3
sample size 349
tests, compromise of 219

Similarity index (See Indices, similarity)
Simpson's paradox 100, 213
Size dimorphism, sexual, in reptiles

117ff
Size hierarchies (See Gini coefficient)
Size, sample (See Sample size)
Spatial pattern (See Assumptions, Block-

ing, GLS-variogram, Mantel test)
Sphericity (See Assumptions)
Split plots (See Experimental design)
Spread vs. level plot 55-6
Squirrels, diet 134-5
Standard deviation

bivariate ellipse 48, 50
calculation, from published data 353
effect size 350
error bars 49-61
estimating pooled population 16

Standard error (of the mean)
bivariate ellipse 48, 50
definition 59, 268
error bars 59-61

Stationary process (time series) 163-4,
169

Statistical
control 218
power (See Power, statistical)
interactions (See Interactions, statistical)

Stem-and-leaf plot
alternative to histograms 42, 46
disadvantages 42
displaying bimodality 46
illustrated 44

Stipa neomexicana (now Hesperostipa neo-
mexicand) 315-6, 322-5

Structural equation modeling 228, 232,
273

Sums of squares (SS)
analysis of variance (ANOVA) 65-6
randomization tests 125-9
Types I—IV, SAS 65, 91
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Survivorship (See also Failure-time anal-
ysis)

Bayesian analysis 328
competition, affected by 348
curves

comparing using logistic regression
195-6

determining shape 250
function 245

f-test 16, 21, 106, 146, 160, 173
£-value 16
Texas 118, 122
Theories, scientific 5-6
Timing (See Failure-time analysis)
Toxorhynchites rutilus 193-4
Transformations, data

ARIMA models 168
contrasts, profile analysis 146, 148
dependent and independent variables,

changes in relationship 119
differencing 164
heteroscedastic data 53-5, 94, 119
log

displaying outliers 50-1
heteroscedastic data 53-5, 119
log-linear models 205
ratio series 166
relationships, changing from additive

to multiplicative 119
logit 202
negative exponential 55
orthogonal 180
path analysis 222, 232
time series analysis 167-8

Trend analysis 149, 309
Trends

deterministic 163
random 162-3
seasonal and long term 164

Tukey's test 8
Type I error (See also Bonferonni correc-

tion, Significance, statistical, Type
II error) 7-9

autocorrelation, spatial 308
balancing, vs. Type II error 32
decision-making, power analysis 16
defined 17
experimental design 7-9
explained 7-9

illustrated 17
inflation

multiple univariate analyses of vari-
ance 100

repeated-measures analysis of vari-
ance 156

solutions 8-9
nonlinear growth models 117
rate, power analysis 16, 17
relative importance, vs. Type II error

20
severe test 6
split-plot designs 71-2

Type I functional response (See Functional
response)

Type II error (See also Power, statistical,
Type I error)

bioequivalence testing 29
decision-making, power analysis 16
defined 17
experimental design 7-9
explained 7-9
illustrated 17
relative importance, vs. Type I error

20
severe test (See Type I error)

Type II functional response (See Func-
tional response)

Type III functional response (See Func-
tional response)

Unbalanced designs
analysis 75
ecological experiments 91, 119-20
multivariate analysis of variance

(MANOVA) 112-13
Value, critical, for statistical tests 16,

17

Variables
continuous

example, vs. interval 198
relationships 46, 48

dependent
influences 225-6
path analysis, and independent 222-3
relationships 218
unexplained influences 226

inclusion, path analysis 219-20, 230
interval 198-9
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nominal 199
omitted, path analysis 230
ordinal 199
sample size and path analysis 221-2

Variance (See also Assumptions)
conditional and unconditional, meta-

analysis 357, 360, 365
confidence intervals for 21, 278
estimated

by jackknife and bootstrap 270,
285-6

negative and underestimated 300-1,
304

estimation 306
explained 95, 226, 229
partitioning 64, 69, 71
population 21, 34
power analysis 20-2
precision, measure of 268
ranked data 120-1
reporting 11
spread vs. level plots, displaying 55
stabilizing 168

Variogram 96, 293, 314 (See also GLS-
variogram)

Vote counting, meta-analysis 349

Warming, global 342
Weibull distribution (See Distributions)
Whales, bowhead 341
Wilcoxon test

life table analysis 246
power 22, 27

Wilk's lambda (See Multivariate analysis
of variance)

Z-distribution (standard normal) 202-3
Z-test

power analysis 20, 26
Zeros, cell counts

sampling (missing or random) 210
structural (lost or impossible) 211

zooplankton (See also Keratella tauroceph-
ala, Rotifers)

abundance 162
community similarity 273


