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Dedication

To R., B., and the memory of M.



Preface to First Edition

This book advocates a style of quantitative thinking that I have found useful in ecological 
research and that I hope others will find of benefit in the design of their research or in read-
ing and evaluating the work of others. The style relies heavily on the use of units and dimen-
sions, which I believe are critical to the successful integration of “scale” into ecology. I have 
made every effort to develop concepts and generic methods rather than present a set of com-
monly used recipes or techniques that I happened to have mastered. It certainly would have 
been much easier to write a book on statistical biology, which I teach each year. The book is 
(I hope!) aimed at people who are thinking about ecology as a career. But I trust that ecolo-
gists with field or theoretical expertise will also find something of interest to them.
xi



Preface to Second Edition

It is a privilege to have the opportunity to revise a book that appeared when the concept of 
scale was just emerging in ecology. This edition retains the first edition’s emphasis on quan-
titative thinking founded on measurement, units, and dimensions. The presentation of the 
material has now been focused on two concepts: scope and power laws. These have in turn 
been used to organize substantial amounts of new material on research design and statistics, 
topics that were not touched on in the first edition. The audience is the same: people who are 
at the beginning of a career in ecology and the environmental sciences. But I trust that people 
already established in their careers will find something of interest to them as well.
xiii
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Introduction
I



Quantitative Reasoning in 
Ecology

We have noticed that much of the confusion and misunderstanding in the 
contemporary literature of evolutionary theory and ecology, fields that have 
received more than their share of polemics, arise when the disputants can’t 
measure it. In the past progress usually followed when ideas were abstracted 
into sets of parameters and relations that could be built into models or when 
new methods of measurement were invented.

—E. O. Wilson and W. H. Bossert, A Primer of Population Biology, 1971

1.1 The Need for Quantitative Reasoning
Important questions in ecology are more than a matter of biology; they affect our well-
being and they have an ethical component. An example is species diversity on a tropical 
reef. This diversity poses one of the central questions in biology: Why are there so many 
species in such a small area, and what caused such diversity? This variety of species 
affects the well-being of island people who fish the waters of the reef. Their lives and 
culture are adjusted to the peculiarities of the species found on the reef. The well-being 
of island people who make a living from tourism depends on the continued diversity of 
the reef. At a larger scale, the well-being of still more people will be altered by therapeu-
tics discovered among the many unique physiologies that coexist on a reef. The diversity 
of species on a coral reef also raises ethical issues. Reef inhabitants, tourists, and the 
beneficiaries of new therapeutics lose if diversity is eroded by destructive practices such 
as dynamiting for fish or discharging nutrients over a reef. The ethical issues created by 
fish dynamiters are clear-cut; the ethical issues raised by tourists are more complex via 
unintended consequences such as reef loss through increased discharge of nutrients in 
waste streams.

For the ecologists who study ecosystems, pressing questions have an additional 
characteristic—that of the complexity of multiple causation. Among the processes 
responsible for coral reef diversity are regional history, frequency of disturbance, and 
differential predation on common species. These processes often interact. For example, a 
sessile species may overgrow its neighbor at low rates of nutrient supply, but not at high 
rates. The interacting effects of nutrient supply and competitive capacity maintain diver-
sity by repeatedly reversing the outcome of competition for space. Multiple causes act 
at different space and time scales. The number of species and their relative abundance 
on a patch reef will depend not only on the competitive interactions among neighboring 
organisms but also on the resupply of larval recruits from other patch reefs.
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� QuAnTITATIvE EcOlOgy: MEAsuREMEnT, MOdEls, And scAlIng
Pressing problems in ecology are often attended by substantial uncertainty. some of 
this uncertainty will arise from measurement error. If we look at the role of fish preda-
tors on a reef by excluding them from sites that range from high to low prey density, the 
experimental outcome will vary in part because of error in measurement of initial and 
final prey density. The experimental outcome will also vary because of process error, the 
sum effect of all the unknown factors that change prey density. In a laboratory setting, 
process error can be reduced substantially by manipulative control. But in field experi-
ments, process error will remain large in even the mostly tightly controlled experiment.

How do we address ecological problems characterized by complexity and uncertainty? 
We have no choice but to use a model to simplify and make sense of the situation. In biol-
ogy, the classic solution to the problem of complexity is a verbal or graphical model obtained 
by the comparative method. A classic example of the success of the comparative method is 
darwin’s theory of coral atolls. comparisons of Pacific islands uncover similarities that estab-
lish an historical sequence, which begins with a volcanic island fringed by reefs. These con-
tinue to grow upward into the light as the island erodes, leaving a ring-shaped atoll. Another 
example is the phyletic assignment of fossils from the middle cambrian in the Burgess shale 
formation in eastern British columbia. comparisons of fossil fragments uncover similarities 
that establish the presence of sponges, echinoderms, chordates, four major groups of arthro-
pods, and species that defy placement in known phyla. yet another example of a model due 
to the comparative method is a diagram of the vertebrate nervous system, with its dorsal 
nerve cord and dendritic structure. The diagram is a model extracted from comparative 
dissections of organisms as diverse as fish and kangaroos. In these examples generalization 
resulted from qualitative comparison of units, without quantitative treatment.

The comparative method has a long record of success in biology and geology, most 
notably where the impress of history is strong, as in morphology, embryology, palaeon-
tology, and stratigraphy. At the much shorter time scales of human actions and press-
ing ecological problems, the method of comparing and contrasting a series of cases will 
sometimes serve, but more often measurement will serve better. This in turn will require 
quantitative models to simplify and extract meaning from the data.

The first step toward a quantitative model is verbal—a statement of the relation 
among measurable variables (Figure 1.1). An example is the statement that release of 
nutrients into a lagoon will alter coral abundance. A verbal model can address both cau-
sality and uncertainty: the effect of nutrients on coral in a lagoon may occur with con-
siderable local variation. The verbal model is the door to a graphical model, in which 
data are simplified to a graphical model, as in Figure 1.1. For example, we could sketch 
the expected form of the relation of coral growth to nutrient release rate from previous 
data showing that high nutrient levels slow the growth of coral. data can be simplified 

Data

Graphical Formal

Verbal

Figure 1.1 Data are Simplified to Verbal, Graphical, and Formal Models.
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to a formal model. An equation describing growth in relation to nutrient levels in the 
lab could be used as a preliminary model to predict effects in the lagoon. The number of 
samples needed to detect the predicted effect could be computed from a model of uncer-
tainty, such as normal error distribution.

At any level, whether verbal, graphical, or formal, a model is a simplification of 
the complex causality and inevitable uncertainty that attend pressing ecological prob-
lems. The simplification provided by a model is a necessary part of disentangling causal-
ity. A formal model can also address uncertainty. such a model will have a structural 
component (the causal part) and an error component (the uncertainty part). such mod-
els make best use of data in advancing understanding of the problem and in addressing 
uncertainty during decision making.

Another Look At Section 1.1

1. state an ecological question of interest to you, then briefly state its societal 
importance, intrinsic biological interest, and ethical implications.

2. state an ecological question of interest to you, then list relevant variables and 
sources of uncertainty in estimates of these variables.

�. state several possible causal linkages between variables you listed. can you 
identify causal pairs that interact? Which, if any, pairs interact at different time 
and space scales?

1.2 From Words to Graphs to Equations
Formulation of an ecological problem often begins with a verbal expression, usually in 
the form of a question. so let’s open the triangle out into a sequence beginning with 
verbal expression (Figure 1.2). This figure represents an effective approach to any eco-
logical problem, which is to begin with a question, sketch the suspected relation of key 
variables, graph the relation of these variables, then estimate the formal relation as a 
function, as shown. As experience accumulates, these empirical functions then yield to 
more broadly supported functions based on theory. Examples of conceptually founded 
functions include the Holling (19�9) equation for prey encounter rate and the Ivlev 
(1968) equation for prey consumption.

The sequence from verbal through graphical to formal expression of a model usu-
ally proceeds by iteration rather than as a simple progression. A verbal model, formu-
lated as a question, will be compared to data, leading to a revised question and new 
model (Figure 1.�). This iterative cycle of challenging models against data continues 
until an acceptable model emerges.

Another Look At Section 1.2

For an ecological problem of interest to you, list at least four relevant variables. state 
two variables that are suspected to be related causally, one to the other.
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What is the relation of species number to area?
O. Arrhenius (1921)

Verbal

Verbal
Data

Formal

Formal

Graphical

Graphical

Number
of species

Number
of species

32

8

2

32

8

2

2 8 32 128
Area (dm2)

2 8 32 128
Area (dm2)

Nspecies � k · Areab

Figure 1.2 typical Sequence of Verbal, Graphical, and Formal Models. Data and model of number of species in  
herb-Pinus wood plots from Arrhenius (1921).

How does organism density change with
distance from source? (Wolfenbarger 1946)
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Figure 1.3 Verbal Model with iterative Graphical identification of Formal Model. Verbal model of dispersal with 
distance from source from Wolfenbarger (1946). Data are bacteria numbers versus altitude, redrawn from Figure 58 
in odum (1959).
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1.3 Statistical Analysis
In ecology the statistical analysis of data is often presented as a set of recipes. But under-
lying all of the most widely practiced statistical techniques in ecology are models. The 
mean value is, for example, simply a single-value model that summarizes a larger collec-
tion of measurements. Here is that model in the form of an equation:

 Data Y Residual mean( )  (1.1a)

Most of the data analyses that ecologists undertake focus on the relation of 
observed data to one or more additional variables. The most widely applicable tech-
niques are regression, analysis of variance (AnOvA), logistic regression, and contin-
gency tests. All these are based on models. In fact, these common techniques are all 
special cases of the generalized linear model (Mccullagh and nelder, 1989), which says 
that data can be partitioned into a structural model  and an error term .

 Data Model Residual   (1.1b)

 Data   ε  (1.1c)

The structural model  is expressed as a collection of means (Figure 1.�a), as one or 
more lines (Figure 1.�b), or sometimes as odds (such as “Odds of survival are �:1”). 
One does not have to assume that the errors  are distributed normally. One can use any 
distributional model (e.g., binomial distribution, gamma distribution, Poisson, or nor-
mal distribution) to estimate the means or lines in the structural model.
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Figure 1.4 Genetic variability (h 5 heterozygosity) in two Species of Fruit Fly Drosophila pseudoobscura and 
Drosophila persimilis. Data from th. Dobzhansky (1948) as reported by Brussard (1984).
(a) comparison of means.
(b) Genetic variability in relation to altitude.

The error component  addresses questions of uncertainty. given the variability in  
the data, does the difference between treatment and control lie within the realm of 
chance? How good is the fit of the model to the data? Is a normal error model correct, 
or should we use something else? The model component  addresses questions of causal-
ity. It can be structured to separate several causal factors according to an experimental 
design. It can be augmented with factors that are known to cause variation in experimen-
tal outcome but cannot be fixed or controlled. It can incorporate previously established 
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1.4 Scaled Quantities
The data produced by the act of measurement consist of scaled quantities—units 
attached to numbers. yet ecological publications, like statistical texts, routinely treat 
data as numbers rather than as scaled quantities resulting from measurement. In statis-
tics texts, the units of measurement are often omitted in the interest of generality; the 
results are meant to apply regardless of the units used to obtain the numbers. In ecology, 
units matter. For example, counts of saguaro cactus (Carnegiea gigantea) in 10 meter 
units can be expected to vary within the modest range of Poisson distribution, for which 
the variance is equal to the mean. But counts in 10 hectare units will almost certainly 
vary beyond that of a Poisson distribution, since clumping at this scale creates variance 
with values well in excess of the mean. units matter; the results at the scale of square 
meters will not be the same as those at the scale of hectares. nevertheless, the traditional 
analytic path in ecology leaves off the units, puts numbers into a formula, produces a 

models, such as an exponential growth rate. Model-based statistics allow one to separate 
the analysis of causation from questions of reliability and uncertainty. It permits a wider 
range of analysis than recipe-based techniques because of the great flexibility in choice of 
both model and error components (crawley, 199�). One can write a model based on the 
biology of the case at hand, without the constraints of conforming to the assumptions of 
normal errors. Model-based statistics allow one to focus on models that express biologi-
cal concepts, with attention to the scale of measurement and dimensional consistency of 
terms (Table 1.1).

table 1.1 Problems with Statistical Practice in ecology*

Elementary statistics courses for biologists tend to lead to the use of a stereotyped set of tests:

1.  Without critical attention to the underlying model involved

2.  Without due regard to the precise distribution of sampling errors

3.  With little concern for the scale of measurement

4.  Careless of dimensional homogeneity

5.  Without considering the ideal transformation

6.  Without any attempt at model simplification

7.  With too much emphasis on hypothesis testing and too little emphasis on parameter estimation

*Crawley, 1993.

Another Look At Section 1.3

“If your experiment needs statistics, you ought to have done a better experiment.”
Evaluate this statement (attributed to the physicist Ernest Rutherford, 1871–19�7) 

in light of ethical limitations on experimental treatment of human subjects. Evaluate this 
statement for large-scale environmental effects such as desertification or air pollution.

Model-based statistics allow effective treatment of the error component. One can choose 
the most appropriate error distribution, with no need to resort to irrelevant or uninter-
pretable transformations of the data (Table 1.1).
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numerical result, and often omits the units in reporting the result. When units disappear, 
so does scale and the capacity to interpret results.

As an example of how units matter, imagine an experiment to determine the effects 
of an invasive weed on an endemic plant. A classic Fisherian experiment begins with def-
inition of the experimental units (plots), then randomly assigns treatment (adding weed 
seeds) to half the plots, no treatment to the other half. The Fisherian principle of local 
control could be addressed in several ways, such as pairing plots based on endemic plant 
density prior to the experiment, then assigning the treatment randomly to one plot in 
each pair. does the difference in density of endemic plants between paired plots increase 
after the experimental intervention? The conclusion will depend on the size of the unit 
(plot). The variance in endemic plant density among 1 m2 plots will differ from variance 
in density among 1 hectare (100 m by 100 m) plots. Because the units of measure differ 
(plants per m2 versus plants per hectare), the error variance in the analysis will differ, in 
turn altering the results of statistical analysis. The conclusions from an experiment based 
on m2 units can easily differ from those resulting from an experiment with hectare units.

Another example showing how units matter is the spatial scale of units to quantify 
habitat. If one measures habitat area at fine resolution, such as a grid of m2 units, the 
estimate of percent cover by each habitat type will certainly differ from the estimate on a 
grid of 1 hectare units. If one measures the length of an ecotone or habitat boundary at a 
1 meter resolution, that estimate will certainly differ from an estimate made at 100 m reso-
lution. Habitat maps produced by two government agencies will almost inevitably differ 
because different spatial units will have been used. The dependence of outcome on the unit 
of analysis is well recognized in geography as the modifiable area unit problem (MAuP).

units matter because without them we cannot determine whether the results of 
two studies are comparable. An example is the variation in results among experimental 
studies of nutrient enrichment (downing et al., 1999). To achieve comparability, these 
authors restricted meta-analysis to experiments lasting two to seven days. Experiments 
of a day or less exhibited time lags in response to nutrients, whereas experiments lasting 
more then seven days were confounded by nutrient depletion or grazing effects. units 
also matter because without them, we cannot make accurate computations. An example 
is the intrinsic rate of increase, usually denoted by the symbol r for exponential popula-
tion growth. An estimate of r is of no utility unless we know its units, whether they be 
percent per day or percent per year.

Reporting units might seem obvious, but an examination of the research literature 
reveals all too many studies in which the units cannot be determined. Table 1.2 shows 
a compilation of articles published in a single year (1990) in four journals representa-
tive of ecology. The journals and fields that they represent are as follows: ecology at the 
organismal level (Behaviour), ecology at the population level (Ecology), ecology at the 
community level (Ecology), and theoretical ecology (Theoretical Population Biology).  
A physics journal with a strong environmental focus (Journal of Physical Oceanography) 
was included for comparison. In Table 1.2 these journals are abbreviated BEH, EcOl-P,  
EcOl-c, TPB, and JPO. Each article was scored by use of units (good 5 units used 
almost always; Fair 5 units used sometimes; Poor 5 units used rarely). We tallied the 
percentage of papers that use scale either explicitly or implicitly in the discussion. A tally 
was made of the percentage of papers using theory, using experimental data, and using 
statistical tests of hypotheses. In this compilation the theoretical ecology journal stood 
out in terms of poor use of units and absence of data, even though the use of theory was 
at the same level as a physics journal. An update on this survey is left as an exercise.
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Another Look At Section 1.4

seabirds are positively associated with fish schools at the scale of 20 km of more. 
What do you think happens to this association if smaller units (say, 100 m segments 
of a transect) are used? Why?

1.5  Quantitative Reasoning Using the Principle of 
Similarity

Units are more than simply a matter of good scientific practice. They are key to quanti-
tative reasoning based on the principle of similarity. A simple example of the use of the 
principle of similarity is to say that:

 100 12 2 meters  is to  meter  as a hectare is to a square m2 2 eeter  

or, more briefly:

 
( )100 1 1 12 2m : m  hectare : m

 

Reasoning is about the similarity between scaled quantities:

 ( )100 12 2m  : m  

Reasoning is not about numbers stripped of units:

 100 1 :  

scaling arguments and the principle of similarity have long been used routinely 
in one area of biology, the allometric scaling of form and function to body size. The 
origin of allometric studies in biology is clear: d’Arcy Wentworth Thompson’s 1917 

table 1.2 research Style in Behavior (Beh), Population ecology 
(ecoL-P), community ecology (ecoL-c), Geophysical Fluid 
Dynamics (JPo), and theoretical ecology (tPB)*

BeH eCOL-P eCOL-C JPO TPB

Articles 61 116 82 104 44

Units:

 Good (%) 68.9 75.9 75.6 41.3 18.2

 Fair (%) 18.0 21.6 22.0 32.7 29.5

 Poor (%) 13.1 2.6 2.4 26.0 52.3

% of articles with:

 Scale 42.6 68.1 69.5 97.1 25.0

 Theory 32.8 64.7 58.5 95.2 93.2

 Data 70.5 69.0 69.5 27.9 4.5

 Statistical tests 91.8 95.7 87.8 12.5 2.3

*See text for source journals.
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treatise On Growth and Form (Thompson, 1961). Thompson showed that a style of 
quantitative reasoning developed by galileo and newton leads to a new understanding 
of the form and functioning of organisms. galileo reasoned from experience with build-
ings that the width of bones must increase relative to length, going from small to large 
animals (Figure 1.�). A large bone with the same proportions as a smaller bone would 
break under the weight of the animal. Thompson (1917) showed that scaling arguments 
such as this are widely applicable in biology.

Physiology is a second research area in biology in which scaling arguments are 
used routinely. scaling arguments and the principle of similarity are used to put calcula-
tion of flows, clearances, and other rates on a sound physical basis. scaling and similar-
ity are used to check whether equations are dimensionally consistent (Riggs, 196�). An 
example is the application of the principle of similarity to obtain first-order approxima-
tions for a question, such as blood flow through a tube at a known pressure, given a 
viscosity of, say, 1� times that of water.

scale arguments are used routinely in engineering research. Before being built, 
large structures are tested on smaller-scale models that have similar physical properties. 
calculations based on the systematic application of the principle of similarity are used 
to mimic, in the smaller-scale model, the same balance of forces found in the full-scale 
structure or prototype (Taylor, 197�). The rescaling is not always intuitive. For example, 
real ice cannot be used to mimic the effects of ice on small models of ship hulls in a 
tank. A much more brittle material than ice must be used in a tank to mimic the balance 
of forces of ice on a full-sized ship.

Another example, one that is especially relevant to aquatic ecology, is geophys-
ical fluid dynamics. Rapid progress in atmosphere and ocean sciences occurred when 
fluid dynamics were taken out of pipes and put into a geophysical grid (Batchelor, 1967; 
Pedlosky, 1979) with attention to time and space scales (stommel, 196�). The principle 
of similarity is routinely used to guide research in the earth, ocean, and atmospheric sci-
ences, from climate change to ocean circulation and the motion of plates floating on the 
earth’s molten interior.

The consistent use of scaling arguments in geophysical fluid dynamics is one of the 
major differences in research style between this field and ecology. In the 1990 compila-
tion (Table 1.2), one contrast that stands out is that virtually all papers in the Journal of 
Physical Oceanography use spatial and temporal scales, compared to only a quarter of the 

Galileo began with a small bone, then drew a bone three times 
longer but wide enough to ‘perform the same function which
the small bone performs for its small animal’

Here is the small bone, magnified 2.8 times in length
and 2.8 times in width. The shape is the same.

Here is the small bone again, now magnified 2.8 times in length
and 8 times in width, to match Galileo’s drawing. The change in
shape is needed to provide the strength to support the larger animal.

Figure 1.5 Allometric Scaling of Bone Size and Shape, from Galileo (1638).
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articles in a leading ecology journal with similarly high theoretical content (Theoretical 
Population Biology). This is changing as explicit treatment of scale makes its way into 
ecological journals (schneider, 2001b). For the most part this explicit treatment remains 
qualitative (e.g., comparing results from an experiment carried out at three spatial scales). 
Quantitative treatment (e.g., a ratio of two rates at the spatial scale of the study) can be 
expected to increase in the ecological literature.

The theory of measurement is another area in which scaling and similarity are rou-
tine parts of reasoning (e.g., stevens, 19�6; Ellis 1966; Kyburg, 198�). Inquiry in this 
area is directed at understanding the basis of measurement employed to understand nat-
ural phenomena. The questions asked are such things as, “What kind of measurement 
units are valid?” This line of inquiry brings out the key difference between mathematical 
reasoning and reasoning about scaled quantities, which is that the latter employs units 
and the principle of similarity.

Reasoning about scaled quantities is the route by which “scale” is incorporated 
into geophysical fluid dynamics, the allometry of body size, engineering research, mea-
surement theory, and physiology. The most important characteristic of quantitative rea-
soning in this special sense is that it uses the principle of similarity and that it is directed 
at scaled quantities obtained by measurement or by calculations from measurement. 
similarity statements apply to quantities, not to numbers, symbols, or mathematical 
expressions devoid of units. This point is important because the rules for mathemati-
cal work with scaled quantities are not the same as those for working with numbers 
or equations. This is the apple/orange principle, which says that unlike things cannot 
be compared: � apples cannot be subtracted from � oranges. The rules for subtraction 
allow � to be subtracted from � or X to be subtracted from Y, but the rules for units do 
not allow � apples to be added to � oranges. The apple/orange principle is an important 
part of reasoning about quantities.

Quantitative reasoning in this special sense differs from the meaning of “quanti-
tative” that has developed in ecology. The meaning that comes to mind is the use of 
statistical and mathematical techniques, rather than the use of scaled quantities, to 
reason about ecological processes. To check this impression I searched the university 
of california library system (8.1 million titles in 200�) for all books with the words 
quantitative and ecology in the title. The search turned up seven general works (darnell, 
1971; greig-smith, 198�; Kershaw and looney, 198�; Poole, 197�; Turner and gardner, 
1991; Watt, 1968; Williams, 196�), not counting second and third editions. All seven 
rely heavily on statistical analysis. Four of the books use a mixture of population biol-
ogy and statistical methods to make calculations and address questions at the commu-
nity and population levels (greig-smith, 198�; Kershaw and looney, 198�; Poole, 197�; 
Watt, 1968). Scale appears as a topic in three of the books (greig-smith, 198�; Kershaw 
and looney, 198�; Poole, 197�) and is a central theme in Turner and gardner (1991). 
However, none of these books treat scaled quantities and the principle of similarity as 
key to quantitative reasoning.

Books that treat scaled quantities and the principle of similarity are con-
fined largely to the topic of organism form and function, building on the tradition of 
Thompson (1917). These include Huxley (19�2), Brody (19��), vogel (1981), Pedley 
(1977), Peters (198�), schmidt-nielsen (198�), calder (198�), Alexander (1989), and 
Pennycuick (1992). Of these, vogel (1981), Peters (198�), calder (198�), schmidt-
nielsen (198�), and Pennycuick (1992) treat ecological topics. Mann and lazier (1991) 
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use scaled quantities and the principle of similarity to present basic concepts in marine 
biology. legendre and legendre (1998) present a chapter on units and dimensions in a 
book devoted largely to statistical methods.

Another Look At Section 1.5

The satirist Jonathan swift used 1:1 similarity to draw dramatic conclusions about 
lilliputians and Brogdingnags in Gulliver’s Travels. A Brobdingnag, who is as tall 
as a steeple, sleeps in a bed 20 yards (18 meters) wide and 8 yards (7 meters) off the 
floor. How does the ratio of Brobdingnag to human height (60 feet/�.� feet) compare 
to the ratio for bed width and the ratio for bed height? discuss the consequences of a 
fall out of bed for a Brobdingnag who is larger than an elephant but who has bones 
shaped like those of a human.

1.6 Quantitative Ecology
In the broad sense, the term quantitative ecology applies to any mathematical or numer-
ical treatment of the topic, whether or not units are used. For the purposes of this book, 
quantitative ecology is defined as the use of scaled quantities in understanding ecologi-
cal patterns and processes. This definition arises from two facts and two beliefs. The 
facts are that scaled quantities are not the same as numbers and that the rules for work-
ing with quantities are not the same as for either equations or numbers. The first belief 
is that calculations based on reasoning about quantities are useful in solving ecological 
problems. The second belief is that the scaled part of a quantity (units and dimensions) 
is just as important as the numerical part in reasoning about ecological processes. The 
definition rests on the idea that sound research in ecology requires scaled quantities, not 
numbers or equations devoid of units and dimensions.

“Quantitative ecology” brings to mind thickets of statistics or partial differential 
equations bristling with greek symbols. In this book the thickets are replaced by scaled 
quantities and quantitative reasoning. Equations are presented as ideas that express the 
linkage of processes measured by scaled quantities. symbols stand for biologically inter-
pretable quantities. To illustrate, the symbol for the gradient in density of N organisms is 
∇[N]. This is read as “the gradient in density of N organisms”. A gradient in density is 
readily visualized. Thus quantitative ecology becomes the study of interesting quantities, 
such as density gradients. Quantitative ecology in the sense of working with quantities such 
as animal density, primary production, or gene flow is readily learned because the goal is 
to make calculations about quantities that are of interest to ecologists. symbolic expres-
sion is emphasized because it is the language of scaled quantities. symbols (which stand for 
quantities) and equations (which express ideas about how quantities are related) allow us 
to make calculations about the biological phenomena that interest us.

This book assumes that verbal and graphical treatment of a concept is the road 
to understanding equations, which are necessary to make calculations about any quan-
tity of interest. This book takes the position that data are important but must be sum-
marized (refer back to Figure 1.1) in verbal models (sentences), graphical models, and 
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ultimately, formal models (equations). The three lines radiating outward from data in 
Figure 1.1 represent summarization skills: the act of expressing data in the form of sen-
tences, graphs, or equations. Each of the three peripheral lines represents translation 
skills: reading graphs and equations into words, drawing graphs from words or from 
equations, and writing equations from words or from graphs (refer back to Figures 1.2 
and 1.�). All six skills are used in this book. Emphasis is on verbal treatment of concepts 
that are then developed as symbolic expressions of ecological ideas about the relation of 
one scaled quantity to another.

If I use a symbol or write an equation without stating it in words (which I try not 
to do), I ask the reader to translate the symbols into words. If I use an equation with-
out drawing it (which I often do), I ask the reader to sketch the equation. These acts of 
translation will help considerably in understanding the ideas expressed in the terse form 
of symbolic notation. Facility in translation, which comes with practice, will help the 
reader considerably in his or her own research. My hope is that ecologists will become 
as effective as physiologists or oceanographers in the use of scaled quantities in their 
research. I also hope that many ecologists, not just a small number of “modelers,” will 
become able to express their ideas about scaled quantities in the form of equations.

Another Look At Section 1.6

Estimate or count the number of courses taken during your undergraduate career, 
then estimate the number that used equations to express ideas.

1.7 Tools
In ecology, it has been traditional to annex equations to appendices. The end of this 
tradition is now in sight as introductory ecology texts (e.g., Ricklefs and Miller, 2000) 
begin to use calculations based on equations that express important ideas in ecology.  
To encourage this trend, I have tried to reduce the math in this book to its essentials and 
to explain it in vivid and sufficient detail along the way. Opening the book at random 
will, more likely than not, turn up symbols and equations. The equations are merely 
the ghostly outlines of ideas that are explained in the text. The equations are present 
because they are necessary for making calculations from the ideas. In fact, the best way 
to understand the book from chapter � onward, and to understand scale and scaling 
theory, is by doing the calculations represented by the equations.

What tools are needed for learning quantitative ecology? For the material in this 
book (except the material in chapter 1�), a handheld calculator or spreadsheet will suf-
fice. The calculator must be able to take logarithms and raise a number to any power. 
A graphing calculator allows quantitative expressions to be graphed. An alternative to 
a graphing calculator is a spreadsheet program, using the function commands in com-
bination with the graphics commands. spreadsheets are easy to use, but they have the 
disadvantage that they do not display equations in standard symbolic format. like most 
computer applications, they use line-code format. To illustrate the difference, here is the 
equation expressing the relation between the perimeter of an object and the length of the 
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step used to measure the perimeter. The equation is then written in line-code format and 
spreadsheet format:

 
symbolic:

Perim
Perim

L
Lo o













1 β

 

 line code: Perim Perim_ * l/l_o ** beta ( ) ( ) ( )o 1  

 spreadsheet: $A$ * B /$a$ ^ $a$ 1 1 2 1 �( ) ( )  

The symbolic format matches what is used in textbooks. The relation of quanti-
ties can be read. such notation is essential for comparing one equation to another or 
understanding how one expression is related to another. The relation of one quantity to 
another is less easily read from the line-code format, which a computer needs to under-
take calculations based on the equation. The relation of one quantity to another is all 
but impossible to read from the line-code and spreadsheet formats. spreadsheets, like all 
statistical packages and most mathematical packages, are restricted to line-code format. 
There are, however, several programs (Mathcad, Matlab, and Mathematica) that allow 
calculation from symbolic format. Perhaps the easiest to use is MathCad, which displays 
symbolic notation that is easily edited. It translates the symbolic notation into line code 
(which the user does not see) to make calculations. Mathcad is a good learning tool 
because the user interacts directly with the symbolic code and does not need to learn 
line-code conventions. MatLab works with line code but allows a window that displays 
symbolic code to be opened. Accordingly, the user must learn the conventions of line 
code to work with Matlab. Mathematica is organized around line code but allows input 
and editing of either form. student purchase rates apply for all three mathematical pack-
ages. In deciding which tool to use with this book, the reader will need to consider past 
experience and whether it is worth investing time and money into one of these tools 
rather than a handheld calculator or a spreadsheet, with its attendant clumsiness.

1.8 Overview of Chapter Concepts and Sequence
Part I of this book presents introductory material consisting of the present chapter and 
the next chapter, which traces the increasing use of scale in ecology and then introduces 
the central scaling concepts in this book.

Part II covers scaled quantities and their use in models and quantitative reason-
ing. chapter � defines a quantity, a concept that is key to the integration of scaling into 
ecology. The concepts of zooming (sequential changes in attention) and panning (roving 
viewpoint) are introduced in this chapter. Quantities on a ratio type of scale have units, 
described in chapter �. The rules for working with scaled quantities, listed in Table �.� 
and demonstrated in Box �.2, differ from those for working with numbers. chapter � 
describes logical, rigid, and elastic rescaling of quantities.

chapter 6 introduces the concept of dimension, or similarity groups. chapters 7 
through 10 are a digression into spatially and temporally variable quantities. chapter 7 
develops the premise that ecological quantities have spatial and temporal attributes—their 
chronology, duration, location, and extent. The idea that quantitative reasoning requires 
clear and accurate notation makes its appearance in this chapter. chapter 8 explores com-
plex quantities derived from sequential measurements in space and time—fluxes, gradients, 
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divergences, and their relatives. The theme of notational clarity continues in this chapter; 
the themes of panning and zooming reappear. chapter 9 introduces a new theme, that of 
ensemble quantities, formed either by juxtaposition or by superposition. sums, weighted 
sums, and means are interpreted as scaled quantities rather than mathematical operations. 
chapter 10 extends the theme by considering deviances and variances, again as scaled 
quantities subject to increase and loss rather than as operations on numbers.

Part III develops the concept of scope, which is the door to scaling theory and the 
principle of similarity. chapter 11 applies the concept to measurements, instruments, 
quantities, and equation. The chapter describes the several types of scope diagrams 
found in the literature. chapter 12 extends the concept of scope to diagrammatic analy-
sis of research programs.

Part Iv brings together the material on quantities (Part II) and scope (Part III). 
chapter 1� takes up the relation of one quantity to another, treating equations as a way 
of making calculations based on ideas. chapter 1� briefly treats derivatives from the 
point of view of scaled quantities rather than as a mathematical exercise. The examples 
and exercises in chapters 1� and 1� are aimed at the development of skill in translation 
among verbal, graphical, and formal models expressed as equations. chapter 1� intro-
duces the theme of data equations and the general linear model, which form a bridge 
between statistical analysis (which will be familiar to most ecologists) and dimensional 
analysis (which will not). chapter 16 presents a completely personal view of the future 
of spatial and temporal scaling in ecology.

The material in this book can be used in an upper-level undergraduate or first-
year graduate-level course. Algebra and a knowledge of logarithms are required; some 
acquaintance with calculus will help, but that is not a prerequisite. A few sections of 
chapter 1� assume some familiarity with calculus. chapter 1� introduces statistical 
concepts at a level that is successfully grasped by fourth-year undergraduates who have 
taken only one course in statistics. chapter 1 and the chapters in Part II form an intro-
duction to quantitative ecology, defined as reasoning about ecological quantities, rather 
than as a collection of mathematical techniques. I routinely use material from chapters 
1, �, �, �, 1�, and 1� in a course in model-based statistics for fourth-year and begin-
ning graduate students. These chapters stand apart, to some degree, from the particular 
occasion of this book, which was to develop a guide to spatial and temporal scaling in 
ecology. That guide is introduced in chapter 2, then developed in Parts III and Iv. It is 
a guide based on concept, not a collection of recipes or techniques that currently prevail 
in the literature. It is based on working with honors and graduate students in applying 
scaling concepts in their research.

1.9 Exercises
Exercises from the first edition have been updated and new exercises have been added. 
These can be found online at www.elsevierdirect.com/companions/97801262786�1.

www.elsevierdirect.com/companions/9780126278651


                Scale in Ecology    

      We can no longer  …  cling to the belief that the scale on which we view sys-
tems does not affect what we see.  …  This is quite a different way of viewing 
the world than that which was in vogue a decade ago . 

  — J. Wiens,  Landscape Ecological Analysis , 1999   

    2.1       The Problem of Scale in Ecology 
 Ecological   concepts can be found in the writings of Aristotle, but the word  “ ecology ”  
is recent, coined by Ernest Haeckel in 1869 from the Greek words for  “ house ”  and 
 “ study ” . Scaling concepts appear early in the 20th century (Johnstone, 1908; Mercer 
and Hall, 1911), at about the same time that ecology become a recognizably distinct 
field of biology. The use of the word  “ scale ”  in ecology is more recent, dating from the 
late 1970s in biological oceanography (Smith, 1978; Steele, 1978) and from the 1980s 
in terrestrial ecology (Starr and Allen, 1982). Recognition of the problem of scale in 
ecology became widespread around 1990 (Wiens, 1989; Steele, 1991a; Levin, 1992). 

 The   problem of scale has three components. The first is that pressing problems 
in ecology are often at the scale of decades and large ecosystems. An example is habi-
tat loss, which reduces population viability when it is chronic (at the scale of genera-
tion times) and widespread (at the scale of populations). The second component is that 
measurements are usually at scales far smaller than pressing problems. Most variables, 
and in particular most rates, can only be measured in limited areas during brief peri-
ods. Remote sensing allows a few variables, such as ocean color, to be measured over 
large areas at fine resolution, but only during brief periods. Automated devices allow 
variables such as temperature or sea level to be recorded continuously over long peri-
ods at high resolution, but only in small areas. The third component of the problem of 
scale is that patterns and process prevailing at small scales do not necessarily prevail 
at larger scales. Habitat loss, for example, alters animal distribution and movement at 
local scales, whereas at larger scales it can lead to species extinction. When pattern and 
process depend on spatial or temporal scale, variables at the scale of decades and ecosys-
tems cannot necessarily be computed directly from local measurement, which includes 
almost all experimental manipulations. 

  2 
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 The   classic example of the problem of scale is loss of biodiversity. The causes of 
species extinction occur at the scale of ecosystems, whereas measurements of species 
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number are of necessity confined to smaller areas. Yet no biologist would extrapolate 
directly from local samples to calculate extinction rate at a larger scale because it is well 
known that species number does not scale directly with area. It has become increas-
ingly clear that the same principle applies to any ecological problem. Another example is 
tracking change in stock size of a fishery such as cod ( Gadus morhua ) in the northwest 
Atlantic ( Figure 2.1   ).  

   The cod fishery brought European settlement to North America, from the Vikings 
and Basques to John Cabot and the Pilgrims of Cape Cod (Kurlansky, 1997). The fishery 
extended along thousands of kilometers of coast for hundreds of years, spreading out 
from the coast and, by 1900 extending across the entire continental shelf. After World 
War II technological innovation allowed fishing vessels to pursue cod into increasingly 
inaccessible spawning grounds, until the last large fishery off Newfoundland collapsed 
in 1991. On the second day of July 1992, this centuries-old fishery was closed, putting 
30,000 people out of work. 

   During the decade before the closure, changes in stock size were tracked by 
calibrating catch statistics against annual research surveys. Commercial catch sta-
tistics cannot be used by themselves to measure changes in stock size for a vari-
ety of reasons – one of the most important is a matter of scale. Catch rates remained 
locally high, even as the stock disappeared from most of its formerly larger range 
( Figure 2.1 ), because vessels converged on local aggregations. Systematic surveys address 
this problem by random sampling from the entire stock area, resulting in accurate 
estimates in the long run. But in the short run, estimates are made from samples 
that cover a relatively small area and thus remain vulnerable to the problem of scale.  
 In   any one year a completely unbiased survey can be expected to miss large aggrega-
tions (leading to an underestimate in that year at the scale of the stock), or it can hit 
several large aggregations (leading to an overestimate that year). The latter happened 
in 1995 off the south coast of Newfoundland, when catch from just one tow (out of 
161) accounted for 87% of the biomass of fish caught during the entire survey (Brattey 
et al., 1999). This single tow increased the estimate at the scale of the stock by nearly 
eightfold. 

    Figure 2.2    shows in diagrammatic form the three components of the problem of 
scale for the problem of monitoring pollution induced variation in benthic invertebrate 
numbers against a background of natural variation in Manukau Harbor, New Zealand 
(Thrush et al., 1997).   Pollutants   are dumped at point sources (lower left part of  Figure 
2.2a ). Continued dumping and tidal mixing extended the problem to larger scales (upper 
right corner,  Figure 2.2a ). Surveys to monitor changes in benthic populations are con-
fined by cost to a limited number of samples, each covering a small area. Experiments 
to separate effects of pollution from naturally occurring changes are similarly confined 
by cost to areas far smaller than the scale of the problem ( Figure 2.2b ). At these smaller 
scales animal movement exceeds mortality ( Figure 2.2c ), and hence mortality due to pol-
lution is difficult to detect, because it is swamped by the movement of animals across the 
boundaries of survey or experimental sites.
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    2.2       Definition of Scale 
 The   word  scale  has multiple meanings, contributing to its ambiguous usage in the eco-
logical literature. The Oxford English Dictionary distinguishes 15 different meanings 
arising from two different roots. The Old Norse root in  skal,  or bowl, gives rise to fish 
scales, the scales of justice, and hence, by extension, measurement via pairwise compari-
son of objects. Using an old-fashioned scale, one can assign a mass of 110 grams to a 
bird that balances standard masses, one of 100 grams and the other of 10 grams. The 
Latin root in  scala , or ladder, gives rise to musical scales, scaling a wall, and, by exten-
sion, measuring distances by counting steps or subdivisions. Using a ladder known to be 
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        ANOTHER LOOK AT SECTION 2.1      

 State   in words an ecological problem of interest to you, then sketch a space-time 
diagram showing the space and time scales of the problem and of the measurements 
that can be made.      
2 meters in height, one can assign a height of 1/2 ladder (1 meter) to a small tree. 
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       Box 2.1        Common Technical Definitions of Scale      

 The    type of measurement scale  (Stevens, 1946) distinguishes variables quantified 
on a nominal scale (presence/absence), ordinal scale (ranks), interval scale (equal 
steps, such as degrees Centigrade), and ratio scale (equal steps and known zero, 
such as degrees Kelvin). 

  Cartographic   scale  is the ratio of the distance on a map to the distance on the 
ground. A world map of about a meter in width will have a scale of 1:39,000,000. 

  Ecological   scaling  (Calder, 1983; Peters, 1983) refers to power laws that 
scale a variable (e.g., respiration) to body size, often according to a nonintegral 
exponent. Respiration typically scales as Mass 0.75  and hence a doubling in body 
size increases oxygen consumption by 2 0.75       �      1.7 rather than by a factor of 2. 

 The    spatial scale of a measured variable  refers to the spatial resolution rela-
tive to the spatial extent (Wiens, 1989; Schneider, 1994b). Similarly, the  temporal 
scale of a measured variable  refers to the temporal resolution relative to the tempo-
ral extent. Measured variables have a minimum resolvable area or time period (res-
olution, grain, or inner scale) within some range of measurement (range, extent, or 
outer scale). For example, a tree-coring device measures changes in growth at a 
resolution of one year over a range of thousands of years. This definition can be 
extended to the  scale of a measured variable , defined as the resolution relative to 
the largest value. For example, body mass can be measured to the nearest gram 
over the range of sizes, such as from mice to elephants. 

 In    multiscale analysis  the variance in a measured quantity or the associa-
tion of two measured quantities is computed at a series of different scales. This is 
accomplished by systematically changing either the range or the resolution. The 
resolution is changed by increasing the separation (lag) between measurements or 
by increasing the averaging interval (window size) for contiguous measurements 
(Platt and Denman, 1975; Schneider, 1994b; Milne, 1997). 

 Powell   (1989) defines scale as   the distance before some quantity of interest 
changes. An example is the scale of a hurricane, defined as the distance across the 
weather system. This use of the term refers to the  scale of natural phenomena.       

 Of   these definitions, one of the most comprehensive is that  scale denotes the resolution 
within the range or extent of a measured quantity.  This definition of scale can be applied to 
the space and time components of any quantity. For example, an investigation of litter fall 
to the forest floor might have a spatial scale resolved to the area occupied by a single tree, 
within the spatial extent of a 100 hectare study area. The temporal scale of the study might 

 In   ecology the word  scale  has acquired several common technical meanings 
(Box 2.1). This diversity in technical definition, added to the diversity in origin of the 
word, works against attempts at standard definition. Instead, the word needs to be defined 
for the situation at hand and then used consistently, usually with an appropriate qualifier 
(Schneider, 1994b; Withers and Meentemeyer 1999).
be resolved to weekly measurements over a temporal extent of two years. This definition 
can be extended to any variable, regardless of its spatial or temporal resolution and range. 
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For the leaf litter example, the scale of the measured variable the operational definition 
might be the precision of gravimetric measurement of litter accumulation beneath a single 
tree during a week, within a range set by the total accumulation of mass in the study area. 

 Both   range and resolution can be altered. In the example of the investigation of lit-
ter fall, we could increase the spatial scale (extent) by enlarging the study area beyond 100 
hectares. We could also increase the scale (resolution) by sampling at a finer scale under each 
tree. The temporal scale could be increased by extending the range beyond two years or by 
making daily rather than weekly measurement. The mass scale could be altered from large 
units to units small enough to resolve the fall rate of components (branches, leaves, bark). 

 Systematically   altering either the range or the resolution leads to  multiscale 
analysis , which tells us more than analysis at a fixed scale. An early example of multiscale 
analysis comes from Greig-Smith (1952), who showed that plants are more clustered at 
some spatial scales than others. Trees may occur in small clusters scattered over the land-
scape, yet within each cluster trees may be spaced in a relatively regular way due to com-
petition. This intuitive idea of pattern can be quantified as a series of means describing 
contrasts in density from place to place. Other statistical measures can be used, such as a 
variance to measure the strength of contrast among several means. Whatever the statis-
tic chosen, it will vary with the range and resolution at which examination takes place. 
 Scale-dependent patterns  can be defined as a changes in some measure of pattern with 
change in the range (extent) or resolution (separation or unit size) of measurement. 

 Scale  -dependent processes, like scale-dependent patterns, can be defined relative to 
change in range or resolution of measurement. However, we encounter problems if we sim-
ply say that a process depends on the range and resolution of measurement. A physical 
process such as gravity acts at any spatial scale we care to consider. Similarly, a biologi-
cal process such as mutation operates at time scales from seconds to millennia. We cannot 
say that a process is restricted to any particular scale. But we can point to specific time 
and space scales at which one process prevails over another. For example, rates of change 
in animal density depend on movement if we consider small areas, but demographic rates 
(births, death) prevail over rates of immigration and emigration across the boundaries of 
larger areas. In the ocean, viscous forces prevail over gravitational forces at small spatial 
scales typical of bacterial sizes, whereas gravitational forces become prominent for animals 
large enough for us to see. A convenient definition is that  processes are scale dependent  if 
the ratio of one rate to another varies with the range (extent) or resolution (separation or 
unit size) of measurement. An example is shading of the forest understory. This process 
occurs on a regular seasonal cycle at mid-latitudes, it varies annually, and in forests it can 
change suddenly at any point due to events such as fires or deadfalls. So we cannot say that 
shading depends on time scale. But we can measure the process of shading as a ratio of two 
rates: the flux of light to the forest floor relative to the flux of light to the earth. This ratio 
will depend on temporal and spatial scale, with important effects on growth rates of plants.

        ANOTHER LOOK AT SECTION 2.2      

 Name   three variables of interest to you. For each, state the temporal resolution, 
measured as the time it takes to complete a single measurement. State the temporal 
extent, defined as the typical duration of a study in which the variable occurs.        
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    2.3       The Rise of the Concept of Scale in Ecology 
 The   idea that scale matters might now seem obvious, but in fact it is a relatively recent 
concept that is still evolving. Thirty years ago, the idea that scale matters went largely 
unrecognized in ecology. Of 28 plenary contributions covering the major ideas in ecol-
ogy at the First International Congress of Ecology (van Dobben and Lowe-McConnell, 
1975), none used the word  “ scale ”  or stated that scale matters. Most ecology texts still 
do not present the concept of scale. The first major text to do so was Ricklefs and Miller 
(2000), in which scale is a key concept listed in the first chapter. 

 Did   the appearance of scaling concepts in the research literature occur suddenly as 
a  “ paradigm shift ” ? 

  Kuhn’s concept of a paradigm shift is a useful way to interpret the annual 
meeting [1988] of the E[cological] S[ociety] [of] A[merica].  …  Every sympo-
sium or session I attended featured, included, or was structured by the con-
cepts of scale and spatial patterns. I left feeling I had observed one of those 
rare creatures of the intellectual bestiary, a paradigm shift . 

  — F. Golley, in  Landscape Ecology  3:65, 1989.   

 There   is little question that the explicit use of the concept of scale appeared suddenly and 
grew rapidly. In a digital version of the journal  Ecology  the term  “ spatial scale ”  makes its 
first appearance in the early 1970s (Marten, 1972; Wiens, 1973). Frequency of appearance 
grew exponentially in the 1980s at about 10 times the rate of growth in number of articles 
per annual volume ( Figure 2.3   ). During the 1980s the term usually appears in this journal to 
qualify a result as being found at a particular spatial scale. Since then use of the term  “ spatial 
scale ”  has continued to grow more rapidly than the number of articles per year in this jour-
nal. Use of the term  “ temporal scale ”  first appeared in this journal in the late 1970s (Erwin, 
1977) and grew rapidly in late 1980s and early 1990s. Use of both terms has increased in 
 Ecology  into the early 21st century, at a higher rate for spatial than temporal scale. 
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 FIGURE 2.3          Verbal Expression of the Concept of Scale in the Journal  Ecology .    
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 A   similarly rapid increase in treatment of the concept of scale during the 20th cen-
tury occurred within a specialized and relatively old research area, the pelagic ecology of 
seabirds. In a comprehensive reference list on the topic (Schneider, 1991), the two oldest 
articles were Collins (1884) and Murphy (1914). The number of articles increases at a 
rate of 5.5% year  � 1  from 1946 to 1980, then levels off. Explicit use of the concept of 
scale first appears in 1980, followed by exponential increase at 18.9% yr  � 1  from 1980 
to 1990 (Schneider, 2002). 

 In   terrestrial ecology, hierarchically nested levels have been used to express the 
concept that  “ scale matters ”  (Box 2.2). Publication frequency on hierarchy concepts 
thus reflects the rise in verbal treatment of the concept of scale. In a comprehensive list 
of 231 articles compiled by Jurek Kolasa (McMaster University, Hamilton, Ontario, 
Canada), the publication rate grew exponentially from 1969 to 1990 (Schneider, 2001b). 
If the 63 nonecological publications in the list are removed, publication rates grew expo-
nentially from 1973 through 1991 at 18.2% yr  � 1 .

       Box 2.2      The Concept of Hierarchy in Ecology.      

 The   concept of nested organizational levels (cell, tissue, organ, organ-
ism) has a long and productive history in biology.           

 Egler   (1942) used a nested icon to represent the idea of species 
nested within genera within families, atoms nested within molecules 
within cells, and cells within tissues within organisms within individuals. 

 E  .P. Odum (1959) extended the 
concept of level to populations and 
communities           

 Allen   and Starr (1982) combined the 
concept of nested hierarchical level with 
the idea that large scale dynamics (Upper 
level) constrain local dynamics (Levin 
1976, Levandowsky and White 1977) at a 
focal level. 

 O  ’Neill  et al.  (1986) proposed that focal levels beyond that of the organism 
arise from disparate rates of energy dissipation in ecosystems. 

 Allen   and Hoekstra (1992) and O’Neill and King (1998) distinguished the 
qualitative concept of level from the quantitative concept of scale. 

 Jagers   (2008) distinguished at least 4 criteria for defining hierarchies, noting 
that spatial and temporal scale are generally not used. Liddicker (2008) noted that 
hierarchically defined organizational complexity is at best weakly related to spatial 
scale.      

Upper level

Focal level

Lower level

Biosphere
Ecosystems
Communities
Populations
Organisms
Organ Systems
Organs
Tissues

Upper level

Focal level

Lower level

Biosphere
Ecosystems
Communities
Populations
Organisms
Organ Systems
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 Increasing   use of spatial scale reflects the rapid growth in recognition of the con-
cept in the late 20th century, but the concept of scale in ecology is far older. Early in 
the century, Johnstone (1908) questioned whether catches from a limited area could be 
used to calculate the density of organisms across the entire Irish Sea. At about the same 
time, Mercer and Hall (1911) recognized that experimental results from small areas dif-
fer from those in larger areas. Greig-Smith (1952) quantified change in plant patchiness 
at multiple scales, showing that patchiness and strength of association with soil charac-
teristics depend on spatial scale. 

 The   rise in recognition of the concept of scale depends on the way the search is 
defined. Sudden appearance followed by exponential growth was found when a particu-
lar phrase (spatial scale, temporal scale) or concept (hierarchy) was considered. The first 
edition of this book aimed at comprehensive coverage of the concept of scale in ecology, 
regardless of whether the word  “ scale ”  was used. In a reference list of 237 articles that 
considered more than one spatial or temporal scale (Schneider, 1994b), the publication 
rate per year showed sustained growth throughout the 20th century, interrupted only 
by World War II. The number of articles grew exponentially at 7.5% yr  � 1  from 1950 to 
1990 (Schneider, 2001b). 

 Associated   with this rapid growth in explicit use of the concept of scale ( Figure 
2.3 ) was the appearance of classificatory schemes (Box 2.3) in terrestrial ecology 
(Delcourt and Delcourt, 1988), marine ecology (Haury et al., 1978; Steele, 1991a), and 
evolutionary biology (Whittaker, 1960, 1977). One notable feature of the terrestrial ver-
sus marine classification scheme is that, at any given spatial scale, the time scales are 
longer in the terrestrial than the marine scheme. This reflects the persistence of habitat 
features on land compared to the fluid environment of the ocean (Steele, 1991b). In an 
evolutionary context, Whittaker (1977) defined  inventory diversity  at four spatial scales 
or levels: the point sample, the habitat, the landscape, and the region.  Differentiation 
diversity  is defined as the change in diversity between these four levels ( cf . Box 2.3). 
 Point diversity  is the number of species in a small or microhabitat sample within a com-
munity regarded as homogeneous. It is also called  internal alpha  or  subsample diver-
sity. Pattern diversity  is a differentiation diversity: the change going from one point to 
another within a habitat. It is also called internal  beta ( β ) diversity. Alpha ( α ) diversity  
is the within-habitat diversity: the number of species in a sample representing a com-
munity regarded as homogeneous (despite its internal pattern). It measures the number 
of potentially interacting species.  Beta ( β ) diversity  is the between-habitat diversity dif-
ferentiation: the change along an environmental gradient or among the different com-
munities of a landscape. It was developed by Whittaker (1960) as a measure of packing 
competing species along a gradient; it was defined as the ratio of regional (gamma) 
diversity to average within-habitat (alpha) diversity. Wilson and Shmida (1984) review 
other measures of beta diversity.  Gamma ( γ ) diversity  is the landscape diversity: the 
number of species in a set of samples including more than one kind of community.  Delta 
( δ ) diversity  is geographic differentiation diversity: the change along a climatic gradient 
or between geographic areas.  Epsilon ( � ) diversity  is the regional diversity: the num-
ber of species in a broad geographic area including differing landscapes. The distinction 
between inventory and differentiation diversity is often lost in the literature, which tends 
to use the term  beta diversity  for what Whittaker meant by gamma diversity. Whittaker 
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et al. (2001) highlight the distinction between inventory and differentiation diversity 
but advocate replacing the terms  alpha, beta,  and  gamma diversity  with the terms  local, 
landscape , and  macro-scale .

 The   growing recognition of the importance of scale in the 1980s accompanied 
major changes in the amount of data generated by electronic devices. Examples include 
high-resolution satellite imagery, acoustic surveys in the ocean, and digital recording of 
environmental data such as temperature. Digital devices typically generate continuous 
records that replace point measurements in space and time. This has been accompanied 
by rapid evolution of software that was made possible by exponential increases in cheap 
computing capacity over the last two decades. The recognition of the problem of scale 
(refer back to        Figures 2.1 and 2.2 ) and the growth of scaling concepts ( Figure 2.3 ) have 
been propelled as much as anything by technological innovation. 

 In   the literature prior to 1980 (Schneider, 1994b), the concept of scale is uncom-

       Box 2.3        Classification of Space and Time Scales in Evolutionary Biology, Terrestrial Ecology, and 
Marine Ecology        

      Evolutionary Biology    Terrestrial Ecology    Marine Ecology  

Whittaker, 1977, 

Figure 14

Delcourt and 

Delcourt, 1988

 Haury et al., 

1978 

 Steele, 

1991a 

    � 10 15   Area    Area  Time  Area  Time 

    –          
   (Mega 

Macro)     

  

    –       Mega  10 6       �      yr 

    � 10 12            

    –       Macro  10 4  – 10 6  yr  Meso  1 – 10 yr 

    –              

    � 10 9      e  diversity             

    –       Meso  500 – 10,000 yr  Coarse  days – yr 

    –       δ   diversity         

    � 10 6       γ   diversity             

    –              

    –              

    � 10 3       Micro  1 – 500 yr  Fine  1 – 10 days 

    –       β   diversity         

    –       α   diversity             

   1       m 2     Pattern         

    –       point             

    –           Micro   

    � 10  � 3              
mon, it is highly heterogeneous, and there is little evidence that one article influenced 
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another. As a group, though, these early publications introduce key concepts: the 
very different environments inhabited by large, medium-sized, and very small aquatic 
organisms (Hutchinson, 1971); concomitant effects of  “ slow ”  and  “ fast ”  processes 
(Levandowsky and White, 1977); the practical problem of choice of space and time 
scales in survey design (Wiens, 1976; Smith, 1978); the role of fluid dynamics in gen-
erating variability in marine organisms over a range of time and space scales (Haury, 
McGowan, and Weibe, 1978; Steele, 1978); linkage of time and space scales in paleon-
tology (Valentine, 1973) and terrestrial ecology (Shugart, 1978); and multiscale analysis 
(Greig-Smith, 1952; Platt and Denman, 1975). 

 The   rapid recognition of the importance of scale in the 1980s ( Figure 2.3 ) was 
followed by a proliferation of concepts. Peterson and Parker (1998; Table 22.1) list 
78 scaling concepts expressed as phrases, each with one or more sources, nearly all from 
1989 onward. These authors grouped scaling concepts into four categories: scale-depen-
dent patterns, scale-dependent processes, multiscale analysis, and a miscellaneous collec-
tion of applications and concepts. 

 Several   distinguishable themes appear in the 20th-century ecological literature. 
One theme, now widely recognized, is that patterns depend on the spatial and temporal 
scale of analysis (Piatt and Schneider, 1986; Wiens, 1989; Hengeveld, 1990). This idea 
can be traced to the early part of the century (Johnstone, 1908). It was quantified by 
Greig-Smith (1952), who showed that plant patchiness and association with soil char-
acteristics depended on the size of the area of the unit of analysis. Application of the 
concept grew rapidly in the late 1980s (Meentemeyer and Box, 1987; Menge and Olson, 
1990; Rastetter et al., 1992). 

 A   second recurrent theme appearing in the latter half of the 20th century is that 
of a  “ characteristic scale ”  at which best to study a particular pattern and its dynamics. 
This concept can be traced to geophysical fluid dynamics, where the scale of a physical 
feature (e.g., the width of the coastal upwelling strip) can be calculated from the balance 
of forces that generate the phenomenon. In the case of upwelling, the balance between 
buoyancy forces (causing lighter water to remain on top of denser water) and the 
Coriolis force (causing rotation of a water mass once it is in motion relative to the earth) 
determines the width of the strip in which upwelling will occur along a coast. Weak 
Coriolis forces (as one approaches the equator) or strong vertical contrasts in buoyancy 
(as in tropical waters heated by the sun) widen the band of upwelling water. Knowing 
the vertical buoyancy difference and the latitude, one can calculate the characteristic 
scale of the band of upwelling water along the coast. The same approach has been less 
successful in biology, something noted by Lauren Haury (from Scripps Oceanography 
Institute) in the early 1990s. In biology the classic application was the calculation of 
the  “ characteristic scale ”  of phytoplankton patches. Skellam (1951) and Kierstead and 
Slobodkin (1953) calculated the size of patches due to the opposing effects of cell divi-
sion (which amplifies existing patchiness) and eddy diffusion (which disperses patches by 
folding and stretching the fluid). Verification of this  “ characteristic patch size ”  was not 
uniformly successful (Harris, 1980), even after the addition of spatially variable (ran-
dom) growth rates (Bennett and Denman, 1985). The lack of success may be due in part 
to the interaction of biological with physical processes. In the example of phytoplank-
ton patch size, density-dependent growth rate may depend on eddy diffusivity so that 
growth balances eddy diffusivity at a shifting rather than fixed scale. When biological 
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process interact with physical processes, as is often the case, a shifting rather than 
 “ characteristic ”  scale can be expected (Levin, 1992). When fast processes interact with 
slow processes, the result is a smearing of outcome over multiple scales. An example of 
this interaction of the fast with the slow is the episodic collapse of trees, which releases 
the potential energy stored above the forest floor by slow growth of massive trunks. 
Episodic collapse tears open the canopy, leaving holes that range widely in size rather 
than being confined to a characteristic scale (Sole and Manrubia, 1995). Other examples 
are earthquake magnitudes (Bak and Chen, 1995) and epidemic frequencies (Sugihara, 
Grenfell, and May, 1990). These phenomena range in size and frequency. They lack a 
characteristic time or space scale. 

 The   absence of any single  “ right ”  scale at which to investigate a population 
or community (Levin, 1992) forces environmental biologists to adopt a multiscale 
approach. This stands in contrast to the characteristic space and time scales of many 
of the genetic, behavioral, and physiological processes investigated by organismal 
biologists. For these biologists, rates set by the mass of the organism make the choice 
of scale obvious. One can, for example, use body size to make reasonable calculations 
of running speeds in long-extinct species that can never be directly clocked (Alexander, 
1989). In contrast, there is no single obvious scale at which to compute the interac-
tion between populations of organisms. Similar problems have attended other efforts to 
use ecological data to identify a  “ characteristic ”  scale at which to carry out ecological 
research. 

 A   third recurrent theme, antithetical to the idea of a characteristic scale that is 
 “ best ”  for research, is that of fractal geometry to quantify environmental features from 
streams to coastlines (Mandelbrot, 1977). Streams and coastlines have a geometric 
dimension somewhere between 1 (a line) and 2 (a plane). The fractal dimension, lying 
between the Euclidean dimensions of 1 and 2, expresses the degree of convolution. Early 
applications (Burrough, 1981; Frontier, 1987; Sugihara and May, 1990; Williamson and 
Lawton, 1991) were followed by a comprehensive treatment (Hastings and Sugihara, 
1993). The concept of a fractal can be extended to dynamics by considering the change 
in fractal dimension over time. An example is the sea surface, which can be described as 
a two-dimensional object only on a windless day. As the wind strengthens, small waves 
build on larger waves, generating an increasingly complex structure that can no lon-
ger be described as a two-dimensional Euclidean plane. This more convoluted surface 
generated by the wind can be described as a fractal. That is, we adopt the idea that the 
sea surface has a dimension greater than a plane of Euclidean dimension two (Length 2 ), 
though less than a volume of Euclidean dimension three (Length 3 ). This geometry of 
fractal rather than integral dimensions is at first strange, but it becomes familiar through 
practice in viewing an object at more than one spatial scale. Examples of fractal objects 
range from root and branch systems of trees to habitat boundaries on land, land features 
such as archipelagos, or fluid phenomena such as the nesting of eddies within eddies in 
the atmosphere and the hydrosphere. The processes that generate these fractal shapes 
can themselves be viewed as fractal (West and Schlesinger, 1990). Fractal processes 
operate over a range of scales; they have non-Euclidean dimensions; they generate con-
voluted structure within convolutions; they exhibit episodic events within longer-term 
episodes; and these episodic events account for a disproportionate fraction of the total 

activity. Examples of fractal rates include rainfall (Lovejoy and Schertzer, 1986, 1991), 
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measles infection (Sugihara, Grenfell, and May, 1990), the frequency of turns by moving 
individuals (Frontier, 1987), and the flight speed of birds. Because of the disproportion-
ate concentration of activity into episodes, one hallmark of a fractal process is extreme 
variability (Lovejoy and Schertzer, 1991). 

 A   related theme in the late 20th century was that spatial variability, or patchiness, 
in natural populations is a dynamically interesting quantity rather than a statistical nui-
sance to be overcome (e.g., Thrush, 1991). An example of focusing on variance as a 
dynamical quantity is to consider the patch generation by tree falls in a forest (Shugart, 
1984). Further examples are rate of decay of patchiness of fish eggs (Smith, 1973), rate of 
dispersal and coalescence of zebra populations during wet and dry seasons, and the pro-
duction and erosion of prey patchiness by predators (Schneider, 1992). The time scales in 
these examples range from days to decades. The spatial scales range from several meters 
in the case of fish eggs to hundreds of kilometers in the case of coalescence of zebra pop-
ulation at water holes during the dry season. In all three examples the focus on variability 
calls attention to the spatial and temporal scale (resolution within range) of this variabil-
ity. In contrast to fractal geometry in ecology, the theme of production and loss of patchi-
ness did not developed as widely. 

 A   fourth recurrent theme is that organisms respond to environmental change at 
a range of time scales. The time scales of the response of a bird to changes in the sur-
rounding environment range from minutes (behavioral sheltering from storms), to 
months (seasonal migration), and years (lifetime fitness). The time scale of response by a 
population depends on whether the response is behavioral, physiological, or genetic; this 
in turn is often related to the time scale of the environmental change. The time scale of 
genetic response depends on generation time (Lewontin, 1965), which in turn depends 
on body size. The time scale of response of communities to change ranges from hours 
(daily variation in primary production) to millions of years (faunal changes due to vicar-
iant effects of plate tectonics on the biogeography of species). Heterogeneous capacity 
for response to the environment draws attention to the issue of temporal scale in terres-
trial (O’Neill et al., 1986) and aquatic (Harris, 1980) ecosystems. 

 A   fifth recurrent theme is that larger-scale processes interact with local processes 
to maintain diversity. The classic example is reduction in species diversity through local 
competitive exclusion (Gause, 1934). Diversity is maintained in space-limited systems 
when a disturbance opens gaps that allow species squeezed out by competition to sur-
vive globally by larger-scale patterns of recolonization (Watt, 1947; Levin and Paine, 
1974). Local diversity is maintained through a variety of larger-scale mechanisms that 
episodically reverse competitive advantages within a patch (Levin, 1981). Another 
example is larger-scale patterns of frequency-dependent predation by birds on intertidal 
invertebrates (Schneider, 1978). As a generalization, diversity arises from processes that 
act at different rates (Levandowsky and White, 1977). The idea that diversity results 
from rate heterogeneity (e.g., Hutchinson, 1961) produced a substantial literature in the 
last decades of the 20th century (Carpenter and Turner 2000; Levin, 2000). 

 A   sixth recurrent theme is that effects at one scale propagate to other scales. In a 
fluid environment, large-scale events propagate to smaller scales (Kolmogorov, 1941, 
1962; Stommel, 1963; Mackas, Denman, and Abbott, 1985) with important consequences 
for the organisms inhabiting the fluids (Dayton and Tegner, 1984; Barry and Dayton, 
1991). Our earth consists of three fluid layers: the hot and highly viscous mantle, the 
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cooler and less viscous envelope of water over nearly 70% of the globe, and the even less 
viscous envelope of atmospheric gases. Because of differences in viscosity, the time scales 
of comparably sized structures in the three fluids differ markedly: atmospheric storms last 
for days and Gulf Stream eddies last for months, whereas the Hawaiian archipelago was 
created by fluid processes in the earth’s mantle over millions of years. Even terrestrial and 
marine soils have many fluid properties (Nowell and Jumars, 1984; Kachanoski, 1988). 
Soils creep and mix under the influence of physical processes (e.g., frost heave) as well as 
biological processes (e.g., bioturbation by annelid worms). The idea that soils are fluids or 
that terrestrial organisms inhabit fluids (the soil or the atmosphere) does not commonly 
occur in ecology texts, even though fluid dynamics are as important to terrestrial organ-
isms (Aidley, 1981; Hall, Strebel, and Sellers, 1988; Rainey, 1989) as to aquatic organ-
isms. Energy propagates from large to small scales through chaotic dissipation of energy 
by fluid processes in the earth’s mantle, in the sea, and in the atmosphere. The transfers 
of energy across scales within these fluid envelopes are best understood as a function of 
space and time scale in the fluid environments inhabited by life. 

 A   variant on the theme of patterns created by the cross-scale cascade of energy is 
that mobile organisms extract kinetic energy from large-scale fluid motions to generate 
local spatial and temporal variability (Schneider, 1991). Flying or swimming animals can 
time their activity in ways that use larger-scale fluid motions to converge into an area or 
to remain in place rather than being dispersed by random fluid motions. An example 
is the seasonal increase in migratory restlessness in birds during passage of a weather 
front. Increased restlessness timed to the arrival of a high-pressure system carries migra-
tory populations southward in the fall (Richardson, 1978), reducing the costs of migra-
tion (Blem, 1980; Alerstam, 1981). Selectively timed movements of migratory birds act 
like a ratchet, extracting the kinetic energy of storm systems. 

 A   second example is selective tidal stream transport in bottom-dwelling fish 
(Harden-Jones Walker and Arnold, 1978). Increased swimming activity at one phase 
of the tide converges fish populations onto their breeding grounds (Arnold and Cook, 
1984) or juvenile feeding areas (Boehlert and Mundy, 1988). A third example is activ-
ity timed to maintain position against the dispersing effects of fluid motions. Vertical 
migration timed to the stage of the tide allows zooplankton to extract energy from verti-
cal flow gradients to maintain position against the dispersing effects of estuarine flush-
ing (Cronin and Forward, 1979; Frank and Leggett, 1983). Generation of patchiness at 
small scales by timed extraction of energy from larger-scale fluctuations focuses atten-
tion on propagation of effects across scales. 

 An   important theme in late 20th-century ecology was the application of scaling 
concepts to experimental research in terrestrial and intertidal ecosystems. The treatment 
of scale was typically in categories, usually at least three. A typical scale-sensitive experi-
ment would report results from repeating it at a fine scale, an intermediate scale, and a 
coarse scale. This approach establishes whether results are scale sensitive within a lim-
ited range but provides too little information to examine the rate of change in a result 
with change in scale. The reporting of results on a continuum of scales has a long history 
in oceanography, extending over half a century. In ecology it is more recent (Legendre 
and Fortin, 1989; Mayor et al., 2007). 

 Yet   another recurrent theme, perhaps the most important, is that major environ-

mental problems such as global warming, desertification, and acid rain arise through 
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the propagation of effects from one scale to another (Ricklefs, 1990; Loehle, 1991; May, 
1991; Holling, 1992). Consequently these problems cannot be attacked at a single scale 
of investigation (Dayton and Tegner 1984, Steele 1991a, Levin 1992).

        ANOTHER LOOK AT SECTION 2.3      

 Of   the seven or so recurrent themes noted in this section, how many have you 
encountered in either your own research or coursework?       

    2.4       Graphical Expression of the Concept of Scale 
 Graphical   expression of the concept of scale dates from 1978, when John Steele modi-
fied a diagram used in physical oceanography (Stommel, 1963). Stommel’s three-dimen-
sional diagram showed variability in sea level against axes of space and time. Steele 
(1978) used Stommel’s space and time axes to construct two novel diagrams. Steele’s first 
diagram showed the space and time scales of patchiness of phytoplankton, zooplank-
ton, and fish ( Figure 2.4   ). This  conceptual space-time (ST) diagram  showed the scales 
of named phenomena. A conceptual ST diagram first appeared in terrestrial ecology five 
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    2.5       Scale, Scope, and Power Laws 
 In   an instrumental ST diagram, the distance between two points is the  scope , or ratio 
of extent to resolution (Schneider, 1994b). In  Figure 2.4  the spatial scope of an experi-
mental study of fish on the Fladen Ground in the North Sea was roughly 100       km      ÷      0.8 
days      �      125, compared to a fish stock survey, with a spatial scope of roughly 
1000       km      ÷      20       km      �      50. The idea of scope is widely applicable. The scope of a meter 
stick with a resolution of 0.001       m is 1       m      ÷      0.001       m      �      10 3 . The scope of a survey of 
200,00       km 2  sampled with plots of 50       m by 50       m is 200,000       km 2       ÷      0.0025       km 2       �      8      �      
10 7 . A computational model representing population dynamics at half-day intervals for 
10 years has a scope of 3652 days      ÷      0.5 days      �      7304. Halving the time step doubles the 
scope to 14,600. 

 Scope   as a quantitative concept leads naturally to  scaling relations  and  power laws , 
both of which coordinate the scope of one quantity with that of another according to an 
exponent. For  isometric scaling , the exponent is, by definition, unity. An example is the 
scaling relation of organism volume to mass. 

Vol Masselephant elephant⎛ ⎞⎟
1

years later (Delcourt et al., 1983). Steele’s second diagram compared the time and space 
scales of coverage by a single oceanographic research cruise to that of an oceanographic 
program using several ships ( Figure 2.4 ). This  instrumental space-time diagram  showed 
the capacity of a particular instrument, a research vessel. An instrumental ST diagram 
first appeared in terrestrial ecology 13 years later (Firbank, 1991). 

 ST   diagrams are highly effective in comparing space and time scales of ecological 
questions to the capacity of research programs. In agricultural research, Firbank (1991) 
used an instrumental diagram to compare the space and time scales of experiments with 
those of surveys. In general, agricultural surveys extended beyond 10       km, with time scales 
of days to decades. Agricultural experiments were at the scale of a meter, with time scales 
ranging from one to 100 years. Other examples of ST diagrams compare phenomena 
to instrumental capacity for disturbance in arctic ecosystems (Walker and Walker, 1991) 
and detection of pollution effects by benthic experiments (Schneider et al., 1997). 

 A   search of the literature at the end of the 20th century turned up over 60 dia-
grams with axes showing both space and time scales. The listing excluded reprints of 
earlier diagrams, which were common, but did include modified versions of earlier dia-
grams. These graphical expressions of the concept of scale increased exponentially from 
1980 to 1998 ( Figure 2.4 ).

        ANOTHER LOOK AT SECTION 2.4      

 Sketch   a conceptual space-time diagram for a problem of interest to you, then sketch 
an instrumental diagram.       
  
Vol Massmouse mouse
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 That   is, the volume of an elephant is to the volume of a mouse as the mass of an ele-
phant is to a mouse. More generally, volume scales as mass. 

  Vol Mass� 1   (2.1b)      

 This   scaling relation holds within groups of organisms that have the same specific 
gravity. 

 For   Euclidean objects, the exponent is either an integer or the ratio of integers. An 
example is the  Euclidean scaling  of egg volume to egg surface area: 
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 More   generally, egg volume scales as surface area to the 3/2 power. 

  EggVol EggSurface� 3 2/   (2.2b)      

 In   this case the exponent is a fraction rather than unity and hence is said to be allome-
tric rather than isometric. In addition to fractions based on ratios of integers, the term 
 allometric scaling  also refers to nonintegral exponents that cannot be obtained from 
Euclidean geometry. 

 Organisms   are traditionally treated as Euclidean objects having two-dimensional 
surfaces, living in two- or three-dimensional environments. But in fact organisms have 
surfaces that are convoluted or fractal (Mandelbrot, 1977), and they inhabit environ-
ments that are fractal (Burrough, 1981; Rodriguez-Iturbe and Rinaldo, 1997). For 
 fractal scalings,  the exponent relating the scope of a quantity to instrumental scope is 
a noninteger value lying somewhere between the Euclidean landmarks of 0 (a point), 
1 (a line), 2 (a plane), or 3 (a volume). An example is the surface of a lung, for which the 
area scales in a fractal fashion with box area (resolution) of the grid used to measure it. 
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  (2.3a)

      

 More   generally, lung surface area scales as box area to the  – 0.17 power. 

  LungArea BoxArea� �0 17.   (2.3b)      

 Intuitively  , the area of a lung has a fixed value, no matter how we measure it. But in 
practice, measured area will depend in a systematic way on resolution; hence the most 
informative way to quantify area is to use a power law to describe the rate of change 
with change in the size of the boxes used to make the measurement. The exponent is 
estimated by measuring lung area at several different box widths, then regressing area 
against box width on a log-log scale. Doubling the box size will decrease the measure-
ment of lung area by 2  � 0.17       �      89% because detail disappears as the box size increases. 
The lung has a  fractal dimension  of  D f        �      2      �      ( � 0.17)      �      2.17. It has a surface more 
convoluted than a flat surface ( D       �      2) but not so convoluted as to completely fill a vol-

ume ( D       �      3). Fractal dimensions lie between Euclidean dimensions. 
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 These   examples were drawn from body size scaling, but they also apply to spa-
tial and temporal scaling.   An   example of isometric spatial scaling is the 1:1 scaling of 
biomass of marsh grass to marsh area (because marsh grass reaches a fairly constant 
height). An example of Euclidean scaling with an allometric exponent is the scaling of 
marsh grass volume to marsh grass area (because marsh grass reaches a fairly constant 
height at a fairly constant density). An example of fractal scaling is length of the mean-
dering channels that alternately flood and drain a tidal marsh. An early example of frac-
tal habitat structure comes from Pennycuick and Kline (1986), who used dividers set 
at several step lengths to measure the coastline length inhabited by nesting eagles on 
Amchitka Island, Alaska. The scaling relation is: 
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  (2.4a)

      

 An   equivalent expression is: 

  CoastLength StepLength� �0 7.   (2.4b)      

 The   strongly convoluted coastline of Amchitka had a fractal dimension of 
 D f        �      1      �      ( � 0.7)      �      1.7, which is high compared to the typical coastline dimension of 
 D f        �      1.3 (Rodriguez-Iturbe and Rinaldo, 1997). 

 Equations   2.1 and 2.2 are based on different measurement operations than 
Equations 2.3 and 2.4. The former equations compare two objects: elephant versus 
mouse and albatross versus petrel. Equations 2.3 and 2.4 compare  iterative measure-
ment  of the same object: successively coarser scale measurement relative to finer scale 
measurement. The distinction between the two types of measurement will be a recurrent 
theme throughout this book. Noniterative measurement is used to quantify similarity 
across objects. This form of measurement rests on  principle of similitude , which refers 
to similarity across objects, as in Equations 2.1 and 2.2. Reasoning based on this prin-
ciple has a long history in biology, going back to Thompson’s 1917 treatise  On Growth 
and Form  (Thompson, 1961). It has an even longer history outside biology, going back 
to Galileo. Reasoning based on iterative measurement is more recent, coming into use 
after 1950. Iterative measurement quantifies  self-similarity , which is the degree to which 
a small part of an object resembles a larger part. Iterative measurement is essential for 
describing complex shapes, from lung areas to coastlines. 

 Both   iterative and noniterative scaling relations result in power laws. A  nonitera-
tive scaling relation  equates the scope of one quantity  Q i   to that of another quantity  Y : 
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 where   scope is defined for any object (numerator values) relative to a reference object 
(denominator values). This scaling relation is rearranged to: 

Q
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 If   we take the ratio of  Q ref   to  Y ref    β    as a fixed value  k , Equation 2.5b becomes a power 
law that can serve as a  scaling function . 

  Q k Y� � β
  (2.5c)      

 The   scaling relation (Eq 2.5a) is sometimes abbreviated to: 

  Q M M( ) � β
  (2.5d)      

 This   expression implies the presence of the constant  k , which as we have seen, contains 
the reference values appearing in the denominator on either side of Expression  2.5a . 
Expression  2.5d  is more general than the power law, while the power law is more infor-
mative because it includes the constant  k  (Gould, 1971). Because it is more informative, 
the power law allows computation of  Q  from any value of  Y . 

 Noniterative   scaling includes the scaling of a quantity to a measurement opera-
tion, not to another quantity. A  noniterative measurement relation  is defined as one that 
equates the scope of a quantity to the scope of measurement operation, such as the use 
of different grid sizes. An example of noniterative measurements is counting the number 
of species ( Q ) in quadrats of different size  A . 
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 The   distinction between Equations 2.5a and 2.6a lies in the fact that  A/A ref   is 
defined by a measurement operation:  A i   is a set of fixed multiples of  A ref .  The reason for 
this distinction is that area in Equation 2.6a is measured without error. In contrast, area 
in Equation 2.5a is measured with error.   This distinction will reemerge when we use 
regression (Chapter 15) to estimate scaling exponents. The noniterative measurement 
relation can be modified to a scaling function. 
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 If   we take the ratio of  Q ref   to  A ref   β    as a fixed value  k , the measurement relation 
(Equation  2.6b ) can be transformed into a power law scaling function: 

  Q k A� � β   (2.6c)      

 Box   2.4 demonstrates the first use of a noniterative measurement relation (Equation 
2.6a) to estimate a power law (Equation 2.6c) in ecology. In this example the quan-
tity of interest is  Nsp  the number of species. This was scaled to quadrat area  A . 
Box 2.4 demonstrates an early use of a noniterative measurement relation to estimate a 
power law. In this example the quantity of interest  Nsp  was scaled to quadrat area  A , 
for quadrats of different size. Each quadrat is of fixed size set by a defined protocol and 

each is measured once.
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       Box 2.4        First Use of a Scaling Relation and Power Law in Ecology      

 The   measurement relation is 
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 For   herb- Pinus  wood (Arrhenius, 1921), a decimeter quadrat contained, on aver-
age, 4.8 species; a meter quadrat contained an average of 33 species. For these val-
ues, the scaling relation is 
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 Taking   the logarithm of both sides of the equation, we have: 

  log( ) log( )33 4 102/ � β̂       

 And   hence the estimate of   β   is: 

  
ˆ log( ) log( ) .β � 	 �33 4 10 0 45822/       

 The   scaling parameter  k  (Equation 2.6c) is: 

  k ref ref� � �Q A β
      

 The   estimate of the parameter  k  is: 

  
ˆ ( )( . ) ( ) ( . )k � � � � �4 species m species m⋅ ⋅ ⋅ ⋅0 1 4 102 2 2 0 4186 2β β

      

  k̂ � 33 2 species m⋅ β
      

 The   power law is: 

  Nsp k A� � β
      

 For   herb- Pinus  wood, the power law is: 

  Nsp A� 33 0 4582 .
      

 This   power law cannot be extrapolated to areas beyond 1       m 2  (Gleason, 1922).      
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 Scaling   relations can be iterative as well as noniterative. An  iterative scaling rela-
tion  is based on repeated measurement of the same object. Iterative scaling relations 
equate the scope of a quantity  Q  to the scope of another quantity  Y , where  Q  and  Y  are 
both measured at a series of resolutions ranging from  L o   to  L . 
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 Here  ,  Q ( L )      ÷       Q o  ( L o  ) and  Y ( L )      ÷       Y o  ( L o  ) are the ratios of the measurements at several 
resolutions. An example is the scaling relation of river discharge  Q ( L ) to river length 
 Y ( L ) at varying step sizes  L . This scaling relation is rearranged to: 
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 Taking   the ratio of  Q o  ( L o  ) to  Y o  ( L o  )   β    as a fixed value  k , Equation 2.7b becomes a power 
law scaling function: 

  Q L k Y L( ) ( )� � β   (2.7c)      

 Iterative   scaling includes the scaling of a quantity to a measurement operation, 
not to another quantity.  Iterative measurement relations  equate the scope of a measured 
quantity to a set of fixed multiples of a base unit, defined by a measurement protocol. 
An example of an iterative measurement relation is recording the perimeter of a lake, 
using different step lengths  L . 
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 The   scaling relation can be modified to a scaling function: 
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 Taking   the ratio in parentheses as a fixed value  k , Equation 2.8b becomes a power law 
scaling function:   

  Q k L� � β   (2.8c)      

    Table 2.1    lays out the consequences of iterative and noniterative measurement for 
simple and complex phenomena. For simple phenomena such as dinosaur running speed 
in relation to leg length, we already know from living animals that the dynamics of run-
ning speed depend more on leg length than on the complexities of leg shape. Consequently, 
we measure the straight-line distance across the length of the bone. We can then relate this 
quantity to velocity compared across animals via a scaling relation (Equation 2.5a) or a 
scaling function (Equation 2.5c). Because we are using a scale based on straight-line dis-

tance, we can compute the length of the leg bone in any units we choose. Iterative measure-
ment, such as measuring the bone length in units of mm, then in units of cm, is not needed. 
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 FIGURE 2.5          Number of Power Laws per Year. Redrawn from Schneider (2001b). (a) Species area curves; (b) Body size 
allometry; (c) Other scaling relations.    

 Table 2.1           Relation of Iterative and Noniterative Measurement to Simple and to 
Complex Phenomena  

     Phenomenon: 

Example: 

Geometry 

Dynamics 

 Simple 

Dinosaur Leg Length: 

Euclidean 

Linear 

 Complex 

Coastline Length: 

Fractal 

Nonlinear 

   Noniterative measurement    OK  Observers cannot agree 

   Iterative measurement    Not needed  OK 
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 For   fish habitat in a coastal nursery, we are interested in the complexity of coast-
line length because indented coastlines provide shelter from predators. If we use noniter-
ative measurement, we will obtain different values of coastline length, depending on the 
unit size. We cannot compute the length at some scale of interest, given length at some 
other scale. To characterize coastline complexity, we need to use iterative measurement. 
This will allow us to quantify complexity as the rate of loss of detail with change in 
ruler size. This rate of loss, summarized as the exponent of a scaling relation (Equation 
2.8a) or scaling function (Equation 2.8c), characterizes coastline complexity. It allows us 
to compute a complex quantity such as coastline length at any scale. 

 Until   recently, power laws and scaling relations in ecology came mostly from the 
literature on body size allometry (based exclusively on noniterative measurement) and 
species area curves (based on either iterative or noniterative measurement). Rosenzweig 
(1995) discussed 48 articles containing 55 species-area curves for which the exponent 
can be determined. In this list the number of power laws grew exponentially from 1920 
to 1980 ( Figure 2.5a   ). In organismal biology, Peters (1983) listed 251 articles containing 
1050 power laws that scale organism form or function to body size. Growth in the num-
ber of power laws ( Figure 2.5b ) was exponential from 1930 to 1980. 

 Power   laws other than species-area curves or body size allometry appeared spo-
radically in ecology from 1940 to 1980, then grew exponentially at 16% yr  � 1  after 
1980 ( Figure 2.5c ). Most of these power laws describe habitat complexity (O’Neill 
et al., 1983; Morse et al., 1985).  Figure 2.5c  shows only those power laws for which the 
constant  k  is reported or can be determined. The number of power laws would be much 
greater if it included scaling relations or measurement relations where only the exponent 
was reported. 

 Power   laws may well be more common than is evident from the published lit-
erature. In normal practice, little or no effort goes toward identifying the underlying 
scaling or measurement relations (Equations          2.5a, 2.6a, and 2.7a ). A linear scaling 
(exponent      �      1) is often used in regression estimates of the scaling of one variable to 
another, even though a linear scaling may not be appropriate. Power law relations are 
easily overlooked because of overly facile application of linear regression. Are there 
guidelines for when to expect a linear versus a power law relation between two vari-
ables? In general, one expects a linear relation if the process linking them is additive 
( Table 2.2   ). That is, we expect a linear relation if an increment of change in one vari-
able results in a constant increment to the other. For example, the biology of somatic 
growth leads us to expect each increment in mass of an organism to be matched by a 

 Table 2.2          Type of Linkage in a Functional Expression  y       �       f ( x ). 
Linkage depends on whether  x  and f( x ) are additive (taking a 
difference) or multiplicative (taking a % or ratio)  

    x    f(x)   Type of Linkage  Example 

   Additive  Additive  Linear  Equation 2.8 

   Additive  %  Exponential  Equation 2.9 

   %  Additive  Logarithmic   —  

   %  %  Power  Equation 2.10 
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fixed increment in volume. The result is a linear relation between mass and volume and 
volume of an organism: 

  Mass k Volume� � 1   (2.9)      

 We   expect an exponential relation ( Table 2.2 ) if an increment of change in an inde-
pendent variable results in a fixed percentage increment in the dependent variable. For 
example, the biology of unrestricted population growth leads us to expect each incre-
ment of time to result in a fixed percentage increase in population numbers. The result 
is an exponential relation between variables. For unrestricted population growth, the 
relation of mice numbers to time is: 

  Mice Mice et t
k t� ��

�
0   (2.10)      

 We   expect a logarithmic relation ( Table 2.2 ) if an increment (as a percentage) in an 
independent variable leads to an additive increment in the dependent variable. Finally, we 
expect a power law relation ( Table 2.2 ) if an increment (as a percentage) in one variable is 
matched by an increment (again as a percentage) in another variable. An example is allome-
tric growth in length of a body part (leglength) relative to the size (volume) of an organism. 
If the percentage change per unit time of a particular body part is fixed but does not match 
the (fixed) percentage change in overall growth rate (increase in volume and hence mass), 
we expect a change in proportion of that part to the whole, as described by a power law. 
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 This   expression says that if leg growth ( k Leglength  ) exceeds volume growth ( k Vol  ), the 
exponent of the resulting power law exceeds a value of one: the organism becomes more 
leggy as it grows. Conversely, if leg growth fails to keep pace with volume growth (expo-
nent less than unity), an organism becomes less leggy over time. 

 Power   law relations can arise in many ways, of which the body size allometry 
example is only one. It turns out that power laws result from antagonistic rates that act 
episodically at different frequencies or time scales. This view of the origin of power laws, 
called  complexity , is well known in physics. Applications are now starting to appear in 
biology (Schneider, 2001b). Power laws that arise from the lurching dynamics that gen-
erate complex phenomena have the potential to become the theoretical basis of spatial 
and temporal scaling in ecology (Chapter 16).

        ANOTHER LOOK AT SECTION 2.5      

 Write   a scaling relation (Equation 2.5a) for two quantities of interest to you. Is the 
exponent an integer, the ratio of integers, or a number estimated from data?       
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    Defined Concepts and Terms for Review and Future 
Reference 
   Here is a list of key concepts that are explicitly defined  in this chapter. For each con-
cept, reflect briefly on its definition and context. You may wish to write down page 
numbers so you can use this list for later reference.

     ____ analysis, multiscale  
    ____ complexity  
    ____  diversity at four inventory levels: 

point, alpha, gamma, epsilon  
    ____  diversity at three differentiation 

levels: pattern, beta, delta  
    ____ measured variable, scale of  
    ____ measured variable, spatial scale of  
    ____  measured variable, temporal scale of  
    ____ measurement, iterative  
    ____ measurement relation, iterative  
    ____ measurement relation, noniterative  
    ____ measurement scale, type of  
    ____ natural phenomena, scale of  
    ____ patterns, scale dependent  
    ____ processes, scale dependent  

    ____ power laws  
    ____ principle of similitude  
    ____ space-time diagram, conceptual  
    ____ space-time diagram, instrumental  
    ____ scale, cartographic  
    ____ scaling, allometric  
    ____ scaling, ecological  
    ____ scaling, Euclidean  
    ____ scaling, fractal  
    ____ scaling, isometric  
    ____ scaling, noniterative  
    ____ scaling function  
    ____ scaling relation, iterative  
    ____ scaling relation, noniterative  
    ____ scope  
    ____ self-similarity                 
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II



Quantities

As with Aristotle, the Schoolmen considered things as more and less than each 
other, but not in terms of multiples of a definite quantity such as inches, degrees 
of arc, degrees of heat, and kilometers per hour. The Schoolmen, paradoxically, 
were mathematicians without being quantifiers.

—A. W. Crosby, The Measure of Reality, 1971

3.1  Synopsis
Many of the uses of scale in ecology are connected to the concept of scaled quantities, 
which link theory to measurement via scaled numbers. Ecologists, like all natural scientists, 
work with definable quantities, not with numbers divorced from units of measurement. 
A quantity consists of a name, symbol, procedural statement, numbers, and units of mea-
surement. The rules of clear communication apply to the procedural statement, name, and 
symbol. The procedural statement should permit replication of the measurements. The 
name should convey a sense of the quantity. The symbol should be unique yet lend itself to 
easy visualization of the quantity for which it stands.

Units occur on four types of measurement scale: nominal, ordinal, interval, and 
ratio. The mathematical rules that apply to scaled quantities are more restrictive than 
those that apply to numbers.

Graphs must show the name and units of quantities, in addition to the plot of 
numbers. Showing the symbol connects the graph to procedural statements or equations 
in the surrounding text.

3.2  Definition of a Quantity
Like all natural scientists, ecologists work with definable quantities, not with numbers 
or mathematical abstractions divorced from measurement (Riggs, 1963). Ecologists 
work with quantities that have names and scaled values: a density [N] of 5000 animals 
per hectare, or an increase rate r of 4% per year, or a mutation rate  of 106 per gener-
ation. Our interest is in physically or biologically interpretable quantities, not the math-
ematical manipulation of symbols. When told that dx/dt means
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the physicist Kelvin exclaimed, “does nobody know that it represents a velocity?” 
(Hart, 1923).

Unfortunately, equations in ecological journals are too often presented as abstrac-
tions lacking any biological interpretation or statement of the units and dimensions of each 
symbol. As a result, the equation is incomprehensible; one quantity cannot be distinguished 
from another, and there is no way to know whether the results are comparable to previous 
results. if units and scale are absent from a theoretical report, there is no way to know the 
scale at which testing is appropriate. numbers and symbols with no units force us to guess 
whether two studies are comparable or to guess what scale of measurement to use in testing 
a theoretical result.

A full definition of each quantity is important because the rules for working with 
quantities differ from the rules for working with numbers or algebraic symbols. One 
can take the logarithm of the number 4, but one cannot take the logarithm of 4 mosqui-
toes. Adding A to B makes sense if A and B are numbers, but adding A  4 cabbages to 
B  8 kingfishers makes no sense. nobody would add 4 and 20 blackbirds to the num-
ber   3.14, but the expression N   makes it all too plausible unless quantities are 
defined and distinguished from numbers.

A fully defined quantity has five parts:

l A name
l A procedural statement that prescribes the conditions for measurement or 

calculation from measurements
l A set of numbers generated by the procedural statement
l Units on one of several types of measurement scale
l A symbol that stands for the set of scaled numbers

The units apply to all the numbers, so a convenient way of representing a quantity is to 
arrange the numbers into a vector, which is a sequence of numbers inside brackets. The 
symbol stands for the product of the units and the vector of numbers. Here is an example:

Procedural Statement Name Symbol Numbers Units

Gravimetric mass,  

at pupation Pupal mass PM

280

250

300



















Milligrams

An adequate “Methods” section in a scientific report should contain these com-
ponents. Unfortunately, practice is otherwise: Completely defined quantities are not the 
rule in the ecological literature. Symbols are often absent from experimental or field 
studies, whereas units are rarely used in theoretical journals (see Table 1.1 in Chapter 1).  
This contributes to the communication gap between theoreticians and field ecologists 
noted by Kareiva (1989). This gap could be bridged by better use of quantities, defined 
as symbols in reports of field research and treated as scaled quantities in theoretical 
reports. This gap is closing with the appearance of texts (e.g., Case, 2000) that make 
effective use of scaled quantities that underlie ecological theory.

3.3  Names and Symbols
Quantities should be read as names (“per capita birth rate”), not as symbols ( B N/ ), 
because a name conveys more meaning. Symbols appear in mathematical expressions for 
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the sake of clarity and in prose for the sake of preciseness, but when encountered symbols  
should still be read as names. Facility in reasoning with quantities comes in associating a 
name with a symbol, with a mental image of the biology, and with some typical values. 
For example, the quantity “per capita birth rate” is associated with a symbol B N/  and 
with an image of the quantity, such as chicks jumping out of the nest of a pair of adult 
birds each year. name, symbol, and image are further associated with a typical value 
obtained from calculation:

 
B N e/ log (  5 chicks / 2 parents)/ year 92% year  

Skillful choice of symbols aids in understanding and reasoning with quantities. 
Mnemonic symbols are easier to remember and use than something arbitrary. A fisheries 

scientist, John Pope, has suggested that easily remembered icons (0|   number of trees) be 

used rather than letters (N  number of trees). This reduces the burden of recalling the 
meaning of the symbol, but until recently it was impractical because of limits on typeset-
ting of unusual symbols. The graphics capability of computer-based typesetting programs 
should make this increasingly practical. Coordination between symbols also aids recall. 
An example is x, y, and z for position in space relative to three axes. Another device that 
aids recall is to add a diacritical mark to familiar symbols rather than selecting a new 
symbol. An example is the use of the symbol A  rather than mA to designate the mean 
value of the surface area of lakes in a district. The symbol A  emphasizes that the quantity 
is an area, whereas the symbol mA obscures the sense of the quantity, which is area.

Another example of diacritical marks, common in physiology, is to place a dot 
over a quantity to represent the time rate of change in that quantity. The instantaneous 
time rate of change in the quantity Q is:

 
Q dQ dt / ( )means equal by definition“ ”  

This notation is due to newton, who used a dot over a symbol to denote the time rate of 
change in the quantity represented by the symbol. The dot notation results in a simpler 
symbol, which is easier to read in an equation than the more complex symbol dQ/dt. in 
applied mathematics, newton’s compact notation works well because it draws attention 
to the quantity Q rather than the mathematical operator d/dt. in a similar way, compact 
notation for the spatial gradient Q in the quantity Q works better in applied settings 
than the equivalent but more complex symbol dQ/dx, where x is location along a line.

in principle one can use any symbol for a quantity, but in practice conventional 
symbols are preferred because they allow rapid recognition of familiar quantities.  
A conventional symbol such as g for acceleration in the earth’s gravitational field takes 
on meaning through frequent and consistent usage. Unfortunately, there is little consis-
tency in use of symbols in ecology. There is little enough consistency within an area 
of ecology, even less consistency among areas (Krebs, 1972), and frequent conflict with 
conventional use outside ecology. For example, in demography the subscript x con-
ventionally means “time since birth of a cohort”; this conflicts with the equally con-
ventional use of x to mean “horizontal location in a three-dimensional xyz coordinate 
system relative to the earth.” This conflict creates notational problems for spatially dis-
tributed population processes. When notation conflicts, precedence tends to go to the 
more widely used set of symbols.
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The abstract language of symbols and scaled quantities is, at the outset, as incompre-
hensible as any new language. i am convinced that this abstract language is worth learning 
because it allows calculations about quantities of interest and importance, like the spread 
of Africanized bees or the productivity of the sea. This language is easier to learn than 
other languages because the vocabulary is smaller, with restricted definitions. Still, it is for-
eign (at first) and highly abstract, so we deserve a dictionary. With a dictionary it is only a 
little effort, rather than a lot of leafing through pages of text, to find the forgotten mean-
ing of a symbol. if the dictionary is serving its purpose well, it becomes less necessary with 
time because the symbol becomes tied to a name and a concept. The reader is encouraged 
to write out symbols with the name and units, in a list at the end of the book. Readers flu-
ent in more than one language may want to write the names in more than one language. 
Be sure to list diacritical marks separately, as these can be placed over any symbol.

3.4  Procedural Statement
The procedural statement must supply enough information so that another person could 
use it to obtain comparable numbers on the same scale. The statement should include 
the conditions for measurement. An example might be defining how we determined the 
end of a larval stage. This would be important in taxonomic groups such as fish, which 
do not end larval life with the dramatic pupation found in insects. The statement of 
measurement operations might be simple, referring only to standard units such as kilo-
grams, meters, and seconds. The statement might include complex procedures, such as 
those of Winberg (1971) for calculating the production rate of a population.

Procedural statements are typically a mixture of measurement operations and calcula-
tions. Philosophical treatments of the topic of measurement (Campbell, 1942; Cushman, 
1986) distinguish directly measured quantities from quantities derived by calculation from 
“laws.” This distinction misses the practical impact of modern electronic instruments, 
which use empirical equations to report one quantity (such as salinity) calculated from 
direct measurement of a different quantity (such as electrical conductivity). Measurement 
devices with computer chips report scaled quantities that are a mixture of gauge readings 
and calculations. in light of this incorporation of calculations directly into the measurement 
device, it is especially important to report exactly how scaled numbers were obtained.

Another component of the procedural statement that will prove important in multi-
scale analysis is recursive measurement. To give an example, we can measure lake periph-
eries recursively at multiple scales of resolution. A recursive method begins with a single 
unit of measure, computes periphery at that scale, repeats this with a new unit of measure 
on the same lake, and continues at successive unit sizes to establish the rate of change in 
periphery with change in unit of measure. The mode of recursion matters. if we overlay 
an aerial photograph of a lake with grids of different resolution to obtain periphery at 
each scale of resolution, we will obtain a different measure than if we swing a pair of 

Another Look At Section 3.3

define a measurable quantity of interest to you (name, symbol). now define a new quan-
tity by putting a dot over the symbol to represent the time rate of change in the quantity 
under the dot. State as concretely as possible how you visualize this new quantity.
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dividers (set at different step lengths) along the periphery. if we swing a pair of dividers 
outward from the lake boundary at each step, we will obtain a different measurements 
than if we swing the dividers inward at each step. if measurement is recursive, based on 
repeated measurement of the same object, it is important to state the procedure.

3.5  Types of Measurement Scale
Stevens (1946) defined four types of measurement scale: nominal, ordinal, interval, and 
ratio scales. The outcome of a nominal scale measurement is a yes or no decision about 
whether an object belongs to a class. An example is whether a species occurs in an area. 
The outcome of ordinal scale measurement is a ranking: first, second, third, and so on. 
Comparison of objects produces a ranking, with no information about the magnitude of 
the difference between adjacent ranks. An example is the order of arrival of new spe-
cies on a defaunated island. The outcome of interval scale measurement is the number of 
units that separate the objects of measurement from one another. An example is the body 
temperature of an animal in degrees Centigrade. There is no natural zero point, so the 
temperature of one animal cannot be said to be twice that of another on this scale. Clock 
time and degrees of longitude are also on interval scales. in contrast, ratio scale measure-
ments have a natural zero point. The outcome of measurement on this scale is the number 
of units that separate the measurement from the zero point. The Kelvin temperature scale 
has a zero point (no thermal energy of molecules), and so on this scale the body tem-
perature of an animal can be said to be 98% of that of another. Similarly, the number of 
organisms of one species in a quadrat can be said to be one-tenth that of another species, 
the length of one animal can be said to be three times that of another, and the intrinsic 
rate of increase of one population can be said to be 1.5 times that of another.

The procedural statement determines the type of measurement scale. For exam-
ple, if the temperature in the nesting burrow of a shearwater is recorded in degrees 
Celsius, the result is an interval scale quantity with interval scale units of degrees °C. 
Measurements can be converted to a ratio scale, degrees Kelvin, by adding 273° to each 
reading.

A variable quantity typically consists of a set of values generated by the proce-
dural statement. The numbers are gathered together inside brackets to form a vector. 
The same unit applies to all the numbers, so it is conveniently placed outside the brack-
ets rather than being repeated inside the brackets. The vector of outcomes is rewritten as 
the product of a vector of numbers and a unit, such as °K:

Name Symbol Outcomes  Numbers . Units

Burrow 

temperature bT

284 1

283 8

285 2

284 1

283 8

285 2

.

.

.

.

.

.

  K

  K

  K













































· °K

Another Look At Section 3.4

Write a procedural statement for a quantity of interest to you. is it complete enough 
that someone else could use it to generate measurements comparable to yours?
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Here are the same measurements, this time on the original interval scale:

Name Symbol Outcomes  Numbers . Units

Burrow 

temperature bT

11 1

10 8

12 2

11 1

12 8

12 2

.

.

.

.

.

.

  C

  C

  C













































· °C

An ordinal scale quantity results from ranking objects by direct comparison of 
objects or by comparison of more detailed measurements. An example is a sequence of 
five population counts that are thought to be accurate to rank, and no more:

Name Symbol Outcomes  Numbers . Units

Population size Nordinal 

third

second

first

fourth

fifth





































3

2

1

4

5
























· Rank

The five outcomes have been ranked on the basis of more detailed counts, then gathered 
together in vector form, with the numbers inside the brackets, and a unit called a rank 
has been attached to the collection. Some might claim that a quantity must be on at least 
interval scale, if not on a ratio scale. But there is no logical justification for this claim 
(Russell, 1937, p. 183).

A nominal scale quantity results if only presence or absence is recorded. An exam-
ple is the presence of insect larvae in three quadrats. The result of measurement is a 
quantity with nominal units (presence or not) on a nominal scale. Each outcome can 
be written as the product of a unit (presence) and a binary number: 1 for presence, 0 
for presence. The measurement outcomes from the three quadrats are again gathered 
together in vector form inside brackets. This vector of outcomes can be rewritten as the 
product of a unit (presence) and binary numbers:

Name Symbol Outcomes  Numbers . Units

Larval presence Nnominal 

present

absent

present







































1

0

1

· Presence

A quantity on a nominal scale can consist of several categories. The result is a mul-
tinomial rather than a binomial quantity. These multinomial quantities can be decom-
posed into binomial quantities. The outcomes can be written in logical categories: A  B 
for the presence of species A and B in the first quadrat, B  C for presence of species B 
and C in the second quadrat, and so on:

Name Symbol Outcomes  Numbers . Units

Species

A B C

Larval presence Nmultinominal 

A B

B C

A C













































110

011

101

· Presence
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The vector of outcomes (A  B, B  C, A  C) has here been rewritten as the product 
of binary numbers and units (presences).

3.6  Graphing Scaled Quantities
A graph of a scaled quantity must contain three of the five components: name, units, 
and numbers. A fourth component, the symbol, adds to the presentation by linking the 
graph to the text. A convenient way to include these components in a graph is to list 
the name of the quantity along the axis, then list the symbol and units, connected by an 
equality sign. Figure 3.1 shows this format, which links the quantity in the graph to a 
procedural statement in the text.

Listing the symbol is also a useful way of showing any rescalings of the axis. 
Logarithmic rescalings arise naturally in multiscale analysis because of the emphasis on 
proportional rather than additive changes. The three most common forms of logarithmic 
scaling are doublings (base 2), e-fold changes (base e), and tenfold changes (base 10).  
A logarithmic scale of numbers can be used as labels, as shown in Figure 3.2.

A logarithmic axis can also be labeled with the corresponding exponents, as shown 
in Figure 3.2. One of the common failings of graphical presentation of quantities on a 
logarithmic scale is that the base of logarithms is not reported. if only the exponent is 
reported, without the base, we have no way of knowing whether the exponent 3 rep-
resents 23, e3, or 103. The solution to this common defect is to use the symbol to show 
exactly how the rescaling was done, as in the example of log2(A/cm2) in Figure 3.2. The 
advantage of this notation is that it allows us to stick with our intention of working 
with scaled quantities rather than numbers stripped of units. The quantity A has been 
divided by the base units, which reduce it to a unitless number. The logarithm of this 
ratio can then be taken (the operation of taking the logarithm of a unit such as cm2 is 
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FigUre 3.1 Fully Labeled Graph. the name of quantity, a symbol, and units are shown for both response 
(dependent) and explanatory (independent) variables.

Another Look At Section 3.5

For each of the four types of measurement scale, define (using name symbol and pro-
cedural statement) a quantity of interest to you.
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not defined). This illustrates an important principle described in the next chapter, which 
is that the rules for working with units and scaled quantities are not the same as the 
rules for working with numbers.

Defined Concepts and Terms for Review and  
Future Reference

_____ fully defined quantity
_____ nominal, ordinal, interval, ratio scale measurements
_____ recursive measurement

R
es
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20 21 22 23 2524

Area A (cm2)

1 2 4

Area A (cm2)

8 16 32

Area A ( log2 [A/cm2] )

0 1 2 3 4 5

FigUre 3.2 three Different Ways to Label Logarithmic Axes Fully.

Another Look At Section 3.6

Redo Figure 3.2 in base 10 rather than base 2, for a scaled quantity of interest to you.



Units

Let us consider the speed and momentum acquired by a body falling through 
the height, say, of a spear as a standard which we may use in the measure-
ment of other speeds and momenta as occasion demands.

—Galileo, Two New Sciences, 1638

4.1  Synopsis
Units on a ratio type of scale are the basis for scaling. Multiscale analysis requires ratio 
scale units because these units can be used to represent the action of repeatedly halving 
or doubling a quantity. Zooming in on detail requires units that can be halved repeat-
edly, an operation that is natural with ratio scale units but not possible with nominal, 
ordinal, or interval scale units.

Standard units on a ratio scale are defined relative to seven base units in the SI 
system. Derived units are generated by taking the products and ratios of standard units. 
Derived and standard units come in standard multiples with standard prefixes: kilo, 
micro, and so on. Unconventional units such as Galileo’s spear lengths are just as valid 
as standard units. In ecology, unconventional units may prove more useful than con-
ventional units inherited from Euclidean geometry and mechanics, which omit much of 
the biology. An example is a fractal length to describe the convoluted paths of foraging 
animals, or a fractal area to describe the convoluted surfaces of the natural world, from 
leaves to trees to watersheds. Another example is the unit of an entity, which is far more 
useful than a mole (1023 entities) in analyzing population processes.

The rules that apply to ratio scale units differ from those that apply to numbers. 
The rules define the operations of addition, subtraction, multiplication, division, expo-
nentiation, and the taking of absolute values. In applying these rules, it is important to 
distinguish similar units from dissimilar units. Similar units, such as units of mechanical 
and thermal energy, can be added together. Dissimilar units, such as units of time and 
distance, cannot be added together. The decision about which units are similar depends 
on biological reasoning, not on mathematical rules.

4.2  The Utility of Ratio Scale Units
Ratio scale units have several useful properties. One is that they allow unit conversion. 
An example is the calculation of energy flow through populations. Several units of energy 
occur in the literature: Joules, gram-calories, kilogram-calories, British thermal units. Still 
more units of energy per unit time (power) exist: kilocalories per day, liters of oxygen per 
hour, ergs, and Watts. Because these are ratio scale units, a table of conversion factors 
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can be used to make the conversions necessary to calculate energy flow through a system 
such as a freshwater spring (Odum, 1957) or a salt marsh (Teal, 1962).

The properties of ratio scale units make them useful in interpreting symbolic nota-
tion used in equations. The formidable symbol e D t  ⋅  takes on meaning by giving it a 
name, then undertaking calculations with scaled values. The symbol e D t  ⋅  represents the 
percentage of the population remaining after suffering a death rate of D. Some sense of 
the symbol can be gained by substituting numbers (t  2 and D  0 01. ), but a far bet-
ter sense is gained by substituting scaled values such as t  2 days and D  0 01.  day1. 
Box 4.1 shows a series of calculations. Examining these calculations is no substitute for 
taking out a calculator right now to do the calculations.

Box 4.1 Interpretation of the Symbol eD· ·t via Calculation with Scaled Values.

instantaneous mortality time % remaining

D t e−D· ·t

0.01 year1 1 year 99%

0.1 year1 1 year 90%

0.2 year1 1 year 82%

0.2 year−1 2 years 67%

0.4 year1 1 year 67%

Ratio scale units have another useful quality, which is that they can be combined 
to make new units via multiplication and division. Multiplication of a unit by itself 
changes the exponent of the units. Such operations can be visualized. Think of sweeping 
sticks at right angles to make areas, or measuring velocity as the frequency (in units of 
time1) with which a unit of distance is traversed. This operation of changing exponents 
will become important in working with fractal objects, such as the convoluted structure 
of the stream beds inhabited by fish.

yet another useful quality is that ratio scale units permit analysis at multiple scales 
of space and time. We can visualize multiscale analysis (Box 2.1) as the operation of 
zooming in toward greater detail, or conversely, expanding the scale to reveal larger-
scale pattern and process. To represent this idea in formal terms so that calculations can 
be made, we need units that can be repeatedly doubled (or halved). Ratio scale units can 
be reduced by factors of 2, 10, or any other base. This increases the resolution, allowing 
us to zoom in on detail, an operation that we can represent mathematically by dividing 
units repeatedly to finer scales of resolution. conversely, we can zoom back to frame 
larger-scale patterns. This concept is represented mathematically by expanding the range 
(or decreasing the resolution). These operations, which are natural with ratio scale units, 
cannot be carried out on ordinal or interval types of measurement scales.

Because ratio scale units have these useful properties, some people have taken the 
position that only ratio scale units are valid (e.g., campbell, 1942). This narrow view 
does not stand up to logical analysis (Stevens, 1975; luce and narens, 1987). Thus in 
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defining a biological quantity it is more important to provide a clear statement of the 
type of units than to provide no definition because a ratio scale unit is not applicable.

Table 4.1 Base and Supplementary Units in the SI System

Quantity Unit Abbreviation

Length Meter m

Mass Kilogram kg

Time Second s

Thermodynamic temperature Kelvin K

Amount of substance Mole mol

Luminous intensity Candela cd

Electrical current Ampere A

Planar angle Radian rad

Solid angle Steradian sr

AnoTher Look AT SecTIon 4.2

Ecologists often use transformations before undertaking inferential statistical analysis 
of data. comment on what is lost by taking the square root of data on tree density 
per 1 m2 area.

4.3  Standard Units
Standard units on a ratio scale are defined against a standard base so that anyone 
anywhere can obtain comparable results. Table 4.1 lists the seven SI base units in the 
International System of Units (Système Internationale, abbreviated SI). This system 
includes two supplementary units, one for plane angles and one for solid angles. These 
appear in definitions of angular velocity, acceleration, and momentum. They also appear 
in definitions of light flux and light exposure.

combinations of the base units result in derived units. Some of these derived 
units have names, such as Watts for units of Joules per second. Table 4.2 lists derived 
units that commonly occur in ecology. A list of over 60 derived units can be found in 
legendre and legendre (1998). A collection of ratio scale constants and quantities used 
in marine ecology can be found in Mann and lazier (1991).

The divisibility of ratio scale units into successively smaller fractions allows us to 
define a series of standard multiples. These and their abbreviations are shown in Table 
4.3. These standard multiples, 101  deci, 103  milli, and 106  micro, yield new 
units from a basic unit such as the Watt, a unit of energy. The standard multiple units 
listed in Table 4.3 are applicable to any ratio scale unit.

AnoTher Look AT SecTIon 4.3

1. Of the units in Table 4.2, how many have you used?
2. Of the multiples in Table 4.3, how many have you used?
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4.4  Unconventional Units
We do not need to restrict ourselves to standard units in reasoning about quantities. 
Unconventional units are as valid as standard units. Galileo used a spear length to rea-
son quantitatively about velocities and momenta. A spear length is just as good for 
quantitative reasoning as the standard unit, a meter. But even though conclusions from 
quantitative reasoning are independent of the choice of base units, our ability to com-
municate a result does depend on our choice of unit. Measurements must be repeatable 
by others, which means either using a standard measure (meters) or using a nonstandard 
measure (spear lengths, feet, or inches) defined relative to a meter.

Table 4.2 Units That commonly occur in ecology

Quantity Units Equivalent Unit (Name)

Acceleration

 Angular rad· s2

 Linear m· s2

Area m2

104· m2 ha (hectare)

Concentration mol· m3

Energy (work) N·m J (Joule)

4185· J Kcal (kilocalorie)

Energy flux J· m2·s1

Force kg·m·s2 N (Newton)

Frequency s1 Hz (Hertz)

Light

 Luminance cd· m2

 Luminous flux cd·sr lm (lumen)

 Illuminance lm·m2 lx (lux)

10.764· lx fc (footcandle)

Photon flux (*PAR) 1· mole·m2·s1 E (Einstein)· m2·s1

Mass density kg· m2

Mass flow kg·s1

Mass flux kg· m2·s1

Power J·s1 W (Watt)

Pressure (stress) N· m2 Pa (Pascal)

Surface tension N· m1

Velocity

 Angular rad·s1

 Linear m·s1

Viscosity

 Dynamic Pa·s

 Kinematic m2· s1

Volume m3 (cubic meter)

103 m3 l (liter)

Volume flow rate m3·s1

Wavelength m

Wavenumber m1

*PAR  Photosynthetically Active Radiation.
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conventional multiples (Table 4.3) serve the useful purpose of creating units 
appropriate to the scale of a research question; meters are not particularly useful for 
measuring microbes. Even more can be accomplished by adopting unconventional mul-
tiples. If our interest were in the foraging ranges of owls, we might decide to define the 
range in biological terms, based on the minimum area (in standard units) required to 
meet daily energy requirements. If we define the minimum area as one unit, we can then 
examine the problem of foraging area needed by a pair of owls to successfully produce 
one chick, two chicks, and so on, relative to the number of minimum foraging units. To 
phrase this as a question, if one owl requires a certain area to meet its own energy needs, 
how many of these units will be needed by two owls to raise one chick? The answer, in 
minimum foraging units, leads to a better understanding of the biology than conven-
tional units do (although both are correct). The advantage of unconventional multiples 
in quantitative reasoning is that they permit reference to biologically defined units.

With one exception, the base units in Table 4.1 are infinitely divisible. The excep-
tion is the mole, which is all but infinitely divisible because it is defined by an astro-
nomical number of entities. In biology we are often interested in the dynamics of a small 
number of entities. A base unit that proves useful again and again in biology is the indi-
vidual, or entity, for which a convenient symbol is the number sign (#). Examples of 
biological entities are individuals, cells, species, genes, attacks by a predator, or potential 
encounters. An entity is defined as a recognizable object belonging to a population of 
such objects. The entity is an unconventional or non-SI unit that is extremely useful in 
ecology and can be handled in a rigorous fashion (Stahl, 1962). The conventional SI unit 
is the mole (Table 4.1), which is equal to 6.022 · 1023 entities. The mole is an appropri-
ate unit for chemical entities such as atoms, ions, or molecules. It is far too large for eco-
logical populations. Even the total population of the zooplankter Calanus finmarchicus, 
one of the most abundant species on the planet, does not amount to a picomole.

The philosophical objection to using counts of objects or events as a measurement 
scale (Ellis, 1966) can be easily met by insisting that this scale does not consist of num-
bers; it has units of entities (animals, genes, etc.) on a ratio scale of measurement. One 
distinctive feature of this unit is that we cannot halve it repeatedly in the same way that 

Table 4.3 Standard Multiples of ratio Scale Units

Name Multiple Abbreviation Example

Pico 1012 P pW

Nano 109 n nW

Micro 106  W

Milli 103 m mW

Centi 102 c cW

Deci 101 d dW

100 W

Deca 101 da daW

Hecto 102 h hW

Kilo 103 k kW

Mega 106 M MW

Giga 109 G GW

W  Watt.



58 QUAnTITATIvE EcOlOGy: MEASUREMEnT, MODElS, AnD ScAlInG
we can halve the unit of a centimeter repeatedly. This does not prevent us from calculat-
ing expected values in fractions of entities. An example is average family size, which is 
expressed in fractions of individuals, even though any single family must have a discrete 
number of individuals.

Unconventional exponents are another source of useful units. For some problems, 
units of temporal frequency (e.g., sec1) or spatial frequency (e.g., km1) are more use-
ful than units of time or distance. Fractal units such as m1.8 are more appropriate than 
Euclidean lines (m1), planes (m2), and volumes (m3) in describing a variety of ecologi-
cal phenomena, including habitat structure (Pennycuick and Kline, 1986). These will be 
treated in more detail in chapter 5.

AnoTher Look AT SecTIon 4.4

If there are about five generations per century, re-express the following measurements 
in generation times:

l One solar year
l One human lifetime of 75 years
l A 5% increase per year

4.5  Rules for Ratio Scale Units
The mathematical rules that apply to units on a ratio scale differ from those that apply 
to numbers. The rules for ratio scale quantities are few, but they are essential to accu-
rate work. As will become apparent, these rules are also an important part of multiscale 
analysis. The rules define the operations of addition, subtraction, multiplication, divi-
sion, exponentiation, and the taking of absolute values for ratio scale quantities. Illegal 
operations, such as the taking of logarithms, are also listed. Box 4.2 shows a series of 
example calculations for comparison with a verbal explanation of each rule. The rules 
are first applied to quantities with the same units, then to quantities with similar units 
(e.g., meters and centimeters), and finally to quantities with dissimilar units (e.g., days 
and degrees of temperature).

Rule 1 is that addition changes the number of units but not the unit itself. Rule 2 
says that the same thing holds for subtraction. Similar or equal units on a ratio scale can be 
added (Rule 1) or subtracted (Rule 2). Dissimilar units cannot be added or subtracted. For 
example, apples and oranges are not similar units; we cannot add them. However, we can 
define a new unit, “fruit,” that allows addition of one group of fruit (all apples) to another 
group (all oranges). One way of visualizing Rules 1 and 2 is that the same or similar units 
can be lined up, then counted, without having to omit items (we can count fruit but must 
omit oranges from a count of apples). Dissimilar units cannot be lined up and counted.

Rule 3 says that units can be multiplied, whether equal, similar, or dissimilar. This 
rule generates new units that sometimes have a name (length2  area) and sometimes 
not (mass2  ??). The product of dissimilar units is expressed as a hyphenated unit (e.g., 
degree-days, lizard-hours). One way of visualizing Rule 3 is that it sums one unit with 
respect to a second unit. For example, summation of a distance over a perpendicular 
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distance corresponds to an area, summation of exposure to heat over time results in 
degree-days, and summation of a mutation rate over time measures the total mutations. 
Many readers will have noticed the resemblance to integration.

Box 4.2 Calculations Based on Rules for Units.

Interpretations are shown to the right, in parentheses.
Same units. (5 rules apply):

1. 3 · cm  2 · cm  (2  3) · cm  5 · cm
2. 7 · trees  2 · trees  (7  2) · trees  5 · trees
3. cm · cm2  cm3   (volume)

trees · trees  trees2   (tree pairs)
4. cm/cm  1
5. (cm1)2  cm2   (area)

Similar units. (4 rules apply)
It helps to begin with Rule 4, to show the source of the conversion factor 100.

4. meter/cm  100
1. meter  cm  (100  1) · cm  101 cm
2. meter  cm  (100  1) · cm  99 cm
3. meter · cm  100 cm2   (area)

Dissimilar units. (4 rules apply)

1. °K  day  IllEGAl
2. °K  day  IllEGAl
3. °K · day  degree-day  (exposure to heating or cooling)
4. °K ÷ day  degrees per day  (cooling or heating rate)

Signed units. (1 additional rule). An example is 
  velocity east  2 m · s1

   velocity west  2 m · s1

6. | 2 m · s1|  2 m · s1  (a speed, not a velocity)

Illegal operations

7. cos(tree)  cm!  2day  log2(rabbit)  lograbbit(10)

Rule 4 (the inverse of Rule 3) is that any unit can be divided by another unit. Rule 4 
describes scaling as a mathematical operation, that is, taking the ratio of one quantity to 
another. A unit can be scaled to itself, to a similar unit, or to a dissimilar unit. A unit scaled 
to itself is equal to unity (1). A unit scaled to a similar unit is a number with no units. For 
example, a square kilometer is 100 times larger than a hectare, a kilometer is similar to a 
hectare, and hence a square kilometer scaled to a hectare is a ratio with no units:

 km /ha 1002   
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According to rule 4, a quantity can be scaled to either standard or nonstandard 
units. For example, we can scale the area of an unconventional unit, a pine plantation, 
to a conventional unit, hectares. This results in a ratio:

 plantation/hectare  10 000,  

Or we can scale the area of the plantation to another unconventional unit, the territory 
defended by a nesting warbler:

 plantation/territory  40 000,  

The plantation can be measured by arbitrarily defined units of hectares, but it can also 
be measured relative to biologically defined units of nesting territories.

When applied to similar units, Rule 4 is the basis for the familiar operation of unit 
cancellation:

 1 10 13km/ m   

The unitless ratio within the parentheses allows units to cancel out:

 
3000 3000

1

10
3

3
m 1 m

km

m
km   









 

cancellation requires similar units.
Rule 4 also applies to dissimilar units. The operation now results in new units 

rather than in a unitless ratio. For example, the ratio of Joules to seconds is, by defini-
tion, a new unit:

 Joule/second Watt  

A unit scaled to a dissimilar unit can be interpreted as the differencing of one unit with 
respect to another—the change in body mass with respect to change in time, for exam-
ple. This scaling operation can be stated as a question: How much change occurs in 
the unit of interest, relative to another unit? The result is a new unit, which often has a 
name. For example, change in location with change in time is a velocity; change in pop-
ulation density with change in location is a density gradient; change in body mass with 
change in time is a growth rate. Some readers will again have noticed the resemblance to 
differentiation in calculus.

Rule 5 says that ratio scale units can be raised to any power, including fractional pow-
ers, described in the next chapter. This results in a new unit. Interpretable examples come 
primarily from geometry. For example, taking an area to the 3/2 power results in a volume.

Rule 6 applies to signed units. The most common examples are directions and 
quantities derived from directions such as velocities. If east is taken as positive, then 
west is negative. Another example is the accumulation of deficits or surpluses in quanti-
ties such as energy or money. To avoid confusion, it helps to assign different names to a 
signed quantity and the absolute value of the signed quantity. The most familiar example 
is the absolute value of a velocity, which is a speed.

not all operations on numbers apply to units (Rule 7). Examples of illegal opera-
tions on units are taking logarithms, taking factorials, raising to powers, and applying 
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trigonometric functions. It is interesting to note that it is possible to develop rules for 
some of these operations. For example, taking of a factorial can be applied to a scaled 
quantity. This is a simple extension of multiplication.

 ( ) ( )( )N N N N trees  !  trees  trees  trees  treesk  1 … !  

This quantity, while definable, is of little utility.
The conventional rules for units do not recognize some operations. This raises a 

difficulty: it precludes taking the logarithm or powers of a scaled quantity. However, the 
ratio of similar units is a number (Rule 4) and so the resulting ratios can be taken to 
powers and expressed as logarithms. Thus, the logarithm of the ratio (100 m2)/(1 m2) is 2 
(see Figure 3.2). The reverse of taking a logarithm, taking a number to a power that is a 
unit, is also precluded: 2hour has no meaning. But the product of quantities can be used in 
taking powers. Thus, the product of an instantaneous death rate ( D   % year1) and a 
duration (t  years) results in a number that can be taken as a power (Box 4.1).

The rules for units can be written in the general form shown in Table 4.4 rather 
than in the specific form of the examples shown in Box 4.2. To write the rules in general 
form, we need a generic symbol for a unit, 1U. This is a single symbol, not a compound 
formed by multiplication of U by 1. Further, we need to distinguish between similar and 
dissimilar units. So, we will say that 1U and 1l are similar and that 1l and 1 M are not 
similar. Similar units can be added or subtracted, dissimilar units cannot be added or 
subtracted. For example, if 1U is a unit of mechanical energy and 1l is a unit of thermal 

Table 4.4 rules for ratio Scale Units

Same Units

1. k·1U  n · 1U  (k  n) · 1U

2. k · 1U  n · 1U  (k  n) · 1U

3. 1U · 1U  1U2

4. 1U ÷ 1U  1

5. (1U)  1U

6. |   1U|   | 1U|   1U

Similar Units

1. 1L  1U  (k  1) · 1U

2. 1L  1U  (k  1) · 1U

3. 1L · 1U  k · 1U2

4. 1L ÷ 1U  k

Dissimilar Units

1. 1L  1M ILLEGAL

2. 1L  1M ILLEGAL

3. 1L · 1M  1M · 1L

4. 1L ÷ 1M  1L · 1M1

Illegal Operations

7. cos(1U)  1U!  k1U  logk(1U)  log1U(k)

Note: See text for definition of symbols.
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energy, we can add mechanical and thermal heat together to obtain the total energy, pro-
vided we know the conversion factor, which is called the mechanical equivalent of heat.

To state the rules in general form, we need some symbols for numbers without 
units: , , n, and k. The symbol k is the unitless ratio of two similar units 1U and 1l. 
An example is the mechanical equivalent of heat, described previously. With these sym-
bols, the rules for working with ratio scale units can be stated in abstract form, appli-
cable to any units.

computer languages and commonly available packages typically leave out units. 
Fortran (or FORmula TRAnslator) was one of the first languages for making computa-
tions from equations. Fortran, like most languages that followed it, could in principle 
include units. In practice this was rarely done, in part because of the effort required to 
format the program results. The rapid spread of graphical formats, where the computer 
screen displays words, icons, and pictures rather than lower-level programming code, 
now makes it practical to display units. At least one package (Mathcad) displays units 
with calculations. This package was used to check the accuracy of the examples and 
computations on scaled quantities in this book. Such packages are an important route 
to learning how to use scaled quantities. Packages that display units and dimensions (see 
chapter 6) are a tremendous aid in learning how to use scaled quantities, rather than 
numbers, to solve ecological problems.

Defined Concepts and Terms for Review and  
Future Reference

____ entity
____ derived units
____ scaling as a mathematical operation

____ SI base units
____ standard multiple units
____ standard units



Rescaling Quantities

“Oh, how I wish I could shut up like a telescope! I think I could, if I only 
knew how to begin.” For, you see, so many out-of-the-way things had hap-
pened lately that Alice had begun to think that very few things indeed were 
really impossible.

There seemed to be no use in waiting by the little door, so she went back to 
the table, half hoping she might find another key on it, or at any rate a book 
of rules for shutting people up like telescopes.

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865

5.1 Synopsis
Quantities, unlike numbers or mathematical symbols, can be rescaled. This operation 
has many important uses in ecology. Among these are calibration of instruments, calcu-
lation of immeasurable or difficult-to-measure quantities, discovering relations between 
quantities, and statistical verification of suspected connections. Rescaling a quantity 
changes both its units and its numerical value, either by remeasurement or by algebraic 
operations that correspond to remeasurement. Algebraic operations on quantities follow 
a special set of rules because both units and numerical values change.

Rescaling is as diverse in procedure as it is useful in practice. Logical rescaling 
changes a quantity from one type of measurement scale to another. An example is cat-
egorization to a nominal scale of habitat types from measurements of species abundance 
on a ratio type of scale. Rescaling via normalization reduces a quantity to a unitless 
ratio called a scope, which can then be compared to other such ratios. The most com-
mon example of normalization is taking a percentage. Rigid rescaling replaces one unit 
(such as a yardstick) with another (such as a meterstick). There is no change in expo-
nent. Elastic rescaling changes exponents and so in effect stretches or compresses units.  
Elastic rescaling arises in converting lines to areas, areas to volumes, and fractal units 
such as convoluted centimeters cm1.3 to more familiar Euclidean units such as linear cen-
timeters cm1.

Rigid scaling factors have diverse sources. Some rigid factors arise by definition, 
some emerge from calibration, and others result from theory. Many factors in the litera-
ture are estimated from data and so are approximate rather than exact. Examples are 
efficiency of energy transfer between trophic levels (ca. 10%) and the mass-to-volume 
ratio of organisms, which is close to the density of water, 1000 kg·m3.

Elastic factors arise by definition (relation of area to volume). Elastic factors also 
emerge by estimation from data. Examples are factors such as meter0.3, which rescale 
from straight line units (meter1) to fractal units (m1.3). Another source of elastic factors, 
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yet to be tapped, is the theoretical derivation of fractal units, based on the processes that 
stretch a line, plane, or volume into a fractal over some scope of interest.

The material in this chapter is best learned with a pocket calculator at hand, begin-
ning with the boxes in Section 5.3.

5.2 Logical Rescaling
Logical rescaling changes the type of measurement scale. There are 12 possible rescalings 
among the four types of measurement scale. Half are in the direction of a less detailed scale, 
shown as left-pointing arrows in Table 5.1. All these rescalings occur in the ecological lit-
erature. All can be executed with standard computer packages for data manipulation.

There are six possible rescalings in the direction of more informative scales, repre-
sented by right-pointing arrows in Table 5.1. These logical rescalings require that infor-
mation be added, either by remeasurement or by combining several quantities to generate 
a more detailed scale. For example, an interval scale measurement of temperature in 
degrees Centigrade must be combined with a single-valued quantity, the freezing point 
of water in degrees Kelvin, to obtain temperature on a ratio scale. Another example is 
the combination of several nominal scale classifications of habitat (e.g., good/bad, wet/
dry, sunny/shady) to produce a single ranking of habitat on a rank scale of, say, 1 to 5.  
yet another example is taking the difference of two measurements on an interval scale 
(such as calendar date) to obtain a ratio scale measurement. Taking a difference guar-
antees a ratio scale quantity. Taking the ratio of two differences (as in the mathematical 
operation of differentiation) also guarantees a ratio scale quantity.

Logical rescaling to a less informative scale has many applications. For example, 
it may be necessary to recalibrate a quantity from a ratio to ordinal or nominal scale if 
data are uneven in quality. A series of annual observations that began as casual obser-
vations, then became more standardized to greater detail over the years, could all be 
converted to a nominal scale (presence or absence of a phenomenon) that would be 
consistent across the entire series. Another application of logical rescaling is explor-
atory data analysis to discover pattern. Rescaling to a less detailed quantity can make 

Table 5.1 Logical Rescaling of Quantities

Interval RatioOrdinalNominal

Less detail More detail
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it easier to pick out pattern. For example, a series of satellite images can be remeasured 
to a nominal scale (presence or absence of weather fronts) to obtain a useful quantity 
for understanding the effects of weather systems on bird migration (Alerstam, 1990). 
Rescaling to a nominal scale is used in classification, including taxonomy. Clustering 
algorithms transform quantities measured on several types of scale (Jardine and Sibson, 
1971) to a nominal scale quantity, the classification.

one common application of logical rescaling is the conversion of interval or ratio 
scale data to a rank type of scale, for statistical evaluation of outcomes via nonpara-
metric methods. The advantage of this, before the common availability of computers, 
was that all possible outcomes could be tabulated, allowing an exact estimate of a Type 
i error, the error of accepting a difference that does not exist. Computers now make it 
possible to use randomization tests (Manly, 1991) to estimate Type i errors without res-
caling quantities to ranks. These randomization tests have better discriminating capacity 
than tests that rescale the data to ranks. in statistical jargon, randomization tests have 
lower Type ii errors than those based on rescaling to ranks. despite the clear advantages 
of randomization tests over tests that reduce data to ranks, the rank-based relics have 
remained in use because they became fossilized in the repertoire of ecologists and they 
remain available in widely used statistical packages.

Rescaling to a more detailed scale is also useful. An example is ordination, which 
combines several quantities measured on any type of scale into one quantity measured 
on a ratio scale. The purpose of analysis may be to rank objects, but most ordination 
techniques produce interval or ratio scale quantities, not ordinal scale quantities. The lit-
erature on techniques is vast (Seal, 1964, Kershaw and Looney, 1985; Mcgarigal et al.,  
2000), but attention to type of measurement scale is rare (gower, 1987).

AnoTheR Look AT SecTion 5.2

Above each of the 12 arrowheads in Table 5.1, place a check mark if you have used 
this form of logical rescaling.

5.3 Algebraic Operations on Quantities
Ratio and interval scale quantities are rescaled according to familiar algebraic rules. 
However, not all the operations possible for numbers apply to scaled quantities. 
Consequently, some care is needed in carrying out operations on scaled quantities, to 
avoiding multiplying cabbages by kingfishers, taking the logarithm of fungi, or adding 
parrots to percentages.

Box 5.1 shows examples of each of 11 rules for working with scaled quantities. in 
words, the rules are as follows: Quantities are unchanged by adding zero units (Rule 1) 
or multiplication by 1 (Rule 2). Quantities with the same units can be added or grouped 
in any way; quantities with unlike units cannot be added (Rules 3, 4, and 6). Quantities 
can be multiplied in any order to obtain a new quantity, whether or not they have the 
same units (Rules 5 and 7). The rules for taking powers of a quantity are the same as 
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those for numbers (Rules 8, 9, and 10). Physically interpretable examples of these last 
three rules are hard to find for non-integer powers. These three rules will become useful 
for fractal units, to be described later. The logarithm of a quantity cannot be taken, but 
the logarithm of a quantity scaled to its base units can be calculated (Rule 11).

once the rules are grasped from the specific examples in Box 5.1, we can move 
on to a general statement of the rules. This is done by substituting algebraic symbols 
for each quantity used in Box 5.1. Thus, QX stands for 3 km, QY stands for 5 km, and 
so on. Table 5.2 shows the same rules as Box 5.1, this time in abstract notation. This 
makes the rules harder to grasp, but the notation is a necessary evil in order to state the 
rules in general form. With an example at hand (Box 5.1) and a list of rules in general 
form (Table 5.2), the rules can be applied to an unfamiliar situation.

Box 5.1 Computational Rules for Scaled Quantities, Applied to Units of Length

 1. 3 km  0 km  3 km
 3 km  0 iLLEgAL
 2. 3 km · 1  3 km
 3 km · 1 km3 km
 3. 3 km  5 km  5 km  3 km  8 km
 3 km  10 days iLLEgAL
 4. 3 km  (5 km  6 km)  (3 km  5 km)  6 km
   14 km
 5. 10 days · 3 km  3 km · 10 days  30 km-days
 6. 10 days · (3 km  5 km)
   10 days · 3 km  10 days · 5 km  80 km-days
 3 km ·  (10 days  5 km) iLLEgAL
 7. 10 days · (3 km · 5 km)  (10 days · 3 km) · 5 km
   10 days · (15 km2)  150 km2-days
 8. (10 days · 3 km)2  102 days2 · 32 km2

   9001 km2 · days2

 9. 3 km1 · 3 km2  9 km12  9 km3

10. (3 km1.5)2  31.5·2 km1.5·2  9 km3

11. log(3 km/km)  log 3
 log(3 km) iLLEgAL

The general rules in Table 5.2 lead to new ways of looking at familiar quantities. 
The rules concerning addition and subtraction force us to think about whether two 
quantities are similar. The rules concerning multiplication, division, and the taking of 
powers lead to composite quantities, some of which will be unfamiliar. not all possible 
combinations of units are biologically interpretable. But often it is possible to interpret 
composite quantities, which provide a rich quantitative vocabulary for describing and 
understanding the natural world.
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5.4 Application: Individuals, Pairs, Residencies
To see what happens when the rules in Table 5.2 are applied to familiar quantities, let’s 
apply the rules to units of entities, as defined in the fourth section of Chapter 4. Counts 
of organisms, genes, and other entities are central to population biology. Common quan-
tities in population biology, such as population size, can be handled in a rigorous fash-
ion using the units of entities (refer back to Section 4.4).

When we apply the rules for working with quantities (Table 5.2) to counts of 
organisms, we obtain a set of new quantities, shown in Box 5.2. All the quantities on 
the right side of each equation are logically correct because they were calculated accord-
ing to general rules. Some of these new quantities are easy to interpret, some are harder 
to interpret, and others (e.g., deer2) appear biologically uninterpretable but in fact are 
surprisingly useful.

The first four rules force us to consider whether quantities are similar or not. Rule 1 
reminds us that we can add zero deer to 3 deer, but we cannot add the number 0 to 3 deer. 
Rule 2 reminds us that multiplication by 1 does not change the number of deer, but that 
multiplication of 3 deer by 1 deer does change the units. Rules 3 and 4 remind us that we 
can add two groups of deer together in any order, but we cannot add deer to days.

Table 5.2 Rules for Algebraic operations on Ratio Scale Quantities

QX, QY, and QZ are symbols for quantities that have units 1U.

QT is a symbol for a quantity with units 1T.

1U and 1T are groups of dissimilar units.

  and  are symbols for numbers with no units.

QX QZ   U. 1

 1. QX  0·1U  QX

 2. QX · 1  QX

QX  1U  QX

 3. QX  QY  QY  QX

 4. QX  (QY  QZ)  (QX  QY)  QZ

 5. QT · QX  QX · QT

 6. QT · (QX  QY)  QT · QX  QT · QY

 7. QT · (QX · QY)  (QT · QX) · QY

 8. (QT · QX)  QT · QX

 9. QX · QX   QX

10. (QX)  QX·

11. log(QX/1U)  log 

Illegal Operations

QX  0

QX  QT

log(QX)
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The remaining rules result in new units, which we shall try to interpret. Rule 5 
results in a new unit, the deer-day. This at first may seem unfamiliar, but it is readily 
interpreted by thinking about a group of deer occupying an area for some period of 
time. if 3 deer occupy an area for 10 days, then many of their activities, such as food 
consumption, will be the same as that of a group of 10 deer in an area for 3 days. The 
product of organism number and time is a measure of residence. if an activity, such as 
food consumption, depends on residence, we can measure this activity in deer-days. Rule 
6 tells us that we can add units of deer-days, or residence, in any order.

Rule 7 results in a strange unit, deer2-days, the product of a familiar unit and an 
apparently meaningless unit, deer2. This unit seems to have no biological interpretation, 
because we are accustomed to thinking of squaring units as the operation of multiply-
ing two lengths, at right angles to one another, to generate an area. in this context deer2 
makes no sense. However, we can make sense of this unit if we recall that the number of 
potential pairwise interactions in a group rises with the square of group size. The func-
tional expression for calculating the potential number of pairs in a group of size N is:

 duo( ) ( )N N N 1
2 1    (5.1)

Box 5.2 Computational Rules for Scaled Quantities, Applied to Units of Time and Entities

Examples are for two kinds of units:

1T  time
1#  entities

1#2  pairs, 1#3  triplets, 1#4  quadruplets, etc.
QX  3deer,  QY  5deer,  QZ  6deer,  QT  10 days
  1,   2,   3

 1. 3deer  0deer  3deer
 3deer  0, iLLEgAL
 2. 3deer · 1  3deer
 3deer · 1deer  3deer
 3. 3deer  5deer  5deer  3deer
 3deer  10 days, iLLEgAL
 4. 3deer  (5deer  6deer)  (3deer  5deer)  6deer
   14deer
 5. 10days · 3deer  3deer·10days  30 deer-days
 6. 10days · (3deer  5deer)  10days · 3deer  10days · 5deer
 3deer · (10days  5deer), iLLEgAL
 7. 10days · (3deer · 5deer)  (10days · 3deer) · 5deer
   10days · (15pairs)  150 pair-days
 8. (10days · 3deer)  10days · 3deer

   301 deer1 · days1

 9. 3deer · 3deer  3deer  243quintets  243pairs2.5

10. (3deer)  3deer ·   729triplets2  729sextets
11. log(3deer/deer)  log 3
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This is the conventional notation, which lacks units. The numeral 1 has no units, hence 
the symbol N must also be a number with no units. Consequently, N(N  1) and 
duo(N) are also numbers. We are working with deer, not numbers, so let’s rewrite the 
formula for deer, with a group size of Q having units of entities #:

 duo #( ) ( )Q Q Q 1
2 1    (5.2)

The function duo(Q) shows how to calculate the number of potential pairs of deer in a 
group of size Q, which has units of deer. in this formula Q must have the same units as 
#, which in this case are deer. duo(Q) will have units of deer2. deer2 is thus a unit that 
measures the number of potential pairs. Similarly, if there are 5 alleles in a population, 
then there are a possible 5 · (5  1)/2 zygotes. Zygotes have units of alleles2: (5 alleles · 
4 alleles)/2  10 alleles2, not 10 alleles.

A hand calculator helps in understanding this the concept of a duo, defined as the 
number of potential pairs in a population. At this point, try calculating:

 duo  deer _____pairs duo  deer _____pairs( ) ( )3 5   

Returning now to deer2-days, we find that this strange unit can be interpreted as the 
potential number of pairs of deer that can form over a period of time. it is a unit that 
can be visualized and interpreted in terms of the behavior of deer.

Rule 8 results in another strange unit, the deer1-day1. To interpret this, we 
express it relative to something we know, deer-days:

 deer -day deer-day  1 1 1( )  

This new unit is read “per deer-day.” This unit is useful in working with quantities 
related to residence by a population. For example, we may be interested in the number 
of twigs browsed per deer-day by a resident group of deer.

Rule 9 results in another strange unit, deer3. Again, we cannot interpret this unit 
relative to the usual geometric notion of cubes as the product of three lengths, all at 
right angles. We can interpret deer3 as the number of potential triplets, in much the same 
way that deer2 measures the number of potential pairs. The functional expression for the 
number of potential triplets in a group of Q organisms is:

 
Trio # #( ) ( ) ( )Q Q Q Q=

1
6

1 2      (5.3)

Trios have units of entities3. We can interpret a quantity having units of deer3 as the 
number of potential deer trios. Trios may not be an important part of the biology of 
deer, but in other groups, such as colonial seabirds, trios are important during the breed-
ing season. The number of new birds added to the population depends on the number of 
trios (two parents and an offspring). duos (one parent and one offspring) usually fail to 
contribute to the next generation because of predation on unguarded chicks, inadequate 
food supply to chicks, or both.

Rule 10 results in still higher powers that have no obvious biological interpretation 
at the level of populations of individuals. Higher powers, such as entities4, can take on 
meaning at the level of gene combinations in populations.
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Rule 11 reminds us that we can take the logarithm of a unitless ratio but that the 
logarithm of a unit is not defined relative to a unitless base such as 2, e, or 10.

The examples in Box 5.2 show that higher powers of the unit entities # are just 
as interpretable as higher powers of a unit of length. units such as #2 or #3 are initially 
strange but turn out to be visualizable as #2  pairwise contacts, #3  trios, #4  quar-
tets, and so on. The process of interpreting these new quantities involved assigning 
names, making calculations, and visualizing the new quantities relative to the biology 
of the component quantities. This application of the rules for operations on quantities 
showed that new ways of thinking result when scaled units, rather than just numbers, 
are used in quantitative ecology. This application of the rules for operations showed 
how the use of scaled quantities incorporates ecological reasoning, unlike quantitative 
ecology based on numbers devoid of units and scale.

AnoTheR Look AT SecTion 5.3

Secondary production is reported as grams of carbon fixed per unit area per year: 
g-C km2 yr1. Typically this will be computed from densities: animals km2. What 
are the units of the quantity needed to compute secondary production from density?

5.5 Rescaling Via Normalization
We can reduce a scaled quantity to a ratio with no units by applying any of several 
forms of rescaling. Simple rescaling occurs when we divide a value by a reference value. 
The generic expression for simple rescaling is:
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The ratio has no units. The magnitude of a scaled quantity thus becomes independent of 
the units of measurement. Simple rescaling is based on comparison of objects with one 
another, rather than iterative measurement of the same object. it allows us to substitute 
one measurement unit for another, as in galileo’s use of spearlengths to measure veloc-
ity. it is the basis of classical dimensional analysis (Chapter 6).

A convenient reference quantity Qref is the largest observed or largest possible 
value, resulting in a variable that has been reduced to a range from 0 to 1. An example is 
running speed measured relative to the maximum for that species. yet another useful ref-
erence quantity is Qmin, the minimum observed or possible value, which yields a reduced 
variable that ranges upward from 1. An example is metabolic rate as a multiple of the 
standard metabolic rate SMR, which is measured at rest and in the absence of absorptive 
activity by the gut. Reduction relative to Qmin expresses the quantity Q in steps that are 
relevant to that variable. in physiology the reduced quantity Qmax /Qmin is called a scope.

The reference quantity can be chosen on biological or physical grounds. A physical 
example is subsurface illumination in a lake relative to the illumination at the surface. A bio-
logical example is photosynthetic rate relative to the maximum rate. Reference quantities are 
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also chosen on statistical grounds. An example is ranging (Sneath and Sokal, 1973), which 
uses both the minimum and maximum value to reduce the quantity to the range 0 to 1.
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Q Q
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 (5.4)

We can reduce a scaled quantity to a ratio with no units by normalizing. 
normalizing occurs when we divide by a summary statistic, which introduces an itera-
tive component to the operation. The generic expression for normalizing is:
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The most familiar example is taking a percentage: adding up the parts to compute the 
whole, then taking each part as a ratio relative to the whole. For a percentage, the refer-
ence quantity Qo is the sum of all the values of Q. The exponent is   1, resulting in 
dimensionless values that can range between 0 and 1.

An example of normalization according to a statistical criterion is the normal 
score, found in any book in statistical methods:
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( )
 (5.5)

This is an example of normalization (in the scaling sense) because measurement is itera-
tive: The mean and the standard deviation are computed from the same set of values. 
The normal score of a scaled quantity is unitless because both the mean and the stan-
dard deviation have the same units as the measurements used to compute these statistics. 
normal scores permit comparison of quantities that differ in magnitude and variability. 
They reduce any quantity to a mean value of zero with a standard deviation of unity. 
Legendre and Legendre (1998) discuss applications and potential problems of this and 
other statistical reduction to dimensionless ratios.

The examples of normalization so far have been for each value of a variable. 
normalization is also applied to measures of variability, resulting in a single ratio. The 
most familiar example is the coefficient of variation.
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 (5.6)

The coefficient of variation is a unitless ratio that permits comparison of the variability 
of two scaled quantities, free of the effects of choice of measurement scale.

AnoTheR Look AT SecTion 5.4

List the several forms of normalization described in this section. For each, state 
whether you have used this form. List any additional normalization operations that 
you have used.
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5.6 Rigid Rescaling
Rigid rescaling replaces one unit with another, either by remeasurement or by calcu-
lation based on calibration factors. Rescaling via remeasurement can be visualized as 
lining up small units into larger units or dividing large units into equal subunits. An 
example is using a 10 meter wire to mark off plots 100 m on a side, then using 1 meter 
paces to find locations along the perimeter of the plot. Rescaling from 1 decameter to 
1 m units can be viewed as cutting a wire into smaller units. Another example is unit 
replacement of areas: An area of 1 hectare can be broken into exactly 1002 squares, 
each of which is a meter on a side.

Rigid conversion factors consist of a fixed ratio between a large and a small unit. 
if the smaller unit occurs in the numerator, the factor represents the operation of break-
ing large units into smaller units. if the larger unit occurs in the numerator, the rigid fac-
tor represents the operation of aligning small units into a larger unit.

Here is a simple example of rigid rescaling. in this example, units “cancel out” 
because any unit scaled to itself is one: m/m  1 .

 
700

0 9144 1
1000

0 64 yards   
m

yards
  

m
m

km 
.

.⇒  (5.7)

The symbol ⇒ is read “calculated as”. it indicates that the quantity Qfinal at the end of 
the arrow is calculated from the quantity Qold and two conversion factors at the origin 
of the arrow.

This procedure will be familiar to most readers. Table 5.3 lists a general recipe for 
rigid rescaling. The equation in Table 5.3 will not be familiar, so to explain the expres-
sion it has been aligned with a specific calculation in Box 5.3. The rigid conversion fac-
tors k1 and k2 rescale Qold to a new quantity, Qfinal. Conversion factors are listed in 
sequence so that the denominator of the first factor cancels the units of Qold and the 
denominator of the next factor cancels the numerator of the preceding factor. Box 5.4 
shows the derivation of the expression for rigid rescaling from the noniterative scaling 
relation introduced in Chapter 2.

Box 5.3 Rigid Rescaling of Quantities. Exponent  1.
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Box 5.4 Derivation of Generic Expression for Rigid Rescaling

Rigid rescaling arises from the noniterative measurement relation (Equation 2.6a) 
with exponent   1.
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Taking Q as Qfinal, Qref as Qold, (Unit/Unitref)  k, and applying the exponent , 
this becomes:

 
Q Q kfinal old

   
 

The reason for stating a generic expression is to show how to handle exponents other 
than   1. Box 5.5 shows rigid rescaling with a familiar exponent of 2. Box 5.6 extends 
this to rigid rescaling for a fractal quantity, a length with nonintegral exponent (km1.2).

Table 5.3 Rigid Rescaling of Quantities

The sequence of steps in rigid rescaling is as follows:

1. Write the quantity (Qold) to be rescaled,

2. Apply rigid conversion factors k1
, k2

, k3
, etc. so that units cancel.

3. Complete the calculation of Qfinal
, with appropriate exponents.

The generic expression for rigid rescaling is:

Q k k Qold final
     1 2

Rigid rescaling does not change unit exponents.

Hence Qold  and Qfinal  must have the same exponent.
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Box 5.5 Rigid Rescaling of Quantities. Exponent  2.

Exponents are applied to both units and numbers, not just to the numbers.

 Qold
2 2 2 2 2700 700 700  ( )yard yard  yard  

Apply the exponent to obtain a conversion factor that will “cancel” units of Qold 2:
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Then apply exponents after lining up the conversion factors:
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Box 5.6 Rigid Rescaling of Quantities. Exponent  1.2.

noninteger exponents are handled the same way as integer exponents.
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Rigid factors are written as a symbol representing a ratio of units:

 

1
4 187

  Joule
cal Joule/cal.

 k  (5.8)

The reason for writing a rigid factor as a ratio is that units are converted by multiplica-
tion, not by substitution. it might seem that the relation of calories to Joules could be writ-
ten 1 Joule  4.187 cal, but this can only lead to error by encouraging substitution rather 
than multiplication to rescale quantities. The secret of success in rigid rescaling is to apply 
ratios that cancel units and to make sure that the exponents allow units to cancel.
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Rigid scaling factors, which convert one quantity to another, have several sources. 
They often arise by defining a unit at one resolution as a multiple of a unit at a finer 
resolution. Thus a rigid factor kg/Mg is, by definition:

 

10
1

6 gram
 Megagram g/Mg k  (5.9)

Rigid factors also arise from definition of measurement units. The definition of a Watt is:

 Watt Joule s  1  (5.10a)

and consequently the rigid conversion factor is:

 

1
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1 Joule s
 Watt Joule/Watt-s






k  (5.10b)

Some rigid factors are precisely measured and considered to hold regardless of circum-
stance. For example, 1 unit of heat energy (1 cal) is equal to 4.187 units of mechanical 
energy, where each unit of mechanical energy is a newton · m:

 

4 187
1

.  newton m 
 cal work/heat

⋅
 k  (5.11)

Many rigid factors are estimated from data. Because these factors are completely 
empirical, their applicability depends on circumstance. An example is calibrating a satel-
lite image against a measure of vegetation cover. The calibration at a particular location 
could be used in similar circumstances but could not be applied to a satellite image from 
anywhere in the world.

in ecology it is useful to define rigid factors that are conditionally true rather than 
universally true. The symbol : is used to indicate an equality that is true under limited 
conditions. The symbol : is read “conditionally equal to”. An example of a factor that 
holds conditionally is the density (mass per unit volume) of living organisms:

 

1
1000

3m
kg

: vol/mass k  (5.12)

Most organisms have densities close to this value, even though many do not have exactly 
this value. There are exceptions, of course, such as benthic organisms with calcareous 
shells. Because the ratio is so useful, it is worth keeping the few exceptions in mind to be 
able to use it.

Another ratio that has a narrow enough scope to be worth using as a rigid scaling 
factor is the ratio of biomass consumed by a population Min to the biomass transferred 
to higher trophic levels Mout:

 




M
M

kin

out
in out10

: /  (5.13)

The transfer efficiency between trophic levels is not fixed at 10%, but the scope of this 
ratio is small enough [(ca. 20%)/(ca. 5%)  4] that it is useful in making order of magni-
tude calculations of production at one trophic level from measurements at another level.
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AnoTheR Look AT SecTion 5.5

Write out the generic expression in Table 5.3 for rigid rescaling. Then write out the 
sequence of conversion factors required to compute the number of eagle nests per km1.3 
of coastline, if there are five nests per nautical mile1.3. (A nautical mile  1.8652 km)

5.7 Elastic Rescaling
Elastic rescaling changes the exponent of a ratio scale quantity. Both the unit and 
the numerical outcome acquire a new exponent. We can visualize this as a systematic 
stretching or compression of the unit of measurement. To illustrate the idea, let’s look 
for an alternative to carrying around a rigid and bulky frame of 1 meter on each side to 
count plants in areas of fixed size. instead, let’s attach a stake on a swivel to one end of 
a meterstick, carry this tool to the study site, push the swivel into the ground at a point, 
then swing the stick in a circle around the swivel, counting plants as they pass under 
the meterstick. This sweeps an area, an activity that can be visualized as stretching a 
one-dimensional object (the meterstick) into two spatial dimensions (the circular area 
swept). Another way of stretching a meterstick out into an area is to set it down, then 
pull it at right angles to its length, to generate a rectangular area. The calculation that 
corresponds to stretching a meterstick over a distance of 2 m to generate an area is:

 1 2 21 2 1 2 meter  meter meter ( ) ⇒  

To make reliable calculations, we require a generic expression for elastic rescaling. 
The advantage of a generic expression is that it can be applied to any situation. The dis-
advantage is that it is hard to grasp on first encounter. So, once again we line it up with 
a calculation, to allow comparison with a known case:

 

Q k Qold new old new 





2 11 2 1 meter meter 2meter2( ) ⇒  (5.14)

The elastic scaling factor knewold stretches or compresses units. it measures the degree 
of stretching of units with change in measurement frequency.

Table 5.4 lists the generic recipe for elastic rescaling of quantities. if the elastic 
scaling factor has the same units as Qold, we can divide the equation in Table 5.4 by the 
units to obtain a version of the equation in unitless form. This form allows us to take 
logarithms (exponents), which are:

 old new old new  ( )  (5.15)

Elastic rescaling uses this relation to either “stretch” or “contract” old units into new 
units. The elastic factor knewold expresses the degree of stretching (if new  old) or the 
degree of shrinking (if new  old). The generic recipe for elastic rescaling in Table 5.4 
derives from the noniterative measurement relation introduced in Chapter 2. Box 5.7  
shows the derivation.
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From the derivation (Box 5.7), it is clear that the elastic scaling factor k in Table 
5.4 must have the same units as Q, the quantity to be rescaled. if the elastic scaling fac-
tor knewold does not have the same units as Q, rigid conversion must be used to obtain 
one. To illustrate this idea, we place a 2 m long stick on the ground, then pull it sideways 
for 1 cm to generate a rectangular area. The distance pulled (k  1 cm) has different 
units from the quantity being stretched (2 m long stick). The elastic factor is (1 cm)21, 
which does not match the units of Qold  2 m. This is accomplished by rigid conversion 
before elastic rescaling. Box 5.8 shows the sequence of calculations for stretching a 2 m 
length sideways for 1 cm to generate a rectangular area.

Table 5.4 elastic Rescaling of Quantities

The generic expression for elastic rescaling of the quantity Qold by an elastic scaling factor knewold is:

Q k Qold new old new 

The steps in elastic rescaling are:

1. Write the generic expression for elastic rescaling.

2. Substitute quantities and factors into the expression.

3. If quantities and factors do not have same units, use rigid rescaling on either quantities or factors.

4. Compute Qnew.

Box 5.7 Computational Formula for Elastic Rescaling, Derived from the Noniterative Measurement 
Relation, Equation 2.6a

For heterogeneous exponents the measurement relation becomes:
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where   /.

This rearranges to:
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Where Q is measured in the same units as L, this becomes:

 
Q Q Q Qref ref
      

 

Hence:

 
Q Q Qref
    

 

Taking   old,   new, and fixing Qref  k:

 Q Q knew old new old  
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        ANOTHER LOOK AT SECTION 5.6      

 Beginning   with an area of 4       m 2 , compress it by an elastic or reshaping factor of 
(4       m) 1 � 2  to obtain the line length after compression. Then compress the 4 m 2  area by 
an elastic factor of (2       m) 1 � 2  to obtain the line length after compression.       

        Box 5.8        Elastic Rescaling of  Q        �      2 Meters      

 Substitute   the quantity to be rescaled and one or more elastic scaling factors into 
the generic expression for elastic rescaling: 

  Q k Qold new old new� ��

      

  2 1 2 1 meters cm ?� ��( )       

 Units   do not match, so use rigid rescaling to obtain a new elastic scaling fac-
tor that has the same units: 
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 Calculate   Q  new  : 

     2 1 2 0 011 2 1 1 2 1m cm m m� � �� �( ) ( . )      

     � � �� �2 0 011 2 1 2 1m m.      

     ⇒ 0 02 2. m        

 Altering   the exponent of a rigid factor (e.g., 10 2        cm · m  � 1 ) will not work, because 
this does not represent the operation of stretching a quantity: 
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 The   idea of stretching a unit seems unusual compared to familiar ways of visual-
izing areas relative to lines or visualizing accelerations relative to velocities. The idea of 
stretching units will aid considerably, however, in visualizing and working with fractal 
rather than integral exponents. Fractal exponents have proved to be a logically consis-
tent way of measuring natural objects, from clouds and rivers to ecotones and blood 
vessels.
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5.8 Elastic Rescaling with Fractal Exponents
once we can visualize a familiar procedure (calculating an area) as the stretching of 
units, we can extend it to less familiar situations, such as nonintegral (i.e., fractal) 
stretching of units. The idea of stretching units will allow us to visualize and work accu-
rately with 1 cm1.4 as readily as 1 cm2.

To illustrate elastic rescaling with nonintegral exponents, let’s use a rubber band to 
measure the length of a natural (and hence typically crooked) object, a tree root. We pin 
each end of the rubber band to the extreme ends of the root to obtain a straight line dis-
tance. We then pin the rubber band against the root halfway between the first two pins. 
This stretches the rubber band as the measurement frequency changes from one measure-
ment to 2. We again pin the rubber band against the root halfway between the existing  
pins, further stretching the rubber band as the measurement frequency increases to 4. 
We continue this procedure, keeping track of the amount of stretching with each change 
in measurement frequency. (This is a rubber band that changes color as it stretches.) We 
stop at a resolution (inner scale) set by the limits of the instrument—the pins will start 
interfering with the measurements at very close spacings. if we can escape instrumental 
limits on resolution, we will still meet a lower limit set by the size of cells; a root is no 
longer a root at the scale of a cell or less.

if we apply this unusual measurement instrument, a rubber band, to a linear  
object such as a board, no stretching will occur with successive pinning. This means  
that the length is a quantity with an exponent of unity. if we wrap the rubber band 
around a circle or around a regular polygon, no stretching will occur with successive 
pinning. Hence the perimeters of these objects are quantities with exponents of unity. 
if we measure a natural object, such as a tree root, we will find that the rubber band 
stretches in a regular way with each doubling of measurement frequency. Consequently, 
we can express the degree of stretching by the increase in the exponent of the quan-
tity beyond unity. if the tree root is slightly crooked at all scales, the stretching will be 
slight at each pinning. Thus, the length is a quantity with an exponent slightly greater 
than unity. if the root is extremely crooked, the stretching will be considerable and the 
exponent of the quantity will increase toward 2. A root that is 4 cm1.2 is slightly more 
crooked than any straight ruler we can choose. A root that is 4 cm1.8 is far more crooked 
than a ruler of any length. But the exponent is still less than 2. it is not so crooked as to 
fill an area.

The idea of using rubber bands for measurement seems strange and of question-
able value. But after a time it becomes familiar and indeed even seems the appropriate 
way of measuring crooked objects such as rivers, coastlines, territorial areas, and other 
convoluted features of landscapes, lakes, or seascapes. The concept of representing a 
crooked or convoluted object with a nonintegral fractal exponent allows us to compute 
the length of an object with respect to any unit of measure we choose. Let’s begin with 
a moderately crooked reach of a river that is 2 km1.3. How long is this reach, measured 
in convoluted meters m1.3, rather than convoluted kilometers km1.3? The reach does not 
have a length of 2000 m1.3. The reach is:

 2 1000 2 1000 158871 3 1 3 1 3 1 3 m m m( ) . . . .     (5.16)
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  To   make this calculation we use rigid rescaling, for there is no change in exponent: m 1.3  
has the same exponent as km 1.3 . A kilometer 1.3  is a convoluted length that was used to 
measure a convoluted object, and a meter 1.3  is an equally convoluted length for measur-
ing the same object. The calculation according to the rules for rigid rescaling shows us 
that there are 15,887 convoluted meters, for which the symbol is m 1.3 , in an equally 
convoluted kilometer, km 1.3 .

       Box 5.9        Elastic Rescaling of Quantities, Noninteger Exponent      

 Substitute   quantities and elastic scaling factors into the generic expression for elas-
tic rescaling: 
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 An   elastic scaling factor of  k       �      km 1 � 1.3  will not work because this does not repre-
sent the operation of flattening a convoluted kilometer km 1.3  into flat meters m 1 : 

  3 3 23 8301 3 1 1 3 1 1km km km   km. . .� � ⇒ �       

 km   1 � 1.3  represents the operation of flattening a convoluted kilometer km 1.3  into a 
flat kilometer km 1 .      

 How   long is the reach of a river in straight meters m 1  rather than crooked meters 
m 1.3 ? To calculate this problem we use elastic rescaling because we are going to flat-
ten or straighten the convoluted unit of a kilometer 1.3  into units of linear meters m 1 . 
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The exponent changes and so elastic scaling is required. Box 5.9 shows computations 
for elastic rescaling of a convoluted reach of river into straight line measurements. The 
computations follow the steps in Table 5.4.

until recently, the exponents for units in the natural sciences were boring. Mass 
units had exponents of one (kg1 or kg1). Time units had exponents of one (day1, day1) 
or two (e.g., acceleration of % day2). Length units had the greatest diversity: Exponents 
ranged from 3 (volumes) through 2 (areas) and 1 (lines) to 1 (per unit length), 2 
(per unit area), and 3 (per unit volume). The concept of a fractal (Mandelbrot, 1977), 
based on Hausdorff’s (1919) measure of complexity, allows unit exponents in the natu-
ral sciences to take on noninteger values, which are no less interpretable than integral 
exponents of 1, 2, or 3. Elastic rescaling provides a physical interpretation of these non-
integral exponents. The elastic factor expresses the degree of stretching of a line into a 
convoluted boundaries such as a coastline or ecotone. The elastic factor expresses the 
degree of stretching of a two-dimensional measurement unit (a flat but elastic sheet) 
applied to a convoluted surface such as the surface area within a soil, the surface area of 
a cloud, or the surface area of a lung.

The fundamental notion underlying the measurement of complex phenomena is 
that a measured quantity Q scales as a power law function of the resolution (S  step 
size) of measurement:

 Q k S D  1
 

(5.17)

Treatments of fractals use this expression or a variant (Mandelbrot, 1977; Hastings and 
Sugihara, 1993). Box 5.10 demonstrates that behind this expression lies iterative mea-
surement, a concept introduced in Chapter 2:
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(5.18)

in this expression, S is step size relative to some reference step size So. Q is the  
measured quantity at step size S, whereas Qo is the measured quantity at the reference 
step size.

Expression 5.18 in turn rests on an iterative counting relation:
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(5.19)

in this expression, n is the count of units at step size S, whereas no is the number  
of units at the reference step size So. D is the number that renders the two ratios  
equal. Mandelbrot (1977) showed that a wide variety of natural phenomena are appro-
priately measured with exponents D that are not the familiar integers of Euclidean 
geometry.



82 QuAnTiTATivE ECoLogy: MEASuREMEnT, ModELS, And SCALing
A counting relation such as that in Equation 5.19 gives the number of steps n at 
one scale (step size S or ruler size L), compared to the number no at some reference scale 
(step size So or ruler size Lo). The exponent D quantifies the result of changing the unit 
of measurement from So to S. With Euclidean measurement protocols (i.e., count steps 

Box 5.10 Complex Phenomena Are Described by a Power Law Based on Iterative Measurement

iterative measurement is based on an iterative counting relation, which relates the 
number of units n to the scale of measurement via an exponent called the dimension;
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For the straight line distance between two points using two scales (e.g., S in meters 
and So in centimeters), the dimension is D  1.

The reference scale So can be either an extent or a resolution. if So is an extent, 
then S represents increasingly smaller subsections of So. in this case S/ So is a fraction, 
the frequency of measurement. if So is a resolution, then S/ So represents increasing 
larger units or measurement as multiples of So.

Hausdorff (1919) expanded the definition of D to include complex objects 
where D exceeds the Euclidean measure of an object embedded in Euclidean space 
(line, grid, or volume).

A quantity consists of the count of units by unit size. The iterative scaling 
relation for the quantity is:

 

Q
Q

n S
n S

S
So o o o

D



























1

 

This rearranges to a scaling function:
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Taking the fixed ratio:

 
k Q So o

D   1( )
 

results in a power law:

 Q k S D  1
 

When Q and L are expressed in the same units, the factor k becomes the 
elastic scaling factor (refer back to Box 5.7).
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on a straight line, count boxes on a Cartesian grid), the exponent D is unity and number  
of counts scales as the inverse of unit length. if we double unit length, we halve the num-
ber of steps. As a result, the scaled quantity of interest is independent of the units we use.

not all counting relations have an exponent of unity. if we want to measure the 
length of a coastline, we will obtain different answers (ratio of n/no) depending on the 
ratio of unit size S/So. To obtain a consistent measurement relation, we need to use an 
exponent other than unity. The iterative counting relation for coastline length will typi-
cally have an exponent on the order of 1.3, as follows:
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This relation quantifies the readily grasped concept that as we increase the size of our 
reference unit L/Lo the number of steps taken along the coast will decrease.
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 (5.20b)

units of time are appropriately interpreted with fractal exponents (Mandelbrot, 
1977). Elastic rescaling provides a path to interpretation, as it did with fractal geometry. 
Beginning with integer exponents, a velocity (distance · time1) can be stretched into an 
acceleration (distance · time2). As with spatial units, the degree of stretching can be less 
than that expressed by an integral exponent. it can be partial. But how can a rate have a 
time exponent other than 1? This can happen if the rate tends to be more explosive at 
short than at longer time intervals. if the case rate of measles changes slowly at the time 
scale of decades, more rapidly at the time scale of two years, and still more rapidly on 
a seasonal and daily basis, we could use an elastic rescaling factor to express this idea. 
Elastic rescaling with this factor results in a new quantity with units of (% time1). 
The exponent  is unity if the measles case rate neither accelerates nor decelerates at 
shorter time periods. if case rate changes more rapidly at short time periods, the expo-
nent exceeds unity and time becomes more negative, falling somewhere between a 
rate (time1) and an acceleration (time2). if a quantity such as population size changes 
less rapidly at short time periods than at longer periods, the exponent goes to less than 
unity; time becomes less negative than a simple rate (time1). Fractal time units apply 
to the rate of change in population sizes of birds (Sugihara and May, 1990) and to case 
rates of measles (Sugihara, grenfell, and May, 1990).

An increasing number of ecological studies use iterative measurement to obtain 
exponents that are interpretable as an elastic rescaling of lengths and areas. Elastic fac-
tors k (see Box 5.7) and exponents (see Box 5.10) have been estimated for structure of 
coral reefs (Bradbury, Reichelt, and green, 1984), sponges (Kaandorp 1991), macroalgae  
(gee and Warwick, 1994), eelgrass (Turner et al., 1999), plants (Morse et al., 1985; 
davenport et al., 1996; Escos et al., 1997; Alados et al., 1998), landscapes (o’neill 
et al., 1983; Krummel et al., 1987; Milne, 1992; Meltzer et al., 1992; Baudry, 1993; 
vedyushkin, 1994; otto, 1996; Bell, 1997; garcia and Jorge, 1997; Miller et al., 1997; 
Cantero et al., 1998; Etzenhouser et al., 1998; Meyer et al., 1998; nikora et al., 1999; 
olff and Ritchie, 1999; despland, 2000), the coastline habitat of eagles (Pennycuick and 
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Kline, 1986), intertidal habitat of gastropods (Beck, 1998), and the ice habitat of polar 
bears (Ferguson et al., 1998). Elastic factors and exponents have been estimated for ani-
mal trails (dickie and Burrough, 1988; Johnson et al., 1992; With, 1994; Wiens et al., 
1995; Erlandsson and Kostylev, 1995; Claussen et al., 1997; Bascompte and vila, 1997; 
Anderson et al., 1997; Etzenhouser et al., 1998; Ferguson et al., 1998; With et al., 1999; 
Westcott and graham, 2000). Many other studies report only the exponent, which pro-
vides less information than the elastic scaling factor k (see Box 5.10 and Equation 2.5c).

The rules for elastic rescaling in Table 5.4 assume that the elastic scaling factor 
is constant over the range that it is calculated (see derivation in Boxes 5.7 and 5.10). 
Fractal rescaling can be applied only between an inner and outer scale over which an 
elastic factor holds (Frontier, 1987). it is now clear that elastic scaling factors such as 
k apply over narrow scopes of measurement, that is, over only a few doublings in the 
frequency of measurement (Avnir et al., 1998). Multifractals (e.g., Pascual et al., 1995) 
allow the exponent and hence the elastic factor to change as a function of measurement 
resolution or measurement frequency.

Elastic scaling factors are obtained empirically as the average degree of stretch-
ing over an iterative series of measurements. Frontier (1987), Sugihara and May (1990), 
Williamson and Lawton (1991), Korvin (1992), and Hastings and Sugihara (1993) 
describe estimation techniques.

one of the exciting challenges in ecology is obtaining elastic rescaling factors from 
theory. For example, it should be possible to work out an elastic scaling for the path 
length of a predator foraging in a patchy environment. The long-known tendency of a 
predator to turn if successful or not turn if not successful (e.g., Baker, 1974) should per-
mit calculation of an elastic scaling factor for a quantity, path length, that is related to 
the cost of foraging. Similarly, it should be possible to work out the elastic scaling fac-
tor for predator speed, which decreases as the spatial measurement frequency decreases, 
because of the tendency of an animal to turn rather than move in straight lines. other 
quantities for which theoretical factors seem possible include the flux of fixed energy 
(as carbon) laterally or vertically through ecosystems, the vertical or horizontal flux of 
nutrients, the expected value of the recombination rate of two alleles in a population, 
and the expected value of the encounter rate between prey and predator.

natural objects often have a self-similar or fractal quality of convolutions within 
convolutions. This stands in contrast to fabricated objects with which we surround  
ourselves—boxes, plates, and tabletops. To paraphrase a nursery rhyme:

There was a fractal man and he walked a fractal mile,
He found a fractal sixpence against a fractal stile;
He bought a fractal cat, which caught a fractal mouse,
And they all lived together in a nonfractal house.

The stile in this verse is said to be the border between England and Scotland, a  
fractal rather than completely straight line. A sixpence coin is not fractal, but the 
“crooked sixpence” (Charles i of England, 1600–1649) tried to cross the “crooked stile” 
with an army that would have had a fractal perimeter—so the sixpence was in this sense 
fractal.
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Defined Concepts and Terms for Review and Future 
Reference

____ dimension  ____ normal score
____ duos  ____ normalizing 
____ elastic rescaling   ____ rigid rescaling
____ elastic scaling factor  ____ rigid scaling factors 
____ fractal  ____ simple rescaling
____ fractal exponent  ____ scope
____ iterative counting relation  ____ trios
____ logical rescaling



Dimensions

Using dimensional analysis, researchers have been able to obtain remarkably 
deep results that have sometimes changed entire branches of science. ... Many 
people therefore attacked what one would think were almost identical prob-
lems using the same simple dimensional analysis approach. Alas, they almost 
always failed. Dimensional analysis was cursed and reproached for being 
untrustworthy and unfounded, even mystical ...

It was like the old Deanna Durbin film: a girl with a small suitcase arrives 
in New York and, in no time, charms the son of a millionaire. Films like this 
are pleasant to watch. However, if they are treated as a guide to what provin-
cial girls should do, disillusionment is inevitable.

—G. I. Barenblatt, Scaling, Self-Similarity, and  
Intermediate Asymptotics, 1996

6.1  Synopsis
Nearly 200 years ago Joseph Fourier invented a systematic method of reasoning about 
dissimilar and similar quantities, based on Newton’s principle of similitude. He grouped 
similar units together under the name of a dimension to work out how heat flows 
through objects that differ in size and shape.

Reasoning with dimensional groupings can be as effective in ecology as it has been 
in working with mechanical and thermodynamics problems. The dimension of biologi-
cal entities, rather than traditional dimensions inherited from physics and chemistry, is 
required for ecological problems that require population reasoning.

The rules for working with dimensions are based on the definitions for a measure-
ment scale and for similarity. The uses of dimensional groups can be loosely grouped 
under two headings: simplification and model development. By simplifying many vari-
ables to a few groups, dimensions allow equations to be checked quickly. Dimensional 
groups facilitate physical and biological interpretation of parameters obtained from 
measured quantities. They reduce problems with a large numbers of variables to the 
minimum number of independent ratios; this reduction is a proven guide to the design 
of observational and manipulative experiments.

6.2  Physical and Chemical Dimensions
Ratio scale units that are similar (refer back to Box 4.2 and Table 4.4) are grouped 
together into a dimension. Thus quantities measured in centimeters have the same 
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dimension as quantities measured in km, cubits, spearlengths, or nautical miles. some of 
these groupings will be related to one another by a change in exponent. For example, the 
group (centimeters, meters, yards) is related to the group (centimeters2, hectares, acres) by 
an increase in the exponent from 1 to 2. Groups of units related by a change in exponent 
are said to belong to the same dimension. Thus the group (centimeters, yards) and the 
group (centimeters2, acres) are assigned to a single dimension, called “length”, symbol-
ized by l or [l] in the original notation developed by Rayleigh. The word “dimension” 
has two somewhat different meanings. It is a name for a similarity group. In this sense, 
length with dimension [l], area with dimension [l2], and volume with dimension [l3] 
belong to the same group. Time with dimension [T] and frequency with dimension [T]1 
belong to another group. In its more common meaning, dimension refers to geometrical 
arrangement, sometimes augmented by time. In this sense, distance east is one dimension, 
distance north is a second dimension, distance up is a third dimension, and [T] is some-
times taken as a fourth dimension.

The similarity groups most often encountered are the dimensions of length [l], mass 
[M], and time [T], one for each of the first three base units in the sI system (Table 4.1).

The units of length belonging to a single dimension [l] include standard units (cm, 
km, etc.) and a large variety of nonstandard measures, from the inch and its multiples to 
rods and miles. units of time, from seconds to millennia, all belong to a single dimension, 
time, symbolized by [T]. strictly speaking, the units of mass are the gram and its multiples, 
for which the dimension is [M]. To illustrate the idea of dimensions, several old-fashioned  
units equivalent to mass (a draft is 2 quintals, or 224 pounds) have been included. strictly 

Table 6.1 Composite Dimensions in the Mechanical System 
of Dimensions of [M], [L], and [T]

Area

A  hectare  (100 m)2 L·L  L2

A  15 cm2 L·L  L2

Volume

V  1 cm3  1 cc L·L·L  L3

Velocity
x  15 cm/sec L / T  L1 T1

Respiration
V   15 cc O2 / sec L3/ T  L3 T1

Kinetic energy

E  15 kg (2 cm/sec)2  60 kg cm2sec2 M·(L / T)2  M L2 T2

Note: For clarity, dimensions are shown without brackets.

length [l]

cm, km
inch, foot, yard, fathom
furlong
rod, mile

Mass [M]

gram, kg
grain, scruple, dram
ounce, pound
quintal, draft

Time [T]

second, hour
day, week
month
year, millennia
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speaking, pounds and ounces are not units of mass, but because a constant can be used to 
convert them to kg, these nonstandard units can be treated as if they belong to the dimen-
sion [M].

Measured quantities often have units with composite dimensions. These are mul-
tiples of dimensions, as shown in Table 6.1. legendre and legendre (1998) provide a list 
of over 65 quantities that have composite dimensions.

Mass, length, and time are not the only dimensions for problems in mechanics. We 
could choose time T, area a, and mechanical energy e as our base dimensions. Within 
this system units of mass become a composite dimension of T2e/a, whereas volume 
becomes a composite dimension of a·a½. This or any other dimensional system is valid 
as long as the units grouped into one dimension do not also belong to another dimen-
sion. The dimensional groupings that are used depend on the way quantities are defined 
and on which units are taken to be similar.

For problems outside mechanics, more dimensions are required. In thermodynam-
ics and bioenergetics, the additional dimension is temperature, for which the symbol is 
[]. The standard unit is 1 degree on the Kelvin scale.

Temperature []
°Kelvin     K

Temperature is a measure of heat content, and strictly speaking, we already have a com-
posite unit for this in the mechanical system.

 e/M M  l  T  M l  T velocity  2    1 2 1 2 2 2
 (6.1)

We can interpret the temperature of an object as the square of the velocity of its particles 
(atoms, molecules) and dispense with temperature as a separate dimension. However, 
this is awkward and inconvenient, so we treat temperature as a separate dimension 
rather than as a squared velocity.

For electromagnetic quantities the standard unit is an ampere, a measure of current 
for which the dimensional symbol is [I].

 current   [I]     charge     [Q]
 ampere     a     coulomb       c

The ampere is a composite unit, 1 coulomb per second, where a coulomb is a mole of 
electrons. consequently:

 ampere coulomb/second Q  T  1 1
 (6.2)

For electromagnetic quantities, the dimension of charge is sometimes used instead of the 
dimension of current, even though current is the standard unit.

an additional dimension is added for chemistry and biochemistry. That dimension 
is the amount of substance [N], for which the sI unit is the mole, which is equal to 
6.022 · 1023 particles. examples of chemical particles are atoms, ions, and molecules.

chemical entities   [N]
mole           mol

or
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Table 6.2 Dimensions for Standard Units in the SI System

Quantity Unit Abbreviation Dimension

Length Meter m [L]

Mass Kilogram kg [M]

Time Second s [T]

Thermodynamic temperature Kelvin K []
Amount of substance Mole mol [N]

Luminous intensity Candela cd [J]

Electrical current Ampere A [I]

yet another dimension is added for light. The dimension is luminous intensity [J], 
for which the base unit is the candela.

Table 6.2 shows the dimensions for each of the seven standard sI units of measurement. 
as we will see in the next section, standard sI units are inadequate for the biological sciences.

6.3  Biological Dimensions
a dimension is needed for biological entities (stahl, 1962). The additional dimension is 
the population [N], for which the base unit is an entity # rather than a mole. a biologi-
cal entity is defined as a recognizable object belonging to a population of such objects. 
examples of biological entities are individuals, species, cells, or nerve impulses.

strictly speaking, moles and entities belong to the same dimension, for which the 
conventional symbol is [N]. However, there are good reasons for distinguishing the 
chemical dimension [N] for amount of substance measured in moles from the biological 
dimension [N] of a population composed of entities. The mole is far too large a unit for 
population biology. a mole or a small multiple might by useful for bacteria or pine nee-
dles in an ecosystem. But in general, an appropriately small unit (entities) will be more 
practical than an enormous unit borrowed from chemistry. Population interactions typi-
cally occur between a small number of neighboring individuals. The number of potential 
prey of a predator is small, for example, compared to the huge number of ions available 
for interaction with any given ion of opposite charge.

Biological entities        [N]

mol
dozen, gross
score
count, kilocount, megacount      #

AnoTher Look AT SeCTIon 6.2

a gradient is the change in some quantity with change in location. a mass gradient  
has dimensions of M l1. Work out the dimensions for a gradient in each of the 
quantities in Table 6.1.
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If chemical and biological entities need to be distinguished in the same analysis, the 
count symbol [#] can be used for the dimension of biological entities. Thus, a quantity 
such as migration across a boundary would have dimensions [N] [l]1 [T]1 in conven-
tional notation, or equivalently [#] [l]1 [T]1. In either case the dimensional notation 
would be read as entities per unit length per unit time.

There are no standard units for the dimension of biological entities. Possible 
units are a mole (e.g., 2 mol bacteria  2 · 6.02 · 1023 bacteria), a dozen (e.g., 2 dozen 
genes  2 · 12 genes), a score (e.g., 2 score cells  2 · 20 cells), or a count (e.g., 2 kilo-
count ants  2 · 103 ants). a mole is inconveniently large, since we are often interested 
in the interaction of a small numbers of entities. a dozen and a score are of useful magni-
tude, but are not base 10. a count, for which the symbol is #, is of the right magnitude 
and can be modified by standard prefixes: kilocounts, megacounts, etc. standard pre-
fixes are also readily added to named entities. For example, a protein might measure 
120 kilobases long.

units such as a kilocount of cells, a kilocount of predator attacks, or a megacount 
of potential encounters are not standard, but they are useful in biology and can be han-
dled in a rigorous fashion (stahl, 1962). The philosophical objection to using counts 
of objects or events as a measurement scale (ellis, 1966) can be met by insisting that 
this scale does not consist of numbers; it has units of entities (animals, genes, etc.) on 
a ratio scale. This reasoning follows Kyburg (1984), who argues that all measurements 
must have units. Physical and chemical dimensions will not suffice, because they miss 
the biology. an example is the number of organisms per unit area, a quantity that often 
is of interest in ecology. If we try to force this quantity into the conventional dimen-
sions of chemistry and physics, we lose the count and hence the biology. Dimensions 
are most effectively used in reasoning about ecological problems if the choice of dimen-
sional groupings is based on biological similarities, not on standard groupings carried 
over from physics and chemistry.

The utility of this similarity group in biology is evident from stahl’s (1962) listing 
of 22 quantities based on this dimension. stahl’s list, with additions and modifications, 
is here grouped into quantities based on entities (Table 6.3), per capita quantities (Table 
6.4), and interaction rates (Table 6.5).

care is needed in defining which quantities can be grouped together into the 
dimension of entities. We could group otters and sea urchins together into a single 

Table 6.3 Quantities Based on the Dimension entities, represented by #

Quantity Dimensions Examples

Loss or gain rate N T1 Contact, mitotic, birth, or death rates

Entities per mass N M1 Cells per gram

Entities per length N L1 Animals per transect; Genes per micron of chromosome

Density N L2 Organism density; Cell density

Concentration N L3 Species or individuals per volume of water

Entity flux N L2 T1 Vertical flux of propagules

Entity movement N L1 T1 Migration out of a reserve

Energy efficiency N E1 Mitoses per Joule; offspring per Joule of food

Occupancy N T L2 Ant-hours foraging per m2; Residence by migrants

Note: Modified from Stahl (1962). Dimensions are M  Mass, L  Length, T  Time, and E  Energy.
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dimension of animal counts. otters encounter urchins, and hence there is a biological 
basis for placing them in the same similarity group. We would not group species counts 
along with nerve impulse counts because species and nerve impulses are at different lev-
els of biological organization. Thus, a good rule is to assign entities to the same similar-
ity group if they are at the same level of biological organization.

Table 6.6 distinguishes biological entities at different levels of biological organiza-
tion. at the biochemical level, counts are large enough that a mole is the appropriate 
unit of measurement. For genetic, cellular, and population entities, units of megacounts 
or kilocounts are more appropriate. For behavioral and ecosystem entities we would 
tend to use a count rather than one of its multiples.

Quantitative reasoning based on dimensions has traditionally not been important 
in population and community ecology. This is due in part to the use of the conventional 
mechanical dimensions of mass, length, and time. These leave out much of the biology of 

Table 6.4 Per Capita Quantities Based on the Dimension entities, represented by #

Quantity Dimensions Examples

Length L N1 Spacing of plants

Area L2 N1 Avian territory; crown area of a tree

Volume L3 N1 Volume filtered per organism

Time T N1 Time per mitosis, per decision

Mass M N1 Mass of cell, organism

Energy E N1 Caloric content

Note: Modified from Stahl (1962). Dimensional symbols as in Table 6.3.

Table 6.5 Interaction of entities, represented by # · #  #2

Quantity Dimensions Examples

Potential interaction N2 Cell, molecular, genetic contacts; duos

Diversity N2 L2 Diversity

Interaction frequency N2 T 1 Contact rate; “biological temperature”

Interaction time T N 2 Synaptic delay time; search time by predator

Energy exchange E N 2 Joules per capture

Energy exchange rate E N2 T1 Change in energy, as in learning

Ratio of entities N N1 Active to inactive genes; selection coefficient

Complex interactions N3 Social, colonial activity

Interaction ratio N2 N3 Social, colonial activity

Note: Modified from Stahl (1962). Dimensional symbols as in Table 6.3.

Table 6.6 entities at Different Levels of Biological organization

Biochemical entities Ions, atoms, molecules (including proteins)

Genetic entities Chromosomes, genes, alleles, mutations

Cellular entities Nuclei, mitochondria, cells

Behavioral entities Attempts, successes, modal action patterns (MAPs)

Population entities Interacting species

Ecosystem entities Number of taxa (species, order, etc.); number of trophic levels.
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populations, in which the dynamics depend on rates of contact between organisms. The 
dimensional scheme shown in Tables 6.3–6.5 includes the biology of contact-dependent  
processes by defining units that measure contact rates. With this scheme, quantitative 
reasoning based on dimensions can be applied to population and community ecology. 
For example, much of the work on evolution has treated gene flow as a number lacking 
units and dimensions. This impedes the analysis of gene flow as a function of spatial and 
temporal scale. once gene flow is treated as a scaled quantity, the role of space and time 
scales in evolutionary biology can be analyzed quantitatively. another example is species 
diversity, which is traditionally treated as a dimensionless quantity when in fact it is a 
derived quantity based on entities and areas. once diversity is treated as a quantity with 
dimensions, the analysis of diversity as a function of spatial scale (e.g., Macarthur, 1969) 
can be carried out with the aid of this style of quantitative reasoning (schneider, 2001a).

6.4  Measurement and Dimension
The seven base units in the sI system are routinely used to define dimensional groupings 
(Table 6.2). But these are not the only valid groupings. Because the central idea is that 
quantities are grouped according to some notion of similarity, we can use any similar-
ity group that we like. If we were interested in economics, we could define a dimension 
called cash with units of pennies, nickels, dimes, dollars, and megabucks. This dimen-
sion includes any of the world currencies: pesos, yen, francs, and so on. all these units 
are similar in that they can be used to purchase goods and services.

cash              [$]

dollar, dime, nickel
peso
franc, centime
yen

But though we are free to use dimensions other than those of chemistry and phys-
ics, we are not free of the mathematical logic that makes dimensions useful. Gold (1977) 
noted that the biologist has the burden of understanding, in greater detail than a physicist 
or chemist, the principles of measurement and dimension so that, when necessary, appro-
priate dimensions are coined. The principles are simple (Box 6.1). First, the action of mea-
surement associates a set of numbers with a set of objects, defining a measurement scale. 
Next, two measurement scales belong to the same dimension if the measurement of two 
objects produces the same ratio on both scales. This establishes an operational definition 
for a dimension, consistent with the rules in Box 4.2 and Table 4.4. according to this oper-
ational definition, measurements in kg and pounds belong to the same dimension because 
there is a 1:1 scaling (here on the surface of the earth). Box 6.1 presents in more detail the 
definitions of measurement scale and dimension that underpin dimensional methods.

AnoTher Look AT SeCTIon 6.3

of the composite dimensions in Tables 6.3 and 6.4, how many have you encountered?
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Rule 1 in Box 6.1 establishes an operational definition for any quantity. To make 
a measurement, we need to define our objects and then assign a number to each object. 
The objects can be natural (lakes, islands, organisms) or artificial (clock ticks, ruler 
marks, quadrats). The numbers we assign can be on any of four types of scale: nominal, 
ordinal, interval, or ratio (see section 3.5). Measurements on a ratio type of scale are spe-
cial in that they allow us to calibrate one scale to another. The simplest form of calibra-
tion is a one-to-one scaling, which places two scales in the same dimension (Definition 2, 
Box 6.1). Two measurement scales (both must be ratio scales) belong to the same dimen-
sion if they produce the same ratio of measurements across objects. Measurement scales 
belonging to the same dimension can be substituted for each other directly. We can make 
measurements with one scale (e.g., inches) and then compute the measurement on any 
other scale belonging to the same dimension (e.g., centimeters or meters).

Box 6.1 Definition of Measurement Scale and Dimensions

Definition 1. a measurement scale is a rule of association between a set of physical 
objects and the set of real numbers. The association entails a physical operation, 
that of measurement. The rule specifies a unique value in the range of real num-
bers for each element of the domain set of physical objects (from Gold, 1977).

Definition 2. any two measurement scales, say, S’ and S, belong to the same 
dimension if they have the same domain set and if:
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objecta and objectB are any pair of objects in the domain set (see Gold, 1977).

With some rearrangement, Definition 2 results in a noniterative scaling relation 
(equation 2.5a), but with only two objects.
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This is the scaling relation for completely similar objects having a length dimen-
sion of D  1.

The corresponding scaling function (see equation 2.5c) is:

 S k S AA  ⋅ ⋅  
where:

 k S SB B /  
When there are multiple variables, reduction of variables to one or more dimen-
sionless  ratios will prove to be a useful device.
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The definition of dimension in Box 6.1 implies comparison of two objects, as 
when we compare the ratio of lengths of a large to a small pendulum as measured in 
spearlengths to the ratio of lengths as measured in meters. This is a noniterative scaling 
relation (equation 2.5a). The concept of dimension can also be derived from an iterative 
counting relation. an example is quadrat size, for which the iterative counting relation is:
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(6.3)

In this expression, Lo is the length along the side of a small tile (say, of unit size 10 cm), 
L is the length along the side of a larger tile (of, say, 1 m). n is the number of large tiles 
to fill the quadrat, whereas no is the number of small tiles to fill the same quadrat. The 
dimension is defined by the exponent, which in this case is 2. This exponent connects 
the operation (L/Lo) on the right side of the equation to the numbers (n/no) that result 
from measurement. The area of a quadrat is the product of tile size and the number  
of tiles:
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Note that this relation applies to iterative measurement of a single object. If we multiply 
both sides of equation 6.3 by (L/Lo)2, we obtain:
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(6.5a)

and then rearranging, we have:
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(6.5b)

The exponent is zero, which means that the area of the object (the quadrat) is indepen-
dent of the units we use to measure the object. We take this for granted, but as we will 
see, this independence applies only to euclidean objects (lines, regular polygons, regular 
solids) or to objects that we treat as euclidean, ignoring any complexity of shape or 
structure.

Having defined a dimension via an iterative counting relation, we move next to 
Definition 2 (Box 6.1), which compares objects. For 2 quadrats, one small and the other 
big, the iterative counting relations are as follows:
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as a consequence, the ratio of counts will be equal:
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(6.7a)

This is a reformulation of Definition 2 in Box 6.1. The reader can verify this relation 
by drawing two quadrats: a small one with 4 units on a side, and a bigger one with 6 
units on a side. Draw in the tiles nsmallo  16 tiles and nbigo  36 tiles. Then group the 
tiles into squares consisting of 4 tiles. at this new scale the two quadrats will measure, 
respectively, 2 units and 3 units on a side. The number of larger tiles in the two quadrats 
will be nsmall  4 tiles and nbig  9 tiles. equation 6.7b expresses this particular resca-
ling, shown in abstract form in equation 6.7a:
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To complete our examination of comparative scaling, we multiply equation 6.7a by the 
scope of measurement (L/Lo)2:
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area is the product of tile size and tile count (equation 6.5a), and so equation 6.7c is 
reexpressed as follows:
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Next, we move to comparative scaling of several quadrats. We begin by rear-
ranging equation 6.7d. Multiplying both sides by the same factor (Asmallo/Abig), then 
applying an exponent of 1, we have:
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This says that the ratio of areas of a big and a small quadrat will be the same, regardless 
of whether we use large tiles L2 or small tiles Lo

2. consequently, we can scale any quad-
rat to the smallest quadrat:
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even more generally, we can rescale any quadrat to a reference quadrat A ref :
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This allows us to establish measurement relations (equation 2.8a) in which we scale a 
quantity to units defined by a measurement protocol. For example, we can scale species 
number to quadrat size, as in Box 2.3:
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(6.11)

This scaling relation is based on a protocol whereby a quadrat with area A has the same 
shape as the reference quadrat Aref. another characteristic to note is that equation 6.11 
is based on comparing objects. This notation captures this distinction. The ratio A/Aref 
identifies that noniterative scaling is across objects, each measured with respect to a sin-
gle unit of measurement. In contrast, the ratio A/Ao identifies an iterative scaling (two or 
more units of measurement applied to a single object).

In equation 6.11 we define the units on the right side as a series of quadrats that 
have the same shape, leaving the results of the measurement operation to appear on the left 
side. Thus, this is a noniterative measurement relation. Not all power laws are based on 
measurement relations. Many are based on the scaling of one quantity to another, where 
both quantities are defined relative to some measurement operation. an example of a scal-
ing relation that is not a measurement relation is species number in relation to island size:
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In this example species number is defined relative to a noniterative counting relation, 
whereas area is defined relative to a different measurement protocol (also noniterative). 
under what conditions can we use this scaling relation? Returning to the iterative defini-
tion of dimension (equation 6.3) that underlies the comparative definition in Box 6.1, 
we have an expression for the number of square tiles (with side L and side Lo) that are 
required to cover an island:
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The exponent D will be close to a value of 2 for islands with simple shapes, such as the 
nearly round islands created by a single volcano. The exponent will rise above 2 as the 
island shape becomes increasingly complex due to a highly indented coastline. The expo-
nent will be greater for an archipelago than for a single island. The area of an island at 
two different tile sizes (either L or Lo on a side) will then be:
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The area of the reference island at two different tile sizes will be:
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The area of any island relative to the reference island will be:
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(6.16)

comparing this equation with equation 6.10, we now see a correction factor that 
depends on the difference in complexity between an island and the reference island:
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Thus, the scaling of species number to island size is:
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(6.18)

If we use quadrats of fixed shape, then D  Dref and there is no correction because 
(L/Lo)0  1. If we use euclidean shapes to approximate island area, the difference is 
zero and there is no correction. However, if we suspect that species number depends on 
island shape and we know our islands differ in complexity of shape, we can introduce a 
correction, as in equation 6.18.

This analysis demonstrates the difference between a scaling relation based on two 
quantities and a scaling relation based on a quantity and a measurement protocol (refer 
back to equation 2.5a versus equation 2.6a). If we ignore the distinction, we are open 
to hidden uncertainty and to values of scaling exponents that are less certain than they 
appear. This casts doubt on the literature in which scaling arguments are developed by 
combining two or more scaling functions. The literature on species-area relations is 
plagued by this confusion. This analysis also demonstrates the difference between iter-
ative and noniterative scaling. If we ignore the difference, we are open to making an 
erroneous conclusion based on comparing exponents for which there is no basis of com-
parison. The literature on species area curves is handicapped by unfounded compari-
son of scaling exponents. The distinction between noniterative scaling among systems 
(equations 2.1, 2.2, 2.5, 2.6, 6.11) and iterative scaling within a system (equations 2.3, 
2.4, 2.7, 2.8, 6.3) will prove useful in making sense of the literature on scaling. Iterative 
scaling is the basis for the measurement of structural complexity and for quantifying 
complex phenomena (Boxes 2.1 and 5.10). Iterative scaling is relatively new, appearing 
in the last two decades of the 20th century. Noniterative scaling relations have a much 
longer history in biology, going back several centuries to body size allometry (scaling 
across organisms) and back more than a century to species area relations (scaling across 
quadrats or islands).
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6.5  Dimensional Analysis in Biology
Dimensional analysis applies to both iteratively and noniteratively measured variables 
(Barenblatt, 1996). However, most presentations are based on measurement relations that 
are noniterative, as in equation 2.6a. This classical form of dimensional analysis employs 
the comparative definition of dimension in Box 6.1. Books on the topic of dimensional 
analysis (with the exception of Barenblatt, 1996) present euclidean spatial dimensions 
and a Newtonian time dimension [T]1, even though fractal exponents are possible based 
on the definition of a measurement relation and dimension (Boxes 5.10 and 6.1).

Dimensional analysis in this classical form is limited compared to what can be 
accomplished from iteratively defined measurement relations (e.g., equation 6.4). 
Nevertheless, classical dimensional analysis remains useful in simplifying a problem and 
guiding quantitative reasoning.

To illustrate the advantage of simplification, we begin with an informal dimensional 
analysis of species diversity in relation to habitat diversity on islands that differ in their 
distance from the mainland. With just four variables (island area, island distance, species 
diversity, habitat diversity), there are six pairwise graphs. In one of these graphs (species 
diversity versus habitat diversity), we expect a strong relation due to island area. Instead 
of plotting all six graphs or undertaking a multiple regression analysis, we can simplify 
the problem with dimensional analysis of species and habitat diversity in relation to island 
area. We begin by listing the four variables in terms of measurement operations (Box 6.2). 
In all four, the measurement operation is across units. The operations consist of defining 
the diameter of an island, then measuring the radius as a straight line distance (r/rref); 
defining habitat categories, then counting them (#/#ref ); defining species and counting 
them (#/#ref ); defining what is meant by distance to mainland and then measuring the 
straight line distance (L/Lref). It is worth noting that these operations will not be automat-
ically defined in the same way by all investigators. For example, island diameter might be 
defined as the maximum diameter, the minimum diameter, the average of the maximum 
and minimum, or in some other way. Island radius and distance from mainland belong 
to the same dimension (length), so we can form a dimensionless ratio, IslandA/Distance2. 
The two remaining variables can also be taken as a dimensionless ratio, Nsp/Nhab, based 
on the shared dimension. The first ratio measures room for dispersion within an island 
relative to intensity of dispersion from the mainland. That is, we expect dispersion from 
the mainland to become important when the square of the distance from the mainland 
is less than the area of the island. The second ratio measures species diversity relative to 
habitat diversity. Plotting these two ratios against each other (a single graph) will summa-
rize all the information we have in the most economical way possible.

AnoTher Look AT SeCTIon 6.4

Find a power law of interest to you. Re-express it as an equivalence between two 
scopes, with the appropriate exponent. Is the relation iterative or noniterative? Is it 
a scaling relation (that is, a noniterative observationally based scaling relation) or a 
measurement relation?
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over the last two centuries, several techniques have been developed to aid dimen-
sional analysis. one is the dimensional matrix, invented by Joseph Fourier (1822). The 
matrix displays quantities relative to dimensions. setting up a dimensional matrix forces 
us to think about a problem in terms of scaled quantities. once the matrix is formed, it 
can be revised based on biological knowledge. Revision of the matrix leads to new and 
efficient ways of looking at a problem.

To work with dimensions, we will need a list of algebraic rules. Table 6.7 shows 
the list developed by Gold (1977). These rules follow from the definitions in Box 6.1; 
they are consistent with the rules for working with ratio scale units listed in Table 4.4. 
Riggs (1963) developed a shorter list of rules for checking the dimensional consistency 
of equations (see chapter 13).

In addition to algebraic rules, we will need Buckingham’s theorem, which tells us 
that the number of independent dimensionless ratios (called  ratios) that can be formed 
will be equal to the number of variables, minus the number of dimensions. as we will 
see,  ratios have many uses, from efficient summarization of system characteristics to 
the development of scaling functions. There are several prescriptions for obtaining  
ratios, once variables and dimensions are defined. one prescription, called sequential 
elimination, works by rearranging the dimensional matrix. This prescription is more 

Box 6.2 Noniterative Scaling Relations for Analysis of Species Diversity in Relation to Habitat 
Diversity on Islands That Differ in Their Distance from the Mainland
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easily learned than the other two, Rayleigh’s method and Buckingham’s method. case 
study 6.5.1 shows all three techniques for a single example.

Dimensional analysis is a way of simplifying a problem based on measurement or scal-
ing relations grouped into dimensions. Table 6.8 shows a generic approach to dimensional  

Table 6.7 rules for Working with Dimensions

  1.   When quantities are multiplied, the result is the product of the dimensions (and units) of the two factors.

  Example: velocity · time  distance    [L / T] [T]  [L]

  2.   When one quantity is divided by another, the result is the ratio of the dimensions and units of the two 

quantities.

  Example: production / biomass  % / time    [M / T] / [M]  T1

  3.  Dimensionless ratios result from division of two quantities with the same dimensions.

  Example: (velocity · time ) / distance  R    ( [L / T] [T] ) / L  L0 T0  1

  4.  Exponents and logarithms have no units or dimensions.

  Example: log10(10 km / km)  1

  Note that a quantity must be divided by its units to meet this condition.

  5.  Conversion factors are dimensionless ratios with different units.

  Example: 35.274 ounces / 1 kg  1  [M] / [M]  [M0]  1

  Conversion factors leave dimensions unchanged.

  6.  Addition and subtraction apply only to quantities with the same units.

  7.  Quantities set equal to each other must have the same dimensions.

  Example: Nsp  k·Az  [N]  [N · Lz] [Lz]

  The quantity k·Az has dimensions #.

  As a result, this composite quantity can be set equal to species number.

  8.  Dimensions are unchanged by magnitude, including the operation of taking a limit.

  Example for N  number of ants, A  area, t  time:

  (dN/dA ) (dA /dt)  dN/dt  [N L2] [L2 T1]  [N T1]

  A1N dA  mean(N)  [L2] [N] [L2]  N

  9.   Probabilities are dimensionless ratios. This follows from the definition of a probability as the limit of an 

expression of the type:

  (Number of occurrences / Number of possible occurrences)

  For completeness, an additional rule is needed.

10.  Pure numbers (e, ) have no dimensions (Riggs 1963).

From Gold (1977).

Table 6.8 Use of the Dimensional Matrix to obtain Dimensionless ratios, 
Scaling (or Measurement) relations, and Scaling Functions

The dimensional matrix displays the relation of quantities that apply to a problem. The steps in applying it are:

1.  List all quantities, with symbols and units.

2.  State what is known about the relation of these quantities.

3.  Define each quantity in terms of measurement operations (dimensions).

4.  List quantities as rows, dimensions as columns.

5.  Fill out the resulting dimensional matrix.

6.  Construct and interpret dimensionless ratios.

7.  As needed, revise the list of quantities or dimensions.

8.  Fill out a new matrix, construct new ratios, and interpret.

9.  Rewrite dimensionless ratios to scaling (or measurement) relation and scaling functions.
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analysis, with emphasis on the dimensional matrix. The generic approach in Table 6.8 is 
illustrated by a series of case studies that demonstrate the utility of dimensional analysis 
in ecology.

6.5.1 Case Study 1: Dinosaur running Speed

To illustrate the dimensional matrix and its role in developing scaling functions, we 
begin with a classic example: How fast could dinosaurs run? alexander (1989) used 
dimensional methods to analyze the problem. Beginning with step 1 in Table 6.8, 
the quantities are leg length, which can be measured on fossils, and running speed. 
convenient symbols and appropriate units are:

 v   straight line running speed in units of meter sec 1
 (6.19a)

 legL  leg length in units of meters  (6.19b)

The suspected relation (step 2), based on experience with running, is that running speed 
increases as a function of leg length:

 v legL f ( )  (6.20)

The dimensions for each of the quantities are:

 v    m sec [l] [T]1 1
 (6.21a)

 legL  meter [l]  (6.21b)

When quantities are listed as rows (step 3) and dimensional groups as columns (step 4), 
the dimensional matrix (step 5) is:

[l]   [T]    nrows  ncolumns  0
v    1    1

legL    1

according to the  theorem of Buckingham (1914), the number of independent 
dimensionless ratios will be the number of variables (rows) minus the number of dimen-
sions (columns). It is evident that we have too few rows (too little information) with our 
first formulation. We need another quantity. as will soon become apparent, we need 
a quantity that includes the dimension of time. Because dinosaurs are extinct, we can-
not obtain measured variables that have a time component, such as steps per minute. 
However, we do have a constant that relates distance to time in the Triassic era as well 
as now, which is acceleration due to gravity:

 g    9.8 meter sec [l] [T] 22
 (6.22)

The form of the relation becomes:

 v legL accel f ( , )  (6.23)
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The revised dimensional matrix is:

Box 6.3 Dimensionless Ratios Formed by Sequential Elimination

The dimensional matrix has three rows and two columns, hence one dimensionless 
ratio:
  [l]  [T]

v    1 1
legL   1
g    1 2

To reduce the time dimension, square the velocity, then divide by acceleration. The 
new matrix is:

  [l] [T]
v2/g   1 0
legL  1 0

To reduce the length dimension, subtract the second row from the top row. 

  [l] [T]
v2/(g·legL) 0 0

Here is sequential elimination in a different sequence.
start with 3 by 2 dimensional matrix. Take the product of acceleration and leg 
length, raised to the ½ power:

  [l]   [T]
v    1   1
(legL·g)1/2   1   1

subtract the second row from the top row.

  [l] [T]
v/(g·legL)1/2   0   0

[l]   [T]    nrows ncolumns  1
v        1     1
legL        1
g        1     2

The next step is to construct dimensionless ratios. Massey (1986) lists three 
approaches: Rayleigh’s method, Buckingham’s method, and sequential elimination 
within the dimensional matrix. The third method is often the easiest to use. This method 
most easily combines biological concepts and judgement with the logic of similarity 
groups. The third method also makes it evident, more than the other two, that dimen-
sionless ratios can be formed in any of several ways. The method produces dimension-
less ratios by sequential combination of rows (quantities) so as to reduce the dimensions 
(columns) to zero. Rows are combined by multiplying quantities (adding exponents), 
by taking the ratio of quantities (subtracting exponents), and by raising quantities to 
powers (multiplication of exponents by a constant) as needed to reduce dimensions to 
zero. This continues until rows are reduced to the number of dimensionless ratios set by 
Buckingham’s theorem. Box 6.3 demonstrates the method. The reduction to a dimen-
sionless ratio is carried out twice to show two different solutions for the same ratio.
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The dimensionless ratio summarizes the measurement and scaling relation among 
the variables. The ratio, which we will label with the Greek letter pi for “product”, is:

 Π  v g legL⋅ ⋅( ) /1 2
 (6.24a)

equivalently:

 Π  v g legL2/( )  (6.24b)

The  ratio in equation 6.24b is the square of that in equation 6.24a. Because  is a 
dimensionless number, there is no need to distinguish the  ratio for velocity (equation 
6.24a) from the  ratio related to mass-specific energy (equation 6.24b).

once a dimensionless ratio has been obtained (step 6, Table 6.8), it is interpreted 
and revised as needed (step 7). For equation 6.24b, kinetic energy of running is pro-
portional to the square of running speed v2, whereas the potential energy of an animal 
balanced on its leg is the product of leg length and gravitational acceleration. Thus, the 
 ratio is the ratio of kinetic to potential energy, which is held in balance during the 
coordinated activity of running.

scaling relations (equation 2.5a) and scaling functions (see equation 2.5c) are 
obtained from the  ratio by algebraic reorganization (Box 6.1 and step 9 in Table 6.8). 
For the dinosaur example, acceleration g is a constant.  is always a dimensionless con-
stant. Hence the scaling relation is:
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(6.25a)

From this, we expect that a dinosaur with a leg length 1.5 times that of a horse could 
run at a speed of 1.51/2  1.2 times that of a horse. If we want to make specific predic-
tions, we can rewrite the scaling relation as a scaling function:

 v / k legL1 2
 (6.25b)

where k  vref ·legLref 1/2. To verify the scaling function, we can plot the running speed 
against the square root of leg length of animals of different sizes. once we verify that 
the relation is a straight line on this plot, we can estimate k, then compute the expected 
running speed of a dinosaur of known leg length.

sequential elimination is not the only way to form dimensionless ratios. Rayleigh’s 
method uses algebra. an equation is written for each dimensional group, then the scal-
ing function is obtained by solving the system of equations. The  ratio can be written 
from the scaling function. Box 6.4 shows the procedure.
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This method, unlike sequential elimination, leads directly to scaling functions. However, 
the focus on the algebraic manipulation tends to push aside the use of biological con-
cepts and judgment in carrying through the analysis.

The third approach, Buckingham’s method, produces  ratios based on structured 
inclusion of knowledge of the system. an important step is to identify “nonrecurring” 
variables. These are the variables that, based on our knowledge, we want to convert to 
dimensionless form. Table 6.9 lists the steps for Buckingham’s method. Box 6.5 shows 
the procedure.

Box 6.4 Formation of Dimensionless Ratios by Rayleigh’s Method

v  f ( legL, g )    The functional expression
v  k · legL · g   expressed as a series of products

l1  l0 · l1 · l1   equation for length dimension
1  0    1   same equation for exponents of length

T1  T0 · T0 · l2   equation for time dimension
 1  0  0  2   same equation for exponents of time

There are two equations with two unknowns ( and ). The solution is   ½ and 
  ½, hence:

v  k · legL1/2 · g1/2

  v1 · legL1/2 · g1/2

Table 6.9 Buckingham’s Method, Based on the  Theorem

1.   Form the dimensional matrix, consisting of a row for each variable and a column for each dimension.  

Fill in the matrix with the exponents for each variable in terms of dimensions.

2.  Calculate the number of  ratios as nratios  nvariables - ndimensions.

3.   From the list of variables, identify variables considered of interest based on knowledge of the 

system. These are called nonrecurring variables. Choose as many nonrecurring variables as there are 

dimensionless ratios. The remaining variables are called recurring variables.

4.   Make sure that as a set the recurring variables include all the dimensions listed as columns. Make  

sure that no two recurring variables form a dimensionless ratio. If the recurring variables do not meet 

these conditions, revise the choice of nonrecurring variables or, if necessary, revise the dimensional 

matrix.

5.   Partition the dimensional matrix so that the recurring variables are listed together, usually at the  

bottom.

6.   Use the set of recurring variables to form a nondimensional  ratio for each nonrecurring variable. This 

can be done by inspection or by Rayleigh’s method.
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The dinosaur example was deliberately simple, to show how the three different 
methods work, to demonstrate that they all produce equivalent results, and to display the 
relation of these standard methods to the scaling relations introduced in chapter 2 (com-
pare equation 6.25a to equation 2.5a). The next example is more complex, with several 
variables and more than one dimensionless ratio. This example demonstrates the utility of 
dimensional reasoning about a problem before undertaking field research. It also demon-
strates a neglected step: reorganization of the dimensional matrix in light of knowledge of 
the system.

6.5.2 Case Study 2: otter Monitoring

Moving from body size scaling (as an accessible example) to spatial scaling, we look 
at whether changes in geographic range can be used to monitor changes in sea otter  

Box 6.5 Dimensionless Ratios Formed by Buckingham’s Method

[l]    [T]
legL  1

v  1    1
g  1    2

1. The dimensional matrix has three rows and two columns.
2. Nrows  ncolumns  1 ratio.
3. velocity depends on leg length (not vice versa), so velocity is chosen as the 

nonrecurring variable.
4. This will leave leg length and gravitational acceleration as the recurring 

variables (see Table 6.9). They are acceptable because the group includes all 
dimensions and no pair in the group forms a dimensionless ratio.

5. The matrix is partitioned into a recurrent group (below the line) and 
nonrecurrent variables (above the line).

[l]    [T]
v     1    1

legL     1
g     1     2

6. The recurrent group is reorganized so that it will form a dimensionless ratio 
relative to the nonrecurrent group:

[l]    [T]
v     1      1

(legL · g)1/2     1     1

7. Form a  ratio for the nonrecurrent variable.

[l]  [T]
v/(g · legL)1/2    0    0
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populations. Reasoning with dimensions is used to identify assumptions and isolate the 
quantities most in need of measurement, before committing resources to a field survey.

Referring to Table 6.8, the first step is to list the quantities that apply to the prob-
lem. For the problem of sea otter range, we start with a guess about the factors that 
determine rate of range expansion. Reasonable guesses are birth rates, death rates, and 
individual spacing. The quantities are:

_____ Population size at time t
_____ Birth rate
_____ Death rate
_____ Individual spacing
_____ length of coastline occupied

a coordinated set of easily remembered symbols would be nice, so the symbol N will 
stand for population numbers, D will stand for the crude death rate, and B /N will stand 
for per capita birth rate. a dot over a symbol signifies the time rate of change. This 
notation uses three conventional mnemonic symbols (N, B, and D ) together with a dia-
critical mark, to distinguish counts from rates.

To complete the first step, here is the list of quantities with symbols and units:

Symbol Name Units

Nt Population size at time t Otters

D Death rate Deaths/year

B/N Per capita birth rate Pups/otter pair in 1 year

A Individual spacing m2/otter

cL Length of coastline occupied km

The next step is to state what is known about the relation of variables. The relation 
of interest is coastline length as a function of population size and the other variables:

 cL N D B N At f ( , , / , ) 
 (6.26)

It is suspected that otters space themselves into feeding territories along the coast, and 
hence that spacing A is a constant. To work out dimensions (step 3 in Table 6.8), we 
analyze each unit into components. These are:

otters, pups, otter pairs, deaths, years, m2, and km

The component units are related as follows:

pups  otter after leaving mother
otter pair  2 otters
death  1 otter

m . km2 0 001

Next, the components are placed into the conventional similarity groups found in text-
books: [l], [T], and [M].

[l]   length   (km) [T]   Time   (year)
[l]2   length2  (m2) [M] Mass    —
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The three dimensions are listed as column headings, the five quantities are listed as rows, 
and the exponents are placed into the two-way table:

Name of Quantity Unit Groupings

Symbol Units [L] [T] [M]

Population size Nt Otters 0   0 0

Death rate D Otter year1 0  1 0

Birth rate B /N % year1 0  1 0

Spacing A m2 otter1 2   0 0

Coastline occupied cL km 1   0 0

our first try is unsatisfactory on several counts: Nt has no dimensions, mass [M] has 
no quantities listed in its column, and D and B /N are assigned the same dimension, yet they 
are not similar: addition of %/time to numbers/time cannot be correct. The conventional 
mechanical dimensions miss much of the biology. The biology of birth and death can be 
forced into the conventional scheme using body mass as a dimension, but this will introduce 
a complicating factor, the growth rate of individuals, into a problem where we had no reason 
to think this matters. of course, it may well be that individual growth rate is important. But 
at the outset, why complicate the problem unless there is a compelling biological reason to do 
so? It is simpler to introduce the dimension of entities, which has units of otters for the prob-
lem at hand. It replaces the dimension mass. This substitution is truer to the biology of the 
problem and the initial conjecture, which was that the contraction and expansion of the geo-
graphic range depend on births, deaths, and behavioral interactions that determine spacing.

Returning to step 3 (Table 6.8), the new grouping of components is:

length   (km)
length2   (m2)
Time    (year)
entities   (otters, otter pairs, juvenile recruits, deaths)

This grouping is based on the idea that juvenile recruits become equivalent to other 
otters as soon as they leave their mothers. It suggests that a fledging rate (pup depar-
tures/year) would be more relevant to the problem than number of pups per pair in a 
year. Replacing the quantity B /N (pups/pair in a year) with a new quantity Npup (pups 
departing per year) results in a new grouping of component units:

length   (km)
length2   (m2)
Time    (year)
entities   (otters, pup departures, deaths)

The revised dimensional matrix is:

Name of Quantity Unit Groupings

Symbol Units [L] [T] [#]

Population size Nt Otters 0   0 1

Death rate D Otter year1 0  1 1

Pup departure rate Npup Pup year1 0  1   1

Spacing A m2 otter1 2   0  1

Coastline occupied cL km 1   0    0
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The number of independent dimensionless ratios will be 5  3  2, which are 
readily obtained (step 6, Table 6.8) by sequential elimination. or with Buckingham’s 
method (Table 6.9), we make a preliminary choice of population size and coastline occu-
pied as the variables of interest. This leaves death rate, pup departure, and spacing as 
the recurring group. However, death rate and pup departure form a dimensionless ratio, 
so another choice of nonrecurrent variables will be necessary. The logic of variables in 
relation to measurement dimensions will force us to consider a demographic variable 
(either death rate or pup departure) as a nonrecurring variable. choosing departure rate, 
the matrix can now be partitioned (step 5, Table 6.9) so that the recurring group is in 
the denominator of the  ratio. The dimensionless departure rate is:
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(6.27a)

examining the dimensional matrix, we can see that the only way to make 1 
dimensionless is to set the exponents in the denominator of equation 6.27a to   0 
and   0, leaving   1:
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The other ratio will be:

 
Π2 1 2 0 1 2
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(6.28)

one group is a function of the other:

 Π Π2 function ( ) 1  (6.29)

Interpreting the two ratios (step 6, Table 6.8), we find that they represent population 
dynamics (1) and spatial configuration (2). Thus, distribution is an unknown func-
tion of population dynamics. It is now evident that in setting up the problem we did not 
include information on the relation of distribution to population dynamics. If we want 
to include this relation, we need to introduce a quantity that links numbers to distribu-
tion (such as a dispersal rate). With such information we could revise the list of quanti-
ties, then fill out a new matrix leading to a better set of dimensionless ratios (step 8, 
Table 6.8).

For the problem of population monitoring, the ratio of interest is 2 because it 
contains both coastline length and population size. The scaling relation (step 9) is:
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(6.30)

equation 6.30 says that occupied coastline increases with the square root of popula-
tion size. Is this the case for otters? It would be if otters spread in all directions. But if 
otters occupy adjacent territories along the coast rather than spreading away from the 
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coast, spacing would need to be measured in units of coastline segment rather than in 
unit of area per otter. Thus, in designing a monitoring program, we need to determine 
whether otters spread outward from the coast and whether spacing remains constant. In 
retrospect it might seem obvious that spacing needs to be monitored, but it is not obvi-
ous that a pilot study is needed to determine whether otters occupy areas away from 
the coast or only along the coast. These conclusions would not have emerged from the 
more typical approach to the problem, which would have been correlation or regression 
analysis of the initial set of variables.

To summarize, length of occupied coastline is easier to measure than population 
size. a monitoring program that tracks change in population size by tracking length of 
occupied coastline would be inexpensive relative to a survey to estimate population size. 
analysis of dimensional groups improved our definition of the set of variables. It also 
showed that a pilot study of spacing is needed. If we want to monitor otter popula-
tion size by tracking the occupied coastline, we need to keep track of whether spacing 
remains constant. Dimensional analysis was thus a guide to the design of a scientifically 
based monitoring program, one based on testable predictions backed by appropriate 
pilot studies.

6.5.3 Case Study 3: Patch Size of Phytoplankton

The third case study is a classic in the literature on dimensional methods in ecology. 
skellam (1951) and Kierstead and slobodkin (1953) worked out the patch size at 
which phytoplankton growth rate (tending to maintain the patch) just balances diffu-
sive motions of the water (tending to erode the patch). The patch diameter at which the 
opposing processes are equal in magnitude is the critical patch size. Patches larger than 
this are possible, but smaller patches are not. Platt (1981) showed that the critical dia-
meter could be obtained by dimensional methods without solving an advection-diffusion  
equation. Platt (1981) and legendre and legendre (1998) both applied Buckingham’s 
method to the advection-diffusion equation to obtain the  ratio that gives the criti-
cal patch diameter. With the method of sequential elimination, the advection-diffusion 
equation is not needed at all.

Here are the quantities of interest, with typical values from o’Brien and 
Wroblewski (1973):

Symbol Name Typical Value

K_H Eddy diffusivity 0.5 · 108 cm2s1 Sargasso Sea

1 · 108 cm2s1 Peru Upwelling

r Growth rate 10% day1 Sargasso Sea

5% day1 Peru Upwelling

d Patch diameter Km?

By inspection, eddy diffusivity has dimensions of [l]2 [T]1 and growth rate has dimen-
sions of [T]1. Patch diameter has dimensions of [l] by definition. The quantities are 
listed in the dimensional matrix by row, the dimensions are listed by column, the cells are 
filled in, and then the matrix is reduced by sequential elimination, as shown in Box 6.6, 
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Box 6.6 The Critical Patch Scale of Phytoplankton

sequential elimination will be used to obtain the dimensionless  ratio, the scaling 
relation, and the scaling function.

The dimensional matrix has three rows and two columns, hence one dimen-
sionless ratio.

  [l] [T]
 K_H   2 1

r     1
 d   1

To reduce the time dimension, take the ratio K_H /r.
The new matrix is:

  [l]   [T]
 K_H / r   2   0

 d   1   0

To reduce the length dimension, divide the second row by the square root of the 
first row.

  [l]  [T]
 d1 (K_H /r)1/2   0   0

The dimensionless ratio is:  Π  d K H r1  ( / ) /_ 1 2

The scaling function is: d K H r Π ( / ) /_ 1 2

Diffusive loss balances growth when   1.

This gives the critical scale: d K H rcrit  ( / ) /_ 1 2
 

The scaling relation is: 
d

d
K H r

K H rref ref ref


_ /

_ /

/











1 2

 

following the procedure in Box 6.3. The scaling function and scaling relation are worked 
out from the dimensionless ratio obtained via sequential elimination. These three expres-
sions have different uses. The dimensionless ratio can be used to compute, in any given 
case, whether diffusive forces as measured by K_H prevail over patch generation rate d2 r,  
which is the product of growth rate r and d2 (proportional to area). The scaling relation 
can be used to compute the increase in patch size, given a doubling in the ratio of eddy 
diffusivity to growth rate. The scaling function can be used to compute the critical scale, 
in this case the critical size of a patch, at which growth rate is adequate to maintain the 
patch relative to the mixing rate measured as K_H.



112 QuaNTITaTIve ecoloGy: MeasuReMeNT, MoDels, aND scalING

Box 6.7 Dimensional Analysis of Nitrogen Dynamics of a Coral Reef

DIN  dissolved inorganic nitrogen
A  area (m2)   [N ]  nitrogen flux (moles DIN m2 hr1)

[N tot]  f ([N fix], Afix, [N denit], Aloss, [N mix], [N adv])

  [M]  [l]     [T]
[N tot]   Nitrogen accumulation 1 2 1
[N fix]   Nitrogen fixation rate 1  2 1
Afix      area over which fixation occurs  2
[N denitr]  Fixed nitrogen loss rate (denitrification)  1  2 1
Adenitr  area of denitrification losses to atmosphere   2
[N mix]   Nitrogen loss due to horizontal mixing   1 2 1
[N adv]     advective input 1 2 1

variables  dimensions  3 independent  ratios.
Reduction by inspection (Box 6.2):

1  adenitr/Afix  2  [N mix]/[N fix]  3  [N denitr]/[N adv].

Reduction based on coral reef biology (Hatcher and Frith, 1985):

fix  ([N mix]/[N fix])·((adenitr  afix) / afix)
denitr  ([N mix]/[N denitr])·(adenitr  afix) / afix)

fix can be rewritten in terms 1 and 2:

(adenitr  afix)/afix  1  1
fix  2 (1  1)

denitr cannot be rewritten in terms of the three independent ratios, hence denitr 
and fix are not independent.

From Hatcher and Frith (1985).
6.6  Applying the Logic of Dimensions
Text examples of dimensional analysis emphasize the machinery shown in Boxes 6.3, 
6.4, and 6.5. However, the logic of dimensions is far more flexible than the machinery 
of forming independent ratios. Kline (1976) emphasizes that reduction to the minimum 
number of dimensionless ratios will often be too limiting in situations where little is 
known about the problem or about the component variables. Instead of the focus on 
the minimum number of independent ratios, Kline recommends choosing from three 
approaches, which he calls the method of similitude, the method of Buckingham’s  
theorem, and the method of governing equations. These are described in Table 6.10.

Text examples convey the impression that the goal of analysis is a unique set of 
dimensionless ratios that are independent of one another. The disillusionment in the 
quote at the beginning of this chapter results when a unique set of dimensionless ratios 
fails to appear. In simple text problems there is often only one ratio (as in the dinosaur 
and phytoplankton examples), resulting in a unique solution. For simple problems such 
as the otter example, the only possible ratios are rearrangements of the minimum num-
ber of ratios. In contrast, many problems in ecology (e.g., Miller et al., 1984; Hatcher 
and Frith, 1985; yager et al., 1993) begin with a large number of variables that do not 
fall into convenient groups. The method of similitude (Table 6.10) is most useful in these 
situations, when there are many variables and no unique set of independent ratios. This 
method is the most flexible, relying on past knowledge and judgment.

The method of similitude (Kline, 1976) begins with a list of relevant quanti-
ties, takes all possible dimensionless ratios, and then relies on judgment and knowl-
edge to choose the appropriate scaling relations. an example comes from Hatcher and 
Frith (1985), who were interested in the nitrogen dynamics of coral reefs. Hatcher and 
Frith listed six variables that affect the total nitrogen accumulation by a reef (Box 6.6). 
Relative to dimensions of mass [M], length [l], and time [T], this results in three indepen-

Table 6.10 Three Strategies for Applying the Logic of Dimensions to a Problem

Method of similitude:

1.  List all possible dimensionless ratios.

2.  Choose among these, based on knowledge of the problem.

Method of the  theorem:

1.  Reduce variables to the minimum number of  ratios.

2.  If there is only one ratio, apply this (either as a scaling function or a scaling relation).

3.  If there is more than one ratio, compute these from data, then plot the  ratios against one another.

Method of governing equations:

1.  State the conservation equation.

2.  Use this rather than the dimensional matrix to obtain dimensionless ratios.

Adapted from Kline (1976).

AnoTher Look AT SeCTIon 6.5

state the difference among a scaling function, a scaling relation, and a dimensionless 
ratio. Which (if any) of these have you encountered before?
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dent  ratios. Inspection of the dimensional matrix reveals that there are a large number 
of ways of forming the three ratios. Two of the variables have dimensions of length but 
not mass or time. This suggests a “natural”  ratio, the area in which nitrogen is fixed 
to the area from which nitrogen is lost by denitrification, 1  Afix/Adenitr. This leaves 
four variables, all fluxes with the same units, to be combined into two additional ratios. 
There are six simple flux ratios. This means there are three possible pairs of ratios 2 
and 3 (Box 6.7), not just one pair. Based on knowledge of reef systems, Hatcher and 
Frith (1985) defined an internal fixation ratio, the nitrogen fixation time scale (inverse 
of fixation rate) relative to horizontal mixing time scale (inverse of mixing rate). Hence 
2  [N mix]/[N fix]. This leaves one independent ratio to be formed from the two remain-
ing variables: 3  [N denitr]/[Nadv]. This ratio is that of total loss to advective resupply.

Rather than relying on the textbook machinery to produce 2 and 3, Hatcher and 
Frith (1985) used knowledge of coral reef biology to form two dimensionless ratios, an 
internal fixation number fix and an internal denitrification number denitr. These ratios 
scale denitrification and nitrogen fixation to the mixing loss [N mix]. Box 6.7 shows the 

Box 6.7 Dimensional Analysis of Nitrogen Dynamics of a Coral Reef

DIN  dissolved inorganic nitrogen
A  area (m2)   [N ]  nitrogen flux (moles DIN m2 hr1)

[N tot]  f ([N fix], Afix, [N denit], Aloss, [N mix], [N adv])

  [M]  [l]     [T]
[N tot]   Nitrogen accumulation 1 2 1
[N fix]   Nitrogen fixation rate 1  2 1
Afix      area over which fixation occurs  2
[N denitr]  Fixed nitrogen loss rate (denitrification)  1  2 1
Adenitr  area of denitrification losses to atmosphere   2
[N mix]   Nitrogen loss due to horizontal mixing   1 2 1
[N adv]     advective input 1 2 1

variables  dimensions  3 independent  ratios.
Reduction by inspection (Box 6.2):

1  adenitr/Afix  2  [N mix]/[N fix]  3  [N denitr]/[N adv].

Reduction based on coral reef biology (Hatcher and Frith, 1985):

fix  ([N mix]/[N fix])·((adenitr  afix) / afix)
denitr  ([N mix]/[N denitr])·(adenitr  afix) / afix)

fix can be rewritten in terms 1 and 2:

(adenitr  afix)/afix  1  1
fix  2 (1  1)

denitr cannot be rewritten in terms of the three independent ratios, hence denitr 
and fix are not independent.

From Hatcher and Frith (1985).
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relation of these two  ratios to three independent  ratios produced by the machinery 
(Box 6.3) of sequential elimination. Both biologically based ratios contain [N mix] and 
hence are not independent. Due to the built-in relation, little is gained by plotting the 
ratios against each other. But the ratios did prove useful in making order of magnitude 
comparisons of denitrification versus fixation rate, both taken relative to mixing loss. 
The example, which uses Table 6.10 as the starting point, exhibits the interplay of bio-
logical reasoning with dimensional analysis.

The method of the  theorem (Tables 6.9 and 6.10) emphasizes the number of 
independent ratios (based on Buckingham’s theorem). The advantage of this method is 
that a plot of independent ratios will provide a more compact summary than several 
plots of variables one against another. Plots of ratios will be free of spurious associa-
tions found in plots of variables (an example is the association of percent change with 
initial density). To illustrate the advantage of plotting ratios rather than variables, the 
method of the  theorem is applied to a well-known empirical relation (Ryder, 1965), 
that of annual fish catch from lakes as a power function of the morphoedaphic index, 
the ratio of total dissolved solids to lake depth (Figure 6.1). This empirical relation sum-
marizes the tendency of large, clear lakes to be unproductive relative to small or shallow 
lakes. What is the contribution of lake shape and clarity to fish production? To under-
take dimensional analysis of the question, we begin by disaggregating Ryder’s (1965) 
derived variable, H  kg ha1yr1 into its component measurements, annual fish catch 
M   kg yr1 and area A  hectares. Box 6.8 shows the dimensional analysis.

Box 6.8 Dimensional Analysis of Fish Catch Relative to the Morphoedaphic Index of Ryder (1965)

H  k·MeI0.4461

H  fish catch per unit area (kg ha1yr1)
TDs  total dissolved solids (ppm)
z  lake depth (meters)
MeI  TDs/z  morphoedaphic index of Ryder (1965)

The functional expression for the measured variables:

M   f (A, TDS, z)
   [l]

A  lake area (ha) 2
TDS  total dissolved solids (ppm)   0
z  lake depth (meters)   1

variables  dimensions  2 independent  ratios
Reduction by inspection (Box 6.3)

1  A1/2/z  2  TDS
M   f (1, 2)

evaluate by plotting 1 versus 2 then M  against 1 and 2.
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once the  ratios are formed, they are plotted against each other. such a plot shows 
whether variables are related, without spurious relations forced by the presence of a 
measurement unit common to both axes. In Figure 6.1, for example, the relation of fish 
catch per unit area might be driven in part by the relation of lake area (which appears 
on the left side of the equation) with lake depth (which appears on the right). Figure 6.2 
shows that lake shape 1 and water clarity 2 are independent.

Because 1 and 2 were independent, it was then of interest to plot fish catch against 
each ratio. Figure 6.3 shows that annual catch is related to lake shape, described by the 
dimensionless ratio of area1/2/depth. Figure 6.4 shows that annual catch is unrelated to total 
dissolved solids. The relation of fish catch per unit area to the morphoedaphic index (Figure 
6.1) is driven by the lake shape. Based on this analysis, a simplification of Ryder’s (1965) 
model was developed (see chapter 13) and tested.

Plots such as those in Figure 6.2 are easy to construct and effective in disentan-
gling the relations among multiple variables. Plots based on the method of  ratios have 
been used to examine the form and function of dinosaurs (alexander, 1989), the growth 
dynamics of phytoplankton (lewis et al., 1984; Gallegos and Platt, 1985), the mixing 
characteristics in experimental mesocosms (crawford and sanford, 2001), and local 
food supply to benthic marine organisms (Miller et al., 1984; yager et al., 1993).
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AnoTher Look AT SeCTIon 6.6

For a problem of interest to you, write a functional expression Y  f (X1, X2,....), form 
a dimensional matrix, and determine the number of dimensionless ratios. Then deter-
mine whether there is a unique set of  ratios or many possible  ratios. comment on 
the applicability of the method of the  theorem (Tables 6.9 and 6.10) to your problem.

6.7  Use and Limitations of Dimensions
similarity groups, or dimensions, are an important part of quantitative reasoning with 
scaled quantities. similarity groups have a variety of uses. lists by Platt (1981) and 
Peterson and Hastings (2001) overlap Kline’s (1976) list of 10 uses grouped into three 
categories: simplification of a problem, checking equations, and developing equations. 
simplification includes the use of dimensions to aid comprehension of abstract quantities, 

The method of governing equations (Table 6.10) represents a third and different 
use of the logic of dimensions. This method begins with an equation rather than pro-
ceeding toward the development of a scaling function. as with the method of  ratios, 
this method is used to develop or modify models and so will be covered in chapter 13.
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the standardization of disparate measurements to the same scale, and guidance of further 
research. The dinosaur and otter examples demonstrate the utility of simplification guided 
by the logic of similarity groups. chapter 13 covers checking and developing equations.

Dimensional groupings aid in visualizing the physical or biological content of any 
equation and its constituent symbols. For example, the coriolis parameter f occurs often 
in descriptions of atmospheric and ocean circulation. The physical content of the sym-
bol becomes clearer from its dimensional symbol, which is T1. The dimension shows 
that the abstract symbol f has the dimensions of frequency. It is the frequency or angu-
lar component of acceleration acquired by an air or water parcel once it has been set 
in motion and so moves either closer or farther from the earth’s axis of rotation. The 
same approach works for equations: one writes out the dimensional symbols immedi-
ately above or below each symbol in the expression. This will make the idea behind the 
expression more comprehensible by relating it to familiar ideas of mass, time, distance, 
energy, or contacts. My copy of Circulation in the Coastal Ocean (csanady, 1982) had 
two blank pages at the end that are now filled with a list of symbols for physical quanti-
ties, their names, their dimensions, and the page numbers where they were first defined. 
Dimensional grouping was key to understanding the physical content of csanady’s equa-
tions for calculating flows in coastal waters.

Most of the applications of the logic of dimensions in the ecological literature are 
for organism form and function in relation to body size (Hill, 1950; Gunther, 1975; 
schmidt-Nielsen, 1984; alexander, 1989; Pennycuick, 1992). an example is the case 
study of dinosaur running speed in the previous section. several studies have applied the 
logic of dimensions to ethology (Dunbar and stephens, 1993; Dugatkin and Mesterton-
Gibbons, 1995). applications at the population or ecosystem level, such as the otter 
monitoring and phytoplankton growth case studies, are less common. Most of the pub-
lished applications are from aquatic habitats. Many begin with a conservation equation 
rather than a set of variables.

a few published applications begin with a set of variables rather than an equa-
tion. These use the logic of dimensions to interpret a body of literature (vogel, 1981; 
Frith and Hatcher, 1985; Duffy and schneider, 1994), guide experimentation (Miller  
et al., 1984; uhlmann, 1985; yager et al., 1993; englund and Peterson, 2005), or syn-
thesize information from disparate sources (Neis et al., 1999). vogel (1981) uses the 
many dimensionless ratios known from fluid mechanics to interpret a wide variety of 
biological phenomena. vogel discusses Reynolds, Prandtl, Nusselt, Grasshof, and Froude 
numbers, their variants, and another nine lesser used numbers. a striking application is 
the dynamic similarity that underlies a surprising resemblance at disparate scales: fiber 
pattern inside plant cell walls, compared to pattern in glaciers surrounding mountain 
peaks. vogel shows that both phenomena operate at low Reynolds numbers, where vis-
cous forces prevail over forces associated with the movement of objects.

Hatcher and Frith (1985) used dimensional analysis to reduce six variables that 
affect the nitrogen economy of coral reefs to two dimensionless ratios, which they used 
to interpret disparate conclusions about whether coral reefs depend on external sup-
plies of nitrogen. Duffy and schneider (1994) devised a sequence of five dimensionless 
ratios to evaluate whether fishing vessels compete with seabirds to the detriment of sea-
bird reproductive success (Figure 6.5). The ratios were listed in order of cost to obtain 
data, starting with the least expensive ratio, for which data are often available. uhlmann 
(1985) and schneider (2001a) described several applications of the logic of dimensions 
to biological production by enclosed bodies of water, from chemostats and laboratory 
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tanks to sewage lagoons and lakes. In marine habitats, Miller et al. (1984) listed eight 
variables that characterize feeding dynamics of benthic animals. This reduced to five 
dimensionless ratios. Three of these brought coherence to previous results. The dimen-
sionless ratios permit previous models of sediment ingestion to be matched to appropri-
ate sedimentary regimes. Thus the ratios can serve to guide the design of experiments on 
foraging behavior in relation to modes and rates of sediment transport.

yager et al. (1993) used dimensionless ratios to guide design of experiments to 
uncover the conditions leading to enhanced food supply to deposit feeders inhabiting 
sedimentary pits. They looked at trapping rate of particles by pits as a function of 10 
variables, which they reduced to seven dimensionless ratios. In their experiments, they 
held three of these ratios constant, then varied either the pit-aspect ratio or one of three 
ratios summarizing the effects of flow turbulence. simplification via the logic of dimen-
sions allowed yager et al. (1993) to describe the ways in which food supply depends 
on flow regime. schneider (2001a) and Peterson and englund (2005) used dimensional 
analysis to evaluate alternative explanations for experimental results for mesocosms 
(tanks) of different size and shape.

These examples show the flexibility of the logic of dimensions, beyond the text 
examples that use conventional dimensions and the machinery for obtaining the mini-
mum number of ratios. Instead of conventional dimensions, Miller et al. (1984) used 
dimensions of particles [P], animals [M], and time [T]. These dimensions were truer to 

Horn ratio
Overlap in diets

Schaeffer ratio
Seabird catch relative to fishery

Evans ratio
Seabird catch relative to stock

Wiens ratio
Seabird catch relative to production

Bourne ratio
Seabird catch relative to resupply

If low, no problem
if high, then

If low, no problem
if high, this could be due to small fish,
so

If low, no problem
if high, then

If low, no problem
if high then

If low, little potential competition
if high then competition present

FiGUrE 6.5 Sequence of Dimensionless ratios to evaluate the Potential for Competitive Interactions between 
Seabirds and Fisheries.  redrawn from Duffy and Schneider (1994).



Chapter 6 • Dimensions 119
the biology of the research question than the conventional dimensions of mass, length, 
and time. Duffy and schneider (1994) developed a sequence of dimensionless ratios rel-
evant to a stated problem rather than reducing a set of potentially measurable variables 
to a small number of dimensionless ratios. Hatcher and Frith (1985) chose dimension-
less ratios that they considered relevant to the lagoon nitrogen dynamics rather than 
choosing ratios produced by a standard dimensional analysis.

In addition to its utility in specific applications, the method of dimensional group-
ing is an important avenue for interdisciplinary understanding of ecological processes. 
one of the advantages in using dimensional groupings to reason about ecological prob-
lems is that this method is routinely used in reasoning about physiological processes that 
connect organisms to their environment. The method is used by physiologists working 
at space and time scales relevant to the cell or the individual. It is also used by physical 
scientists working at global time and space scales. so this method should be of consider-
able use to ecologists who work in between, where physiological performance (growth 
rate, birth rate) interacts with the dynamics of the physical environment.

similarity groups have played a central role in the analysis of the form and func-
tion of organisms, beginning with Thompson’s landmark book on form and function 
(1917) and continuing into the present. similarity groups are essential in biofluid dynam-
ics (vogel, 1981), which, broadly defined, includes any application of fluid mechanics to 
biology. stephens and Dunbar (1993) and Mesterton-Gibbons and Dugatkin (1995) use 
dimensional methods to develop models of behavior independent of species and the partic-
ularities of place. Hastings (1997) showed that stability of population models depends on 
parameters reduced to dimensionless form. similarity groups have made important contri-
butions to biological oceanography (lewis et al., 1984; Miller et al., 1984; Gallegos and 
Platt, 1985; yager et al., 1993) and sensory ecology in fluid environments (Weissburg and 
Zimmer-Faust, 1993; Nevitt, 2000; Weissberg, 2000). More recently, dimensional methods 
and similarity groups have put mesocosm experiments on a sound footing by quantifying 
the degree to which conditions in tanks do and do not resemble field conditions (sanford, 
1997; Porter et al., 2000; crawford and sanford, 2001; englund and Peterson, 2005).

However, like the girl in the quote at the beginning of the chapter, too much can 
be expected of classical dimensional methods. Texts (including this chapter) illustrate the 
method with examples that work. Texts typically use integer dimensions based on nonit-
erative measurement protocols that use complete similarity (Barenblatt, 1996), where a few 
ratios completely govern the dynamics. accessible texts typically do not treat nonintegral 
dimensions, iteratively measured quantities, and what Barenblatt (1996) calls incomplete 
similarity, where the governing effect of ratios is asymptotic, not complete. In biology, the 
euclidean geometry of lines, planes, and volumes (spherical chickens) is at best a conve-
nient approximation. The geometry of organisms and their environment is that of Hausdorf 
(1919) and Mandelbrot (1977), with paths more crooked than euclidean lines or surfaces 
more rugged than euclidean planes. Noninteger exponents emerge when more than one sim-
ilarity criterion applies or when opposing rates are usually far from equilibrium. The failure 
of physical and biological systems to follow the scaling relations obtained by classical dimen-
sional methods has long been recognized. It is attributed to mixed scaling regimes (Gunther, 
1975; uhlmann, 1985; Barenblatt, 1996) instead of a single regime that can be analyzed by 
the classical methods presented in this chapter. In mixed regimes the exponents are not inte-
gers or ratios of integers, and the classical approach to dimensional analysis described in this 
chapter will fail (as with the cautionary quote that leads this chapter). a different approach 
is needed. This approach, called renormalization, is beyond the scope of this book.
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6.8   Further Reading on Dimensions and Measurement 
Theory

Reasoning with dimensional quantities can be traced to Galileo (1638) and Newton 
(1686). unit grouping in a dimensional matrix was invented by Fourier (1822, chapter 
2, section 9) to analyze the geometry of heat flow. Buckingham (1914) stated the  theo-
rem about the minimum number of independent dimensional groupings in response to 
the claim (Tolman, 1914) that if all measurements were doubled, no one would notice. 
Whitney (1968) presents an exposition of the mathematical basis of dimensional group-
ings. older texts (Bridgman, 1922; langhaar, 1951; Taylor, 1974) emphasize equations 
and the minimum number of independent ratios. The texts by Kline (1976) and Massey 
(1986) provide more flexible treatments of the logic of dimensions. stahl (1961, 1962) 
extended rigorous treatment of dimensional groupings to biology. General treatment of 
dimensional analysis in biology can be found in Gold (1977), Platt (1981), legendre and 
legendre (1998), Pennycuick (1992), and Petersen and Hastings (2001). an advanced 
treatment, including fractals and a few biological examples, appears in Barenblatt (1996).

a general account of measurement theory can be found in Krantz et al. (1971). 
Philosophical accounts of measurement theory can be found in ellis (1966), who argues that 
counts cannot be assigned dimensions, and Kyburg (1984), who argues that all measurements 
must be assigned dimensions. Falconer (1985) develops fractal concepts from measure theory.

Defined Concepts and Terms for Review and Future 
Reference

____ biological entity   ____ dimensional matrix
____ Buckingham’s theorem  ____ iterative counting relation
____ complete vs incomplete similarity   ____ measurement scale
____ composite dimensions   ____ operational definition for a dimension
____ critical scale   ____   ratio
____ dimension   ____ similarity group
____ dimensional analysis

AnoTher Look AT SeCTIon 6.7

at what point in your life did you encounter dimensions?

l High school courses
l university physics or chemistry; other university courses
l after university
l Never

Do you think your experience was typical?



The Geography and 
Chronology of Quantities

When the comet crossed the orbit of the moon it was moving at a velocity of 
30 kilometres per second and the end of the Cretaceous was three hours away.

—D. A. Russell, An Odyssey in Time: The Dinosaurs of  
North America, 1989, p. 205

7.1 Synopsis
Measured quantities have temporal attributes: their chronology, resolution, and dura-
tion. Temporal attributes are usually expressed on a ratio type of scale. But in the 
absence of detailed information, it is useful to express these attributes on ordinal or even 
nominal scales. Attributes on a ratio type of scale readily serve as a vector address for 
each value of the quantity. The alternative to vector representation of a quantity is to 
adopt an index to match each value of a quantity to its temporal attributes, which are 
now treated as quantities themselves.

The spatial attributes of quantities (position, resolution, and extent) are of interest 
to any environmental scientist, whether a biologist, chemist, economist, engineer, geog-
rapher, geologist, meteorologist, or physicist. Geographic attributes are expressed on 
measurement scales ranging from nominal to ratio, depending on the level of available 
detail and the purposes of an investigation. Stating the type of geographic measurement 
scale aids considerably in making sense of the confusing array of geographically explicit 
techniques now available.

Computers make it possible to analyze a quantity relative to all its spatial attri-
butes, not just position. Scanning through a sequence of positions, together with zoom-
ing in on detail at finer resolution or zooming back on larger-scale pattern, contribute to 
understanding of populations and communities in relation to their environment.

Clear and consistent notation is an important part of quantitative biology. 
Attention to the principles of good notation can greatly improve quantitative practice 
in ecology, as it has in physiology and oceanography. The notation used for spatially 
explicit quantities in oceanography and meteorology is appropriate for any geographic 
topic, whether rocks, life, or economics.

The spatial and temporal attributes of a quantity are conveniently and efficiently 
summarized in the compact form of vector notation. In this notation, the symbol Qx t 
stands for the spatial attributes x and temporal attributes t of a quantity. This notation 
lets us describe and quantify the spatial and temporal scale of any quantity.

7
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7.2 Temporal Attributes
Measured quantities have several temporal attributes: the duration of each measure-
ment, the time between successive measurements, and the time required to complete the 
set of measurements. These characteristics determine the time scale of a measured quan-
tity. The duration of a single measurement sets the resolution, whereas the time between 
first and last measurement sets the range or extent. In principle any measurement can 
be indexed as to time and duration. In practice the art lies in judging whether temporal 
characteristics matter. For example, in the experiments summarized by Downing et al. 
(1999), the time taken to measure nutrient concentration does not matter, as long as it 
is short relative to the rate of change in concentration. The duration of each experiment 
does matter because of lag effects on nutrient uptake at short time scales and because of 
grazing effects at longer time scales (Downing et al., 1999). If a nutrient uptake experi-
ment is repeated over several days, the time between experiments should be irrelevant to 
the outcome; a thorough experimentalist would, of course, check to make sure that this 
was true.

Similar considerations apply to the temporal attributes of survey variables. In a sur-
vey of the number of shorebirds using a beach, the temporal attributes are the count 
duration (e.g., 1 hour), count frequency (e.g., daily), and duration of the series (e.g., three 
months). The temporal scope of this survey 90:

Scope
range

resolution
  

3
1

30
90

months
day

days
month
⋅

The survey cannot resolve dynamics at time scales of less than a day, such as diurnal or 
tidal cycle change.

There are several ways of representing the temporal attributes of a quantity. one is 
to use subscripts that have the values of the attribute. With this notation, the sequence of 
counts of one species of migratory shorebird, the Willet, Catoptrophorus semipalmatus,  
along a 5.7 km stretch of beach along the Gulf of Mexico on four successive days at the 
beginning of the period of northward migration is represented as:

Nt  [150 145 82 111] · 5.71 · km1

t  17 April 86… 20 April 86, 1 day

The subscript t ranges from April 17, 1986, to April 20, 1986, with a resolution of 1 
day. This increases the information about the quantity N. Without the temporal attri-
bute, all one can say is that the Willet count ranged from 150 to 82, with an average 
value of 122 per 5.7 km. Given the temporal attribute, one can say that the Willet count 
decreased suddenly on April 19.

on April 17–19, a high-pressure weather system passed through the area, result-
ing in winds favorable for northward migration after passage of the system. This sug-
gests the hypothesis that a rise in air pressure stirs migratory restlessness, with departure 
occurring as soon as the barometer stops rising. The hypothesis that high-pressure 
systems trigger migratory departure could be tested by continuing the observations 
to determine whether the passage of a subsequent system again resulted in a drop in  
numbers of Willets.
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The use of the attribute as a subscript can handle missing values, as in the following  
example:

Nt  [182 nc 150 145 82 111 ] · Willets 5.71 · km1

t  15 April 86, 20 April 86… 1 day

The subscript ranges from April 15 to 20, with a resolution of 1 day. The first count was 
N(15 April 1986)  182 Willets 5.71 km1 between 8:00 and 10:00 a.m.; there was no 
count on April 16.

This notation becomes cumbersome for sparsely populated time series, which have 
a large number of missing values within the range of the temporal attribute. The notation 
cannot be used if the resolution changes or if temporal attributes are on a nominal scale 
(before or after a certain date) or on an ordinal type of scale. The solution is to list the 
attribute as a separate quantity, then employ a sequence of integer numbers (i  1…n, 1) to 
address both the quantity and its attributes. The index i has no units; it is here displayed as 
a range (1 to n) at a resolution of 1. Alternatively, the index is displayed as (i  1, 2, 3…n).  
Here is an of example a sequence of 5 measurements of biomass (Mt in units of grams), on 
days 2, 6, 7, and 14:

Mt  [15.0day 2 18.1day 6 18.1day 7 20.2day 14 20.1day 14] · grams

The temporal attribute (day of measurement) will no longer serve as an address, because 
there are two values on day 14. The quantity M is reorganized as two quantities coordi-
nated by an index i:

i        1   2   3   4   5
Mi      [15.0   18.1   18.1   20.2   20.1   ]  · grams
ti      [  2   6   7   14   14   ]  · days

The index i serves as a bookkeeping device to keep track of a sequence of addresses. 
With this notation, missing values are not displayed and all measurements of mass have 
unique addresses, even if they have the same temporal attribute.

The same reorganization to indirect addressing works if the quantity of interest is 
expressed on an ordinal scale:

i    1  2  3  4  5
Mi    [ First  Second  Second  Fourth  Third  ]
ti    [ 2  6  7  14  14  ]  · days

This notation becomes necessary if the temporal attribute is on a rank (ordinal) scale:

i    1  2  3  4  5
Mi   [ 15.0  18.1  18.1  20.2  20.1  ]  · grams
ti    [ First  Second  Third  Fourth  Fourth  ]  · day

Indirect addressing will also become necessary if the temporal characteristics are 
expressed on a nominal scale. To test the hypothesis of meteorological triggering of 
Willet migration, I continued the counts at the same beach until another low-pressure 
system arrived. The temporal characteristic of interest was whether the count occurred 
before the passage of a system (t  0) or during and after (t  1). The temporal attri-
butes are expressed on a binomial scale, represented by ti. The temporal attribute ti has 
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only two values so it cannot be used as an index. The index i is needed to coordinate the 
quantity N with its temporal attributes, either before (ti  0) or after (ti  1) the passage 
of the high-pressure system.

i     1  2  3  4  5
Ni    [  88  104  130  78  58  ] · Willets 5.71 · km1

ti     [  0  0  0  1  1  ] · after front

When a temporal attribute is on a ratio type of scale, the one-to-one correspondence of 
each value of a quantity with a value of an attribute allows construction of scaling and 
measurement relations, as described in Section 7.6 of this chapter.

7.3 Geographic Attributes in One Dimension
Measured quantities have geographic attributes—their resolution, position, separation, 
and spatial extent. A measurement occupies a finite distance, area, or volume, just as 
a measurement occurs within a finite length of time. This is the spatial resolution, or 
grain (Wiens, 1989; legendre and legendre, 1998). A second geographic attribute is the 
distance between any two measurements. For contiguous measurements, the separation 
(taken as the distance between midpoints of each measurement) will equal the resolution. 
The range or extent (legendre and legendre, 1998) is the greatest separation between 
two measurements in a set of measurements. The spatial scope is the ratio of the range 
to the resolution.

Any measurement can be assigned spatial attributes; these will matter in some but 
not all situations. In a laboratory experiment, for example, one goal is to obtain results 
that are independent of location. An experimentalist wants measurement outcomes that 
are repeatable by somebody else, regardless of where the lab happens to be located. The 
goal of repeatability applies to field studies, which also seek results that are independent 
of location. In field studies, however, geographic variability is often substantial and usu-
ally cannot be controlled by experimental manipulation. Results often depend on loca-
tion and spatial scale. When this happens we look to spatial attributes to understand the 
observed variability.

As with temporal attributes, we have two modes for recording spatial attributes—
either in vector form or by conversion to a quantity with shared index. Here is a series 
of Willet counts made along a sequence of 1 km stretches of beach at increasing distance 
from a pass, or break, between two barrier islands:

Nx  [ 5 23 12 11 9 0 1 ] · Willets km1

Another Look At Section 7.2

name a quantity of interest to you, measured at irregular times. Write out four typical 
values in a vector with units; then, beneath each value, list a typical temporal resolu-
tion, time since previous measurement, and time since initial measurement. State the 
range, resolution, and scope.
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Here the count at address x  0 is N(0)  5 Willets km1 at 7:00 a.m. on April 26, 
1987, at latitude 26° 28.96’ N, longitude 82° 11.00’ W. The counts are shown as an 
ordered sequence, where the subscript x represents the geographic ordering, or address, 
along the beach. In this case the value of x is also the temporal ordering of the data in  
10-minute intervals.

Willets vary considerably in numbers along the beach. Some variability is obviously 
due to social factors because Willets often forage in loose groups. variability also results 
from response to environmental factors such as prey abundance, wave action, and dis-
turbance by people. To understand the variability, we need to examine counts in light of 
their spatial attributes, notably resolution (1 km segments) and extent (7 km stretch of 
beach). The spatial attribute x suggests that there is a spatial trend or gradient in density 
from km 2 to km 7. Without the spatial data, all one could say is that Willet density 
ranged from 0 to 23 km1, with a median value of 8.7 km1.

Here is another example of geographic variation in Willet numbers, but this time 
with uneven spacing and resolution. The counts were made along a 20 km stretch of 
beach on April 27, 1986, using sections of irregular but known length. The index i 
becomes necessary to coordinate several quantities: the count Ni, the distance xi from 
the start point (latitude 26° 28.96’ n, longitude 82° 11.00’ W), and the extent Li of each 
segment.

i    1  2  3  4  5
Ni   [  7.4  2.3  0.7  2.1  0.7  ]   · Willets km1

xi    [  3.2  8.1  11.7  13.7  17.6  ]   · km
Li    [  6.4  3.5  2.9  1.9  5.8  ]   · km

Two spatial attributes are displayed. Li is the length of each of five successive stretches 
of beach. xi is the distance of the midpoint of each successive stretch of beach from 
the north end of a barrier island. The spatial range of these counts is 20 km, the entire 
length of a barrier island, Sanibel, on the west coast of Florida, in the Gulf of Mexico. 
The range is calculated as the sum of the stretches Li, for which the symbol is Li. The 
spatial units were contiguous, and so separation between midpoints also varied (e.g., 
(6.4  3.5)/2  4.95 km from the first to second unit). The average resolution was 
Mean(Li)  4.0 km. This is a somewhat inconvenient scale because of the variable reso-
lution, but it is by no means uncommon. At this spatial scale (scope  20 km/4 km  5), 
there were distinct differences in Willet numbers between the northwest and southeast 
ends of the island. This notation correctly and compactly represents counts with irregu-
lar spatial attributes. It would take some effort to represent these counts and their spatial  
attributes accurately with a geographic information system in which the default is a regular  
spatial grid.

The spatial attributes of a quantity can be expressed on any of the four types of 
measurement scale. experimental or process-oriented studies often result in geographic 
attributes on a nominal scale. For example, measurements from a reciprocal transplant 
experiment will have spatial attributes in four categories: sample from location A moved to 
A, sample from A moved to B, sample from B moved to B, and sample from B moved to A.  
Surveys produce measurements with geographic attributes on any of the four types of  
measurement scale. An example in one spatial dimension is measurement along a transect 
up a mountain. The positional attribute of a measurement can be expressed on a ratio 
scale, the distance from a zero point such as the base of the mountain. We could express 
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the same attribute on an interval scale, as when we use geographic coordinates. A ranking 
of sites with respect to elevation can be used. In studying the effects of altitude, it may be 
sufficient merely to rank the sites by height. We may find it sufficient to define mountain 
habitat in just three classes: above, at, or below the tree line.

The unit of spatial resolution of a measurement can be expressed in lengths, areas, 
or volumes. The size of the unit will depend on the measurement procedure and the 
quantity of interest. For the Willets, the resolution was conveniently expressed as seg-
ments of beach on the order of a km. For the mole crab Emerita analoga on which the 
Willets feed, the resolution along the same beach would usually be expressed in numbers 
per area of sand sampled. For the particulate matter on which the mole crabs feed, mea-
surement might well be a count per unit of volume of water washing over the beach.

As with temporal units, the one-to-one correspondence of each value of a quantity 
with a value of a spatial attribute on a ratio scale allows construction of spatial scaling 
functions (as described in Section 7.6 of this chapter).

7.3.1 Application: evaluation of Geographically explicit Studies

The distinction between nominal, ordinal, and ratio types of geographic scales helps 
in comparing and evaluating published studies, whether theoretical or empirical. 
Geographically explicit studies have become increasingly important in process-oriented 
research (Bell, McCoy, and Mushinsky, 1991) and have always been important in applied 
ecological research in wildlife and fisheries, where spatially extensive surveys are common. 
Geographic attributes vary in the type of scale used, depending on the availability of data, 
on the computational resources at hand, and on the level of detail required to obtain a 
useful calculation. In some studies the geography is defined very simply, on a coarse scale, 
as irregularly shaped polygonal regions. This often occurs in experimental or process- 
oriented studies because it is sufficient to the purpose and it is easy to assign a measure-
ment to a crudely defined area. For example, if we are interested in plant communities 
relative to rainfall patterns on the continent of South America, a series of relatively large 
polygonal regions (one for the western coastal desert, another for the Andes mountains, 
another for the Amazon basin, and another for midlatitude regions south of the Amazon 
basin) may suffice for the purpose. They are relatively simple, yet they capture substantial 
amounts of variation in habitat. But if we want to know the effects of forest removal on 
the rate at which carbon is fixed by plants in the Amazon basin, we might need more 
resolution to capture spatial variability in production versus cutting. For this purpose it 
is likely that we would construct a Cartesian grid of contiguous blocks, with quantities  
having geographic attributes of position and resolution on a ratio type of scale.

Geographically explicit techniques have proliferated in the last decades, but it is 
often difficult to compare results among studies. one way of making sense of the some-
times confusing array of techniques is to examine the way that geographic attributes are 

Another Look At Section 7.3

To measure nematode abundance, 10 samples of soil, each with a volume of 10 cm3, 
are collected at random along a 10 m transect. State the units of the quantity and 
then describe the separation between samples and the extent of the survey.
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expressed. Table 7.1 lists a sequence of questions for comparative examination and analy-
sis of geographically explicit studies. This list of questions, used as a mental checklist in 
examining a study, frequently brings out similarities among studies that appear to differ. 
An example is the relation of spatial autocorrelation (Cliff and ord, 1974) to metapopu-
lation analysis. The two methods appear to have little in common, yet metapopulation 
studies often use nearly the same definition of spatial variables as in Cliff and ord (1974). 
Consequently, the statistical techniques of Cliff and ord are potentially applicable in eval-
uating metapopulation models against data. of course, applicability also depends on the 
question at hand.

7.4  Geographic Attributes in Two  
and Three Dimensions

For objects that move in two or three dimensions, we have two ways of recording posi-
tion. LaGrangian data consist of a sequence of values at points occupied by the object, 
whether an animal, a seed, or a parcel of water. examples are data from activity record-
ers strapped to caribou or to drifters set loose at sea. The devices record quantities such 
as temperature at a series of points occupied by the drifter, or by the caribou. Eulerian 
data consist of a values at fixed points on a grid, regardless of path. An example is the 
count of Willets between fixed points along a beach.

There are two conventions for expressing the position and extent of quantities in 
more than one spatial dimension. one convention uses a Cartesian or square grid; the 
other uses a polar or circular grid. The latter is sometimes encountered in ecology or 
related fields of environmental research. In this system r represents a position as a dis-
placement away from a zero point. This is a vector, hence the boldfaced symbol r. It is 
composed of a unit vector (step size in a stated direction) and a scalar (number of steps). 
The scalar number r is the number of steps, each of unit size, away from the zero point. 
 represents the angle to the right (clockwise) of r in a plane. Positions in a volume can 

table 7.1 comparative Analysis of Geographically explicit Studies

1. What quantities are being used ?

2. Are the quantities measured or computed ?

3. What type of scale is the quantity on ?

4. What are the temporal attributes of each quantity ?

 l Chronology ?

 l Duration of each measurement ?

 l Time between measurements ?

 l Time from start to end of set of measurements ?

5. What are the spatial attributes of each quantity ?

 l Location ?

 l Area of each measurement?

 l Minimum separation between nearest measurements?

 l Maximum separation between measurements?

6. On what type of scale is each attribute expressed ?
also be stated in polar coordinates.
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The other convention is the familiar Cartesian system in which x stands for displace-
ment in a fixed direction, y for displacement in a direction 90° to the left of x, and z for 
displacement in a third direction, perpendicular to both x and y. In geographic applica-
tions of this system, z is aligned with the earth’s gravitational field, either positive upward 
from the center of the earth or positive downward from the sea surface, as in oceanog-
raphy. The x direction usually runs zonally (west to east), leaving y to run meridionally 
toward one of the poles of rotation (north-south). In this system x can be positive (say, 
east) or negative (west), y can be positive (say, north) or negative (south), and z can be 
positive (say, up) or negative (down). A more compact notation compresses all this infor-
mation into a single symbol, boldface x, which designates position in three dimensions:

x  [xi  yj  zk]

Boldface type is the conventional way of distinguishing a vector quantity (which has a 
direction) from a scalar quantity (which has no direction).

This symbolic expression is sufficiently abstract that an interpretation of each com-
ponent is in order, beginning on the left side of the expression. Imagine that you are 
responsible for mapping the location of a species of orchid in a rainforest and that you 
have a well-defined zero point at the center of a nature reserve. For each orchid in the 
reserve, boldface x designates the position as a displacement in three dimensions from the 
zero point. The symbol i is called the unit vector in the x direction. It is the size of the step 
used to measure distance from the zero point. A convenient unit is the kilometer. x is the 
number of steps, each a kilometer in length, that a particular orchid is located to the north 
(i positive) or to the south (i negative) of the zero point. So, xi is the total displacement 
of this orchid from the zero point, in the x direction. The same goes for east and west. 
j is the step size (again, in kilometers), y is the number of steps, and yj is the east-west 
displacement of this orchid from the zero point, in kilometers. The zero point is on the 
ground, and the orchid is up in a tree, so a complete statement of position requires both 
k (the step size in the vertical) and z (the number of steps in the vertical). The product zk 
is the height of the orchid above the ground, or the vertical displacement from the zero 
point. The vertical displacement might be anywhere from a fraction of a meter to several 
hundred meters above the ground.

The three unit vectors i, j, and k define the spatial resolution of the orchid position x,  
whereas the products xi, yj, and zk define the range of the orchid position x. The unit 
vectors i, j, and k are fixed in a particular study, so these are often dropped from the 
notation:

x  [x y z] · units

If x is measured in kilometers km, then x y z are the numbers of steps, each a kilometer 
in size. Position is sometimes represented in still more abbreviated form:

x  [x y z]

This notation assumes that x stands for xi, and so on. This notation suffices if we are 
interested in scanning across a sequence of measured values with respect to position in 
one, two, or three dimensions. The notation is inadequate for scaling functions, which 
require units.

The vector notation described here leads to two forms of measurement relation.  
A quantity can be scaled to displacements xi, yj, and zk. Taking just one of these  
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dimensions, if we have counts of orchids on transects of length xi, we can scale the 
count to the transect length, in a fashion similar to the Willet example:
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Holding i constant, we have:
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This is called scaling by accumulation (Figure 7.1).
Alternatively, we can scale the counts to subsections of a single transect by varying 

the bin size ni, usually within a fixed transect length:
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This is the basis of coarse-graining (Figure 7.1), a form of iterative scaling. Figure 7.1 
shows a third form of iterative scaling, called lagging. In this form of spatial scaling the 
quantity of interest is scaled to the separation between two points. All three forms of 
iterative scaling will be described again in later chapters.

Method of changing scope

Coarse graining

Lagging

Accumulating

Rating

Spatial units

True 
isolates 

e.g. 
islands( (

Sample 
isolates 

e.g. 
quadrats( (

Contiguous 

e.g. 
transects( (

Increasing effects of spatial covariance

Figure 7.1 comparison of Four Scaling Maneuvers.  iterative scaling  is by accumulation, coarse graining, or lagging.  
non-iterative scaling is by rating. check marks signify allowable spatial units, given the method.
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7.5 Notation
Good notation is a tremendous aid in working with scaled quantities, with the  
spatial and temporal attributes of quantities, and with derived and ensemble quanti-
ties described in the next two chapters. ecology lacks a clear and consistent notational  
system for scaled quantities with spatial and temporal attributes. This makes it tempt-
ing to create a logical and consistent notation that, once proposed, will, of course, be 
immediately adopted. The lessons of history are otherwise. new notation, if noticed at 
all, typically passes into oblivion (Cajori, 1929). Mathematical signs and symbols are 
invented by individuals, but only two individuals, G. leibniz and l. euler, have invented 
more than two signs or symbols that subsequently passed into common usage. This 
is largely due to the effort required to learn new notation. once a notation has been 
learned (as with the qwerty keyboard), it resists replacement by another (such as the 
more efficient and comfortable Dvorak keyboard).

A second reason for slow diffusion of new notation is that only experience will 
tell whether a sign is indispensable. It could take years or decades to find out whether 
a symbol is worth keeping. Why go to the effort of learning a new notation unless it is 
already known to aid comprehension or simplify computation?

A third factor that slows diffusion is that some forms of notation are hard to set 
into type, even though they are clear and easily written by hand. leibniz realized this 
and advocated symbols that could be set onto a single line of type, dy/dx, instead of 
symbols that required two tiers of type, such as y.  Three tiers required even more time 
to set mechanically because they must be placed on their own line:

dy
dx

This constraint has now disappeared as the graphics capabilities of computers have 
made it possible to set type in ways that come close to the ways that symbols are written 
by hand. nevertheless, mathematical symbols placed on several tiers require time and 
effort. For example, the time taken to prepare the first edition of this book for camera-
ready copy exceeded the time to write the text due to the extensive integration of signs 
and symbols into the text. Anything that reduces the time and costs of typesetting will 
contribute to the adoption of a sign or symbol.

Good notation would seem to require little thought. In fact, there are principles of 
good notation based on historical experience (Cajori, 1929) and familiarity with quan-
titative treatments of biology (Riggs, 1963). These authors state several criteria of good 
notation, which are combined in Table 7.2. The first criterion, consistency with current 
usage, is important because of the perpetual temptation to improve existing notation. 
The reason for listing this criterion first is that notational improvements do not take 

Another Look At Section 7.4

For a quantity of interest to you, provide a range of typical values, then provide  
typical magnitudes for unit vectors i, j, and k needed to quantify position in Cartesian 
coordinates.
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root and flourish until they are adopted by a nonconferring group of specialists (Cajori, 
1929). notation that is consistent with current usage increases the communication of 
ideas. novel signs and symbols usually hinder communication. At this point I now have 
to confess that in this book I have been using a novel symbol—adding an arrow to an 
equality sign () to mean “calculated from”. The modified equality sign shows that 
the right side was calculated from the left and that this is not equivalence by definition.

The second criterion listed in Table 7.2 is reducing the burden on memory. This is 
accomplished by several tactics. one is to use as few symbols as possible. Another tactic 
is to avoid ambiguous signs and symbols, such as St. Andrew’s cross () for multiplica-
tion. This symbol is all too easily confused with the letter x, which conventionally stands 
for an unknown in algebra, for distance along a line in Cartesian coordinates, or for time 
since birth in population biology. Still another tactic is to use letters for quantities and 
signs for operations such as dividing, taking derivatives, or taking logarithms. Diacritical 
marks, such as dots over a symbol for operations on the quantity, reduce the burden on 
memory, provided there is some precedent for the mark. yet another tactic is to connect 
symbols to the measured quantity rather than to secondary characteristics. For example, 
Ndisturb and Ncontrol are far easier to use and recall than D and C to represent numbers of 
species in disturbed and undisturbed plots of grassland.

The third criterion in the table, utility in application, can really only be determined 
from the experience of groups of people working on similar problems. This can take 
decades. Thirty years between the proposal and eventual adoption of a sign has not 
been unusual in the past (Cajori, 1929). user groups associated with computer software 
packages may change this trend. These groups now test the utility of a sign or notational 
convention in a few years rather than several decades.

The fourth criterion is brevity, provided this does not increase the burden on mem-
ory. exact definition of a quantity in relation to other quantities requires notation that is 
sometimes unwieldy. But once a quantity has been defined, briefer notation has several 
advantages. Brevity speeds the recognition of quantities when they appear in a lengthy 
expression. Brevity increases the readability of equations by making the relation of one 
quantity to another more apparent. Several examples of this passage to brevity occur in 
earlier sections of this chapter.

one of Cajori’s criteria is suitability for mechanical typesetting. This was omitted 
from Table 7.2 because typesetting is now digital, allowing notation that matches the 
flexibility of hand notation. In place of this criterion I have substituted suitability for 
making computations with a computer. An example is the use of several signs for the 
different meanings of “equal”. Several different symbols are required to tell a computer 
how and when to make calculations. These signs distinguish definitions from other forms 
of equality, such as an instruction to begin calculation. The idea of separating the several 

table 7.2 criteria in Selecting Mathematical notation

1. Consistent with current usage

2. Reduces the burden on memory

3. Demonstrated utility in quantitative work

4. Brevity

5. Lends itself to computer applications

Note: Modified from Cajori (1929).
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meanings of “equal” comes from a computer package (MathCad) that is widely used to 
teach mathematics to undergraduates. Much of the notation in this book comes from 
this package, making it easy to translate into computational code.

Many of the points made by Riggs (1963) about the use of mathematical notation 
in physiology apply with equal force to ecology. Riggs’ first point is that biological sys-
tems are complex, hence the inescapable need to make assumptions and devise models, 
including mathematical expressions. The second point is that the brevity of an expression 
belies the effort required to devise, understand, or check the expression. The third point 
is the cardinal need for clear and unambiguous definition of terms and symbols. This 
point motivated the five-part definition of a quantity in Chapter 3. Riggs’ next point is 
that in principle any symbol can be chosen for a quantity, but in practice much is accom-
plished by thoughtful choice based on several desiderata: ease of recognition, brevity, and 
conformity to standard usage. Consistency with current usage appears as the first crite-
rion in Table 7.2 due to the lessons of history (Cajori, 1929). Riggs recommends substi-
tuting one symbol for a recurrent group, a device used frequently in this book. Another 
point made by Riggs is the need for consistency in the use of symbols. This is easily 
accomplished by ensuring that a symbol keeps the same units and procedural statement 
in any setting.

Riggs advocates (strongly!) the association of abstract symbols with concrete mean-
ings. Any book in quantitative methods necessarily contains abstract symbols that should 
not, to quote Riggs, “float about in your mind like featureless wisps of mist above a 
marsh.” They should be thought of as measurable quantities associated with vivid images 
and specific units. Whenever the generic symbol Q appears further on in this book, it 
should be replaced in the reader’s mind with a familiar quantity to make it concrete and 
comprehensible.

7.5.1 Application: Spatial and temporal Attributes

This section applies the principles of good notation to identify a set of symbols to repre-
sent scaled quantities having spatial and temporal attributes. The aim is not a definitive 
notation; the aim is to illustrate the process of choosing a notation that balances clarity 
and internal consistency with traditional use of symbols in ecology. Such notation facili-
tates quantitative treatment of quantities with geographical and chronological attributes: 
position, resolution, and extent in space and time.

Table 7.3 lists a set of conventions for expressing the spatial and temporal attributes 
of quantities. The conventions are based on the principles in Table 7.2, most notably 
consistency with current practice. To demonstrate the conventions, we apply them to an 
example of gypsy moth distribution and dynamics. Q is the generic symbol for a scaled 
quantity, but for the sake of specificity, here Q will temporarily represent the density of 
gypsy moth Lymantria dispar cocoons measured in units of cocoons · m2 of tree bark. 

Another Look At Section 7.5

If you have ever employed mathematical notation in a written report, how did you 
select the notation? Did you use any of the criteria presented in Table 7.2?
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xi represents the position of each measurement of cocoon density along the transect, in 
a segment of fixed length i. By holding i to a fixed value and x to a sequence of integer 
steps, we allow xi to function as an address for each measurement. Qxi stands for the set 
of measurements of cocoon density along the transect. This is shortened, in the interests 
of clarity, to Qx if we have no plans to undertake rescaling by changing the step size i. 
The symbol Qxi, or, equivalently, Qx, stands as well for a map of the measurements along 
a transect. A plot of cocoon density Qx against x shows the one-dimensional distribution 
of measurements.

If we happen to have a model or formula that lets us calculate Qxi from a knowledge 
of position xi, then a distinct symbol for the calculated values will be needed. An appro-
priate symbol is Q(xi). This represents the “expected value of Q at position xi” or “the 
expected value of cocoon density at location xi.” This calculated value is based on expec-
tation from a function. The symbol Q(xi) can be shortened to Q(x) if we have no interest 
in changing the resolution scale i. A plot of Q(x) versus x shows the pattern of distribu-
tion expected from the model. Thus, Q(x) will be a simplification of the data, based on a 
formal model that captures major features of Qx rather than every detail. Q(x) will only 
occasionally be exactly equal to Qx. To evaluate the model against the data, we set the 
two quantities as equal by adding an error or residual term:

 Q Q x residualx  ( )  (7.2a)

This symbolic expression is read as “the measured value of the quantity Qx is exactly 
equal to the sum of the expected value of the quantity Q(x) plus some residual varia-
tion”. In ecology, the parameters of a model such as Q(x) are usually estimated from 
data. An example is an estimate of an exponent for a scaling relation (equation 2.5a) or 
measurement relation (equation 2.6a) When parameter estimates are used to compute 
the model values, the result is marked as an estimate by placing a “hat” over the symbol:

 Q Q x residualx  ˆ ( )  (7.2b)

Statistical models use statistical expectation, which means that the value of Q(x) 
arises from measurement many times, not just a few times. The symbol E[Q] represents 
the expected value of Q. The notation appropriate to statistical evaluation is:

 Q E Q x residualx  [ ]( )  (7.2c)

table 7.3 conventions Used in expressing Spatial and temporal Attributes of 
Quantities

Q represents a quantity with units. Any symbol can be used in place of Q.

x, y, and z stand for geographic attributes of position and resolution.

t stands for temporal attributes of position and resolution.

Boldface type distinguishes vectors (which have direction) from scalars (which have no direction). To write a  

 vector symbol by hand, we add a squiggle beneath to distinguish scalar quantities x from vector quantities x.

The attributes of measured values of Q are represented by subscripts.

Calculated or expected values of Q are shown as functions of spatial and temporal attributes.
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where e[Q(x)] represents cocoon density calculated from the model. This is the research 
model, also called the alternative model relative to the null model Ho of no relation with 
cocoon density Qx to distance x. The null model is:

 Q E Q residualx x [ ]  (7.2d)

E[Qx] represents the expected or mean value regardless of location x, as obtained by 
repeated measurement. A well-developed set of statistical methods (e.g., Sokal and Rohlf, 
1995) exists to decide whether to accept the research model in preference to the null 
model. Chapter 15 covers application of these methods to estimating and comparing the 
parameters of power laws.

If we make measurements on the transect at successive points in time, we have 
four attributes: spatial resolution i, spatial range xi, temporal resolution h, and tempo-
ral range th. The symbol Qxi th stands for cocoon density, measured at regular intervals 
along the transect at regular intervals in time. A more compact notation is Qx t if spa-
tial and temporal resolution are held constant. The symbols Qxi th and Qx t stand for  
the set of measurements of cocoon density collected into a column vector for each point 
in time. The information represented by these symbols can be expressed as plots of 
Qxi, for each regularly spaced point in time. If we happen to have a function that per-
mits us to calculate the way in which the map Qx changes with time, then as before  
we can compare the model written in functional notation Q(x t) to the data represented 
by Qx t.

If we have enough resources to measure cocoon density over an area of forest rather 
than just along a line, the symbol for this set of measurements is Qxi yj. This becomes Qx y  
if resolution does not vary. These equivalent symbol represent data that can be plotted 
against position x and y within the area of interest. Q(x y) represents the value expected 
from the model that relates cocoon density to position x and y. The model could be in 
the form of an equation. It might also be a contour map estimated from previous data. 
Such a map is an empirical model of the cocoon density. The measured value Qx y will 
differ from the model value Q(x y) by some residual amount.

 
Q Q x y residualx y  ( )  (7.3a)

As with the one-dimensional case, the null model of no relation of cocoon density to 
location is:

 
Q E Q residualx y x y [ ]  (7.3b)

The expression for a quantity as a function of location is Q(xi yj). This is called a 
scalar field, which is defined as a scalar quantity that is a function of a vector. In this 
case the vector is a position, and the scalar field is two dimensional. The calculation of 
distribution of some variable of interest (quantified as a scalar field) from knowledge 
of physical, chemical, and biological processes is one of the central challenges in 
environmental science. examples of such calculations include forecasting the weather, 
projecting rises in sea level due to global warming, and evaluating the effects of climate 
change on forest and crop production.
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If we have measurements of a quantity throughout an area at several points in 
time, we have six attributes, which I ask the reader to name and visualize at this point:

Symbol Name, in Words

x

i

y

j

t

h

Finally, the height of cocoons off the ground within the area of interest might be of 
interest. Cocoon mortality, for example, might depend on height. now we have six spa-
tial attributes, which is going to be cumbersome. So, the symbol Qxi yj zk will be short-
ened to Qx to stand for the set of measurements of the quantity, cocoon density, with 
attributes of position x in a three-dimensional volume. The amount of information that 
we now have makes it a challenge to show Qx as a map. one way to make such a map 
is to show position x as a three-dimensional perspective drawing on a two-dimensional  
computer screen and use color to designate the quantity, shading from blue at low  
values to red at high values. In addition to the data Qx we might also have expected val-
ues, from either a dynamic model or a static model such as a contour plot through the 
data. Q(x) stands for calculated values of Q at position x. Calculated or expected values 
typically show a simplification of the data. They capture the major features of spatial 
variation in the quantity, rather than every detail. values calculated from Q(x) typically 
show a smoothed or cartoon representation of the quantity. Q(x) is called a scalar field 
in three dimensions.

Perhaps we have available repeated measurements of the quantity in three dimen-
sions. This brings us up to eight attributes. The symbol Qx t stands for a measured quan-
tity with complete specification of position in three-dimensional space through time.  
To draw this we need a series of pictures, which we could display in sequence on a page 
of paper or, better yet, on a computer screen. A visually effective format (Tufte, 1990) 
would be a three-dimensional projection onto the flat surface of a computer screen, 
where we can watch the change in colors, perhaps with blue representing low density, 
shading to red for high density of the quantity Q  density of gypsy moth cocoons.  
If we have a way of calculating cocoon density at any position at any time, the symbol 
for these values is Q(x t). This is a sequence of cartoon representations of the quantity 
that appear before us on the computer screen as a series of snapshots or as an animated 
sequence.

The aim of this excursion into the unfamiliar realm of mathematical notation was 
to return with a clear and consistent set of symbols for quantities with spatial and tem-
poral attributes. A good set of symbols is as important as the familiar modes of ver-
bal expression, if we want to measure or calculate these quantities. The symbol Qx t 
stands for any geographically and temporally referenced quantity with temporal and 
spatial attributes of resolution (vectors h, i, j, and k) and position in time (th) and space 
(xi, yj, and zk). The compact symbol Qx t demonstrates the capacity of mathematical 
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notation to represent complex concepts (requiring pages of text to explain). Symbols 
for spatial and temporal attributes are like actors that appear on stage, acquire meaning 
through explanation and context, then at each reappearance bring to the stage context 
and meaning. Symbols can represent not just a collection of numbers but a complex and 
valuable notion: that any quantity that we care to measure has attributes that set its spa-
tial and temporal scales.

The symbol Qx t is so compact that it is inscrutable on first encounter. It needs a 
chance to state its role. once the symbol’s context and meaning are grasped, the symbol 
serves us well because it is so compact. With this symbol and its associated notation it 
becomes possible to make calculations based on ideas about the spatial and temporal 
scale of quantities.

7.6 Spatial and Temporal Scaling
When a quantity is coordinated to spatial or temporal attributes, we can scale it to 
time and space by altering the scope in any of several ways (Figure 7.1) that are consis-
tent with the definition of scaling in Box 6.1. We can alter the scope by rating multiple 
units with respect to size or duration, as when we rate lakes by size and then scale fish  
catch to lake size. noniterative scaling relations (equation 2.5a) and noniterative mea-
surement relations (equation 2.6a) are usually based on this maneuver. We can alter 
the scope by accumulating units (Figure 7.1), as when we examine reproductive con-
tribution with increasing age of a cohort. This maneuver is useful with data from simi-
larly sized plots, but it’s rarely used. We can alter the resolution, and hence the scope, 
by altering the separation (Figure 7.1) between units. This maneuver, called lagging, is 
accomplished with an iterative procedure, whereby a single set of measurements is used 
repeatedly. The units can be sequential in space or time, but they do not have to be. We 
can alter the scope by changing the measurement frequency (Figure 7.1), as when we 
convert from a series of daily counts to weekly or monthly counts. Technically speaking, 
we alter the resolution by altering the spatial and temporal extent of the unit (altering 
vectors h, i, j, and k). This is called coarse graining (refer to Chapter 10). This scaling 
maneuver is accomplished iteratively and so it requires units that are evenly placed in 
time or space, preferably by being contiguous (see Figure 7.1). If we have an exhaus-
tively measured quantity, as in a time series with no gaps or in a satellite image with no 
missing data, then in principle lagging and coarse graining generate equivalent infor-
mation. In practice this equivalence is not evident and conversion is often difficult to 
achieve. Further, there are strong historical precedents for the use of one maneuver 
within any given discipline. For example, oceanographers are often familiar with coarse 
graining, whereas terrestrial ecologists rely almost entirely on lagging to quantify scale-
dependent patterns. Scaling by coarse graining, lagging, and accumulation are treated in 
more detail in Chapter 10.

Finally, we can alter the scope by rating (Figure 7.1), defined as comparing measure-
ments made on distinct units that differ in size or some other characteristic (e.g., mass). 
An example of scaling by rating is change in size with change in time, as in the example 
used earlier:

Mt  [15.0day 2 18.1day 6 18.1day 7 20.2day 14 20.1day 14] · grams
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The measurement relation (Box 6.1) is:
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Relative to the values at i  0 (ti  2 days), there are four values of , of which one is:
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The other three values of  are similar. Rearranging 7.1a, we have:

 
Mi i Mi ti ti i  

∆ ∆
1  ( )( )  (7.4c)

for which the estimate via regression (see Chapter 15) of  is 0.137.
Measurement relations such as equation 7.4a require attributes on a ratio type of 

scale. Many temporal attributes are recorded on an interval type of scale (time of day, 
day of the year). However, the interval-scale quantity of time recorded from a clock can 
be rescaled to a ratio scale relative to a zero point, such as the beginning of a period of 
growth, beginning of a survey, and so on.

Another example of scaling by rating is that of Willet counts Ni, which are readily 
scaled to segment length Li according to a measurement relation.
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 (7.5a)

Intuitively the scaling exponent is   1, which means that a doubling in area will dou-
ble the number of Willets, trebling the area will treble the number of Willets, and so on. 
Though this is true of averages taken over many cases, it is not the case for a single set 
of measurements. For the Willet data, the scaling of numbers from the largest and small-
est segments yields an exponent greater than 1:
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A better estimate can be obtained by regression. The scaling exponent via regression 
is   1.45. With only five counts, little can be said about whether this unexpected rela-
tion is due to chance. When more counts are analyzed, the relation often (but not always) 
turns out to be stronger than expected by chance. Why should numbers of Willets more 
often than not increase disproportionately with increase in unit area? The answer lies 
in the highly clumped distribution of Willets. The chance of encountering such a group 
increases with area searched. Consequently, any particular sequence of counts of Willets 
will, more often than not, show an increase in number with increase in area. of course, 
this will not be the case over the long run because from time to time a large number of 
Willets will be found in a small segment of beach.
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Defined Concepts and Terms for Review and Future 
Reference

____ functional vs. statistical expectation ____ scaling by accumulation
____ geographic attributes of a quantity ____ scaling by coarse-graining
____ laGrangian vs. eulerian data ____ scaling by lagging
____ null versus alternative model ____ scaling by rating
____ principles of good notation ____ temporal attributes of a quantity
____ spatial resolution (grain) ____ unit vector
____ scalar vs. vector quantity
____ scalar field



Quantities Derived from 
Sequential Measurements

Each point on a great ice body has its own numerical value for mass bal-
ance. Is the ice right here thicker or thinner than last year? Is the glacier, 
at this spot, thriving or dying? The collective profile of all those individual 
soundings—more ice or less? thriving or dying?—is called the gradient of net 
mass balance. This gradient tells, in broad perspective, what has been lost 
and what has been gained.

—David Quammen, Strawberries Under Ice, 1988

8.1 Synopsis
This chapter describes a series of ecologically important quantities calculated from 
sequential measurements. These derived quantities include the time rate of change Q  
the time rate of change as a percentage Q Q1  , the flux [Q]x , the spatial gradient Q, 
the spatial gradient as a percentage Q1Q, and the divergence ·Q.

All these quantities occur in the ecological literature, although not always under 
these names. An example is the spatial gradient in prey. Studies of foraging behavior 
often revolve on gradients in prey numbers or gradients in energy value.

The derived quantities in this chapter can all be calculated at several time and 
space scales. In this they differ from directly measured quantities, which are obtained at 
a particular resolution or frequency of measurement. For want of a better term, I have 
called a collection of derived quantities calculated at more than one scale a matrix of 
contrasts. The rows in this matrix show contrasts at a single scale. Columns show con-
trasts at a range of scales. Comparison across a row corresponds to scanning a quantity. 
Comparison upward in a column corresponds to zooming in on detail. Important clues 
about the dynamics of a quantity arise from adopting the roving viewpoint (scanning) 
combined with sequential changes in the scale of attention (zooming).

8.2 Time Rates of Change
Ecology, in the broad sense of organisms interacting with one another and with their envi-
ronment, is about change. How fast does the mass of an organism change as it grows? 
How fast does total population size N change? Or how fast does local density [N]  N/A  
change? These fundamental questions are addressed by measurement of the time rate 
of change in the quantity Q. (I hope readers will substitute the name of their favorite 
quantity for the symbol Q.) The symbol for the time rate of change in Q is Q,  which  

8
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is read as “the time rate of change in Q.” The dot notation was invented by newton, who 
placed it over the symbol for a quantity to represent the rate of change in that quantity 
with respect to another quantity. newton’s dot notation resisted replacement by leibniz’s 
notation d/dt until the early 19th century. The dot notation has now disappeared from 
mathematics because it proved cumbersome and unusable for third and fourth deriva-
tives. However, the dot notation has persisted in the natural sciences as the symbol for the 
time rate of change. In physiology, for example, the volume of oxygen Voxy absorbed by 
the lungs per unit time is Voxy .  The dot stands for the time rate of change in a quantity, 
not for the operator d/dx, the derivative with respect to some variable x.

The time rate of change is calculated either from successive measurements or from 
a theoretical rule. Here is the time rate of change calculated from two measurements of 
a particular quantity, Nt  ant numbers:
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This notation is accurate but unwieldy. More concise notation will be useful:
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The symbol Nt  represents the measured value of change N scaled to change in time 
t. The attribute t has been expressed as a quantity, which is coordinated with the 
quantity N by the unitless index i, as in Chapter 7. A sequence of three measured values 
of the quantity Nt  looks like this:

 
Nt     [ ]25 20 18 ants/day  

The same notation applies to any quantity. Another example is the area occupied by a 
colony of ants at a series of points in time, for which an appropriate symbol is At with 
units of m2. Placing a dot over this symbol generates a new symbol At  for the measured 
rate of expansion or contraction in the area occupied by the colony.

The generic symbol for the measured time rate of change in any quantity Q is:

 
Q

Q
tt 

∆
∆

 (8.2)

It will be useful to distinguish this from the time rates of change in a quantity calculated 
from a mathematical function that expresses an idea about dynamics. This activity will 
be described in more detail after the concept of a functional relation has been developed 
in Chapter 13. The symbol for the time rate of change calculated from a function Q(t) 
according to some rule is:

 
Q t

dQ
dt

( )   (8.3)

The symbol dt is the instantaneous change in time. The instantaneous time rate of change 
dQ/dt is calculated at any value of t, in contrast to Q/t, which is calculated only  
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at the times when measurements were made. Table 8.1 shows notation that distinguishes 
between rates calculated from measurements and rates calculated from functions.

The symbol t in Table 8.1 has been used here in a way that is standard in the lit-
erature, not distinguishing step number t from position in time th. The product of step 
size h and number of steps t expresses the position in time as a displacement from a zero 
point. The product th has units of time, whereas t is a number without units. As typi-
cally used, the quantity Qt  assumes a fixed time step such as h  1 day. When step size 
h is constant, t and th are used interchangeably.

As a matter of completeness, the symbol for the time rate of change in a measured 
quantity Qth with attributes of resolution h and range th is:

 
Q

Q
tth h


∆
∆

 (8.4)

Qth  represents the time rate of change in a quantity derived from two successive mea-
surements. When the step size h is fixed, the symbol Qt  will serve just as well.

The notation in Table 8.1 applies to any quantity. For example, earthworms bring 
volumes of soil (V  cm3) to the surface at a daily rate of V  in units of cm3 day1. The 
symbol for the measured rate is Vt . Another example is a velocity x , which represents 
the time rate of change in position x. Measured velocity xt  may well differ from the 
velocity x t( )  calculated from a functional expression describing motion.

Table 8.1 Notation Distinguishing Derived Quantities Based on 
Measurement from Those Based on Functional Expression

Time rate of change:
Q  From a rule or from measurements
Q t( )  Calculated from a function
Qt  Calculated from measurements only

Fluxes:

A1 Q  From a rule or from measurements

A1 Q t( )  Calculated from a function

A1 Qx  Calculated from measurements only

Gradients:

Q From a rule or from measurements

Q(x) Calculated from a rule

Qx Calculated from measurements only

This notation applies to one dimension (x), two dimensions (x and y), or three dimensions (x  [x y z]).

ANoThEr Look AT SEcTioN 8.2

Examine the definitions of the following quantities:

 
   N Q Q Qt t( )t h  

Which have definable time scales?
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8.2.1 Application: crude rate of change in Population Size

Population biologists and demographers sometimes employ crude rates of change in pop-
ulation numbers. For example, if a cohort of 1000 adult corn earworm moths, Heliothis 
armigera, eventually produces 1500 adults before dying, the crude rate of change over 
the generation time of one year is 500 moths yr1. The number of eggs produced by a 
cohort greatly exceeds the cohort size; mortality of eggs and caterpillars then reduces 
this number. Thus it is of interest to partition the net rate into components of recruit-
ment and mortality. Box 8.1 shows the calculation of crude rate of change in numbers, 
the crude rate of recruitment, and the crude mortality rate for the example of corn ear-
worm moths. The change in time is noted explicitly in these examples by an arrow in 
the subscript. t1→2 signifies the change in time from observation 1 to observation 2. 
normally a much terser notation appears: t1 for the change in time beginning at the 
observation labeled 1.

Box 8.1 Calculation of Crude Rate of Recruitment, Mortality, and Change in Numbers

A cohort of 1000 moths produces 200,000 eggs, of which 1500 survive to form 
the next generation.
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The relation of change in numbers Nt  to mortality Dt  and recruitment Bt  is:
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 (8.5)

In words, this equation says that the crude rate of change in numbers is due to the crude 
rate of recruitment adjusted for time, plus the crude rate of mortality adjusted similarly 
for time. The dot notation lends itself to translating between verbal and mathematical 
expression of this relation.
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ANoThEr Look AT SEcTioN 8.2.1

rewrite Expression 8.5 using the index i rather than its values of 1, 2, and 3 in this 
example.

8.3 Time Rate of Change as a Percentage
The time rate of change Q  often depends in some fashion on the magnitude of the 
quantity Q. An example is absolute growth rate, which decreases as animals become 
larger. Another example is addition of new organisms to a population. Eighty caribou 
are expected to produce more calves than 20 caribou. When the time rate of change 
in a quantity depends on the magnitude of that quantity, the time rate of change as a 
percentage becomes of interest. returning to the example of change in ant numbers, the 
percent rate of change calculated from two measurements is:
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⇒  (8.6a)

This is the relative rather than absolute or crude rate of change. A briefer notation 
for the relative or percentage rate of change (Eq. 8.6a), calculated from measurements, is:
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The change in number has been scaled to discrete time. A still terser notation, which 
puts emphasis on the symbol for the quantity, is:

 
N N

N
N
tth / 

1 ∆
∆

 (8.6b)

The symbol N Nth /  is compact and easy to interpret, making it useful when the  
quantity appears repeatedly. The subscript th has been added to signify that N is 
scaled to discrete time t with time step h. This contrasts with the instantaneous rate 
N t( ), which has no time step. The notation for the instantaneous rate of change, as a 

percentage, is:

 
N t N

N
dN
dt

( ) / 
1

 (8.6c)

Percentage rates of change are ubiquitous in population biology, which usually 
works with percentage recruitment and mortality rates rather than with the crude rates 
of mortality Dt, recruitment Bt, and total change in numbers Nt. The relative or per 
capita rates of mortality, recruitment, and change in numbers have units of % per unit 
time. Box 8.2 shows the calculation of per capita rate of change at two temporal scales.
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Box 8.2 Calculation of Per Capita Rate of Change at Two Different Temporal Scales

A cohort of 1000 moths produces 200,000 eggs, of which 1500 survive to form 
the next generation.

Time step is h  1 day:
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Time step is h  1 generation:
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The temporal resolution h is used to rescale the rate:
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Box 8.3 Calculation of Per Capita Rate of Recruitment, Mortality, and Change in Numbers

A cohort of 1000 moths produces 200,000 eggs, of which 1500 survive to form 
the next generation.
Time step is h  1 day:
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It is of interest to partition the per capita rate into components of recruitment and 
mortality, as it was for the crude rate (Box 8.1). In discrete time, these components can 
act in sequence rather than simultaneously. This results in interesting dynamics because 
the net change depends on the time scale. The computations are shown in Box 8.3. Per 
capita rates of change in discrete time (Box 8.3) are not as readily rescaled as crude rates 
of change in discrete time (Box 8.1). This is because the basis for computing the per 
capita rate (i.e., division by numbers present at the beginning of the discrete time period) 
changes from period to period. In Box 8.3, the basis changed from 1000 moths at the 
beginning of Period 1 to 200,000 moth eggs at the beginning of Period 2.

A widely adopted solution to this inconvenience is to estimate instantaneous rates 
of change for which the rate is independent of h, the time step or temporal resolution. 
This is reflected in the notation, which uses instantaneous time t rather than discrete 
time th. The computation is similar, except that the difference between two counts is 
replaced by the natural log of the ratio of the two counts. Box 8.4 shows estimation of 
instantaneous rates for the moth example.

Box 8.4 Estimation of Instantaneous Per Capita Rate of Change in Numbers, Recruitment, and 
Mortality from Successive Points in Time

A cohort of 1000 moths produces 200,000 eggs, of which 1500 survive to form 
the next generation.
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Time t is used to rescale the per capita rate of change:
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Instantaneous rates allow the total reproductive contribution to be partitioned 
into its components of recruitment and mortality in much the same way that crude rates 
could be partitioned (Box 8.1). Box 8.5 shows the relation between the three per capita 
rates using the estimates from Box 8.4. The dot notation displays the derived quantities 
in a fashion that lends itself to translation of the equation into words. It aids in visual-
izing the relation between the per capita rates.

Box 8.5 Instantaneous Rate of Change in Population Numbers, Partitioned into Recruitment  
and Loss

Proportional Proportional Proportional loss
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Because of this convenient property—that the product of per capita recruitment 
and mortality yield the net change—instantaneous rates are regularly used in theoretical 
and applied population biology. Because recruitment and loss can be partitioned, these 
rates are taken as independent (e.g., ricker, 1958). However, such mathematical beauty 
can be fatal. Instantaneous rates estimated from discrete points in time apply only to 
the time interval over which they are calculated. Once expressed as instantaneous rates, 
these estimates are all too easily applied to inappropriate time scales. And as we will see 
later, interesting dynamics are lost when rates are taken as instantaneous when in fact 
they act episodically.

ANoThEr Look AT SEcTioN 8.3.1

Have you ever encountered or used discrete time rates of change? Do you think your 
experience is typical of other biologists or ecologists?

8.4 Fluxes
In a loose or casual sense, the term flux refers to the passage of material from one place 
or compartment to another. For example, energy flow from a prey to predator population  
is called a flux in this casual sense. In its strict sense, a flux is the rate at which a quantity  
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passes at right angles through a surface, either imaginary or real. Almost any ecological 
process can be cast as a flux:

l The flux of light downward to the level of the forest canopy
l The flux of rain to the ground
l The flux of nutrients upward into sunlit waters
l The flux of seed propagules onto a cleared field
l The flux of prey entrapped in the mesh of a spider’s web
l The flux of fish entrapped in a gill net
l The flux of energy to seabirds bringing prey up through the sea surface
l The flux of animal or human blood across the skin surface to a mosquito

As a generalization, the relation of any population to its resources can be described 
as a flux in the strict sense of exchange per unit time across a defined area. The area 
might be a flat surface, such as the flux of prey upward through the sea surface to birds. 
The area might be convoluted, such as the rock surface area scraped by limpets. Or the 
area might be limited to small segments, such as the skin area through which blood 
passes to a mosquito or the mouth area through which prey passes to a predator.

One symbol for a flux is the rate of change in a quantity per unit area Q A/ . As  
with the symbol for time rate of change, the symbol for a measured flux is usefully distin-
guished from the symbol for a flux calculated from a functional expression (Table 8.1).  
This notation omits one of the key characteristics of a flux, which is that it is a directed 
quantity oriented at right angles to a surface A. A flux must have a vector pointing at a 
plane. The flux of rain, for example, is understood to be downward (in the z direction); it 
has unit vector k at right angles to the x-y plane. One way to keep track of the unit vector 
and the plane through which it is directed is to use vector notation for position, as shown 
in Chapter 7. vector notation for a flux contains the symbol for a velocity x, which is a 
directed quantity. The vector notation is [Q] x , the product of velocity x  and a concen-
tration [Q]  QV1. This notation is less intuitive than the previous symbol, but it has the 
advantage of displaying the direction of the flux in all three directions, x, y, and z.

An example is the flux of plant seeds onto a recently burned area. The number of seeds 
that land in the burned area per unit of time is a flux oriented downward at right angles to 
the area. Of course the seeds are also moving laterally into and out of the burned area. And 
so there are lateral fluxes of propagules [N]x  and [N]y  as well as a vertical flux [N]z . But 
from the point of view of colonization, the flux that is of interest is [N]z , the number that 
eventually settle and come to rest in the area. The flux has units of propagule concentration 
times velocity. This flux can be visualized as seeds per unit volume, fluxing downward with 
velocity z. This is equivalent to the rate at which propagules land per unit area.
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 (8.7)

Another example is the upward flux of food energy through the sea surface to 
marine birds. The upward flux of energy (E  kilojoules) to a group of 10 wandering 
albatross, Diomedea exulans, that capture and consume 400 kJ of squid in a day over an 
area of 10 km · 10 km is:
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The vector component of a flux can be x in the x direction, y in the y direction, or 
z in the z direction. The overall velocity x consists of three components:

    x  [x y z]  (8.9)

The use of boldface type in the symbol [Q] x  distinguishes flux relative to three coordi-
nates from flux relative to a single coordinate shown in plain typeface [Q]x.

The most efficient notation for a flux is tensor notation, which appears occasion-
ally in meteorology and oceanography. Tensors have the advantage of keeping track of 
quantities in four coordinates (x, y, z, and t) in highly compact form. The disadvantage 
is that tensors are even more unfamiliar and abstract than vector notation for position. 
Tensor notation and the associated concepts of contraction and transformation may 
eventually prove useful in geographically explicit analyses of ecological problems. But 
for now we will stick with vector (directed) and scalar quantities, which are at the edge 
of notational sophistication for ecology.

8.4.1 Application: The Lateral Flux of Genes

A population geneticist might be interested in the total number of genes (G  number of 
existing copies of a particular gene) and the rate at which this number changes ( G   change 
in number per unit time). But in fact, population geneticists are usually more interested in 
the number of gene copies relative to the total number of individuals that can carry a copy. 
If this ratio G/N is equal to 1, there is no genetic variation at the level of the gene within the 
chromosome. The gene is said to be fixed, and there is no opportunity for evolution, which 
is defined as change in gene frequency.

The ratio of the number of gene copies to the number of available locations is the 
gene frequency:

 q G N  1  (8.10)

In the strictly technical sense of the word, evolution is q , the time rate of change in this 
ratio. The measured value of change in gene frequency over a period of time t is:
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The quantity q  can also be calculated from a functional expression. A convenient sym-
bol for gene frequency calculated from a function, usually based on some theory, is q t( ) . 
This stands for the instantaneous rate of change in gene frequency:
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 (8.12)

Several processes alter gene frequency in natural populations. One of these pro-
cesses is migration, the flux of genes from one population to another. Other processes 
that alter gene frequency occur within a population: mutation, selection, drift. So, here 
is the quantity q  broken down into a flux (migration) and the remaining in situ rate:

 
  q [q] qin situ x  (8.13)
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let’s examine the flux more closely. It is the flux of gene frequency q in the x and 
y direction. It is not a flux of genes in the x and y direction, for which the symbol is 
[G]x . The flux of genes through an imaginary surface separating two populations is easy 
enough to picture:

But this flux of genes will not necessarily alter gene frequency. Imagine, for example, 
two populations with exactly the same gene frequency, q  50% of population size N. 
If 100 organisms migrate northward at a velocity represented by y , and exactly half are 
carrying a copy of a particular gene, there will be a flux of gene copies [G]y , with no 
change in gene frequency due to migration. For there to be a change in gene frequency, 
there must be a difference in gene frequency between the two populations. That is, there 
must be a spatial gradient in gene frequency.

Calling the migration of genes a flux seems to be somewhat idiosyncratic, but in 
fact many of the models developed to understand this process use the concept of a flux 
(e.g., roughgarden, 1979). This excursion into simple population genetics shows how 
the concept of a flux, once grasped, can be applied to any quantity, leading to sometimes 
novel and interesting ways of looking at ecology and ecological genetics.

8.4.2 Fractal Fluxes

Fluxes are conventionally viewed in Euclidean grids and boxes as the movement of a 
quantity through a flat plane. Flat planes are more characteristic of manufactured 
objects, whereas for natural objects contorted and convoluted surfaces are the rule. Each 
of the examples at the beginning of the section on fluxes can be viewed as a flux through 
a flat plane, but each can also be viewed as a flux through a convoluted plane. In the 
ocean, nutrients mix upward through the convoluted surface of the thermocline. In the 
forest, rain strikes the convoluted canopy, drips through that canopy to the ground, and 
then soaks across the ground surface, which is rough at all spatial scales.

The idea of a flux through a convoluted or fractal surface is not standard, but it is 
a promising way of describing the dynamics of ecologically interesting quantities such as 
nutrients, energy, and biomass. It will be interesting to see whether the idea of a fractal flux 
will live up to its promise as a way of computing flux at one scale from flux at another.

ANoThEr Look AT SEcTioN 8.4

For a quantity of interest to you, sketch a diagram showing its flux. Consider how 
you might measure this flux.

8.5 Spatial Gradients
Ecologically important quantities vary considerably from location to location. The spa-
tial gradient measures this contrast relative to the change in position. The spatial gradient  
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is defined as the difference in the value of a quantity at two locations relative to the 
separation. For example, Hill (1973) reported density of acacia plants, Acacia ehrenberg-
iana, in a sequence of quadrats surveyed by greig-Smith and Chadwick (1965). Here are 
the counts in five contiguous quadrats, each 10 m · 10 m in size:

 N  [ ]5 51 22 12 11 seedlings  

Each count is assigned a position according to the center of the quadrat in which it 
occurs. As a result, Nx5 m  5 seedlings, Nx15 m  51 seedlings. The gradient in num-
bers between the first two sites is calculated in the following manner:
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This notation is fine for calculation but unwieldy for use in reasoning about gradi-
ents. The measured gradient in acacia numbers (N  seedlings) is abbreviated to:
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A still more compact notation for the measured value of the spatial gradient uses 
the del sign  in front of the symbol for the quantity. Here is the notation for the mea-
sured gradient, using the generic symbol Q:
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x stands for the measured change in position; Q stands for the measured difference 
in the quantity. Q is read as “the gradient in” whatever Q signifies, whether ant num-
bers, rainfall, or any other quantity.

The sequence of five measured values of acacia density results in four measured 
gradients Nx, derived from Nx. Collected together, the gradients are:

 ∇Nx     [ . . . ]† /4 6 2 9 1 0 1 seedlings m  (8.16)

The compact symbol here represents a collection of four gradients. The symbol can just 
as easily represent a much larger collection.

Spatial gradients are also calculated from functional expressions rather than from pairs 
of measurements. The symbol for the gradient in the x direction, calculated from a rule, is:

 
i
dQ
dx  

dx represents an infinitesimally small change in the x direction, and i is the unit vec-
tor. not every gradient falls conveniently along a single axis, such as x, the axis that by 
convention is oriented, or pointed eastward. But every gradient can be resolved into its 
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x (eastward), y (northward), and z (upward) component. The symbol for a gradient cal-
culated from a rule is the sum of these three components:
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dQ
dz

( )x i j k    (8.17)

where dx, dy, and dz are infinitesimally small changes in the x, y, and z directions.  
i, j, and k are the unit vectors in the x, y, and z directions, respectively, as described in 
Chapter 7. In the example of the acacia seedlings, the unit vector had units of meters, 
and only the spatial dimension x was used.

To distinguish between gradients calculated from a rule and gradients calculated 
from measurements, the conventions in Chapter 7 will be used: functional notation for a 
derived quantity calculated according to a rule, a subscripted symbol for a derived quan-
tity calculated from measurements only (Table 8.1).

Here is an example of gradients in two dimensions, again using the acacia data. The 
count of seedlings in five contiguous quadrats along two adjacent transects, as reported 
by Hill (1973), is:
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As before, the gradients are calculated relative to distance, but this time the unit vector 
will be in 10 m increments, in both the i and j directions. The first gradient, in row 1, 
is 46 seedlings/decameter rather than 4.6 seedlings/meter, as in the previous calculation. 
This change in the size of the unit vector will make it easier to follow the next set of 
calculations.

To show the source of each gradient in both the x and y directions, I have inserted 
the value of the gradient, in boldface type, between the observations from which it was 
calculated:
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The display contains a mixture of scalar (normal typeface) and vector (boldface) quan-
tities, so neither a symbol nor units can be assigned to the display. The gradients are 
vector quantities, either positive (pointing right along transects and downward across 
transects) or negative (pointing left along transects and upward across transects).

next, I have erased the observations. This leaves the topography, which consists of 
a set of gradients collected together into a matrix represented by a single symbol, N:

 

∇



















N  

   

    

  

46 29 10 1

2 43 10 10 9

1 4 10 0

seedliings
decameter

 

now the notation developed in Chapter 7 comes into its own, leading to a clear 
and direct way of expressing the topography of this quantity: eight gradients in the  
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x direction and five gradients in the y direction, calculated from 10 observations at 10 
positions. In this example the symbol N stands for the entire topography of 13 gradi-
ents calculated from 10 contiguous observations. The same symbol easily represents a 
still larger collection of gradients. Hill (1973) reported counts from 32 parallel transects, 
each consisting of five contiguous quadrats. The topography of this larger set consists of 
32·4 gradients in the x direction and 5·31 gradients in the y direction. The symbol N 
easily represents all 283 gradients, calculated from acacia counts at 160 contiguous sites.

In many situations it is convenient to ignore the vertical dimension. We will not 
find most species of plant rooted directly above another, although we might find epi-
phytes or cliff-loving species where this is so. When only the horizontal gradients need 
be considered, the appropriate symbol is h, placed in front of the symbol for the quan-
tity of interest. h is read as “the horizontal gradient.” h s is read as “the horizontal 
gradient in species number s.”

At this point the reader is invited to write out the symbol for the gradient in each 
of the following quantities, using either h for the lateral gradient or  for the gradient 
in three dimensions:

Soil temperature  T  ______
Population density  [N]  ______
gene frequency  q  ______
Population biomass  M  ______
Primary production  M   ______

The reader is next invited to visualize each of these derived quantities, then to assign 
each quantity a name. The gradients in some of these quantities have more than one 
name. For example, the lateral gradient in gene frequency q goes by the name cline in 
the evolutionary literature.

gradients sometimes appear as percentages rather than absolute values. The sym-
bol for the gradient as a percentage, using the generic symbol Q, is Q1Q. One way of 
reading this out is “the gradient in Q as a percentage of Q.” returning to the example 
of the acacia seedling counts along a single transect, N stands for seedling number, Nx 
stands for the measured gradient in seedling number, and N1Nx stands for the relative 
gradient in numbers. The quantity N has units of entities, and so N1N could also be 
called the per capita gradient.

The relative gradient of a quantity is calculated as follows:

N  [ ]5 51 22 12 11   seedlings  (8.18a)

∇Nx      [ . . . ]4 6 2 9 1 0 1 1  seedlings m   (8.18b)
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N Nx
    1 10∇ [ . . † . ]92 5 7 4 5 83   %m   (8.18d)

This notation applies to any symbol. For example, try writing the symbol for the rela-
tive gradient of q  gene frequency. Then try calculating the relative gradient in gene 
frequency at three positions, separated from each other by 100 kilometers, where 
q  [50% 85% 100%].
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As another example of the gradient in a quantity, try visualizing the way in which 
the energy cost of territorial defense changes with increasing territory size for a circular 
territory around a nesting site. Then try writing the symbol for the percent gradient in 
energy cost using E  kJ day1 for energy cost.

ANoThEr Look AT SEcTioN 8.5

In what contexts have you encountered gradients in ecology? Be sure to include con-
texts in which a gradient was used but not labeled as such.

8.6 Divergences
What about taking the gradient of a directed or vector quantity? What if we take the 
gradient in the lateral flux of genes at a series of positions? To visualize the gradient of 
a directed quantity, draw a checkerboard grid of 4 squares by 4 squares. north is up or 
away from you, east is to your right. now place two arrows pointing north  on two 
adjacent squares along the south side of the grid. When the arrows move to the square 
at which they are pointing, they retain their left-to-right spacing. now place two arrows 
on two adjacent squares in the following arrangement:  . When these arrows move 
to the square at which they are pointing, they converge into a single square. Finally, here 
is a divergent arrangement   with arrows pointing away from adjacent squares.

given a divergent or convergent arrangement, the net gradient in a given direction 
can be calculated. Box 8.6 shows calculation of an eastward gradient for four different 
arrangements of two vector quantities. To learn something surprising about these diver-
gent or convergent quantities, try calculating them from right to left (take left as posi-
tive) rather than from left to right (right positive), as in Box 8.6. remember that the sign 
of the quantity changes, as does the order in which the gradient is calculated.

Box 8.6 Calculation of the Gradient of a Vector Quantity at Two Points

First, the eastward gradient. The eastward component is positive , negative , 
or zero ↑. For eastward components having a magnitude of 1 unit, the eastward 
gradient of eastward components is calculated for several arrangements.

Divergent Arrangement Calculation gradient is:
  ()   ()

 (1)  (1)   2  Positive
Convergent Arrangement Calculation

  ()  ()
 (1)  (1)   2 negative

Parallel Arrangements Calculation
 ↑ ↑ (↑)  (↑)
 (0)  (0)  0 Zero
   ()  ()

 (1)  (1)  0 Zero
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now the westward gradient, taking left as positive: Calculating from left to 
right changes the sign of the quantity as well as the order in which the gradient is 
calculated.

Arrangement Calculation  gradient is:
  ()   ()
   (__)    (__)   ___ ________

The final calculation in Box 8.6 shows that the sign of the gradient is independent 
of the direction in which the gradient is taken. Hence a positive gradient in a directed 
quantity always refers to a situation in which the arrows point away from each other, or 
diverge. Similarly, a negative gradient always indicates convergence. The divergence is 
defined as the gradient in a directed quantity. The gradient is either positive (divergent) 
or negative (convergent).

now on to locust flux instead of arrows. In applications, fluxes are usually treated 
in two or even three spatial dimensions, not just one. For example, the eastwardly flux 
of locusts swarming over a grid of wheat fields is [N]x  or N→ for short. The northerly 
flux is [N]y  or N↑. Box 8.7 shows the flux gradient across the field for two patterns 
of flux as measured on all sides of the field. If the farmer observes that the flux arriv-
ing from the west side exceeds the flux leaving on the east, the farmer has a problem: a 
negative gradient in the flux of locusts that are converging on the farm. Similarly, if the 
flux coming from the north exceeds the flux leaving across the south side of the field, 
locusts are accumulating. The total lateral gradient in locust flux is the easterly gradient 
in the eastward flux plus the northerly gradient in the northward flux. The symbol for 
this total gradient is ∇h [Q]x   This is the divergence, or gradient, in locust flux, which 
measures the magnitude of the problem of locust accumulation in a defined area.

The total horizontal gradient in flux (total divergence) is the sum of the compo-
nents where negative divergence is the same as convergence. Box 8.7 shows two patterns 
of total divergence.  In the first, the total divergence due to simple northward flux of 
locusts is zero.  In the second, the flux is convergent because the north-south divergence 
is negative, while the east-west divergence is zero.

The total horizontal gradient in flux is represented by the vector product  

applied to a symbol for a vector or directed quantity (the gradient operator  with no 
dot is applied to scalar quantities). The sign  in front of the symbol simply means to 
take the sum of the gradients in two or three directions, depending on the number of 
spatial dimensions specified for the quantity. This is a compact way of keeping track of 
ecologically interesting processes such as convergent and divergent fluxes of organisms, 
or genes, or energy fixed by photosynthesis and transferred to higher trophic levels.

The symbols for divergence and convergence of directed quantities are convenient 
for reasoning about quantities. But the symbols are abstract and hence need to be asso-
ciated with images of divergent and convergent motion. Boxes 8.8–8.12 show patterns  
of divergent, convergent, and translatory motion of particles around a point in two spa-
tial dimensions x (positive eastward) and z (positive upward). The reader is invited to ver-
ify that the mathematical symbols for each type of motion are correct by taking the sign 
of the x and z gradients on moving from one arrow to the next →→ in each diagram.
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Box 8.7 The Lateral Flux Gradient

Easterly flux:   [N] x N  or →
northerly flux:   [N]y· or N↑
northeastward flux:   N
northwestward flux:   N

north to South 
∆
∆
[N]x

x


 0

  East to West 
∆
∆
[N]y

y


 0

north to South 
∆
∆
[N] x

x


 0

  East to West 
∆
∆
[N]y

y


 0

The total lateral gradient in locust flux is the easterly gradient in the east-
ward flux plus the northerly gradient in the northward flux:

 
∇h [Q]

[Q] x
x

[Q]y
y

    ∆
∆

∆
∆

N↑

N↑ N↑

N↑

N↑

N↑

N N

Box 8.8 Vertically Convergent Motion.

z is vertical (positive upward), x is horizontal (positive to the right).

∆
∆
[Q]x

x


 0

 

∆
∆
[Q]z

z


 0
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Box 8.9 Horizontally Convergent Motion.

z and x as in Box 8.8:

∆
∆
[Q]x

x


 0

 

∆
∆
[Q]z

z


 0

 

Box 8.10 Horizontally and Vertically Convergent Motion.

z and x as in Box 8.8:

∆
∆
[Q]x

x


 0

 

∆
∆
[Q]z

z


 0

 

Box 8.11 Horizontally and Vertically Divergent Motion. Vertically Convergent Motion z is vertical 
(positive upward), x is horizontal (positive to the right).

z and x as in Box 8.8:

∆
∆
[Q]x

x


 0

 

∆
∆
[Q]z

z


 0
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Box 8.12 Translatory Motion, No Divergence (Convergence).

z and x as in Box 8.8:

∆
∆
[Q]x

x


 0

 

∆
∆
[Q]z

z


 0

 

Convergent and divergent motions generate smaller-scale patchiness in natural 
populations during dispersal stages and then throughout the lifetime of mobile organ-
isms. At larger scales, patchiness results from convergent and divergent motion over 
generations. The divergence (and convergence) of a population, defined as the gradient 
in the numerical flux ∇[N] x, , expresses the idea of coalescence and dispersal in a way 
that, though not intuitive, does allow calculations of change in patchiness.

An extension of this idea is that the rate of change in the volume occupied by a 
group of organisms is equal to the divergence of their lateral velocities. Here is a formal 
expression of the idea of change in volume due to divergence:

 
 V  ∇x  (8.19)

This is the divergence theorem, which relates the time rate of change in volume V of  
a parcel to quantity ∇ x , the divergent motion resolved into three velocity components 
   x  [ ]x y z . Meteorology texts (e.g., Dutton, 1975) contain concrete treatments of this 

abstract idea. In words, the theorem says that the time rate of change in the volume  
of a parcel is equal to the divergence of the velocities perpendicular to the surface 
boundary of the parcel. If the boundary is defined as a series of triangular surfaces con-
necting peripheral organisms, the boundary stretches outward if an organism crosses 
outward through one of these triangular surfaces. If an organism at the edge moves 
inward, the edge shrinks inward. Movement inward has a negative divergence, a back-
ward way of saying that movement is convergent. As a result, the occupied volume  
contracts ( V  0 ).

Divergence of a quantity depends on spatial scale as measured by the unit vectors 
i, j, and k that underpin the velocity component    x  [ ]x y z  . At a small scale the diver-
gence in the vicinity of a waterspout or tornado may be considerable. At a larger scale, 
with larger unit vectors, the divergence in the atmosphere and the ocean can be sub-
stantial due to west-to-east passage of weather systems and to the major oceanic gyres. 
In animal populations, the divergence may be large at small scales, as in the vicinity of 
feeding aggregations. At larger scales the divergence in animal populations will usually 
be small, except in highly migratory species.

Divergent motion captures the idea of coalescence and dispersal at multiple scales. 
Divergent motion leads to changes in patchiness, crowding, and frequency of contact. 
At a small scale, convergence increases local density, thereby increasing the opportunity 
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for contact, defined as the number of potential interactions within some fixed distance 
(see Chapter 10). Convergence thus alters the potential for interactions requiring direct 
contact: predation, competition, and gamete exchange. These processes require direct 
contact, unlike gravity and electromagnetic forces, which act at a distance according to 
inverse square laws. The rate at which contact-dependent ecological processes proceed 
varies with the opportunity for interaction, which in turn depends on local density and 
degree of aggregation. Divergent and convergent motions alter local density and hence 
modify the opportunity for interaction of organisms among and within populations.

ANoThEr Look AT SEcTioN 8.6

Would you use the same unit vector to describe vertical and horizontal divergence of 
water motions in a lake, a river, and the ocean? How would you choose the vector?

8.7 Curls
Ecological interactions occur within the fluid envelopes of the atmosphere or the ocean. 
One of the characteristics of a fluid is that it cannot resist mechanical stresses. When 
force is applied, water and air rotate rather than resisting the force. rotation occurs at 
small scales, as in the eddies that form behind trees in a wind. rotation occurs at enor-
mous scales, as in the north Atlantic gyre, which carries water clockwise past north 
America toward Europe. The perpetual rotary motion of the fluid envelope inhabited 
by life has important effects. For example, the eddies that form over rough soil areas 
allow seeds to settle more readily than in smoother areas. Migratory birds use the rotary 
motions of weather systems to accomplish migration over phenomenal distances.

These rotary motions, and the interaction of organisms with rotary motions of the 
surrounding atmosphere and ocean, are calculated relative to the flux gradient, as with 
the divergence. But now the change in flux relative to the gradient, called the curl, will 
be taken at right angles to the flux rather than along the same axis. For example, the 
northerly gradient in the eastward component is taken instead of the northerly gradient 
of the northward component. The result is called, appropriately enough, the curl of the 
directed quantity. The curl is the sum of the gradients taken at right angles to the flux 
gradients. The curl, like the divergence, is positive (clockwise), negative (counterclock-
wise), or zero (no rotary motion). An example of a biological flux with positive curl 
is the elliptical migration of bird populations. Migrants from the Arctic tend to follow 
routes that are elliptical because of displacement to the west during northward migra-
tion and displacement to the east during southward migration.

The sign that designates the curl of a vector quantity is, again, the gradient opera-
tor  but this time accompanied by the sign for the vector cross-product  rather than 
the sign  for the vector dot product. Throughout their life cycles, organisms interact 
with rotary motions of the surrounding air and water. So, the curl   Q is a quantity 
that is ecologically important.

Texts on vector and matrix arithmetic show how cross-products and curls are cal-
culated. These calculations might seem familiar to readers who have mastered the com-
putational basis of multivariate analysis, a sophisticated form of statistics that has been a 
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popular way of searching for patterns in ecological data. The reason that these computa-
tions may seem familiar is that the curl of a quantity defines an axis of rotation in addition 
to the degree of rotation. Multivariate statistical analysis uses similar forms of calculation 
to find a series of best-fitting or “canonical” axes, all at right angles to one another. The 
curl, in a geographic application, defines an axis at right angles to two previously defined 
axes. A vivid image is the central axis of a tornado, which tilts this way and that.

The next two boxes show two forms of curl, or rotary motion. The reader is again 
invited to verify that the mathematical formula matches the picture by calculating the 
gradients in successive arrows in the diagram. Box 8.13 shows simple rotary motion in 
the horizontal plane.

Box 8.13 Simple Rotary Motion, Looking Down on the Horizontal (x-y) Plane.

x and y are positive in the direction of the arrows:

∆
∆
[Q]y

x


 0

 

∆
∆
[Q]x

y


 0

 

The next box shows shearing, again looking downward on the horizontal plane. 
This is the motion that occurs at the boundary of two air masses blowing past one 
another or two currents flowing past one another.

Box 8.14 Shearing Motion, Looking Down on the Horizontal (x y) Plane.

x and y are positive in the direction of the arrows:

∆
∆
[Q]y

x


 0

 

∆
∆
[Q]x

y


 0
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The motions of ecologically interesting quantities do not occur in the pure form 
shown in these boxes. rather, motions of nutrients, water, or food particles consist of a 
combination of these forms. Often, a form of motion at one spatial scale lies embedded 
in a larger-scale motion. For example, bottom fish migrate by moving up off the sea-
floor at one stage of the tide, which sweeps them along part of an ellipse for a period of 
time, because tidal currents away from the coast are rotary in form. The fish then move 
back to the bottom, remaining in place as the tide sweeps around the remaining com-
pass points in its cycle. The net result of a series of smaller-scale rotary motions with 
the tide is a larger-scale translatory motion that accomplishes migration with minimum 
swimming effort (Harden-Jones, Walker, and Arnold, 1978).

ANoThEr Look AT SEcTioN 8.7

Compare the strength of the horizontal curl of water velocity in the narrow upper 
reaches of a river with that in the wider lower reaches of a river. give an approxi-
mate unit vector for your description.

8.8 Contrasts
Thus far all these derived quantities have been calculated at a fixed resolution. Any 
of these quantities can be calculated at several different resolutions. For example, the 
 gradient in acacia seedlings can be calculated at a resolution of two quadrats (2i  20 m) 
rather than one quadrat (i  10 m). Or it can be calculated at a resolution of three quad-
rats (3i  30 m). All these calculations can be gathered together into a triangular matrix. 
Here is the complete set of gradients, at four different spatial scales, for the five acacia 
counts along a single transect:

 

   

  

 





46 29 10 1

17 39 11

7 40

6

seedlings























i

 

The first row in the matrix (at resolution of i  10 m) has already been calculated and 
displayed previously. The second row in the matrix shows the gradient at a resolution of 
20 m. This is calculated as the difference between every other count, divided by one unit 
and also expressed in terms of this unit. The third row shows the gradient calculated 
from every third quadrat. Only one gradient can be calculated at a resolution of four 
quadrats, as shown in the last row of the matrix.

The pattern of contrasts shows the complete topography of the five counts. This 
topography can be examined by panning or zooming. Panning corresponds to examina-
tion of the matrix from left to right within a row. In the preceding example, the gradient 
at the resolution scale of one quadrat decreases from left to right. Comparison across 
the first row shows that positive gradients are confined to the beginning of the transect.
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Zooming in on detail corresponds to examining the matrix from bottom to top 
within a column. In the first column, for example, zoom comparisons are made relative 
to the first count (5 acacia seedlings). The gradient changes from 46 per unit (i  10 m 
increments) to 17 per unit (2i  20 m). The gradient then decreases to 7 per unit 
(3i  30 m) and finally drops to 6 per unit (4i  40 m). The gradient, relative to the first 
count, declines with increase in the separation between locations.

For want of a better term, I have labeled this a matrix of contrasts. The quantity 
calculated in the matrix could be called the contrast in Q, by analogy to terms such as 
the gradient in Q. Taking this a step further, a symbol can be assigned to the matrix, 
Cntrst(N), to indicate that contrasts in the quantity N have been calculated at several 
resolution scales. The symbol  stands for /x, the operation of comparing adjacent 
values of the quantity N as a difference.

The contrast is a derived quantity that permits one to zoom in on detail or zoom 
back on the larger-scale structure. Changes in scale of attention are as informative and 
necessary in the natural sciences as they are in art.

There is a kind of indeterminacy … which lies in the fact that we can neither 
consciously sense nor think of very much at any one moment. Understanding 
can only come from a roving viewpoint and sequential changes in the scale of 
attention.

—C. S. Smith, Structure in Art and in Science, 1965

Calculation and display of all the gradients of acacia counts permit the roving viewpoint 
(scanning comparisons made from left to right) to be combined with sequential changes 
in scale of attention (zooming comparisons made from top to bottom).

Defined Concepts and Terms for Review and Future 
Reference

____ crude rates of change ____ instantaneous rates of change
____ curl   Q ____ matrix of contrasts
____ divergence (convergence) h · Q ____ percent rate of change
____ divergence theorem  V x∇   ____ spatial gradient Q
____ flux  Q A Q x/   [ ]  ____ time rate of change Q



Ensemble Quantities: 
Weighted Sums

On one occasion Kelvin made a speech on the overarching importance of 
numbers. He maintained that no observation of nature was worth paying seri-
ous attention to unless it could be stated in precisely quantitative terms. The 
numbers were the final and only test, not only of truth but about meaning 
as well. He said, “When you can measure what you are speaking about, and 
express it in numbers, you know something about it. But when you cannot—
your knowledge is of a meagre and unsatisfactory kind.”

… Kelvin may have had things exactly the wrong way around. The task 
of converting observations into numbers is the hardest of all, the last task 
rather than the first thing to be done, and it can be done only when you have 
learned, beforehand, a great deal about the observations themselves. You 
can, to be sure, achieve a very deep understanding of nature by quantitative 
measurement, but you must know what you are talking about before you can 
begin applying the numbers for making predictions.

—Lewis Thomas, Late-Night Thoughts on Listening to Mahler’s Ninth 
Symphony, 1983

9.1 Synopsis
This chapter describes quantities that are obtained by summing the values of variable 
quantities. These ensemble quantities include the time average Qt  and the spatial aver-
age Qx . These are biologically interpretable quantities. For example, the downward flux 
of seeds to the ground, summed over a mosaic of cleared and forested areas, gauges the 
colonization capacity of a plant population.

The rules for summing the values of a quantity differ from those for summing unit-
less numbers. The only certain procedure is weighted summation, together with biological 
or physical reasoning to determine whether there has been a change in scale. Summation 
across values of a scaled quantity occurs either by juxtaposing or by superposing. 
Juxtaposing the values of a quantity changes the scale by extending the range. An example  
is summing the density of seeds across a sequence of adjacent plots to obtain density over 
all plots. Superposing values leaves the scale unchanged. An example is repeatedly adding 
handfuls of seeds to a plot of ground.

The time average of a quantity typically consists of a juxtaposed sum that represents 
a longer time scale than individual measurements. Similarly, the spatial average is a single-
valued quantity that represents a larger scale than the values from which it is calculated.

9
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9.2 Notation
ecology is the study of aggregate outcomes. How will hickory populations respond to 
global warming? What is the primary production by phytoplankton over millions of 
square kilometers during a spring bloom? The quantitative operation fundamental to an 
aggregate result is summation, which generates a single-valued quantity from a collection 
of values. The result is an interpretable quantity. For example, the sum of termite life-
times over a yearlong period (T in units of termite-days per year) gauges the voracity of 
the colony in consuming wood. Summation of the number of pairwise combinations of  
4 skuas with 100 kittiwake nests in a colony delimits the potential for nest predation in 
the colony. These sums deserve a name: an ensemble quantity is defined as the biologi-
cally interpretable sum of a sequence of values of a scaled quantity.

care is needed in calculating ensemble quantities, because the rules for summing 
scaled numbers differ from those for unitless numbers. Summing the values of a scaled 
quantity often produces a different result than summing a series of numbers. Summation 
changes the spatial or temporal scale in some cases but not others.

As with any quantitative method, the operation of summing the values of scaled 
quantities will benefit from a consistent and readable notation. chapter 7 expressed a 
preference for using spatial and temporal attributes as labels, but settled for the use of a 
unitless index consisting of integer numbers to coordinate measured values of a quantity 
with its spatial and temporal attributes. Table 9.1 develops this notation further as it 
applies to taking sums.

in Table 9.1 the generic symbol i is used to represent any index. Symbols other 
than i often appear, but certainly the commonest set is i, j, and k. These indices differ 
from the unit vectors i, j, and k, which typically have units. The position vector x  x·i 
contains the unitless number x, which can serve to index a quantity measured at a regu-
lar series of locations. Position in time t  t·h contains the unitless symbol t that simi-
larly can serve as an index.

Table 9.1 Notation for Taking the Sum of Unitless Numbers

Summation is over an index, which has a beginning point, a fixed increment, and an ending value n that defines 

the range. An index does not have units.

i :  start, increment, …. end

i :  1,10,1000

i :  1,1, … n  shortened to  i : 1 … n

q represents a vector of unitless numbers.

The summation sign represents taking the sum.

q q q q qi
i

n

n∑ ∑ …    
1

1 2( )

The sign ∑ operates on a collection of numbers arranged in a row or column vector. Detail is added to the 

symbol as needed.

Index implied. ∑q

Index implied, with upper limit of n; implies a starting point of i  1. q q
n

n∑ ∑   

Index explicit, but limits defined elsewhere. ∑qi
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9.3 Sums and Weighted Sums of Numbers
With notation established, the next step is to examine the rules for summing numbers 
having no units. Many readers will have encountered these rules already, perhaps in 
making statistical calculations. The rules in Table 9.2 will always work for numbers 
without units. Box 9.1 shows calculations based on these rules.

ANoTher Look AT SecTioN 9.2

Apply the operator 
i

n

1
∑  to the quantity N  number of plant species in 10 contiguous 

quadrats, each 1 m2, along a 10 m transect. What is the relation of the index i  1 … n 
to the resolution and range of the quantity N?

Table 9.2 rules for Summing Numbers Without Units

q represents a collection of numbers gathered into a vector.

p represents another collection of numbers.

k represents a constant number.

k n k

k q k q

q p q p

n

∑

∑∑
∑ ∑∑

 

  

  ( )

Box 9.1  Sums Calculated According to Rules for Numbers.

equality by definition k : 5 is distinguished from equality by calculation 2  2 ⇒ 4.

  k  :   5
  q  :   [1 2 3]
  p  :   [0.1 0.2 0.3]

k
n

∑       5  5  5   ⇒ 15
 n · k     3 · 5   ⇒  15

 ∑ c · q     5 · 1  5 · 2  5 · 3   ⇒ 30
 c · ∑q     5 · 6   ⇒  30

 ∑(q  p)      (1  0.1)  (2  0.2)  (3  0.3)  ⇒  6.6

 ∑ q  ∑ p    (1  2  3)  (0.1  0.2  0.3)  ⇒  6.6
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one way to visualize a weighted sum is as the pivot point of a stick balanced on a ful-
crum. As stones are placed on the stick, the balance point shifts, depending on the mass of a 
stone and its distance from the center of the stick. All the points on the stick have the same 
weight, but when the weight at a site is increased by placing a stone, that point will have 
a greater influence on the pivot point than its neighbors. To give an example, the mean 
(point of balance) in the sequence q  [ 4 5 6 ] is normally 5, but the weights (percentages) 
in Box 9.2 shift the point of balance to 4.5. not all weighting factors are expressed as per-
centages, so the general formula (Box 9.2) takes this into account by using the sum of the 
weights ∑wi in the denominator. A convenient symbol for the weighted sum is to draw a 
line (which can be imagined as the pivoting stick) directly over the symbol for the quantity.

Box 9.2  Weighted and Unweighted Summation

Formula: 
  
q

q
w

i i

i

w

w
  
∑
∑

example:  q  [4 5 6],  n  3

 unweighted summation:   ∑q  4  56  ⇒  15

 equally weighted summation:

n q

n q

w n wi i





 

  

     



1

1

1 1

4 5 6 3 5

0 33 4 0 33 5 0 336 5
∑ ⇒

∑ ⇒

∑

( )/

( )

. . .

  ( ) 5∑ ⇒q wi i

 unequally weighted summation:

pi  (70% 10% 20%)
∑piq  0.7·4  0.1·5  0.2·6 ⇒  4.5

wi  ( 7 1 2 )
 (∑wi)1(∑qiwi)  101(28  5  12)  ⇒ 4.5

ANoTher Look AT SecTioN 9.3

To see how weighted summation works, guess the approximate value of the weighted 
sum of q  [4 5 6] if weights are w  [2 1 7]. Then compute.

 
q 

    

 


__ __ __ __ __ __
__ __ __

__
 

The rules for adding numbers (Table 9.2) are a special case of weighted summa-
tion. Box 9.2 compares weighted with unweighted summation.
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9.4 Sums of Scaled Quantities
We encounter inconsistencies if we apply a single summation rule to all quantities. For 
example, if a honeybee flies northward for distances of 7 m, 8 m, 8 m, 9 m, and 8 m in 
five successive periods of time, distance flown is:

 y  [7 8 8 9 8] m  

The total distance flown is ∑y  40 m, an easily visualized quantity. if a bee flies at 
around 8 m s1, five successive determinations of this quantity might look like this:

 
y   7 8 8 9 8 m s 1[ ]  

The sum ∑ y  40 1m s  is clearly incorrect.
definitions from the literature provide a name for the problem, but no remedy. 

For example, Shugart (1998, p. 94) describes the principle of superposition for linear 
systems as meeting the condition that the response of a system to several inputs in time 
is equal to the sum of the responses of the inputs acting alone. This condition for linear 
systems matches the rules for adding unitless numbers (Table 9.2) if we take q as the 
input and k as the response. This gives us a name, superposable, for quantities that fol-
low the same rules as taking the sum of numbers (Table 9.1). But the definition serves 
only to label the distinction. it does not provide a practical criterion for distinguishing 
superposable quantities before they are summed.

The rules for weighted summation, combined with reasoning about units, will pro-
vide that criterion. The procedure will be to use weighted summation (Box 9.2) with 
units as weights. reasoning about the sum of the weighting factors ∑w will guide the 
computation of the sum of multiple values of a scaled quantity Q. Here is an example, 
using bee distances, for which the sum ∑y  40 m is a readily interpretable ensemble 
quantity. The first step is to choose a weighting factor that results in unitless numbers 
that can be summed. For the bee distances, this factor is m1:

 

y
m

m
m

m
m

m
m

m
m

m
m


        



7
1

8
1

8
1

9
1

8
1

1∑  

The weighting factor m−1 normalizes the measurements (7 m, 8 m, and so on) to dimen-
sionless numbers: (7 m)(m1)  7:

 

y
m


   



7 8 8 9 8
1∑  

The next step is to interpret the sum of the weighting factors, ∑m1. if the val-
ues are juxtaposed (which means the bee gets somewhere), the spatial frequency m1 
does not change. it is one measurement per meter. The formal expression of this is 
∑m1  m1. now when the calculation is made, the spatial sum is:
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if the values are superposed (5 bees starting at the same point), the spatial frequency 
changes. it becomes 5 measurements per meter and so ∑m1  n·m1. With this calcu-
lation, the spatial sum is:

 
y

5 m
m
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1
 

Summing a scaled quantity resulted in different outcomes, depending on how summa-
tion was interpreted relative to the scaling unit, which in this case was spatial frequency. 
The same applies to the summation of bee velocities at the beginning of this section. 
given the way measurements were taken, the summation ∑ y  40 1ms  was incorrect; 
the summation ∑ y  8 1ms  was correct.

now that an example is at hand, we move to a detailed recipe for summing quan-
tities. The recipe goes like this: state the weighting factor, find units that clear this factor 
from the units of the quantity, rescale the quantity according to this factor, sum the res-
caled quantities, interpret the result of summing the scaling unit, and divide by the sum 
of the scaling units. Table 9.3 presents the generic recipe.

The recipe for weighted summation is next applied to bee velocities, where a non-
sensical result of ∑ y  40 1ms  resulted from simple summation with no attention to 
units. Box 9.3 shows the calculations, following the recipe in Table 9.3, for summation 
by juxtaposition and superposition.

The generic recipe (Table 9.3) for summing the values of a scaled quantity has 
three major ingredients: a statement of the weighting unit, a formula for applying the 
weighting units, and a statement of whether summation changes the scale of the weight-
ing unit. Stating how summation is to occur (Step 2) depends in large part on the pur-
pose of the calculation. in Step 3 the units are most commonly time, distance, and area 
(or their inverses, temporal and spatial frequency). The weighting units are chosen in a 
way that clears units from the numerator. if the quantity has units of km2, the weight-
ing factor will be km2. The fifth step, interpreting the sum of the weights, is the most 

Table 9.3 Generic recipe for Summing Scaled Quantities

1. Write out the quantity as a vector with units.

2. State whether summation will occur with respect to distance, time, or some other dimension.

3. State a weighting unit that clears units from the quantity. Write this as a vector of weights wi.

Weights can be equal  w  [1U 1U … 1U]

Weights can be unequal  w  [q1·1U  q2·1U…]

4. Apply the weighting, according to the following formula:

Q
Q w

ww
i i

i


∑
∑

5. Determine whether summation changes the scale of the weighting factor:

If the scale is unchanged:  ∑w  1U   (equal units)

∑w  1U· ∑q   (unequal units)

If the scale is changed:  ∑w  n · 1U   (equal units)

∑w  n ·1U · ∑q   (unequal units)

6. Complete the calculation.
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work. This step requires reasoning about the quantity and about whether the summa-
tion used in Step 3 changes the scale of the quantity. The concept of juxtaposition versus 
superposition helps to make this less abstract. As with any calculation, it is important 
to ask whether the result is reasonable and consistent with expectations formed before 
making the calculation. There is no substitute for thinking about the quantity and for 
direct visualization of what happens when the values of a quantity are summed.

Box 9.3  Calculating the Sum of Scaled Quantities.

For equal units

1. Write the quantity as a vector with units:

 y   [  8 8 9 8] m s7 1

2. Measurements are at five contiguous positions, so summation will occur by 
juxtaposing distance, not time.

3. Two weighting factors are needed to clear units:

 w w1 2
1  s and m

4. Apply formula for weighted summation:
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5. interpret summed weights:
 ∑m1  5·m1   because summation is by juxtaposition
 ∑s  1·s   because summation is by superposition
6. complete the calculation:
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7 8 8 9 8

5 m 1s
8 m s

1
1⇒

For unequal time units:  

w1  [10 20 20 20 10] s
    w2  [1 1 1 1 1 ] m1

5. ∑w1  1 · s · ∑q  80 s  summation by superposition
∑w2  1 · m−1   summation by superposition

6. y 
   

 



70 160 160 180 80

m 80 s
8.1 m s1

1⇒
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ensemble quantities have a scale that goes into calculating them. This is as much 
a part of an ensemble quantity as the units of the ensemble. The scale, with both resolu-
tion and range, is implied in the summation sign, even though the index used to calcu-
late an ensemble quantity has no units. The increment of the index is associated with a 
resolution scale, whether resolution by time, length, area, energy content, body mass, or 
any other basis for weighted summation. The numerical range of the index is i  1… n. 
This range can be for time, length, mass, and so on.

ensemble quantities have a scale, but this scale is not necessarily the same as that 
of an individual value. Single values of a quantity Q have a scale set by their resolution 
(minimum resolvable unit  1u) and their range (q  number of steps). Summation in 
some cases changes the resolvable unit. Table 9.4 expresses this idea.

in reasoning with scaled quantities, the effects of summing must be considered 
explicitly. Summing will change the scale in some cases but not others:

if the scale is changed, then:    ∑ 1u1  n · 1u1

if the scale is unchanged, then:    ∑ 1u1  1u1

Here is an example with juxtaposed lengths:

 

→
→→→→→→

∑
n L

L
EF 

 

The symbol ∑L stands for the total length, composed of five short lengths 

L. The 

length ∑L represents a coarser resolution than each component L. The ratio of ∑L to 
L is a unitless number, the number of steps. it is also the unitless expansion factor EF 
(described in more detail in chapter 12, Section 3).

This example shows how an ensemble quantity scales a series of measurements up 
from many local values to a single larger-scale value. A convenient term for this is scal-
ing up by summation. The average is computed from the sum, so an equivalent term is 
scaling up by averaging.

ANoTher Look AT SecTioN 9.4

List two quantities of interest to you—one that is summed by superposing values and 
one that is not.

Table 9.4 Scale of an ensemble Quantity compared to Scale of component 
Values

A single value of a quantity Q is the product of the number of steps q and a unit 1U:

Q q 1U

The sum of a series of values is:

Q q
Q q

i i
i  
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9.5 The Mean Value of a Quantity
in ecology the most common use of summation is to compute a mean. The mean value 
of a series of numbers is straightforward—it is the sum of the numbers, divided by the 
number of observations. The mean value of a scaled quantity requires more thought; it 
is a weighted sum or total. The formula for the mean value of a quantity is:

 
mean )

1
(Q

n
Q

n

 ∑
 

(9.1)

As we have seen, care is needed in calculating ∑Q the sum of a scaled quantity. in most 
applications, equal weighting summation by superposition (see Table 9.3) is used. The 
units of the mean are the same as the units of the quantity.

The notation used in Table 9.3 includes a bar over the symbol for the quantity, 
subscripted by another symbol representing the weighting factor. For example, the spa-
tial average in the energy value of prey is Ex ,  whereas the average energy value of prey 
over a period of, say, a year is Et .  The generic symbols are Qx  and Qt  for the spatial 
and temporal averages, respectively.

The overbar was used to represent the operation of taking a weighted sum. it is 
used for both equally and unequally weighted sums. An average, as it is usually calcu-
lated, is an equally weighted sum for which w has no units and ∑w  n, the number of 
observations (Box 9.2). For example, the equally weighted bee velocity was calculated at 
8 m s1. The unequally weighted bee velocity was calculated at 8.1 m s1. Both are aver-
ages, and so the symbol yx  applies to both. The ensemble quantity yx  is the time rate 
of change in position in the y direction, averaged over distance in the x direction. Try 
writing out the names of the following ensemble quantities, then visualizing each.

 





y

y

z

t  

in statistics, standard notation involves placing a bar over the symbol to signify the 
average of several observations. This works satisfactorily for numbers, but it will lead 
to ambiguity in working with scaled quantities; is the average taken over space? over 
time? Adding the subscript removes the ambiguity by making it clear how the quantity 
was averaged.

in geophysics, a different notation is sometimes used to distinguish spatial averages 
Q from temporal averages Q. This distinction is useful, though it seems unlikely to 
make much headway in ecology. The overbar for all averages, including the spatial aver-
age, is already widely established in ecology and in the statistical literature. The overbar 
lends itself well to distinguishing the observed average Qx from an average Q x( )  calcu-
lated with a functional expression Q(x) for the spatial average. The overbar reduces the 
burden on memory because one symbol designates the operation of taking an average. 
The distinction between spatial and other averages can be made by retaining the appro-
priate subscript, such as Qx for spatial average.

ensemble quantities, like the quantities from which they are derived, should be 
visualized and associated with a vivid mental image that captures the essence of the 
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quantity. one good way of visualizing a spatial average is to picture a graph of the 
quantity as a series of lines projecting upward from a plane, much like trees projecting 
from the forest floor. Then picture the spatial average as an imaginary surface, parallel 
to the ground, through which some trees project while other trees fall short of the sur-
face suspended above them. The spatial limits on the ensemble quantity should also be 
held in mind, for the measured average applies only within some limited spatial range. 
Time averages should also be visualized, with the start and stop points an explicit part 
of the mental image. For example, average rainfall over a year is pictured as a single 
fixed value in units of V/A (volume per unit area) with observations falling above and 
below this value from day 1 to day 365. The 20-year average is pictured from day 1 to 
day 7305. The range is a key part of ensemble quantities and so should be held in mind 
whenever thinking about an ensemble quantity.

ANoTher Look AT SecTioN 9.5

imagine a computational program that automatically applies the rules presented in 
Table 9.3. What prompts would the program need to calculate the average of scaled 
quantities?

9.6 Sums of Quantities on Nonratio Scales
What happens if quantities on nominal or ordinal types of measurement scales are 
summed? The same principles (Table 9.3) apply. in the case of nominal quantities, the 
dimensionless numbers q (see Table 9.4) are either 1 or 0, and the sum of a set of values 
q is:

∑q  0   if all q  0
∑q  1   if any q  1
Also:  ∑ 1u1  1u1

That is, the scale never changes.
Quantities on a nominal scale are often summed to obtain a frequency or propor-

tion. For example, 10 foraging attempts might be scored as 2 successful ones, hence 
f  2 out of 10 and p  20%. once nominal scale quantities are summed in this fash-
ion, they become ratio scale quantities.

Quantities on a rank scale are usually handled by calculating the sum of the 
ranks ∑r, then interpreting the sum of the “units” in either of two different ways. one 
approach is to treat ranks as a series of observations ∑ 1u1  n. in this case the sum of 
a set of ranks is not itself a rank. Another approach is to ignore the rank scale entirely, 
treating the ranks as integers ∑ 1u1  1. Here is an example. The first and second 
ranking items are scored as:

 ∑ ⇒r  1 2 3  

The number 3 cannot be interpreted as a rank.
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now an ecological example: three types of coral are competing for space. Species 
A takes space from B, and both A and B take space from c, but species A and B together 
may take space from c or lose space to c rather than having the same rank as c. in this 
example the rank of c relative to (A  B) cannot be calculated from the rank of each 
item. However, the sum of ranks can be calculated as an integer. rank-based statisti-
cal tests use this number, the sum of ranks, to evaluate the probability of a particular 
arrangement of ranks.

Defined Concepts and Terms for Review and Future 
Reference
____ ensemble quantity  ____ spatial average
____ juxtaposition vs. superposition  ____ temporal average
____ scaling by summation and averaging  ____ weighted summation



                  Ensemble Quantities: 
Variability  

      It would certainly be a mistake to say that the manipulation of mathematical 
symbols requires more intellect than [does] original thought in biology.  

  — R. A. Fisher,  The Genetical Theory of Natural Selection , 1930   

    10.1       Synopsis 
 One   of the major contributions of biological thought is that variability is a quantity 
subject to loss and gain. This view of variability distinguishes biology from the other 
natural sciences. Genetic variability, for example, is the raw material on which natural 
selection operates to generate new species. Variability in other ecological quantities is of 
just as much interest, whether the quantity is density, production rate, or a biogeochemi-
cal flux. What factors generate variability in these quantities? What factors reduce vari-
ability in these quantities? 

 Variability   is measured by an ensemble quantity called a deviance, which is the 
weighted sum of the deviations of individual values from an average. Any weighting 
scheme can be used. One of the most commonly encountered is to weight deviations 
according to their own magnitude, resulting in a variance var( Q ). Weighting the devi-
ations of one quantity by the deviations of another quantity results in the covariance 
cov( Q,R ), which is the basis of correlation and regression. Deviations on a logarithmic 
scale result in the information statistic G (Q  |   β ) , which has become increasingly impor-
tant in statistical analysis over the past three decades. Deviations are interesting quanti-
ties in themselves, and taken as an ensemble (variance, covariance, etc.), they become 
important quantities in ecology. 

 Deviances   are multiscale comparisons. They gauge the difference between local 
observation and an expected value of greater extent. The temporal variance, for exam-
ple, gauges the difference between each short-term value and the long-term value of 
a quantity. In a similar fashion, the spatial variance measures the average difference 
between local values and a mean value of greater extent. 

 Variances   are often interpretable quantities. For example, the variance in the 
velocity of a fish measures the kinetic energy, per unit mass, of swimming. The vari-
ance, viewed as an interpretable quantity, is often of more interest than the average or 
summed value of an ecological quantity simply because of the highly variable response 
of natural populations to heterogeneous environments. 

  10 
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 The   temporal variance measures the vigor of change in a quantity. Much of the 
early work on temporal variance focused on the search for periodic variation. Variance 
in ecological time series exists at all scales, and hence rate of increase in variance with 
increase in temporal scale becomes of more interest than whether the temporal variance 
reaches a maximum at some scale. 

 The   spatial variance in organism density measures patchiness at the scale of mea-
surement resolution. Early work focused on the search for characteristic scales of patchi-
ness, but it is now evident that spatial variance increases with scale rather than being 
concentrated at a characteristic scale. The spatial variance in the number of organisms is 
closely related to mean crowding  M  * ( N ), which measures the potential number of pair-
wise contacts between organisms at a given spatial scale. The concept of mean crowding 
is readily extended to the yet more general concept of the potential contact, which mea-
sures the opportunity for interaction that depends on direct contact between individuals — 
predation, parasitism, mutualism, gene exchange, and some forms of competition. 

 Spatial   and temporal variances are not static quantities. They grow and shrink 
through production and loss. For example, spatial variance in gene frequency is gener-
ated by mechanisms that isolate populations; at the same time it is eroded by processes 
that promote the lateral spread of a gene. One of the major research challenges in ecol-
ogy is understanding the creation and erosion of spatial variability as a function of spa-
tial scale. This includes the question of the degree to which variance generated at one 
scale is transformed into variance at another scale.  

    10.2       Deviations 
 One   of the characteristics of ecological quantities is their high degree of variability. 
Repeated measurements of the size or speed of lifeless objects vary from the average due 
to measurement error. Repeated measurements of the size or speed of an organism will 
vary far more than measurement error. In working with ecological quantities, it is often 
of as much interest to examine the deviation from the average as it is to examine the 
average or ensemble value. 

 A   simple way of examining this variability is to compute contrasts or differences 
between pairs of values, shown in Chapter 8. Another way of examining variability is to 
examine the contrast between the average value and the individual values that contributed 
to the average. The difference between a measured value and its larger-scale mean value will 
be called a  deviation . Deviations can be expressed on any of the four types of measurement 
scale, as shown in Box 10.1.  

 Deviations   on a ratio type of scale (Box 10.1) appear repeatedly and so are 
assigned a unique symbol: 

    dev( ) mean( )Q Q Q� �   (10.1)      

 For   the generic quantity  Q , the symbol is dev( Q ), which represents the collection of devi-
ations. This is read as  “ the deviations in the quantity  Q  from the average, ”  or  “ the devi-
ations of  Q  ”  for short. Of course, some specific quantity would usually be read, not  Q . 
In Box 10.1 the quantity dev( )�y    is read  “ the deviations in bee velocity �y    . ”    
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       ANOTHER LOOK AT SECTION 10.2      

 For   a quantity of interest to you, state a typical deviation from the mean. What is the 
ratio of the largest deviation relative to the mean?    

    10.3       The Total Deviation 
 One   of the important concepts that emerged in statistics in the late 1970s and early 1980s 
is the distinction between exploratory and confirmatory analysis.  Exploratory analyses  seek 
pattern;  confirmatory analyses  establish whether a particular outcome is due to chance. Both 
use deviations but in different ways. The strategy of exploratory data analysis is a cycle of 
repeated calculation and examination of deviations (Tukey, 1977). The cycle continues until 
the deviations show no pattern. Good confirmatory analyses also rely on deviations. In a 
confirmatory analysis the only way to ensure that the assumptions are met is to check for 
patterns in the deviations of the data from the model (see Chapter 15). Checking the observa-
tions rather than the deviations from the model accomplishes nothing; it is voodoo statistics. 

 The   total deviation  Σ dev( Q ) is an ensemble quantity called the  deviance . This devi-
ance is zero unless a weighting factor is applied. The weighting factor can be on any type 
of scale. A weighting factor of historical interest is the sign of the deviation, which is on 
a nominal type of scale. The result of this weighting (Box 10.2) is the  average deviation . 
It is the sum of the absolute values of the deviations: 

  avdev( ) dev( ) |dev( )Q Q w Qnominal� Σ Σ⋅ � |   (10.2a)
      

      Box 10.1        Deviations Calculated on Four Types of Measurement Scale      

 The   quantity is bee velocity:     �y � �5 6 7 8 9 1 m s[ ] ⋅      

 The   mean value:     mean( ) m s 1�y � �7      
 Deviations   on a nominal scale:     � �y y� � � � ���mean( )  [ ]      

    Differences are scored as      �      or  � .  
    A zero difference has been scored as  � .  
    The pattern of deviations show only that the bee picked up speed.    

 Deviations   on a rank scale:     � �y y� �mean( ) [ ]5 4 3 2 1      

    The pattern of deviation on this scale shows that speed increases steadily.    

 Deviations   on a ratio scale:     � �y y� � � � �mean( ) ms[ ]2 1 0 1 2 1⋅      
    Deviations on this scale measure the acceleration.       
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 An   equivalent expression uses sums rather than the deviations directly: 

  avdev( ) 1Q Q w n Q� � �Σ Σ⋅ ⋅   (10.2b)      

 Box   10.2 shows computations according to Equation 10.2b.

       Box 10.2        Weighted Deviances (avdev( Q ), SS( Q ), and G( Q )) Computed from Deviations  

       N   x   is the number of Willets in seven contiguous stretches of beach, each 1       km in 
length, from Chapter 7. 

       mean( ) .N N n nx x x� � ��1 8 86⋅ Σ     Willets km  � 1  

     N x            �      [   9   4   8   9   31   0   1   ]  ·  Willets km  � 1   

    dev( N x  )  �  [  � 0  � 5  � 1  � 0  � 22  � 9  � 8   ]  ·  Willets km  � 1        

     w nominal    �  [    �       �       �       �       �       �       �    ]  

     w ratio      �  [  � 0  � 5  � 1  � 0  � 22  � 9  � 8 ]   Willets · km  � 1   

    1.     The average deviance, avdev( Q ). 
    Deviations on a ratio scale.  
    Weighting is on a nominal scale.  w nominal         �       �  or  �  deviation. 

       avdev( N )  �  ∑  ( N  ·  w nominal  )  �   n   � 1   ∑  N        ⇒       36  –  ( � 8.86)  �  45 Willets · km  � 1   

    avdev( N )  �  ∑  ( dev  ·  w nominal  )      �  44.86     Willets · km  � 1      

    2.     The sum of squares, SS( Q ). 
    Deviations on a ratio scale.  
    Weighting on a ratio type of scale.  w ratio        �      dev( N ) 

       SS( N )  �   ∑  ( N  ·  N )  –   n   � 1  · ( ∑  N ) 2        ⇒       1204  �  549.14      �      655 Willets 2  · km  � 2      

    3.     The G-statistic,  G       �      2I. 
    Deviations on a logarithmic scale.  
    Weighting on a ratio type of scale.  w N        �       N   

    lndev( N )      �      ln( N )  �  ln ( )N          �      ln ( / )N N      

    lndev( N )      �      [ 0.016  � 0.80  � 0.10  � 0.016  � 1.25  � 0  � 2.2 ]  

    I      �       ∑  [ w N   · lndev( N )]  �   ∑  [ N  · lndev( N )]  � 32.94  

    G( Q  |   β  )      �      G (Q  | 8.86)  �  2 ∑  [ N  · ln ( )N N/    ]    ⇒   65.9 Willets 1     ·    km  � 1        

 The   most frequent weighting factor is the deviance itself. That is,  w       �      dev( Q ). This 
results in a  sum of squared deviations  SS( Q ): 

 Σ Σ Σ dev( )  dev( ) dev( )  [dev( )]Q w Q Q Q⋅ ⋅� � 2   (10.3a)      
 
SS( )  [dev( )]Q Q� Σ 2   (10.3b)           
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 This   particular deviance is so widely used that it has its own name and symbol: the 
 sum of squares , or  SS . Sums of squares of several quantities are distinguished via func-
tional notation for one quantity SS( Q ) versus another SS( Z ). An equivalent expression 
for SS( Q ) uses sums rather than the deviations directly: 

  Σ Σ Σ [dev( )] n  ( )Q Q Q2 2 1 2� � �   (10.4)      

 Box   10.2 shows computations using Equation 10.4. 
 The   sum of squares  SS  is often an interpretable quantity. The bee velocity deviations 

(Chapter 9) have units of m 1  s  � 1 . So the units of the sum of squared deviations will have 
units of m 2  s  � 2 . These units gauge the kinetic energy  kE  per unit of bee mass. That is: 

    Kinetic energy                    �                     kE                     �                    mass · velocity 2   
    Mass-specific kinetic energy                    �                     kE /mass                    �                    velocity 2     

 In   the (Chapter 9) Willet example, the sum of squares  SS  has units of # 2  km  � 2 . This is 
proportional to the number of pairs per unit area, and hence SS( N x  ) in this example is a 
measure of the potential for interactions between Willets within each 1       km segment of the 
beach. In general, the deviance of a count of organisms will be of interest in any study con-
cerned with locally density-dependent interactions among populations and among species. 

 Deviations   are also of interest on a logarithmic scale. For these deviations the nat-
ural logarithm ln      �      log e  is always used: 

  ln[dev( )]  [ln( ) ln ] ln( )Q Q Q Q Q� � � /   (10.5)      

 Each   deviation on a log scale ln  ( / )Q Q     measures the departure of an observation from 
the mean value  Q    . If this ratio is weighted by  Q , the result is a measure of the informa-
tion in each value of  Q  relative to the information in the mean. When the departure is 
small, most of the information is in the mean. When the departure is large, most of the 
information is in the data. The sum of the weighted deviations measures the amount of 
information in the data, given the mean (Kullback and Leibler, 1951). 

  I( | )  ln(  Q Q Q Qβ � / )∑   (10.6)      

 The   symbol I( Q  |   β  ) stands for the information in the values of quantity  Q , given the 
parameters   β  . Box 10.2 shows calculations for the case of the most commonly encoun-
tered parameter, the mean value of  Q . 

 If   there is no information beyond the mean (all values are equal to  Q    ), then 
I( Q  |   β  )      �      0. When the information I( Q  |   β  ) in the data is small, the likelihood of the esti-
mate  Q     is high. Consequently, minimizing I( Q  |   β  ) maximizes the likelihood of the esti-
mate  Q,    given the data (Akaike, 1973). Because the principle of maximum likelihood 
is central to modern statistics, the information measure I( Q  |   β  ) is a key component of 
statistical analysis. Twice the information  G       �      2 · I( Q  |   β  ) is Wilks ’  likelihood ratio statis-
tic (1935), also known as the non-Pearsonian chi-square, or goodness of fit G-statistic 
(Sokal and Rohlf, 1995). The  G-statistic  G( Q  |   β  ) is a weighted deviance that measures the 
information in the values of  Q , given the parameter values   β  . This measure has become 
increasingly important in statistics since the work of Nelder and Wedderburn (1972), 
who demonstrated its use in applying maximum likelihood when deviations are not 

homogeneous, and ratios of sums of squares cannot be used to compute probabilities as 
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in classical methods based on the sum of squares SS( Q ). McCullagh and Nelder (1989) 
present a comprehensive list of deviances and rescalings used in statistical analysis.     

    10.4       The Variance 
 The    weighted deviances  in Box 10.1 are the foundation for the measurement of 
variability. Most measures of variability in ecology are built on the SS( Q ), the sum 
of the squared deviations.  Table 10.1    defines five common measures, including the  vari-
ance  var( Q ). The simplest is the mean value of the squared deviations, msd( Q ). The 
mean squared deviation of the bee velocities comes to msd ( )�y           �  �  (2 2       �      1 2       �      0 2  �  
( � 1) 2  �  ( � 2) 2 )/5      �      2 · m 2  s  � 2 . The mean squared deviation of the Willet counts comes to 
msd( N x  )  �  �  654.86/7      �      93 Willets 2 . To obtain a measure in the same units as the vari-
able, the root mean squared deviation is often used ( Table 10.1 ). In biology it is stan-
dard practice to use an estimate of the true variance rather than the observed variance. 
The conventional symbols are   σ   2  Q  for the true variance and  s  2  Q  for the estimate from 
the sample. This notation, which reduces a symbol to a subscript, becomes ugly for 
quantities that are already subscripted. This notation is to some degree misleading, since 
we may be interested in the variance, not in the parameter   σ   of the normal distribution. 
A more satisfactory convention is to use a  “ hat ”  over the Greek symbol to distinguish 

 Table 10.1          Commonly Encountered Measures of Variability  

   The mean squared deviation 
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n
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      ANOTHER LOOK AT SECTION 10.3      

 For   a given set of data, what happens to information  I  remaining in the data as the 
estimate of  Q     moves from a poor value (low likelihood) to a good value (maximum 
likelihood)? What happens to SS( Q ) and avdev( Q ) as I( Q  |   β  ) decreases?   
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the parameter  σ  from its estimate σ̂ ,  then note that for the normal distribution the esti-
mate of   σ   2  is var( Q ), as in  Table 10.1 . 

  σ̂
2 � var( )Q   (10.7)      

 In   the example of the Willet data (Box 10.2) the estimate is var( N x  )  �  �  654.86/6      �      109 
Willets 2 . This estimate uses  n   –  1 rather than  n  to adjust for the fact that the popula-
tion will almost certainly contain several deviations that exceed those encountered in the 
sample. Hence the observed mean squared deviation msd( Q ) is scaled up to a slightly 
larger value according to a factor  n /( n        �      1). In the example of bee velocities, the mean 
squared deviation is msd( y )  �  (2 m 2  s  � 2 ), whereas the estimate of the true variance is 
var ( )�y          ��  2 m 2  s  � 2 (5/4)  � 2.5 m 2  s  � 2 . 

 The   variance has units that are the square of the quantity. To obtain a measure in 
the same units, the square root is taken. Taking the square root of the estimate of the 
variance yields an estimate of the standard deviation std( Q ), shown in  Table 10.1 . To 
permit comparison of variability among series with different units, the standard devia-
tion is normalized to the mean value. This results in a dimensionless ratio called the 
 coefficient of variation .  Table 10.1  shows the formula for the estimate of the true value 
of the coefficient of variation. The coefficient of variation is often viewed as a fraction 
and hence multiplied by 100 to express it as a percentage. 

 These   measures of variability, like the mean value, represent  multiscale compari-
sons . They all entail a form of  “ zoom ”  rescaling, whereby each deviation (representing 
a limited area and time) is compared to a single value representing a larger area or time. 
The local scale is set by the resolution of the observations at hand; the larger scale is 
set by the range of the observations. An example is the temporal coefficient of variance 
cv( Q t  ), a single number that gauges the explosiveness of a rate of change across the tem-
poral range of all the measurements. 

 Estimates   var( Q ) of the population variance   σ   2  imply scale-up from the spatial range 
of the sample to the range of the population. Scale-up depends on whether the sample comes 
from a finite or infinite population. In many ecological applications, samples are defined 
relative to an infinite population of all possible measurements that could be generated by 
the procedural statement (refer back to Chapter 3). Another definition is that the sample is 
taken randomly from a defined set of enumerable units called a  frame . If the frame and units 
are defined spatially, the inference from sample to population entails spatial scale-up based 
on the ratio of area covered by the sample to area of the frame. Scale-up, as a ratio, is unde-
fined for an infinite population. 

 The   variances of ecological quantities are sometimes interpretable quantities. An 
example is the variance in the velocity  v  of an organism: 

  

kinetic energy
mass

� �
mv
m

v
2

2

 
 (10.8)

      

 This   measures kinetic energy per unit mass of an organism. Another example is the vari-
ance in counts of organisms, which has units of entity  ·  entity. As we saw in Chapter 5 
(Equation 5.1), this can be interpreted as the potential number of pairs or the potential 
number of pairwise combinations in a group. In Box 10.2, Willet 2  gauges the number of 
potential competitors. The unit entity 2  looks strange, but it usefully measures the potential 

for interaction between the objects being counted.
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       10.5       Scale-Dependent Variance 
 Measurements   referenced to time and location vary according to temporal and spatial scale. 
Recall from Section 7.5.1 that the symbol  Q  x t    stands for any geographically and temporally 
referenced quantity with temporal and spatial attributes of resolution (vectors   h  ,   i  ,   j  , and 
  k  ) and position in time ( t h  ) and space ( x i  ,  y j  , and  z k  ). We can vary the scale either by alter-
ing the separation between units or by altering the spatial and temporal extent of the unit 
(altering vectors   h  ,   i  ,   j  , and   k  ). We can alter the extent by either changing the measurement 
frequency (equivalently, altering the bin size over which measurements are averaged) or accu-
mulating units in sequence (e.g., average over 10 sequential measurements, then add next 
measurement and recompute the average, etc.). These three operations are commonly called 
 lagging ,  coarse graining , and  accumulation . Iterative calculation of the variance according to 
each of these three operations displays the change in variability with change in scale. 

    Table 10.2    shows the commonly used measures of scale-dependent variability. In 
this table the symbol  Q  x t    has been abbreviated to  Q . The table also shows the relation 
of these ensemble quantities one to another. Most of these measures were developed for 
the analysis of patchiness and spatial variance in density of organisms, but they can be 
applied with any quantity referenced to location, to time, or both. 

 The   commonly used measures of scale-dependent variability are the autocorrela-
tion (as a function of lag), the semivariance (as a function of lag), the variance  MSA  (as 
a function of group or block size  i ), and spectral density (as a function of measurement 
frequency in either space or time). The  autocorrelation  acf k ( Q ) is the correlation of a 
variable with itself at lags of 1, 2, and so on. Plots of the autocorrelation versus lag are 
called  correlograms . Sokal (1979) discusses the use and interpretation of correlograms 
in ecology. Another measure of autocorrelation is the  semivariance  γ  k (Q) . The semivari-
ance is some part of the overall variance; it is the variance at any one lag. The semivari-
ance is the same as the variance if all observations are assigned to the same lag. Thus the 
semivariance of the bee data is 2.5 m 2  s  � 2  (all five measurements at the same lag). If all 
seven measurements of Willet density are assigned to the same lag, the semivariance as 
calculated from the formula in  Table 10.2  is 109 Willet 2 . 

 The   semivariance, once calculated over more than one lag, is then plotted against 
lag to produce a  semivariogram . When data are autocorrelated in space or time, the semi-
variance is less at small lags than large ones. The rate of increase in the semivariance with 
increase in lag quantifies the spatial autocorrelation. This autocorrelative information can 
be displayed as a function of measurement frequency rather than lag by computing either 
the  mean square variance among groups  (MSA i ( Q ) in  Table 10.2 ) or the  spectral density  
(variance per unit frequency; see  Table 10.2 ). The plot of mean square variance per unit 
block against block size has no name and so for convenience might called a  Greig-Smith 
plot.  The plot of spectral density versus frequency is called a  periodogram . 

 The   next two sections compare these measures, using specific examples in either 

       ANOTHER LOOK AT SECTION 10.4      

 For   a quantity of interest to you, state units of the mean, the variance, and the infor-
mation statistic  G  (Section 10.3). Is the variance an interpretable quantity? Is the 
information statistic  G  an interpretable quantity?    
space or time.   
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    10.6       The Temporal Variance 
 The   temporal variance measures the vigor of change in a quantity. If the quantity of 
interest is number of moth pupae  N  in 60 successive midwinter counts in a managed for-
est from 1880 to 1940 (Varley, 1949), the variance measures the degree to which each 

 Table 10.2          Measures of Variability as a Function of Scale  

   Definitions 

        i                  Unit of length, area, or volume  

   x                Location, 1 to  x   

   t                Time, 1 to  t   

    x  max         �         i                 x   Spatial range  

    t  max         �         i                 t   Temporal range  

   n        �         x  max  /  i                Number of spatial units  

   n        �         t  max  /  i                Number of temporal units  

   f        �        1/2 i                  Measurement frequency  

   k   �  1 ...  n                 Lag (separation) from 1 to  n   

    ∑   i  Q               Total, within unit   i    

  ( ∑   n    ∑    i  Q )                 Total over all units  �   ∑  ∑  Q     

   Measures 

      mean( ∑    i  Q )                Spatial mean per unit   i    

  var( ∑    i  Q )                 Spatial variance per unit   i    

  CD( ∑    i  Q )                 Coefficient of dispersion  

  MSA   i              (Q   )      Mean squared deviation among groups of size   i    

  SpD( Q )                  Spatial spectral density  

    γ  k (Q)                   Semivariance at lag  k   

  acf  k (Q)                   Autocorrelation at lag k    

   Relations 

      mean( ∑    i  Q )                      �                     n   � 1   ∑  ∑  Q   

  CD( ∑    i  Q )                        �                    var( ∑    i  Q )/mean( ∑    i  Q )  

  MSA   i       ( Q )                �                    var( ∑    i  Q)/ i    �  CD( ∑    i  Q )  ·   ∑  ∑  Q/ i    

  SpD( Q )                         �                     f   � 1  MSA   i   ( Q )  �  2  i �  MSA   i   ( Q )  �  2 ·  var( ∑    i  Q )  

  cov( Q x  ,  Q x    �    k  )                    �                    var( Q x         �        Q x    �    k  )  �  var( Q x  )   �   var( Q x    �    k  )  

  acf  k (Q)                      �                    cov( Q x  ,  Q x    �    k  )/(var( Q x  )  �  var( Q x    �    k  ))    

       ANOTHER LOOK AT SECTION 10.5      

 Draw   12 contiguous boxes in a line, assign the value of a measured quantity to each 
box, assign a symbol to the quantity, and then state whether the 12 boxes represent a 
time series or data from a transect. Then redraw the 12 boxes, connecting all pairwise 
neighbors with an arc (lag 1 pairs). Redraw the 12 boxes again, connecting all lag 2 
pairs. Redraw the diagram showing 6 boxes, each with a new value, the sum of the 2 
neighboring values assigned to the box. Redraw the diagram showing 4 boxes, each with 
a new value, the sum of the 3 neighboring values assigned to the box.    
value deviates from the long-term or average value. The greater the variance, the more 
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rapid the change from year to year. The four populations reported by Varley (1949) all 
had large temporal variances, reflecting changes among years on the order of 10 4  or 
more. Warner et al. (1995) found that the coefficient of variation (standard deviation 
scaled to the mean) was higher for population time series than for abiotic time series. 

 Temporal   variance is generated by periodic and episodic processes. For example, fluc-
tuations in numbers of snowshoe hares ( Lepus americanus ) produce periodic fluctuations 
in numbers of lynx predators ( Lynx canadensis ) at time scales of 10 years (Elton, 1924), 
as shown in  Figure 10.1a   . In Peru, El Ni ñ o events generate episodic variability in numbers 
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 FIGURE 10.1   Temporal Variance in Lynx Numbers. Data from Andrews and Herzberg (1985); (a) Annual number 
trapped; (b) Autocorrelation in lynx numbers; (c) Change in variance with time scale, as measured by a periodogram.            
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       Box 10.3        Calculation of Variance as a Function of Measurement Frequency      

 Values   in lower part of table are means per period at periods of 2, 3, and 4. 
Variance computed from means within a column is shown at top of column.

       2  3  4  1 /f   Period 

       0.5  0.333  0.25   f   Frequency 

   Year  Lynx  3.86  4.09  2.33  var (N)   Variance 

     (Thousands)  7.71  12.28  9.32  var (N)/f   Spectral density 

   1821  0.269  0.25  0.36  0.49     

   1822  0.231           

   1823  0.585  0.73         

   1824  0.871    1.72       

   1825  1.475  2.15    3.54     

   1826  2.821           

   1827  3.928  4.94  4.94       

   1828  5.943           

   1829  4.950  3.76    2.04     

   1830  2.577    1.07       

   1831  0.523  0.31         

   1832  0.098           

of nesting guano birds and hence in annual rates of guano deposition ( Figure 10.2a   ) 
at the time scale of two to five years. These two time series differ in that variation in 
the lynx series is confined to a characteristic scale of 10 years, whereas variation in the 
guano series is smeared across a variety of scales because of the irregularly episodic 
nature of the El Ni ñ o events that drive nesting success and hence guano deposition. 

 There   exist a variety of  measures of temporal variance , most of which are deviances 
(       Table 10.1, 10.2 ). Temporal variance is commonly quantified as an autocorrelation. 
       Figures 10.1b and 10.2b  shows the autocorrelation ( Table 10.2 ) in the lynx and guano 
time series. The autocorrelative structure in both series is typical of ecological data in that 
autocorrelation is positive at the small lags because adjacent measurement tend to be simi-
lar (high values near other high values, low near other low). The structure of both series 
is typical in decaying toward zero with increasing separation between measurements. The 
zero crossing is taken as the time scale at which a quantity is independent of previous 
dynamics. If there is periodicity in the series, the autocorrelation will drop to substantial 
negative values at lags on the order of half the dominant period, then rise to positive values 
at the lag corresponding to the period (10 years in  Figure 10.1b ). If variability is smeared 
across multiple scales, the autocorrelation will show little fluctuation after crossing zero, 
as in  Figure 10.2b . There may be substantial variability at these larger separations in time, 
but this variability will not be evident, because it is distributed over a large number of lags.
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 Temporal   variance is also quantified relative to the frequency of measurement in 
the series rather than the lag between values. The measurement frequency of a series 
ranges from 0.5 cycles per observation (small scale at 2 observations per cycle) to fewer 
cycles per observation (e.g., 0.1 cycles per observation at the larger scale of 10 obser-
vations per cycle). Box 10.3 shows the calculations for an abbreviated series, the first 
12 years of the lynx data. 

    Figure 10.1c  shows a periodogram for the spectral density (variance per unit fre-
quency) in the lynx data. There is strong periodicity at the scale of a decade, hence a 
peak in variance at 10year/2      �      5 years. Enright (1965) showed that periodogram analy-
sis is able to detect strong periodicity at a single scale but cannot reliably detect multiple 
periodicity at multiple scales. Periodograms have a number of known problems, includ-
ing dependence on starting point in the series and inaccurate estimate of the frequency 
of peak variance. Spectral analysis (Platt and Denman, 1975) is a sophisticated form 
of periodogram analysis, one that addresses many of the known problems with peri-
odogram analysis. It is thus better than periodogram analysis at detecting and estimat-
ing periodicity in time series. Spectral analysis requires time series that are of adequate 
length, regularly spaced in time, and free of zero values. Legendre and Legendre (1998) 
cover recently developed methods that address these problems. 

 Time   series in ecology usually have no strong periodic component (Warner et al., 
1995). Instead the variance increases in a regular fashion, from high frequencies (short 
periods) to lower frequencies (longer periods).  Figure 10.2c  shows a periodogram for 
the spectral density (variance per unit frequency) in the guano data. There is no strong 
periodicity. The variability increases from the right side of the figure (high frequency, 
small spatial scales) to the left side of the graph (low frequency, large spatial scales). The 
increase in variance often scales with frequency according to a power law. Here is the 
measurement relation for the power law relating spectral density to frequency: 
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 To   illustrate the concept, variances and measurement frequencies from  Figure 10.2c  are 
substituted into this expression: 
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 Equations   10.9b and 10.9c illustrate the procedure, but the estimate of   β   is highly 
uncertain because only two values were used in the estimate. As estimated by regres-
sion ( Figure 10.1d ), the variance per unit frequency scales with frequency according 
to an exponent of  ˆ . .β � �0 09 1     The negative exponent indicates that variance grows 
as the time scale increases and as frequency of measurement decreases. In the guano 
data ( Figure 10.2a ), variance is generated at the two- to five-year scale by drops in pro-
duction following El Ni ñ o events. At larger time scales, human activity generated an 
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additional component of variance by excluding predators from coastal nesting sites, pro-
ducing a long-term increase in guano production after 1940 ( Figure 10.2a ). New sources 
of variance are uncovered as the time scale increases (larger period, lower frequency of 
measurement). The variance grows from small scales (right side of  Figure 10.1c ) to large 
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 FIGURE 10.2   Temporal Variance in Guano Production from Peru.  Data from Schneider and Duffy (1988). (a)  Annual 
production. (b) Autocorrelation in guano production. (c) Growth in variance with time scale, as measured by a 

periodogram and by spectral density.           
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scales (left side of  Figure 10.1c ). The exponent of the spectral density plot measures the 
rate of increase. 

 Early   work on temporal variance in ecology was devoted to the search for periodic 
variation (e.g., Enright, 1965). More recently, an analysis of the available long-term series 
(circa 30) showed that temporal variance usually does not peak at a particular scale and 
hence is not periodic (Warner et al., 1995). Instead, variance exists at all scales (Powell 
and Steele, 1995). The question becomes: At what rate is variance added with increase in 
temporal scale? rather than: At which scale is temporal variance maximum? Because new 
sources of variance are added at longer time scales, it is important to place any ecological 
study (necessarily of limited duration) into the context of long-term changes (Magnuson, 
1990; Golley, 1993; McClaran et al., 1995; McDowell et al., 1995; Stohlgren, 1995; 
Venrick, 1995). One of the central challenges in ecology is developing an understanding 
of temporal variance in population and ecosystem variables as a function of temporal 
scale (Powell, 1989; Steele, 1991b).   

    10.7       The Spatial Variance 
 The   spatial variance is another important ensemble quantity in ecology. This quantity 
is at least as interesting and far more informative than the spatial average. The spatial 
variance is visualized as the spatial  “ roughness ”  or  “ graininess ”  of a quantity. If the 
quantity is vegetation height  z , the mean or average value mean( z ) represents a plane 
floating above the earth’s surface; the spatial variance is the degree to which local values 
deviate above or below this idealized surface (the average height) above the forest floor. 
The greater the roughness of the vegetation canopy (easily visualized), the greater the 
variance in its height. Spatial variance is not a static quantity. Rather, it is generated and 
eroded by antagonistic processes. Variance in canopy height, for example, is generated 
by windthrows that tear holes in the canopy. Trees growing into the gap then reduce the 
variance. 

 There   exist a variety of  measures of spatial variance , most of which are deviances 
(       Tables 10.1 and 10.2 ).  Table 10.2  displays commonly used measures of spatial variance 
and the relation of one measure to another. All these measures quantify the strength of 
spatial gradients relative to the spatial mean. The stronger the gradients, the greater the 
variance. 

    Figure 10.3    displays the behavior of four different measures of spatial variance 
(the autocorrelation, the semivariance, the cumulative variance, and the variance per 
unit frequency) in two contrasting spatial series, counts of the seabird  Uria aalge  and 
counts of its prey, a schooling fish called the capelin ( Mallotus villosus ). The salient dif-
ferences between the series are that there are several clusters of capelin and one broken 
cluster of murres, which is displaced approximately 2       km further along the transect than 
the largest cluster of fish ( Figure 10.3a ). This pattern is typical of seabirds in relation to 

       ANOTHER LOOK AT SECTION 10.6      

 Name   10 variables of interest to you. Of these, which show periodic variance?    
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A 15 km transect in
Witless Bay took
60 minutes.

Murre and capelin
abundance were
recorded every
minute (0.25 km).
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 FIGURE 10.3   Spatial Variance in a Seabird, the Murre  Uria aalge , in Relation to Spatial Variance in its Highly Mobile 
Prey, the Capelin  Mallotus villosus .  Data from Schneider and Piatt (1986); (a) Distribution along a single transect; 
(b) Change in variance of murres and capelin with change in scale, as measured by autocorrelation; (c) Change 

in variance with scale as measured by semivariance; (d) Change in variance with scale as measured by cumulative 
variance; (e) Change variance with scale as measured by spectral density.           
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highly mobile prey as birds converge on a school, feed intensely, and then the two clus-
ters begin to drift apart until the birds reaggregate over a school (Hoffman et al., 1981). 

 Patchiness   as a function of scale is often quantified via spatial autocorrelation of 
densities  N/A . In one dimension a simple form of analysis is to plot the autocorrelation 
( Table 10.2 ) versus the lag  k , as in  Figure 10.3b . This displays the degree to which densi-
ties are correlated if they are neighbors (lag  k       �      1 step), neighbors at one remove (lag 
 k       �      2 steps), and so on. As with temporal autocorrelation, the association is typically high 
for near neighbors, then declines with distance. 

 Clustering   creates the positive autocorrelation at short lags, evident in both birds 
and fish in  Figure 10.3b . In both series, autocorrelation crosses zero just beyond a 
lag of 6, and thus the radius of the average patch size along the transect is 0.25       km      �      
6      �      1.5       km. The average diameter is 3       km, which corresponds roughly with the visual 
impression from  Figures 10.3a . The average diameter along a transect is an estimate of 
chord length (not diameter) because the transect will usually pass through part of the 
patch rather than directly through the center of the patch. The autocorrelation does not 
rise again to positive values (as with the lynx data in  Figure 10.1 ), and thus there is no 
indication of periodicity in either spatial series. 

 The   semivariance ( Figure 10.3c ), as a descriptive statistic, yields an interpretation 
similar to the autocorrelation. The semivariance increases up to lags 5 (murres) and 
7 (capelin), corresponding to an average half patch size along the transect of 1.25       km 
(murres) to 1.75       km (fish), or chord lengths of 2.5       km and 3.5       km. The semivariance 
drops to nearly zero at lags on the order of the chord length; thus there is no indication 
of the periodicity or nested clustering (patches within patches) that keep the semivari-
ance at the level to which it initially rose. A geostastical model (Journel and Huijbregts, 
1978; Davis, 1986) of the semivariance as a nugget (estimate of semivariance at zero 
lag), sill (estimate of level to which semivariance rises), and range (lags over which the 
rise from nugget to sill occurs) would clearly not be appropriate for these data. 

 The   cumulative variance of both murres and capelin ( Figure 10.3d ) shows the char-
acteristic behavior of highly clustered counts. The variance jumps suddenly, then slowly 
sinks until it jumps again at the next cluster. One such jump occurs in the murre series, two 
jumps occur in the capelin series. In highly aggregated species this behavior   continues as 
the series grows in length, and the variance never converges on a single value, as it does for 
spatially independent data. The growth in variance with increase in scale is also evident in 
the plot of the variance scaled to the frequency of measurement ( Figure 10.3e ). In murres, 
this measure of variability rises from the smallest scale of 0.5       km (highest frequency of 0.5 
cycles per unit) to the largest scale of 3.75       km (lowest frequency of 0.067 cycles per unit). 
The spectral density of murres, estimated crudely via the periodogram in  Figure 10.3e , rises 
with frequency according to a power law, as would be expected in a spatial series with 
a single cluster, no periodicity, and no clusters within clusters. A good fit to a power law 
also results from clusters within clusters, so the only generalization possible is that period-
icity produces periodograms that rise and fall (as in  Figure 10.1 ), whereas other forms of 
variability produce periodograms fit by power laws. The spectral density as estimated by 
the periodogram in capelin ( Figure 10.3e ) rises for small scales (0.5       km) to large (3.75       km), 
with some indication of a drop at larger scales. However, the estimates at the largest scales 
in  Figure 10.3e  are uncertain, since they are the result of variance calculated across a small 
number of averages. Given the biology of schooling capelin, the suggestion of periodicity in 
 Figures 10.3a and 10.3e  is more a matter of happenstance than anything else.
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      10.7.1       Patchiness 

 The   analysis of patchiness is one of oldest topics in ecology. Definitions of patchiness 
are numerous, but most are based on spatial variance in density var( N/A ) or a related 
measure ( Table 10.2 ). Early work (Fisher et al., 1922; Clapham, 1936; Blackman, 
1942) used the  coefficient of dispersion  ( Table 10.2 ), for which the expected value is 
1 for organisms that are randomly distributed. This ratio thus came with a convenient 
landmark for characterizing patchiness as uniform (CD( N )  �  1), random(CD( N )      �      1), 
or clumped (CD( N )      �      1). Dependence of this measure on quadrat size was recognized 
early, leading Morisita (1954, 1959) to propose an index independent of patch extent. 
Morisita’s I     index is independent of quadrat size as long as the spatial unit (quadrat) is 
less than the patch extent and organisms are randomly distributed within patches (Patil 
and Stiteler, 1974). 

 An   interesting quantity related to the coefficient of dispersion is Lloyd’s (1967) 
measure of  mean crowding . Lloyd wanted a measure of social interaction within areas 
determined by the ambit of an animal. Each of  N  animals in an ambit potentially 
encounters  N  − 1 other animals. Mean crowding  M  *  is the number of potential encoun-
ters ( N  x  − 1) in an ambit, weighted by the number in the ambit ( N  x ), averaged over a 
series of ambits. The formal expression of this idea is: 
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 From   examination, Lloyd’s measure of the average number of animals encountered has 
units of  N  2   / N   �   N . 

 Mean   crowding can be calculated directly from the mean density and observed 
mean squared deviation in density: 
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 Mean   crowding is usually calculated from the estimated variance var( N ), even though 
the biological definition indicates that the mean squared deviation should be used. All 
four terms in Expression 10.11 have the same units (an example of the apple/orange 
principle from Box 4.2). Hence mean crowding must have the same units as the mean, 
whether entities, entities per unit area, or entities per unit volume. 

 Mean   crowding is not a static quantity. It is expected to increase as animals con-
verge into limited areas, raising the potential for interaction. It is expected to decrease 
as animals diverge away from crowded areas, thus becoming more evenly spaced. 
Territorial behavior is one mechanism that reduces mean crowding, at least at the spatial 

       ANOTHER LOOK AT SECTION 10.7      

 Of   the four common measures of spatial variability (autocorrelation, semivariance, 
spectral density, and variance per unit block), how many have you encountered?    
resolution scale of defensible areas. 
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 The   time rate of change in mean crowding  M  ·   * ( N  x ) is linked to the time rate of 
change in density  [N ·  ]  via a coefficient that relates crowding to density: 
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 Estimates   of this coefficient and how it varies with spatial scale would be useful in cal-
culating the effects of change in population size on contact rate and social interaction. 

 Because   mean crowding is equivalent to Morisita’s index, Lloyd (1967) concluded 
that mean crowding was independent of unit size, and hence unit size could be set equal 
to the ambit or spatial extent of activity of the study organism. Iwao (1968) regressed 
mean crowding on mean density, then interpreted the intercept as an index of aggre-
gation size. This method, once widely used (e.g., Byerly et al., 1978; Gutierrez et al., 
1980), relies on the same assumption as Morisita’s index. 

 Taylor   (1961) proposed a generalization of the coefficient of dispersion — a power 
law relation between the variance and the mean: 

  var( ) [ ( / )]N A k N A/ mean� ⋅ β
  (10.13)      

 If   organisms are distributed randomly, the ratio of the variance to the mean is fixed 
and   β        �      1. The fit of  Taylor’s power law  to data has been checked with a variety of 
taxa (Taylor et al., 1978). Many processes can generate a power law relation between 
the mean and the variance (Taylor and Taylor, 1977; Anderson et al .,  1982; Kilpatrick 
and Ives, 2003). Perry and Woiwood (1992) showed that parameter estimates are best 
accomplished via nonnormal error structures within the framework of the generalized 
linear model (McCullagh and Nelder, 1989). 

 The   mean (a first-moment statistic) and the variance (a second-moment statistic) are 
at best summaries of the information contained in a full-frequency distribution of data. This 
has led to the use of frequency distributions to characterize patchiness, rather than relying 
on just the spatial variance. The negative binomial distribution was one of the first theoreti-
cal distributions in biology (Student, 1907; Greenwood and Yule, 1920) and remains widely 
used in ecology (Anscombe, 1948; Taylor, 1953; Houser and Dunn, 1967; Hassell, 1978). 
The use of frequency distributions to characterize spatial variability regularly attracts review 
articles (Rogers, 1974; Greig-Smith, 1983; Horne and Schneider, 1995). 

 Quantifying   patchiness as a function of scale is another topic with a long history in 
ecology. It can be traced back to agricultural uniformity trials, where plot sizes were sys-
tematically varied to isolate the  “ best ”  scale at which to conduct experiments (Mercer 
and Hall, 1911). Subsequent work aimed at empirical relations between plot size and 
variability among plots (Smith, 1938; Bliss, 1941). Pattern analysis (Greig-Smith, 1952) 
evaluates spatial variance as a function of spatial scale using a method that is equivalent 
to periodogram analysis. Organisms are counted in a grid or along a transect of contigu-
ous quadrats, and counts in neighboring quadrats are combined repeatedly into blocks 
of 4 (2 for transects). This maneuver decreases the spatial resolution by a factor of 2 2  at 
each step. The mean squared variance among blocks ( Table 10.2 ) is then computed at 
each step and plotted against block size. If the distribution is random at all scales, the 
variance among blocks (equivalent to the coefficient of dispersion) remains constant at a 

value of 1. A patch will produce a peak in the variance at roughly the scale of the patch. 
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Kershaw (1957) extended this method by using linear transects of rectangular, contigu-
ous quadrats. Pattern analysis is thus equivalent to periodogram analysis ( Table 10.2 ) 
and thus a crude form of spectral analysis. 

 The   measurement relation for  pattern analysis  is the coefficient of dispersion scaled 
to block size   i  . Notation follows  Table 10.2 . 
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 Because   of the block size is the inverse of measurement frequency ( Table 10.2 ) and because 
the spectral density can be computed from the CD using the relations in  Table 10.2 , this 
measurement relation is equivalent to that for spectral density. For single transects, the rela-
tion of the CD to spatial scale often does not follow a simple power law, as in Equation 
10.14. However, when multiple transects are averaged, power laws tend to appear. 

 Pattern   analysis has been used to quantify patchiness of a wide variety of plants 
(Greig-Smith, 1983), benthic invertebrates (Grassle et al., 1975; Schneider et al., 1987), 
marine birds (Schneider and Duffy, 1985), and fish (Schneider and Piatt, 1986; Piatt, 
1990). In marine biology and oceanography, spectral methods are used to detect pattern 
and estimate change in variance with change in measurement frequency (resolution). 
Variance decreases with increasing measurement frequency (hence resolution) in phyto-
plankton (Platt and Denman, 1975), krill (Weber et al., 1986; Levin et al., 1989), cap-
elin (Schneider, 1989; Rose and Leggett, 1990; Schneider, 1994b; Horne and Schneider, 
1997), groundfish (Horwood and Cushing, 1978; Rose and Leggett, 1990; Horne and 
Schneider, 1997), and birds (Schneider, 1990; Logerwell et al., 1998). For passively drift-
ing organisms, the rate of decrease is similar to physical factors such as temperature. For 
mobile organisms, the rate of decrease is flatter (0      �        β        �       � 1) than expected from tur-
bulent mixing (  β        �       � 2) or random particle motion (  β        �       � 1). The explanation is that 
oriented swimming by larger organisms generates strong but highly episodic variance 
at small scales (Weber  et al.  1986) while reducing variance at larger scales (Horne and 
Schneider, 1997). 

 Many   of the problems with pattern analysis (Skellam, 1952; Hill, 1969 Pielou, 
1969; Usher, 1969;) can be addressed with spectral analysis, which uses sophisticated 
techniques to estimate a simple quantity, the spatial density (spatial variance per unit 
frequency,  Table 10.2 ), as a function of measurement frequency. Spectral methods per-
form as well or better than other methods of analysis of spatially contiguous counts 
(Ripley, 1981). The leading problem with spectral techniques (shared by simple pattern 
analysis of spatial variance) is sensitivity to low or zero values (Fasham, 1978; Horne 
and Schneider, 1997). Randomization methods (Mead, 1974) address the problem of 
computing  p -values on the hypothesis that variance does not change with block size. 
Problems of estimation have not been addressed within the comprehensive framework 
of nonnormal error structures (McCullagh and Nelder, 1989). 

 Patchiness   as a function of scale is also quantified via the semivariance ( Figure 
10.3 ), the spatial autocorrelation of densities  N/A  (as in  Figure 10.3b ), or one of its 
variants: Moran’s I statistic, Geary’s c-statistic. Plots of these statistics versus distance 
between values are called  correlograms  (autocorrelation, Moran’s I, Geary’s c) or  semi-
variograms  (semivariance). Comprehensive treatments of semivariogram analysis can be 
found in Cressie (1991) and Legendre and Legendre (1998). 
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 Once   spatial structure is described, it is natural to ask: What is the source of patchi-
ness? When correlograms or periodograms have the same shape and there is a known 
causal connection between two sets of measurements (e.g., murres eat capelin), it is tempt-
ing to conclude that the structure in one variable arose from the other. The inference is far 
from certain (Horne and Schneider, 1995). In the northwest Atlantic, the spatial structure 
of cod ( Gadus morhua ) matched that of its capelin prey, yet the association between the 
two species was weak or nonexistent (Horne and Schneider, 1997) on most transects in 
the study. Measures of scale-dependent association are described in Section 10.8.     

    10.7.2       Production and Erosion of Spatial Variance 

 The   spatial variance is not a static quantity. It increases in response to some factors and 
decreases in response to others. For example, the motions of the earth’s tectonic plates 
generate spatial variance in elevation above or below sea level while erosion acts to reduce 
this variance. A convenient symbol for this dynamic quantity is v ̇ ar( Q    x y   ), read as  “ the rate 
of change in the spatial variance in the quantity  Q  ” . An example is v ̇ ar( z   x y  ), the change 
in variance in the elevation of the ground above an  x-y  plane at sea level. This quantity 
depends on the time scale used to express it. At short time scales there occur brief yet vio-
lent changes in the variance in elevation, due to landslides, soil slumps, and earthquakes. 
At longer time scales the variance in elevation changes more slowly due to lateral gradients 
in weathering of rock or the isostatic rebound of continental platforms after the retreat of 
glaciers. The quantity v ̇ ar( z   x y  ) depends on the resolution scale at which it is expressed. 

 Another   example of variability as a dynamic quantity is the spatial variance in car-
bon fixation by green plants. Spatial variance in nutrient supply or light flux generates 
spatial variance in carbon fixation  �Cx .     The variance in production increases, represented 
symbolically by v ̇ ar ( ) .�Cx � 0     Acting against these processes are those that reduce spa-
tial variance. One such process is intensive grazing in areas of high plant biomass, which 
reduces spatial variance in carbon fixation because production depends on standing stock 
of plant biomass. The outcome of this process, in terse symbolic form, is  � �var( ) 0Cx �    . 

 The   spatial variance in population density is another quantity subject to pro-
duction and loss. An example is the generation and decay of patchiness in gelatinous 
zooplankton. Wind blowing over water creates cells of rotating water parallel to the 
wind. The flow at the water surface converges at regular intervals, at spacings on the 
order of 10       m in a light breeze and up to 100       m in a gale (Hamner and Schneider, 1986). 
Gelatinous zooplankton (sea-jellies from the phyla  Cnidaria  and  Ctenophora ) col-
lect together at the convergences as they swim upward, forming windrows parallel to 
the wind. As the wind rises, Langmuir circulation intensifies, causing spatial variance 
in sea-jelly density to increase:  �var( ) 0N A/ �    . A shift in wind direction rapidly erases 
the spatial structure (Schneider and Bajdik, 1992), with a consequent decrease in spatial 

      ANOTHER LOOK AT SECTION 10.7.1      

 Environmental   scientists usually report scale-dependent variability as either a function of 
lags or a function of measurement frequency. List any exceptions known to you, then list 
some reasons that an individual would tend to use either lags or frequency, but not both.   
variance:  �var( ) 0N A/ �    . 
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 Another   example of the creation and destruction of spatial variance is the con-
comitant action of slow-moving or  “ bulldozer-type ”  predators compared to mobile 
predators that focus their activity in areas of high prey density. On intertidal sand flats, 
horseshoe crabs ( Limulus polyphemus ) dig up the surface of the sediment as they feed 
on invertebrates. When the tide recedes, the crabs angle downward into the sand and 
grind to a halt. Meanwhile shorebirds converge across the water from high-tide roosts to 
feed in areas of high invertebrate density. The bulldozers generate patchiness, the birds 
reduce patchiness (Schneider, 1992). 

 In   all these examples (ground elevation, carbon fixation, animal density), spatial scale 
clearly matters. One of the major research challenges in ecology is to understand the cre-
ation and erosion of spatial variability as a function of spatial scale. Little enough is known 
at present about the factors that generate and remove variance at any given scale, let alone 
the rates of production and loss as a function of scale. An example of the current state of 
knowledge is an analysis of change in the spatial variance of an infaunal invertebrate, the 
bamboo worm  Clymenella torquata , for which it was possible to predict the loss in spatial 
variance due to the distributional response of shorebird predators at the scale of flats (tens 
of hectares), whereas prediction was not possible at the scale of 1 ha plots (Schneider, 1992). 
Why were predictions successful at one scale and not at another? Were the distributional 
responses of predators ineffective at the smaller scale? Were there other factors operating? 

 A   related question is the degree to which variance generated at one scale is trans-
formed into variance at another scale. In fluid systems, spatial variance in velocity (i.e., 
the specific kinetic energy of flow) is transferred from large to small scales when larger-
scale rotational structures are twisted and deformed into ever smaller eddies and swirls. 
This induces spatial variance in passively drifting plankton, but what about actively 
swimming nekton? At what scale do movements by active swimmers generate variability 
in density? Fish are known to interact with larger-scale fluid motions, generating spatial 
variance in density at the scale of hundreds and even thousands of kilometers. So, spa-
tial variance in a swimming species arises through its interaction with large-scale flow 
structures, such as gyres. 

 An   unexpected source of large-scale variance in density is local interaction of an 
organism with its environment. In theory, larger-scale structure can result from surpris-
ingly small-scale patterns of oriented movement (Satoh, 1990; Hassell et al., 1991). 
How often does this propagation of small-scale structure to larger scales occur?    

    10.8       Variance and Hue 
 When   a multiscale examination of an ecological quantity is undertaken with the group-
ing maneuver, it turns out that variability in the quantity is often  “ red. ”   Red variability 
 is stronger at low measurement frequencies than at high frequencies. The variability is 
 “ red ”  by analogy with red light, which has more energy at low frequencies (long wave-
lengths) than at high frequencies (short wavelengths). 

       ANOTHER LOOK AT SECTION 10.7.2      

 For   a quantity of interest to you, name processes that generate and that erode spatial 
variance.    
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 An   example of a quantity for which variability is red with respect to time is rain-
fall. This quantity varies from hour to hour, due largely to the onset and end of rain 
events. Superposed on this variability is day-to-day fluctuation so that at the lower fre-
quency of days there is more variance than from hour to hour. At a still lower frequency, 
at the time scale of months, there is an additional component of variability due to sea-
sonal rain. Continuing on to still lower frequencies, there are components of year-to-
year variability, decadal variability, and so on, to even longer time scales. 

 Variability   in rainfall is red with respect to distance or area as well as with respect 
to time. Rainfall varies at the scale of tens of meters, which becomes evident when read-
ings are taken from a set of rain gauges. At a lower spatial frequency, that of a water-
shed, another component of variability enters due to local differences in climate, such 
as the contrast in rainfall on the east and west side of a mountain range. At still lower 
spatial frequencies, major climate zones impose an additional component of variability. 

 Not   all quantities have red variability. Some analyses carried out with the grouping 
maneuver turn up quantities with  green variability . In other words, more variability appears 
at intermediate than at higher or low frequencies — hence  “ green ”  by analogy with green 
light. Examples of green variability can be found in pattern analyses of plant distribution 
and soil characteristics (Greig-Smith, 1983). Examples have also been reported for the spa-
tial distribution of marine birds and fish, which show peaks in variability at scales on the 
order of several kilometers (Schneider, 1989). Variability can be green with respect to time 
as well as space. An example is a quantity with stronger seasonal than annual fluctuations. 

 If   variability in ecological quantities can be red or green, why not  white variabil-
ity  (same variability at all scales)? Or why not  blue variability  (more variability at high 
frequencies and short scales)? White variability is a convenient null model against which 
to test for statistically significant patterns, but like a lot of null models, its fate is to 
be rejected. A quantity with blue variability would have to fluctuate strongly at short 
time and space scales, whereas at larger scales variation would be damped out. There 
appear to be no examples from the ecological literature, unlike examples of red and 
green variability. 

 The   hue that is evident in an analysis will depend on the scope. A quantity could 
look red if the scope is narrow, but if the scope is extended by either increasing the range 
or increasing the resolution, it might turn out that the red variability was the shoulder of 
a peak at some larger scale. 

 Several   studies have shown that quantities can have  pink spatial variability . That 
is, variability increases only gradually with increasing scale and less slowly than does red 
variability. Weber et al. (1986) used spectral techniques to quantify spatial variance in krill 
 Euphausia superba  at measurement frequencies ranging from half a cycle per kilometer 
to half a cycle per hundreds of kilometers. Within this scope they found only a shallow 
increase in variability with increasing scale (lower frequency). The rate of increase in vari-
ability was, on average, less than that of the red variability in properties (e.g., temperature) 
of the surrounding fluid. This means that krill form much stronger local aggregations than 
if they were passively coalesced and dispersed by the surrounding fluid. This stronger spa-
tial variance at small scales presumably arises from schooling behavior. This hypothesis has 
been confirmed in examinations of the hue of spatial variability in another group of mobile 
marine organisms, fish (Schneider, 1994a; Horne and Schneider, 1995). 

 A   close examination of the krill and fish studies shows that when many transects 
or repeated runs of the same transect are averaged together, the result is pink variability, 
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even though individual transects have green variability (Schneider, 1994a). Averaging 
together several cases of green variability produced pink variability because the green 
peaks do not coincide. Other examples of green variability, such as the pattern analyses 
reported in Greig-Smith (1983), may also turn out to be pink when averaged together. 

 The   results of multiscale analysis of ecological quantities to date are conveniently 
summarized in terms of their  hue ; many quantities have red variability, some have green 
variability at a single time and place but turn out to be pink when averaged over several 
places or times. The concept of hue can be given a definite quantitative expression, but 
first we need some notation with an example. 

 Here   is a made-up example of a series of counts with green variability. The vari-
ability is concentrated in two peaks of approximately 4 units. The peaks are on either 
side of the transect so that there is little contrast between the left and right sides. 
Contrasts are strongest at an intermediate scale of around 4 units, with less contrast at 
larger or smaller scales: 

  N : [1 2 0 8 4 20 1 0 2 0 2 5 10 0 4 1]�       

 The   mean density, coefficient of dispersion, mean squared deviation among groups, 
and spectral density were calculated at a resolution of  i       �      1, according to the recipes in 
 Table 10.1 , then recalculated using groupings of  i       �      2 contiguous units,  i       �      4, and  i       �      8 
contiguous units. Box 10.4 shows the results. The spectral density shows green variabil-
ity — the maximum spectral density occurred at a block size of  i       �      2. Of course, this is 
an extremely crude estimate of spectral density; a better estimate could be obtained by 
using some of the more sophisticated features of spectral analysis, such as adjustment 
of the shape or size of smoothing windows. The purpose here is to display the hue of 
variability, not to estimate the scale of maximum variability, so I have kept the compu-
tational details as simple as possible. In this example I have used a population variance 
Var( ∑  N ) because this is not meant as a sample from a larger population.

       Box 10.4        Green Variability at Resolution of  i       �      1, 2, 4, and 8 Units      
                   

   i   �    1   2   4   8 

   n   �   16   8   4   2 

   f   �    2  � 1    4  � 1    8  � 1   16  � 1  

   mean( ∑ N)   �    3.75   7.5  15  30 

   var( ∑ N)   �   25.69  47.25  38  36 

   CD( ∑ N)   �    6.85   6.3   2.53   1.2 

   MSA i(N)    �   25.69  23.63   9.5   4.5 

   SpD(N)   �   51.37  94.5  76  72 

 The   made-up example of green variability is  “ painted ”  red by moving the cluster 
of high counts over close to one end of the transect. 
  N : [8 4 20 5 10 0 4 1 0 1 2 0 2 1 2 0]�       
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 This   generates large-scale variability, evident in the strong contrast in counts between the 
right and left. Spatial statistics are again computed via the grouping maneuver. These show 
(Box 10.5) that variability now increases as we go from small to large scales or from low 
to high frequencies of measurement. The variability approximately doubles for each dou-
bling of block size or halving of measurement frequency. This is an example of red vari-
ability in the strict sense — the spectral density is negatively proportional to the square of
the frequency. A graph of red variability will have a slope of minus 2 when spectral den-
sity is plotted on a log scale against frequency on a log scale. The formal expression of this 
relation is: 

  SpD( )Q f� �2   (10.15a)      

 An   alternative way of expressing this relation is that the percent rate of change in spec-
tral density, relative to the percent change in frequency, is equal to minus 2. This alternative 
relation is obtained by recasting the first relation into logarithms, then taking differences: 

  ln[SpD( )] 2 ln( )Q f� � ⋅   (10.15b)
      

 Taking   derivatives, as shown in Chapter 14, we have: 
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       Box 10.5        Red Variability at Resolution of  i       �      1, 2, 4, and 8 Units      
                   

  i    �    1   2   4   8 

   n   �   16   8   4   2 

   f   �    2  � 1    4  � 1    8  � 1    16  � 1  

   mean( ∑ N)   �    3.75   7.5   15   30 

   var( ∑ N)   �   25.69   57.75  182  484 

   SpD(N)   �   51.37  115.5  364  968 

 The   graphical interpretation of this information is that the logarithm of spectral density 
decreases by 2 units for every unit increase in the logarithm of frequency. 

 What   does this mean in terms of grouping unit  i ? The relation of frequency to 
grouping unit  i  is: 

  f � �( )2 1i   
(10.16a)      

 After   taking logarithms, we have: 

  ln ln(2)  ln( )f � � 1 i   (10.16b)      

 Taking   the derivative, we have: 

d fln
� �1 (10.16c)      
  d ln i   
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 To   obtain the relation of spectral density to grouping unit  i , we multiply Equation 
10.15c by 10.16c: 
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 Noting   that: 
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 the   result is: 
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 In   words, the graph of spectral density rises two logarithmic units for each unit increase in 
the logarithm of group size  i . At this point, try drawing a graph of red variability. 

 With   the notational machinery in place for red variability, other hues can now be 
expressed in formal terms that lend themselves to computation and testing. White variability 
is a situation in which spectral density remains unchanged with frequency: 

  SpD( )  Q f� 0
  (10.20)      

 The   graph on a logarithmic scale is flat, with a zero slope. Try adding white variability 
to your picture of red variability. 

 Pink   variability is somewhere between red and white, with a slope somewhere 
between 0 and  � 2. An interesting special case of pink variability results from a random 
walk, such as the Brownian motion of minute particles in a fluid. Random walks result 
in large- and small-scale displacements from a starting point. The spectral density of these 
random displacements, plotted against frequency on a log-log scale, will have a slope of 
 � 1, which can be taken as the value of pink variability. Blue variability can be defined as 
a plot with a positive slope. Finally, green variability will have a positive and a negative 
slope, with a maximum value in the middle. Try adding green variability to your graph. 

 The   example developed here leads naturally to the idea of a general expression for 
multiscale analysis, treated in more detail in Chapter 14 (Table 14.3). A zoom or mul-
tiscale comparison, in formal terms, is calculated as the change in an ensemble quantity 
with a change in grouping interval  i . In scanning, the resolution is held constant, or in 
mathematical terms, the unit vectors   h   for time and  i ,  j ,  k  for space are held constant. 

 An   ensemble quantity can now be either scanned with respect to step number or 
examined with a zoom lens to focus in on detail or zoom back to bring out pattern. In the 
case of spatial gradients  	  Q , what happens if we alter the distance over which the gradient 
is calculated? Does the contrast grow stronger as the resolution changes? The formal nota-
tion (developed in Chapter 14) is a means for making calculations based on Smith’s prin-
ciple (Smith, 1983) that more is learned by panning and zooming than with either by itself. 

 The   distinctions between red and green variability provide quantitative expression 
of a longstanding but rarely articulated assumption that there is characteristic or  “ cor-
rect ”  spatial or temporal scale at which to investigate ecological phenomena. The impli-

cation of green variability is that there is a characteristic spatial and temporal scale of 
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maximum variability. Once this has been found, investigation at this scale is more effi-
cient than at other scales because confounding effects of larger- or smaller-scale vari-
ability will be at a minimum. Late 20th century literature on  “ scale ”  advocated the 
identification of an appropriate scale of analysis; this assumes that variability is green. 
Further, if green variability is detected, the scale of maximum variability offers a clue to 
the processes that generate this variability. In a graph of green variability versus scale, one 
can visualize variability as being injected at the scale underneath the peak and damped 
away at other scales on either side of the peak. Much of the work on pattern analysis 
(Greig-Smith, 1983) has been motivated by a search for green variability. Green variabil-
ity has been demonstrated repeatedly, but always for single transects or time series. In 
those cases where an average over several transects or series has been calculated, it turns 
out that the green peaks do not coincide and that the overall result is pink (e.g., Weber 
et al., 1986). 

 The   implication of red or pink variability is that there is no one characteristic scale 
of variability. This means that there is no single scale at which investigations will be 
most efficient. The implication of the emergence of pink variability from averaging over 
multiple transects or times series is that a scheme that works in a case where variability 
is green will not be a sure guide to investigation in other cases. For example, a stratified 
survey, which has the aim of capturing maximum variability, may work well at a partic-
ular scale (areal extent) of strata but not work well in another place or at another time 
using strata at the same scale. Pink variability, when single transects or time series are 
green, points at ecological processes that act intermittently at different scales rather than 
at a characteristic scale. The prevalence of red or pink variability over green variability 
in the ecological literature suggests that efforts to identify  “ characteristic scales of vari-
ability ”  will not reveal any  “ best ”  scale but rather will tend to uncover new variability 
with increase in scope (increase in either extent or resolution).   

    10.9       Codeviances, Covariances, and Other Measures 
 Box   10.2 shows several different ways of weighting deviances computed from a single 
quantity. What about weighting one set of deviations according to another set of devia-
tions? For example, what about weighting deviations in glacier thickness according to 
deviations in elevation? Weighting the deviations in glacier thickness by elevation gauges 
the propensity of ice to flow downhill — thick ice and steep slopes cause more flow 
than thin ice and shallow slopes. The weighted sum tells, in broad perspective, what 
ice will be lost or gained, to return to the quote at the beginning of Chapter 8. Or, to 

       ANOTHER LOOK AT SECTION 10.8      

 As   the Gulf Stream flows northward, it spins off eddies that can last for months. As 
an eddy rotates, it spins off smaller eddies, which in turn spin off still smaller eddies, 
until eventually the energy of rotation of the large eddy is dissipated. Draw a picture of 
the large eddy, with smaller eddies within eddies. If you were to measure the variance 
in velocity along a transect across a Gulf Stream eddy, what color variance would you 
expect? Why?    
take another example, what about weighting the temporal deviations in litter fall from 
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chaparral plants according to the temporal deviations in decomposer activity beneath 
the plants? The weighted sum tells, in broad perspective, the tendency for flammable lit-
ter to build up in volume. 

 The  codeviance    is defined ( Table 10.3   ) as a set of deviations  ( )Q Q�     weighted 
by another set of deviations  ( ).Z Z�     When summed, the codeviations result in an 
ensemble quantity, the  sum of the products  SP( Q,Z )), that is analogous to the sum of the 
squares. Scaling to the number of products results in a  mean sum of products , which is 
similar in structure to the mean squared deviance msd( Q ).  Table 10.3  displays the com-
putational recipe that reduces rounding error in the mean sum of products. The strength 
of the association between the quantities  Q  and  Z  is measured by the mean sum of 
products. In biology it is standard practice to consider measurements of  Q  and  Z  to be 
samples from a population for which the true association is measured by the mean sum 
of products. Hence an estimate, the  covariance  cov( Q,Z ), is used in place of the mean 
sum of products. This estimate ( Table 10.3 ) is the mean sum of products scaled to ( n−1 ). 

 Measures   of covariance, like measures of variance, are multiscale comparisons of a 
collection of local values to a single larger-scale average. The zoom factor is the ratio of 
the range of the collection to the resolution of a single value. The estimate of the covari-
ance cov( Q,Z ) scales the sample of observations at hand to a larger population. As with 
the variance, the scaling factor is  n /( n       �      1). 

 In   most applications, covariances are normalized to a unitless ratio called the  cor-
relation coefficient  corr( Q,Z ), shown in  Table 10.3 . Normalization by the standard devi-
ation of both component quantities reduces the covariance to a unitless ratio ranging 
from  � 1 (perfectly negative association) through zero (no association) to  � 1 (perfectly 
positive association). The formula in  Table 10.3  is an estimate of the true correlation, 
which is denoted by the Greek symbol   ρ   (rho), just as the true variance was denoted by 
the Greek symbol   σ   (sigma). 

 These   measures of association are typically used in the frequency domain as the 
correlation is plotted as a function of measurement frequency or, equivalently, group 
size ( Table 10.3 ). We can also examine the correlation of one variable with another, at 

 Table 10.3          Commonly Encountered Measures of Covariability  

   Codeviations   codev( ) ( )( )Q, Z Q Q Z Z� � �     

   The sum of the products  SP( Q,Z )  �   ∑  codev( Q,Z ) 

    

  
SP( , )Q Z QZ

n
Q Z� �

1 ∑∑∑     

   The mean sum of products 
  
SP codev( , ) ( , )Q Z

n
Q Z�

1 ∑     

   The covariance 
  
cov( , ) ( , )Q Z

n
Q Z�

�

1
1

 codev∑     

   The correlation coefficient 
  
corr

std std
( , )

cov( , )
( ) ( )

Q Z
Q Z

Q Z
�

�     

   The cross-correlation at lag  k    ccf corr ,k x x kQ Z Q Z( , ) ( )� �     

   The cosemivariance at lag  k  �1
  γk x x k x x kQ Z n Q Q Z Z( , ) � � �� �2( ) ( )( )∑     
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lags of 1, 2, and so on. This is called the  cross-correlation  ccf k ( Q, Z ). The other measure 
in the distance domain is the  cosemivariance  γ  k (Q,Z).  

 Covariances   lend themselves to biological or physical interpretation, as in the 
examples of glacier thickness and litter fall at the beginning of this section. The covari-
ance of ice thickness with elevation was physically interpretable. The covariance of litter 
fall with decomposer activity was biologically interpretable. But many covariances will 
lack this interpretable quality. An example often cited in statistics texts is the temporal 
covariance between sunspot numbers and rodent numbers. The units of the covariance 
are animals  ·  sunspots  ·  year  � 1 , an uninterpretable unit. The easiest way to determine 
whether a covariance is an interpretable quantity or just a statistic of association is to 
write out the units and decide whether these are interpretable. The units might look 
strange, but they should not be dismissed on this count. 

 Intuitively  , the scale at which one chooses to examine the association of one variable 
with another does not matter.   The ecological literature prior to the 1980s assumes this, 
because associations are reported as either present or absent, with no statement of scale. 
In fact, however, associations that were reported as weak or absent may well have been 
missed because they were present at some scale other than that at which measurements were 
taken.  Figure 10.4    shows an example. Marine birds feed on schooling fish, yet data from 
shipboard surveys usually showed weak or nonexistent association.  Figure 10.4a  shows 
the data at the scale at which they were recorded (1 minute intervals corresponding to 
0.25       km transects).  Figure 10.4b  shows the same data at a coarser scale of 2.5       km inter-
vals. The association at the small scale (r      �      0.012,  Figure 10.4a ) is typical of values 
reported in the literature in the 1980s (e.g .,  Safina and Burger, 1985). The association 
is strong (r      �      0.885) at the coarser scale of 2.5       km intervals ( Figure 10.4b ). The next 
logical step is to compute association at a range of spatial scales by aggregating adja-
cent pairs along the transect, then adjacent triplets, and so on.  Figure 10.4c  shows cor-
relations at measurement frequency ranging from 0.5 cycles per measurement to 0.05 
cycles per measurement, corresponding to bin sizes from 0.5       km to 5       km. This method 
(Greig-Smith, 1952), though easy to undertake, is known to perform unreliably, espe-
cially at coarse scales (e.g., large bins corresponding to a fifth, a quarter, or a third of 
the entire transect). As with the computation of variability with increasing block size, 
many of the problems encountered in analyzing associations are removed by employing 
the machinery of spectral analysis. This gives a better estimate of the covariance ( Table 
10.3 ) than does the crude approach based on increasing block size. For this data, the 
results from spectral analysis ( Figure 10.4d ) were the same as for Greig-Smith pattern 
analysis ( Figure 10.4c ), although this will not always be the case. 

 The   association of murres with capelin prey can also be displayed in the distance 
domain, using one of the measures in  Table 10.3 . The cross correlation of murres with 
capelin prey ( Figure 10.5b   ) shows maximum association at lags of  k       �      6 (1.50       km) to 
7 (1.75       km) and again at  k       �      11 (5.25       km), when murres are taken as lagging behind 
(encountered later in the transect than) the major cluster of capelin. The lags estimate 
the separation between the murre patch and two of the capelin patches. Cross-correla-
tion drops to small values at other lags, including lags where capelin lead murres in 
the direction the transect was traversed. The cosemivariance ( Figure 10.5c ) rises to a 
maximum at lags of  k       �      4 to 5 and again at lags of  k       �      9 to 10, again estimating the 
separation of the murre patch from two capelin patches. These scale-dependent patterns 

of association result from the feeding behavior of the birds, which aggregate episodically 
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at fish schools. The cycle of coalescence, feeding, and subsequent drift (Hoffman et al., 
1981) results in stronger association at coarse than at fine scales as bird aggregations 
tend to drift away from prey clusters until birds reaggregate over a cluster to feed.    

      ANOTHER LOOK AT SECTION 10.9      

 Pick   two variables of interest to you. Make an educated guess as to the scale of asso-
ciation. Then, using one of the formats in        Figures 10.4 or 10.5 , sketch the suspected 
association as a function of lag or block size.   
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 FIGURE 10.4   Spatial Association as a Function of Measurement Frequency.  Same data as Figure 10.3.  Redrawn from 
Schneider (2002); (a) Association of murres with capelin at high resolution (high frequency); (b) Association at coarse 
resolution (low frequency); (c) Association estimated by correlation; (d) Association estimated by spectral analysis.            
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    10.9.1       Potential Contact 

 Biological   interactions such as prey capture, parasitism, competition, gene exchange, 
and habitat selection proceed at rates that depend on the frequency of contact, a quan-
tity that depends on the degree to which organisms  N  are aggregated, the degree of spa-
tial heterogeneity in some environmental factor  Z , and the covariance of  N  with  Z . The 
dependence of ecological interaction on spatial structure is quantified as the potential 
contact  PC    i    at spatial resolution scale   i . Potential contact  is defined as the product of 
local abundance  N x   and local concentration of an environmental factor  Z x   within the 
limits of some unit length or area: 

i in N Z

A 15 km transect in
Witless Bay took
60 minutes.

Murre and capelin
abundance were
recorded every
minute (0.25 km)
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 FIGURE 10.5   Spatial Association as a Function of Distance (Separation).  Same data as Figure 10.3; (a) Distribution 
of murres relative to capelin at high resolution; (b) Association as measured by cross correlation. (c) Association 
estimated by co-semivariance.          
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 In   this expression, the summation  ∑   n   applies to a series of ambits. Each ambit is of size   i  , 
which can have units of distance, area, or volume. The summation is over  n  ambits, so the 
total range is  n   ·    i  . There is a further summation for each value of  ∑    i  N x   and  ∑    i  Z x  . These 
represent sums within each stretch of size   i  . In terser notation, Expression 10.21a becomes: 

  
PCi � Σ Σ

ΣΣ
N Z

N
�∑   (10.21b)

      

 Box   10.6 demonstrates the concept of potential contact, with a series of worked 
examples. In the first example, potential contact of predators with prey is computed 

      Box 10.6        Computation of Potential Contact  PC  i       

 The   potential contact of predatory fish  N  with prey  Z  at the scale of tidal pools. 
  i        �      pool.

         Pool 1  Pool 2  Pool 3  Pool 4  Pool 5 

   Prey  Z   �   10  0  1  8  50 

   Predators   ∑  N   �   0  1  4  3  2 

      ∑   N   ·   ∑   Z    �   0  0  4  24  100 

          
  �   0  0  0.4  2.4  10 

 The   potential contact summed over all pools: 

  
PCi �

�∑ ∑
∑ ∑

⇒∑ N Z
N

12 8 potential contancts per predator.
      

 If   the fish rearrange themselves at high tide so as to be more closely associated with 
prey, the potential contact within each pool changes.

         Pool 1  Pool 2  Pool 3  Pool 4  Pool 5 

   Prey   ∑   Z    �   10  0  1  8  50 

   Predators   ∑   N    �   3  0  0  2  5 

      ∑   N   ·   ∑   Z    �   30  0  0  16  250 

          
  �   3  0  0  1.6  25 

 The   potential contact summed over all pools in this new situation rises. 

     PC i      �      29.6 potential contacts per predator    

 As   the pools join at high tide, the scale changes from   i        �      1 pool to   i        �      5 pools 
joined. The potential contact rises: 

 

∑ ∑
∑ ∑∑ ∑N Z

N
�

�
�

�
10 69

10
69 potential contacts per predator

        

∑
∑ ∑
N Z

N
� ∑∑

∑ ∑
N Z

N
� ∑

∑
∑ ∑
N Z

N
� ∑∑

∑ ∑
N Z

N
� ∑



206 QUANTITATIVE ECOLOGY: MEASUREMENT, MODELS, AND SCALING

for separate pools, then summed over the pools. In the second example, the fish aggre-
gate relative to prey, which increases the potential contact at the scale of pools. Finally, 
potential contact can be calculated at the larger scale of five pools joined (not shown in 
Box 10.6). The numbers of predators and prey remain unchanged, whereas potential 
contact changes with spatial scale   i  . Potential contact can be computed from a theory or 
a model; the symbol is  PC (  i  ) to distinguish it from the measured value  PC    i   .  

 One   of the more venerable concepts in population biology is that the rate of 
increase in a predator population depends on the interaction with prey. This is usually 
taken as the product of the total number of predators and prey, adjusted by a fixed 
coefficient. In the case of tide pool fish, the potential for interaction according to this 
notion would have to be computed as the product of all fish and all prey over the entire 
range of the predator, not just the one pool in which fish come into contact with prey. 
Spatial scale is assumed to be that of the entire population when in fact it is more local. 
Potential contact  PC    i    takes local spatial scale into account. A yet more realistic measure 
is realized contact, the number of prey that come into the visual range of a fish. This 
would be some percentage of the potential contact, depending on the behavior of the 
fish and its prey. Finally, capture rate would be some percentage of the realized contact. 

 The   formal expression for potential contact is closely related to the spatial covari-
ance (Schneider, Gagnon, and Gilkinson, 1987): 

  
PCi � �

cov( )
( )

( )
N Z

N
Z

,
mean

mean   (10.22)
      

 If   the environmental factor is the number of conspecifics within the ambit ( Z       �       N       �      1), 
the general expression for potential contact becomes Lloyd’s expression for mean crowd-
ing, or potential social interaction. 

 Potential   contact depends on three quantities, each of which can increase or decrease 
the overall potential for contact. Potential contact increases if the covariance of density 
with the environmental factor increases, as in the tide pool fish example. Potential contact 
decreases as the overall mean density increases, assuming that covariance is not changed 
by an increase in larger-scale density. In most cases, however, the covariance will change 
with change in overall density. Potential contact increases as the mean value of the envi-
ronmental factor increases, again assuming that this does not alter the covariance. 

 What   units does potential contact  PC    i    have? It has the same units as the ratio of the 
covariance to the mean, that is, cov( N , Z )/mean( N ). The numerator of this ratio is visualized 
as contacts between  N  entities and the environmental factor  Z . The units of  Z  might also 
be entities, such as the count of another species. The environmental factor can have other 
units — mass, concentration, and so on. The numerator cov( N ,  Z ) has units of  N   ·   Z . The 
product of entities and the units of  Z  will be defined as a potential contact. The denomina-
tor of the ratio is a mean, which has units of entities. So the ratio of the covariance to the 
mean is a per capita contact, which has the same units as the environmental factor  Z . 

 Contacts   and per capita contacts apply to a wide range of ecological phenomena. 
 Table 10.4    shows a diverse collection of examples drawn from situations in which the 
product  N   ·  Z has ecologically interpretable units. 
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 Potential   contact  PC    i    can be calculated from spatial data or from published estimates 
of spectral density and coherence.  Table 10.5    shows the relation between potential contact 
and spectral statistics. Potential contact can also be computed from statistics calculated 
according to the methods of Greig-Smith (1983), in which the mean squared deviation 
MSA   i    among groups of size   i   ( Table 10.2 ) is plotted against group size. Bult et al. (1997) 
demonstrate the use of potential contact in quantifying density-dependent habitat selec-
tion. O’Driscoll et al. (2000) found that collapse of cod stocks in the northwest Atlantic in 
the 1990s was not associated with any reduction in potential contact with prey.

 

 Table 10.5          Relation Between Potential Contact  PC    i    and 
Spectral Statistics  

   Definitions           

   Resolution    i           

   Range   n  ·    i           

   Frequency  1/(2  i  )         

   Count spectrum  CS( N )   �   SpD( N )   �    f  �    1  var( N ) 

   Spectral density  SpD( Z )   �    f  �    1  var( Z )     

   Coherence  coh( N,Z )   �  
  

Cov N Z
CS N CS Z

( , )
( ) ( )⋅     

    

   Potential contact is           

    
PC

N Z N Z
N

Z� �
2 coh( ) CS( ) CS( )

mean(
mean( )

,
)

⋅ ⋅

              

       

      ANOTHER LOOK AT SECTION 10.9.1      

 Sessile   organisms such as trees and barnacles typically have a mobile life history 
stage. For the mobile stage of a sessile species, list factors for which potential and 
realized contact with those factors affect survival.   

 Table 10.4          Partial List of the Units of Potential Contact PC( i )  

   N   Z   PC(  i  ) 

   Parasites  Hosts  #  ·  # 

   Population number  Competitors  #  ·  # 

   Predator count  Prey count  #  ·  # 

   Predator count  Prey biomass  #  ·  Mass 

   Leaf number  Light flux  #  ·  Einstein 

   Root number  Nutrient flux  #  ·  Moles  ·  Area  � 1  Time  � 1  

   Whale number  Vessel hours  #  ·  Time 

   Wild type allele  Mutant allele  #  ·  # 

   Recessive mutant  Recessive mutant  #  ·  # 
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    Defined Concepts and Terms for Review and Future 
Reference 

        ____ average deviation              ____ mean square variance among groups  
    ____ autocorrelation              ____ mean sum of products  
    ____ codeviations              ____ measures of spatial variance  
    ____ coefficient of dispersion              ____ measures of temporal variance  
    ____ coefficient of variation              ____ multi-scale comparisons  
    ____  confirmatory vs. exploratory              ____ pattern analysis (Grieg-Smith plot)

analyses  
    ____ correlation coefficient              ____ periodogram  
    ____ correlograms              ____ potential contact   
    ____ cosemivariance              ____ semivariance  
    ____ covariance              ____ semivariogram  
    ____ cross-correlation              ____ spectral density  
    ____ deviance              ____ sum of products  
    ____ deviation              ____ sum of squared deviations  
    ____ frame              ____ Taylor’s Power Law  
    ____G-statistic               ____ variance  
    ____ hue (red, green, white, pink, blue)              ____ variogram  
    ____ mean crowding              ____ weighted deviances         



PART

Scope
III



The Scope of Quantities

The rationale was that a science which neglects the reality and distinctive 
character of large-scale ecological processes provides a poor basis for tack-
ling many of the more urgent problems in natural resources management.

—R. M. May, Preface, Large-Scale Ecology and Conservation Biology, 1994

11.1 Synopsis
We have already defined the scale of a quantity as the resolution within the range of 
measurement. The ratio of the range to the resolution is the scope, a number with no 
units and hence no dimensions. Scope can be thought of as the number of steps, given 
the step size. It applies to measurement instruments, the quantities measured in research 
programs, the research programs themselves, and the equations describing ecological 
patterns and processes.

A single measurement has a scope, which is the ratio of its magnitude to its pre-
cision. When applied to ratio, interval, ordinal, and nominal scale measurements, the 
concept of scope brings out how these four types of scale differ. These differences are 
readily displayed as a scope diagram.

Any measurement instrument has a scope, which is the ratio of its maximum read-
ing to its resolution. Scope calculations are useful in comparing the capacity of measure-
ment instruments.

The quantity chosen to measure natural phenomena will have a scope determined 
by a measurement relation, which scales measurement outcome to the scope of an 
operationally defined procedure. The principle of homogeneity of scope, as it applies 
to measurement relations, guides the development as well as application of power laws, 
including scaling relations estimated by regression of one quantity on another.

Strictly speaking, scale and scope are the result of measurement activities, not 
characteristics of the natural phenomena that are the object of these activities. However, 
scale (and hence scope) are routinely considered characteristics of natural phenomena, 
an approach that is of utility in evaluating planned programs of measurement. If a phe-
nomenon has definable boundaries in space, its spatial scope can be defined as the ratio 
of diameters of the largest and smallest cases. We might, for example, speak of the spa-
tial scope of low-pressure storm systems or the scope of bird migration. If a phenom-
enon is episodic, with discernable starting and ending points, its temporal scope can be 
defined as the ratio of duration of longest and shortest cases. Scope calculations are use-
ful in comparing phenomena. Scope diagrams display these comparisons in a convenient 
and effective fashion. Scope diagrams need not be limited to time and distance, though 
these are the most common.

11
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11.2 The Scope of a Measurement
Measurements occur on a scale (Box 6.1), and consequently a single measurement has 
a scope. The scope of a single measurement is defined as the ratio of the magnitude of 
a measurement to its precision. For example, a measurement of 10.2 cm implies a preci-
sion of 0.1 cm, from which the scope is calculated as 10.2 cm/0.1 cm  102. If calibra-
tion of the measuring instrument shows that the precision was in fact no better than 
0.25 cm, the scope is 10.1 cm/0.25 cm  41.

What about measurements on nominal, ordinal, or interval types of scale? does 
the concept of scope apply? let’s begin with interval scale measurements. These have 
a scope, just as much as ratio scale measurements do. For example, if the air tempera-
ture today is 5°c and we measured this to the nearest degree, the scope of the measure-
ment is 5°c/1°c  5. If we make this same reading to the nearest tenth of a degree, the 
scope of the measurement becomes much larger: 5°c/0.1°c  50. Figure 11.1a shows 
the scope of two readings that have the same magnitude (5°c) but different scopes.

A scope diagram, such as Figure 11.1, displays the outer scale (extent, range) con-
nected by a line to the inner scale (resolution, minimum value, grain). In Figure 11.1 a 
single reading is represented as a horizontal line that starts at the resolution and ends at 
the magnitude of the measurement. The length of the line represents the scope of the mea-
surement. A base-10 logarithmic scale was used; consequently, the length of the line shows 
the number of tenfold increases relative to the step size marked by the left side of the line.

Figure 11.1b compares the scope of two readings made with the same resolution. 
The negative temperature in this example has a greater scope because it happens to be 
further from the arbitrary zero point, the freezing point of water. If we had chosen a 
temperature scale with a zero point at the freezing point of mercury (38.8°c), the 
readings would become 28.8° and 43.8°, and the reading above the freezing would 
have the greater scope. The scope of an interval scale measurement depends on the arbi-
trary value where the counting of steps begins, as well as on resolution (step size).

The scope of an interval or ratio scale measurement is the number of steps away 
from the zero point, so the zero point itself cannot have a scope. In the case of tem-
perature, the freezing point of water does not have a scope on the centigrade scale. The 
freezing point of water does have a scope on the Kelvin scale. If the resolution is 1°K, 
the freezing point of water has a scope of 273.
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Figure 11.1 Scope of Measurement; (a) Scope of two temperature readings having the same magnitude and 
different resolution; (b) Scope of two readings having the same resolution.
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11.3 The Scope of Instruments
Telescopes, microscopes, oscilloscopes, stethoscopes, hygroscopes—all have a specific 
capability for measurement, set by upper and lower limits. These instruments, like any 

What about measurements on other types of scales? The scope of an ordinal scale 
measurement is always equal to its numerical value because the resolution of all such 
measurements is the same: one step in rank. The rank is the scope, unlike measurement 
on a ratio scale. Because of the definition of step size, ordinal scale measurements cannot 
be rescaled, via the operation of division, to other measurements. Finally, a measurement 
on the nominal scale is either at the zero point or is one step away. The scope always 
comes out to be unity. on a nominal scale, all measurements have the same scope.

The concept of scope highlights the ways in which the four types of measurement 
scale differ (Table 11.1). The scope of a ratio scale measurement reflects both its resolution 
and its magnitude. The scope of an interval scale measurement reflects both its resolution 
and its distance from the zero point. The scope of an ordinal scale measurement is due only 
to the number of steps (ranks) from the starting point, because all measurements on this 
scale have the same resolution. And all nominal scale measurements have the same scope.

The four types of measurement scale differ in their information content, a situation 
that is reflected in the scope, or number of steps on that scale. The nominal scale, which 
is the least informative, has only one step. The ordinal scale, which is more informative 
than the nominal scale, has a restricted number of steps, no more than the number of 
objects being compared. Interval and ratio scales, which are still more informative, have 
far more steps. The number of steps goes up with increasing resolution and with increas-
ing distance from the zero point. Table 11.1 recognizes these differences in information, 
which are designated by four types of units: 1u for ratio scales, 1u for interval scales, 
ranks for ordinal scales, and presences for nominal scales. nominal and ordinal scales 
are less informative than ratio types of scales, but it does not follow that quantities on 
these scales are the same. nor does it follow that quantities on these types of scale are 
merely numbers devoid of units.

Table 11.1 Scope of Measurement on Four Types of Scale

Types Nominal Ordinal interval ratio

Examples Experimental treatment Rank abundance Calendar date Age

Resolution presence rank 1u 1U

Range presence highest S · 1u S · 1U

Scope 1 S S

AnoTher Look AT SecTion 11.2

What happens to the cost of an instrument, in general, as the precision increases? 
Sketch a general relation between cost of an instrument and scope of each measurement 
from the instrument. can you think of any exceptions to the relation you have drawn?
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other, have a capacity limited by their resolution and maximum attainable measurement. 
The scope of an instrument is defined as the ratio of the maximum measurement to the 
resolution. This is a dimensionless ratio that defines the capability of the instrument. The 
greater the scope, or number of possible steps, the greater the capability of the instrument. 
For example, a meter-stick has a capability or scope of 100 if marked in centimeters. It 
has a scope of 1000 if marked in millimeters. The scope of a measurement instrument is 
analogous to the scope of a musical instrument. A piano has a scope of 88. That is, it has 
a resolution of one-twelfth of an octave, within a range of a little over seven octaves.

The lower limit, or resolution, is often set by the “just noticeable difference” in 
reading instruments. The just noticeable difference on a simple caliper is about half a 
millimeter. Smaller differences, of the order of a tenth of a millimeter or less, are hard to 
read accurately. The addition of a vernier to a calliper extends the resolution to tenths of 
millimeters by making the divisions within a millimeter easily readable by eye.

The upper limits of an instrument sometimes depend on how large it is. A large 
balance, for example, can record a greater range in mass than a small balance. A much 
larger balance is needed to weigh a moose than to weigh a mouse. upper limits also 
depend on the way the instrument is used. A meter stick has an upper limit of 1 meter 
when applied once, but when applied repeatedly in a straight line, it has an upper limit 
of several tens of meters. A surveyor’s chain has by itself an upper limit of around 15 m. 
When applied repeatedly in a straight line by a surveying party with a level, the upper 
limit rises to tens of kilometers or more.

The capability of one instrument relative to another comes through clearly in a 
scope diagram. Figure 11.2 compares the scope of several instruments with differing 
capacities to measure distance. A logarithmic scale has been used, as in previous scope 
diagrams. The horizontal line for each instrument starts at its resolution, then ends at 
the upper limit of measurement. The separation between start and stop points shows the 
scope, or number of steps possible for that instrument, relative to its resolution. Similar 
diagrams have been constructed for instruments to collect remotely sensed data (Fuller 
1989) and for techniques to collect paleoecological data (Schoonmaker, 1998).

Scope diagrams make clear at a glance the capability of techniques or instruments 
relative to quantities (Figure 11.2). If the diameter of eukaryotic cells (cD  m) is of 
interest, a single instrument, the microscope, will suffice. If body length (bL  m) is of 

cD Eukaryotic cells

bL Organisms

Microscope

Vernier calliper

Meterstick

Surveyor's chain

Chain � level

Satellite navigation

pm nm µm mm kmm Mm Gm

Figure 11.2 Spatial Scope of instruments to Measure Lengths. The spatial scope in cell diameter cD and organism 
body length bL are shown for comparison.
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AnoTher Look AT SecTion 11.3

For three instruments that you have used, state the resolution and maximum possible 
reading. compute the scope and compare instruments.

11.4 The Scope of Quantities
Scaled quantities are needed to read and express ecological ideas, just as a musical scale 
(steps per octave and number of octaves) is needed to read and perform music. The 
scope of a quantity will be set by the measurement protocol and relation that defines the 
quantity. The procedural statement for a quantity (refer back to Section 3.2) includes 
information about the unit of measurement, the way an instrument or technique was 
used, whether the protocol was iterative and whether iteration was used, and how it was 
applied (refer back to Figure 7.1).

Iterative protocols are essential for measuring complex phenomena (Box 2.1). 
Iterative protocols are conveniently grouped in three categories (refer back to Section 
7.4, Figure 7.1). In coarse graining, the inner and outer scale are fixed while the fre-
quency of measurement (resolution or grain) is progressively altered within this frame. 
An example is the treatment of spatial variance of murres (Figure 10.3e). coarse grain-
ing gives us a range of small to large box sizes via repeated use of measurements at a sin-
gle location. In lagging, the inner and outer scale are fixed while the separation (distance 
between two measurements) is progressively altered. An example is the spatial autocor-
relation of murres (Figure 10.3b). lagging gives us a range of small to large separations, 
again from a repeated measurements. In accumulation, the unit size is allowed to grow 
from a single small unit (inner scale) to a single large unit (outer scale). An example is 
a cumulative variance of birds along a transect, plotted against distance from starting 
point, as in Figure 10.3d. Accumulation gives us a range of small to large extents within 
the overall extent of the protocol.

our concepts of measurement are strongly influenced by euclidean schemes—steps 
along a straight line or square tiles on a grid. For many systems of interest to ecolo-
gists, there are patterns of directional connectivity missed by euclidean protocols such 
as coarse graining. For dendritically connected systems (blood vessels, nerves, rivers and 
their basins), we can say that one point is upstream from another or that one basin 
is nested within another basin. For such systems, Horton-Strahler accounting (Horton 
1945, Strahler 1952) will serve as a consistent and more informative measurement pro-
tocol than euclidean segments on a line or boxes on a grid. Box 11.1 shows Horton-
Strahler accounting, which is widely used for scaling laws in geomorphology (e.g., 
Rodriguez-Iturbe and Rinaldo, 1997; veitzer and gupta, 2000). The Horton-Strahler 
procedure is an iterative protocol that lends itself well to questions concerning scale in 
dendritically structured systems. The scope of the protocol is the HS index (Box 11.1), 
that is, the number of branching levels in the system.

interest, from the smallest free-living organism, Mycoplasma, to the largest, the blue 
whale (Balaenoptera musculus), several instruments will be required.
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The scope of an iteratively measured quantity depends on the measurement rela-
tion that establishes a one-to-one relation between a quantity measured at one scale and 
the same quantity measured at a different scale (Boxes 5.10 and 6.1). An example is the 
iterative measure of the area of a complex shape, such as an island (equation 6.14):
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In this example, iterative measurement is by coarse graining. on the right side the over-
all scope is the ratio of the largest grid spacing (outer scale) to the smallest grid spac-
ing (inner scale) nested within the largest grid. Within the overall scope we allow scope  
L/Lo to vary at ratios convenient for analysis. on the left side the overall scope is the 
ratio of observed area for the largest and smallest grid spacing. Within this overall scope 
we have ratios for each value of A/Ao. equation 11.1 establishes a one-to-one relation 
based on an exponent. In this example, we have an iterative protocol for measuring 
island area.

Box 11.1 Horton-Strahler Accounting in Dendritically Organized Systems
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In the diagram, the HS index is 4, and the branching ratio works out to be 
2.26. For rivers, the branching ratio is between 3 and 5. Assuming a value of 4, the 
Mississippi River has 412  16.8 million starting points.

In this method the number assigned to each branch is obtained iteratively. each 
tip (headwater, capillary, or leaf) is assigned a value of 1. Two first-order branches 
combine to produce a second-order branch, two second-order branches combine to 
produce a third-order branch, and so on. When a branch of smaller order combines 
with a branch of larger order, the order of the larger branch is not changed. The 
value reached at the root measures the size of the network. This value is called the 
HS index. The Mississippi River has an index of IHS  12. This index has the conve-
nient property of relating the number of tips N to the branching ratio B.
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We need to state our protocol in detail because it turns out that iterative proto-
cols with the same scope produce different results. For example, the coastline length as 
measured by the number of box sides will differ in length from that measured by divid-
ers, even if we use the same resolution (minimum divider step or side of box) and same 
scope. even with the same instrument, different protocols produce different results. We 
can measure island perimeter by swinging a caliper clockwise, counting steps along the 
coast from the seaward side as the caliper walks clockwise along the coast. or we can 
swing counterclockwise, counting from the landward side and walking counterclock-
wise along the coast. The protocols produce different results depending on whether the 
divider steps along the inside of an arc or along the outside of an arc. The effects are 
greater for small islands. To balance the effects, we can use a third method: Alternate 
the direction of swing at each step. With this protocol the caliper can walk either clock-
wise or counterclockwise around an island. As some readers might know, these three 
protocols (all using the same instrument set at the same sequence of step sizes) produce 
different results. Thus the result of measurement depends on some unexpected details of 
the measurement protocol. Iterative protocols are needed for measuring complex phe-
nomena, but care is needed in applying protocols. Far more care is needed than with 
traditional noniterative measurement protocols that count steps in straight lines, tiles on 
a cartesian grid, or cubes in a regular solid.

noniterative measurement relations scale a quantity to fixed units such as sur-
vey quadrats or experimental tanks. An example is primary production in experimen-
tal tanks (mesocosms) that differ in experimentally fixed diameter and height (chen et 
al., 1997). Another example is species numbers in relation to quadrats of different area 
(equation 6.11, Box 2.3).
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on the right side of equation 11.2, the overall scope is the ratio of the area of the larg-
est to the smallest unit area (quadrat) in the study. In principle we can designate any size 
of quadrat as having the reference area Aref. For convenience, we designate the smallest 
unit as having the reference area. The scope relative to the smallest quadrat depends on 
the size of the largest quadrat. on the left is the ratio of the count of species for units 
of area A and Aref. equation 11.2 establishes the one-to-one relation between these two 
ratios.

noniterative scaling relations scale one quantity to another across a series of 
objects. The objects can be organisms, islands, lakes, ecosystems, or any other units 
that vary naturally. Scaling relations usually rest on at least two measurement proto-
cols and hence on at least two measurement relations. For example, the overall scope 
of the noniteratively measured quantity body mass M is the ratio of the mass of the 
largest organism to the smallest organism in the study. The scope of respiration for the 
same organisms will be the ratio of the highest respiration to the lowest respiration, 
for which there is a different protocol. By combining studies, the scope of M can be 
extended to the maximum possible, which is the number of Mycoplasma mass units (the 
smallest organism) in a blue whale (the largest organism). This number is on the order 
of 1021 (Schmidt-nielsen, 1984). Within this scope, we expect that several protocols will 
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be necessary, since no single protocol can be applied to measure body mass within the 
overall scope of this quantity. nor can any one protocol be applied to measure respira-
tion over this range of body sizes. Thus the scope of the scaling relation of respiration 
to body mass, over the entire range of body mass of multicellular organisms, will rest 
on several measurement relations for body mass and several measurement relations for 
respiration.

AnoTher Look AT SecTion 11.4

list a phenomenon of interest to you. State how you would measure the phenome-
non. With this measurement protocol, can you measure the phenomenon throughout 
its scope?

11.5 The Scope of Parameters and Equations
Parameters relate one variable quantity to another. The scope of a parameter is a ratio 
that scales the response variable (on the left side of an equation) to an explanatory vari-
able (on the right side). The scope of the parameter is worked out from homogeneity of 
scope: The terms in an equation have the same scope as well as dimensions. For exam-
ple, here is a simple equation relating puffin density [N]  count/km2 to radial distance 
from a colony r  kilometers.

 [N]     ∈o r r⋅  (11.3a)

The parameter r is a gradient—the rate of change in density with radial distance. A 
quick analysis (as in chapter 6) shows that the gradient r has dimensions of # l3:
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The dimensions are interpreted as a density gradient r ∇[N] rather than as the num-
bers per unit of a three-dimensional volume (l3).

next, let’s use homogeneity of scope to examine each quantity and term in the 
equation. If measurements of density [N] and distance are made at a sequence of con-
tiguous strips (each 5 km long and 0.2 km wide) along a transect of 50 km, the spatial 
range and resolution of both density [N] and radial distance r are the same:
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 (11.3c)

As a result, the parameter r has a scope of unity, which means there is no scale-up 
from the response on the left side to the explanatory variable on the right side of the 
equation.
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However, the situation changes if 5 km counts are made at 10 km intervals along 
the transect, which is to say, only half the full 50 km transect is surveyed. In this situa-
tion the scope of the counts [N] is not the same as the scope of the distances, assuming 
that the estimate of the gradient in puffin density is taken to apply to the entire transect:
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 (11.3d)

The parameter r now has a scope of 2. This scope scales the data (at a limited res-
olution) up to the model (which applies to the entire transect, not just the measured 
sections).

It turns out that parameters perform several roles in data equations. one is to scale 
the units and dimensions of the explanatory (model) variable to the response (measure-
ment) variable. Parameters act out this role in an equation according to the principle of 
dimensional homogeneity. Another role is to scale the explanatory variable to the same 
scope as the measurement variable. Parameters act out this role, too, according to the 
principle of homogeneity of scope.

AnoTher Look AT SecTion 11.5

Write a regression equation similar to equation 11.3a for two quantities of interest 
to you. complete the calculation of spatial scope, as in equation 11.3c.

11.6 The Scope of Natural Phenomena
Strictly speaking, scale and scope are characteristics of measurement activities, not char-
acteristics of the natural phenomena that are the object of these activities. However, 
scale (and hence scope) are routinely considered characteristics of natural phenomena 
(e.g., delcourt et al., 1983; Walker and Walker, 1991), an approach that is of utility 
in evaluating planned programs of measurement. This approach will work when con-
tinuously acting processes result in recognizable boundaries in space and time. disease 
epidemics, for example, are phenomena that have an upper and lower limit on duration. 
They take a while to run their course but do not last forever, even though the processes 
that transmit disease continue to act. In the ecological literature, the scale of a phenom-
enon often refers to the upper limit in duration or extent of such phenomena. It can 
also refer to the lower limit. An equivalent pair of terms is the minimum inner scale and 
the maximum outer scale of a phenomenon. The terms grain and extent are also used 
(Wiens, 1989). “Scale” can also refer to a typical value of a phenomenon (Powell, 1989; 
Wiens, 1989; Rahel, 1990; Turner and gardner, 1991). The spatial scale of a midlati-
tude storm system is on the order of 2000 km. Storm systems have a time scale (lifetime) 
on the order of a week. This usage, implying a characteristic value, applies to phenom-
ena that fall within a fairly narrow range of values, such as storm durations or disease 
outbreaks.
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Assigning a single characteristic value does not work for phenomena that range 
widely in duration or spatial extent, such as the spatial scale of bird migration. The 
ratio of the maximum relative to minimum duration or extent of a phenomenon is more 
informative than a single value. This ratio, called the scope of a natural phenomenon, is 
defined as the ratio of the outer to the inner scale, or equivalently, the ratio of extent to 
grain. For example, el niño events occur at a frequency on the order of once every five 
years or so. The time between events can be as much as eight years but cannot be less 
than two years, the time typically taken to build up the global-scale pressure gradients 
that create these events. Thus el niño return times have a scope of 8 years/2 years  4. 
The statement of the scope is useful in avoiding the implication that el niño events 
occur with a periodicity of five years.

If a phenomenon is episodic, with discernable starting and ending points, its 
temporal scope can be defined as the ratio of duration of longest and shortest cases. 
examples are snowstorms, earthquakes, fires, mass extinctions, epidemics, foraging 
bouts, and reproductive seasons. If a phenomenon has definable boundaries in space, 
its spatial scope can be defined as the ratio of diameters of the largest and smallest 
cases. But not all phenomena have definable boundaries or clear start and end points. 
Phenomena without strong spatial gradients or rapid onsets and ends generally cannot 
be characterized as to scale or scope. examples are changes in population size or the 
flow of energy and material in ecosystems.

natural phenomena are routinely assigned a “scale” or scope, but any such assign-
ment will depend on the words we happen to have. Most speakers of english get by with 
“snow” and “ice”, but people who live under the cold thumb of the labrador current 
have a richer vocabulary of wintry terms. The Dictionary of Newfoundland English 
(Story et al., 1982) distinguishes several forms of snowfall (dwy, scad, snowing by the 
reeves), even more forms of ice forming on objects (glitter, silver thaw, ballicatter, black 
ice), and yet more forms of ice at the sea surface (clumper, growler, lolly, pinnacle, sail-
ing pan, sish, tabby). Many of these phenomena have distinctive and limited scopes. For 
example, ballicatter (ice formed by seaspray and waves) is limited to the fringe along the 
coast. A dwy (snow squall) characteristically starts suddenly and lasts a short time, usu-
ally less than an hour, rarely more. We can assign a scope to phenomena in this vocabu-
lary a lot more easily than to the general terms “snow” or “ice”.

The scale of phenomena, as the term is used in the literature, usually refers to com-
parison of cases (e.g., typical hurricane diameter) and hence is based on noniterative 
scaling, as in equations 2.1 and 2.2 in chapter 2. Individual cases can be assigned a 
scope using iterative scaling (more than one measure of the same object), as in equations 
2.3 and 2.4 in chapter 2. For example, a field of ripples in a sandbar can be assigned a 
scope, the ratio of the extent of the field to the size of an individual ripple. At smaller 
scales, the ripple field becomes the geometry of sand grains rather than ripples. A partic-
ular sandbar can be assigned a cross-shore scope, the ratio of the distance across the bar 
to the size of a sand grain, at about 0.2 mm. At smaller scales, the geometry of a sandbar 
becomes the geometry of sand grains and interstices.

Many phenomena seem at first to be infinitely divisible and hence with no lower 
limit and no scope. Further thought about the phenomenon often uncovers a lower practi-
cal limit. A theoretical tortoise takes infinitely small steps, but a living tortoise lurches for-
ward a certain distance after it exerts enough force to overcome the drag of its shell against 
the ground. Thus the velocity of a tortoise is not infinitely divisible with an infinitely fine 
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resolution. At a sufficiently fine resolution, the velocity of a tortoise becomes a series of 
events. The scope of tortoise velocity then becomes the maximum velocity relative to the 
minimum velocity set by a single lurch forward. In general, phenomena are not infinitely 
divisible and so do not have infinite scopes.

AnoTher Look AT SecTion 11.6

name two ecological phenomena of interest to you. Try stating the scope (upper and 
lower limits) based on your knowledge of the dynamics of the phenomenon. If that’s 
not possible, state why.

11.7 Scope Diagrams
A simple and effective way of comparing the scope of ecological phenomena is with a 
diagram. A scope diagram uses one, two, or even three logarithmic scales to display and 
compare scope calculations. on a logarithmic scale, the scope is the distance between 
two points on a graph. ecological phenomena are typically displayed relative to both 
space and time axes. Many of the conceptual space/time diagrams in the literature are 
scope diagrams since they display both an outer and an inner scale with respect to space 
and time. However, not all space/time diagrams are scope diagrams. For example, the 
first conceptual space/time diagram (Figure 2.4) depicted the space and time scales for 
patchiness of phytoplankton, zooplankton, and fish as points (single values), not as 
scopes. The accompanying instrumental space diagram displayed scopes. Space/time dia-
grams have appeared with exponentially increasing frequency since 1978 (Figure 2.4), 
and many of these are scope diagrams. Figure 2.1 is a space/time diagram that shows the 
scope of the problem of the collapse of cod stocks in the western north Atlantic. Figure 
2.2a displays the scope of the problem of monitoring the effects of chronic pollution on 
the fauna in a harbor in new Zealand.

Space/time diagrams have been constructed for a variety of phenomena, includ-
ing earth system processes (nASA, 1988), landform generation (Swanson et al., 
1992), ocean circulation structures (Steele, 1991b), atmospheric structures (dickinson 
1988; Shugart et al., 1988), climate change (Hobbs, 1998), aquatic ecosystem interac-
tions (Schindler, 1988; Ray, 1992; Hobbs, 1998), population dynamics in groundfish 
(langton et al., 1995), variance in species richness in marine and terrestrial systems 
(Marquet et al., 1993), patch dynamics in forests (Shugart and West, 1981; deutschman 
et al., 1993), biomass dynamics of forests (King, 1991), disturbance regimes (delcourt 
et al., 1983; Walker and Walker, 1991), vegetational patterns (delcourt et al., 1983), 
human impacts on ecosystems (Powell, 1989; Walker and Walker, 1991; Hobbs, 1998), 
ecosystem responses to disturbance (delcourt et al., 1983), organizational levels in ecol-
ogy (lugo, 1996), human land-use practice (Hobbs, 1998), and even vehicular move-
ment (gadgil, 1996).

The strength of these diagrams lies in their effectiveness in comparing phenomena 
of vastly different extents in space and time. The weakness of these diagrams lies in their 
inconsistent translation of numbers to graphical objects and frequent failure to convey 
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whether a scope is being displayed or whether the intention is to display only the extent 
of a phenomenon. Most of these diagrams use two-dimensional objects—circles, squares, 
and so on. The implication is that a scope is being displayed. In some cases it appears that 
a shape has been used to display a single number, such as an extent. The key to accurate 
representation is to display points where a single value is intended, lines where a scope is 
intended, and shapes encompassing the lines (scopes) used to construct the shape. These 
practices are illustrated by a narrative accompanying the construction of Figure 11.3.

The annual migrations of birds is astonishing relative to the distances that most 
people move every year, even with the aid of cars, trains, and planes. Surprisingly, some of 
the longest of all migrations are undertaken by species the size of one’s hand. Some of the 
longest-distance migrants belong to the sandpiper family (Scolopacidae), a group that typ-
ically inhabits the open spaces of tundra and beaches. A 60 g Sanderling (Calidris alba), 
caught on a beach in chile, will return to that beach year after year from its high Arctic 
breeding site. The sandpiper family also includes species that undertake little or no migra-
tion. This diversity in migratory extent is surprising in its own way, for the species in this 
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for scope of migration.
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family are so similar in shape and wing form as to be difficult to distinguish. Perhaps only 
the quirky nature of historical phenomena can explain why one species would migrate 
10,000 km or more while a nearly identical species shifts slightly or not at all away from 
its breeding grounds in winter. This diversity in the scale of migration can be quantified in 
a diagram that lends itself to comparative analysis of the phenomenon.

Four species of sandpiper were chosen for graphical comparison. All breed in 
northern Alaska. All contrast strongly in migratory scope. The least migratory of the 
four is the rock sandpiper (Calidris ptilocnemus), which breeds on islands in the Bering 
Sea, then winters from the adjacent Alaska peninsula southward to oregon. The next 
strongest migrant is the dunlin (Calidris alpina). dunlins breed from Pt. Barrow south 
past the yukon delta, wintering from Puget Sound to northern Baja california. The 
whimbrel (Numenius phaeopus), a still stronger migrant, breeds south to the yukon 
delta, wintering from central california to southern South America. Another strong 
migrant, Baird’s sandpiper (Calidris bairdii), breeds along the Alaskan coast southward 
to the yukon delta, wintering in the Andes Mountains.

distributional maps in the field guide by Robbins, Bruun, and Zim (1983) were 
used to construct a diagram showing the migratory scope of these four sandpiper species. 
Figure 11.3a shows the minimum distance between breeding and wintering grounds (left 
end of each line), together with the maximum distance between breeding and winter-
ing grounds (marked by the right end of the line). The length of each line represents the 
scope of migration, that is, the ratio of the maximum to minimum migratory distance.

The duration of the migration period differs among these species. Some accomplish 
migration during short periods of time (whimbrel, Baird’s sandpiper). others, such as 
the dunlin, take several months to reach their wintering grounds. A space and time dia-
gram displays these contrasting migratory patterns (Figure 11.3b). This diagram shows 
the scope for the species based on the distance from the northern edge of the breeding 
ground to the southern edge of the wintering grounds. The scope of individual migra-
tion would be less if birds from the northern part of the breeding range migrated only 
as far as the northern part of the wintering range. However, many sandpiper species 
migrate in a “leapfrog” pattern, where individuals at the northern limit of the breeding 
range migrate to points further south than birds from the central or southern part of the 
breeding range (Hale, 1980). The scope for individuals will thus lie along the rightward 
rising lines in Figures 11.3b, with some individual variation around the lines.

Scope diagrams need not be limited to just two logarithmic scales. A third logarithmic 
scale can bring out interesting contrasts. The four species depicted in Figure 11.3 differ in 
body size. The scope of body size (as a skeletal measurement) differs hardly at all within 
these four species. However, the scope of body size (as mass) can have a large scope in long-
distance migrants, which are capable of storing substantial fractions of their normal weight 
as fat prior to long-distance migration. extension of Figure 11.3 to a third axis, body mass, 
would result in four elliptical objects of similar thickness (with scope of body mass defined 
as the ratio of largest to smallest weight of an individual bird during a single year).

Most of the scope diagrams found in the ecological literature are space/time dia-
grams. However, any ratio scale quantity can be used in a scope diagram. For example, 
Swanson et al. (1992) used power (energy per unit time) to describe disturbance dynamics 
relative to spatial extent. In the case of bird migration, the power requirements of long-
 distance migrants are considerable, so a scope diagram with an axis of energy per unit time 
would bring out functionally significant differences not evident in a plot relative to time.
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one of the values of a scope diagram is that it can be constructed from limited data 
and a small number of calculations. More detailed information can be added to the dia-
gram as it becomes available. For example, a poorly known quantity such as seedling 
recruitment [N]  of trees in tropical forests can be sketched into a scope diagram as an 
educated guess, perhaps on the order of [N]    10 seeds ha1 day1 with a temporal scope  
(1 month event1)/(1 day event1)  30. The spatial scope might be (1000 ha event1)/(1 ha  
event1)  1000. As data become available on several species, the scope diagram can be 
redrawn to show the scope of seed dispersal of a variety of species. The diagram, as it 
develops, indicates the current state of knowledge of the scope of seed dispersal.

once a scope diagram has been constructed for phenomena, the next logical step is 
to compare it to the scope of research programs to investigate the phenomena. The scope 
of a research program is typically displayed relative to both space and time axes. This 
produces an instrumental space/time diagram such as the one in Figure 2.4. comparison 
of the instrumental diagram with a conceptual diagram brings out mismatches between 
research programs and natural phenomena. Scope diagrams are thus a tool for the eval-
uation and revision of research programs.

In this chapter we examined the scope of the components of research programs: 
measurements, the instruments used to make measurements, the quantities used to make 
calculations and draw conclusions about natural phenomena, and the equations (mod-
els) used in environmental studies. In chapter 12 we will examine the scope of entire 
research programs.

AnoTher Look AT SecTion 11.7

Sketch a space/time diagram for an ecological question concerning human effects on 
the environment.

Defined Concepts and Terms for Review and Future 
Reference

____ density gradient ____ scope of a parameter
____ homogeneity of scope ____ scope of a quantity
____ maximum outer scale ____ scope of a single measurement
____ maximum inner scale ____ scope of an instrument
____ scope ____ scope of natural phenomena
____ scope diagram



The Scope of Research 
Programs

The scale of resolution chosen by ecologists is perhaps the most important 
decision in the research program, because it largely predetermines the ques-
tions, the procedures, the observations, and the results. … Many ecologists 
… focus on their small scale questions amenable to experimental tests and 
remain oblivious to the larger scale processes which may largely account for 
the patterns they study.

—P. D. Dayton and M. J. Tegner, from A New Ecology: Novel Approaches 
to Interactive Systems; © 1984 John Wiley and Sons, Inc.

Reprinted by permission.

12.1 Synopsis
Research programs have a spatial scope, which is the ratio of the extent to the spa-
tial resolution. Similarly, the temporal scope is the ratio of the duration to the temporal 
resolution. Spatial and temporal scope are dimensionless ratios that can be partitioned 
into components that reflect the design of the program and the effort at each level in the 
program. Scope calculations quantify the scale-up at each level in a research program. 
These calculations are conveniently displayed as diagrams to evaluate research programs 
relative to one another and relative to the phenomenon being investigated. The magni-
tude of scale-up at each level differs substantially, as does the logical and evidential basis 
for scale-up.

Scope diagrams are relatively simple for descriptive studies, surveys, and monitor-
ing programs. The scale-up from the directly measured area to the area of interest is 
often large. Descriptive studies rely more on judgment than on statistical inference to 
scale to larger areas. Surveys, which are important in applied ecology, notably wild-
life management and fisheries, rely on statistical inference to estimate a quantity over 
a large area. Monitoring programs have the goal of measuring the degree of deviation 
from a norm, set by regulatory standards or derived from predictions in the impact 
statement. The magnitude of scale-up can be quantified for an entire survey, then par-
titioned among levels in a survey. The magnitude of scale-up at each level depends on 
the number of units that accumulate by replication at that level and on the ratio of 
unmeasured to measured units at that level. The basis for scale-up varies across studies 
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and can vary within a study. Scale-up can be by judgment that sites are representative, 
by informal inference based on haphazard sampling, by formal statistical inference in a 
finite spatial frame, by a descriptive spatial model, or by a spatial model with theoreti-
cal content.

Research programs based on manipulative experiments have become increasingly 
prominent in ecology. Scope diagrams display how experiments compare one to another 
and to the phenomenon being investigated. Fisherian experiments use randomization, 
replication, and local control to address problems of spatial heterogeneity. In agroeco-
systems, scale-up is by statistical inference and judgement based on knowledge of the 
experimental site. In other ecosystems, scale-up from Fisherian experiments is limited 
by several factors: lack of replicate units, substantial heterogeneity among units, and 
the inevitable increase in spatial heterogeneity with increase in area. Where Fisherian 
experiments are severely constrained or not possible, scope calculations provide a logi-
cal framework for the evaluation of uncertainty. By partitioning the scope, we can iden-
tify appropriate ways of addressing uncertainty at each of several levels in a study. The 
relevance of experiments to ecosystem scale processes depends on their being embedded 
in maps derived from surveys or computational models.

computational models typically have a large temporal scope due to the small cost 
of high temporal resolution over long durations. at the same time they have small spa-
tial scopes due to the cost of computing dynamics across a large number of spatial units.

Scope diagrams allow simultaneous display of the structure of integrated programs 
that combine experiments, surveys, time series, and computational models.

12.2 The Scope of a Set of Measurements
Measurements are taken within organized research programs that range from simple 
surveys and experiments to complex combinations of several methods. Measurements 
in the program will have several temporal attributes (chapter 7.2), notably the time 
required to complete a single measurement (duration), the time between successive mea-
surements (temporal lag), and the time between first and last measurement (temporal 
extent). The temporal scope of a set of measurements will be defined as the ratio of the 
temporal extent of each measurement relative to either the duration or the lag.

a set of measurements will also have spatial attributes (refer back to Section 7.3). 
In one dimension the attributes are the maximum distance between two measurements in 
the set (spatial extent or range), the distance between two measurements (spatial lag), and 
the linear extent of the completely measured unit (minimum spatial resolution or grain). 
In two dimensions (Section 7.4), the attributes are the entire area from which the set was 
taken (extent), the area around each measurement (lag), and the area for a single mea-
surement (resolution expressed as an area). The spatial scope of a set of measurements 
will be defined as the ratio of the spatial extent relative to either the lag or the grain.

The duration and minimum spatial resolution are components of the spatial and 
temporal support, as defined by geographers. The spatial support is defined as the n-
dimensional volume from which the values of a variable distributed in space may be 
computed. The complete specification of the support includes the geometrical shape, 
size, and orientation of the volume (olea, 1999). Temporal support is analogous to 
 spatial support.
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Box 12.1 shows the calculation of the overall scope of a reconnaissance study, 
often the first step in ecological research. eberhardt and Thomas (1991) classify such 
studies as sampling for pattern. Such studies typically serve as the basis for subsequent 
studies of the processes that generate patterns. an example of sampling for pattern is 
characterization of the flora of eccentric bogs in the state of Maine (Davis and anderson, 
1991). True bogs (including eccentric bogs) consist of peat-containing wetlands whose 
growing surfaces acquire minerals from the atmosphere rather than from underlying or 
adjacent mineral soils. Bogs cover extensive areas in the northern hemisphere, and so 
carbon sequestration (as peat) and release (as methane) can affect global carbon balance 
(almquist-Jacobson and Foster, 1995). True bogs have slightly convex surfaces due to 
continued plant production on top of peat capable of holding water above the surround-
ing water table. eccentric bogs are unusual in that the highest point is at the edge. These 
bogs slope downward from a high point resting against the side of a valley; they usu-
ally sit above a fen (a wetland with a flat or concave growing surface). They are numer-
ous in Russia, canada, and northern europe, but only 35 eccentric bogs are known in 
the united States, all of which are in eastern Maine (from 45° to 46°409n, from 67°309 
to 69°W). of these, 15 were visited between June 30 and august 18, 1987 (Davis and 
anderson, 1991), to ground-truth aerial photography, take samples of water and peat 
from chemical analyses, take cores for stratigraphic analysis, and make a standard veg-
etational reconnaissance (Mueller-Dombois and ellenberg, 1974) using a 5 m by 5 m area 
called a relevé. Plant abundance by individual species was recorded in seven categories 
within four vertical strata ranging from ground cover (0.1 m) to tree (greater than 5 m). 
analysis of the data uncovered a relation between vegetational types and chemical tro-
phic gradient. no rare species were found. Based on this information, the authors of the 
study recommended 10 bogs for designation as critical areas based primarily on their 
unique geomorphic/hydrological characteristics.

The study was unusual in that all examples of the ecosystem in a defined area were 
identified. nearly half (15 of 35 eccentric bogs) were visited and measured. The study 
was also unusual in reporting the duration as well as spatial extent of the measurement 
effort. consequently, it was possible to calculate the spatial and temporal scope of this 
study from information in the published report.

The overall spatial scope is computed relative to the extent of the completely mea-
sured or first-level unit, which is a component of the spatial support. In the bog study 
the first-level unit is the relevé, a square area 5 m on each side. The choice of spatial 
extent in computing the overall scope depends on the assumed generality of the study. In 
the bog study the generality certainly extends to the area of the 15 measured bogs and 
to the time from start to end of the study. The spatial scope of the 15 bogs relative to the 
relevé is 2 · 106. The overall scope could also be computed relative to the area of all 35 
bogs if the 15 measured bogs are considered representative. Davis and anderson (1991) 
did not report the area of all 35 bogs, so the area listed at this level (Box 12.1) is that of 
15 bogs rather than all 35.

The overall temporal scope is computed relative to the duration of the first-level 
unit, which is the relevé. each relevé required approximately half an hour to record veg-
etation cover. The choice of temporal extent from which to compute the scope depends 
again on assumptions concerning generality of the study. In this example the temporal 
extent was taken as 50 days, the time from start to end of the field work. The temporal  
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extent could have been taken for a longer timeframe. This would assume that bogs 
change so slowly that the same result would have been obtained no matter when the 
study was completed within the longer time frame. Rates of vegetational change in 
undisturbed bogs are slow enough that the temporal extent might be taken as several 
years.

Box 12.1 Scope Calculations for Vegetational Reconnaissance of Eccentric Bogs in Maine (Davis 
and Anderson, 1991)

Ao A Scope To T Scope

Calculation of overall scope (5 m)2 4987 ha 2.0·106 30 min 50 days 2400

Level Replication Units Ao A Scope To T Scope

Relevé 1 (5 m)2 30 min

Bog 5.67 5.67 142 m2 332.5 ha 23468 2.8 hr 8.6 hr 3.0

Inventory 15 bogs 85 2125 m2 4987 ha 23468 42.5 hr 50 days 28.2

Spatial scope    2.0 · 106 possible samples
units  n   85 samples taken
expansion factor  EF    2 · 106/85  2.35 · 104 possible samples/samples taken
Sampling fraction SF    EF1  4.26 · 105 samples taken/possible samples

 

Area (m2)

100 101 102 103 104 105 106 107 108

Scope
n = 85 EF = 23468

Temporal scope    2400 possible samples
units  n   (5.67)(15)  85 samples taken
expansion factor  EF   2400/85  28.2 possible samples/sample taken
 EFbog   (8.6 hr)/(2.8 hr)  3.0
 EF    EFbog (Tinventory / Tbog)  / (ninventory / nbog)
     3.0  (50 days / 8.6 hr)  / (85  /5.67)
     3.0   (139)  / (15)
     3.0   (9.3)

  

Time (hours)

10−1 100 101 102 103 104

Scope = (50 hours) / (0.5 hour) = 2400

n = 85 samples EF = 28.2

n = (5.67)(15) samples (3.0)  (9.3)  =  EF

Time (hours)

10−1 100 101 102 103 104

Scope = (50 hours) / (0.5 hour) = 2400

n = 85 samples EF = 28.2

n = (5.67)(15) samples (3.0)  (9.3)  =  EF
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Most ecological studies have at least one intermediate level in addition to the level 
of the unit of measurement and the level of the study. In the bog study, there is one  
additional level, that of the bog. Spatial and temporal scope can be calculated for each 
level. The calculations begin with a listing of each level. For the example at hand, these 
were the relevé, the bog, and the inventory of all 15 bogs (Box 12.1). The analysis of 
scope table is then completed from left to right, under the headings shown in Box 12.1 
(level, Replication, units, Ao, A, Spatial Scope, To, T, and Temporal Scope). The rep-
lication is the number of units at each level. In this example the replication was 5.67 
relevés per bog and 15 bogs per complete inventory. The replication is multiplied by the 
number of units at the next lower level to obtain the number of first-level units taken at 
each level. In this example there were 5.67 relevés per bog and 85 relevés in the entire 
inventory (Box 12.1). The spatial effort at each level (Ao) is the product of first-level 

Figure 12.1 Scope Calculations for Relevé Analysis of Vegetation Structure. Data on eccentric bogs in Maine from 
Davis and Anderson (1991); (a) Spatial and temporal attributes of the study, from Box 12.1; (b) Overall spatial and 
temporal scope; (c) Scale-up by accumulation of samples shown as solid line connecting circles.  Scale up by informal 
inference shown as crosses connected by dotted line; (d) Sampling effort n and expansion factor EF.
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units and the area of the first-level unit. In this example the effort was Ao  142 m2 per 
bog and Ao  2125 m2 for the entire inventory. as in many ecological studies, the sam-
ples together cover an area Ao that is only a fraction of the total area at the same level.  
In this study the total areas were A  332 ha per bog and A  4987 ha for the entire 
 inventory of 15 bogs. The spatial scope was A/Ao, the area relative to the area directly 
measured within A. The scope is 332/0.0142  2.3  104, which means that on aver-
age, bog area was over 23,000 times greater than the area covered by direct measure-
ment within a bog. Because averages were used, the same scope applies at the level of 
the entire inventory: 4987/0.2125  2.3  104.

Sampling effort as a duration To takes place within a larger timeframe T. Temporal 
effort To is the product of duration of first-level units (relevés) and the number of first-level 
units. The temporal effort was To  5.67 · 1/2 hour  2.8 hours at the level of each bog; 
it was To  85 · 1/2 hour  42.5 hour at the level of the entire inventory. The temporal 
frame T at each level depends on the assumptions concerning generality of the results. In 
this study the temporal frames were taken as the time to complete the survey of a single 
bog (8.6 hours, on average) and the time to complete the inventory (50 days). The ratio  
T/To gives the temporal scope at each level. Because of the time intervening between 
each bog survey, the scope at the level of a bog differs from that at the level of the entire 
inventory.

Scope computations are conveniently displayed in a space/time diagram. Figure 
12.1 displays the scope computations for the bog study. Figure 12.1a shows, as filled 
circles, the spatial effort Ao and temporal effort To at each level. a small cross marks 
the spatial frame A and temporal frame T to which these measurements apply. a line 
connecting any two points will be a scope. Figure 12.1b displays the overall scope as the 
distance from the circle at the lower left to the cross furthest above and to the right.

Scope diagrams such as Figure 12.1 are readily constructed in any graphics pro-
gram. Spatial units can be added as labels along the top border of the diagram, but 
they’re not as necessary for interpretation as are temporal periods. In general, stan-
dard multiples of length (101 km, 103 km) or area (km2, km4) will suffice. other dia-
grammatic material can be added either as text pasted onto the graph or as lines plotted 
between points, using the same technique as the plot of time periods shown in Box 12.2. 
In Figure 12.1d, the arrow showing the expansion factor EF was added as a text box: 
—EF— . The line connecting the area of 85 relevés to the area of 15 bogs was plot-
ted as a line connecting two points. In general, if an approximation is desired (e.g., the 
scope of several models), a pasted shape adequately represents the graphical component. 
If exact values are available (e.g., the scope of a particular model; see Figure 12.4 later 
in this chapter), a plot more accurately represents a graphical component such as EF. 
each model in Figure 12.4 was plotted as a line connecting four known values, where 
the four values were listed in such a way as to achieve a box.
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Box 12.2 Constructing a Scope Diagram: Example Based on Calculations in Box 12.1

1. calculate overall scope.

Ao A Scope To T Scope

(5 m)2 4987 ha 2.0 · 106 30 min 50 days 2400

2. Decide on base unit (e.g. seconds and m2 in Figure 12.1). length can be used 
instead of area.

3. convert to base units if necessary and enter Ao, A, To, and T in four 
columns.

Here are the calculations in Box 12.1, as they appear in a spreadsheet:

Area (m2) Time (Sec)

Level repl Ao A To T Scope Scope

Support Extent Support Extent A/Ao T/To

m2/relevé 25 1800

Relevé/bog 5.67 141.67 3324667 10080 30960 23468 3.1

Bog/inventory 15 2125 49870000 153000 4320000 23468 28.2

All bogs 35 49870000 116363333

4. Decide on time and space ranges for the graph. In Figure 12.1 the spatial 
range is 106 to 1015 m2, the temporal range from 1 to 1010 seconds.

5. using logarithmic axes, plot To against Ao as one series, T against A as 
another series.

6. add interpretable time units (hours, days, etc.). These can be added as labels 
at appropriate points on the vertical axis, but a more accurate presentation is 
to plot these units as lines, as in Figure 12.1. a simple method is to plot the 
area and Time as shown in the accompanying table, as a third data series in 
the graph. note the alternation between the maximum and minimum spatial 
units compared to the progression in time units, to produce horizontal lines.

Horizontal Lines

Labels Area Time

Sec 0.000001 1

Sec 1E  15 1

Min 1E  15 60

Min 0.000001 60

Hour 0.000001 3600

Hour 1E  15 3600

Day 1E  15 86400

Day 0.000001 86400
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12.3 Partitioning the Scope
Scope calculations quantify the magnitude of spatial and temporal scale-up for the 
entire study and at each level in a study. The overall scope is the number of samples 
that could have been taken. This overall scope has two components: scale-up via accu-
mulation of samples (Figure 7.3) and scale-up via inference from these samples to all 
potential samples. In the case of the bog reconnaissance, 85 units were sampled, each 
representing 2.35 · 104 times its own area. The factor that magnifies or scales up the 
results from sampled units to the area of interest is the expansion factor, defined as 
the ratio of the potential number of samples (overall scope) relative to the number of 
samples taken (cochran, 1977). Box 12.1 shows the partitioning of the overall spatial 
scope into samples taken and an expansion factor. another way of looking at the expan-
sion factor is to compute its inverse, which tells us the fraction of the possible samples 
that were taken. The sampling fraction (cochran, 1977) is defined as a ratio: the num-
ber of samples taken relative to the potential number of samples. The sampling fraction 
for the bog reconnaisance is 23,4681  4.26 · 105. This fraction is small but by no 
means unusual. It is roughly the same as taking 15 plots, each 10 m by 10 m, to repre-
sent forest production dynamics in the 3000 ha Hubbard Brook study (Bormann and 
likens, 1979). Many ecosystem studies cover larger areas and have even smaller sam-
pling fractions.

More generally, spatial and temporal scope can be partitioned according to any of 
several levels of a study. Box 12.1 shows the partitioning of the temporal expansion fac-
tor (EF  28.2) into two components: the scale-up from relevé to bog (EFbog  3.0) and 
the scale-up from bog to inventory (EF  9.3). The overall scope, a factor of 2400, is 
thus the product of two scale-ups via accumulation (n  5.67, n  15) and two expan-
sion factors (EF  3.0, EF  9.3). These two scale-up factors are based on judgment 
and experience. The investigators assumed that these scale-up factors apply because past 
experience shows that little or no change in bog flora is to be expected during the 50-day 
duration of the study. The results based on 42.5 hours of effort apply to the 50-day dura-
tion of the study. The results could be taken as representative of several years based on 
the rates of vegetational change in bogs in the absence of human disturbance or change in 
the hydroregime. If the study were considered applicable to a five-year period, the scope 
would be (5 years) (365 days/year) (1440 minutes/day)/(30 minutes)  87600. This is 
partitionable into two measured components (n  5.67 relevés, n  15 bogs) and three 
inferred components (EF  3.0, EF  9.3, and EF  5 year/50 day  36.5). The ratio-
nale for the first and second expansion factor is that vegetation did not change during the 
study, and hence the relevé samples could have been taken in any order. The rationale for 
the third expansion factor is that the vegetational change is slow enough that the study 
would produce the same results no matter when it was done in a five-year period.

AnOtheR LOOk At SeCtiOn 12.2

In a study familiar to you, list the unit area and duration (support), the number of 
samples at each level of the design, and the spatial and temporal extent of the study. 
compute the overall spatial and temporal scope.
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The spatial scale-up has four components: accumulating relevés within a bog to 
increase the area measured (a factor of n  5.67 relevés/bog, on average), accumulating 
bogs (a factor of n  15 bogs), inference from relevés to bogs (a factor of 23468), and 
inference from the inventory to all bogs (a factor taken as 1). The basis for the spatial 
scale-up from relevé to bog was informal inference. The investigators exercised judg-
ment in placing the relevés so as to be typical. Formal inference, which would require 
random placement of each relevé, was not used. There was no scale-up from inventory 
to all bogs and hence the factor is unity. If the area of all 35 bogs had been reported, the 
scale-up could have been calculated. The basis for this scale-up would be informal infer-
ence, based on judgment that the 15 bogs measured were representative of all 35 bogs.

The spatial and temporal scale-up at each level in the study can be displayed by 
connecting each value of effort (marked as a circle in Figure 12.1a) with its correspond-
ing extent (marked with a cross). This display tends to be cluttered and hard to inter-
pret. a simpler display results from connecting the effort (circles) with a solid line and 
connecting the study design (crosses) with another line (Figure 12.1c). The separation 
between the two lines shows the inferred scale-up. The values in the graph can also be 
connected in a fashion that displays the sequence of scale-ups encompassed in the over-
all scope of the study (Figure 12.1d). The solid lines show the scale-up achieved by accu-
mulating samples (n); the dotted lines represents the scale-up (EF) from samples. This 
display is the two-dimensional version of the diagram in Box 12.1. These instrumental 
scope diagrams will prove useful in designing and comparing research programs.

AnOtheR LOOk At SeCtiOn 12.3

Recompute the spatial scopes in Box 12.1, assuming an area of 11636 ha 
(instead of 4987 ha) at the level of a survey of all 35 bogs. Show that the inferred  
spatial scale-up (expansion factor) is partitionable into two components, of which 
one is 35/15.

12.4 The Scope of Surveys
The purpose of a formal survey is to obtain an accurate estimate of a quantity, usually 
summarized as a mean or as a proportion. an exhaustive survey enumerates all cases, 
a procedure that guarantees an accurate value. an example is a census of all nests of a 
particular bird species in a nature reserve, to obtain local population size. a probabi-
listic survey uses randomly selected units to produce an accurate (unbiased) estimate. 
an example is the number of nests in a reserve, estimated from complete enumeration 
within randomly chosen blocks of 1 hectare each. a probabilistic survey uses statistical 
inference, thus differing from the informal inferences of a descriptive study, described in 
the previous section. The uncertainty of the estimate from a probabilistic survey can be 
reduced by skillful design. Texts on survey design describe many effective techniques. 
These include grouping of units into strata, efficient allocation of sampling effort to 
strata or clusters, efficient allocation of effort among levels, and introduction of covari-
ates to control effects statistically.
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The technical literature on survey design (e.g., cochran, 1977) provides two key 
terms: the unit and the frame. The unit is the item on which a measurement is taken. 
The unit can have natural boundaries. examples of natural units are individuals (such as 
a corn plant), parts of individuals (such as the leaf of a plant), islands, and lakes. units 
can also be defined by artificial boundaries. examples of artificial units are plots in an 
agricultural survey. The frame is the list of all possible units. The frame in a survey of 
agricultural production might be an entire field, an entire farm, or even an entire district.

The temporal scope of a survey depends on the temporal attributes of the data. 
The temporal scope of a survey is defined as the duration of the study, relative to the 
duration of measurement of a single unit. one common objective in a survey is to mini-
mize the temporal scope of the study so as to reduce or eliminate any change in the 
quantity being estimated. The goal of surveys often is to produce an estimate for a single 
point in time, hence of limited temporal scope.

The spatial scope of a survey depends on the spatial attributes of the data. The 
spatial scope of a survey is defined as the extent of the frame relative to extent of the 
unit. extent can be in units of length (as in a transect study), in units of area, or in 
units of volume (as in sampling a body of water). Several factors set the spatial scope. 
The type of instrument often sets unit size. a typical rain gauge resolves precipitation 
at a spatial scale on the order of 10 cm2. an easily deployed plankton net resolves cope-
pod concentrations at a spatial scale on the order of 10 m3 to 100 m3, the volume swept 
along distances on the order of 10 to 100 m. The frame often depends on the applied or 
social goal of the survey. The frame and hence the scope of the survey is often defined 
by human activities. an example is an investigation of the effects of logging practices 
on wildlife. The scope of these studies, including control sites, will be determined by 
the spatial scale of the logging practices. Because the scope of interaction with human 
activities is often important, deciding on the spatial and temporal scope of a survey is 
frequently one of the most difficult parts of applied ecology.

Scope calculations and scope diagrams are useful in designing and comparing 
surveys. First, such calculations quantify the magnitude of scale-up from sample to the 
target of inference. an example is a simple random (Section 4.1) or stratified random 
survey (Section 4.2) in which the target of inference is a completely enumerated frame. 
Scope calculations are useful in comparing alternative designs (Section 4.3). Partitioning 
the overall scale-up into components allows evaluation of the type of inference at each 
level in hierarchically structured surveys (Section 4.4). Scope calculations display the 
structure of monitoring programs and the type of inference at each level (Section 4.5).

12.4.1 Simple Random Surveys

The goal of a simple random survey is to produce an accurate estimate of quantity. To 
achieve this goal, samples are chosen randomly from a list (frame) of all possible units. 
all units have an equal probability of being sampled, resulting in an unbiased estimate 
for the entire frame. an example is the density of Icelandic scallops Chlamys islandica 
on St. Pierre Bank, located in the northwest atlantic. an accurate estimate of popula-
tion size is needed, along with an estimate of replacement rate, to set a sustainable har-
vest rate. a convenient symbol for scallop density is [N]  N/A, where N is the count of 
scallops and A is the area of the count. The quantity [N] can be defined at any of several 
spatial scales. It can be the number of scallops per 10 cm diameter area, the smallest area 
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occupied by an individual scallop of commercial interest. This minimum area is on the 
order of 5 cm · 5 cm · 3.14 78.5 cm2. at this small scale [N] is a binomial quantity—it 
can either be 1 scallop · (78.5 cm2)1, or it can be 0 scallop · (78.5 cm2)1. The standard 
method for estimating scallop density is to use a dredge, which scrapes some fraction 
of scallops from a known area of seafloor. When defined at this scale, the quantity [N] 
is highly variable, ranging from zero to thousands per hectare. The quantity [N] can 
also be the total number of scallops on an entire offshore bank, which is the traditional 
spatial unit for assessing stock size and regulating harvest rates. at this scale [N] has a 
single value, which we are trying to estimate.

For the purpose of assessment of stock size at the scale of a bank, the spatial scope 
of the quantity [N] is the ratio of the area of the bank to the area occupied by a scallop of 
about commercial size. The two areas are expressed in different units, so a rigid conver-
sion factor (number of square centimeters per square kilometer) appears in the calculation:

 

19 000

3 14 5

10
2 4 10

2

2

10 2

2
12,

. ( )
.

km

cm

cm

km
  

 

The sampling unit for a dredge survey of the bank is a single haul by a 10 m wide 
dredge towed 1 nautical mile (1.852 km). The resulting dredge data has a support consist-
ing of a strip with an area of 18520 m2 and a duration of 6.7 minutes. The calculations 
are shown in Box 12.3. The extent of the survey is a 19,000 km bank; hence the spatial 
scope is 106. The frame of the survey is 106 possible sample locations on the entire bank. 
Randomly chosen sampling locations are separated by roughly two hours of steaming 
time, which allows the catch to be counted between hauls. on a research vessel with 12-
hour workdays, this comes to six samples per day, or 180 samples during a 30-day sur-
vey of the bank. The sampling fraction is thus 1.8 · 104. The expansion factor is 5700, 
which means that each sample will represent an area 5700 times as large (Box 12.3).

Box 12.3 Scope Calculations for Dredge and Acoustic Surveys on St. Pierre Bank, Northwest 
Atlantic

1. Dredge survey at a speed of 9 nautical miles/hour. Dredge is 10 m wide.
Haul area Ao  (10 m)(1 nmile)(1.852 km/nmile)  0.0185 km2

Haul time To  (1 nmile)(60 min/9 nmile)  6.7 min

Level replication units Ao A Scope To T Scope

Scallop (5 cm)2

Haul 1 0.0185 km2 6.7 min 2 hr 18

Survey day 6 hauls 6 0.11 km2 40 min 1 day 36

Survey 30 days 180 3.33 km2 19,000 km2 5700 20 hr 30 day 36

Spatial scope    19,000 km2/ 0.0185 km2     1.0 · 106 possible samples
units  n      6/day · 30 days      180
expansion factor  EF      106/180     5700
Sampling fraction  SF      EF1      1.8 · 104
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Several sources of uncertainty beset these surveys. First, how efficient is the 
dredge? If the dredge scrapes up 50% of the scallops, the average catch per unit area 
scraped is divided by 0.5 to estimate the density. But if the dredge scrapes up only 10% 
of the scallops, the catch is divided by 0.1, resulting in a far larger estimate of popula-
tion size. an even greater problem is the enormous spatial variability in scallop density, 
which generates considerable uncertainty regarding how close an estimate is to the true 
value. Increasing the sample size will reduce this uncertainty, but at the cost of more 
time at sea, which is expensive.

2.  acoustic survey at a speed of 9 nautical miles per hour. 1 sample/minute in 10 m 
wide swath.

Haul area Ao  (1 min)(9 nmile/60 min)(1852 m/nmile)  2778 m2

Level replication units Ao A Scope To T Scope

Sample 1 2778 m2 1 min 2 hr 18

Survey day 1440 1440 4 km2 1 day 1 day 1

Survey 30 43200 120 km2 19,000 km2 158 30 day 30 day 1

Spatial scope     19,000 km2/ 0.00278 km2        6.8 · 106 possible samples
units  n      1440/day · 30 days      43200
expansion factor  EF      6.8 · 106/43200      158
Sampling fraction  SF      EF1      6.3 · 103

3. comparison of dredge and acoustic survey.
Scallop density [N] on St. Pierre Bank at resolution of 1 scallop diameter
Spatial scope  (19,000 km2)(105 cm/km)2/ [(5 cm)2(3.14)]

      2.4 · 1012 possible samples

 

Spatial scope of [N] = scallop density

Dredge survey

Acoustic survey

Area (m2)

10−4 10−2 100 102 104 106 108 1010 1012

EFn---> --------->

-->----------> EFn

AnOtheR LOOk At SeCtiOn 12.4.1

State a quantity of interest to you, define units and frame for a simple random survey 
to estimate the mean value of that quantity, then make a rough estimate of the num-
ber of units in the frame and the expansion factor.



Chapter 12 • The Scope of Research Programs 237
12.4.2 Stratified Random Surveys

The frame of a survey is often stratified into groups of units that share a common trait. 
a good stratification results in estimates of the parameter, that will differ among strata.  
If the units are natural (leaves, organisms), stratification will be by some trait mea-
sured on each unit. If the units are artificial within a finite spatial frame (relevés, 
quadrats, dredge hauls, etc.), stratification can be either by a measured trait or by con-
tiguity. Stratification by contiguity results in estimates for subareas of the overall area. 
Stratification by contiguity is a form of coarse graining (Figure 7.3) and hence addresses 
questions of spatial scale.

one way of reducing uncertainty in an estimate is to allocate greater sampling 
effort to strata with highly variable catches. This reduces the variance in the estimate in 
those strata with high variance and hence will usually reduce the uncertainly in the esti-
mate across the frame. This differential allocation of samples is called stratified random 
sampling (e.g., cochran, 1977). The statistical literature on this technique is extensive. It 
is worth noting that when the variance increases with the mean (as it does for count data 
such as scallops), the effect of allocating more samples to areas of high variance will be 
to increase the effort in areas of high mean density. The scope of a stratified random sur-
vey will be the same as a simple random survey—the number of units in the frame.

AnOtheR LOOk At SeCtiOn 12.4.2

For the quantity, units, and frame you listed in the previous section, define strata and 
why you think these strata represent a major source of variance in the quantity of 
interest. are your strata spatially contiguous?

12.4.3 Comparison of Survey Designs

Scope calculations, when displayed in a diagram, provide a quick and readily grasped 
comparison of alternative designs. The calculations in the diagram can be used to com-
pare costs as well as gains in precision. The following example carries graphical com-
parison to quantitative comparison of two methods of surveying scallop density on St. 
Pierre Bank, in the western north atlantic. The example is presented as what can be 
accomplished with scaling methods. It is well beyond the basics of spatial and temporal 
scaling in ecology.

Rapid development in acoustic technology now allows extensive and high-resolution 
delineation of scallop habitat (fine gravel for some species, coarser material for others). This 
information could be combined with local estimates of scallop density as a function of habi-
tat, to make an estimate of stock size. The immediate advantage of acoustic measurement is 
its greater capacity—more data for the same amount of time at sea. This must be weighed 
against the unknown characteristics of the method. In particular, the relation of the acous-
tic signal to habitat type is unknown and would have to be determined during the study. 
Before undertaking a calibration study, it is worth calculating how much the instrument 
will increase the scope of the survey and, as important, how much it can potentially increase 
precision through greater sample size. To evaluate this, we compare the scope of the dredge 
based and acoustic-based survey to each other, within the scope of the quantity of interest.
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The spatial support for the acoustic survey is a strip with less area than that cov-
ered by a dredge, because the acoustic device can integrate signals every minute in a 
10 m wide swath. at a steaming speed of 9 nautical miles per hour, the area of each 
acoustic measurement is 2778 m2 (Box 12.3). Because the unit area is smaller, the spatial 
scope (number of potential sampling sites) exceeds that of the dredge survey in the same 
area. acoustic measurements can be taken continuously, day and night, resulting in over 
43,000 measurements in a 30-day cruise. each sample represents an area 158 times 
as large (Box 12.3). The sample fraction, SF  6.3 · 103, exceeds that of the dredge 
survey.

Diagrammatic display of these calculations (Box 12.3) makes it evident at a glance 
that the increase in the scope of the acoustic survey is small, whereas the increase in sam-
pling effort n is substantial. consequently, the reduction in the inferred component EF 
is substantial, from a factor of 5700 for the dredge survey to only 158 for the acoustic 
survey. The calculations indicate that a further look at the acoustic survey is warranted.

How much of an increase in precision can we expect from the acoustic survey? 
We can expect a considerable gain, since the sampling effort increases by a factor of 
43,200/180  240. Set against this is the change in variance accompanying the change 
to a unit with different spatial support (Dungan, 2001). We can apply scaling arguments 
to make a rough estimate of the change in variance (and change in standard error) 
due to change in support. even though scallop counts will not be normally distributed 
around the estimate of the mean, it is reasonable to assume that means computed from 
180 samples (dredge survey) or even more samples (acoustic survey) will be normally 
distributed around the estimate, with a standard error proportional to the square root of 
the variance in count var(N) and inversely proportional to the square root of the sample 
size n. Because our interest is in the standard error of the dredge survey at the extent of 
the acoustic survey, we resort to an estimate of change in variance (and hence standard 
error) with scale from the acoustic survey.

The change in standard error (or relative standard error) can be estimated from the 
measurement relation between variance and the resolution (grain) of the spatial unit in 
the acoustic survey as measured by coarse graining, provided that the spatial extent of 
the dredge survey falls within the scope of the acoustic survey. acoustic surveys typically 
fall within the range of spatial resolutions possible with a dredge survey. This allows us 
to use the measurement relation between variance and resolution within the acoustic 
survey to estimate the standard deviation of the dredge survey at any of several resolu-
tions, including the rather large scale (extent) of an acoustic survey. The computations 
(Box 12.4) show that the reduction in standard error due to increase in sampling effort 
will more than offset the potential increase in variance due to smaller measurement 
area (support). Scope calculations combined with measurement relations suggest that it 
would be worth putting effort into an acoustic survey.

The next step is a calibration study to measure how strongly scallop density is 
related to acoustically defined habitat. We would also need to consider how to scale 
from transects to the entire surface of St. Pierre Bank. Random placement guarantees 
that transect measurements are representative of St. Pierre Bank, at least in the long 
run. an adequately randomized survey is expensive and so unlikely to be run more than 
once. If it is run only once, one cannot escape the fact that one survey might not be rep-
resentative temporally. It would be prudent to consider additional information, such as 
sand/gravel/cobble substrate in relation to water depth (available for the entire bank), 
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in designing a study to estimate scallop abundance across all of St. Pierre Bank. The 
topic of scaling from point, transect, experimental plot, and survey measurements to 
an ecosystem (such as St. Pierre Bank) was addressed in a special issue of the Journal of 
Experimental Marine Biology and Ecology (volume 216).

Box 12.4 Calculating the Relative Error from Sample Size and Unit Area

1. The formula for the standard error of the mean value of N requires an 
estimate of the variance var(N) in addition to sample size n.
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2. lacking an estimate of var(N), we rewrite the formula as a scaling relation to 
obtain the relative error.
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3. The spatial variance var(N) of highly clumped marine organisms scales with 
spatial frequency f according to an exponent  that is usually less than 1 and 
sometimes near 0, as estimated by spectral analysis (Horne and Schneider, 1997).
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4. In the worst case,   0, which means that the variance increases with 
increasing frequency (i.e., at smaller unit sizes). The measurement frequency 
is the inverse of the area of the sampling unit. The acoustic device samples 
the sea floor 6.7 times more frequently.

 

f

f
acoustic

dredge

 
1 2778

1 18520
6 7

2

2

/

/
.

m

m

5. Due to a higher frequency of measurement, the variance of the acoustic 
measurements could be 2.6 times greater than the dredge measurements.
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6. The reduction in standard error due to increase in sampling effort more than 
offsets the potential increase in variance due to smaller measurement area 
(support).
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12.4.4 Monitoring Programs

The goal of a monitoring program is to measure the degree of deviation from a defined 
norm for an activity that has an expected environmental impact. norms established 
by regulatory requirements result in compliance monitoring, which resembles an audit 
or performance review. an example of a regulatory norm is: no discharges beyond a 
defined value. norms also arise from the predictions of an environmental impact state-
ment. These predictions result in effects monitoring, a field with vigorous development 
in the last two decades, since the landmark book by green (1979). The principles of 
experimental design are often advocated for effects monitoring, even though it is usually 
impossible to assign treatments randomly to replicate units, an important condition of 
classical experimental design (Fisher, 1954). The development of the topic here takes the 
approach that Fisher’s principles apply to experiments, not surveys. Thus, the rigor of a 
monitoring program follows from the application of the principles of good survey design 
to the predictions from an environmental impact statement. effects monitoring becomes 
a matter of repeating a formal survey often enough to detect predicted changes.

The scope of a monitoring program is defined in the same way as the scope of a 
survey. The spatial scope of a monitoring program is defined as the area of the frame rel-
ative to the diameter, area, or volume of the unit that is completely measured. The frame 
is defined by the predicted impact. If the predicted impact is distributed over an entire 
watershed, the program will require an extensive frame, one that covers the watershed. 
For many activities the impact occurs at a point and so is expected to attenuate with dis-
tance. The frame is relatively limited, being just larger than the spatial scale of the impact. 
The temporal scope of a monitoring program is defined as the duration of the predicted 
impact relative to the duration of measurement of a single unit. The temporal scale of 
a monitoring program will thus be relatively large compared to a single survey. Well-
designed monitoring programs have a defined stopping rule, set either by the life of the 
activity or by some consideration of cost relative to the benefit from more information.

Because effects monitoring is based on predictions, the spatial structure of the 
program is usually more complex than a survey. an example is the effects monitoring 
program developed for the Hibernia oil production platform, located in 100 m of water 
near the edge of the continental shelf in the northwest atlantic, about 300 km east of St. 
John’s, newfoundland. over a 20- to 30-year lifetime, the platform is expected to dis-
charge drilling fluid and tailings from at least 60 wells, each on the order of 4 km deep. 
Discharge is predicted to alter the sediment chemistry and abundance of benthic organ-
isms. changes are expected to be greatest near the platform, attenuate with distance, 
and fall to background levels at 2–5 km from the platform. To monitor relative to these 
predictions, the monitoring program defined stations at roughly logarithmic intervals 
(100 m, 200 m, 500 m, 1 km, 2 km, 5 km, 10 km) along 4 radii, one running into the  

AnOtheR LOOk At SeCtiOn 12.4.3

If you have experience with a research project in which both surveys and field experi-
ments were conducted, draw a diagram comparing the spatial and temporal scales of 
the survey(s) and experiment(s).
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Box 12.5 Scope Calculations for a Program to Monitor the Impact of Discharges and Tailings from 
the Hibernia Drilling Platform on the Benthos of the Outer Grand Bank, Newfoundland

Station: A  (5 m)2  78.5 m2

Radius: A  (10 m)(10 km)  100 m2

Survey: A  (10 km)2  314 km2

Level replication units Ao A Scope To T Scope

Pre-impact

Core 1 (25 cm)2 1 sec

Station 3 cores 3 0.19 m2 78.5 m2 419 3 sec 10 hr 1.2 · 104

Radius 6 stations 18 1.125 m2 100 m2 88.9 18 sec 2.5 day 1.2 · 104

Survey 4 radii 72 4.5 m2 314 km2 7 · 107 72 sec 10 day 1.2 · 104

Post-impact 1 144 9 m2 314 km2 3.5 · 107 144 sec 3 year 6.6 · 105

Post-impact 2 216 13.5 m2 314 km2 2.3 · 107 216 sec 5 year 7.3 · 105

  

n = 72 EF = 7 x 107

Area (m2)

10−2 10−1 100 101 103 104102 105 106 107 108 109

Scope = (72)(72 x 107) = 5 x 109

prevailing current, one running downstream, and 2 perpendicular to the current to form 
a cross-shaped layout. a survey was carried out before the platform was set on the sea- 
floor. Surveys were carried out 3 years and 5 years later. Scope calculations (Box 12.5) 
are broken out by survey because change at this time scale is the focus of the study.

Figure 12.2 displays the scope calculations in graphical form. as before, the effort 
(n) at each level in the study is plotted as a series of circles, connected by a line. The 
study design is shown as another line connecting a series of crosses, one at each level. 
The scale-up (EF) is shown for the pre-impact survey alone. In Figure 12.2a the scale-up 
or expansion factor EF has been resolved into spatial and temporal components. Figure 
12.2b shows the scale-up (EF) for the pre-impact survey and for the entire monitoring 
program to detect change. either expansion factor EF can be partitioned into compo-
nents according to the levels in the design.

The inferential basis for scale-up in this survey differs from the frame-based survey 
described for scallops. The frame-based survey estimates a parameter (usually, a mean) 
from samples taken randomly (hence, with known probability) within a fixed list of 
units. Such a design could have been used in this study by fixing an area around the 
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drilling platform, then sampling randomly from within the frame of all sites before and 
after the impact. Though this is a valid design, it does not make effective use of our 
knowledge of the expected effect of drilling discharges, which is a decrease in impact 
with increasing distance from the discharge site. To monitor relative to the predicted 
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Figure 12.2 Scope Diagram for a Monitoring Program. A radial design was chosen to detect predicted effects of 
point release of contaminants from oil platform at the hibernia site in the northwest Atlantic. Sampling effort at 
each level in the study is plotted as a series of circles, connected by a line; (a) the scale-up factor EF for the pre-
impact study,  resolved into spatial and temporal components; (b) the study design is shown as a line connecting  
a series of crosses, one at each level.  Dotted line shows scale-up factor EF for the pre-impact survey and for the 
entire monitoring program to detect change.
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impact, a gradient design was adopted (ellis and Schneider, 1997). The design estimates 
the gradient in some quantity Q with increase in distance from the point of discharge.  
Q might be, for example, the concentration of a contaminant such as barium, a compo-
nent of drilling fluids that is released into the environment. a likely model, based on dif-
fusion due to eddy mixing, is an exponential function of distance X.

 Q Q eo
Xx ( )

 (12.1a)

Here, Qo is the value of Q immediately adjacent to the platform. The parameter x is 
the gradient in Q on an exponential scale. The same model in different format is:

 Q e o xX ( ) 
 (12.1b)

Here, ln(Qo)  o.
The number of possible radii along which to estimate x is substantial. at the scale 

of a station (radius  5 m, diameter  10 m) there are n  (2 10 km)/(10 m)  6284 
endpoints (nonoverlapping stations) along the periphery of a circular area A with a radius 
of 10 km. In the absence of knowledge of patterns of dispersion of contaminants around 
a release point, we would use a random sampling design to select radii. However, the 
Hibernia site sits within the influence of the southward-flowing labrador current; hence 
we expect the gradient to be attenuated downstream (to the south), stronger upstream 
(to the north), and somewhere in between at right angles to the current (east and west). 
consequently, the gradient design was oriented according to the labrador current with 
one transect running upstream, one downstream, and two at right angles to the prevail-
ing current.

Because the stations were fixed in two spatial dimensions (fixed positions along 
each transect at logarithmic intervals, fixed direction relative to the prevailing current), 
inference from the scale of the station to that of the entire area is no longer that of 
statistical inference from unit (grab) to frame of 5  109 possible grab sites in a 10 km 
radius area. More realistically, the statistical inference from unit to frame is by a factor 
of 10.5  103 , computed as:
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The burden placed on statistical inference has been reduced from a factor of 
7  107 (expansion factor in Box 12.5) to 10.5  103. The reduction is substantial but 
by no means free of cost. It is based on knowledge of diffusion in the ocean in general 
and at the Hibernia site in particular, information that is expensive to obtain.

The program at Hibernia monitors relative to both regulatory norms and predic-
tions from knowledge of marine systems. The predicted effect, based on knowledge 
summarized in the impact statement, was for a post-impact gradient in contaminants 
and in population density to develop out to distances of less than 5 km. The gradient 
is estimated via the research program diagrammed in Figure 12.2. The gradient design, 
oriented relative to the labrador current, reduced the burden on statistical inference by 
introducing different forms of inference at different levels within the overall scope of the 
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monitoring program. Statistical inference (samples from a defined frame) was confined 
to within stations of approximately 5 m in radius. at larger scales, stations were fixed 
along transects, which were in turn fixed relative to prevailing currents. at this scale, 
statistical inference is to an infinite population of all possible measurements that could 
be made, given the fixed station protocol. Statistical inference no longer addresses spa-
tial uncertainty. The scale-up from station to transect rests on the assumption that loga-
rithmically spaced stations will adequately represent the gradient in effects from a point 
source. Scale-up from transects to the entire area around the point source rests on the 
assumption that four transects oriented either parallel or perpendicular to the prevailing 
current will represent the extremes in gradient strength, from high (upstream) to inter-
mediate (perpendicular to the flow) to least gradient (downstream).

AnOtheR LOOk At SeCtiOn 12.4.4

State two predictions of the impact of building a road into a 25 km2 area devoid of 
roads. State quantities you would measure, draw a spatial layout to detect effects, 
and construct a table (as in Box 12.5) showing levels, replication, and units.

12.4.5 hierarchically Structured Surveys

another purpose of a survey is quantifying variance (and hence contrasting estimates 
of the mean among units) at multiple spatial scales. Such surveys are particularly use-
ful at the start of a research program because they allow efficient allocation of effort 
in ways that yield the most information per sample. an example is a set of measure-
ments to characterize spatial differences in the density and rate of loss of invertebrate 
prey during a period of intense predation by migratory shorebirds. each year migratory 
shorebirds congregate in large numbers at a few midlatitude coastal sites along their 
southward migratory route. at these locations they put on substantial fat stores, which 
are required to complete transoceanic migration to wintering grounds in the tropics or 
southern hemisphere. Because of human pressures on the coastal zone at the midlatitude 
sites, a key conservation question was whether the prey base remains stable during peri-
ods of high use at coastal sites with major concentrations of birds.

Systematic studies of invertebrate prey were begun in 1975 on White Flat, located 
in a coastal lagoon at Plymouth, Massachusetts (42°n), between Boston and new york 
city. The lagoon has an area of 40.7 km2, of which about two-thirds is exposed at low 
tide. During July and august it is used by thousands of migratory birds, which were 
known to stay for several weeks to feed and fatten before continuing their southward 
migration. The quantities of interest were the densities [Ni] of all infaunal invertebrates, 
the densities [Nj] of prey species at sizes taken by shorebirds, and rates of loss of infau-
nal prey [N]  during the period of high predation by migratory birds. The spatial vari-
ance in these quantities was estimated by a hierarchically structured survey on White 
Flat, an intertidal flat with high habitat heterogeneity. Five plots, each 1 hectare in area, 
were chosen to represent the range of habitat and shorebird species composition on the 
flat. each plot was marked with stakes at each corner, feeding birds were counted at 
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weekly intervals in each plot, and the first round of invertebrate sampling was com-
pleted July 22–24 at randomly chosen sites in each plot.

a two-stage process was used to locate sites randomly within each plot. a 10 m 
by 10 m area within each plot was located via random numbers from 0 to 9. Within this 
subplot two samples were taken, each by a random number from 0 to 9. This process 
was repeated three times, resulting in four subplots and eight sample sites per plot. once 
a site was located (to an accuracy of 1 m), a core was taken within a 1 m2 area by driv-
ing a plastic coring tube into the sediment. This was done while the researcher was look-
ing up, to eliminate bias caused by looking at the sediment surface when placing cores.

This study had six levels. The first (lowest) level is that of the coring device, with 
a diameter of 10 cm, hence an area of 0.007854 m2. The diameter was chosen to give 
counts on the order of 0–100 organisms per core in the size range of invertebrates (1 mm 
to 3 mm diameter) taken by birds. The second level is that of the 1 m2 area in which 
each core was placed. The third level was that of the (10 m)2 subplot. This level was 
of interest because the distribution of birds and sediment features in the plot suggested 
there was important spatial variation at this scale. The fourth level was that of the 1 
hectare plot. This unit was chosen to be large enough to make quick counts of all birds 
foraging in a known area. The fifth level was that of the habitat. Three plots were set in 
silty sand on the west side of the flat, representing about half the flat. These three plots 
ranged from light silt (representing about one-quarter of the flat), moderate silt (about 
one-eighth of the flat), and silt with mud (about one-eighth of the flat). Two plots (rep-
resenting about half the flat) were set in sand on the east side or north end of the flat, 
where ebb-tide currents winnow silt from the sediment. The sixth level was a single flat 
of 1.1 km2, surrounded on all sides by water at low tide. Box 12.6 shows the replication 
at each level, the overall scope of the study, and the scope at each level.

Box 12.6 Scope Calculations for a Stratified Survey of Infaunal Invertebrate Density in Areas Used 
by a Large Number of Migratory Shorebirds on White Flat, Plymouth Harbor, 1975

core area: Ao  (5 cm)2  78.5 cm2

Level replication units Ao A Scope

Core (5 cm)2

Site 1 core 1 0.007854 m2 1 m2 127.3 core/core taken

Subplot 2 sites 2 0.01571 m2 100 m2 6366 core/core taken

Plot 4 subplots 8 0.06283 m2 10000 m2 159200 core/core taken

Habitat (2  3)/2 plots 20 0.1257 m2 550000 m2 3501000 core/core taken

Flat 2 habitats 40 0.3142 m2 1100000 m2 3501000 core/core taken

overall spatial scope  SpSc    1.1 km2/ 0.007854 m2    1.401 · 108  potential cores
units   n    8 cores/plot · 5 plots    40  cores taken
expansion factor  EF    1.1 · 108/40    3.501 · 106  potential core/ 
      core taken
Sampling fraction  SF    EF1    2.856 · 107 core taken/  
      potential core
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Box 12.6 shows the partitioning of the overall scope into a measured (n) and an 
inferred (EF) component. The box further shows the partitioning of the inferred com-
ponent into scale-up factors for each level of the stratified survey. In this example the 
overall expansion factor was partitioned in five components (core to site, site to sub-
plot, subplot to plot, plot to habitat, habitat to flat). each component is the ratio of 
two areas, adjusted for the replication at that level. For example, the site-to-subplot 
component is the ratio of the site-to-subplot area (100 m2/1 m2) adjusted by the repli-
cation at this level (two sites per subplot). The expansion factor at this level is 50, the 
expansion factor at the next level is 25, and so on (Box 12.6). each expansion com-
ponent can be calculated from the ratio of scopes at two levels. The expansion factor 
from site to subplot is thus 6366/127.3  50. The expansion factor at the next level is 
159200/6366  25.

Partitioned spatial scope
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10−3 10−2 10−1 100 101 102 103 104 105 106 107

EF = 3.5 x 106 potential cores / core taken

(40)(3.5 x 106) = 1.4 x 108 potential cores

AnOtheR LOOk At SeCtiOn 12.4.5

Pick a species for which you have some sense of spatial variation (e.g., pigeons in a 
city). Define survey levels that you think capture major components of spatial vari-
ance. Make rough scope calculations for the survey, as in Box 12.6, using reasonable 
guesses of sample number and area.

12.4.6 Magnitude and Basis of Scale-up in Surveys

The magnitude of scale-up can be quantified for an entire survey, then partitioned among 
levels in a survey. The magnitude of scale-up at each level depends on the number of units 
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that accumulate by replication at that level and on the ratio of unmeasured to measured 
units at that level. The basis for scale-up varies across studies and can vary within a study. 
Scale-up can be by judgment that sites are representative (eccentric bog study), by infor-
mal inference based on haphazard sampling (small-scale sample placement in bog, scallop, 
and Hibernia studies), by formal statistical inference in a finite spatial frame (in the scal-
lop survey), by a descriptive spatial model (habitat area assignable to plots at Plymouth), 
or by spatial model with theoretical content (equation 12.1 for Hibernia monitoring).

The basis for spatial scaling from measured to unmeasured units was the same 
(informal inference based on judgment) at both levels in the bog reconnaissance (Box 
12.1). The basis for spatial scaling in the random and stratified random survey (scallop 
survey, Box 12.3) was formal statistical inference in a finite frame because all units in 
the frame had known probabilities of being sampled. In the Hibernia monitoring pro-
gram (Box 12.5), the basis for spatial scale-up depended on level. at the level of core 
to station, the basis was informal inference based on haphazard sampling, because the 
mechanics of taking box cores over the side of a ship put the chance of a particular core 
site being hit beyond the control of the investigator. Thus it is reasonable to assume that 
core samples are independent of variation in density and hence produce a representa-
tive and unbiased estimate of the density at each station. The basis for scaling from sta-
tion to radius was a model based on attenuation of contaminants with distance from a 
point source (equation 12.1). The basis for scaling from radius to circular area around 
the drilling platform was the same model. It is expected that the key parameter in the 
model (rate of attenuation with distance) will vary among the 4 radii. The parameter 
is expected to be lower (weaker gradient) in the direction of net current (southward at 
Hibernia) than the upstream direction.

The scale-up at each level in the Plymouth invertebrate density study, quantified 
in Box 12.6, rests on different forms of inference. The scale-up from core to site (by a 
factor of 127.3) is based on haphazardly sampling. Because cores were taken blindly, 
the probability of a site being sampled was assumed to be independent of variation in 
density within a site and hence assumed to give representative and unbiased estimates of 
the mean within a site. The scale-up from site to subplot (factor of 50) and from subplot 
to plot (factor of 25) was by probabilistic sampling, where random sampling guarantees 
representative and unbiased estimates. The scale-up from plot to habitat (factor of 22) 
was by systematic selection of plots within habitats on the flat. This was assumed to 
represent the range of variability within the two habitats. There was no scale-up from 
habitat to flat (factor of one) because the entire flat was divided into either sand or silty 
sand habitat, which were both measured. Partitioning of the overall scale-up revealed a 
surprising fact, which is that simple or stratified random surveys rest on haphazard sam-
pling at small scales, which can account for substantial fractions of the overall scale-up 
addressed by these surveys.

The basis for temporal scaling was informal inference at all levels in both the bog 
reconnaissance and the scallop survey. The basis for the judgment that a few points in time 
represent the timeframe of the study was the knowledge that the organisms sampled are 
sedentary, and hence densities do not change as a result of movement in or out of the mea-
surement unit (relevé, dredge haul, box core). Temporal scale-up was explicit in the moni-
toring (Hibernia) study. The time between surveys was chosen to detect change predicted 
to result from release of contaminants. The time to complete each survey was assumed to 
be small relative to the time for changes in benthic faunal density to occur. The temporal 
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scope of the hierarchically structured survey was adjusted to the expected rates of change 
in the density of invertebrates due to shorebird predation. The first round of sampling was 
completed as quickly as possible, to minimize change due to predation during the sampling. 
The second round of sampling (not reported in Box 12.6) was completed as soon as shore-
bird numbers begin declining in late august, to maximize the length of time of exposure to 
shorebird predation while minimizing the period of time after the departure of shorebirds.

12.5 The Scope of Experiments
an experiment is a test or a trial to discover something unknown. The principal advan-
tage of an experiment is that it compels an investigator to consider and control con-
founding factors before undertaking structured observations. explanations easily form 
around confounding factors, which are more numerous and sometimes more dramatic 
than causal factors. In a descriptive study, confounding factors are considered after an 
explanation is formed. In an experiment, confounding factors are considered before 
taking observations. Within this broad definition of experiment there exists consider-
able diversity in approach. an explanation is tested by altering the factor thought to 
be causal, holding other factors constant. an explanation may be challenged with a set 
of observations chosen to separate two or more competing hypotheses (Platt, 1964). 
an explanation may be tested in the presence of a confounding factor that is measured 
rather than held constant. These measurements are incorporated into the analysis to dis-
cover whether a proposed explanation remains tenable after removing the effects of a 
confounding factor. This approach, statistical control, is a key feature of experimental 
design (cochran and cox, 1980).

ecological experiments are undertaken to understand pattern and process in a 
larger context, usually that of an ecosystem. Scope diagrams reveal the enormous scale-
up from experiment to the system of interest. These diagrams are useful in comparing 
and evaluating experimental results. They are also useful in evaluating the generality of 
an experiment. The spatial scope of an experiment is defined as the maximum distance 
between measurements divided by the resolution (support) of a single measurement. 
areas or volumes can be used instead of distances in making scope calculations. The 
temporal scope of an experiment is defined as the time between the start and end of the 
experiment divided by the duration of a single measurement.

The following sections demonstrate the construction of scope diagrams for a series 
of increasingly complex experiments. Section 5.1 demonstrates the procedure for two 
experiments to estimate a rate parameter, one in the lab and one in the field. Section 5.2 
demonstrates the procedure for classical Fisherian experiments in agriculture. Section 
5.3 shows scope calculations for a Fisherian experiment in ecology. Section 5.4 consid-
ers the limits of Fisherian experiments in ecology. It then describes the scope of inference 
at multiple levels in experiments that do not conform to Fisherian designs with just two 
levels. Section 5.5 describes embedded experiments, which make explicit the magnitude 
and basis for scale-up of the experimental components of a study.

12.5.1 experimental estimate of a Parameter

experiments are often conducted to estimate a parameter under controlled conditions. 
For example, an experimental analysis of plant growth in relation to light clearly has the 
aim of estimating a parameter: the growth rate as a function of light. a statistical test of 
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whether growth depends on light is somewhat beside the point since there is no ques-
tion that reduced light reduces growth. a measure of uncertainty on the estimate of the 
parameter is of more interest.

one use of parameter estimates from controlled conditions in the laboratory is to 
calibrate field studies. an example (ogilvie, 2000) is an experiment to determine the 
mortality rate due to handling and marking prior to undertaking a mark-recapture 
experiment in the field. Juvenile cod Gadus morhua were marked with flourescent dye, 
released into a tank, then recaptured and counted 24 hours later. The design held mor-
tality to zero from all sources except marking.

The scope diagram is constructed from a table that begins with the resolution (or 
support) of the sampling unit. For the tank experiment (Box 12.7), the lateral extent is 
Ao  (3 m)2. The measured duration (To) is one day for the trial. at the next level (next 
row in the table, Box 12.7), the replication is listed. The experiment was repeated six 
times in a three-month period in the same tank. The area sampled remains the same 
Ao  (3 m)2. The area within which samples are taken (A) is then listed. Sampling did not 
represent some larger area than the tank, so the overall area A at the level of the study is 
the same as the area sampled (Ao) at this level. The effort at the level of the study is cal-
culated as the product of the replication and the duration of the unit (To  6 days). This 
effort occurred within an overall period of T  30 days. These calculations (Box 12.7) 
are relatively simple compared to more complex designs that will be encountered later.

once the components for scope calculations are obtained, they can be displayed 
in a diagram. Figure 12.3 shows the measured area and duration (Ao, To) as circles con-
nected by a solid line. The total extent and duration (A, T) is shown as a cross. Temporal 
scale-up to the full three-month duration of the experiment is shown as a dotted line.
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Field experiments can also have the aim of estimating a parameter. an example is 
a mark-recapture experiment (Hancock, 2000) to estimate the rate of juvenile cod dis-
persal. The handling protocol in this experiment was the same as for the complementary 
laboratory experiment by ogilvie (2000). Marked fish were released at a point on a 
beach. Seine hauls were then taken at 10 locations spaced along more than 200 meters 
of beach. each haul collects nearly all fish in a 16 m swath running 55 m seaward from 
the beach. Hauls were made at all 10 locations at roughly logarithmic intervals in time: 
1, 2, 6, 9, and 16 days after release of fish. The degree of dispersion was plotted against 
the cumulative time, so cumulative time was used in the temporal scope calculations 
(Box 12.8).

Box 12.7 Scope Calculations for a Laboratory Experiment (Ogilvie, 2000) to Estimate Mortality Due 
to Handling and Marking of Fish

Level replication units Ao A Scope To T Scope

Trial 1 3 m2 1 day

Study 6 trials 6 3 m2 3 m2 1 6 days 3 months 15

Box 12.8 Scope Calculation for a Mark-Recapture Experiment (Hancock, 2000) to Estimate 
Dispersal Rate of Juvenile Cod

Site  (240 m)(55 m) 

haul  (16 m)(55 m)

Level replication units Ao A To T Scope

Haul 1 880 m2 30 min

Visit 10 sites 10 8800 m2 13200 m2 2.5 hr 1 day 9.6

Visit 10 sites 20 8800 m2 13200 m2 5.0 hr 2 day 9.6

Visit 10 sites 30 8800 m2 13200 m2 7.5 hr 6 day 19.2

Visit 10 sites 40 8800 m2 13200 m2 10.0 hr 9 day 21.6

Visit 10 sites 50 8800 m2 13200 m2 12.5 hr 16 day 30.7

Experiment 5 visits 50 8800 m2 13200 m2 12.5 hr 16 day 30.7

Spatial scope  SpSc    13200 m2/ 880 m2    15 possible sites
units   n        10
expansion factor  EF    16.5/10    1.5
Sampling fraction  SF    EF1    0.67
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The scopes of the field and laboratory experiment were plotted together for com-
parison (Figure 12.3). The two experiments have similar temporal scales. The spatial 
scale-up from lab to field assumes the same mortality rate for fish in a 3 m2 tank as fish 
ranging over larger areas. Scale-up beyond the scope shown in the figure relies on a 
knowledge of the biology of cod. one would expect the same dispersal rate to apply to 
other coastal areas and other years but not to other seasons.

AnOtheR LOOk At SeCtiOn 12.5.1

compare the scope diagram for the two experiments (Figure 12.3) to the diagram for 
the descriptive study of eccentric bogs (Figure 12.1). Do you think the differences are 
typical of experiments versus descriptive studies? Why or why not?

12.5.2 Fisherian experiments

In ecology, some investigators constrain the meaning of experiment to the prescription 
developed by R. a. Fisher (1954) for agricultural experiments. The prescription requires 
the manipulation of an explanatory variable at fixed treatment levels with repeated tri-
als, including controls (trials with no manipulation), and random assignment of treat-
ments and controls to units. This prescription defines a Fisherian experiment, which has 
become increasingly prominent in ecological research (Hairston, 1989; Resetarits and 
Bernardo, 1998). The Fisherian program of randomization, replication, and local con-
trol was developed to address problems of spatial heterogeneity and confounding within 
agroecosystems. Heterogeneity among units in agroecosystems cannot be eliminated 
entirely, but it can be reduced substantially before the experiment. The classic Fisherian 
solution to the problem of spatial variation is adequate replication of units to estimate 
variance due to random (uncontrolled) factors. experimental units in one area may dif-
fer from those in another. If treatments are assigned to one location and controls to 
another location, then even after chance effects are excluded by the logic of inferen-
tial statistics, differences due to treatment cannot be separated from differences due to 
location, even if the locations are adjacent and resemble each other closely. The classic 
Fisherian solution to this problem is randomized assignment of treatments to a defined 
set of spatial units so that treatment is independent of spatial heterogeneity among units.

In agricultural work it has long been recognized that variance among experimen-
tal units will increase as they become more widely separated (e.g., Smith, 1938). as 
the treatment levels or number of factors increase, the spacing between treatments and 
control necessarily increases in a completely random design. The result is an inefficient 
design due to naturally large differences between widely separated treated and control 
units. The classic Fisherian solution to the problem of increase in spatial heterogeneity 
with increase in separation is local control. In experiments in which several factors are 
manipulated, achieving local control along with randomization and replication requires 
sophisticated designs to analyze the results of layouts that reduce spatial separation of 
treatment and control units (cochran and cox, 1957). local control and sophisticated 
spatial designs are solutions to the problem of the increase in heterogeneity with increas-
ing spatial scale or separation between experimental units.
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Fisherian experiments focus on defined spatial units, to which treatment and 
control are assigned randomly. Measurement is usually made across the entire unit, 
resulting in one value per unit. Thus the spatial scope of a Fisherian experiment is the 
maximum distance between two experimental units in a study, divided by the resolution 
(area or support) of a single unit. The temporal scope of a Fisherian experiment is the 
time between the start and end of the experiment divided by the duration (support) of a 
single measurement.

an example of a Fisherian design is the Latin square. This design assigns treat-
ments to plots in random order within both rows and columns of a regular (usually 
square) array. It guarantees the principal features of sound design in agriculture: ran-
domization, replication, and local control. In particular, the design guarantees the prox-
imity of control to treatment at the scale of the row and column rather than at the larger 
scale of the entire array. Snedecor and cochran (1980, p. 289) present the results of a 
latin square design to compare the effects of four types of soil fumigants on wireworms. 
a fumigant or control (no treatment) was assigned to plots measuring 22.86 cm on a 
side and 12.87 cm deep. local control was achieved by random dispersal of untreated 
plots within each row and column of a 5 by 5 array. Random assignment within both 
rows and columns allows larger-scale (row and column) effects to be removed during 
statistical analysis. adding row and column factors to the analysis reduces the error term 
and increases the ability to detect an effect. Random assignment of each plot to either 
a treatment or a control eliminates confounding of treatment effects with unknown 
sources of variation among plots.

Box 12.9 Scope Calculation for a Latin Square Design Reported by Snedecor and Cochran (1980)

Level replication units Ao A Scope To T Scope

Plot 1 (22.86 cm)2 1 month?

Array 25 25 1.31 m2 4.23 m2 3.2 1 month 1 month 1

Repeat 2 50 2.61 m2 8.47 m2 3.2 2 month 1 year 6

Farm 2.61 m2 1 km2 3.8 · 105

Spatial scope  SpSc   1 km2/ (22.86 cm)2    1.9 · 107 possible samples
units   n    25/array · 2 arrays    50
expansion factor  EF    1.9 · 107/50    3.8 · 105

Sampling fraction  SF    EF1    2.6 · 106

Spatial scale-up:  n · EF  n · EFarray · EFfarm
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The calculation in Box 12.9 begins with the extent (Ao) of the sampling unit. For 
the wireworm example, the lateral extent is (22.86 cm)2. The measured duration is time 
from day of treatment to day of collection (1 month?). at the next level (next row in 
the table), the replication is listed. From this the measured extent (Ao) is calculated as 
52(22.86 cm)2. The area sampled (A) is then listed. If the samples are dispersed rather 
than contiguous, A exceeds Ao. Spatial separation was not reported, but it is reasonable 
to assume that treated plots were separated from each other by at least 1 plot width to 
avoid lateral contamination of one plot by another. under this assumption the extent of 
the array is (5  4)2(22.86 cm)2.

The experiment was repeated the following year (Snedecor and cochran, 1980,  
p. 289), which adds a new level to the experiment. The replication at this level was 25 
additional plots. It was not clear whether the experiment was carried out on the same plots. 
The calculations in Box 12.9 assume that the array in the second year had the same spac-
ing as in the first year. This brings the replication to 50, increasing the measured extent (Ao)  
to 2 · 52(22.86 cm)2. These 50 plots occur in an area a  2 (5  4)2(22.86 cm)2, assuming 
separate arrays with one plot width between each experimental plot. The area assumed 
available at the station for this type of experiment was taken as 1 km2.

The overall scope can then be partitioned into two components, one due to accu-
mulation of measured units (n) and one due to inference (EF). In this example, the latter 
component can be further partitioned into the scale-up within the array and the scale-up 
from the array to the farm. Box 12.9 shows the partitioning of the overall spatial scope 
into three scale-up factors.

This partitioning allows us to evaluate the basis for scale-up at each level, in rela-
tion to the magnitude of scale-up. at the first level scale-up is by a factor of 25. The 
basis for scale-up is accumulation of units with randomly assigned treatments. These are 
representative as long as the units are accumulated independently of the measured val-
ues in other units. at the next level, scale-up is by a factor of two, the result of repeating 
the experiment. The basis for scale-up is again accumulation of units. The next scale-up 
is inferred by a factor of 162/50  3.2. The basis for scale-up at this level can be statisti-
cal inference, depending on how we define the population to which we are inferring. at 
the final level, scale-up is by a larger factor, 105 (Box 12.9). The basis for scale-up here 
can also be statistical inference, again depending on how we define the population.

In a classic Fisherian experiment the inference is usually from the sample to an infi-
nite list: all possible difference in means that could have arisen if we repeat the experi-
ment again and again. The definition of the population thus turns on the experimental 
design and measurement protocol, which includes the preparation of the experimental 
units. In particular we must decide whether the 50 measured units represent the 162 
possible nonoverlapping units in the two arrays. If both arrays (A  8.47 m2) were pre-
pared in the same way before the experiment, we would likely judge that the population 
includes the means obtained at all 162 possible sample locations. By this definition of 
the population, statistical inference justifies the spatial scale-up (by a factor of 3.2). If 
all fields were prepared in the same way, we might further judge that the population 
includes the experimental outcome from any array prepared the same way on an experi-
mental farm. By this definition statistical inference supports the scale-up to the farm (by 
a factor on the order of 105 or more). However, it is also possible to judge that the prep-
aration of a field cannot eliminate variation at this scale, that the results of the experi-
ment will depend on field within a farm, and hence that statistical inference does not 
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include the scale-up to the level of the farm. If we are not prepared to state that the list 
of all possible outcomes will include those from plots measured outside the two arrays, 
we cannot use statistical inference. We could not use the Fisherian design to eliminate 
confounding effects at scales larger than the array of plots.

The Fisherian design of this experiment allows us to eliminate chance as an explana-
tion of the results; it allows us to eliminate confounding effects at the scale of the array. 
It does not necessarily allow us to eliminate confounding effects at scales larger than the 
array. It is possible that the experimental result will depend on some peculiar feature of 
the field in which it was conducted. Judgment based on knowledge of practice on the farm 
is needed to infer beyond the array and so justify the expectation that applying the same 
soil fumigants at the same concentration with the same procedure would have the same 
effect (within error) at other sites on the same farm and at other farms with the similar 
agricultural practices. as in any agricultural experiment, knowledge of the system and of 
the history of farming practice at the site is the basis for judging that statistical inference 
allows scale-up to areas beyond the perimeter of the experimental array.

AnOtheR LOOk At SeCtiOn 12.5.2

Try to design a rigorous Fisherian experiment (randomization, replication, local con-
trol) to address the problem of monitoring the predicted impacts of the Hibernia 
project described previously. list the problems you encounter with regard to the 
three principles of Fisherian experiments.

12.5.3 Fisherian experiments in ecology

The ecological literature contains many examples of well executed Fisherian experi-
ments. an example is an experiment to discover the effects of competitor density on 
the water balance of shrubs in the Mojave Desert of california (Fonteyn and Mahall, 
1981). Xylem pressure potential was measured in the two species Larrea tridentata and 
Ambrosia dumosa. Predawn xylem pressure is thought to reflect soil moisture availabil-
ity and thus the competitive effect of neighboring plants. Measurements were taken one 
hour before dawn in a plant centered within a 100 m2 plot having known density of 
competitors of the same species, of the other species, or both. The experiment was par-
ticularly well executed in regard to minimization of variance and control of confound-
ing effects. Twenty plots were chosen, of which half were centered on a Larrea plant 
and half centered on an Ambrosia plant. To reduce variance among units, the investiga-
tors chose plots that contained at least 3 Larrea and 11 Ambrosia plants. To eliminate 
confounding with locational effects, they assigned treatments and controls randomly to 
units. If logistics allowed, local control could have been increased by assigning treatment 
and control randomly within blocks of eight plots. This would place controls in greater 
proximity to treatments. The replication of units allowed the investigators to eliminate 
chance as an explanation for the observed lower xylem pressure potential in the more 
crowded plots. The random assignment of treatments to units allows the investigators 
to eliminate locational effects as an explanation of differences between controls and the 
several types of treatment.
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Box 12.10 shows the scope calculations for this experiment. The computa-
tional flow reflects the fact that measurements were taken at the same locations over a  
14-week period. Thus the measured area Ao on the first visit remains the same for the 
entire study. Measurements were taken periodically at one hour before dawn, before the 
onset of evapotranspirative stress. The measurements taken during a single visit extend 
over roughly a minute during the hour before dawn, but there is only one such hour 
in the day and seven such hours in the week. The temporal scale-up from a visit to the 
entire study is by a factor of 12.25, the ratio of predawn hours in 14 weeks (98) to the 
number of hours (8) in which measurements were taken.

The results presumably apply to the Mojave Desert ecosystem. otherwise they 
would be of little interest. a study based on 100 m2 plots in the Mojave Desert will 
have an overall scope of 6 · 108 (Box 12.10). Within this scope the scale-up from plot 
to study area is by a factor of 6.25, compared to a scale-up of 2.4 · 106 from study area 
to ecosystem. This large scale-up factor can be reduced somewhat by noting that not all 
habitat in the Mojave will support shrubs. If we assume that 10% of the ecosystem is 
desert floor, and we further assume that 10% of the desert floor is suitable for shrubs, 
the scale-up factor from study area to suitable habitat becomes 2.4 · 104 (Box 12.10).  

Box 12.10 Spatial Scope Calculation for a Field Experiment to Discover the Effects of Competitor 
Density on Water Balance of Desert Shrubs (Fonteyn and Mahall, 1981)

Level replication units Ao A Scope To T Scope

Plant 1 m2 1 s

Plot 1 1 1 m2 100 m2 100 1 s 1 hour

Site 40 40 0.4 ha 2.5 ha 6.25 40 s 1 hour 90

Study 8 visits 320 0.4 ha 2.5 ha 6.25 8 hour 14 · 7 hour 12.25

Spatial scope   SpSc   2.5 ha/100 m2    250
units  n    40/visit · 8 visits    320
expansion factor  EF    250/40    6.25
Sampling fraction  SF    EF1    0.16

Mojave Desert  Tehachapi to Mojave Mountains: 300 km
Death valley to San Bernardino Mountains: 200 km
area    6 · 104 km2

Desert floor (10% ?)  area    6 · 103 km2

Shrub habitat (10% ?)  area    6 · 102 km2

EFhabitat    6 · 102 km2/2.5 ha    2.4 · 104

overall spatial scope   (6 · 104 km2)/(100 m2)  6 · 108

Partitioned scope   (n)(EFsite)(EFecosystem)
  (40) (6.25 ) (2.4 · 106)  6 · 108

Partitioned scope   (n)(EFsite)(EFhabitat)(EFecosystem)
  (40) (6.25 )(2.4 · 104)(100)  6 · 108
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The scale-up supported by rigorous statistical inference (a factor of 6.25) is far smaller 
than the scale-up based on judgment that sites were typical (a factor of at least 2.4 · 104).  
The limited scale-up achieved by this Fisherian experiment is typical in ecology, where 
logistics constrain experimental manipulation to small areas.

The limitations of Fisherian experiments in ecology are by now well known. 
explanatory variables cannot always be manipulated. confounding factors cannot be 
held constant by manipulation. experimental units have not been homogenized by agri-
cultural practice, so substantial replication is required to overcome variance among units. 
The rate of increase in heterogeneity with separation (scale) is poorly known, in contrast 
to agroecosystems, where estimates are available from the literature (e.g., Smith, 1938).

logistics limit the number of experimental units, especially if units must be large 
to be realistic. In the wireworm experiment (Box 12.9), a relatively small plot size of 
(22.86 cm)2 was judged representative. In the desert shrub experiment (Box 12.10), a far 
larger unit was needed—by a factor of 100m2/(22.86 cm)2  1900. The size of the unit 
judged to be relevant to the dynamics of an ecosystem can be far larger. an example is 
deforestation (likens et al., 1970) and reforestation (Schneider and ayer, 1961), which 
alter the hydroregime at the scale of the watershed. In a forest, the effects of change 
in forest cover cannot be evaluated solely by small experimental units such as a single 
tree or even 1 hectare plots. In lakes the dynamics of phosphate loading, acid precipita-
tion, or fishing mortality are appropriately studied at the scale of the lake, becoming 
the natural unit for intervention (Schindler, 1987). When logistics and realism are both 
considered, the result is often a limited number of experimental units, each of which 
is measured repeatedly. a repeated-measures design makes effective use of multiple 
measurements, even though it cannot address the problem of few experimental units. 
Dutilleul (1998) covers the topic of repeated measures in detail.

Scope calculations quantify the problem of scale in experimental ecology. The scale-up 
achievable by rigorous experiments that adhere to Fisherian principles can only be small com-
pared to the scale-up from the experimental area to the ecosystem. This is less a problem in 
an agroecosystem because we have considerable knowledge of the past history of the system 
and of the spatial context in which an experiment occurs. From this we can judge whether 
the experimental results apply to the rest of the farm and, beyond that, to other farms. In 
statistical terms, we can judge whether the population of all possible outcomes, given the 
experimental protocol, includes other sites on the farm or other farms. In ecology, we have 
far less knowledge of the history of a site, its spatial context, and degree of heterogeneity 
among sites in the same ecosystem. consequently, we have far less basis for using statistical 
inference based on the judgment that the infinite list of all possible outcomes for one experi-
ment includes other sites in the ecosystem. To make effective use of ecological experiments, 
we need to bring larger-scale information to bear, as in a survey or monitoring program.

AnOtheR LOOk At SeCtiOn 12.5.3

oceanographers use physical models to predict the value of a variable (e.g., width of 
upwelling zone along a coast), then design a measurement program to verify whether 
the value is correct. Fisherian experiments, based on the logic of the null hypotheses, 
result in a yes/no decision. Which do you find more convincing: testing whether an 
effect is present or testing a predicted level of effect?
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12.5.4 embedded experiments in ecology

experimental programs typically have limited spatial and temporal extents (Kareiva and 
anderson, 1988; lodge et al., 1998) in exchange for greater control over confounding 
variables. The 1990s saw widespread recognition of the limited spatial scale of experiments 
relative to the ecosystems being studied. In a book summarizing the state of experimen-
tal ecology at the end of the 20th century (Resetarits and Bernardo, 1998), nearly every 
chapter mentions the problem. a subsequent book reviews the problem in freshwater, ter-
restrial, coastal, and marine ecosystems (gardner et al., 2001), with an emphasis on meso-
cosm experiments. The classic solution to the problem is an embedded experiment, where 
experimental units are placed within some form of survey (ellis and Schneider 2008).

experiments can be embedded within surveys in several ways. a common way is to 
use an informal survey to identifying strata in which to place experiments. an early exam-
ple is Menge (1976), who examined the role of physical factors in modifying the outcome 
of competition for space on rock surfaces by sessile intertidal invertebrates. Menge estab-
lished transects downward through the intertidal zone at six locations differing in exposure 
to wave action in Maine, in the northwest atlantic. Randomly placed quadrats were used 
to estimate percent cover along the transect. Menge scraped visible organisms from areas 
of rock to examine the rate at which barnacles and mussels filled space. Predator exclosures 
and competitor removal were used to examine the effects of wave exposure, tide height, the 
presence of a predator, and the presence of competitors. Percent cover on transects at each 
site was observed during the course of the experiment. This served as a form of control as 
well as providing a larger-scale context in which to interpret the results in the experimentally 
altered areas. The approach is classic in that surveys are often undertaken to choose sites, 
even if this effort is informal and unreported. This information allows the investigator to 
embed the experimental results into the larger-scale context of the informally surveyed area.

another approach is to embed experiments into a survey designed to address a 
question. an early example (Schneider, 1978, 1985) is the use of predator exclo-
sure experiments embedded into a systematic survey to estimate rates of prey deple-
tion and prey community reorganization at coastal sites where shorebirds store energy 
as fat before undertaking nonstop migration across thousands of kilometers of inhos-
pitable ocean. The motivating conservation question was whether shorebirds faced 
a declining prey base at the scale of the lagoon; so a hierarchically structured sur-
vey was conducted within a single flat in 1975 (refer back to Section 12.4.5), then 
extended to the scale of the entire lagoon by surveys on five flats in 1976 (575 cores), 
1977 (590 cores), and 1978 (240 cores). The scope of the study (lagoon area/core 
area) was 34.6 km2/78.5 cm  4.4  109. The scale-up, from area measured, ranged 
from EF  34.6 km2/(240  78.5 cm2/core)  14.4  104 in 1978 to EF  34.6 km2/
(590  78.5 cm2/core)  5.9  104 in 1977. exclosures (half meter by half meter) were 
placed within or adjacent to 1 hectare study plots with known densities of invertebrates, 
known usage by shorebirds, and known rates of prey depletion. exclosure experi-
ments were conducted on the same July–September schedule as surveys. Several exclo-
sures were run each year. no attempt was made to place exclosures randomly, since this 
would have been less informative than pairing the exclosures with survey sites. These 
experiments, paired with surveyed areas, showed that depletion measured by the survey 
was due to predatory removal (Schneider, 1978).

embedding can be accomplished by weighting the results of each experiment by the 
relative frequency of comparable sites in the ecosystem. This approach was adopted in a 
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study of adult-juvenile interactions on intertidal flats in the lagoon at Manukau, adjacent 
to the city of auckland (Thrush et al., 1997). These investigators used a formal survey to 
measure bivalve densities within a (500 m)2 experimental site. They then assigned experi-
mental units to the full range of densities in the area, with emphasis on extremely high- 
or low-density sites. not only did this embed experimental units into a well-designed 
survey; it also allocated effort in a balanced fashion to surveys and experiments. This 
contrasts with the highly skewed allocation of effort to surveys in the Plymouth study 
(Schneider, 1978), or to experiments in the barnacle study (Menge, 1976).

The embedding of experiments along density gradients, as at Plymouth (Schneider, 
1978) and Manukau (legendre et al., 1997; Thrush et al., 1997), provides a template 
for addressing the problem of scale in experimental ecology. Surveys can be used to 
address scale-up from measurements to experimental unit, in situations in which realisti-
cally sized units are too large to measure completely. Surveys can be used to place exper-
imental units according to a spatial model that becomes the basis for scale-up beyond 
the limits of the experimental site. Table 12.1 provides a generic recipe for address-
ing the problem of scale in experimental ecology based on experience gained from the 
Plymouth and Manukau invertebrate study.

The examples in this section illustrate the range of ways that surveys and experi-
ments can be combined to address problems of scale identified by experimental ecologists 
(Resetarits and Bernardo, 1998). The examples demonstrate a history of increasingly 
effective use of surveys in conjunction with experiments.

table 12.1 Use of Surveys to Address the Problem of Scale in the experimental 
Analysis of ecosystems

1. Define the question. Define the boundaries of the system in space and time.

2.  Assemble and inspect available information at all scales, including information at the scale of the system, 

including from remote sensing data.

3. Undertake pilot experiments embedded within the available survey information.

4. Define experimental units and variables needed to scale to the ecosystem.

5. Conduct a survey of the variables. Describe the result as a spatial model consisting of strata or gradients.

6. Assign experimental units to the range of conditions by strata or along the full range of the gradient.

7.  Undertake scope calculations based on logistics and available resources to define levels and projected 

replication at each level. If experimental units are too large to measure completely, use survey design 

principles to choose sample locations within units. Examine the basis for inference at each level. Adjust the 

effort among levels as needed.

8.  Complete scope calculations based on realized effort. Evaluate results in light of the magnitude of scale-up 

and inferential basis at each level.

9. Repeat the experiment if temporal scale-up is needed.

AnOtheR LOOk At SeCtiOn 12.5.4

experimental ecologists allocate little or no effort to survey design, whereas fisheries 
biologists allocate nearly all their efforts to survey design. after offering some specu-
lation on the reasons for this difference, make a list of criteria for deciding on how to 
allocate effort between experiments and surveys within a study.
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12.5.5 Levels of inference in ecological experiments

Fisher’s innovations addressed the problems encountered in undertaking experimental 
research in agroecosystems. Fisher’s prescription (randomization, replication, local con-
trol) introduces statistical control where confounding variables are beyond manipulative 
control. as we move from agroecosystems to ecosystems that are less altered by human 
activity, spatial heterogeneity increases and statistical control becomes more difficult. In 
agroecosystems, farming practice homogenizes the landscape at a small scale; an agricul-
tural field is less heterogeneous than similarly sized plots of untilled land. Similar prac-
tices across farms flatten away larger-scale variance. consequently, the results from one 
farm in Manitoba can be extended to other farms in Manitoba. In contrast, the results 
from one prairie site in Manitoba cannot be applied with such confidence to other prai-
rie sites in the province. Stated more abstractly, variance grows with increasing spatial 
scale in any ecosystem; intervention flattens away the increase in variance with spatial 
scale as well as reducing the absolute amount of variance at the scale of fields or less.

The effect of an unflattened variance spectrum is that small-scale experiments rap-
idly lose their relevance at the scale of the ecosystem, compared to those with flattened 
variance spectra, such as agroecosystems. The solution is to quantify the magnitude of 
scale-up at several levels, introduce Fisherian experiments where possible, then use other 
forms of scale-up at those levels where Fisherian experiments are not possible.

Scope calculations provide a logical framework in which to evaluate the magnitude 
of scale-up and mode of inference at multiple levels. at each level defined by the experi-
mental protocol we can quantify the scale-up and judge whether statistical inference is 
warranted. at appropriate levels we can scale up from limited measurements via infer-
ence based on the measurement protocol (as in Fisherian experiments) or via inference 
based on a finite frame (as in a survey). at other levels, where Fisherian experiments 
do not apply, we can apply appropriate forms of statistical inference to constrain inter-
pretation (carpenter, 1990), control for some sources of variation (Jassby and Powell, 
1990; Dutilleul, 1993), or put a probability level on an outcome (Reckhow, 1990) or 
estimate of risk (Sutor, 1996).

This multilevel approach allows statistical inference to be restricted to the scale at 
which it is appropriate. an example is clear-cutting a 15.6 ha watershed in the 3000 ha 
Hubbard Brook Forest (likens et al., 1970). This informative and influential experiment 
clearly did not conform to Fisherian design. only one experimental unit was altered. We 
cannot undertake the Fisherian statistical apparatus to rule out chance effects among exper-
imental units, including the confounding effects of variables that vary between watersheds.

We can, however, use the principles of survey design to rule out chance effects at the 
smaller scale of measurement units within the watershed. If we record soil water content 
at several points in Hubbard Brook watershed #2 and at several points in its neighbor, 
we expect the difference to increase substantially as soon as we deforest. The difference 
over time may be peculiar to just watershed #2 and its neighbor. To overcome this prob-
lem, we record soil water content at 10 randomly selected plots in watershed #2 and its 
neighbor. With this information we can compute the mean difference and the probability 
of obtaining this difference by chance. With a p-value less than 5%, we rule out chance 
(at the scale of plots within the watershed) as an explanation of the observed differ-
ence. This p-value cannot be used to rule out confounding factors at the larger scale of 
the watershed. To address confounding effects at the scale of the watershed, we would 
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need other sources of information. This might include time series of soil moisture levels 
in both watersheds, to which intervention analysis can be applied (Stewart-oaten and 
Murdoch, 1986). We could also embed small-scale experiments into a watershed scale 
survey to establish the mechanisms leading to change in soil moisture due to removal 
of trees. We cannot use statistical inference to eliminate chance variation at the scale 
of watershed as an explanation of the observe difference, but we can use it to eliminate 
chance at the scale of plots within the watershed, something we cannot do with only one 
site in the watershed.

Scope diagrams are useful in evaluating the magnitude of scale-up and mode of 
inference at multiple levels. an example is the Mojave shrub study. In Box 12.10 the 
overall scope of 6  108 was partitioned into four components or scale-up factors. at 
the first level, scale-up is by a factor of 40. The basis for the scale-up is accumulation 
of units with randomly assigned treatments. at this same level the inferred scale-up to 
all possible plots within the perimeter of the study site is 6.25. The basis is statistical 
inference because we know the procedure to identify the plots. From this we conclude 
that the list of all possible experimental outcomes will include those from any plot in 
the study area. Beyond the perimeter of the site we have a much larger scale-up fac-
tor, estimated roughly at 24,000 possible plots in similar habitat in the same ecosystem. 
Knowing little about the study site, we would hesitate to judge that the list of all possi-
ble experimental outcomes resulting from the experiment extends to any 2.5 ha site with 
shrubs at these densities. To support the judgement we could turn to a survey, preferably 
one in which each experimental unit is linked to a variable that is measured at the scale 
of sites within the ecosystems.

another example serves to illustrate the use of statistical and nonstatistical infer-
ence at different levels in an ecological experiment. The study was conducted at 21 sites 
scattered over four inlets on the Pacific coast of Panama, to examine whether migratory 
shorebirds deplete benthic invertebrate prey in the tropics (Schneider, 1985). The design 
was shaped by several constraints and by knowledge of benthic infaunal patchiness 
gained over five previous field seasons. The primary constraint was time, that of one 
investigator on a three-month fellowship. Sample size was limited by processing rate, 
which is slowed by the time-consuming activity of sorting and identifying benthic organ-
isms to the lowest possible taxonomic level. Identification becomes especially time con-
suming in the tropics, where the number of species is high and there are no local guides 
to key out an organism to species.

core samples were taken inside and outside a 1 m by 1 m roped exclosure at the 
beginning, middle, and end of a three-month period prior to departure of migratory 
shorebirds to arctic breeding grounds. complete exclosures, even those with coarse wire 
mesh, disrupt flow and alter benthic densities (nowell and Jumars, 1984). To elimi-
nate these, shiny plastic rope was set along the top of stakes set 1 m apart in a square. 
Shorebirds were observed walking near but not through the exclosures. However, shore-
bird footprints were found inside one roped area, so a wire canopy, with sides open, was 
placed over the roped exclosure at this and one other site in March 1978.

This canopy successfully excluded birds, based on footprints found right up to the 
canopy but not under it. The canopies were placed at the two sites with the heaviest use, 
rather than randomly. core samples 10 cm in diameter were taken haphazardly in each 
caged quadrat and in two or more quadrats immediately adjacent to the cage. cores 
were washed on a sieve with a mesh of 0.5 mm, all organisms retained on this mesh were 
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counted. a total of 40 cores were collected in January, another 76 in late February and 
early March, and 142 in april. an additional 30 cores were collected and examined in 
the field at inlets ranging from Panama city eastward 150 km to the azuero Peninsula. 
Box 12.11 shows the effort at each spatial scale in the study. as with previous examples, 
the effort at each level is used to compute areas and scopes.

The experiment had six levels with differing forms of inferential support. To eval-
uate the inferential basis for scale-up, we begin by partitioning the overall scope into 
components. The overall scope can be compute over any extent, but it is convenient to 
set this at the largest scale with a defined sampling protocol. In the scallop survey this 
was the 19,000 km2 bank (Box 12.3). In the desert shrub experiment this was the 2.5 
hectare study site (Box 12.10). For the prey depletion study this will be the 5 km2 zone 
in which the samples were taken systematically from 21 sites. Box 12.11 shows the par-
titioning of effort by level. The partitioning of the expansion factor EF was guided by 
unit cancellation using the ratio of sizes of units (A/Ao), as shown in Box 12.11.

Box 12.11 Scope Calculations for a Predator Exclosure Experiment at Twenty-One Sites in Four 
Inlets on the Pacific Coast, Panama

Area effort (n) replication

Jan March April

Core (10 cm/2)2  78.5 cm2 40 76 142 258/180  1.43 core/quadrat

Quadrat (1 m)2  127 cores 40 40 100 180/21  8.57 quadrat/block

Block (3 m)2  9 m2 21 21 21 21/21  1/site

Site (20 m)2  400 m2 21 21 21 21/4  5.25/inlet

Inlet (200 m)2  40,000 m2 4 4 4 4/1  4/zone

Zone 5 km · 1 km  5 km2 1 1 1

Coast 150 km · 1 km  150 km2 1

Level replication units Ao A Scope Type of inference

Core 1 78.5 cm2

Quadrat 1.31 cores 1.31 103 cm2 (1 m)2 9.7 · 101 Statistical (finite frame)

Block 3.19 quadrats 4.19 329 cm2 (3 m)2 2.7 · 102 Statistical (design)

Site 1 block 4.19 329 cm2 (20 m)2 1.2 · 104 Statistical (finite frame)

Inlet 5.25 sites 22.0 1728 cm2 (200 m)2 2.3 · 105 Statistical (design)

Zone 4 inlets

(March) 88 6912 cm2 5 km2 7.2 · 106 Informal survey

(April) 176 13823 cm2 5km2 3.6 · 106 Statistical (design)

Coast 3 zones 176  30 16179 cm2 150 km2 ? · 108 Partial survey

Spatial scope SpSc   5 km2/78.5 cm2    6.4 · 108 possible samples
units  n        176
expansion factor  EF    6.4 · 108/176    3.6 · 106

Sampling fraction  SF    EF1    0.28 · 106
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The basis for inference differs among levels in the study. at the level of cores within 
1 m2 quadrats. the inference is statistical, from the sample to a finite frame or list of all 
127 possible coring sites within a quadrat. cores were taken haphazardly within the quad-
rat so that each possible site has roughly the same probability of being cored. at the level 
of quadrats within blocks, inference is again statistical. Inference is from a sample to the 
infinite list of all possible outcomes, given the protocol for placement of quadrats within 
a block. The protocol was to select a quadrat haphazardly at a site, assign treatment to 
the quadrat, and define a (3 m)2 block as a treated quadrat surrounded by adjacent con-
trol quadrats. The assumption is that quadrats within such a block on an intertidal flat 
with little vertical gradient will have on average the same faunal composition. Placing con-
trols around a haphazardly chosen quadrat is taken to be equivalent to defining a block of 
quadrats, then selecting one at random for treatment, leaving the rest as controls.

at one inlet, culebra Beach, a block was defined around each of 3 quadrats at the 
same tide level because of the greater slope at this beach. at the level of blocks within sites, 
inference is statistical, again based on the design. Blocks were placed within sites having 
areas on the order of 20 m by 20 m with similar substrate throughout the site. Inference is 
from a haphazardly chosen block to the list or frame of all (20/3)2  44 possible blocks that 
can be fit within a site that was visually homogeneous. at the next level, inference from the 
site to the inlet was based on placement of sites across the tidal gradient, thus capturing the 
strongest source of spatial variance in intertidal habitats. Sites were placed at roughly even 
intervals along a line running from high to low tide. Spacing depended on distance from 
high to low water and on the number of sites (six at three inlets, three at culebra Beach). 
Inference to the scale of the inlet is thus to the infinite list of outcomes of an experiment 
where sites are placed evenly along the intertidal height gradient within an inlet.

at the next level, inference from inlet to zone was informal, based on judgment 
that the four inlets were representative of shorebird feeding areas within about 20 km 
of the Smithsonian marine station on naos Island. The next level is temporal, with 
sampling in april repeated at haphazardly chosen locations within the same quadrats 
sampled in March. Inference at this level, like the previous, is based on an infinite list 
defined by the sampling protocol.

at the next level, the choice of zone along the coast was based on an informal 
survey of shorebirds and potential prey at coastal locations accessible from the Pan-
american highway running southwest of the marine lab to aguadulce, 150 km from 
the city of Panama. after the March sampling round, six beaches were visited between 
Punta chame and aguadulce to examine whether the invertebrates and shorebirds 
within the stretch of coast were comparable to those observed in the study zone.  
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at each beach the shorebirds present were noted. cores were taken and sieved in the 
field to gauge whether invertebrate density, size, and taxonomic composition at the 
phylum/class level (family, in the case of polychaetes) differed among inlets within the 
stretch of coastline. Inference at this level was based on qualitative characterization of 
inlets within the entire stretch of coastline compared to the range of conditions seen in 
the zone where the study was conducted.

This example illustrates several benefits of multilevel analysis of experiments in ecol-
ogy. Multilevel analysis quantifies the magnitude of scale-up, allowing comparison to other 
studies. In this study it is evident that the magnitude of scale-up increased at each succes-
sive level (Box 12.11). This was because the time to process samples limited the ability to 
increase effort at large scales. Multilevel analysis makes full use of accessory information. 
Information at scales other than that of the experimental unit is lost when the focus is 
restricted by the limits of Fisherian experimental design. Multilevel analysis leads to a better 
assessment of study strength and weakness, which will vary with level. In the Panama study, 
scale-up from core to quadrat was based on the statistical inference from sample to a finite 
frame of spatial units. The weakness at this level was use of haphazard sampling instead of 
a random number table to choose coring locations. at several other levels, inference was 
based on an infinite list of possible outcomes, given the design and sampling protocol.

Multilevel analysis shows that Fisherian criteria of randomization, replication, and 
local control were met unevenly. local control was strong, since treatment and control 
were assigned to all 21 units. Replication to estimate variance among units was uneven 
across levels. Replication was adequate to estimate variance at the scale of cores within 
quadrats, quadrats within blocks, and blocks. variance among blocks within sites could 
not be estimated. There were too few inlets to estimate variance at this level. Random 
(haphazard) selection of units addressed problems of confounding at the level of quad-
rat within block and block within site but not at larger scales. at the scale of quad-
rats within blocks, a simulation with typical core data suggested that surrounding a 
randomly placed quadrat with 8 control quadrats was equivalent to randomly select-
ing a treated site within a 9 quadrat block, but this was not investigated thoroughly. 
Randomized assignment of experimental units was not attempted at the level of sites 
within an inlet because of the known faunal heterogeneity from low tide line to high. at 
this level there were too few units to use statistical inference to eliminate the vagaries of 
spatial heterogeneity as the source of observed change in density of prey. Similar limita-
tions applied at the scale of inlets within a zone, and zones within the Bay of Panama.

confounding was a potential problem because only 2 of 21 sites had a canopy. Rapid 
growth and recruitment to edible size classes offsets by removal by shorebirds toward the 
end of their stay at this tropical location could have been due to the peculiarities of the 
two blocks that were assigned canopies. The conclusion would have been stronger if there 
were more canopy sites in the study. at the larger scales, the basis for inference was neces-
sarily informal based on judgment and accessory evidence rather than inferential statistics.

AnOtheR LOOk At SeCtiOn 12.5.5

Find an experimental field study with treated and untreated units. Identify levels, 
identify the scale at which the statistical analysis applies, and evaluate the study at 
each you identified.
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12.6 The Scope of Computational Models
computational models are a well-known means of addressing questions at the scale of 
ecosystems. computational models can be used to integrate available knowledge rela-
tive to the question at hand. They are employed to identify inconsistencies among dis-
parate sources of information and to reveal gaps in knowledge. They aid conceptual 
simplification.

Computational models have a spatial and temporal scope, although this is not 
usually explicit. They have a minimum temporal resolution, set by the balance between 
realism and computational limits. considerations of realism often turn on cyclic compo-
nents: Does daily or seasonal variation need to be included in the model? Models have 
a spatial resolution that turns out to be severely constrained by computational limits. 
Though a large number of spatial units are desirable to capture spatial detail, no more 
than several hundred units are feasible without considerable computational resources, 
programmer skill, and programming time. Models have a potentially infinite temporal 
extent, but the extent of interest is usually set by the question, typically at time scales of 
years to several decades. The spatial extent is set by the question, usually at the scale of 
the ecosystem or extent of environmental impact.

Scope computations were undertaken for 13 models listed by auble et al. (1995), 
who list temporal resolution and duration for each model. They provide enough spatial 
information to determine scope (number of spatial units). The spatial extent was taken 
from maps for those models with a named location. The temporal resolution ranged 
from days (two models) to weeks (one model), months (five models), seasons (two mod-
els), or years (three models). The temporal extent ranged from 5 to 70 years. The num-
ber of spatial units was remarkably small, ranging from one to just nine (river reaches in 
two connected river basins).

In diagrammatic form, the scope of any one model will consist of a rectangle 
within which dynamics can be computed. The upper-right corner is anchored to the time 
and space scale of the question. Figure 12.4 shows the scope diagrams for two of the 
models listed by auble et al. (1995). The other models had smaller spatial scopes. all 
the models had about the same temporal scopes. The diagram displays the character-
istic strengths and weaknesses of computational models in addressing ecological ques-
tions. computations can be made over a wide temporal scope at space and time scales 
relevant to any ecological question. However, the spatial scope is quite limited. Models 
do not include the scale at which data are typically gathered (compare Figure 12.4 to  
Figures 2.2, 12.1, and 12.2). Thus an unexamined scale-up usually occurs when data are 
used in these models.

There are several ways to bridge the gap between computational models and the 
spatial scale of field data. one is to use remotely sensed data, obtained from aerial pho-
togrammetry or from satellites (Innes, 1998; vandecastle, 1998). This data will have a 
spatial extent comparable to that of a computational model. Depending on the type of 
sensor, data can have a resolution fine enough (on the order of meters or tens of meters) 
to match data gathered on the ground or at the sea surface. cloud cover and lack of 
ground truthing of the image are problems. another way to bridge the gap is to embed a 
smaller-scale model (Wessman, 1992) into the larger model that is anchored to the scale 
of the problem. a promising but relatively unexplored way to bridge the gap is to apply 
power laws such as species-area relations.
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Figure 12.4 Scope Diagram for 2 of the 15 Models Listed by Auble et al. 1995.

AnOtheR LOOk At SeCtiOn 12.6

open an issue of Ecological Modelling or similar journal and pick an article from the 
index. Is there enough information in the article to draw a scope diagram? If there’s 
not, continue to the next article until you find one with enough information or until 
you reach a limit of five. comment on the utility of model studies for which the spa-
tial and temporal scope cannot be determined.

12.7 The Scope of Integrated Research Programs
Descriptive studies, experiments, surveys, and modeling efforts often take place within 
integrated research programs that combine several types of studies. Scope diagrams are 
a useful way of summarizing the activity within these integrated programs. These dia-
grams display much that is not otherwise apparent: the relation of the components, their 
degree of complementarity, and gaps in the overall program.

In the late 1980s and early 1990s, investigators at the new Zealand Institute of 
Water and atmospheric Research (nIWa) undertook a series of studies to investigate 
and monitor the effects of release of toxic materials into estuaries (see Figure 2.2). early 
in the program an experiment was conducted to estimate the effects of chlordane release 
on benthic invertebrates in the lagoon at Manukau, adjacent to the city of auckland 
(Pridmore et al., 1991). The study was limited by logistics to two large experimen-
tal units, measured repeatedly. The scope diagram (Figure 12.5) shows the support 
and extent of the experiment. Multiple measurement of the experimental units allows 
the authors to exclude chance variation within the treated and untreated units as an  
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explanation for the decline in bivalve abundance. The spatial layout (one treated and 
one control area) did not permit random effects at the scale of the units to be addressed 
statistically. Several lines of evidence (including reversal of decline as chlordane dis-
appeared) supported the conclusion that the significant drop in bivalve number in 
the treated plot was not due to random effects at the scale of the experimental unit. 
Fisherian replication to address the problem would have been prohibitively expensive 
and would have required releasing at least 10 times as much chlordane into the envi-
ronment. The nIWa group addressed the problem by quantifying natural variability at 
the time and space scales of the experimental units and by undertaking process-oriented 
studies of this variation. a survey that quantified spatial variability at multiple scales 
(Thrush et al., 1989) was repeated every two months for just over two years (Roper  
et al., 1992). The support of the survey exceeded that of the experiment (Figure 12.5). 
The support and extent of the survey bracketed the space and time scales of the experi-
ment. Thus, the experimental results can be compared to natural variability as measured 
by the survey in much the same way that treatment effects are compared to uncontrolled 
process error when forming an F-ratio in a Fisherian experiment. The changes in the 
experiment exceeded those observed in the survey, evidence that the change observed 
in the experiment was not due to chance variation at the scale of the experimental unit. 
The spatial scale of the experiment and the survey was substantially smaller than the 
entire lagoon (Figure 12.5). The experimental site was not chosen randomly, so probabi-
listic sampling cannot be used to address whether the results apply to the entire lagoon. 
Scale-up was qualitative in the sense that the direction of the experimental result was 
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Figure 12.5 Scope Diagram for a Field experiment and Related Survey. Purpose of experiment was to measure the 
effects of chlordane on benthic invertebrates (Pridmore et al. 1991). Purpose of repeated survey was to characterize 
spatial variance of lagoon ecosystem in which chlordane experiment was conducted  (Roper et al. 1992).



Chapter 12 • The Scope of Research Programs 267
considered applicable to the entire lagoon, even though the magnitude of the decrease 
might not have been representative.

In this program as in others to isolate the effects of human activity on ecosystems, 
high spatial variance in density is one of the largest sources of uncertainty. Most of this 
variance results from natural processes rather than measurement error. a series of stud-
ies were undertaken by the nIWa group to isolate processes responsible for spatial 
variation in benthic invertebrates on intertidal flats in northern new Zealand. at the 
Manukau lagoon, one obvious source of spatial variation was the digging of feeding pits 
by rays, which concentrate their activity in areas on the order of hectares. Pits have a 
characteristic size (on the order of 30 cm) and lifetime (filling rapidly in the first week), 
so a directed survey (Figure 12.6a) was undertaken, consisting of six visits over 12 days 
to two sites, each with five pits measured by four core samples (Thrush et al., 1991). 
Ray pits differ in degree of initial defaunation, so an experiment was conducted to esti-
mate recolonization rate of completely defaunated plugs of sediment similar in size to 
pits (Thrush et al., 1992). The spatial scope of the survey exceeded that of the experi-
ment (Figure 12.6a), as was the case with the chlordane experiment. The effects of rays 
were then compared to those by migratory shorebirds, which also feed in invertebrates 
but do not excavate pits. Thrush et al. (1994) used canopies to exclude birds only, cages 
to exclude both, and control sites. This study had a spatial scope similar to the recolo-
nization studies, but a greater temporal scope (Figure 12.6b). Studies in other benthic 
habitats suggest that spatial variation in juvenile settlement arises from interactions with 
adults, which interfere with or consume juveniles. Thrush et al. (1996) investigated this 
by examining rates of juvenile colonization of buckets with known densities of adults. 
The scope of this experiment (Figure 12.6c) was similar to the previous experiments.

In these experiments and surveys, the level of effort was set by constraints of time, 
notably the time taken to sort and count benthic organisms. The limitation on number 
of units, together with the need for replication to estimate a variance at each level, limits 
the spatial and temporal scope. These limits, together with allocation decisions at each 
level, create similar scope diagrams (Figures 12.5 and 12.6). The scope of this body of 
work is conveniently summarized by drawing a polygon that encloses both the support 
and the extent of all the studies (Figure 2.2). This diagram displays the gap from experi-
mental and survey results to the system of interest, the Manukau lagoon.

To address the problem, a collaborative project was undertaken, with the goal of 
designing and executing an experiment to bridge the gap from data to the scale of the 
problem. Known factors governing the bivalve density in the lagoon included predation 
by rays, predation by birds, response of juveniles to presence of adults, and several phys-
ical factors (sediment composition, eelgrass presence, duration of exposure by the tides, 
wind mixing of the water) that were in turn a function of height above mean low water. 
a seven-factor experiment was clearly not possible: just two levels per factor results in 
27  128 treatments in a full factorial design, before replication. attenuation to two  
factors per block results in 22 treatments per block; there are 7*6/2  21 pairs of fac-
tors, which results in 84 treatments before replication.

The solution was to embed an experiment into a survey-based estimate of the two-
dimensional density-scape with hills of high density and valleys of low density across a 
250 m by 500 m area. The density-scape was estimated from cores place randomly in 
25 m by 25 m sectors; the estimate was then used to assign a density value to each sector 
rather than treating sectors as blocks. adult bivalve density was altered experimentally 
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in 22 sectors, which were chosen randomly from three categories: high density, medium 
density, and low density. This forced greater representation of the peaks and valleys 
without sacrificing the advantages of probability sampling of sectors (each sector had a 
known probability of being selected).

note that sector selection was based on a value fixed by the density-scape, not on 
the (random) value for each sector. Fixed categories on a continuum were used in the 
seminal paper on linear regression (Pearson and lee, 1903). The advantages of the design 
were: (1) results can be scaled up to the entire area via the density-scape; (2) there were no 
border effects through location of treatment at the edge of patches; (3) the experimental 
results were integrated with a substantial suite of physical variables for which the field or 
density-scape could be computed across the area; (4) results can be scaled up via physical 
variables that can be computed across the entire lagoon; and (5) survey and experimental 
efforts reinforced each other through quantitative integration, moving beyond qualitative 
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Figure 12.6 Scope Diagrams for experimental investigation of the Spatial Dynamics of Benthic Fauna at Manukau 
Lagoon, new Zealand; (a) Survey estimate of recolonization rate of pits dug by rays feeding on intertidal flats 
(thrush et al. 1991) compared to experimental estimate of  recolonization rate of completely defaunated plugs of 
sediment (thrush et al. 1992); (b) exclosure study to compare the predatory effects of rays to migratory shorebirds 
(thrush et al. 1994); (c) experimental estimate of rates of juvenile colonization of buckets with fixed densities of 
adults (thrush et al. 1996).
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integration, as in Figure 12.5. The number of sectors (22) for a random survey was the 
same as the number of pairs used to generate fixed categories on a continuum, but the lat-
ter generated results that could be scaled to the entire area via the density-scape.

Figure 12.7 shows the support and extent of this experiment, compared to previous 
studies (Figures 12.5 and 12.6). The summary diagram in Figure 2.2b proved particularly 
useful in a workshop setting, making evident the scope of previous studies (width of the 
gap from the support to the extent) and the scope of research to bridge the gap from 
previous work to the scale of the lagoon. The spatial support of the embedded experi-
ment was comparable in area to previous studies. The spatial extent was greater, and 
hence the scope (distance from support to extent in Figure 12.7) was larger than previ-
ous studies. Statistical inference underpins all, not just part, of the spatial expansion fac-
tor of EF  (250 m)(500 m)/7 m2  17835 (Figure 12.7). In this calculation the support  
is (0.0133 m2 /core) (3 cores/quadrat) (4 quadrats/sector) (22 sectors/plot) (2 visits/
plot)  7 m2. The embedded experiment increased the scope of statistical inference rela-
tive to previous work but did not close the gap between the extent of field work and the 
system of interest, the entire lagoon (Figure 12.7). The experiment was designed with an 
eye toward scale-up via physical variables (e.g., bedload transport) that can be computed  
at the scale of the flat (approximately 2 km by 3 km in area) or the entire lagoon. 
consequently, the extent of the embedded experiment is shown (Figure 12.7) as connected 
to a model of the flat and the lagoon. The temporal scope required of the model is readily 
accomplished, but the spatial scope required (3.4  108 m2/(1.25  105 m2)  2.7  103) 
is large compared to that created by computational limits (refer back to Figure 12.4).
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can a computational model constructed for a single flat be connected to a model 
for the entire lagoon? The experiment was carried out on Wiroa flat, for which the spa-
tial scope of a model relative to the experimental area would be EF  (2 km)(3 km)/
((250 m)(500 m))  48. The scope of a lagoon model relative to the flat model would 
then be 3.4  108 m2/6 km2  57. Both scopes are consistent with computational limits 
on spatially explicit dynamic models.

Figure 12.7 illustrates an additional application of scope diagrams, which is the 
display of the relative importance of competing rates based on a conservation equation 
(Schneider et al., 1997). For bivalves in the Manukau, the ratio of a demographic rate 
(mortality) relative to a kinematic rate (lateral movement with bedload flux) was of inter-
est. The ratio of the rates was computed from available data by T. Bult (unpublished) 
using a numerical method described elsewhere (Schneider et al., 1999). The line at which 
the two rates were equal (refer back to Figure 2.2) was plotted across the scope of the 
model (Figure 12.7). The plot shows at a glance that flux rates due to bedload transport 
need to be considered, even at the relatively large scales of the flat and the lagoon model. 
Figure 12.7 shows that contrary rates (flux rates and demographic rates) are roughly equal 
in strength. If these act with a lag, complex dynamics can be expected (Schneider 2001b).

Defined Concepts and Terms for Review and Future 
Reference

AnOtheR LOOk At SeCtiOn 12.8

The integrated research program displayed in Figure 12.7 included data from remote 
sensing but did not include mesocosm experiments. Make a copy of Figure 12.7 and 
draw in the support for a typical mesocosm experiment from the literature (e.g., 
chen et al., 1997, Petersen et al, 2009). Then add the support and, if possible, the 
extent of an example of remotely sensed data. Do these components strengthen the 
information along the diagonal in Figure 12.7 or do they increase the information at 
space and time scales not shown in the figure?

____ embedded experiment
____  exhaustive versus probabilistic 

survey
____  expansion factor and sampling 

fraction
____ experiment
____ multilevel analysis of experiments
____ partitioned scope
____ spatial and temporal support
____  spatial and temporal scope of a 

computational model

____  spatial and temporal scope of an 
experiment

____  spatial and temporal scale of a 
Fisherian experiment

____  spatial and temporal scope of a 
monitoring program

____  spatial and temporal scope of a set 
of measurements

____  spatial and temporal scope of a 
survey

____ unit and frame
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Equations

For the sake of persons of these different types, scientific truth should be 
presented in different forms, and should be regarded as equally scientific, 
whether it appears in the robust form and vivid colouring of a physical illus-
tration, or in the tenuity and paleness of a symbolical expression.

—J. C. Maxwell, Presidential address on “Mathematics and Physics” at the 
Liverpool meeting of the British Association, 1870

13.1  Synopsis
An equation expresses an idea that can be used to make calculations about scaled quan-
tities. The use of equations to make calculations from ideas differs from the analysis of 
equations to develop theory. The former is easier than the latter, it requires little mathe-
matical training, and it is guided by reasoning about measurable quantities. This chapter 
is about calculations based on ideas. There will be no treatment of equations divorced 
from calculation or units.

Equations, like any foreign language, are unintelligible on first encounter. Practice, 
together with the use of graphs, increases facility in understanding the ideas expressed 
by equations. Consistent use of symbols, adeptly chosen, contributes to the ready com-
prehension of mathematically expressed ideas about quantities. Other aids to com-
prehension are stating the idea in words, making a typical calculation, graphing the 
equation, and identifying dimensions.

Equations that express ideas about quantities must be dimensionally homoge-
neous: The sum of 2 cabbages and 3 kings cannot be calculated. Inconsistent units and 
dimensions guarantee an incorrect calculation.

Writing equations resembles the writing of sentences. The goal of both forms of writ-
ing is clear expression within the rules of syntax. Equations use a larger set of symbols than 
does prose, with no rules governing the meaning of each symbol. This is a source of con-
fusion that makes it difficult to communicate using equations. Solutions to this problem 
include clear notation, complete listing of symbols with units, and adherence to the rules 
for units. Together these solutions contribute to better communication of quantitative ideas.

Equations that relate quantities to one another arise from several sources. One 
source is exploratory analysis of data, resulting in empirical equations. Another source 
is direct reasoning about quantities, although this is less common in ecology. The proce-
dure is to state response and explanatory variables, develop a simple relation, check for 
internal consistency, check calculations against data, and revise the equation as needed. 
Writing equations is a natural extension of reasoning with scaled quantities; like many 
activities, it grows easier with practice.

13
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13.2  The Use of Equations
Equations have a number of uses in ecology. One is to show precisely how one quantity 
was calculated from another. An example is the calculation of feeding rate (rF  grams 
food per kg of body mass per day) from metabolic water turnover (rW  milliliters per 
kg of body mass per day) measured from change in concentration of stable isotopes. 
Kooyman et al. (1982) used the following equation to show, in an economical form, 
exactly how they calculated the feeding rate of penguins from isotopic measurements of 
water turnover:

 
r

r

P E E MF
W

W F M W




 (13.1)

The components of this equation are:

PW      4.0 ml preformed water per gram of food
EF      17.6 kJ per gram of food
EM      0.8 kJ metabolized per kJ ingested
MW      ml water produced per kJ metabolized

With this equation, another person could take any measurement of water turnover and 
calculate a feeding rate that could be compared to those reported in Kooyman et al. 
(1982). The equation makes the study reproducible in this sense of the word. The equa-
tion opens the result to scrutiny by allowing comparable numbers to be calculated. Its 
absence makes the study irreproducible.

A second use of equations is to work from premises to conclusions using the rules 
of mathematics. This use rests on one of the principal strengths of mathematics, which is 
that its logical structure guarantees that conclusions will be consistent with premises, if 
the rules are applied correctly. This use, to develop theoretical conclusions, differs in sev-
eral ways from the first, or demonstrative, use. Theoretical use is confined to a few spe-
cialized journals; demonstrative use should be found in any research report where one 
quantity is calculated from another. Theoretical use aims at general conclusions; demon-
strative use aims at clear definition of a particular situation. Theoretical use relies heav-
ily on mathematical analysis, sometimes in highly sophisticated forms. demonstrative 
use rarely requires sophisticated mathematics. Theoretical and demonstrative use both 
require units. unfortunately, theoretical use as it is practiced in ecology often fails to 
include units. Equations that lack units describe nature in a metaphorical way that pre-
cludes making calculations for a given situation. Such equations cannot be tested against 
measurements.

A third use of equations is statistical testing of ideas against data. Almost all the 
commonly used statistical procedures in ecology are model-based, even though many 
(e.g., Chi-square tests) are presented in texts as though no model were involved. Chapter 
15 describes the statistical evaluation of equations relative to measured quantities.

A fourth use of equations is to develop scaling functions. These have many uses, 
including converting a functional relation to a different spatial or temporal scale com-
puting results at large space and time scales from experimental results or local observa-
tions, and developing theory. Scaling functions are a recurring theme of Part Iv of this  
book.
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Another Look At Section 13.2

Of the four uses listed for equations, how many have you encountered or had occa-
sion to use?

13.3   Verbal, Diagrammatic, and Formal Expression  
of Ideas

Biological concepts can be expressed in words (an informal or verbal model), or in 
graphs (a diagrammatic model), or in equations (a formal or mathematical model). 
These three forms of expression are related to one another (Figure 13.1).

In ecology, the most common mode of expressing an idea is verbal. Sometimes a ver-
bally expressed idea is accompanied by a diagram. Ecological ideas are also expressed in 
symbolic form as equations, but this form of expression is not always accompanied by the 
diagrammatic or verbal expression that would make it more comprehensible. Often the 
equation is left for the reader to decipher, with the unfortunate result that the reader sim-
ply skips right over the equation (and the idea). One solution to this problem is to annex 
the math to an appendix, then explain the ideas in words. Another solution is to state the 
idea in words and pictures accompanying the equation. This latter solution is becoming 
increasingly prevalent in ecology texts (e.g., ricklefs and Miller, 2000; Case, 2000).

Each of the three forms of expression (Figure 13.1) has its own advantages and 
disadvantages. We use words every day, and so verbal models are the most readily used 
and easily understood form of expression. The disadvantage is that verbal models can be 
wonderfully fuzzy. The fuzziness of verbal models becomes apparent as soon as one tries 
to depict a verbally stated idea in the form of a graph. verbal fuzziness also becomes 
apparent when the units and procedural statements for a quantity are examined. Two 
quantities that appear to be no more than different names for the same thing may in fact 
be completely different. And two quantities that appear to be different may in fact be 
alternate names for the same thing.

The number of species
increases with island size.

Verbal

Formal

NSP = K·Aβ

Area

Graphical

NSP

Figure 13.1 Verbal, Graphical, and Formal Model of a Biological concept, the Species-Area relation (SAr).
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The advantage of a graph is that, like a verbal model, it is quickly grasped. relative 
to verbal models, graphs convey more information about how one quantity is related to 
another. But important features of the relation may still be omitted, and the definition of 
quantities can remain vague. The degree of vagueness is assessed by asking: How thor-
oughly have the quantities on each axis been defined? Figure 13.2 shows three graphs, 
each more informative than the previous graph. The first graph (Figure 13.2a) is useful 
for general discussion of concepts. But graphs that lack units must be replaced when the 
discussion proceeds to knowledge based on measured quantities. The graph in Figure 
13.2b takes this step by displaying the units of measured variables. The next step (Figure 
13.2c) is to display the units on a scale. For example, are we considering the dynamics 
of local dispersal (e.g., distance in cm from a tree releasing seeds), or are we considering 
(as in Figure 1.3) the dynamics of dispersal at a larger scale? The display of units needs 
to be consistent with the dynamics that we want to understand. A further advantage of 
graphs such as Figure 13.2c is that they allow us to plot measurements against theory. 
graphs such as Figure 13.2c are central to the practice of ecological science because they 
connect measurement to formal models expressed as equations.

This graph shows the relation between
two quantities expressed only verbally.
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This graph is still more specific. it shows a
scale for both quantities, marked as units along
both axis. The linear scaling of the vertical axis
relative to the logarithmic scaling of the horizontal
axis implies an exponential relation between
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Figure 13.2 range in information content of Graphs; (a) Axes for verbal model only; (b) Axes for graphical model; 
(c) Axes for formal model and data.

Another Look At Section 13.3

An accomplished theoretical ecologist, Simon levin, noted that one can look at an 
equation for a long time until one suddenly “gets it.” How does this statement com-
pare to your experience?
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13.4  Reading Equations
Equations, like any foreign language, make no sense upon first encounter. Comprehension 
and eventual facility result from repeated encounter and practice in using equations. 
There are several ways of hastening this process of learning and eventually “speaking” 
the language of scaled quantities. One important technique is translating equations into 
words. Some effort may be required to do this with complex equations, but the entire 
process of translation into words always goes more quickly each time an equation is 
encountered. Time put into translation on first encounter reduces the time required on 
subsequent encounters. Some equations or terms in an equation are so common in a field 
of research that the symbols or group of symbols can eventually be read into words with 
no effort.

The way to translate equations into words is to write down each symbol, state 
its name in words, and state its units, if it has such. Equations consist of two or more 
groups of symbols called terms, so the next step is to write out the name of each term, 
together with its units. The terms of an equation are connected to one another by addi-
tion, subtraction, or equivalence. One of three signs (, , or ) separates the terms in 
an equation. Each term consists of a symbol or several symbols connected by multiplica-
tion, division, or exponentiation. Here is an example of the use of substitution of words 
and units to read an equation expressing the idea that populations grow exponentially:

 N N et t
rt ( ) 0  (13.2)

This equation has two terms separated by the equal sign. The term on the left consists 
of a single quantity, represented by the symbol Nt, read as “the number at time t.” The 
term on the right is the product of two quantities, Nt0 and ert. The quantity Nt0 is 
read “the number at time zero.” At this point it helps to associate the symbol Nt0 with 
an image of a group of, say, protozoa. Then associate the symbol Nt with an image of 
the same group and its progeny at a later time. The quantity ert is read “the crude rate 
of increase.” An equivalent symbol for this quantity is R, used in many ecology texts. 
It is the percent increase after time t. If a population increases by 20% from time t  0 
to time t, then Nt/Nt0 has a value of 1.2, ert is 1.2 or 120%, and hence Nt is 1.2 times 
greater than Nt0. So we can now translate this equation into words: “The number of 
organisms at time t depends on the initial number and on the crude rate of increase, 
expressed as a percentage of the initial number.”

The quantity ert consists of three symbols: the pure number e and two quantities. 
Time t is a variable quantity; it can take on many values. The intrinsic rate of increase 
r is a parametric quantity: It takes on a single value, one that holds across the many 
values of the variable (parameter means “across measured values”). This latter can be 
visualized as the rate that would apply at any instant in a population so enormous that 
new individuals appear to recruit continuously. The expression ert can now be translated 
into words. It is “the crude rate of increase, expressed as the product of time elapsed 
and the instantaneous rate, taken as a power of e, the base of natural logarithms.” This 
is cumbersome, but it helps to use full translation on the first two or three encounters. 
Eventually, the entire expression, ert, can be shortened to something like “the crude rate 
of increase as a function of the instantaneous rate.” Or even “the percent increase based 
on the instantaneous rate.”
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One of the most useful methods for learning to read and understand equations is to 
use a calculator. An example was shown in Box 4.1. This method is more effective if one 
retains the units when making the calculations, rather than stripping away the units and 
just using numbers. retaining the units preserves the sense of working with visualizable 
quantities and thus contributes to comprehension of the idea expressed by the equation.

Another aid in understanding equations is to graph the equation by plotting the term 
on the left side against one of the quantities on the right side of the equation. Either terms 
or symbols from the right side can be used. In the example of exponential increase in pop-
ulation size, Nt can be plotted against r, against t, or against ert. Some readers may be 
puzzled about why one would want to plot Nt against ert, but it must be remembered that 
“obvious” depends on experience. To draw an analogy, it might seem obvious that verbs 
must have tenses, but anyone acquainted with an Oriental language knows that conjugat-
ing verbs is by no means necessary to convey temporal relations. The use of tenses seems 
obvious only to someone thoroughly familiar with an inflected language. Similarly, the 
relation between Nt and ert seems obvious only after some practice in visualizing equations 
as graphs. The relation between Nt and t is harder to picture, but with practice this too 
becomes so familiar that it can be visualized immediately and does not need to be graphed.

Another method that aids in reading and understanding equations is to write out 
the dimensions of each symbol immediately below the equation. This adds another level 
of understanding by displaying the role that mass, time, length, area, energy, electrical 
charge, and so on play in the concept expressed by the equation. I found this technique 
useful in trying to grasp equations from geophysical fluid dynamics, where the equa-
tions look formidable but tend to be about readily visualized quantities such as mass, 
energy, or spin (called vorticity). Eventually the association of a group of symbols with 
a group of dimensions (such as mass flux  M l2 T1) strengthens to the point where 
it becomes “obvious” that the equation is about energy. But this only becomes apparent 
after some familiarity is gained by writing out the dimensions underneath the symbols 
on the first few encounters.

reading an equation is like translating a foreign language. Each symbol is like a 
word that must be translated. I find that it is better to directly associate the symbol with 
an image than to associate the symbol with a word only. next, which words have the 
same function? (Which are nouns? Which are verbs?) Similarly, which symbols belong 
to the same dimension? Once each word (symbol) has been grasped and the grammati-
cal relations (dimensions of symbols) have been identified, the next step is to make sense 
of the whole sentence (equation). Even after all the words (symbols) are understood, it 
might not be immediately clear what the sentence (equation) is saying until an effort is 
made to understand it at this level.

Another step in understanding an equation about quantities is to identify the time 
and space scales at which the equation applies. If the symbol  (zeta) represents the effi-
ciency of lions in capturing zebras, at what space and time scales are we to measure this 
efficiency? It seems natural to measure the fraction of zebras caught per lion-day, repeat-
ing this for a month or so to obtain an average value. But will we be comfortable in using 
the value we obtain at the longer time scale of, say, a year? And if our measurements were 
made in a limited area, are we willing to use the same efficiency at the larger spatial scale 
of the entire zebra population? It seems quite likely that the capture efficiency measured 
in an area with many zebras may overestimate the efficiency by those same lions at the 
spatial scale of the entire zebra population, which includes areas with few zebras.
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Analyzing an equation as though it were an idea about quantities rather than as 
though it were a mathematical abstraction brings us face to face with the question of the 
choice of appropriate time and space scales for the equation. If we are simply using the 
equation as a recipe for calculating one number from other numbers, without using units 
or dimensions, then we easily miss something important, which is the space and time scale 
at which the equation applies. If we treat the equation as expressing an idea about mea-
surable quantities with a particular scope (range relative to resolution), we are aware of 
the limits of the equation. It is a curious fact that ecology throughout most of the 20th 
century paid no attention to time and space scales (Figure 2.3). The tradition has been to 
apply equations as though they had neither units nor dimensions (Table 1.2). The tradi-
tion was to treat equations as though they had no scale, even though measured quantities 
clearly do have a scale set by the measurement protocol that determines their scope (range/
resolution). This tradition will eventually disappear. Its demise can be hastened by adopt-
ing the convention that all quantities in a concept expressed as an equation must have a 
stated resolution and range, with clear statement of spatial and temporal attributes.

Another Look At Section 13.4

Try putting Equation 13.2 into your own words. Then try Equation 13.1.

13.5  Dimensional Homogeneity
The principle of dimensional homogeneity, introduced in Chapter 6, is an important tool 
in working with equations. The principle is used to check the validity of an equation, 
work out units and dimensions of unknown quantities, and gain a better understand-
ing of the idea expressed by an equation. The principle of dimensional homogeneity 
of an equation states that an equation about measured quantities must be dimension-
ally homogeneous. Terms that are added (or subtracted) must have the same units and 
dimensions (rule 6, Table 6.7), an extension of the apple/orange principle from Chapter 
4. All the terms on one side of an equal sign must have the same units and the same 
dimensions as all the terms on the other side (rule 7, Table 6.7).

One application of the principle is to check the dimensional homogeneity of an 
equation before using it to make a calculation. If the terms in an equation have dif-
ferent dimensions, the results of computation cannot be trusted. If the equation is not 
homogeneous, it needs to be repaired before it can be used. dimensional homogene-
ity is routinely used in engineering applications, where computational errors have real 
consequences. dimensional homogeneity is just as appropriate in applied ecology. 
dimensional homogeneity does not guarantee that a calculation is correct, but heteroge-
neity will guarantee that most calculations are incorrect.

To check for dimensional homogeneity, one writes the equation, places the dimen-
sions beneath each symbol, then applies the rules in Table 6.7 to make sure that all terms 
have the same dimension. riggs (1963) developed a convenient list of rules for checking 
the dimensional consistency of equations. These are paraphrased in brief form in Table 
13.1. This list is shorter and easier to use than the more complete list in Table 6.7.
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Box 13.1 gives two examples of checking for dimensional homogeneity using the 
brief list of rules in Table 13.1. The first example is for a commonly occurring model, 
the lotka-volterra equation for prey numbers with density-dependent loss to predators. 
In this equation the interaction coefficient  measures the kill rate per unit of predator 
effort. Typical units for  might be %prey per predator-day, as shown in Box 13.1. Most 
texts treat this interaction coefficient as a percentage rather than a percent per unit of 
predator effort. As a result, most texts report the interaction coefficient as a unitless 
number between 0 and 1 rather than as a scaled quantity with units of predator-hours, 
predator-days, and so on. Clearly, the results of using the lotka-volterra equation will 
depend on the value of the interaction coefficient, which will in turn depend on its units. 
The interaction coefficient must be expressed in the same time units as growth rate of 
the prey population, whether this is hours, days, or years.

table 13.1 rules for checking Dimensional homogeneity of equations

1.  All terms in an equation must have the same dimensions.

2.  Multiplication and division must be consistent with Rule 1.

3.   Dimensions are independent of magnitude;  

dx/dt is the ratio of infinitesimals but still has dimensions of Length Time1.

4.  Pure numbers (e, ) have no dimensions.

5.  Multiplication by a dimensionless number does not change dimensions.

Note: Adapted from Riggs (1963).

Box 13.1 Checking Equations for Dimensional Consistency

1. lotka-volterra model of change in prey number in the presence of a 
predator:

 N    prey number prey #
 t    time day
 r    per capita rate of prey increase % day1

 P    predator number predator #
     percent prey killed per predator effort (%prey)/(predator-day)

 dN / dt      r   N          N   P
 #    T1      T1   #      (# · T)1   #   #

2. Time to extinction (lande, 1993):
 T    time to extinction   [n]0 [T]1

 r    intrinsic rate of increase  mean(N/N )/time   [n]/[n] [T]1

 Ve    var(N/N )/time   [n]/[n] [T]1

 K    carrying capacity/extinction threshold (lande, pers com.)   [n]/[n] [T]0

 c    2 r Ve
1  1 [n]0[T]0

 T  2   Ve
1  c1 (   c1   (Kc  1)  lnK )

 T1    T1 T0 (  (n0 T0)1)   (n0 T0)c  ln (n0T0) )
T1  T1    (   n0 T0    n0 T0 )
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The second example in Box 13.1, like the first, comes from a list of 34 analyti-
cal models in an introductory textbook on ecology (ricklefs and Miller, 2000). In both 
examples the dimensions were consistent. The example from lande (1993) was a good 
deal more challenging, since it was necessary to use other equations in the same article 
to work out the dimensions of several symbols.

The principle of dimensional homogeneity also allows one to work out the units 
and biological meaning of model components that are not defined (Box 13.2). An exam-
ple is Ivlev’s equation for rate of prey ingestion (Ivlev, 1961), which contains a symbol  
(zeta) that is not defined (Ivlev, 1961).

 I I e N N    
max( )( )1   (13.3)

Box 13.2 Use of Dimensional Homogeneity to Work Out the Units and Biological Interpretation  
of an Undefined Symbol in an Equation

 I I e N N    
max( )( )1 

 

I  ; Ingestion, prey/hour [n] [T]1

Imax ; Maximum ingestion, prey/hour [n] [T]1

N  ; Prey concentration, count/ml [n] [l]3

N'  ; Threshold prey concentration, count/ml [n] [l]3

  ; ? (undefined)

The product  · (N  N’) must have no dimensions (Table 13.1).

Consequently,  must have dimensions that are the inverse of (N  N’). The 
dimensions are [l]3[n]1, which suggests an interpretation, that  is the volume 
swept per prey capture.

  ; volume swept, ml/prey [l]3[n]1

note: Ingestion equation from Ivlev (1961).

The parameter  appears in the exponent along with the difference between prey concen-
tration and maximum prey concentration (N    N9  prey/ml). For the entire exponent 
to be dimensionless and unitless, the mystery symbol  must have units of the inverse of 
prey concentration:   ml/prey. Aha! dimensional analysis shows that  is a volume 
per individual prey. Ivlev’s equation concerns predation by fish, so  has to do with the 
volume searched by a fish, on average, to capture one prey item.

The principle of dimensional homogeneity is the door to interpretation of models. 
It permits the concepts expressed in symbolic form to be decoded by reference to inter-
pretable units and dimensions.
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Another Look At Section 13.5

Write out dimensions below each symbol in the ingestion equation (Box 13.2), then 
check for dimensional homogeneity.

13.6  Calculations Based on Ideas
To an increasing degree, equations in ecology are used to make calculations about real 
problems. This style of quantitative ecology requires dimensionally homogeneous equa-
tions, for which each symbol has biologically or physically interpretable units. This style 
of quantitative biology is far easier to learn than analytic use of equations to develop 
theory, because reasoning is guided by calculations based on visualizable quantities. 
Accurate statement of ideas in mathematical form and subsequent calculations based 
on those ideas are a matter of practice rather than mathematical training. little or no 
facility in solving equations is required. Algebra suffices and an understanding of the 
principles of calculus helps. One can go a long way on a little algebra combined with 
the ability to reason about quantities and to read and comprehend an equation.

Box 13.3 shows the use of an equation to make calculations based on a biological 
idea rather than to draw analytical conclusions. First, the idea: Food consumption must 
balance metabolic rate at the time scale of weeks to years, and hence consumption on 
these time scales can be calculated from metabolic rate measured in free-living organ-
isms. The idea, expressed in functional form, is that food consumption ( M   kg/day) 
depends on field metabolic rate ( E   Watts), on assimilation efficiency (Massim  % 
assimilated of food ingested), and on the energy density of prey (E/M  Joules/kg). Here 
is exactly the same sentence, cast in symbolic form:

 
 M M E Eassim M f( , )/,  (13.4)

A Watt is equal to a Joule per second so another conversion factor ks/day is needed  
to convert seconds to days to arrive at an equation for calculating daily food con- 
sumption:

kg
day

s
day

  
kg ingested

kg used
  

kg used
Joule

  
Joul


18600

⋅ ⋅ ⋅
ees

s

M       ks/day   ·   Massim
1   ·   E/M

1   ·   E
M T1    T0   ·   M0   ·   E1M   ·   E T1

This equation expresses the idea that food consumption depends on field metabolic rate 
E , on energy density of prey E/M, and on assimilation efficiency Massim. It is here written 

with the highly specific units to show that units cancel correctly. It is also written with 
the dimensions below to show that the equation is dimensionally homogeneous.
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Box 13.3 Food Intake M Calculated from Metabolic Rate E

1. Write a dimensionally homogeneous equation:

 
 M k E Es day M 

/ ⋅ ⋅/
1

2. Symbols and units:
 M  kg day1

 ks/day s day1

 E/M Joules kg1

 Massim 80%
 E  Watts  Joules s1

3. The idea in words: Food intake M is directly proportional to metabolic rate 
E  at the time scale of weeks to lifetimes. Food intake is related to metabolic 

rate via the energy density of prey:
 (E/M  7·106 Joule kg1) and assimilation efficiency (Massim  80%).

4. Check that units on left equal those on right:
 (s day1)(Joule kg1)1 (80%)1 (Joule s1)
  s0 Joule0 kg1day1

5. Substitute and calculate:

 

 M E



86400
7 10 0 806

1
1s

day
Joule
kg

.⋅ ⋅









⋅ ⋅

 
 0 0154.

kg s
Joule day

⋅
⋅

⋅ E

 E       5.5 Watt (as might be measured for a half kg rodent)
 M     0.0154 kg Watt1 day1 · 5.5 Watt

  0.085 kg day1

At the time scale of weeks to lifetimes, a rodent with a metabolic rate of 5.5 
Watt has an expected intake of 0.085 kg day1 of food.

Once we have arrived at a formal expression, we can make calculations based on 
the idea, as in Box 13.3. Table 13.2 lists a general sequence of steps for using ideas, for-
mally expressed, to make calculations.

table 13.2 calculations from equations expressing Biological ideas

1.  Write the equation.

2.  Write each symbol, with units.

3.  State in words the idea expressed by the equation.

4.  Make sure units on the left side equal those on the right.

5.   Substitute values of parameters and variable quantities to calculate the quantity of interest from  

the equation.
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13.7  Writing Equations
Many people think that writing equations is an esoteric activity restricted to a few 
“modelers” who have great facility in mathematics. In fact, writing an equation is a 
readily developed skill founded on unit cancellation, dimensional homogeneity, algebra, 
and practice in visualizing the relation between quantities expressed as symbols. These 
are skills that can be gained with relatively little practice. Skill in algebraic manipula-
tion is necessary, and some knowledge of calculus helps. However, it is remarkable how 
much one can express with no knowledge of calculus. Skill in working with units and 
dimensions is necessary. unit cancellation not only guides the development of symbolic 
expressions, it is used to check whether an idea has been expressed adequately enough 
to permit calculations. A related skill lies in imagining the physical or biological inter-
pretation of the operations of addition, subtraction, multiplication, division, and expo-
nentiation in a given situation. 

The next two subsections cover the principles of good notation (Section 13.7.1) 
and parsimony (Section 13.7.2). Section 13.7.3 outlines a generic procedure for writing 
ideas in symbolic form; Section 13.7.4 then demonstrates the procedure. Section 13.7.5 
extends the procedure to writing equations from component equations. Mathematically 
correct operations, together with good notation and appropriate choice of symbols, con-
stitute what might be called quantitative grammar.

13.7.1 notation

Clear notation is as important in quantitative work as grammar and word usage are 
in writing. notation and choice of symbols receive too little attention, perhaps because 
mathematical relations hold regardless of the symbols used. Any symbol can serve, but 
it does not follow that all symbols serve equally well in representing scaled quantities. 
Conventional symbols, such as t for time, function far more effectively than unconven-
tional symbols. Mnemonic symbols also contribute to clarity, although this desirable 
quality must be balanced against the advantages of conventional notation. Another 
characteristic of good notation is focus on the primary quantity. A symbol such as Megg 
or Me will prove easier to read within an equation than a symbol such as E for egg mass. 
The latter symbol draws attention to a secondary feature rather than to the measured 
quantity, which is a mass.

Well-chosen diacritical marks contribute to clarity. An example of a diacritical 
mark is an overbar to represent an average of the quantity under the bar. diacritical 
marks often help in representing quantities that result from an operation that’s fre-
quently repeated, such as taking an average. Clarification occurs when the diacritical 
mark simplifies the notation. An example is placing a dot over a symbol to represent the 

Another Look At Section 13.6

rewrite Expression 1.4 for ingestion per unit area [M]  instead of ingestion M. Write 
an expression to calculate [ M] from E.
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time rate of change in a quantity. Another useful diacritical mark is placing a “hat” over 
a symbol to signify an estimate of a parameter. Thus, an estimate of the true value of 
egg mass Megg is represented as M̂egg. In statistics, an old-fashioned convention is to use 
greek symbols for a parameter, roman symbols for its estimate. The convention places 
a greater burden on memory than the use of a hat. Happily, the convention is doomed: 
There are relatively few pairs such as ρ and r.

Well-chosen changes in typeface also contribute to clarity. The most common con-
vention is the use of boldface type to distinguish a vector (which has direction) from 
a scalar quantity (which has no direction). The major difficulty in using bold typeface 
to distinguish symbols is that the distinctions are lost when the symbols are written by 
hand. A tilde () is conventionally written by hand beneath a symbol to represent a 
vector such as i, the unit vector in the x direction. Italics help set off symbols from sur-
rounding text, making it easier to follow a text description of a symbol.

Clear expression results from distinguishing the several types of equalities that can 
occur. The simple equality sign  is pressed into service when any of several forms of 
equality are meant. Table 13.3 lists several different signs, each of which communicates 
more than the simple equality sign.

Moving from good notation for symbols to good notation for equations, an impor-
tant characteristic of a well-written equation is consistent usage of each symbol. A sym-
bol must always stand for the same quantity. If it does not, confusion and erroneous 
calculation inevitably result. The device that contributes most to consistent notation is 
a listing of symbols, or a dictionary, showing each symbol with its name, such as the list 
recommended in Chapter 3.3, for construction by the reader. A dictionary of symbols  
will not guarantee consistent notation, but it does help greatly in working toward  
this goal.

A device that contributes to clear writing of equations is functional notation to rep-
resent a computational recipe. If an operation occurs again and again, functional nota-
tion increases clarity by standing for the set of operations, leaving aside the details. This 
is like reading a word as a unit with meaning, without having to read each letter. For 
example, in Chapter 10 the symbol var(Q), which is easier to grasp, was used instead of 
the harder to grasp computational formula for taking the variance of a quantity.

Another device that contributes to clarity is the use of italics, which has become 
nearly universal in setting mathematical expressions into type. It is the default option 
in equation editors in word processing packages, and it is the house style in journals in 
which mathematical expressions appear. Italics are particularly effective in setting off 
a symbol t within a line of text, rendering the line easier to read than a roman sym-
bol t in the line. Subscripts are usually set in italics for consistency, whereas functional 

table 13.3 Symbols for equality

; Defined as or equal to by definition

 Approximately equal to

: Thought to be equal to or conditionally equal to

 Scales as
o  True by observation

⇒ Calculated as

⇐ Calculated from



286 QuAnTITATIvE ECOlOgy: MEASurEMEnT, MOdElS, And SCAlIng
 expressions var(t) remain nonitalic. dimensional expressions [M] remain nonitalic along 
with their brackets. This leaves an italic bracket [M] ; MV1 free to represent a concen-
tration of the quantity (in italics) within the bracket.

Another example of a quantity that can be written with functional notation is the 
formula for the number of pairs of N objects. The formula for the number of pairs is:

 
duo( )

( )( )
N

N N
;

 1
2∑

 (13.5)

The symbol duo(N) has the advantage of being directly tied to the concept and hence is 
more easily recognized than the complex term on the right side of the equation. Once 
defined, the shorter symbol duo(N) can stand in for the more complex form on the right 
side of Expression 13.5. Ecologically interpretable quantities such as mean crowding 
M*(N) or potential contact PC(i), deserve a simple and easily remembered symbol of 
their own in place of the full expression for calculating that quantity.

A good notational system brings out the relationship between quantities, whether 
expected or observed. An example is a system with the following elements: a letter for a 
quantity, a simple dot over the symbol for the time rate of change, and brackets around 
a quantity to represent the concentration per unit area or volume, as in chemistry. This 
system can be applied to any quantity: number of species s, number of individuals N, 
biomass of individuals M, biomass of populations B, or numbers of a particular gene 
G in a population. The system reduces the number of different letter symbols that must 
be remembered. The system also brings out clearly the relation of quantities, facilitating 
insight and biological reasoning about measurable quantities.

To demonstrate this idea, systematic notation is applied to a quantity that is 
often of interest in applied ecology: the total biomass of a population. The static quan-
tity is population biomass (B  grams), which is the product of population numbers 
(N  individuals) and biomass per individual (M  grams/individual):

 B N M ⋅  (13.6)

The time rate of change in biomass is B  with units of grams per unit time ( B   g·yr1). 
This is the biomass production, which traditionally has been assigned a new symbol P. 
The percent rate of change in biomass is B/B, also called the P/B ratio, with units of % 
yr1. The symbols B, B , and B/B display the relation among the quantities.

What is the relation of the percent production B/B to population growth, either as 
a simple rate N  or as a per capita rate N/N? The notation makes this evident, begin-
ning with a mathematical equivalence for a per capita rate:

 

B
B

d B
d t


ln( )  (13.7)

now substitute N  M for B, then replace the derivatives with equivalent ratio symbols 
to make the relations among quantities more evident:

 

d B
dt

d N
dt

d M
dt

B
B

N
N

M
M

 ln ln ln( ) ( ) ( )
 

 
    (13.8)
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The percent rate of production B/B is simply the sum of two familiar quantities. The first 
is the per capita rate of change in population size N/N, a familiar quantity from popula-
tion biology. The second is M/M, the growth rate of individuals as a percentage of body 
mass. Intuitively one might not expect a quantity such as the production-to-biomass ratio 
to be the sum of two widely studied quantities. The per capita rate of change in number 
N/N and the individual growth rate as a percent M/M are both related to body mass  

M by allometric scaling. Consequently, the percent change in biomass B/B should also be 
related to body size, which proves to be the case (Banse and Mosher, 1981).

Percent production B/B can be investigated for fixed areas, such as a lake. The produc-
tion per unit area of lake is [B]  B/A. The italicized square brackets here are used to denote 
the density, rather than concentration per unit volume. The percent rate of change in [B] is  
[ B]/[B]. As before, this is mathematically equivalent to the derivative of the logarithm of the 
quantity:

 

[B]
[B]

[B]


d
d t
ln( )  (13.9)

The production per unit area, as a percentage, is the difference of two percent rates of 
change:

 

d
dt

d B
dt

d A
dt

B
B

A
A

ln ln ln( ) ( ) ( )[B]

[B]
[B]

 

 
    

(13.10)

This was obtained by substituting B/A for [B]. The derivatives were again replaced with 
simpler symbols to bring out the relation between quantities. The notation makes it clear 
that the production density [ B]/B depends in part on population production B/B and in 
part on rate of change in area occupied A/A. Equation 13.8 then leads to further analy-
sis of percent production per unit area [ B]/B into components of demographic change  
N/N, growth rates of individuals M/M, and change in area occupied A/A:

 

  Percent
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[ ]
[
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B]]

  
  N

N
M
M

A
A

 (13.11)

The production density [ B]/[B] is the sum of three ratios. The first summarizes demo-
graphic processes (births and deaths), the second summarizes somatic growth, and the 
third summarizes kinematic processes (movements and distribution) as a divergence in 
two dimensions (see Boxes 8.7 and 8.8).

This analysis demonstrates how a consistent system of notation facilitates quantita-
tive reasoning. display of the quantities in this format immediately leads to a key question:  
What is the relative contribution of growth, demographic, and kinematic processes to 
the percent rate of production? The answer to this question will depend on the ecologi-
cal characteristics of populations. Somatic growth will be important in small-bodied spe-
cies, whereas demographics will likely be more important than somatic growth in larger, 
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longer-lived organisms. Kinematics will be less important in sessile populations than in 
mobile populations that coalesce during certain life stages, such as the coalescence of 
pelagic fish into spawning areas. The analytic strategy is to break a quantity down into 
major components, then ask which are important, before moving on to the processes 
responsible for each component of production. Systematic symbolic notation opens the 
door to this analytic strategy, made possible by displaying the relation of the components.

Another Look At Section 13.7.2

Write out Expression 13.11, then beneath it write out dimensions. Is the expression 
dimensionally homogeneous?

13.7.2 Parsimony

An important consideration in writing an equation is parsimony, which is expressing an 
idea as simply as possible. This usually means writing the equation with as few quanti-
ties as are necessary to the purpose. The procedure is to start with the simplest possible 
expression, then add detail if necessary. Here is an anecdote that illustrates the idea.

While on a postdoctoral fellowship in California, I took up body surfing because it 
looked like fun and the competition for space in the water was not vicious, as it was out 
with the board surfers. After I had learned how and where to catch little waves, I went 
out into some larger waves coming in one day at little Corona Beach. I caught several 
rides over 50 meters and soon forgot about anything else except watching for the next 
wave. Then, having misjudged placement on a wave, I found myself being carried up to 
the top of a real “dumper” rather than sliding down the front of a wave with better form.

lacking the ability to tuck out of the wave, I was carried up and then began fall-
ing head first almost straight down over the breaking crest of the wave, which by now 
was vertical in front. rather than allowing myself to be driven head first into the sand, I 
rolled forward into a tight ball, taking a deep breath on the way down. The wave broke 
over me, tumbling me around at the bottom of a mass of churning water and sand. The 
water was too deep for me to stand up, but I assumed that buoyancy would carry me to 
the surface, so I waited.

let’s call this Model I. The response variable is time to get to the sea surface. The 
explanatory variable is buoyancy. The estimate based on this idea was that the time to 
float to the surface would be a few seconds.

After more than a few seconds it became evident that buoyancy was not going to 
carry me upward through the churning water before I ran out of breath. Model I was 
not adequate. I had to try something else, quickly.

I knew I had the leg strength to push through the churning water, so Model II was 
to add an additional force to buoyancy by pushing off the bottom. Model II was still 
not sufficient because, as I was tumbled around at the bottom, I could feel a lot of sand 
churning around and so opening my eyes was the short route to more pain than gain of 
information on which way was up. A blind push might not work. As I tumbled around 
down there, I stretched my hands out slightly, feeling for the bottom. Then at the point 
in time when both hands and both feet touched the bottom, I imagined a flat surface 
against which I pushed as hard as possible.
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This is Model III, that force be applied perpendicularly to four determinations 
of the sea floor rather than perpendicularly toward the sunlit sea surface. This model 
worked. At about the time I had run out of air I burst through to the surface, which was 
still churning and frothing in the wake of the wave. Model III was more complex than 
Models I and II but no more complex than it had to be to solve the problem.

The same sequence of adding detail as needed applies to writing equations, 
although usually without the degree of urgency in arriving at an adequate solution to 
the problem of regaining the sea surface.

13.7.3 Sequential caricatures

The equation used in Box 13.3 was presented without citation to some published work. 
In fact it has none; the equation was developed by reasoning about quantities. It was the 
result of sequential development of symbolic expressions from biological ideas. It will 
serve as an example of such an approach.

The first step is to separate the response from explanatory variables. The response 
variable is of interest for any of a variety of reasons, whether in the context of conserva-
tion, resource management, or better understanding of the natural world. In Box 13.3 
the response variable, with units and a symbol, is food consumption, M   kg/day. The 
next step is to state one or more explanatory variables with units and symbols. Food 
intake is nearly impossible to measure directly in a marine vertebrate such as a penguin. 
Intake depends on an explanatory variable, metabolic rate, that can be measured with 
stable isotopes, as in the equation from Kooyman et al. (1982), which led off this chapter 
(Equation 13.1). Metabolic rate in units of energy per unit time is E   Watt ; 1 Joule/ 
second. The next step is to state a simple functional relation between response variable 
(on the right) and explanatory variable(s) on the left side of the equality sign.

 
 M E f( )  (13.12)

This is read as “intake M is a function of metabolic rate E .”
Expression of the idea in this functional form marks the halfway point from verbal 

to formal expression as an equation. This functional expression is not yet an equation 
because the quantity on the left side, food consumption, cannot be computed from the 
quantity on the right, metabolic rate. The left side (kg/day) does not have the same units 
as the right (Watts). The missing piece of biology is the energy density of prey, that is, 
the number of Joules per kg of prey. For most types of animal prey, except for something 
as watery as gelatinous zooplankton, energy density is around 7·106 Joules/kg.

The formal expression relating food consumption to metabolic rate and energy 
density of prey (E/M  Joules/kg) is:

 
 M E E M ⋅ /

1  (13.13)

Metabolic rate has been divided by energy density expressed in Joules per kilogram so 
that the units cancel properly: Joules in the numerator of metabolic rate cancel Joules in 
the denominator of E/M

1.
This expression still falls short because intake M has been defined per day, whereas 

the time units of metabolic rate are second1. A rigid conversion factor ks/day is required 
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to rescale field metabolic rate E  from Joules · second1 to Joules · day1. The expres-
sion is revised by adding the conversion factor:

 
 M k E Es day M 

/ /⋅ ⋅ 1  (13.14)

Another check of the units should show that the units on the right will cancel out to 
yield the units on the left. I leave this to the reader.

Both ks/day and E/M
1 have known values, which can be substituted, leading to a 

new form of the same equation:

 
 M E  ( .  kg Watt  day )0 0123 1 1 ⋅  (13.15)

This is Model I, which is dimensionally consistent and hence can be used for calculating 
food intake from field metabolic rate. If the calculations are checked against detailed 
measurements, such as might be obtained from captive penguins in a zoo, the observed 
intake will exceed the calculated value. Much of this bias will be due to the inefficiency 
of digestion, which wastes something like 20% of the calories ingested. The energy 
actually burned is less than the energy ingested. The accuracy of the equation can be 
improved by adding more biology in the form of an assimilation rate, or ratio of the 
mass of the food ingested to the mass of the food assimilated. This typically has a value 
of Massism  80%, or 0.8 kg assimilated per kg ingested.

The next step is to write the revised model (Model II):

 
 M E Massim  ( .  kg Watt  day )0 0123 1 1 ⋅ ⋅  (13.16)

This is analogous to Model II in the surfing problem in the previous section: “Push off 
the bottom.” As with Model II in the surfing problem, the improvement is no good if 
applied in the wrong direction. Assimilation is a dimensionless ratio, so there are no 
units to guide its application in the right direction. The solution is to reason about the 
quantities involved. Consumption M must exceed metabolic requirements (on the right 
side), so the right side must be multiplied by a factor greater than 1. This is accom-
plished by dividing the right side by the assimilation rate. dividing by 80% boosts the 
metabolic requirement to the larger value on the left side. So, the equation has to be:

 
 M E Massim   ( .  kg Watt  day )0 0123 1 1 1⋅ ⋅  (13.17)

This is analogous to Model III in the surfing problem: “Apply force in the correct direc-
tion, estimated as perpendicular to the bottom.”

The surfing example in the previous section and the food consumption discus-
sion in this section both illustrate the concept of constructing a series of caricatures to 
address a problem. They were tackled in similar ways, adding detail only as necessary.

Another Look At Section 13.7.3

Metabolic rate E is typically measured under standard conditions: at rest, in thermoneutral-
ity, and not actively absorbing food. Write an expression for daily intake by a free-living 
organism not living at rest in thermoneutrality and not absorbing food.
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13.7.4 General Procedure

Several components of good practice have now been covered: good notation, parsimony, 
and sequential development, including checks on dimensional homogeneity and unit 
conversions. Table 13.4 presents a generic recipe based on these components. As with 
any generic recipe, the number of variations is large. To illustrate the recipe, a model for 
field metabolic rate will be developed.

Many ecologically important quantities are expensive or even impossible to mea-
sure directly. Equations based on biological concepts permit calculation of these quanti-
ties. Field metabolic rate E , for example, is expensive to measure. Happily, the quantity 
E  is closely related to a much more easily measured quantity, body size (M  kg). This 

completes Steps 1–4 in Table 13.4. For Step 5, the idea that metabolic rate depends on 
body size is expressed in functional form:

 
E f M ( )  (13.18)

As previously, the response variable (which is to be calculated) has been placed on 
the left side of the equation. The explanatory variables, which are to be used to make 
the calculation, have been placed on the right side. The units on the left do not match 
those on the right; more biology needs to be added to describe exactly how field meta-
bolic rate ( E   kcal/day) is related to body mass (M  kg). The simplest idea is that 
field metabolic rate is directly related to body mass:
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 (13.19a)

As shown in Chapter 2, this is equivalent to:

 
E k M ⋅  (13.19b)

A few measurements on animals of different sizes will quickly reveal problems with this 
1:1 scaling. The scaling of energy to mass, k  E /M, is not constant. This scaling ratio 
increases with decreasing mass because small organisms live more intensely than larger 
organisms and have higher metabolic rates per unit mass.

table 13.4 Generic recipe for Writing an equation

  1.  State the response variable.

  2.  Define this quantity in words, and assign units to a symbol.

  3.  State the explanatory variable or variables.

  4.  Define each in words, and assign symbols and units.

  5.  Write the response variable as a function of the explanatory quantities:

  Response  f(Explanatory, Explanatory, ...)

  6.   Write an equation by reasoning about the quantities. Empirical description of the form 

of the relation, such as from exploratory data analysis, is also useful.

  7.  Check the equation to make sure that units cancel correctly.

  8.  Make a calculation and check against an independent measurement, if possible.

  9.  Revise the equation to include more processes as necessary.

10.  Check units after each revision, before making calculations.
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An improvement on Model 13.18 is that metabolic rate varies with surface area, 
whereas mass varies with volume. According to this notion, energy dissipation is directly 
proportional to area, which in turn scales as volume2/3 and hence to mass2/3 in organisms 
with a fixed density (mass-to-volume ratio). Step 6 (Table 13.4) is completed by writing 
the equation obtained by reasoning about the relation of metabolic rate to body mass:

 
E k A k V k M  ⋅ ⋅ ⋅1 2 3 2 3/ /  (13.20)

This turns out to be nearly correct, but not exactly. A still more accurate description 
is that the metabolic rates scale according to some other exponent  that on average 
exceeds 2/3. The scaling function that relates metabolic rate to body mass is:

 
E k MWatt kg / ⋅   (13.21a)

 Watt (Watt kg ) kg ⋅ ⋅   (13.21b)

units are checked (Step 7, Table 13.4) by writing them beneath each symbol. For units 
to cancel, the symbol Kwatt/kg must have the complex units shown in Equation 13.21b.

One of the first estimates of  and KWatt/kg relative to field metabolic rate Ė was 
obtained by King (1974), who measured the amount of time that individual animals 
spent in assorted activities, then combined this with the energetic cost of each activity to 
obtain a daily energy budget in bird and rodent species of different body sizes.

King’s (1974) parameter estimates were ̂  0.6687 and k̂  179.8 kcal ·  
kg0.6687 · day1. Applying the rules for rigid rescaling (Table 5.3) yields a new scaling factor  
k̂Watt/kg  8.74  Watt · kg0.669 for rodents. Because these estimates of k̂Watt/kg and are com-
pletely empirical, they apply only to rodents in the 0.009 to 0.61 kg range. A calculation 
was then made (Step 5, Table 13.4). Box 13.4 shows calculations from King’s equation.

Box 13.4 Metabolic Rate Calculated from Body Mass Following Steps in Table 13.2

1. Write the equation:
 E k Mkcal kg day /( ) ⋅

  (King, 1974)

2. E      kcal·day
 k      179.8 kcal · kg.6687 · day1

 M    kg
       0.6687
3. The idea in words: Field metabolic rate scales as body mass in rodents and 

hence can be calculated by allometric rescaling according to body mass.
4. Check units:
 (kcal · kg.6687 · day1)(kg0.6687)  kcal1 · kg0 · day1

5. Substitute and calculate:
 E   (179.8 kcal · kg.6687 · day1)(0.5 kg)0.6687

 ⇒113 kcal day1
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At the time of King’s work, there were no independent measurements against 
which to check these calculations (Step 5, Table 13.4). King’s scaling factor of 8.74  
Watt kg0.6687, which was obtained by quantitative reasoning to combine several quanti-
ties, was later confirmed by direct measurement nearly a decade later. The field metabolic 
rate of rodents, as measured with doubly labeled water (garland, 1983), is k̂Watt/kg    
9.28 Watt kg0.66, almost exactly the same as the calculated scaling based on quantita-
tive reasoning (King, 1974). revision (Step 9, Table 13.4) was not needed.

Another Look At Section 13.7.4

Which is more informative?

l A test of the hypothesis that kWatt/kg  0 (a null hypothesis)
l A test of the hypothesis that kWatt/kg  8.74 Watt kg0.6687

Why?

13.7.5 combining equations

using quantitative reasoning, one can combine several equations to make calculations 
that can be tested against data (Peters, 1983; Calder, 1984; Pennycuick, 1992). For 
example, Calder (1984, p. 305) used reasoning about quantities to obtain a relation 
between foraging bouts (T  days) and body size (M  kg) based on food intake as a 
function of metabolic rate. The relation that Calder obtained is that:

 T M 3 04 0 26.   .  (13.22)

This relation is based on several empirical relations combined with reasoning about how 
intake must vary with body size. The relation was not obtained by simply regressing 
measurements of intake frequency against body size. The two parameters (an exponent 
of 0.26 and a rigid scaling factor of 3.04 days  kg0.26) represent highly specific expec-
tations about that relation, not nominal scale or yes/no expectations about whether or 
not the relation is present.

Box 13.5 shows a similar example in which a calculation about average food 
intake by a half kg rodent is obtained by reasoning about quantities. The idea that food 
consumption is directly proportional to respiration rate (Box 13.3) and the idea that res-
piration scales allometrically according to body mass (Box 13.4) can be combined into 
one equation. Substitution of parameter values produces an equation that can be used to 
calculate food consumption by rodents, as shown in Box 13.5. The calculations follow 
the recipe in Table 13.2.

The calculations show that at time scale of weeks to lifetimes, a 0.5 kg rodent is 
expected to consume 0.085 kg food per day, or 17% day1 relative to its own body 
mass. This calculation is based on a set of ideas about the relation of intake to metabolic 
rate and body mass. This calculation may be adequate in some cases but not others. As 
with any model (Section 13.7.2), more detail can be added if the model is not adequate 
to the purpose at hand.
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Another Look At Section 13.7.5

If the number of bird species Nsp on an island scales with the number of birds Nsp   
kn  Nbird

0.3 and Nbird scales directly with island area N  kA  A1, how does Nsp 
scale with the island area?

13.8  Empirical and Theoretical Scaling Functions
dimensional analysis is a useful tool for checking equations (Section 13.5). It is also an 
effective tool for developing scaling functions. Box 2.4 showed the first ecological use of 
a measurement relation to develop an empirical scaling function relating species to area: 
S  cAz. This function is empirical because it was developed by fitting data to a line (on 
a log-log plot). Beginning with a measurement relation that equates one dimensionless 

Box 13.5 Food Intake Calculated from Body Size

Combine equations in Boxes 13.3 and 13.4 to calculate food intake from body mass.

1. The equation:

 
M k E M k Ms day M assim Watt kg  

/ / /⋅ ⋅ ⋅ ⋅1 1 

2. Each symbol, with units:
 M   kg day1

 ks/day  s day1

 E/M  Joules kg1

 Massim  80%
 kWatt/kg  Watt kg.6687

 M  kg.6687

3. In words: At the time scale of weeks to lifetimes, food intake depends 
on body size (M), the scaling of metabolic rate to body size (kWatt/kg), 
assimilation efficiency (Massim), and the energy density of prey (E/M).

4. (Joules kg1)1(Joule Watt1 day1)(Watt kg.6687)(kg).6687

   Joule0 kg1 Watt0 day1 kg0

   kg day1

5. Substitute parameter estimates. King’s (1974) estimate is:
 kWatt/kg  8.74 Watt kg.6687  (King, 1974)

 ̂  0.6687  (King, 1974)

 k E Ms day M assim/ / .⋅ ⋅   1 1 0 0154 kg day Watt1 1
 (Box 13.3)

The resulting equation is:
M M   0 0154 8 74 6687 0 6687.  kg day  Watt .  Watt kg1 1 . .⋅ ⋅

Calculate M for a rodent of M  0.5 kg:
M    0 0154 8 74 0 56687 0 6687. . . kg day  Watt .  Watt kg ( kg)1 1 .⋅ ⋅

 ⇒ 0.085 kg day1
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ratio to another, Arrhenius (1921) estimated the exponent z of the measurement rela-
tion from data, then estimated the scaling parameter c of the scaling function. Box 6.1 
describes this analytic sequence in general form, from measurement relation to scaling 
function. The machinery of dimensional analysis is a first step toward development of 
more theoretically based scaling functions. Boxes 6.3–6.5 demonstrated the machinery 
of obtaining dimensionless ratios. Box 6.6 demonstrated the derivation of scaling func-
tions from dimensionless ratios. Box 6.8 combined biological reasoning with the logic of 
dimensions to develop  ratios for the fish catch from lakes. A plot of data (Figure 6.2) 
showed that the  ratio for lake shape was independent of the  ratio for water clar-
ity. Two more plots showed that the fish catch (per lake) was a function of lake shape 
but not water clarity (Figures 6.3 and 6.4). This suggests that fish catch, as an empiri-
cal function, is best described by lake shape, ignoring water clarity. Box 13.6 shows the 
development of a scaling function guided by dimensional analysis in Box 6.8.

Box 13.6 Dimensionless Ratios to Develop an Empirical Scaling Function

The functional expression for the measured variables:

 
M A TDS z f (   ), ,

 
M  fish catch (kg yr )1

 A  lake area (ha)
 TDS  total dissolved solids (ppm)
 z  lake depth (meters)

Two independent  ratios from three variables and one dimension (Box 6.7). 
reduction by inspection (Box 6.8):

 shape  A1/2/z    organics  TDS   M  f (shape, TdS)

Plots of data (Figures 6.2 and 6.3) show:

 shape  (organics)0   no relation between two  ratios

 M  f (shape)     Fish catch related to shape but not organics

Empirical scaling relation for a power law relation:

 ln( M)  k   · In (shape)
 ˆ .k  6 754   ˆ .  2 0154     Estimates from regression.
 M  exp( )k̂  · (shape)̂  858 · shape

2.0154

dimensional analysis (Box 6.8) suggested that lake shape is the primary influence 
on fish production and catch. From this insight we can take the next step toward a theo-
retically based scaling function. If lake shape is the key factor, a simple model is that fish 
production depends on the flux of some limiting material (such as a nutrient) through the 
water body (Schneider and Haedrich, 1989). Box 13.7 demonstrates the use of rayleigh’s 
method of dimensional analysis (Box 6.4) to work out the theoretical scaling function if 
fish catch depends on a fixed flux of material through the volume, taking into account con-
version efficiency of that material to fish. The equation developed in Box 13.7 is a theoreti-
cal scaling function because it has at least one theoretically derived parameter (  2/3).

The regression estimate of the scaling exponent  was close to the theoretical value 
(Box 13.7). The scaling function in Box 13.7 was developed from analysis of ryder’s 
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data for Canadian Shield lakes (ryder, 1965), so it was checked against a new set of 
data, fish catch from lakes and reservoirs further south, in Missouri and Iowa (Jones 
and Hoyer, 1982). The regression estimates of the exponent were 0.60 (great lakes 
data) and 0.77 (Mississippi valley data). These estimates were statistically indistinguish-
able from the theoretical value of 2/3 (Schneider and Haedrich, 1989). Box 13.7 shows 
the use of a scaling relation to estimate a scaling parameter with the dimensionally cor-
rect units of (km3)2/3  km2. Figure 13.3 shows both sets of data relative to their theo-
retically derived scaling functions.

Box 13.7 Dimensionless Ratios to Develop a Semitheoretical Scaling Function

The functional expression for the measured variables:
M A TDS z f (   ), ,

 
M  fish catch (kg yr )1

 A  lake area (ha)
 TDS  total dissolved solids (ppm)
 z  lake depth (meters)

Theoretically based scaling relation     M c [Q] V   δ

c  conversion efficiency (kg harvested/kg limiting material Q)
[Q]   flux of limiting material Q through lake (kg km2 yr1)
V  lake volume (km3)

Exponents derived from rayleigh’s method:

M    c    [Q]    v

[M]        0     1      0      
[l]  0      0      2      3     2/3
[T]          0            0

Setting the exponent of the response variable M to   1, we have:
 M c [Q] V 2/3 

M V0.60 6 9 104. ⋅  by regression, data from ryder (1965)
M V0. 4 105 77⋅  by regression, data from Jones and Hoyer (1982)

The estimates of c [ Q] are 6.9 · 104 kg yr1(km3)0.60 and 4.5 · 105 kg yr1(km3)0.77. 
To obtain an estimate with the correct units (km3)2/3, we use a Euclidean scaling 
relation (Equation 2.2a) where the basis for scaling is the geometric mean for fish 
catch and for volume.




M
M

V
Vgeom mean geom mean( ) ( )

/











2 3

c [Q]   (geom mean( M))(geom mean(v))2/3

c [Q]   5.45 · 103 kg yr1(3.83 km3)2/3  2.22 · 103 kg yr1 km2

c [Q]   5.05 · 105 kg yr1(28158 km3)2/3  5.45 · 102 kg yr1 km2

M  545 2 3 v /    Canadian shield lakes, ryder (1965)
M 2/3 2224 v     Mississippi valley, Jones and Hoyer (1982)
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Figure 13.3 Fish catch relative to Lake Volume. triangles show data from canadian shield lakes (ryder 1965). 
circles show data from lakes further south (Jones and hoyer 1982). Lines drawn through the geometric mean of each 
data set show theoretical scaling, with exponent of 2/3. redrawn from Schneider and haedrich (1989).

One bonus of the use of dimensionally correct parameter estimates is that we can 
compare them directly. The two estimates of c[Q] , via regression, have different units 
(kg yr1(km3)0.60 versus kg yr1(km3)0.77). Consequently, we cannot compare them by 
taking a difference. If we compare the regression estimates as a ratio, we obtain a value 
with units, and hence that depends on lake volume:

 
r c/Miss Shield Miss Miss Shield Shield[Q ] c [Q ];   /  (13.23)

 

r (  kg yr (km ) )/( .  kg yr (k/
.

Miss Shield   4 5 10 6 9 105 1 3 0 77 4 1. ⋅ ⋅ mm ) )

.  (km )

.

.

3 0 60

3 0 176 5
 (13.24)

If we compare the theoretically derived estimates, we obtain a dimensionless ratio, with 
no dependence on units:

 r ( kg yr km )/( kg yr km )/Miss Shield     2224 545 41 2 1 2  (13.25)

So, we find that the Mississippi valley lakes are four times as efficient as the Canadian 
Shield lakes at yielding fish.

Theoretically based scaling functions obtained by classical dimensional analysis 
(Box 13.7, Figure 13.3) represent a substantial improvement over completely empiri-
cal scalings produced by regression. A well-verified theoretical scaling can be used with 
more confidence than an empirical scaling. The caveat is that classical dimensional ana-
lysis, which yields exponents composed of integer and integer ratios, will fail to describe 
the measurement or scaling relations of variable quantities subject to episodic dynamics 
in physical systems (Wilson, 1971; Barenblatt, 1996; Stanley et al., 1996) and biological 
systems (Stanley, 1996; Schneider, 2001b). In these cases (see Chapter 16), an extension 
of classical dimensional methods will be needed (Barenblatt, 1996) to arrive at the scal-
ing exponent.
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13.9  Dimensional Analysis of Conservation Laws
Conservation laws in conjunction with dimensional methods are an effective way of rea-
soning about a quantity. For any quantity of interest, one can usually write an equation 
called a conservation law, which lists source and sink terms. For example, in population 
biology, the quantity of interest is the number of organisms N. The rate of change, as a 
percentage, is:

 
N t N

N
dN
dt

( ) / ;
1

 

For the entire population, the conservation law (Box 8.5) is:

 

  N t
N

B t
N

D t
N

( ) ( ) ( )
   (13.26a)

This equation says that the rate of change, as a percentage, is due to the proportional 
increase via recruitment N1 B(t) and death N1 D(t). The net change is conventionally 
represented by the symbol r, the per capita rate of change:

 

N t
N

r
( )

  (13.26b)

At spatial scales smaller than that of the entire population, movements become 
important sources of change in number. If we divide the area occupied by a popula-
tion into spatial units, the conservation law for each unit includes lateral fluxes running 
east-westy [N] y or north-south [N] x (Section 8.4). We are interested in accumulation 
or loss due to flux, so we take the gradient in flux, which measures the rate of increase 
(or decrease) due to differences in flux rates on opposite sides of the unit. The flux gra-
dients, or divergences, are  · [N] x and  · [N] y (Section 8.6). The divergence for the 
entire unit is  · [N] x (note the boldface symbol to denote both horizontal directions). 
On a percentage basis the divergence is N1 · [N] x (Section 8.6). If the divergence is 
positive, there is net loss (emigration). If the divergence is negative, there is net gain 
 (immigration). Thus the conservation equation for any spatial unit is:

 

   N t
N

B t
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D t
N
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N

( ) ( ) ( )
  

 ⋅ x  (13.27a)

 The conservation equation can be written as a rate of change in numbers.

 
   N t B t D t [N]( ) ( ) ( )    ⋅ x  (13.27b)

Equation 13.27a is often used because recruitment and mortality are typically treated on 
a per capita basis. If they are, the divergence needs to be considered on a per capita basis 
as well.

Equation 13.27 displays the typical components of a conservation equation for a 
quantity: an in situ source term B(t), an in situ loss or sink term D(t), and a divergence 
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 · [N] x. One can write a similar conservation for other quantities. For example, the 
conservation equation for water on the landscape is typically written as:

 

dS
dt

PPT ET Q    (13.28)

In this equation, dS/dt is the rate of change in soil moisture, PPT is precipitation (which 
can be viewed as in situ production of water from vapor), ET is evapotranspiration 
(which can be viewed as in situ loss of water back to vapor), and Q is runoff (a lateral 
flux gradient or divergence).

Once we have a conservation law, a natural step is to compare its components by 
scaling them to each other as dimensionless ratios. For example, we expect fluxes to pre-
vail at small spatial scales while demographics prevail at large scales.
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 (13.29)

We can form these ratios any way we like, guided by our knowledge of the system. 
However, it helps to keep in mind that the number of nonredundant ratios for a con-
servation law is n!/2!, where n is the number of terms on the right side of the con-
servation equation. given three components on the right side of Equation 13.28, the 
number of ratios that can be formed (number of pairs) will be 3!/2!  3 ratios. Having 
examined demographics relative to fluxes (Equation 13.29), we might then examine 
recruitment relative to divergence and mortality relative to divergence at a variety of  
spatial scales.

One common technique is to begin with a conservation equation that summa-
rizes a full list of dynamics, then simplify the list using dimensionless ratios to identify 
those components that prevail at a given scale. From this the equation is rewritten as an 
approximation with fewer terms. A classic example in ecology is the role of advection 
in the dynamics of primary production in the sea (O’Brien and Wroblewski, 1973). 
These authors began with a conservation law for phytoplankton dynamics that included 
sources (production), concentration-dependent sinks (e.g., predation), concentration-
independent sinks (e.g., loss during anoxic episodes), advection, and diffusion. using 
the method of governing equations (Table 6.10, Box 13.8) these authors identified a 
dimensionless ratio s, which is the horizontal flow scaled to the quantity L · ([ B]/B), 
where L is the length scale of interest and [ B]/[B] is the phytoplankton production, [ B] 
per unit of biomass concentration [B]. If s  1, advection needs to be included in more 
detailed models of phytoplankton production. If s  1, advection can be dropped as an 
extraneous detail. For the Sargasso Sea, s  4 · 102 at the length scale of energetically 
dominant eddies. At this scale advection can be omitted from a model of phytoplankton 
dynamics. For the gulf Stream, s  1. Advection must be included in a dynamic model 
because it plays a role as important as production in determining the dynamics of phy-
toplankton patchiness.

One can undertake a dimensional analysis of the parameters in a conservation law 
via sequential elimination (Box 6.3), rayleigh’s method (Box 6.4), or Buckingham’s  
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method (Box 6.5). However, if we want to evaluate the relative importance of terms in 
the equation, we need to analyze the equation as shown in Box 13.8. Analysis of the 
equation begins by selecting a characteristic value for each variable. These values are 
then used to reduce the equation to dimensionless form. The example in Box 13.8 was 
chosen for simplicity. normally one would not set about simplifying an equation with 
only one source and one sink term. A realistic application of the governing equation 
method would typically have several source and sink terms.

Box 13.8 Dimensionless Ratios Obtained by the Method of Governing Equations

A conservation equation for red-tide organisms that bloom in isolated patches of 
low-salinity water and die if mixed outside the patch (Kierstead and Slobodkin, 
1953):

 

dB
dt

rB K
d B
dxH 
2

 
B   dB/dt biomass production [M]  [T]1

r   B/B maximum growth rate   [T]1

x horizontal distance  [l]
d2B/dx2   diffusive movement [M] [l]2

KH  horizontal eddy diffusivity  [l]2 [T]1

reduce variables to dimensionless ratios (Buckingham’s method, Box 6.5):
B*      B/B9  where B9   is reference biomass
x*      x/x9  where x9   is patch scale
t*        t/r1  where r1  is time scale (e.g. doubling time)

Conservation equation rewritten in terms of dimensionless variables:

 

rB
dB

dt
rB B

K B

x

d B

dx
H   





*

*
*

*

*
2

2

2

 
divide by rB9:
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The first term on the right has a coefficient of 1
The second term on the right has a coefficient of   KH r1 x92

growth balances diffusive loss when the two coefficients are equal.
This gives the critical scale:  dcrit  (KH /r)1/2  Compare Box 6.6.
The magnitude of each coefficient is used to decide whether to retain a term.
If a term has a coefficient that is small relative to other coefficients, that term  
is dropped. In this example, if  were smaller than 1 (growth coefficient exceeds 
diffusivity), the eddy diffusion term would be dropped.
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The governing equation method requires considerable prior knowledge compared 
to the method of similitude and the method of  ratios (Table 6.9). The method requires 
an ecologically reasonable conservation equation, which requires familiarity with the 
system and its components. It requires that one choose a characteristic scale for each 
variable based on knowledge of the system. These requirements introduce ecological 
knowledge into the analysis.

The governing equation method, like other forms of dimensional analysis, produces 
an approximation rather than an exact solution. As with any dimensional analysis, the 
method is useful when an approximate solution will suffice or where an analytic solu-
tion is not available. Stephens and dunbar (1993) used dimensional analysis to obtain 
an approximate solution to the marginal value theorem of Charnov (1976), which has 
no analytic solution, yet has proved highly useful in predicting behavior from gain con-
strained by cost.

It is evident from Box 13.8 that the governing equation method is not the easiest 
way to undertake a dimensional analysis. Sequential simplification (Boxes 6.3 and 6.5) 
requires less effort. Most people will find rayleigh’s method (Box 6.4) and the method 
of  ratios (Box 6.5) easier than the method of governing equations. The principle rea-
son for using the governing equation method is model simplification by permitting com-
parison of coefficients to determine whether a term is negligible and can be dropped 
(Box 13.8).

Another Look At Section 13.8

Make a brief list of conservation equations (mass, energy, numbers) that you have 
encountered in biology.

13.10  Quantitative Reasoning
Equations in ecology are often developed from exploratory analysis of data rather than 
by reasoning about quantities. Most of the equations compiled by Peters (1983) were 
obtained by plotting one quantity against another and then fitting a regression line. 
Such equations are empirical, based largely on verbal reasoning. This analytic style relies 
heavily on statistics to discover pattern, and it employs yes/no hypothesis testing, in 
which the goal is to reject the hypothesis that the observed relation is no more than a 
matter of chance.

This exploratory style is highly effective in situations where little is known about 
what should be measured or what processes are important. But once patterns have been 
described and some of the important processes have been identified, it is then possible to 
adopt a style based on reasoning about quantities. Once knowledge has accumulated, it 
makes sense to use it.

The scaling relations developed in Chapter 6 for dinosaur running speed, rate of otter 
spread, and phytoplankton growth are all examples of quantitative reasoning. reasoning 
about quantities, rather than statistical analysis, was used to decide which quantities 
should be considered and how to combine them. revision of the dimensional matrix in 
light of biological knowledge led to scaling relations that could tested against new data.
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The amount of reasoning that goes into an equation varies. Some relations between 
quantities are based on empirical relations derived completely from data. Some are 
based on the application of statistics to quantities in situations where some relation is 
expected on other grounds. An example would be a functional relation used to calculate 
primary production from wind strength in a coastal zone where wind-driven upwelling 
brings nutrients upward into the light. little relation would be expected between wind 
strength and production by photosynthetic microbes per se. A stronger relation would 
be expected between production and upwelling-favorable wind stress, which takes into 
account both wind direction and amount of energy imparted to the water by the wind. 
Thus an equation to calculate production from wind stress is based on more specific 
reasoning than an equation based on wind speed alone, in much the same way that the 
solution to the surfing problem required reasoning about direction in which to apply 
force rather than relying on buoyancy alone.

Defined Concepts and Terms for Review and  
Future Reference

____ conservation law
____ dimensional homogeneity of an equation
____ parametric vs. variable quantity
____ parsimony
____ quantitative grammar
____ terms of an equation
____ theoretical vs. empirical scaling function



Coordinating Equations: 
Derivatives

It is only by bitter experience that we learn never to trust a published mathe
matical statement or equation … Misprints are common. Copying errors are 
common. Blunders are common. Editors rarely have the time or the training 
to check mathematical derivations. The author may be ignorant of mathemati
cal laws, or he may use ambiguous notation. His basic premises may be falla
cious even though he uses impressive mathematical expressions to formulate 
his conclusions. The present book—in text and in exercise—points again and 
again at published errors. But there are bound to be similar errors in this very 
book. Caveat lector! Let the reader beware!

—D. S. Riggs, The Mathematical Approach to  
Physiological Problems, 1963

14.1 Synopsis
Derivatives coordinate one function with another. Time derivatives coordinate descrip-
tive functions with dynamics. Spatial derivatives coordinate descriptive functions with 
gradients. The rules for working with measured quantities apply to functions of mea-
sured quantities, including the derivatives and integrals of such functions. The chain rule 
turns out to be particularly useful in working with functions of scaled quantities.

Time and space derivatives also coordinate descriptive functions with scaling func-
tions. The derivative with respect to temporal or spatial scale is called a zoom operator, 
to distinguish it from taking the derivative with respect to time or distance (panning).

Ecologists work with measurements that have finite ranges and resolutions. 
Differential equations produce values with infinite ranges and infinitely fine resolution. 
As a result, judgment is required in applying derivatives and integral functions to mea-
sured quantities.

14.2 Derivatives
Within quantitative ecology, defined as the use of scaled quantities in understanding 
ecological patterns and processes (Chapter 1), the role of calculus is to reexpress a  
concept written as an equation. Derivatives coordinate one equation with another. 
Thus they are an important means of relating measurements to underlying dynamics.  
For example, if aphid numbers increase exponentially during the spring because  
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recruitment b exceeds death d, the descriptive model reports a number N(t) for any 
time t that we want:

 N(t) No
(bd)t: e  (14.1)

The dynamics are described by the derivative function N(t):

 

dN
dt

N t b d N  ;  ( ) : ( )  ⋅  (14.2)

This example demonstrates one of the principle uses of derivatives in ecology, which is 
to work back and forth from the dynamics, or time rate of change in a quantity, to the 
value at any point in time. The rules for taking derivatives and integrals permit rapid 
and accurate passage from the descriptive function N(t) to the dynamic function N t( ).

Many readers will have taken a calculus course that demonstrates the rules for 
derivatives and integrals (antiderivatives). Few ecologists regularly apply the tool, which 
rusts from disuse. The underlying idea is, however, a common mode of reasoning in 
ecology: examining the way the value of one quantity changes in relation to another. 
Expressed verbally, the idea of a derivative is the change in the value of one quantity 
with respect to another. The idea of a derivative is thus the same as that of scaling one 
quantity to another. Expressed graphically, the derivative is of course the slope of the 
curve of the function relating one quantity to another. The formal expression, as applied 
to a measured a quantity, is that the derivative is the ratio of the difference of one quan-
tity over the difference of the second quantity, taken at a mathematically convenient 
(although hard to imagine) limit of infinitely fine differences. To rescue calculus for our 
purposes, which is to work with equations that express ideas about measured quantities, 
we have to introduce a “kluge”: that a derivative has units (refer back to Box 13.1). This 
allows us to use the rules of calculus, as in Table 14.1. in this table, abstract notation is 

Table 14.1 Commonly Used Rules for Derivatives of Functions with Units

 L, Q, and M are symbols for quantities with different units.  L Q, ,  and M  are symbols for the derivative of 

these quantities with respect to time:
  L dL/dt;        

Q dQ dt≡ /          
M dM /dt≡

The derivative relative to the quantity is:

  L L
d L

dt
/

ln( );
   
Q Q

d Q
dt

/
ln( );     M /M

d M
dt

≡
ln( )

 and  are numbers, having no units.

K is a quantity that does not change with time:  dK/dt ; 0

Here are four rules that relate functions to derivative functions. The derivative has been taken with respect to time.

Function            Derivative Function

  

1. 0

2. 1
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The chain rule is easy to remember because it works like unit cancellation.
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used for the sake of generality. Time derivatives d/dt are used because these are familiar. 
The rules apply to any derivative, not just d/dt.

Derivatives are ratios that can be added and subtracted, following the same rules 
as any other quantity (Table 4.4). For our purposes derivatives cannot be added unless 
they have the same units. Derivatives with different units can be added if there is a con-
version factor that transforms one of the derivatives to the same units as the other deriv-
ative. As was the case with the algebraic operations described in Chapter 4, care in the 
use of symbols contributes to effective use of derivatives in quantitative ecology.

AnoTheR Look AT SeCTion 14.2

Work out the derivative of the species area curve with respect to island area A. The spe-
cies area curve is Nsp  kAz. Provide a verbal interpretation of the derivative function.

Box 14.1 Seed Density Gradients Calculated from Rules in Table 14.1

[N] ; seeds per unit area, with dimensions of # l22

∇[N]
d[N]
d r


 
The one-dimensional radial gradient

1. The density is a constant value: [N] : K  100/m2  
∇[N]  0 (the gradient is zero at all points) (Rule 1)

2. The density is inversely proportional to the square of radial  
distance r from point of release.

[N] : k r22  k  250
 ∇[N]  22k r23  (Rule 2)

 The density gradient at r  5 m
∇[N]  ⇒ 22(250)(5 m)23  2(4 m22) m21

3. The density of viable seeds depends on distance from point of release and on 
a survival gradient klive along a radius.

[N] : k  r22  klive  r   k  250     klive  (20 m22)m21

∇[N]  22 k  r23  klive (Rule 3)
 The density gradient at r  5 m

∇[N] ⇒ 2(4 m22)m21  (20 m22)m21  (16 m22)m21

4. The density is defined as the ratio of numbers to area:

 
[N]

N
A

[N] N A1 1 ; ∇ ∇ − ( )

[N]21 ∇ [N]  1  ∇N/N  21  ∇A/A  (Rule 4)
  ∇ N/N22/r
 The percent gradient along a radius. ∇A/A  2r/r2  2/r
 let the percent gradient be N/N : 210%/m
 At r  5 m the density gradient is
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14.3 Spatial Gradients from the Density Function
The spatial derivative d/dx yields the spatial gradients from functions that describe den-
sity relative to location. To demonstrate the computations, each of the four rule pairs in 
Table 14.1 is applied to a function describing the density of seeds (Box 14.1). units of 
density, [N]  numbers/area, are used in all four examples. gradients in one dimension 
(such as along a transect) are used to illustrate the spatial derivative d/dx. Each calcula-
tion in Box 14.1 begins with a function describing density based on an idea. The one-
dimensional or along-transect gradient in density is then obtained by applying rules for 
derivatives from Table 14.1. A gradient has been calculated for a distance of x  5 m in 
each case.

in the first example in Box 14.1, the seed density is constant, and hence the density 
gradient comes out to be zero at all radial distances, including r  5 m. in the second 
example, the seed density decreases as the square of the distance from release point. The 
second rule pair in Table 14.1 is used to obtain the gradient as function of distance from 
point of release. The gradient was calculated as 2(4 m22)m21 at 5 m from the point of 
release. The gradient has units of density per m, which is to say, seeds m22 m21. As 
expected, the gradient is negative along a transect running out from the point of release. 
in the third example in Box 14.1, seed density again decreases with the square of the 
distance from release point. Survival is taken as positive with increasing distance from 
point of release, at a constant value of klive. in order for the expression to be dimension-
ally homogeneous, the parameter klive must have units of (seed m22)m21. The third rule 
pair in Table 14.1 is then used to derive the gradient in seeds along a radius. The density 
gradient is computed at a distance of 5 m from point of release. The gradient is posi-
tive at 5 m because the survival percentage at this distance exceeds the gradient due to 
decreasing density with distance.

in the fourth example in Box 14.1, the density is defined as the ratio of seed num-
bers to area. The fourth rule pair in Table 14.1 is used to calculate the gradient for seeds 
that disperse along a radius from point of release, with gradient in numbers of 210% m21  
along the radius. The negative gradient in numbers along the transect (∇N/N  0) 
amplifies the rate of decrease in density with radial distance relative to an even distribu-
tion of seeds along a radius (∇N/N  0).

gradients in energy gain or loss shape the behavior of mobile organisms. An exam-
ple is the costs of defending nesting territories, which vary considerably in size among indi-
viduals within a bird species. Territories provide food for adults and chicks during a period 
when chicks are immobile. So energy gain and cost depend on area as a first approximation.  
What are the costs? if energy expenditure ( E  Watt) for defense depends on the territory 
diameter (2r, in meters), a simple function that expresses this idea is:

 
E r r Kwatt m( ) / 2 ⋅  (14.3)

The factor KWatt/m is present to scale energy expenditure to radial distance. The func-
tional expression is not dimensionally homogeneous unless K has units of Watt m21.  
This is a rigid scaling factor that describes how much energy the bird expends per unit 
of radius of area defended (radius  d/2). A rough estimate of K for a 30 gram bird with 
an existence energy of E  1.2 Watt (104 kJ day21) defending a 75 m radius (1.75 ha)  
territory is KWatt/m  0.016 Watt m21. Existence energy E  for a 30 gram bird was  
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calculated from Walsberg’s (1983) expression for nonpasserine birds. Territorial area of 
a 30 g bird was calculated from Schoener’s (1968) equation. Radius was calculated from 
area, assuming a roughly circular area A  r2.

once the relation between energy cost and radius has been stated as a first approx-
imation or caricature, the change in cost with change in radius can be derived:

 

dE r
dr

K
( )

 2 ⋅  (14.4)

This is the gradient in energy cost. A convenient symbol for this is ∇ E,  read as “the gra-
dient in energy expenditure.” The symbol ∇ E  represents a quantity derived from E, just 
as the symbol for energy expenditure E  represents a quantity derived from energy E.  
A bird trying to expand its territory faces a constant spatial gradient in energy expendi-
ture ∇ E  much like walking up a hill with constant slope:

 ∇ ⋅E  2 K  (14.5)

if this caricature is accurate (it will not be exact), the cost of expanding a 30 m 
radius territory is the same as expanding to a 40 m radius territory. This idea can be 
expressed as a proportion: the ratio of the energy cost of a large territory Ebig to a small 
territory Esmall . The statement of proportion is:

Ebig  is to Esmall  as radiusbig is to radiussmall

This is readily translated into a scaling relationship:
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  (14.6)

This scaling relationship says that if the ratio of the bigger to smaller territory radius is, 
for example, 1.5:1, the ratio of energy costs is also 1.5:1. The scaling relation (Equation 
14.6) is readily transformed into a scaling relation that expresses the gradient in energy 
expenditure:
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  (14.7)

Because this is a model, it needs to be tested against measurements.

AnoTheR Look AT SeCTion 14.3

name several important physical and biological gradients going up a mountain. For 
each, state a testable density function Q  f (height), then derive the gradient vertical (Q). 
use your own symbol, not Q.
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14.4 Quantitative Reasoning with the Chain Rule
The chain rule for working with derivative functions, shown in Table 14.1, has the same 
format as unit cancellation. in quantitative ecology, the chain rule is a simple device for 
drawing conclusions about the relation of one quantity to another. The chain rule is a 
convenient way to reason about quantities, as in the following example.

What is the relation between population increase and mean crowding? To phrase 
this more precisely, how is the rate of change in numbers N related to the rate of change 
in mean crowding M*(N)? Here is the same question written in symbolic form:

 

dM
dt

dN
dt

*

?  (14.8a)

This puzzle can be solved analytically by taking the derivative of M* with respect to 
time. The chain rule for derivatives gives a reliable answer with just algebra. The chain 
rule works the same way as cancelling units and dimensions (Table 14.1), so we use it to 
“fill in the blanks.” in other words, what quantity relates crowding to population density? 
Here is the question written in symbolic form, with question marks for missing quantities:

 

d M N
dt

d N
d t

*( ) ?
?

 ⋅  (14.8b)

The question marks are replaced so that the “units” (in this case, dN, dt, dM*(N), etc.) 
cancel correctly:

 

d M N
dt

d N
d t

d M N
d N

* *( ) ( )
 ⋅  (14.8c)

The relation between time rate of change in numbers Ṅ and the time rate of change in 
mean crowding M N*( )depends, logically enough, on a quantity that describes how crowd-
ing changes with density. A lot can be learned by visualizing this new quantity, which 
turns out to be a measure of patchiness (lloyd, 1967). verbal models of ways in which 
crowding changes with overall change in population size can be developed from knowl-
edge of the biology of a species. Many animals, for example, tend to crowd into already 
established areas rather than spreading to new areas as population increases. Far more 
than if new recruits move into new areas, this will increase crowding as population size 
increases, and so d M*(N)/dN exceeds zero. in contrast, completely passive dispersal stages 
of plants have no mechanism for preferential settlement into populated sites, so we expect 
d M*(N)/dN to be zero. But there are mechanisms that raise d M*(N)/dN above zero. For 
example, passive dispersal stages of benthic marine invertebrates sample the substrate  
before committing themselves to a site, thus avoid settling into poor sites. Thus they can 
crowd into populated sites even though their dispersal movements are passive.

AnoTheR Look AT SeCTion 14.4

What is the relation of the gradient in mean crowding dM*/dx to the gradient in 
numbers dN/dx? Provide an interpretation.
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14.5 Variance Functions with the Delta Method
The production and loss of variability (Chapter 10) represents a distinctly biological 
approach to highly variable phenomena. Because of the central role of variability in eco-
logical thought, it is of interest to be able to calculate a variance either from another 
variance or from a functional expression. For example, what is the variance in respira-
tion rate, given a variance in body size? What is the variance in swimming speeds in 
units of cm2 s22, given a variance in units of m2 s22? What is the variance in territory 
area, given a variance in distance between nests?

An expression for one variance in terms of another is called a variance function. 
These can be worked out using the Delta method (e.g., Seber, 1980), which relies on the 
rules for taking derivatives, as shown in Table 14.2. The first example is for the vari-
ance of any quantity Q plus a constant k, shown in Box 14.2. The analytic sequence in  
Box 14.2 has been recast in Table 14.2 as a generic recipe for obtaining one variance 
from another, using the rules for derivatives.

Box 14.3 shows another example, this time for the variance of the product of a 
quantity and constant. The analytic sequence is presented without narrative using the steps 
in Table 14.2. This result establishes the units of a variance. For the case of Q in units of 
grams m22, each value of Q is written as a number q and its unit: q grams m22. The result 
in Box 14.3 is then applied:

 var( ) var(  grams m ) var( )  grams mQ q q  2 2 4⋅  (14.9)

The variance of a quantity has squared units, which are inconvenient and often uninter-
pretable. one solution is to reduce the quantity to a dimensionless ratio and then take  
the variance. An example is Box 11.1, where the variance in per capita change in organ-
ism number was used. Another solution is to take the square root of the variance, as 
in Box 10.1. yet another solution is to scale the variance to the mean, resulting in an 
ensemble quantity cd(Q) with the same units as the mean (Table 10.1).

Another useful application is the variance of the sum of two quantities. Box 14.4 
shows the derivation. one application of this result is visualizing the results of taking 
a spatial or temporal variance at a larger scale by grouping contiguous measurements.  

Table 14.2 Generic Recipe for obtaining one Variance from Another Using the 
Delta Method

1. State, in words, the variance that is to be found.

2. Translate this into a formal expression:

 var(such and such)  ?

 “What is the variance in such and such?”

3. Set the terms inside the parentheses equal to a dummy or stand-in variable u:   u  such and such.

4. Take the derivative du:   du  d(such and such)

5. Solve for du, using the rules for derivatives.

6. Square both sides of this expression, and rearrange terms as necessary.

7. Substitute var(u) for (du)2, var(Q) for (dQ)2, etc.

8. Write out the result in convenient form:

 var(such and such)  ….
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if we group a sequence of measurements by adjacent pairs, take the sum of each pair, 
then take a new variance for the pairs, the resulting variance var(Y  Z) will be equal  
to the variance of the original measurements, var(Y)  var(Z) plus an additional  
component of variance that depends on whether neighboring values are correlated. This 

Box 14.2 Use of the Delta Method to Obtain the Variance of a Quantity Q Plus a Constant k

The variance to be found, in symbolic form:

var(Q  k)

Set the terms inside the parentheses equal to a dummy variable u.

u  Q  k

Take the derivative du:

du  d(Q  k)
du  dQ

The symbol du is short for du/dx, where x in this case is any variable, not just dis-
tance eastward from a point. Because x can be any variable, the operator d/dx has 
been shortened to just the letter d.

Take the square of both sides of this expression:

(du)2  (dQ)2

This expression does not require rearrangement, but more complex expressions 
will at this point.

Replace (du)2 with var(u), (dQ)2 with var(Q):

var(u)  var(Q)

The solution:

var(Q  k)  var(Q)

The variance of Q plus a constant is equal to the variance of Q.

Box 14.3 Use of the Delta Method to Obtain the Variance of the Product of a Quantity and a Constant

1. What is the variance of the product of a quantity Q and a constant k ?
2. var(kQ)  ?
3. u  kQ
4. du  d(kQ)
5. du  kdQ
6. (du)2   k2 (dQ)2

7. var(u)  k2 var(Q)
8. var(kQ)  k2 var(Q)
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additional component is the cov(Y,Z) at lag 1, a quantity that in turn can be converted 
into an autocorrelation coefficient. Thus binning by adjacent pairs will measure autocor-
relation. The autocorrelation is positive if var(Y  Z) exceeds var(Y)  var(Z), negative 
if var(Y  Z) falls short of the sum of variance of the two components.

Another useful variance is that for the product of two quantities. The prospect of 
working through this algebraically is daunting. With the delta method, it is relatively 
straightforward. The covariance between the two quantities again figures in the result:

 var(y Z) Z var(y) y var(Z) y Z cov(y,Z)⋅ ⋅ ⋅ ⋅ ⋅ ⋅  2 2 2  (14.10)

The derivation of Equation 14.10 is left to the reader.
if we take the view that one of the distinguishing features of biological thought is 

that the variance is an interesting quantity subject to loss and gain, a means of comput-
ing variances becomes important. The delta method, based on the rules for derivatives, 
makes such computations relatively easy.

14.6 Scaling Operators
A scaling operator is a derivative with respect to change in scale. These operators pro-
vide the mathematical apparatus for working with scaling functions and scaling relations. 
Scaling operators can be taken with respect to noniterative scaling (Equations 2.1 and 2.2). 
An example is a comparison of species numbers across plots of different sizes (Figure 1.2) 
or across islands of different sizes. Another example is a comparison of running speed in 

Box 14.4 Use of the Delta Method to Obtain the Variance of the Sum of Two Quantities

1. What is the variance of the sum of two quantities, Y and Z ?
2. var(Y  Z)  ?
3. u  Y  Z
4. du  d(Y  Z)
5. du  dY  dZ
6. (du)2  (dY)2  (dZ)2  2 dY dZ
7. var(u)  var(Y)  var(Z)  2cov(Y,Z)
8. var(Y  Z)  var(Y)  var(Z)  2cov(Y,Z)

AnoTheR Look AT SeCTion 14.5

The expression N  rN describes exponential population growth in a patch. What is 
the variance in N  among patches?
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relation to leg length across a series of animals that differ in body size (Chapter 6). This is 
the classic form of scaling found in text treatments of dimensional analysis. Scaling opera-
tors can also be taken with respect to iterative scaling (Equations 2.3 and 2.4). An exam-
ple is the change in murre and capelin patchiness with change in spatial resolution along a 
transect (Figure 10.3e). Another example is the change in autocorrelation with change in 
lag (spatial separation) of murres and capelin (Figure 10.3b).

Tables 14.3 and 14.4 list commonly used temporal and spatial scaling operators. 
The tables demonstrate four different scaling maneuvers (rating, coarse graining, accu-
mulating, and lagging, as shown in Figure 7.1). These maneuvers differ from panning, 
which passes from one equal size unit to the next. Panning underpins the familiar proce-
dures of dynamic analysis by taking the time derivative d/dt or descriptive spatial analy-
sis by taking the gradient d/dx. Scaling operators are far more diverse than panning. The 
first scaling maneuver, rating, compares values across separate units that differ in size, as 
in Figure 1.2. The second scaling maneuver, that of coarsegraining, changes the unit size 
by successive aggregation (or subdivision) of contiguous and equal sized units, keeping 
the range fixed, as in Figure 10.3e. The third scaling maneuver, accumulating, changes 
scale by adding new units to increase the range (Figure 10.3d). Accumulating and coarse 
graining are analogous to zooming with a camera. The fourth scaling maneuver, lagging, 
changes scale by comparing equal-sized units at increasingly large separations (lags), as 
shown in Figures 10.3b or 10.3c.

The formalism of scaling operators will allow us to work from one type of scaling to 
another. For example, the operator d/dL expresses the change in a quantity as measurements 

Table 14.3 operators for Temporal Analysis (Panning) and Temporal Scaling 
(Rating, Coarse Graining, Accumulating, or Lagging)

Temporal analysis (panning across contiguous units of same duration):

h unit vector in time t

th  time since t  0  d/dt

Temporal scaling (rating across units of different duration):

Tref  duration of reference unit.

i label linking a quantity to size of its unit

T  Ti /Tref  ratio of unit size to reference unit size  *d/dT

Temporal scaling (zooming through units of different duration):

n  units per bin at resolution of analysis d/dn

t  nh  bin size (inner scale) at resolution of analysis *d/dt

N number of steps at range of analysis *d/dN

T  Nh  range size or outer scale of analysis d/dT

f  l/T  n/N frequency of measurement d/df

2/f   wavelength

Temporal scaling (increasing unit size by accumulation):

T  Nh   range size or outer scale of analysis d/dT

Temporal scaling (skipping through units of same duration):

k lag or separation between two points in time d/dk

*Possible operators, not usually encountered.
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accumulate along a transect. The operator d/df expresses change in a quantity as the fre-
quency of measurement goes from small (a few large bins) to large (many small bins). How 
are the two zoom operators related? The chain rule provides the answer (Box 14.5).

The second example in Box 14.5 shows the relation between temporal panning to 
temporal zooming. interesting simplifications of Pollett’s equation arise when either the 

Table 14.4 operators for Spatial Analysis (Panning) and Spatial Scaling (Rating, 
Coarse Graining, Accumulating, or Lagging)

Spatial analysis (panning across contiguous units of same size):

i unit vector in direction x

xi distance from point x  0 d/dx

Spatial scaling (rating across units of different size):

Lref, Aref, Vref  Length, Area, or Volume of reference unit.

i label linking a quantity to size of its unit

L  Li/Lref  ratio of unit size to reference unit size  d/dL

Spatial scaling (coarse graining to units of different size):

n units per bin at resolution of analysis d/dn

l  ni  bin size (inner scale) at resolution of analysis d/dl

N number of steps at range of analysis

L  Ni range size or outer scale of analysis d/dL

f  l/L  n/N frequency of measurement d/df

2/f wavelength

Spatial scaling (increasing unit size by accumulation):

N number of steps at range of analysis d/dN

Spatial scaling (skipping through units of same size):

k lag or separation between two points in space d/dk

Box 14.5 Use of Chain Rule to Work Out the Relationship Between Scaling Operators

1. What is the relation of the zoom operator d/dL to the operator d/df?  
Begin with the chain rule:

d
d L

d
d f

d f
d L

f L f L

d f d L

ln ln
ln
ln

hence ln ln 

and  ln  ln 



  

 

1

Consequently:
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d fln
( )

ln
  1
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resolution or the range is fixed, which is the case for the common scaling maneuvers 
(Figure 7.1).

Scaling operators are useful in working with measurement relations, scaling rela-
tions, scaling functions, and the results of dimensional analysis. Box 14.6 shows the 
application of scaling operators to scaling functions derived from scaling relationships. 
Distinguishing one scaling operator from another forces us to consider the measurement 
operation used to obtain the scaling function. it tells us whether scaling functions are 
comparable (based on the same scaling operator) or not.

Box 14.6 begins with a general formula for applying a scaling operator to a non-
iterative scaling relation. The first example in Box 14.6 demonstrates the close rela-
tion between dimensional analysis (Chapter 6) and derivatives interpreted as scaling 
operators. The noniterative scaling operator is that of rating, because each organism is 
considered a separate system and a measure is made only once. This scaling operator 
summarizes, as an exponent, the information obtained from dimensional analysis. This 
operator yields the scaling of running speed to leg length that applies across systems 
(animals). The second example in Box 14.6 illustrates an iterative scaling relation for 
phytoplankton patch size. Dimensional analysis showed that as a first approximation, 
patch size scales as the ratio of diffusivity KH to growth rate r. if we consider contiguous 
measurements along a transect across patches with diameter L, the derivative function 
of interest is either d/dL or, equivalently, d/dN, where N  L/i, the number of steps of 
length i across the patch (see Table 14.4). The logarithm will be taken so the dimension-
less ratio N needs to be used. The derivative function for patch diameter with respect 
to N is more complex than the scaling function. However, this derivative function can 
be simplified by considering its components. We expect the percentage growth rate to 
vary with several factors, but not with distance L or step number N across the patch. 
Consequently, dr/dN  0. in contrast, we do expect measured diffusivity to change as 
measurements are accumulated along the diameter. Taking the derivative functions leads 
us to the conclusion that measured diffusivity will depend on length scale of measure-
ment, relative to the diameter.

2. What is the relation of the temporal zoom operator d/dh to the temporal 
panning operator d/dt?

 Position in time t is the product of step size h and step number t.
 Apply the chain rule*. 

dQ
dh

dQ
d h

d h
d

 
t

t
h

dQ
dh

t dt d
t d dt

dQ
dt

=




h h
h h

 /
/

*Thanks to Troy Pollett for this derivation.
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Box 14.6 Scaling Relationships, Scaling Functions, and Scaling Operators (Rating and 
Accumulation)

general formula:
The scaling relationship:

Q
Q

Q
X

X
X

ref ref
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*

The scaling function:

Q Q X X k Xref ref   ( )  

The derivative function:
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Example from Box 6.4 (rating units of different size):
The scaling function:

v legL g* * *  ∏ 1 2 1 2/ /

The scaling relation:
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The derivative function:
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Example from Box 6.5 (scaling by accumulation):
The scaling function:
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The derivative function:

d diam

d N
N
diam

r
d K

dN
K

d r
dN

H
H

ln( *)

ln( )
( ) ( )

 
⋅ 





−

−Π 1
2

1
2

1
2

1
2




dr dN/  0

d diam

d N
N

K
dK

dNH
H

ln( *)

ln( )


2
1−











316 QuAnTiTATivE ECology: MEASuREMEnT, MoDElS, AnD SCAling
Scaling operators allow computation from local to larger-scale expectations.  
To illustrate the concept, we examine the variance in the density of a quantity. The value 
of this quantity at one resolution scale cannot be computed directly from the variance at 
another scale, a result confirmed again and again, from Mercer and Hall (1911) onward. 
As we saw in the last section, this is because variance at one scale depends on the covari-
ance among units at a finer scale. Applying the result in the last section is cumbersome, 
however. in practice we require a function that expresses the rate of change in spatial 
variability with change in resolution scale l, for which l   ni, i is the unit vector in the x 
direction, and n is the number of such units at the resolution of analysis. The zoom oper-
ator with respect to spatial resolution is the derivative d/dl. This operator coordinates 
the expression for the variance at any given resolution with the expression for the rate of 
change in variance relative to change in resolution scale. A convenient model is that vari-
ance is a fixed quantity with no additional components of variance at larger scales:

 var( )Q k  (14.11a)

 

d Q
dl

var( )
0  (14.11b)

The model is convenient because additional components of variance do not appear as 
the resolution scale (i.e., grain size) increases. if the model is supported by evidence, an 
estimate at a small-scale var(Q) could be used at a larger scale.

in general, variances are not fixed in ecology. A better model is that variance 
increases in direct proportion to resolution scale l    ni .

 var( )Q k l  (14.12)

 

d Q
dl

k
var( )

  (14.13)

This model says that doubling the bin size will double the variance, trebling the bin size 
will treble the variance, and so on.

There is much room for better understanding of patterns of change in variance 
with change in scale (as in Figures 10.1–10.4). There is even more room for better 
knowledge of patterns of change in association of ecological variables as a function 
of change in scale (as in Figure 10.5). These are theoretically interesting topics (e.g., 
levin, 1992) that are driven by the practical problems of making ecosystem scale cal-
culations from data that are almost inevitably confined to limited spatial and temporal 
scales (Holling, 1992; levin, 1992; Schneider, 2001). Scaling analysis has undergone a 
proliferation of disparate techniques (legendre and Fortin, 1989; Turner and gardner, 
1991; legendre and legendre, 1998), with far more attention to statistical technique 
than to underlying measurement and scaling maneuver (rating, coarse graining, lag-
ging). Progress will depend in part on the capacity to compare and contrast findings 
from apparently disparate scaling techniques. Scaling operators provide the mathemati-
cal basis for comparing the results of different scaling techniques, from coarse graining 
to lagging and rating.
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Defined Concepts and Terms for Review and Future Reference

____ chain rule ____ scaling operators
____ derivative ____ spatial derivative
____ panning ____ variance function
____  scaling maneuvers  

(compare to Chapter 7)

AnoTheR Look AT SeCTion 14.6

of the scaling operators listed in Tables 14.3 and 14.4 how many have you 
encountered?



Equations and Uncertainty: 
The General Linear Model

Fisher’s famous paper of 1922, which quantified information almost half a 
century ago, may be taken as the fountainhead from which developed a flow 
of statistical papers, soon to become a flood. This flood, as most floods, con-
tains flotsam much of which, unfortunately, has come to rest in many text 
books. Everyone will have his own pet assortment of flotsam; mine include 
most of the theory of significance testing, including multiple comparison 
tests, and non parametric statistics.

—J. Nelder, Mathematical Models in Ecology,  
British Ecological Society Symposium, 1971

15.1 Synopsis
The general linear model provides a comprehensive framework for analysis of scaling func-
tions. The model based approach emphasizes biological relevance and the interpretation 
of parameters. The focus is on the degree of uncertainly associated with each parameter 
estimate and on the adequacy of the error model. Most statistical packages now include a 
general linear model (GLM) routine, often with a graphics interface to assist in writing the 
model. The GLM relates a response variable to one or more explanatory variables. These 
can be categorical (ANOVA), ratio scale (regression), or both (ANCOVA). Each observa-
tion is compared to the model with a data equation. The deviations due to each term in 
the model are obtained by estimating model parameters, usually means or slopes. These 
parameters are biologically interpretable quantities with units and dimensions.

In the statistical analysis of scaling functions. parameter estimates and their confi-
dence limits are often useful. The conventional machinery of hypothesis testing is most 
useful in comparing one scaling parameter to another. Hypothesis testing for the GLM 
uses the F-ratio, which scales the improvement in fit to the residual variation. A p-value
is then computed from a statistical distribution (F or t) to decide whether the improve-
ment in fit is too large to be due to chance. The accuracy of this p-value rests on four 
assumptions: (1) residuals sum to zero; (2) residuals are independent; (3) residuals are 
homogeneous; and (4) residuals are normal. Graphical evaluations of these assumptions 
are preferable to the use of hypothesis testing, which detects violations when they do not 
matter (at large sample sizes) while missing violations when they do matter (at small sam-
ple sizes). If serious violations are evident, p-values can be computed by randomization 
methods.

15
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A generic recipe serves as a guide to model-based analysis of scaling functions. The 
first phase entails writing the model, estimating parameters, computing the residuals, 
and evaluating the model, including a check on whether the form of the model is appro-
priate and a check on assumptions concerning the distribution of errors. The next phase 
is hypothesis testing, although this step can often be skipped in favor of a report of 
parameter estimates with some measure of uncertainty.

Power law scaling and measurement relations are evaluated within the framework 
of the GLM by taking the logarithm of both response and explanatory variable. Power 
laws are compared by analysis of covariance, a special case of the GLM. Compound 
scaling relations contain more than two quantities, usually a quantity that is the ratio 
of two quantities. The assumption that both parts of the ratio have the same exponent 
(with opposite sign) is readily evaluated with multiple regression.

The standard method of parameter estimation for the general linear model assumes 
no error in the explanatory variable. If the variable is measured with error, reduced 
major axis (rMA) regression is often recommended because it assigns uncertainty to 
both the explanatory and the response variables. reducing uncertainty in the explana-
tory variable is more effective than adjustment via rMA regression. One technique to 
reduce uncertainty is to use means instead of single values of the explanatory variable. 
Another technique is to estimate parameters via the scope of measurement relations.

15.2 Model-Based Statistical Analysis
In ecology, statistics are routinely presented as a collection of recipes. The basic ingre-
dients are null and alternative hypotheses, a statistic (F, t, or chi-square), a p-value, and 
the declaration of a decision. The recipes focus on the logic of the null hypothesis rather 
than on the biological relevance of the model, the interpretation of parameters, the ade-
quacy of the error model, or the degree of uncertainty associated with each parameter 
estimate. The recipe collection is huge. Widely used texts typically cover the following 
tests: one-sample hypotheses, two-sample hypotheses, paired-sample hypotheses, one-
way ANOVA, multiple comparisons, two-way ANOVA, hierarchical ANOVA, multiway 
ANOVA, regression, multiple regression, analysis of covariance (ANCOVA), polynomial 
regression, logistic regression, goodness of fit tests, and contingency tests. The menus of 
widely used statistical packages (Minitab, SPSS, SAS, Systat) contain even longer lists of 
tests. Choosing from such a long list is daunting and, as it turns out, often unnecessary.

For problems in scaling, statistical analysis will usually entail some form of regres-
sion: How does some quantity Q vary as a function of another set of quantities X1, X2... 
etc.? We can employ model-based statistics, which focus on a response variable in rela-
tion to one or more explanatory variables. The generalized linear model (Nelder and 
Wedderburn, 1972; McCullagh and Nelder, 1989), one of the major developments in sta-
tistics in the last quarter of the 20th century, allows analysis based on any of several error 
distributions. For practical reasons the presentation here will emphasize a special case, 
the general linear model (Figure 15.1). The GLM can be undertaken in nearly all statisti-
cal packages, almost always with a graphics interface and menu to assist in learning to 
use model-based analysis. The generalized linear model will be used as an organizational 
device in presenting model-based statistics, with emphasis on the special case of the gen-
eral linear model. This approach is readily grasped and executed by biology students at 
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the fourth-year undergraduate and first-year graduate levels. The presentation here begins 
with the concept of data equations. It then moves on to computing the fit of the model 
to the data within the familiar framework of least squares and the ANOVA table. After 
a discussion of assumptions for computing p-values in an ANOVA table, it moves to a 
generic recipe illustrated by several examples. Finally there is a brief tour of the differ-
ences between the general and the generalized linear model.

The generalized linear model
(any of several forms of error)

ANOVA
one way
multiway

t-tests regression

ANCOVA

Poisson ANOVA
Poisson ANCOVA

Binomial ANOVA

Binomial error

Logistic regression

Binomial ANCOVA

Gamma error

Negative Binomial
error

Poisson error

Poisson regression

Contingency
tests

The general linear model
(normal errors)

Figure 15.1 Named Statistical Tests that are Special Cases of the General Linear Model (GLM) and the Generalized 
Linear Model (GzLM).

ANoTher Look AT SeCTioN 15.2

Biologists agree that the list of current bird species is finite and rapidly approaching 
completion. do you think that a list of statistical tests is finite or could ever be com-
plete? Why or why not?
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15.3 Data Equations for the General Linear Model
The general linear model matches data to expected values. It has three components: a 
response variable Y; a structural model consisting of one or more explanatory variables 
X1, X2, etc.; and an error term. Table 15.1 shows equivalent expressions. Each term in 
the model (response variable, explanatory variables, error) represents a vertical string 
(vector) of numbers. Consequently the symbolic expressions in Table 15.1 represent a 
series of data equations (see Box 15.1). A data equation is written for each value of the 
response variable. data equations connect observations to a model and residual term.

In Table 15.2 the symbol o  means “equal by observation.” The model in Table 
15.2 is the simplest possible: M is equal to a fixed value called the expected value o, 
which is the average value for the population, obtained by making an infinite number of 
measurements under the same conditions. Of course, we almost always do not know nor 
can we obtain the true value of o. Our best estimate of the expected value is the mean 
̂0 59 g , computed from the data we have. Table 15.2 shows the data equations for 
this simple model, called the null model Ho.

The null model is not a particularly interesting one. We are more interested in a 
model with some biological content. A more interesting model might be the scaling of 
cod mass to its length, a scaling that measures nutritional state. Box 15.1 shows another 
example of the contrast of the null model with a more interesting model. The more inter-
esting biological model is motivated by the question: does the amount of algal growth 
on the walls of experimental tanks depend on the shape of the tank? Chen et al. (1997) 
carried out experiments in tanks that differed in volume and shape (length relative to 
radius) to work out how production dynamics and algal accumulation scale with tank 
volume, area, and height. Surprisingly, algal biomass appeared not to scale with wall 

Table 15.1 equivalent expressions of the 
General Linear Model

Data  Model  Residual

Observed  Expected  Residual

Response  f(explanatory variables)  Residual

Y  f(X1  X2  …)  Error

Y  Σ i Xi  ε

The explanatory variables can be on a nominal type of 

scale (ANOVA), on a ratio type of scale (regression), or both 

(ANCOVA). The residuals are distributed normally.

Table 15.2 Data equations for 
Measurement of the Mass of Three 
Juvenile Cod Gadus morhua

The null model is Ho : M  59 g.

Data  Fitted values  Residual

M  mean(M)  ε
55 g o 59 g  4 g

60 g o 59 g  1 g

62 g o 59 g  3 g



Chapter 15 • Equations and uncertainty: The General Linear Model 323
area in a simple 1:1 fashion. The ratio of biomass to wall area increased, going from 
small to large tanks. Biomass appeared to scale instead with tank volume. This generated  
the research hypothesis that biomass was a function of tank volume. The research 
hypothesis, in statistical jargon, is called the alternative model HA.

Box 15.1 Analysis of Algal Biomass in Relation to Tank Volume. Data from Table 1 and Figure 5 in 
Chen et al. (1997).

data
B  biomass on tank walls, mg chla.

  V  volume of tank, m3

data equations for Ho

An estimate of the mean:  mean( ) .B n Bi 1 155 5∑  

Data  mean(H)  Residual

Data  ̂o  Residual Residual2

520  155.5  364.5 132831

200  155.5  44.5 1977

40  155.5  115.5 13349

11  155.5  144.8 20979

7  155.5  148.5 22064

Ho 191200  SStot

Parameter estimates
An estimate of the change in B with volume:

 ˆ
.

.V a



 520 7

10 0 1
51 28 3mg chl  m

General linear model format:
B V  155 54 51 28 4 24. . ( . )

Slope-intercept form:
B V  64 17 51 28. .

data equation for HA

Nsp  o  V · V  ε
Data  mean(B)  ˆ ( )ν V V  Residual Residual2

520  155.5  298.5  66.0 4354

200  155.5  298.5  254.0 64522

40  155.5  167.9  52.4 2741

11  155.5  214.5  69.7 4856

7  155.5  214.5  66.0 4354

Ho HA 80828  SSres

SStot 191200 Fit to the null model Ho

SSres 80828 Fit to the alternative model HA

SS 110372 Improvement in fit due to straight line model

V B

10.0 520

10.0 200

1.0 40

0.1 11

0.1 7
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The first set of data equations in Box 15.1 is for the null model: that species num-
ber is adequately characterized by a single value, the mean, with only random fluctuation 
around that value. The null model is the “just chance” model that the variation around 
the mean value of the response variable is unrelated to the explanatory variable. The GLM 
here consists of three terms: the response variable, the mean (null model) term, and the 
error. The second set of data equations in Box 15.1 is for the alternative model: that species 
number increases in a straight line fashion with increasing area. In general the alternative 
model will be that the response variable is related in some way to the explanatory variable.

We are interested in the improvement in fit due to the explanatory variable, which 
in this case is tank volume. So we write the alternative model as two terms: the null model 
term plus the volume term. This GLM now consists of four terms: the response variable 
B, the null model term o, the area term V · V, and the error . In Box 15.1 the GLM 
has been written in symbolic form with an equivalent computational form immediately 
below it. The latter form replaces the symbol V with V, the estimate of the rate of change 
in biomass with tank volume. The symbol V has been replaced by the differenced value 
( )V V , which is used in computing the data equations. The differenced value forces the 
regression line through the mean value of the explanatory variable, which we can always 
estimate. The intercept is the value of the response variable at V  0, but we avoid mak-
ing an estimate at V  0, because we often have no information on the response variable 
at this point. Instead, we combine our estimate of the slope with the estimates of the mean 
values of B and V to calculate the y-intercept (value of B at V  0), as in Box 15.2.

Box 15.2 Parameter Estimates and Calculation of the Slope-Intercept Form of a Linear Model from 
the General Linear Model Form. Data from Box 15.1

The general linear model: B V Vo V     ( ) residual  

The structural model is: B V Vo V V      

The slope-intercept form is: B VV    
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Once we have parameter estimates, we can plot the regression line (Figure 15.2a) 
and compute fitted and residual values to evaluate the model. The plot of the residuals 
versus the fitted values (Figure 15.2b) allows us to evaluate the structural part of the 
GLM (Y  Σ i Xi). If the structural model is correct, we expect to see the residuals 
form a band from left to right, with no evidence of bowl or arch patterns. If we do see 
a trend (a bowl, an arch, or both), the structural model is incorrect; the data are not  
consistent with a straight line. The model would need to be revised to some other func-
tional form. In Figure 15.2b there is no obvious bowl or arch pattern, so a straight line 
model is acceptable.
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Figure 15.2 Graphical evaluation of the Assumptions for regression Analysis. Data from Chen et al. (1997);  
(a) Arithmetic axes display biomass as a linear function of tank volume; (b) residuals, plotted against fitted values  
via least squares estimate of the exponent; (c) residuals plotted against adjacent values; (d) Normal probability plot 
of residuals.
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ANoTher Look AT SeCTioN 15.3

If you use regression, do you make it a practice to examine the residuals? do you 
think your practice is typical? What are the pitfalls of using a straight line regression 
model, even though the fit is good, if the residuals show a curvilinear relation to the 
fitted values?

15.4 Interpreting Models and Their Parameters
units and dimensions are typically not considered in the statistical analysis of ecologi-
cal data. They should be. The parameters (means and slopes) that result from statistical 
analyses are parametric quantities with units and dimensions that depend on the units 
and dimensions of the measured variables being analyzed. They are not simply numbers, 
which is how they are often reported. A glance at the set of the three data equations for 
cod weights (Table 15.2) will reveal that the mean has the same units and dimensions as 
the response variable, which appears on the left side of the o  sign. In a regression equa-
tion (Y    xX  residual), the intercept  must have the same units and dimen-
sions as the response variable Y. The residual term must also have the same units and 
dimensions as the response variable Y. The regression coefficient x will have the same 
units and dimensions as the ratio Y/X in order for the equation to be dimensionally con-
sistent. In the tank biomass example (Box 15.1), the slope V quantifies the increase in 
biomass (mg chla) for each unit increase in tank volume. The rate of increase is 35 mg 
per cubic meter, or about 1 gram for 30 cubic meters of tank volume.

There are several reasons that GLM parameters should be recognized as scaled 
quantities rather than treated as simply numbers. First, the rules for operations on 
scaled quantities, which differ from those for numbers, apply to parameters estimated 
from data. Two means can be added only if they have the same units. The rules for rigid 
and elastic rescaling apply to parameters, a fact that is not evident if parameters are 
treated as mere numbers. Erroneous calculations can result if a parameter is treated as a 
number. For example, a regression coefficient that is an estimate of increase in biomass 
per cubic meter cannot be used to calculate the rate of increase at another scale (e.g., 
cubic centimeters) unless that coefficient is rescaled according to its units and dimen-
sions, as in the previous example. Though this fact might seem obvious, it is too easily 
overlooked if the slope is reported as a number.

Parameters in a regression equation can have complicated units. An example is the 
regression of energy expenditure (on a log scale) against body mass (on a log scale), which 
results in a power law with fractional exponents. King (1974) used the following equation to 
relate daily energy expenditure ( )E  kcal/day  of free-living birds to body mass (M  kg):

 
E k M ⋅ 

 (15.1)

King’s regression estimates of the parameters were ˆ . .k    179 8 0 6687 1kcal kg day  and 
ˆ .  0 6687. These complicated units are necessary if the equation is to be of any use 

in making calculations about scaled quantities. The parameter k is a rigid rescaling fac-
tor (refer back to Chapter 5) that scales energy expenditure (with units of kcal/day) to a 
quantity with units of kg0.6687.
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ANoTher Look AT SeCTioN 15.4

Fee (1979) developed the idea that primary production in lakes (grams of carbon fixed 
per year) will scale with the area (m2) of lake bottom shallow enough to be illuminated.
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The exponent as estimated from data in Fee (1979) is ˆ .  0 98, which is indis-
tinguishable from a value of 1. rewrite the scaling relation as a scaling function 
(Equation 2.5; also, see Boxes 2.3 and 6.1). Work out the units of the two param-
eters that relate production to area and state an interpretation of each.

15.5 Goodness of Fit and Hypothesis Testing
Once we have a model consistent with the data, we can move on to questions of goodness 
of fit and hypothesis testing. The two most widely used measures of goodness of fit are both 
deviations; the smaller the deviation, the better the fit. These two measures are the informa-
tion statistic G and the sum of the squared deviations (Boxes 10.2 and 15.1). For historical 
reasons, the G-statistic tends to be used for count data, whereas sums of squares are used 
for other analyses. However, statistical practice in ecology is moving toward increasing use 
of the information statistic (Burnham and Anderson, 1998), which can be used for any 
data, not just counts (McCullagh and Nelder, 1989). Box 15.3 shows an analysis of good-
ness of fit based on sums of squared deviations. For the parameter estimates based on ordi-
nary least squares, the measure of deviation is the total sum of squares (SStot  191200), 
which is the deviation of the data from the null model. The fit is better for the alternative 
model, where the additional term reduces the deviation measure, that is, reduces the resid-
ual sum of squares (SSres  51207). The observed improvement in fit is SSmodel  139993. 
This improvement in fit will be greater than with any other estimate of the slope because 
the criterion for this estimate was that it minimized SSres. The ordinary least squares esti-
mate is “optimal” in the sense that it gives the best possible improvement in fit. In statisti-
cal jargon this estimate maximizes the likelihood of having observed the data.

Though the least squares estimate is “optimal,” we still must ask whether the 
improvement in fit is more than just chance. How much weight should we put on  
the conclusion that the fit is improved and hence that the research model is better than 
the null model? This is addressed by computing the probability of obtaining the observed 
improvement by chance alone. The improvement could be measured as the difference in 
the sums of squares, but the calculation of a p-value is more convenient if we measure 
the improvement as a variance ratio, the ratio of the improvement in fit to the residual 
variance. The analysis of variance (ANOVA) table displays the flow of computations 
leading to this variance ratio (Box 15.4). We begin with the sums of squares, which are 
partitioned according to the general linear model as shown in Box 15.4. We then move 
to a similar partitioning of the degrees of freedom, which take into account the number 
of parameters estimated from the data, relative to the number of observations. We begin 
with as many degrees of freedom as observations. We lose a degree of freedom for each 
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Once the degrees of freedom and SS are partitioned according to the model, they 
are gathered into the ANOVA table. Each term in the model is listed in the source col-
umn. degrees of freedom and SS corresponding to each term in the model are listed in 
their respective columns. The computational flow continues to the next column to the 
right, where we compute the mean squared deviations, MS  SS/df. The F-ratio measures 
the improvement in fit as the ratio of variance due to the model term relative to the error 
term. This variance ratio measures the improvement in fit relative to the error. The last 
step is to compute the p-value, the probability of obtaining this variance ratio (improve-
ment in fit) by chance alone. The p-value of a variance ratio is computed from the ratio 
of two chi-square distributions under the assumption that the numerator and denomina-
tor, being variances, are distributed as chi-square. As there are two chi-square distribu-
tions in any F-distribution, the degrees of freedom of the numerator and denominator 
must both be used to compute the p-value. Box 15.4 shows the Minitab calculation, 
which returns a value of 0.936. This means that 93.6% of the frequency distribution is 
less than the variance ratio of 8.20, and only 6.4% is greater. The chance of obtaining the 
observed F-ratio, if there is no relation of wall biomass to volume, is the p-value of 6.4%.

Software packages automatically generate p-values along with the ANOVA table. 
Nevertheless, direct calculation of p-values from the F-distribution, as shown in Box 
15.4, is useful to know. For complex model designs, it can be hard to coax the pack-
age into computing the appropriate F-ratio and p-value. In these cases the F-ratio can 
be computed from the appropriate mean squares, followed by a computation of the  
p-value, as in Box 15.4.

parameter estimated from the data. In the analysis of the tank biomass data, a degree of 
freedom was lost for the estimate of the mean value of B; another degree of freedom was 
lost for the estimate of the slope of the regression line.

Box 15.3 Improvement in Fit Due to Regression for Three Estimates of the Slope Parameter. Data 
from Boxes 15.1 and 15.2

The general linear model: B V Vo V     ( ) residual  

The slope-intercept form is: B VV                     
Estimate from largest and smallest tank SStot 191200

̂v  51.82 SSres 80828
̂  64.17 Improvement in fit SS 110372

Estimate from ratio of average squared 
deviations SStot 191200

̂v  41.48 SSres 55190
̂  20.33 Improvement in fit SS 136010

Estimate from ordinary least squares SStot 191200
̂v 35.49 SSres 51207
̂  5.053 Improvement in fit SS 139993
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Box 15.4 Model-Based Statistical Analysis of Biomass B in Relation to Tank Volume V. Data from 
Boxes 15.1 and 15.2

ˆ .v a 35 49 3mg Chl m

Partition the sum of squares according to the model:

  o  V (V V)   residual

SStot  SSmodel  SSresidual

191200  139993  51207

Partition the degrees of freedom according to the model:

  o  V V V ( )  residual
dftot  dfmodel  dfresidual

5  1  1  3

ANOVA table:

Source df SS MS F p
V 1 139993 139993 8.20 0.064
residual 3 51207 17069
Total 4 191200 *

*MStot  var(Nsp)
var(B)  191200/4
var(B)  47800

use F-distribution to compute p in Minitab:

MTB  > cdf 8.20;

SUBC > F 1 3.
     8.20    0.936

MTB > let k1  1  0.936

MTB > print k1
         0.064

Assumptions for p-value:

1.  residuals  0 ?    yes   Σ residuals  1012

2. residuals independent?    ?   Figure 15.2c
3. residuals homogeneous?   No.    Figure 15.2b
4. residuals normal?    yes?   Figure 15.2d

The p-value is close to the criterion of significance of   5% and the 
assumptions for the p-value are not met. A decision based on this p-value may well 
be incorrect.
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The p-values computed from the F-distribution rest on four assumptions (Cochran 
and Cox, 1957; Scheffe, 1959; Seber, 1980). These assumptions for p-values arise 
from the pedigree of the F-distribution, which is two chi-square distributions. The first 
assumption is that the residuals sum to zero. With the least-square estimate (Box 15.2), 
the residuals automatically sum to zero (within rounding error).

The second assumption is that the residuals are independent. A simple diagnostic 
device is to plot each residual against a neighboring value. If the residuals are indepen-
dent, the graph will show no pattern. Figure 15.2c shows the residuals plotted against a 
neighboring value. The plot suggest a negative relation due to the ordering of the data, 
where the two largest residuals are adjacent because they are both from tanks of the 
same volume. The autocorrelation of the residuals at several lags (see Box 10.2) can be 
computed, but this is no substitute for the sparseness of the information, which limits 
any conclusion about whether this assumption has been met.

The third assumption is that the residuals are homogeneous. It has long been known 
that violation of this assumption can strongly distort P-values (Cochran, 1947; Eisenhart, 
1947; Green, 1979). The best diagnostic for this assumption is the plot of the residuals 
against fitted values (Figure 15.2b). Here we are looking at whether the residuals fall 
within a horizontal band of uniform vertical extent (residuals are homogeneous) or devi-
ate from a band (residuals are heterogeneous). The most common form of heterogeneity 
is a cone expanding to the right. Other forms (rare) are cones expanding to the left or a 
spindle with greater heterogeneity near the middle of the plot. The residuals in Figure 
15.2b are judged heterogeneous because there was strong pattern (cone) in the plot.

The fourth assumption for computing a p-value from an F-distribution (Box 15.3) is 
that the errors are normally distributed. Violations of this assumption usually have a less dis-
torting effect than violations of the homogeneity assumption, so it is curious that in the eco-
logical literature, the normality assumption draws more attention. The general linear model 
is known to perform well under a variety of deviations from normal errors if the sample size 
is moderate to large (Green, 1979; draper and Smith, 1981). Violation of this assumption 
has little effect provided that the error distribution is not too skewed and the tails are well 
behaved (Hotelling, 1960). A simple diagnostic plot for this assumption is the histogram of 
the residuals. However, this plot is less useful at small sample sizes, when violations matter. A 
more useful diagnostic is a normal plot in which each residual is plotted against its expected 
value from a normal distribution. Normally distributed residuals fall along a straight line ris-
ing to the right in such plots. residuals that depart from the normality assumption deviate 
from the line. The residuals for the scaling of biomass to tank volume (Figure 15.2d) suggest 
departure from normality, but as with the lagged residual plot, the information is too sparse 
to draw much of a conclusion. A statistic measuring fit to the normal distribution could be 
computed, but this again is no remedy for the sparseness of the information in the graph.

Some software packages encourage the egregious practice of checking assump-
tions before undertaking the analysis. This is dangerously wrong because the assump-
tions apply to the errors for the research model (as in the second set of data equations 
in Box 15.2), not to the distribution of the data before analysis. The practice of check-
ing assumptions before analysis wastes an unconscionable amount of effort because it 
is not uncommon for residuals to be normally distributed, even though a plot of the 
response variable itself is not normally distributed around its mean value. Checking the 
data (response variable) for normality is voodoo statistics.

Another poor practice, encouraged by some statistical packages, is to use the machinery 
of hypothesis testing to check assumptions. This seems like a good idea because it provides 
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a criterion for violation of an assumption. But it is a dangerous practice because statistical 
tests of assumptions become more and more effective in detecting violations as the sample 
size increases and violations matter less and less. Conversely, statistical tests become less and 
less effective as sample size decreases and violations matter more and more (as in Box 15.4). 
Hypothesis testing identifies violations when they don’t matter (large sample sizes), whereas 
it misses violations when they matter (small samples sizes). Hypothesis testing to check 
assumptions reliably leads in the wrong direction because violations become more detectable 
the less they matter. The general linear model is robust to violations of normality, and so sta-
tistical testing of this assumption is, in the words of roger Green of the university of Western 
Ontario, like “going out in a rowboat to see if it is too windy to launch the Queen Mary.”

The data from Chen et al. (1997) were chosen for presentation because they illus-
trate the conundrum presented by a p-value close to the 5% criterion, where violations 
matter because the sample size is small, where the small number of observations make it 
difficult to judge whether violations are substantial, but where there is evidence that the 
most important assumption (homogeneity) has been violated. If an assumption is violated 
and sample size is small enough that violation can distort the p-value, a number of rem-
edies are available. One highly effective remedy is to retain the F-ratio but compute the 
p-value from a distribution that is free of the assumptions. This is called a randomization 
test because the p-value is computed from a distribution generated by randomizing the 
response variable with respect to the explanatory variable. Box 15.5 shows an example. 
We begin by generating an F-ratio from randomized data, generating many F-ratios by 
repeated randomization, and constructing a frequency distribution. From this we com-
pute the randomized p-value for the F-ratio obtained from the unrandomized data.

Box 15.5 Analysis Algal Biomass in Relation to Tank Volume. Data from Table 1 and Figure 5 in 
Chen et al. (1997)

B  biomass on tank walls, mg chla.    Volume V  m3

Sample the biomass values at random, as in the example at right.
 random sampling makes the null hypothesis true. Note that 
sampling with replacement will result in some values appear-
ing more than once, others not appearing at all.

Compute a new F-ratio for the randomized data. ANOVA table:

Source df SS MS F

V 1 139993 139993 0.88

residual 3 479583 159861

Total 4 619576

repeat to obtain a large number of F-ratios. Compute the proportion of  
F-ratios that exceed F  8.20. Out of 4000 randomization, 118 resulted in F-ratios 
exceeding F  8.20. Hence p  118/4000  2.95%.

This p-value is smaller than our 5% criterion for significance. 2.95%  p    5%
This p-value is free of assumptions.
We conclude that the relation of biomass to tank volume is not due to chance.

10.00 40

10.00 11

1.00 7
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0.10 520
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To declare our decision, we compare this assumption-free p-value to our criterion 
of statistical significance, which is traditionally set at 5%. We conclude that biomass on 
the walls of the experimental tanks scaled in a linear fashion with tank volume. This 
completes the formal machinery of statistical hypothesis testing with the GLM.

ANoTher Look AT SeCTioN 15.5

Introductory texts in statistics often present analysis of variance as a set of proce-
dures. Consistent with this practice, the statistical results are often presented as an 
ANOVA table rather than as a model, as in Box 15.4. List the advantages and dis-
advantages of the following presentation of results, compared to the conventional 
ANOVA table.

B  V · V  residual
SS 191200 139993 51207
df 4 1 3
F-ratio 8.20

15.6  Generic Recipe for Applying the General Linear 
Model

The general linear model is not part of the traditional undergraduate curriculum for 
biology students. However, it can be taught at this level, and in doing so there are 
many advantages for the student. First, students learn unifying concepts rather than a 
sequence of apparently unrelated procedures. Students can see the relationship of one 
test to another rather than having to memorize a set of special procedures. For example, 
ANCOVA can be presented as minor variants of the same model rather than as two  
separate procedures, one for comparing slopes and one for statistical control of a regres-
sion variable. remedies for recurring problems (e.g., heterogeneous variances) are pre-
sented once rather than several times in different guises. The model-based approach 
means that students can learn general remedies instead of specific remedies peculiar to 
individual tests. The mechanics of analysis are presented once rather than as a different 
procedure for each test. Students are able to accomplish more with the general linear 
model than by learning statistics as a set of named procedures. For example, with this 
approach students can set up and execute the analysis of a response variable in relation 
to two categorical variables and a single regression variable. There is no name for this 
analysis, and hence it is outside any list of tests. This greater flexibility leads to better 
quantitative work in biology. The GLM is a way of thinking in quantitative terms using 
formal models that relate one quantity to another. The GLM approach takes slightly 
longer to present than any single technique such as regression, one-way ANOVA, two-
way ANOVA, or the like. The GLM is, after all, more abstract and general than any 
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particular procedure. Students in biology at the fourth-year undergraduate or first-year 
graduate level readily grasp the approach and can successfully employ the following 
generic recipe (Table 15.3), even if they have limited backgrounds in mathematics or 
statistics.

The analysis of algal biomass in relation to tank volume (Boxes 15.1 and 15.3) 
illustrated most of the steps in the generic recipe (Table 15.3). The next two sections 
work through the generic recipe step by step. The first application evaluates a power 
law scaling function using the general linear model (Section 15.7.1). The second com-
pares two scaling functions (Section 15.7.2).

Table 15.3 Generic recipe for Statistical Analysis with the General Linear Model

 1. Construct model: Begin with verbal and graphical model.

 Distinguish response from explanatory variables

 Assign symbols, state units and type of measurement scale for each.

Write out statistical model.

 2. Execute model:

 Place data in model format, code model statement.

 Compute fitted values from parameter estimates.

 Compute residuals and plot against fitted values.

 3. Evaluate the model using residuals:

 If straight line inappropriate, revise the model (back to Step 1).

 If errors not homogeneous, consider using generalized linear model back to (Step 1).

 If n small, evaluate assumptions for using chi-square, t, or F distribution.

  Residuals homogeneous? (residual versus fit plot)

  Residuals independent? (plot residuals versus residuals at lag 1)

  Residuals normal? (histogram of residuals, quantile or normal score plot)

  If not met, empirical distribution (by randomization) may be necessary.

 4. State population and whether the sample is representative.

 5. Decide on mode of inference. Is hypothesis testing appropriate?

 If yes, go to Step 6; otherwise, skip to Step 10.

 6. State Ho/HA pair (some analyses may require several pairs).

 State test statistic, its distribution (t or F ), and , the tolerance of Type I error.

 7. ANOVA: Partition df and SS according to model.

Table source, SS, df, MS, F-ratio.

Type I error (p-value) from distribution (F or t).

 8. Recompute p-value if necessary.

 If assumptions are not met compute better p-value by randomization if:

 Sample small (n  30) and if p near .

 9. Declare decision about model terms:

If p  , then reject Ho and accept HA

If p  , then accept Ho and reject HA

 Report conclusion with evidence: Either the ANOVA table or

  F-ratio (df1,df2) or t-statistics (df) and p-value (not ) for terms of interest.

10. Report and interpret parameters of biological interest (means, slopes) along with one measure  

of uncertainty (standard error, standard deviation, or confidence intervals).

 Use appropriate distribution (Step 8) to compute confidence limits.
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15.6.1 Linearized Power Laws

To evaluate power law scaling functions within the framework of the general linear 
model, the standard approach is to linearize the power law by taking the logarithm of 
the response and explanatory variables:

 ln( ) ln( )oQ X   x ε  (15.2)

When we exponentiate both sides of this equation, we obtain a power law:

 Q Xo x e  e  ε
 (15.3)

Application of the general linear model to a linearized power law is demonstrated by 
reanalysis of the biomass data from Chen et al. (1997).

The first step (Box 15.6) is to construct the model. With practice and experience, 
writing the model can be done directly. To reach this level of skill, we break the activity into 
preparatory steps: distinguishing response from explanatory variables, stating the research 
model about these variables in words, sketching the expected relation of variables as a 
graph, then writing the formal model. We start by distinguishing the response from explan-
atory variables. We are interested in the scaling of algal biomass to tank volume, which 
we can visualize as a plot of algal biomass (y or vertical axis) against tank volume (X or 
horizontal axis). Biomass is the response variable, which we seek to scale to an explana-
tory variable, tank volume. When plotted on a logarithmic scale, the data fall nicely along 
a straight line (Figure 15.3a). Having stated our model verbally (biomass scales as tank 
volume), then graphically (Figure 15.3a), we proceed to writing out our concept as a linear 
model with response variable on the left and a series of terms on the right: a reference value 
(o the mean value of B) from which we will calculate the Y-intercept, an explanatory term 
(product of the explanatory variable lnV and the slope V), and the error term :

 ln lnoB VV    ⋅ ε  (15.4)

These components (response variable, reference value, one or more explanatory terms, 
and an error term) will appear in every general linear model.

The model format (Equation 15.4) will be our guide in executing the analysis in 
any statistical package (Box 15.6). Most statistical packages now have a general linear 
model routine that allows us to execute the analysis with a single command that esti-
mates parameters and their standard errors, computes residual and fitted values, and 
produces diagnostic plots. The most useful plot will be the residual versus fitted values, 
which we will use to evaluate both the structural part of the model and the error dis-
tribution. Additional plots, notably a histogram of the residuals, a normal plot of the 
residuals, and a plot of residuals against their neighbors, are useful in evaluating the 
error distribution when the response variable is ordered in some way (high to low val-
ues) or when an explanatory variable is ordered in some systematic fashion.

Moving to Step 3, we use the diagnostic plots to decide whether the structural model 
is appropriate. The structural model is the response variable and all the terms except the 
error term. In this example the structural model is a linearized power law, which has 
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three terms (response variable ln B , reference value o, and explanatory term V · lnV). 
The residual versus fitted value plot (Figure 15.3b) shows no evidence of a bowl or arch  
pattern, indicating that the structural model (linearized power law) is an appropriate 
model. If a bowl or arch is present, revising the model should be considered (return to 
Step 1).
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Figure 15.3 Scaling of Algal Biomass on Tank Walls to Tank Volume. Data from Chen et al. (1997); (a) Logarithmic 
axes display biomass as a power law function of tank volume; (b) residuals, plotted against fitted values from 
linearized power law using least squares estimate of the exponent; (c) residuals plotted against adjacent values;  
(d) Normal probability plot of residuals.
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Once we have an appropriate structural model (this can require several returns to Step 
1), we move on to evaluating the error distribution. The most important criterion is that the 
residuals be homogeneous with respect to the fitted values (uniform band from left to right 
of the plot). The heterogeneous residuals evident with the linear model of algal biomass ver-
sus tank volume (Figure 15.2b) are no longer evident for the linearized power law model 
(Figure 15.3b). Taking the logarithm of the response and explanatory variables substantially 
reduced the heterogeneity in the residuals, as is often the case. We continue the evaluation of 
the errors by asking whether the residuals are independent and normally distributed. There 

Box 15.6 Set-Up (Steps 1–3 in Table 15.3) of Analysis of Power Law Relation of Algal Biomass to 
Tank Volume. Data from Chen et al. (1997), in Box 15.1

1. Construct model:
  response variable is logarithm of algal biomass ln B   ln(B/1 mg Chla).
 Explanatory variable is logarithm of tank volume lnV  ln(V/1m3).

 Verbal model; algal biomass scales with tank volume according to a  
power law.

 Graphical model; plot of log of algal biomass against log of tank volume, 
Figure 15.3a.

 Write the linear model:
 response  f(Explanatory)  residual

 In B   o  V · lnV  
2. Execution can be accomplished easily with the general linear model routine 

available in most statistical packages. The linear model (above) guides the 
use of these routines:

 Model ln B  o  V · lnV  
 SAS Proc GLM; Model ln B  lnV;
 Minitab MTB  glm ‘ln B’  ‘lnV’; covariate ‘lnV’.
 SPlus(r) lm ln B  lnV

 The routines estimate and report ̂v   0.78564   sterr  0.09779
 parameters with standard errors ̂v   3.911   sterr  0.2002

They use parameter estimates to obtain fitted values and residuals, then produce 
diagnostic plots, notably the residuals versus fitted values (Figure 15.3b).

3a. Evaluate the structural model with residual versus fit plot:
 No bowl or arch pattern evident (Figure 15.3b).
 Hence the structural model (ln B  o  V · ln V) is acceptable.
3b. Evaluate assumptions concerning the error distribution:
 a. Errors sum to zero?    yes   Σres  1014

 b. Errors independent?    ?   See Figure 15.3c
 c. Errors homogeneous?   yes    See Figure 15.3b
 d. Errors normal?    yes   See Figure 15.3d
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are too few observations to be able to say much about independence of errors (Figure 15.3c). 
The normal plot (Figure 15.3d) is an improvement, because the residuals fall closer to a 
straight line than previously (Figure 15.2d).

Once we have adopted a structural model and evaluated the error assumptions, we 
move to the statistical analysis of uncertainty (Steps 4–10, Table 15.3). We begin (Step 4)  
by considering the population to which we will be inferring from our sample. In this 
example the mean values of the response and explanatory variable cannot be used to 
infer the true values of either of these two means because we did not take a random 
sample of tanks. However, our interest is in the relation of algal biomass to tank volume,  
which we visualize as a line that we can estimate regardless of whether the tanks we 
use are randomly chosen so as to represent mean values of biomass over hundreds 
of experiments. We are prepared to infer from the data points we have to the infinite  
number of points along the line that relates biomass to volume, from the smallest to 
largest tank. Because the degree of experimental control was rigorous and well reported 
(Chen et al., 1997), we are prepared to infer from these results to an infinite number 
of points described by a power law that applies to any tank within the size range the 
experiment.

Next (Step 5, Table 15.3, Box 15.7), we consider the mode of inference to be used. 
We have several choices. We can decide to use the machinery of hypothesis testing. This 
mode, with its emphasis on p-values and on a decision between the alternative and null 
hypothesis, is widely used in biology. It was developed for experimental work where a clear 
decision on a nominal scale (yes or no) is required. Hypothesis testing is not always appro-
priate and its use has come into question by prominent statisticians, as is evident from 
the quote at the beginning of this chapter. Alternatives to hypothesis testing are Bayesian 
inference (a topic that is beyond the scope of this book) and likelihood inference (report-
ing parameter estimates with confidence limits). Confidence limits are informative because 
we can examine hypotheses other than the null model prescribed by hypothesis testing. For 
example, in the case of linearized power laws we are often at least as interested in whether 
the response variable scales in a 1:1 fashion with the explanatory variable (exponent is 
equal to 1) as we are in whether there is a relation (exponent not equal to zero). Confidence 
limits are usually more useful than p-values in evaluating scaling and measurement rela-
tions. For the example at hand (algal biomass in relation to tank volume), it is appropriate 
to ask whether or not biomass depends on the volume of experimental tanks, so we will use 
hypothesis testing (Steps 6–9, Table 15.3) to illustrate its use.

Hypothesis testing rests on the concepts of Type I and Type II error in relation to 
null and alternative hypotheses (Table 15.4). The null hypothesis is that any pattern we 
see (such as the association of one variable with another) is due to chance. The alterna-
tive hypothesis is that the pattern we see is not a matter of chance. All is well when we 
accept a null or alternative hypothesis that is true (Table 15.4). But if we reject the null 
(just chance) hypothesis and it is true, we have made a Type I error. If we accept the null 
hypothesis and it is false, we have made a Type II error. Hypothesis testing focuses on 
Type I errors, which we can calculate from a distribution (chi-square, t, or F distribu-
tion, or distribution via randomization). If the p-value (Type I error) is small (conven-
tionally, small means 5%), we reject the null hypothesis, knowing that we will be wrong 
5% of the time. Students who have learned a collection of statistical tests are often sur-
prised to learn that in fact all we have done is to reject the “just-chance hypothesis” at a 
fixed level of error.
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Hypothesis testing centers on the null hypothesis, but because we are usually more 
interested in the alternative hypothesis, it is easier to start with this (Step 6, Table 15.3, 
Box 15.7). The research hypothesis is then inverted to the null hypothesis. To complete 
the setup, we decide on the test statistic and the distribution to be used to compute the 

Box 15.7 Analysis of Uncertainty (Steps 4–9 in Table 15.3) for the Analysis of Algal Biomass  
in Relation to Tank Size. Data from Box 15.6

4. The population is taken to be all possible measurements on similarly 
constructed tanks within the size range of the sample.

5. The mode of inference will be hypothesis testing.
6. State research hypothesis. Algal biomass scales with tank volume, hence  
V ≠ 0.

 State null hypothesis. Biomass does not scale with volume, hence V  0.
 State statistic. The F-statistic from analysis of variance in lnB.
 State tolerance for Type I error of accepting a relation when in fact there  

is none.
  set at 5%, the traditional level in biology.
7.  Calculate variance, partition df and SS according to model, place in ANOVA 

table.

ln B    V · lnV  ε Model
4  1  3 df

13.70  13.09  0.61 SS

Compute MS  SS/df
F  MSlnV/MSresidual

Source df SS .MS F
lnV 1 13.09 13.09 64.54
residual 3 0.61 0.203
Total 4 13.70

Calculate Type I error from F-distribution.  p  0.004
MTB > cdf 64.54;
SUBC> f 1 3.

64.54  0.996
 8. Assumptions met, no need to recompute p-value.
 9.  declare decision. reject the null hypothesis, accept alternative hypothesis  

of relation of algal biomass to tank volume. F1,3  64.54, p  0.004
10. report parameters with measure of uncertainty. ̂v  0.78564

 

st err
MS

V V
st err st.errerr. .

.
.




 
(ln ln )

.
2

0 203
21 21

0 09779
∑



Chapter 15 • Equations and uncertainty: The General Linear Model 339
p-value. The criterion for statistical significance is set before undertaking the analysis, to 
avoid any adjusting of the criterion to the outcome (e.g., taking ‘significant’ to mean 6% 
if the p-value is 6%).

Once the conditions for the test are established, the next step is to compute the 
test statistic and p-value. For the general linear model, this means computing the mea-
sure of improvement in fit due to a term in the model (Step 7, Box 15.7). The analysis 
of variance table, widely used in biology, is a general linear model displayed vertically. 
Each term is listed on its own line with its sum of squares and degrees of freedom. 
Computation then proceeds from left to right in the table. The mean square for a term 
is computed as MS  SS/df for explanatory and error terms. The F-ratio is the ratio of 
appropriate mean squares, usually the mean square for an explanatory term relative to 
the mean square for the error term. The p-value is computed from the F-ratio, given the 
degrees of freedom assigned to the numerator and denominator mean squares that make 
up the F-ratio.

Before declaring a decision based on the p-value delivered in the ANOVA table, 
we review the information we have and decide whether the p-value needs to be recom-
puted by randomization (Step 8, Table 15.3, Box 15.7). This step calls for judgment, 
just like Step 3 (evaluate model assumptions). In making such judgments we take 
into account several factors. Violations are a matter of degree. Their distorting effect 
on the p-value diminishes as sample size rises. recomputation is not going to change 
the p-value much unless the sample size is small and violations are serious, especially  
the violation of the homogeneity assumption. recomputation is not going to change the  
decision if the p-value is far from 5%, even if there are violations. As a rule of thumb, 
violations have little effect on p-values if sample sizes exceed 100 and rarely have much 
effect unless samples sizes fall below 30. As another rule of thumb, randomization 
rarely changes a p-value by more than a factor of five. That is, randomized p-values 
are usually within a factor of 5 of the p-value from the statistical distribution (t, F, 
or chi-square). Consequently, if the p-value is less than 0.01 or greater than 0.25, the 
decision at 5% will usually go unchanged despite the better p-value. Violations need 
to be dramatic to have an effect on the p-value computation. The most frequent source 
of distortion is substantial heterogeneity, particularly that due to a few outliers when 
sample size is small. Judgment in deciding whether to recompute a p-value comes with 
experience in diagnosing violations and then recomputing a p-value for serious viola-
tions. The analysis of algal biomass in relation to tank volume was chosen because it 
was a good candidate for a randomization test. The sample size was small (n  5), the 
p-value was close to 5%, and the violation of the heterogeneity assumption was evident 
(Figure 15.2b).

Table 15.4 Type i and ii Statistical errors in relation to the 
Null Ho and Alternative HA Models

Decision

Accept Ho reject Ho
(reject HA) (Accept HA)

Ho true Ok Type II error

HA true Type I error Ok
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15.6.2 Comparing regression Lines (ANCoVA)

The next application of the general linear model compares two scaling functions 
expressed as straight lines. The data are from Fee (1979). does annual primary produc-
tion in lakes scale with benthic epilimnion area A, the area of bottom shallow enough  
to be illuminated? does the scaling of production to epilimnion area A in lakes treated 
with nutrients differ from untreated lakes? The analysis demonstrates the use of a cat-
egorical variable (fertilizer treatment yes or no) within the framework of the general 
linear model. The analysis also demonstrates the logic of interaction terms, which are 
examined before the main effects (which in this case are treatment and epilimnion 
area). This mixture of regression and categorical explanatory variables is called analy-
sis of covariance (ANCOVA). Its primary use in ecological scaling is comparing scaling 
coefficients.

Figure 15.4a shows the data. Box 15.8 sets up the analysis (Steps 1–3, Table 15.3). 
In this analysis there are two explanatory variables. One is categorical (Treatment  yes or 
no); the other is on a ratio type of scale (epilimnion area). The ratio scale variable appears in 
the model as a term that is the product of the variable times a parameter. Because lake pro-
duction and area are on a log scale, the parameter A is the exponent that scales production 
to area. The categorical variable also appears as a term that is the product of the variable 
times a set of parameters. The parameter Tr represents the difference in production between 
the mean value of ln(production) of treated lakes and the mean value of ln(production) of 
lakes in the reference category. The reference category can be the mean for all lakes.

 o M mean(ln( ))  

  o Tr Tr YesM  mean(ln( ))
 (15.5)

Alternatively, the reference category can be just one category, such as the mean for 
untreated lakes:

 o Tr NoM mean(ln( ))
 

  o Tr Tr YesM  mean(ln( ))
 (15.6)

The difference in notation follows from differences in the way that categories (in this 
case, two) are coded by the package used to implement the analysis. If the package 
codes Tr  No as 0 and Tr  yes as 1, the result is Equation 15.6. If the package codes 
Tr  No as 1 and Tr  y as 1, the codes add to zero and the result is Equation 15.5.

ANoTher Look AT SeCTioN 15.6.1

Have you ever regressed the logarithm of one variable against the logarithm of 
another? If you have, write the function that relates the log of the response variable 
to the log of the explanatory variable. Then rewrite the expression as a power law. 
If you have not, write a function relating the log of catch/effort to the log of effort. 
Then rewrite this expression as a power law.
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In addition to a term for each variable, the model includes an interaction term. 
This term expresses the interactive effects of the explanatory variables on the response 
variable. In this analysis, the interaction term is the product of a categorical and a ratio 
scale (regression) variable. It measures the heterogeneity of slopes (Figure 15.4a). The 
more divergent the slopes across categories, the larger the interaction term. The term is 
written as the product of its two component variables and a parameter A·Tr, which rep-
resents deviations in slope from the slope in the reference category A. If the reference 
category is all lakes (Equation 15.5), we have:

 Αregression of ln(  on lnM A)  

   A Tr A Tr Yes  *  (15.7)
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Figure 15.4 Scaling of Primary Production to Area of epilimnion in Fertilized and Unfertilized Lakes.  Data from Fee 
(1979); (a) Logarithmic axes display production as a power law function of area with line estimated by least squares 
regression in 19 lakes; (b) residuals plotted against fitted values from analysis of 19 lakes; (c) histogram of  residuals.
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If reference category is one of the categories (Equation 15.6), we have:

 

 
  

ΤA r Yes

A Tr A



 


* Tr No  
(15.8)

Once the model is written (Step 1, Box 15.8) the calculations are readily exe-
cuted (Step 2) in any statistical package with a GLM command. The command gener-
ates parameter estimates, standard errors, and diagnostic plots to evaluate the model 
(Step 3). The residual versus fitted value graph (Figure 15.4b) shows a pattern where 
most of the residuals (inside the box drawn round them) trend downward from left to 

 Box 15.8 Model Identification (Steps 1–3 in Table 15.3) for Analysis of Primary Production M  
Scaled to Epilimnion Area A in Treated and Untreated Lakes. Data are from the Experimental Lakes 
Area in Ontario (Fee, 1979).

1. Construct model:
 response variable is logarithm of primary production

ln ln( / g-C yr ). M M 1 1

 Explanatory variable is logarithm of epilimnion area lnA  ln(A/1m2).
 Explanatory variable is Treatment at two levels (Tr  yes or no)
 Write the linear model.

response f(Explanatory) residual 
ln ln lnM A Tr A Tro A Tr A Tr            ε

2. Execute analysis. The linear model (above) guides the use of GLM routines.
 SAS Proc GLM; Class Tr; Model lnM  lnA Tr lnA*Tr;
 Minitab  MTB  glm ‘lnM’  ‘lnA’ ‘Tr’ ‘lnA’*‘Tr’; covariate ‘lnA’.
 SPlus   lm lnM  lnA  Tr  lnA:Tr

 The routines estimate parameters, compute fitted values and residuals, then 
produce diagnostic plots.

3. Evaluate the structural model with residual versus fit plot. The outlier 
evident in this plot tilts the regression line such that most of the lakes do 
not follow the regression (data points inside the box in Figure 15.4b). The 
lake responsible is much larger than the other lakes (Lake 228/next largest: 
surface area  1677 ha/56.1 ha  30). There is no information from a 
control (untreated) lake of comparable size, so lake 228 was dropped from 
the comparison of treated and untreated lakes (Figure 15.5a). The resulting 
scaling functions will be more reliable (less influenced by a single lake) but 
restricted to a smaller range in sizes (largest/smallest  56.1 ha/1.7 ha  33).

2. return to step 2.Execute analysis without Lake 228.
3. Evaluate the structural model. No bowl or arch is evident (Figure 15.5b).
 Evaluate error term. residuals are homogeneous (Figure 15.5b) and normal 

(Figure 15.5c).
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right. This is the result of the undue influence of a single large lake with an epilimnion 
area 30 times that of the next largest lake. This single value, because it is far from the 
mean value of production and area, tilts the regression line upward on the right side in 
Figure 15.4a. Because of this tilting of the line, the data points (inside the box) do not 
follow the line for treated lakes. Because lake 228 differs substantially from the others 
in epilimnion area and because there is no untreated lake of comparable size, the lake 
was dropped from the analysis. It is interesting to note that with lake 228 in the analy-
sis, the difference in exponents (Tr  1.0801−0.74021  0.3399) is almost significant 
(F1,49  3.71, p  0.0599), where the assumptions of homogeneous (Figure 15.4b) and 
normal (Figure 15.4c) errors were met. However, the conclusion is suspect because of 
the undue influence of a single lake. dropping this lake strengthens the analysis but at 
the same time restricts the conclusions to a small range of lake sizes.
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Figure 15.5 Scaling of Primary Production to Area of epilimnion in Fertilized and Unfertilized Lakes.  Data from  
Fee (1979); (a) Logarithmic axes display production as a power law function of area via least squares regression in  
18 lakes; (b) residuals plotted against fitted values from analysis of 18 lakes; (c) histogram of residuals.
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The analysis is executed again (return to Step 2). This gives revised estimates of the 
scaling parameters (Figure 15.5a), with new ANOVA table and diagnostic plots (Figures 
15.5b,c). The data (with one lake dropped) are consistent with the linearized power law, 
as indicated by absence of bowls or arches in the residual versus fit plot (Figure 15.5b). 
The residuals are homogeneous (Figure 15.5b) and acceptably normal (Figure 15.5c).

The target of inference (Step 4, Table 15.3, Box 15.9) deserves reconsideration in 
light of the removal of the largest lake (Box 15.8). Inference will now be restricted to 
lakes within a narrower size range. dropping the outlier has a cost in that this restricts 
the target of inference and hence what we can say from the analysis. Moving to Step 
5, we will use hypothesis testing, given the goal of declaring whether treatment alters 
the scaling of production to epilimnion area. The model is our guide to writing the  

Box 15.9  Setting Up the Analysis of Uncertainty Via Hypothesis Testing (Steps 4-6 in Table 15.3) 
for Analysis of Primary Production Scaled to Epilimnion Area in Treated and Untreated Lakes. Data 
from Fee (1979)

4. Sample consists of 52 measurement of annual production in 16 lakes (10 
treated, 5 untreated, 1 treated in 1 year and untreated in 2 years, lake 228 
omitted). Statistical inference cannot be made to the population of all lakes 
in the Experimental Lakes Area in Ontario. Inference is to a hypothetical 
population, all possible measurements with this measurement protocol. 
The conclusion about this hypothetical population can be used to form 
expectations about other lakes with surface area from 1.7 to 56.1 ha under 
the assumption that the lakes measured are representative of other lakes.

5. Mode of inference will be hypothesis testing because we seek a decision on 
whether the scaling exponent differs been treated and untreated lakes.

6. State research hypotheses:
 Production depends on area of epilimnion, hence A≠0.
 Production depends on treatment, hence mean( M TrYes)  mean( M TrNo).

   Equivalently, Tr0
  relation of production to area depends on treatment,  

hence A, TrYesA, TrNo.
   That is, the regression coefficients differ for treated and untreated lakes.

 State null hypotheses:
 Production does not depend on area, hence A  0.

Production does not depends on treatment,  
hence mean( MTrYes)  mean( MTrNo).

   Equivalently, Tr  0
relation of production to area does not depend on treatment,  

hence A, TrYes  A, TrNo.

 Tolerance for Type I error set at   5%, the traditional level in biology.



Chapter 15 • Equations and uncertainty: The General Linear Model 345
alternative/null hypothesis pair (Step 6). There is one pair for each of the three explana-
tory terms. If the interaction term proves significant, hypotheses concerning the scaling 
exponent or the average difference between treated and untreated lakes Tr will not be 
tested. It would be inconsistent to test for these overall effects if interaction is present and 
hence the effect of one explanatory variable depends on the other explanatory variable.

Box 15.10 Analysis of Uncertainty (Steps 7–10 in Table 15.3) for Analysis of Primary Production 
Scaled to Epilimnion Area in Treated and Untreated Lakes. Data from Fee (1979), Continued from 
Boxes 15.8 and 15.9

 7. Calculate variance, partition df and SS according to model.

Ln M  − o  A · lnA  Tr · Tr  A · Tr · lnA · Tr  ε

51  1  1  1  48 df

29.982  14.651  2.878  0.07445  12.379 Sequential SS

  List sources of variance with df and SS.
 Compute MS  SS/df for each term in the model.
 Compute variance ratios relative to residual variance.

Source df Adj SS Adj MS F p

lnA 1 8.1785 8.1785 31.71 0.0000009

Tr 1 0.1689 0.1689 0.65 0.422

lnA·Tr 1 0.07445 0.07445 0.29 0.594

Residual 48 12.379 0.2579

Total 51 * ----Adjusted SS do not sum to 29.98

 8. recomputing p-value not judged necessary: assumptions met.
 9.  declare decision. This is done sequentially, beginning with the interaction 

term. The interaction term is not significant (F1,48  0.289, p  0.59). 
The scaling exponents for treated and untreated lakes are statistically 
indistinguishable. Consequently, continue upwards in table, to hypotheses 
concerning main effects. Primary production depends on epilimnion area 
(F1,48  31.71, p  0.001) adjusted for lnA and lnA·Tr. Production does not 
depend on treatment (F1,48  0.65, p  0.42) adjusted for lnA and lnA·Tr. 
Production does depend on treatment (F1,49  2.878/(12.379/49) 11.39, 
p  0.0015) adjusted for lnA, without considering ln A·Tr. This F-ratio is 
adjusted for lnA only because it was calculated from sequential SS above.

10. Estimate of scaling exponent:
ˆ .A  0 7875  st. err.  0.0965  CI  0.5935 to 0.9815 adjusted for  
treatment difference
ˆ .A  0 6002  st. err.  0.0867  CI  0.426 to 0.774 not adjusted
The 95% confidence limits exclude a 1:1 scaling (̂A  1) of primary  
production to epilimnion area.
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GLM commands automatically partition the degrees of freedom according to the 
number of terms in the model, following the rules in Table 15.5. degrees of freedom are 
assigned only to terms in the model. For example, if the interaction term B x R were 
omitted from the model in Table 15.5, the residual term would have df  25 rather than 
df  23.

GLM commands also partition the total sums of squares according to the model 
(Step 7, Box 15.10). Partitioning can occur in several ways. One common method is 
to partition the total SS in the order in which the terms occur in the model. With this 
sequential method the variability assigned to each term depends on where it occurs 
in the list if the explanatory variables are correlated. Packages will also produce an 
adjusted SS, which is the variability for each term if it were to occur last in the list. This 
adjusts for any correlation among explanatory variables. Box 15.10 shows the adjusted 
SS and MS.

Once the degrees of freedom and SS are partitioned according to the model they 
are tabled and the mean squares are calculated from the degrees of freedom in the 
usual way. The F-ratios are taken relative to the error term. GLM commands use the  
F-distribution to compute p-values for each F-ratio. The p-value is the chance of obtain-
ing the observed improvement in fit (measured as an F-ratio) if the null hypothesis is 
true. In the analysis in Box 15.10, the interaction term was far from significant, lead-
ing to the conclusion that the same scaling exponent applies to treated and untreated 
lakes. In the absence of interactive effects, hypotheses concerning the average effects of 
treatment (̂Tr) and the overall scaling with area (̂A) are then examined. The treatment 
effect was significant when the effects of area are controlled statistically (lnA included in 
the model). The scaling of primary production with area did depend on epilimnion area 
(̂A0). Of more interest is that the 95% confidence limits for the exponent (Box 15.10) 
exclude A   1. Consequently, we can exclude a 1:1 scaling of production to epilim-
nion area. It is worth noting that if the residuals had not been examined and the statis-
tical output with lake 228 present were accepted on face value, a different conclusion 
(treated and untreated lakes differ in scaling of production to epilimnion area) would be 
the result. 

Table 15.5 Computing Degrees of Freedom of Terms in a General Linear Model

n  number of observations; example based on n  3  46 observations.

Source Df example result

Response variable n  1 (72  1) 71

Explanatory variables

Regression variable R 1 1

Categorical variable A, with na levels na  1 (4  1)

Categorical variable B, with nb levels nb  1 (3  1)

Interaction term, A  B (na  1)(nb  1) (3)(2)

Interaction term, A  R (na  1)(1) (3)(1)

Interaction term, B  R (nb  1)(1) (2)(1)

Interaction term, A  B  R (na  1)(nb  1)(1) (3)(2)(1)

Σdfmodel 23

Residual n − 1 − Σdfmodel 72  123 48
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15.6.3 Compound Scaling with Multiple regression

A widespread practice in the literature is to scale one variable to another by division 
before undertaking analysis. For example, in an experiment with fish, it is common 
practice to divide the mass of the fish by a measure of size (length or length3 are typi-
cally used) to correct for size differences before undertaking further analysis. Another 
example is from ryder (1965), who adjusted annual fish catch M (kg yr1) for lake area 
A (ha) before undertaking analysis in relation to his morphoedaphic index (MEI), which 
is the ratio of total dissolved solids TDS (ppm) to lake depth z (meters). The MEI was 
constructed as a composite measure of lake morphology (as indicated by depth) and tro-
phic status (low TDS in oligotrophic lakes). Taking the logarithm of both ratios, ryder 
(1965) obtained a scaling exponent of 0.4461. Conversion of ryder’s data to meters 
and hectares results in slightly different parameter estimates for the linearized power law 
relating catch per unit area to the MEI:

 

M
A

e
TDS

z
 0 3215

0 4468
.

.







 
(15.9a)

The scaling relation incorporates more than two variables and thus is aptly described as 
a compound scaling relation. These arise when a variable is adjusted for another by tak-
ing a ratio before estimating the scaling exponent.

Compound scaling relations assume that the two components of a ratio have the 
same exponent with opposite sign. In Equation 15.9a, the assumption is that M and A 
have the same exponent, as follows:

 

M e A
TDS

z
1 0 3215 1

0 4468
 .

.







 
(15.9b)

If we check this assumption with ryder’s data, we find that the evidence is otherwise. 
The exponent that scales annual fish catch to lake area is estimated from the data as 
̂A  0.84, with a standard error of 0.0430 on 21 degrees of freedom and hence con-
fidence limits of 0.751 to 0.929. These limits exclude the null hypothesis (  0), but 
of more importance, they exclude the 1:1 scaling of catch with area (  1) assumed in 
Equation 15.9a. A 1:1 scaling is assumed for the components of a ratio on the right side 
of a compound scaling relation, as in Equation 15.9a. That is, the exponent is of the 
same magnitude and opposite sign:

 
M e A TDS z1 0 3215 1 0 4468 0 4468 . . .  (15.9c)

ANoTher Look AT SeCTioN 15.6.2

For a variable of interest to you, sketch a graph of the line relating this variable to 
an explanatory variable that you think influences your variable. Next, sketch the 
relation in each of several categories (before/after, male/female, and so on). define 
symbols for each of the three variables, then write a general linear model comparing 
regression lines.
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Analysis of ryder’s data shows that the exponent that scales dissolved solids to 
depth is 0.0551 with a standard error of 0.1277, hence confidence intervals of 0.321 
to 0.210. These limits include the null hypothesis (  0), but of far more relevance, 
they exclude   0.4468. Consequently, we should not be surprised if the scaling of 
annual catch to MEI differs from the scaling of catch to each of the components of the 
MEI. Catch may scale with one component of a ratio, not with the other, and as a result 
catch may scale with MEI when in fact only one component of the explanatory variable 
is responsible.

The scaling of catch with area assumed in Equation 15.9a is incorrect, and the 
scaling of catch with MEI may be due to only one component of the MEI ratio. To cor-
rect the scaling with area and to obtain more information about the scaling of catch 
with the components of the morphoedaphic index, we rewrite the compound scaling 
relation by separating the components:

 
M e A TDS zA TDS Z    

 
(15.10)

Compound scaling relations are evaluated with multiple regression (more than 
one independent variable). Before analysis, we examine the degree of correlation of the 
explanatory variables. If the components are correlated, the scaling exponents as esti-
mated by multiple regression (the partial regression coefficients) will differ from those 
estimated by regression of catch on each component separately (simple regression coeffi-
cients). Of particular concern are built-in correlations, which can arise in any of several 
ways, are avoidable, and inevitably produce estimates of exponents that are inconsistent 
with each other and with what we may already know about the scaling of one variable 
to another. One way that built-in correlations arise is construction of a new variable 
from two or more measured variables. If, for example, we use the measured value of 
lake surface area A to compute the area in the epilimnion Ae, there will be a built-in 
correlation between surface area and epilminion area. This in turn will influence our 
estimates of how some other quantity, such as catch, scales with the two correlated vari-
ables. Another source of built-in correlation is discoverable by dimensional analysis. We 
expect area and depth of a lake to be correlated in dimensional grounds; the surface area 
of an object such as a lake will scale with depth, even though the scaling of area with 
depth may not be as the square of depth, as in Euclidean lakes rather than real lakes.

The problem of built-in dimensional correlation is removed, as described 
in Chapter 6, by constructing dimensionless ratios. The compound scaling func-
tion (Equation 15.9a) is then rewritten in terms of dimensionless ratios (1  A1/2/z, 
2  TDS) from Box 6.8:

 
M e   Π Π1 2

1 2
 (15.11a)

 
M e A z TDS α ( / )  1 2 1 2/  

 (15.11b)

At this point we undertake statistical evaluation (Box 15.11) of the results of dimen-
sional analysis (Equation 15.11a, b), following the steps in Table 15.3.
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The conclusion from the statistical evaluation of the compound scaling relation (Box 
15.11) is that catch depends on lake morphometry (as measured by the dimensionless 
ratio of 1  A1/2/z) but does not depend on trophic status.

It is of interest to examine the outcome of statistical analysis of the compound 
scaling relation with both area and depth. When Equation 15.10 is linearized by taking 
the logarithm of catch, area, TDS, and depth, the parameter estimates for depth and 
TDS are not consistent with previous estimates. The exponent for area is now nearly 1, 
whereas the exponent for TDS rises from 0.05 (Box 15.11) to 0.3 (Table 15.6).
The estimates have changed because of the correlation among these variables. The scaling 
exponent for the morphoedaphic index does not accurately represent the scaling expo-
nents for the two components of the MEI. The exponents for depth and TdS are not 
similar in magnitude, as implied by Equation 15.9a. The scaling with TDS appears to be 

Box 15.11 Analysis of Compound Scaling Relation of Catch to Lake Area, Depth, and Total 
Dissolved Solids. Data from Ryder (1965)

1. Construct model. Catch depends on lake shape (1) and TDS. 

M e TDS   ( )Π1  1 2

ln M   o  1 · ln(1)  2 · ln(TDS)  
2. Execution: Take logarithms and execute multiple regression according to 

model above.
3. Evaluate the structural model with residual versus fit plot.
 No bowl or arch pattern evident. Hence the structural model acceptable.
 Evaluate error assumption. No cone or other pattern of heterogeneity evident 

in residual plot.
4. Sample consists of 1 value of annual fish catch in each of 21 Canadian shield 

lakes. Inference is to a hypothetical population, all possible values of fish 
catch in relation to the scaling function, for lakes in the size range from Lake 
Superior (8.2  106ha) to Lake Heming (259 ha).

5. Mode of inference will be hypothesis testing via construction of confidence 
limits:

Parameter estimates St. error Confidence Limits

Intercept 6.5020 3.1272

ln1. 2.0177 0.4536 1.07 2.96

lnTDS. 0.0529 0.5787 1.15 1.26

The confidence limits for log(TDS) include zero, so we accept the null 
hypothesis that catch does not scale with TDS. The exponent that scales catch to 
lake shape (1) lies between 1.1 and 3.0 (with 95% certainty). We conclude that 
fish catch depends on lake morphometry but not on trophic status as measured by 
total dissolved solids.
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significant (Table 15.6) because of the distorting effects of correlation among the regres-
sion variables. When these effects are removed by regression of catch against uncorre-
lated  ratios, catch turns out to have no significant dependence on dissolved solids.

15.7  Reduced Major Axis Estimates of Scaling 
Parameters

The general linear model command available in software packages automatically com-
putes the least-squares estimates of the parameters. This estimate assumes no (or at least 
negligible) uncertainty in the explanatory variable. This assumption is always met for a 
measurement relation because we define the explanatory variable as an operation. The 
assumption is tenable (Allen, 1939) when the explanatory variable consists of catego-
ries, and hence the values of the explanatory variable consist of class marks (midpoints 
of each category). But this assumption is not met for scaling relations where the inde-
pendent (or explanatory) variable consists of single measurements. When the assump-
tion concerning the independent (explanatory) variable is not met, reduced major axis 
regression (Allen, 1939; Kermack and Haldane, 1950; ricker, 1973) is often recom-
mended (Sokal and rohlf, 1995). The rMA estimate of the power law exponent assigns 
error to both variables in the regression. Consequently, the rMA estimate of the expo-
nent for Y1 versus Y2 is the inverse of the exponent for Y2 versus Y1 (Box 15.12). The 
same is not true for the least-squares regression. If the association between Y1 and Y2 
is anything less than perfect, the estimate of the exponent via regression of Y1 and Y2 
will differ from regression of Y2 on Y1. This property of the rMA estimate (Box 15.12) 
is of no advantage for a measurement relation, since we have no interest in an inverse 

Table 15.6 Parameter estimates and Confidence Limits for 
Multiple regression Analysis of Scaling relation of Catch to Lake 
Area, Depth, and Total Dissolved Solids (equation 15.10)

St. error Confidence Limits

Source Parameter (exponent) upper Lower

Intercept 1.0218 0.6958 0.43 2.47

Area 1.0275 0.0469 0.93 1.13

Depth 0.5606 0.1162 0.80 0.32

TDS 0.2939 0.1201 0.043 0.55

ANoTher Look AT SeCTioN 15.6.3

To see whether mortality is density dependent, an ecologist computes %mortality as 
((Nfinal−Ninitial)/Ninitial), then graphs %mortality against Ninitial. Write out the 
function that relates Ninitial to %mortality. rewrite the function so that single vari-
ables appear to the left and the right of the equal sign. Have you ever plotted one 
variable against another, where either variable is a ratio? If so, what are the potential 
problems with statistical analysis of the relation in the graph?
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relation, such as calculating box size from measurements of lake perimeter. This prop-
erty is an advantage for scaling relations, where the inverse relation can be of interest. 
unfortunately, when we apply our recipe for analysis of uncertainty (Table 15.3), the 
analysis of residuals will uncover some undesirable properties of the rMA estimate of 
the exponent of scaling relations.

Box 15.13 shows the computations for reduced major axis regression. Once the 
model is written (Step 1), it is executed (Step 2) using the rMA estimate. The intercept 
, computed from the rMA estimate of the slope, is used to calculate the scaling coef-
ficient as k  exp(). The rMA estimate is the line of best fit that minimizes the sum of 
the squared residuals perpendicular to the fitted line. These are calculated and then plot-
ted against the fitted values. Inspection of this plot (not shown) resulted in a plot similar 
to Figure 15.5b, where the presence of an outlier resulted in downward trending residu-
als instead of a horizontal band.

The outlier was then dropped, as it was for the least-squares analysis. Execution 
(Step 2) is repeated, resulting in revised parameter estimates and a new residual versus 
fit plot. The rMA line (Figure 15.6a) appears to be consistent with the data. However, 
the residuals continue to show a downward trend from left to right (Figure 15.6c), 
unlike the residuals from the least-squares line (Figure 15.6b). Inspection of the residuals  
showed that in this case, the least-squares estimate was a better representation of the 
data than the rMA estimate.

Box 15.12 Computing One Scaling Exponent from Another Using the Reduced Major Axis Estimate 
of the Exponent of a Scaling Function Based on a Scaling Relation. Y1 and Y2 Both Measured 
with Error

Theory:
Y1  k Y2 

Y1(1/)  (k Y2 )(1/)

Y2  k(1/) Y1(1/)

Example:
Vol  k A 3/2

A  k 2/3 Vol 2/3

For the lake data in Fee (1979) the scaling of lake volume (V, m3) to lake surface 
area (A, hectares) has an exponent of ̂   1.418, as estimated by least-squares 
regression.
The estimate by rMA regression was  1.467. The estimates are both close to the 
theoretical value of 3/2 for an Euclidean object.

V  e9.697A1.467

1/̂   0.682 and hence:  A  e6.61 V0.682

Strictly speaking, one cannot apply this to the least-square estimate of the 
exponent, but in this case the estimates are so close as to make little practical 
difference.
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Figure 15.6 Scaling of Primary Production to Area of epilimnion in Fertilized and Unfertilized Lakes. Data from Fee 
(1979; (a) Logarithmic axes display production as a power law function of area via reduced major axis regression in 
18 lakes. exponents estimated by regression (A  0.6001) and rMA regression (A  0.8579); (b) regression residuals 
plotted against fitted values from analysis of 18 lakes; (c) rMA residuals potted against fitted values.

The rMA estimate is 0.858/0.6001  1.43 times higher than the least squares esti-
mate for the same data. Based on the algebra of the rMA estimate the degree of infla-
tion of RMA depends on the strength of correlation, where r is the Pearson correlation 
of the two variables:

  LS RMAr   (15.12)
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As the correlation of the variables drops, the rMA estimate becomes more inflated 
relative to the least-squares estimate. This, and the demonstrably inappropriate model 
resulting from the rMA estimate (Figures 15.6b), suggest that rMA estimates need 
to be treated with caution. rMA estimates are a statistical solution to the problem of  
explanatory variables measured with error. This adjustment becomes less and less  

Box 15.13 Analysis of Primary Production Scaled to Epilimnion Area in Treated and Untreated 
Lakes. Reduced Major Axis Estimates of Exponent of Linearized Power Law. Data from the 
Experimental Lakes Area in Ontario (Fee 1979)

1. Construct model: ln B   o  A · lnA  
2. Execute model (all lakes). Estimate A from ratio of the standard deviations:

ˆ ( )
( )

.

.
.

ˆ

A
i

i

B B

A A

B
A





  



( )

( )

stdev
stdev

2∑
∑ 2

50 77

55 36
0 958

1 44 94 0 958 10 72

4 675 107 1 0 958

. . .

ˆ . .

 

   exp( ) exp( ) g-C yr  ha  

 Compute fitted values and residuals from estimates:    ˆ ˆ.B A B B  107 0 958  ε
 Compute residuals perpendicular to the fitted line:  ε ε RMA   cos(arctan( à))
 residuals differ by a constant, so either residual versus fit plot can be used 

for evaluation.
3. Evaluate model: residual plot shows a downward trend created by the 

outlying value (Figure 15.4b). This creates a negative correlation between the 
residual and the fitted values (r  0.33).

2. return to step 2. Execute model (lake 228 removed).

ˆ .

.
.

ˆ . . .

ˆ .

A 

  



29 93

40 67
0 858

14 85 0 858 10 65

5 720

=


exp( ) exp( )   305 g-C yr  ha1 0.858

 Compute fitted values and residuals from estimates: ̂ .B A 305 0 858

 Compute residuals perpendicular to the fitted line εRMA B A ( )305 0 858. · 
cos(arctan(0.858)) residuals differ by a constant, so either residual versus fit 
plot can be used for evaluation.

3. Evaluate model. residual plot shows downward trend despite removal of 
outlier (Figure 15.6c). The negative correlation between the residual and the 
fitted values persists (r    0.39).
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satisfactory as the error in the explanatory variable increases, thus hiding a true relation 
between response and explanatory variable. A better solution is to reduce or eliminate 
the problem. One way to eliminate the problem is to construct categories of the explana-
tory variable, then regress the mean value of the response against the class mark of the 
explanatory in each category. This eliminates the need for rMA regression (Allen, 1939). 
The next section describes the use of dimensional methods to eliminate the problem.

15.8  Estimates of Scaling Parameters Via  
Measurement Scope

Estimating the exponent of a scaling relation is problematic if both variables are mea-
sured with error. The problem of measurement with error can be eliminated by working 
with measurement relations. For example, we might be interested in how species num-
ber Nsp per quadrat scales with habitat diversity defined as the number of distinguish-
able habitats Nhab in the quadrat. The scaling relation is:

 

Nsp
Nsp

Nhab
Nhabref ref
















 

(15.13)

The exponent  would conventionally be estimated by regressing Nhab on Nsp, which 
entails regression against an explanatory variable with considerable potential for mea-
surement error. If the number of habitats in a unit were small (say, just 5), a counting 
error of 1 would result in an error of 1 in 5 or 20%.

This scaling relation is necessarily based on a measurement relation for each vari-
able. Any of several measurement protocols are possible. One possibility is equally sized 
measurement units, such as quadrats. The scaling relation based on equally sized units 
will have a spatial scope of 1. Another possibility is a scaling relation based on spa-
tial units ranging from small to large using one of the maneuvers in Figure 7.1. These 
might be discrete units of different sizes, resulting in scaling by rating. These might be 
constructed from units of equal size via sequential addition, resulting in scaling by accu-
mulation. If equally sized units are evenly spaced (or contiguous), we can use coarse 
graining. regardless of the maneuver, we can use the definition of measurement protocol  

ANoTher Look AT SeCTioN 15.7

Burger (1993) reported the number of seabirds killed (N) in relation to the size of an 
oil spill (M  tonnes). The exponent that scales number killed to spill size is 0.223, 
with confidence limits of 0.024 to 0.423, as estimated by least squares for a log/log 
regression (linearized power law). If the correlation of ln(N) with ln(M) is 0.374, 
compute the rMA estimate of the scaling exponent. Is this estimate consistent with 
the least squares estimate as defined by its confidence limits? discuss how you would 
decide which estimate to use if you were asked to calculate the expected kill from a 
spill of known size.
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to set up measurement relations for each of the two variables of interest, provided the 
spatial scope exceeds 1.
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(15.14a)

Equivalently,
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(15.14b)

We scale species number to habitat diversity from counts of species and counts of 
habitat types in the same spatial units, so the measurement relation is the same for spe-
cies data and habitat data:
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Equivalently,
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(15.15b)

The measurement operation (A/Aref) is that of altering quadrat area relative to some 
reference quadrat Aref. defining the measurement operation for each variable quantity 
allows reformulation of the scaling relation:
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(15.16a)
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(15.16b)

The ratio Nsp/Nhab in Equation 15.16b is the estimate of  in 15.14. Thus, to obtain 
an estimate of  free of the problem of error in measuring Nhab, we use least-squares 
regression to estimate both Nsp and Nhab, then form the ratio.

To obtain the scaling function (see Equation 2.5c), we rearrange the scaling rela-
tion to:

 
Nsp Nsp Nhab Nhabref ref

Nsp Nhab Nsp Nhab  ( ) / /   ( )
 

(15.17a)

The scaling function (see Equation 2.5c) is:

 Nsp k Nhab Nsp Nhab   /
 

(15.17b)

Table 15.7 extends this example to a generic procedure for using dimensional analysis to 
estimate scaling relations. Box 15.14 illustrates the procedure with another example.
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In the example of Nsp scaled to Nhab, the measurement relations were identical. 
Box 15.14 applies the recipe to an example where the measurement relations are not 
identical. In this example the perimeter and the area of multiple clouds (or rain areas) 
were measured on a 1 km by 1 km grid. Thus the example is for a noniterative scaling 
relation based on noniterative measurement relations.

Table 15.7 Generic recipe for estimating Scaling relations Via Dimensional 
Analysis

1. Define a scaling relation between the quantities of interest.

2. Define a measurement relation for each quantity.

3. Rewrite each measurement relation so that the operation has an exponent of 1.

4. Write the relation between the two measurement operations. Usually this will be that the measurement 

operations are the same.

5. Using the relation between measurement operations, rewrite the scaling relation in terms of exponents from 

the measurement operations.

6. Use least-squares regression to estimate the exponents of each measurement relation.

7. Combine estimates from the measurement relations to obtain the exponent for the scaling relation.

Box 15.14 Scaling Relation of Cloud Area to Cloud Perimeter Via Measurement Relations

1. Lovejoy (1982) examined whether the area/perimeter relation for rain and 
cloud areas follows the Euclidean scaling, where Perimeter  Area1/2. The 
scaling relation is:
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D

ref ref
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 where d  1 for Euclidean clouds, and d  1 for fractal clouds.

2. The measurement relations are:

Acloud
Acloud

A
A

area

ref ref
















Pcloud
Pcloud

L
L

perim

ref ref
















3. These are rewritten as:
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The relation of the two measurement operations (Box 15.14, Step 4) is based 
on the procedural statement (Lovejoy, 1982, p. 186). Area was measured by count-
ing the number of 1 km by 1 km boxes for each cloud, hence Aref  1 km2. Perimeter 
appears to have also been measured by counting boxes that contain cloud perimeter, 
hence Lref  1 km and so Lref  Aref 1/2. When the scaling relation of perimeter to area 
is rewritten from the measurement relations, the estimate of the scaling exponent is 
D/2  perim/2area, or D  perim/area. The procedure in Table 15.7, as illustrated 
in Box 15.14, brings out the fact that the exponent that scales one quantity to another 
depends on the relation of the underlying measurement relations.

15.9  Scaling and Uncertainty via the General  
Linear Model

In the statistical evaluation of scaling functions, we are interested first in whether one 
quantity scales with another. Often we are interested in whether the scaling of one vari-
able to another depends on category. And often we are interested in whether a scaling 
relation holds, controlled for an additional explanatory variable. The GLM provides a 
coherent model-based approach for statistical evaluation of these questions. Table 15.8 
shows special cases of the general linear model in relation to the number of explana-
tory variables, the type of explanatory variable (regression, categorical, or both), and the 

4. Based on the description in Lovejoy (1982), the measurement relations 
appear to be related as follows:

L
L

A
Aref ref


























1 2/

5. The scaling relation is then:
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ANoTher Look AT SeCTioN 15.8

For a quantity of interest to you, write a scaling relation to another variable as a 
power law. define the measurement relation for each variable. Is the relation of the 
two scaling operations clear? If not, describe how you might determine the relation.
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presence of interaction terms. Though ANOVA designs are generally not used in scaling 
analysis, the ready incorporation of categorical variables into the GLM opens the door to 
comparison of scaling and measurement relations across multiple categories. For exam-
ple, the analysis of the scaling of primary production to area of epilimnion in treated and 
untreated lakes (Boxes 15.8, 15.9, 15.10) could be extended to include year effects, since 
most lakes were measured in successive years. The full model for an analysis that includes 
time contains several interaction terms, some of which address key questions.

 ln ln  ln   …M A Tr Yr A Tr           Αo Tr Yr A Tr   

                εA Yr Yr Tr Yr Tr Aln ln. lnA Yr Yr Tr Yr Tr A  (15.18)

We have already considered the dependence of the scaling on treatment A·Tr. Extending 
the analysis to year introduces a new interaction term, with a parameter Yr·Tr that repre-
sents change in scaling exponent with year. The coefficient Tr·lnA·Yr quantifies the degree to 
which the dependence of the scaling exponent on treatment differs across years. The GLM 
opens the door to a complete analysis of the dependencies in the data, including the ques-
tion of whether the scaling exponent changes with both treatment and year.

This extension of the lake example illustrates how the model-based approach per-
mits comprehensive statistical analysis of scaling functions. The model-based approach 
employs biological reasoning. It is not constrained to a search for the “right test” from 
within a list of named tests. The software is available from the graphical (menu-driven) 
interface in any of the widely used statistical packages. The procedure for writing the 
model differs somewhat from package to package but is readily implemented by using 
the logical sequence (Steps 1–3) in Table 15.3. Assumptions are readily diagnosed with 
residual plots, as in Figures 15.2 through 15.6.

Table 15.8 Special Cases of the General Linear Model. Variables are either ratio 
scale or nominal scale (factors).

Analysis response 

Variable

explanatory 

Variable

interaction? Comments

t-test 1 ratio 1 nominal Absent Compares two means

1-way 

ANOVA

1 ratio 1 nominal Absent Compares three or more means in one factor

2-way

ANOVA

1 ratio 2 nominal Present Tests for interactive effects

Compares means in two factors, if no interaction

Paired

Comparison

1 ratio 2 nominal Assumed

Absent

Compares two means in one factor, controlled for 

second factor (blocks or units)

Randomized

Blocks

1 ratio 2 nominal Assumed

Absent

Compares three or more means in one factor, 

controlled for second factor (blocks or sampling units)

Hierarchical

ANOVA

1 ratio 2 nominal Absent Nested comparisons of means

ANCOVA 1 ratio 1 ratio Present Compares two or more slopes

1 nominal Absent Compares means, controlled for slopes

Regression 1 ratio 1 ratio Absent Tests linear relation of response to explanatory

Multiple

Regression

1 ratio 2 ratio Often

Absent

Linear relation to two or more explanatory variables

Assumes independent effects on response variable
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Set against these advantages are limitations. The general linear model only handles 
a normal (homogeneous) error structure. This is a problem because one of the common-
est violations of the assumptions for ecological data is heterogeneous errors, which pro-
duce inaccurate p-values when sample size is small. Violation of the homogeneous error 
assumption results in parameter estimates that are unduly influenced by those observa-
tions that are the least certain (have the highest underlying variability).

One widespread solution is to reduce data to ranks, then compute a measure of 
association (rank correlation) or a measure of difference (such as the H statistic of the 
Kruskal-Wallis test, Sokal and rohlf, 1995). This solution discards information, reduces 
the ability to detect differences, and can only be applied to the simplest of designs. 
Because they reduce data on a ratio type of scale to a rank scale, these tests are of no 
utility in the analysis of scaling and measurement relations. The justification for rank-
based tests (that they are relatively easy to calculate) disappeared in the 1980s, when 
computers became widely available.

A far better solution to the problem of heterogeneous error is to use randomization 
to generate a p-value. randomization methods eliminate the problem of assumptions 
concerning the error distribution, but at a cost: they are laborious to compute. This 
computational limit disappeared once computers became widely available. Execution 
time is small, even for complex models. Even on a spreadsheet (an extraordinarily slow 
computation because the screen is updated on each randomization), the 4000 runs in 
Box 15.5 took only 6 minutes. But though execution time is small, setup time can be 
substantial. Setting up the spreadsheet calculations in Box 15.5 took several hours. 
randomization methods are straightforward for simple models but not for models with 
explanatory terms that consist of categories. For these, it might be more appropriate to 
randomize the response variable within levels of one of the explanatory variables, which 
can be cumbersome.

The problem of heterogeneous errors often disappears when the response variable 
is transformed to a logarithmic scale. The log transform often (but not always) elimi-
nates the heterogeneity visible as a cone in the residual versus fit plot. For example, 
transformation of the algal biomass data (Box 15.1) to a log scale eliminated the cone-
shaped heterogeneity in the residuals. It must be kept in mind, however, that a logarith-
mic transformation alters the model. The log transformation of the response variable 
results in a linear model (Equation 15.19a) that becomes an exponential function when 
converted back (Equation 15.19b).

 ln( )  Q o x X    ε  (15.19a)

Q e eo xX e  ε
 (15.19b)

The errors are additive on a logarithmic scale, hence multiplicative when working 
with scaling of the response to the explanatory variable. Log transformation of both 
the response and explanatory variable results in a linear model (Equation 15.2) that 
becomes a power law when converted back (Equation 15.3). The errors are again multi-
plicative when working with the scaling of response to explanatory variable.

Another solution to the problems created when assumptions are violated is 
to adopt a more appropriate error distribution within the framework of the general-
ized linear model (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). This 
approach, one of the major developments in statistics in the last quarter of the 20th 
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century, comes at a cost in that it is not widely available in the easier-to-use statistical 
packages, nor is there an undergraduate text. In practice, the approaches in this chapter, 
notably randomization methods for computing p-values, will suffice in most instances 
where statistical evaluation of a scaling function is appropriate.

Defined Terms and Concepts for Review and Future 
Reference

____ analysis of covariance (ANCOVA)  ____ interaction term
____ analysis of variance (ANOVA)  ____ measures of goodness of fit
____ four assumptions for p-values  ____ model-based statistics
____ compound scaling relation  ____ null and alternate model
____ data equations  ____ randomization test
____ degrees of freedom  ____ reduced major axis regression
____ expected value  ____  response variable, structural model, 

and error term____ F-ratio (variance ratio) 
 ____  Type I error (p-value) and Type II 

error

ANoTher Look AT SeCTioN 15.9

For a quantity of interest to you, write a scaling relation to another variable as a 
power law, then write a general linear model to analyze the dependence of the power 
law on an additional explanatory variable. Above each term in the model, sketch a 
graph showing the null (“just chance”) hypothesis.



Power Laws and Scaling 
Theory

Bacteria are—and always have been—the dominant forms of life on earth. 
Our failure to grasp this most evident of biological facts arises in part from 
the blindness of arrogance, but also, in large measure, as an effect of scale. 
We are so accustomed to viewing phenomena of our scale—sizes measured in 
feet and ages in decades—as typical of nature.

—Stephen Jay Gould, Life’s Grandeur, 1996

16.1 Synopsis
This chapter briefly reviews the role of theory in body-size scaling and biodiversity scal-
ing. It then considers the prospects for theoretical development in spatial scaling.

Body-size scaling has a long history of theoretical development, beginning in  
the 19th century, when the classic theory of surface-limited metabolic activity replaced  
a more intuitive one-to-one scaling. By the middle of the 20th century it was evident  
that the exponent relating metabolic rate to body size was closer to ¾ than to the 2/3 
exponent from classical theory. Early theories for ¾ scaling include elastic similarity, 
exchange with the environment through fractal surfaces, and the energy density of tis-
sue. A more recent and comprehensive theory extends ¾ scaling to any supply system, 
ranging from the vascular systems of plants and animals to the drainage system of 
watersheds.

The scaling of biodiversity to area has a history of empirical findings that extend 
back to the 19th century. Biodiversity scales with area, time, collection size, and body 
size, but not in a one-to-one fashion. Theoretical development began in the middle of 
the 20th century, with the concept that divergence from a 1:1 scaling arises from the 
vagaries of sampling (at the scale of plots), from habitat diversity (at the scale of bio-
geographic regions), and from evolutionary history (at the scale of continents). Alpha, 
gamma, and epsilon diversity correspond to these three domains. Quantitative scaling of 
taxonomic diversity (species number) with area rests on two ideas: that the total num-
ber of organisms scales with area and that the number of species scales with number 
of organisms to the 1⁄4 power. Scaling of species number with productivity is expected 
when density increases with primary productivity. The scaling of species number to area 
depends on degree of isolation. The exponent is steeper for islands than for blocks of 
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land on continents. The exponent is steeper for biogeographic provinces, which are  
isolated at evolutionary time scales, than for blocks within a province. An analytic 
review is needed to integrate the vast literature on biodiversity with the literature on the 
structure and dynamics of landscapes.

Ecological theory is founded on exponential rates and equilibrium dynamics. 
When production and loss act episodically, power laws emerge. This theory, called uni-
versal scaling or complexity theory, has the potential to become the theoretical basis for 
spatial and temporal scaling in ecology.

16.2 The Role of Theory in Body-Size Scaling
The word allometry usually refers to a special case of allometric rescaling: the scal-
ing of organism form or function according to body size (Gould, 1966; calder, 1984). 
Allometric rescaling to body size was developed by darcy Thompson in his 1917 trea-
tise On Growth and Form (Thompson, 1961). Thompson used the principle of geomet-
ric similitude to scale organism form and function with size. The rationale for geometric 
similarity is the observation that organisms are nearly incompressible and have densities 
(mass per unit volume) close to that of seawater. consequently, any scaling of form or 
function with body volume can be rescaled with body mass according to the same expo-
nent. Thompson’s scaling of form and function to body size initiated a major line of bio-
logical research (Huxley, 1932; Brody, 1945; Gould, 1966; Pedley, 1977; vogel, 1981; 
Peters, 1983; calder, 1984; Schmidt-nielsen, 1984; Alexander, 1989), even though many 
of his specific conclusions have not survived (Schmidt-nielsen, 1984). In the latter part 
of the 20th century, body-size allometry was extended to population and community-
level phenomena (Gold, 1977; Platt and denman, 1978; damuth, 1981; Platt, 1981; 
Platt and Silvert, 1981; calder, 1983, 1984; Peters, 1983; dickie et al., 1987; rosen, 
1989).

The role of theory in body-size allometry can be traced to the 19th century, when 
Sarrus and rameaux (1839) proposed that respiration scales with surface area, for 
which the Euclidean scaling is volume2/3 and hence mass2/3. rubner (1883) presented 
evidence that in dogs, metabolic rate does scale as mass2/3. As studies of metabolic rate 
accumulated through the early 20th century it became evident that across a wide range 
of animals the exponent is slightly greater than 2/3. Kleiber (1947) amassed a substantial 
body of evidence that over this wider range the scaling of metabolic activity with body 
size was closer to ¾ than 2/3. Two decades later, McMahon (1973) developed a scaling 
of metabolic rate to body size based on mechanical similarity of organisms. McMahon 
reasoned that large animals must be stockier than smaller animals because of structural 
limitations on the skeleton. using the concept of elastic loading, McMahon arrived at a 
scaling in which surface area increases as volume3/4 rather than volume2/3. The concept 
of elastic loading is readily extended to plants (McMahon, 1975). This allometric scaling 
is closer to the observed exponent than that based on the 2/3 surface law. confirmation 
comes from the finding that limb bone length scales as body mass3/4 in ungulates, which 
is consistent with McMahon’s similarity statements (Schmidt-nielsen, 1984). Further 
support comes from the failure to find ¾ scaling in marine mammals (Kovacs and 
lavigne, 1985), animals that do not use their limbs to support themselves. Alexander 
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et al. (1979) noted that ¾ scaling does not hold within several groups of terrestrial 
mammals. It is worth noting that scaling within groups (e.g., within rodents) often 
occurs with a smaller exponent than scaling across groups, as from mice to elephants  
(Schmidt-nielsen, 1984).

Platt and Silvert (1981) developed scalings of respiration to body size based on the 
energy density of tissue rather than on the area across which energy is exchanged with 
the environment. Based on their similarity statements, the scaling of respiration to body 
mass was:

 
E M 3 4/ in terrestrial organisms  (16.1a)

 
E M 2 3/ in aquatic organisms  (16.1b)

A check against Peters’ (1983) power law compilation shows that the aquatic scaling 
does not apply to some 13 studies of fish and another 29 studies of aquatic metazoans. 
A few aquatic groups do show exponents below 0.70.

A modification of the classic 2/3 surface-to-volume scaling is that respiration scales 
with the surface area of the lung. Weibel (1979, p. 156, in Section 4.3.7) reported a 
scaling exponent 1.17 for the surface of the lung. citing this same passage from 
Weibel, Mandelbrot (1982, p. 114) reported the exponent as 2.17. Weibel reports using 
the dividers method, which yields an exponent of   0.17, obtained by regressing 
number of steps against step length. Weibel reported the result as a fractal dimension 
Df  1.17, which means the fractal dimension was taken relative to a line (Df  1  ). 
It appears that Mandelbrot then used Weibel’s estimate to report the fractal dimension 
as Df  2.17, that is, relative to a plane (Df  2  ). A fractal surface with dimension 
of 2.17 increases the scaling exponent for flux across the surface of a volume from v2/3 
to V2.17/3  V0.72. The resulting scaling is:

 
E V M 0 72 0 72. .

 (16.2)

which is indistinguishable from ¾. This derivation was reported independently three¾. This derivation was reported independently three. This derivation was reported independently three 
times (Barenblatt and Monin, 1982; Pennycuick, 1992; Schneider, 1994b).

Subsequently, West et al. (1997) offered a theoretical explanation for an exact 
exponent of volume3/4. This theory replaces the theory of surface-limited flux with a 
scaling based on structured supply through a (fractal) vascular system. Banavar et al. 
(1999) showed that a ¾ scaling arises in any supply network, regardless of whether it 
is fractal. The scaling is D/(D  1), that is, ¾ scaling of supply to a volume and 2/3 scal-
ing of supply to a plane. These authors extended the supply rate theory to inanimate 
delivery systems, notably the dendritic structure of river systems. West et al. (1999) then 
generalized their theory to a range of exponents. For a vascular system with surface  
area A  L2 and active tissue volume V  L3, delivery scales as V(2)/(3). 
delivery is maximized at   1 and   0, hence delivery scales with an exponent near 
V3/4 and hence Mass3/4. The channeled supply rate theory (West et al., 1997; Banavar  
et al., 1999) has generated a substantial literature (see volume 18 of Functional Ecology, 
volume 85(7) of Ecology, and volume 208 of Journal of Experimental Biology).
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16.3 Biodiversity Scaling
Traditional treatment of the scaling of biodiversity has focused largely on a single mea-
sure, the number of species (species richness) in relation to area. nearly a century ago 
Arrhenius (1921) showed that species number does not scale in a 1:1 fashion with area. 
As a rough rule of thumb, a tenfold increase in area will increase the number of plant 
species by a factor of 2 rather than 10. Thus as a first approximation, the exponent that 
scales species number to area is ln(2)/ln(10), or roughly 1/3. A graphical compilation of 
studies from the first half of the 20th century (Williams, 1964) showed that the expo-
nent that scales species number to area itself depends on spatial scale. The scaling of 
species number with area is relatively steep at the scale of plots (attributable to the vaga-
ries of sampling), less steep at the scale of biogeographic regions (attributable to habitat 
diversity), and then steeper again at the scale of continents (attributable to evolutionary 
history). Whittaker (1960) expressed the idea that taxonomic diversity depends on scale 
by drawing the distinction between alpha (within habitat) and gamma (among habitat) 
diversity. Whittaker (1977) then extended the concept to the smaller scale of point diver-
sity within a habitat and to the larger scale of regional (epsilon) diversity. Whittaker 
(1977) presented these as convenient labels with approximate spatial scales. Subsequent 
work has shown that species number increases, but not in a 1:1 fashion, as more time is 
spent watching an area, as more organisms are collected, and as a wider range of body 
sizes is accumulated.

one of the major advances in biodiversity scaling has been the development of 
biodiversity distributions (Preston, 1962; May, 1975). A biodiversity distribution is a 
frequency distribution showing the number of classes (usually species) that have 1, 2, 3 
(and so on) individuals per class (per species). Because biodiversity distributions can use 
any classification (not just taxonomic groups), they can be constructed for habitat and 
genetic diversity. This is consistent with current practice, which is to define biodiversity 
as including habitat and genetic diversity along with taxonomic diversity. Section 16.3.1 
covers the topic of measurement of biodiversity, from single-value measures to the use of 
the full frequency distribution. Section 16.3.2 briefly reviews theoretical development of 
biodiversity scaling.

16.3.1  Measuring Biodiversity

diversity studies typically employ two quantities (N  number of organisms, A  area) 
and sometimes a third (T  time or duration of measurement). A collection of N organ-
isms from a unit area Ao during a unit period To, is sorted into s groups (typically spe-
cies), as shown in Figure 16.1. Any taxonomic level can be used in sorting, but for the 
sake of the clarity that comes with clear examples, species will be used to illustrate tax-
onomic diversity distributions. The number of organisms ni is recorded for each spe-
cies (Table 16.1). A familiar presentation of this information is the curve of abundance 
across species, ranked from high to low (Figure 16.1). The information in this rank-
abundance curve can be reexpressed as a taxonomic frequency distribution s(ni  nk), 
defined in Table 16.1. The symbol s(ni  nk) represents the number of species at abun-
dances ranging from nk  1 upward to the abundance nk of the commonest species in 
the collection. This frequency distribution shows all the information on diversity in a 
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The collection is sorted into species
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Figure 16.1  Construction of the Cumulative Diversity Distribution. Arrows show how the taxonomic diversity 
distribution s(ni  nk) is constructed from the rank abundance curve, for a collection of organisms. The cumulative 
diversity distribution s(ni , nk) is then constructed from the diversity distribution. N is number of organisms in the 
collection, s is the number of species. Data from Patrick (1968). Redrawn from Schneider 2001c.  

single collection of Σni  N organisms, taken from unit area Ao in unit time To. If our 
interest is in the effects of scaling, we will need to work with the frequency distribution 
s(ni  nk), which is on a ratio type of scale, rather than with the rank abundance curve 
(Figure 16.1), which is on an ordinal type of scale.

The information in the species abundance distribution s(ni  nk) is often reduced 
to a single number, a diversity index. The most common index of taxonomic diversity is 
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Table 16.1 Notation for Biodiversity

N  Collection size; number of organisms in single collection unit

Ao  Unit collection area; square area from which N is obtained

To  Unit collection time; period during which collection N is obtained

s  Number of classes (usually, species) into which collection N is sorted

ni  Number of organisms in each class, labeled i  1 to s 

Taxonomic Diversity

s(ni  nk)   Taxonomic diversity distribution; number of classes (usually species) at abundances ranging from low 

(nk  1) to high (nk  Nmax); Nmax is the number of organisms in the most populous class

s(ni  nk)   Cumulative taxonomic diversity distribution; number of classes with nk or fewer organisms

S(ni  nk)   Taxonomic diversity distribution for a community; usually estimated from multiple collections, 

labelled j  1 to jt

Genetic Diversity

q     Genotype frequency; number of classes into which collection N is sorted

q(ni  nk)   Genetic diversity distribution of collection N; number of classes with nk organisms

q(ni  nk)   Cumulative genetic diversity distribution of collection N; number of classes with nk or fewer 

organisms

Q(ni  nk)   Genetic diversity distribution of population; estimated from multiple collections

Habitat Diversity

Ao    Unit area; smallest unit of area within a larger area of interest

Ai    Habitat area; area of each habitat within area ΣAi

h    Habitat diversity; number of habitats in area ΣAi

h(Ai  Ak)   Habitat diversity distribution within area ΣAi; number of unit areas of habitat i within larger  

area ΣAi

h(Ai  Ak)   Cumulative habitat diversity distribution; number of unit areas with Ak or less area

H(Ai  Ak)  Habitat diversity distribution of an ecosystem; estimated from several completely surveyed  

areas ΣAi

the total number of species s (species richness). An example is the number of cichlid fish 
species found in each of six African lakes, as reported by ricklefs and Schluter (1993a):

Procedural Statement Name Symbol Numbers · units

Ricklefs and Schluter 

(1993a, p. 358)

Species  

number

sj  200

136

200

7

9

40

































·  # lake1

In this example the lakes are listed in order from large (lake victoria  69,484 km2) 
to small (lake Edward  2150 km2). Biodiversity indices such as the Shannon Weaver 
or Simpson index (Magurran, 1988) contain more information than just the number of 
species s. yet as with any index, they fall short of describing all the information in the 
species diversity distribution s(ni  nk) for the collection N.
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If we obtain a second collection, again from an area Ao during a period To, we 
expect a somewhat different number of organisms nj  2, a new set of species sj  2 
(many the same as in the first collection), and a new diversity distribution s2(ni  nk). 
With several collections sj(n), labeled j  1 through jt, we have a fuller characterization 
of diversity. We can construct the combined distribution S(ni  nk) across some num-
ber of collections, jt. The total number of species S across the combined collection will 
exceed the number of species sj in any one collection.

If the collections were drawn always by the same procedural statement, they can be 
viewed as samples from a set of all possible collections. The diversity distribution for this 
hypothetical set is S(ni  nk). This is estimated from the observed frequency distribution 
over many collections, provided that the collections are representative. As with any sam-
pling effort, a representative sample is more surely achieved by samples that are random 
and have an equal (or at least known) chance of appearing in the sample than by hap-
hazard sampling. The total number of species S and total number of organisms N are 
computed respectively as S  Σ s(ni  nk) and Ntot  Σ nj. Following May (1975) we 
can compare an observed distribution s(ni  nk) to a mathematical function, allowing us 
to compute species numbers at unobserved values of abundance nk. An impressive num-
ber of methods (Bunge and Fitzpatrick, 1993) have been devised to estimate the number 
of species present on the landscape, from collections sj(ni  nk) taken to be samples.

When making statistical estimates from taxonomic distributions, it often proves 
convenient to use the cumulative distribution s(ni  nk), which is shown in Figure 16.1 
immediately beneath the distribution s(ni  nk). The cumulative distribution rises mono-
tonically from left to right as it records the number of species with nk or fewer organisms 
per species. cumulative distributions are useful in estimating the fit of a distribution to 
a functional expression because they eliminate the presence of zeroes in classes on the 
upper end of the distribution. cumulative distributions are necessary for spatial and tem-
poral scaling, which depends on taking ratios, as described in the following discussion.

Genetic variability within a species can be characterized in the same fashion as 
taxonomic diversity. For a collection of N individualis the usual single locus measure 
is the proportional presence of each type of allele qi  ni/2N. This information can be 
expressed as a rank-abundance distribution of allelic proportions from common (qi large)  
to rare (qi small). For convenience, the information in this distribution is reduced to an 
index such as number of classes (alleles) or expected heterozygosity (He  1  Σqi

2). 
The information in several collections can be expressed as a rank-abundance curve for 
each collection and a rank abundance curve for the combined collection. This informa-
tion can in turn be reduced to an index of population structure, such as Fst, which com-
pares heterozygosity across collections to the heterozygosity of the entire population. 
This approach, applied to genetic diversity at the single-locus level, can be extended to 
coarser classifications, such as recognizable genotypes in a population (Mallet, p. 16, in 
Gaston, 1996). If we are interested in the effects of scale on genetic diversity, the logic 
of working with ratio scale quantities will compel us to reexpress the rank-abundance 
curve as the genetic diversity distribution q(ni  nk), which is on a ratio type of scale. 
This is the frequency of genotypic classes for which there was one individual (nk  1), 
two individuals (nk  2), and so on. This can be converted to a cumulative frequency 
distribution q(ni  nk) to make comparisons.

We can use a diversity distribution to quantify habitat diversity. Instead of clas-
sifying individuals, we classify spatial units. From this we can construct the usual  
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rank-abundance curve, running from the commonest habitat (ni large) to the rarest (ni 
small). The same information can be plotted on a ratio scale as a habitat diversity distri-
bution h(ni  nk).

Biodiversity does not scale in a 1:1 fashion with collection size N, collection area 
A, or collection duration T. We can use any of several scaling maneuvers (Figure 7.1) 
to examine dependence on collection size, area, or duration. We can use rating, as when 
we examine dependence of diversity on area across units that differ in area (Arrhenius, 
1921). We can examine diversity relative to effort, measured as the accumulated number 
of collections, with a “collector’s curve.” Figure 16.2a shows the increase in diatom spe-
cies number with increase in effort (number of slides). collector’s curves can be scaled 
to the increase in area or increase in time as the number of collections increases. We can 
examine diversity as a function of separation, using the lagging maneuver (Figure 7.1). If 
we have a large and fully censused area we can use coarse graining, where we construct 
a diversity distribution from a large area, then take the average diversity distribution for 
each half of the area, each quarter, and so on. Because scaling relations for biodiversity 
are obtained from a variety of scaling maneuvers, care is required in comparing exponents 
and in applying scaling functions. A spatial scaling exponent obtained by one maneuver is 
not freely substitutable for an exponent by another maneuver, even for a single quantity. 
Similarly, a temporal scaling exponent by one maneuver is not necessarily convertible to a 
scaling exponent by another maneuver.

Scaling relations for biodiversity are generally based on incomplete similarity 
(Barenblatt, 1996), which relates some property Q(x) to some measure x according to a 
power law (chapter 6).

 Q x cx( )  α
 (16.3a)

This relation says that when x is rescaled (say, by a factor of 2), the property Q(x) is still 
proportional to x (by a factor of 2, not just by 2). For species number scaled to area, 
we have:

 s A cAz( )   (16.3b)

where z is the traditional symbol for the exponent. In the example of African lakes 
(ricklefs and Schluter, 1993a), how does fish species number scale with area? A rough 
scaling is obtained by applying the principle of homogeneity of scope, which requires 
that all terms in an equation have the same scope. For the cichlid fish, the scope in 
species number is (200 species lake1)/(40 species lake1)  5. The scope for area is 
(69484 km2/2150 km2)  32. An exponent rescales the scope for area to the scope for 
diversity:
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Solving for the exponent, we obtain:

 zcichlids  log( / ) log( / )200 40 69484 2150 0 463/ .  (16.5a)

Based on this rough estimate of the scaling exponent, a doubling in lake area from, say, 
2150 km2 to 4300 km2 is expected to amplify cichlid species number by 20.463  1.4. The 
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Figure 16.2 Species Number, Taxonomic Diversity, and Cumulative Area. Data from Figure 16.1; (a) Relation 
of species number Sj to cumulative area (number of collections of equal area); (b) Relation taxonomic diversity 
distribution S(Ni , Nk) to cumulative area.
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expected amplification is less than the factor of 2 expected from isometric scaling. For 
noncichlid species, the scope in species number is somewhat more than for the highly 
speciose cichlids:

 (  species lake ) (  species lake )1111 17 6 531  / .  (16.6a)

The scope for area remains the same, so the scaling exponent is also somewhat more 
than for cichlids:

 znoncichlids  log( / )/log( / )111 17 69484 2150 0 54.  (16.6b)

These are rough estimates compared to the regression estimates, which use data from all 
six lakes.

Incomplete similarity applies to cumulative frequency distributions (Figures 16.1 
and 16.2) as well as to single indices such as species number. The scaling based on 
incomplete similarity is:

 P[X x] c x  
 (16.7)

where x is again some measure of interest, such as length, area, or time. P[X  x] is 
the proportion of cases with values X less than or equal to x. An example of such a 
proportion is the taxonomic distribution as a proportion s(ni  nk)/N. Figure 16.2b 
shows four scaling relations such as Equation 16.7. When plotted on a log/log scale, 
the cumulative frequency distribution is approximately a straight line, and hence the 
frequency distribution can be summarized by a power law, as in Equation 16.7. For 
a single slide, the exponent of the scaling relation was   0.494 (Figure 16.2b). For 
two slides combined (a doubling of effort and area), the exponent drops to   0.463.  
A further doubling of effort (and area) drops the exponent to   0.4336. The decrease 
falls along a straight line on the log/log plot (note that the intervals on both the X and Y 
axes are logarithmic, not linear).

Power law frequency distributions (Equation 16.7) not only describe taxonomic 
diversity distributions (Figure 16.7b), they also describe a variety of geophysical phe-
nomena, such as earthquakes and flood frequencies (rodriguez-Iturbe and rinaldo, 
1997). It is interesting to note (Figure 16.2b) that the exponent of the power law taxo-
nomic diversity distribution (which characterizes the full frequency distribution) scales 
in a simple way with cumulative effort (1 slide, 2, slides, 4 slides). For comparison, the 
scaling of the total species with cumulative effort is shown in Figure 16.2a.

Phenomena that show incomplete scaling, such as the diversity distributions in 
Figure 16.2, are also examined via renormalization and coarse graining (Barenblatt, 
1996). renormalization has been used to investigate the dynamics of landscapes 
(rodriguez-Iturbe and rinaldo, 1997) and population interaction (levin and Pacala,  
p. 271, in Tilman and Kareiva, 1997). renormalization is an appropriate technique for 
examining the dynamics of biodiversity, which do not proceed by evenly paced transi-
tions but instead jump and lurch by episodes of invasion, local extinction, speciation, 
and anthropogenic extinction.

The idea of incomplete similarity has already started to take its place in conserva-
tion planning. An example is the “single large vs. several small” debate over refuge size, 
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a debate that recognizes that species number does not scale isometrically with area and 
recognizes that rates (such as extinction) are not independent of area. Milne (1997) pro-
vides several examples of incomplete similarity on conservation biology. What is needed 
are incomplete scaling exponents that are both reliable and based on biological theory 
rather than empirical coefficients. one particularly exciting topic, in need of theoretical 
development, is the scaling of taxonomic diversity to habitat diversity. The conceptual 
foundation in biological theory already exists. Species lists increase by invasion or spe-
ciation, for which adaptation to habitat via natural selection is important. Species lists 
shrink by local or global extinction, for which change in habitat is important. There 
is thus the biological basis for quantitative scaling of taxonomic diversity with habitat 
diversity. It is a promising topic for theoretical development. It is a topic where reliable 
computations are needed to address questions of local and planet scale change in biodi-
versity that cannot be ignored.

16.3.2  Theoretical Development of Biodiversity Scaling

The development of scaling relations for biodiversity has been vigorous for taxonomic 
diversity. It has just begun for habitat diversity. For taxonomic diversity, the history of 
theoretical development can be summarized briefly as a sequence of scaling relations. 
The first relation is that species number departs from an isometric scaling with area:

 S A 
 (16.8)

where  ≠ 1 and hence species number scales incompletely with area. nonisometric 
scaling of species number with area is one of the oldest and best-known scaling relations 
in ecology, with a rich history (ricklefs and Schluter, 1993b; rosenzweig, 1995). The 
scaling exponent was recognized to be less than 1 for most situations, but values were 
completely empirical and could not be generalized beyond the data used to estimate 
the coefficient. Preston (1962) proposed that species number scales with collection size 
according to a 1⁄4 power law:

 S N 1 4/
 (16.9)

This relation was discussed in detail by May (1975), who provides a list of models. The 
canonical value (1⁄4) depends on the assumption that the taxonomic diversity distribution 
has a lognormal form.

In general, we expect numbers to scale with area isometrically:

 N A 1
 (16.10a)

 N c A  1
 (16.10b)

where the value of c depends on productivity. This scaling will always hold for coarse 
graining; we can always compute the average numbers in smaller areas from numbers 
in larger areas. This scaling will hold on average for accumulation if we take multiple 
sequences of organism counts from the same area. However, this scaling is often untrue 
for any one sequence of accruals because of patchiness. More often than otherwise, the 
average (like the variance in Figure 10.3d) will repeatedly lurch upward as area is added, 
because dense sites are rare and so more often than not will be sampled later rather than 
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earlier during accrual. Isometric scaling of numbers N with area A (Equation 16.10a) is 
best considered a first approximation for islands or other isolated units.

combining Equations 16.9 and 16.10, we obtain scaling of species number with 
area according to a 1⁄4 power law:

 S N A 1 4 1 4/ /
 (16.11)

Preston’s canonical theory (Preston, 1962) and MacArthur and Wilson’s theory for iso-
lated communities (MacArthur and Wilson, 1967) attribute the scaling to equilibrium 
conditions (May, 1975), but it is now known that scaling laws such as Equation 16.11 
can arise in nonequilibrium conditions (Barenblatt, 1996). If the scaling exponent in 
Equation 16.9 depends on ecosystem productivity, we can expect deviation from the 
scaling in Equation 16.11 (Hubbell, 2001; Storch et al., 2005).

rosenzweig (1995) describes several well-established patterns in the value of the 
scaling exponent in Equation 16.8, depending on degree of isolation. Biogeographic 
provinces, isolated at evolutionary time scales (rosenzweig, 1995), have scaling expo-
nents that exceed blocks within a province:

 
 province block 

 (16.12)

Estimates of province fall closer to unity (rosenzweig, 1995) than to typical values for 
block. The scaling exponent is steeper for islands (0.25 , island , 0.33) than for iso-
lated blocks of land on continents (0.13 , block , 0.18):

  island block   (16.13)

rescue effects, where small populations are maintained by frequent migration from  
surrounding areas on continents, readily explain the shallow scaling for continental 
communities (rosenzweig, 1995). Milne (1997) describes a correction factor to account 
for scaling effects in comparing area of Euclidean blocks to area of islands with fractal 
shapes.

Finally, we expect taxonomic diversity to be a function of habitat diversity:

 S A A f H A Ai k i k( ) ( (  ))    (16.14)

Substantial qualitative support exists as correlations of species richness with several hab-
itat variables (Williamson, 1988; Wright et al., p. 73, in ricklefs and Schluter, 1993b; 
rosenzweig, 1995; Gaston, 1996), including fractal measures of habitat complexity 
(Milne, 1997). An analytic review, similar to that of May (1975), is needed to integrate 
the taxonomic diversity literature with the literature on the structure and dynamics of 
landscapes (rodriguez-Iturbe and rinaldo, 1997).

16.4 Spatial and Temporal Scaling
Power laws that scale a quantity with body size often arise from theory. In contrast, 
power laws for spatial and temporal scaling (Figure 2.5) often do not meet Hempel’s 
(1964) criterion—that a theory must state the conditions leading to a result that can be 
tested against data. one theory that does meet Hempel’s criterion is that power laws arise 
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from local interactions in disorganized physical systems when they near some critical 
state (Widom, 1965; Wilson, 1971). Power laws are thus expected in systems that are 
repeatedly forced away from equilibrium conditions (Barenblatt and Sivashinsky, 1969; 
Barenblatt, 1996) or that lurch rather than move smoothly toward some equilibrium (Bak 
et al., 1988). This theory, called universal scaling or complexity theory, applies to animate 
as well as inanimate systems (Barenblatt and Monin, 1983; Stanley et al., 1996; Milne, 
1998). Spatially heterogeneous systems that tend to diverge from equilibrium toward a 
critical state are called self-organizing (Bak et al., 1988). An ecological example of self-
organized criticality is the appearance of power law distribution of gaps in the rainforest 
at Barro colorado Island in Panama (Sole and Manrubia, 1995). Trees eventually col-
lapse when their size exceeds their mechanical strength; the gaps created by the collapse 
of a large tree extend to larger areas because vines bind trees to one another. The result is 
canopy collapse that propagates to scales larger that individual trees and a power law dis-
tribution in gap size. In population biology, levin (2000) summarized examples of large-
scale patterns emerging from locally coupled interactions, as in the spread of disease. In 
geomorphology, rodriguez-Iturbe and rinaldo (1997) summarize power law character-
izations of landscape structure results from episodic erosion by rivers and streams. Power 
law (fractal) scalings in landscape data (Burrough, 1981) emerge when erosive dynamics 
exhibit self-organized criticality (rodriguez-Iturbe and rinaldo, 1997).

When and where can we expect power laws emerge? In general, warring exponen-
tial rates result in power laws when loss and production occur at different time scales. 
This can occur as sudden production and slow loss or as slow production and sudden 
loss. An example is when loss acts on production at a lag rather than simultaneously. An 
exponential production rate r acting on an initial quantity Q0 yields an increase relative 
to Q0 of:
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An exponential loss rate of z acting on Q0 yields a decrease of:
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If loss acts with no lag on current stock of the quantity Q, then Q0 in Equation 16.15 is 
the same as Q0 in Equation 16.16, and hence:

 Q Q e tr z
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However, if loss acts on production at some time lag, then Q0 in Equation 16.15 is not 
the same as Q0 in Equation 16.16. For discrete time intervals:
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A large number of familiar problems in ecology are susceptible to the development 
of theoretical scaling relations using the classical methods described in chapter 6 and 
Section 13.8. However, many phenomena in ecology are due to episodically warring 
rates, which give rise to power laws that are not susceptible to analysis and develop-
ment of theoretical scaling relations via classical methods (Barenblatt, 1996). An exam-
ple is the number of species in isolated systems (islands, lakes). Island biogeography 
(MacArthur and Wilson, 1967) offered an equilibrium theory of loss versus colonization 
in isolated ecosystems. However, the scaling exponents in MacArthur and Wilson (1967) 
may be due to nonequilibrium dynamics whereby loss due to extinction acts episodically 
on species that accumulate via colonization events or evolutionary change. The dynam-
ics of complexity offer a more inclusive theory of island biogeography, whereby either 
equilibrium or complex behavior pertains, depending on whether or not losses act on 
gains with a lag.

Another potential example is metapopulation analysis (levins, 1969), which 
focuses on the critical point at which recolonization offsets the probability of local 
extinction. If recolonization and extinction act at the same time scales, an equilibrium 
theory suffices. If extinction occurs suddenly relative to recolonization (or vice versa), 
then complexity offers an inclusive theory of the emergence of power law behavior at 
the scale of semi-isolated patches of habitat.

landscape ecology focuses on ecological processes against a background of spa-
tial structure such as ecotones (Gardner et al., 2001). The power law (fractal) structure 
of ecotones suggests that episodically warring rates are at work. Milne (1997) gives an 
example of an ecotone maintained by gopher versus rabbit interaction. In general, one 
can expect to find antagonistic rates acting episodically whenever a self-similar power 
law (such as a fractal) describes habitat structure.

At evolutionary time scales, changes in species number can be analyzed as the out-
come of sudden extinction acting on slower speciation (Jablonski, 1989; Bak, 1996). 
Power law behavior is expected in the record of species number through time.

complexity and power law behavior generated by the interaction of fast with slow 
processes bring together many of the scaling concepts that emerged in ecology in the late 
20th century. distinguishable concepts identified in chapter 2 were dependence of pat-
tern on scale of analysis; the absence of any single “characteristic” scale of phenomena; 
the use of fractal geometry to quantify environmental features; the response of organisms 
to environmental change at multiple time scales; the interaction of larger scale with local 
processes to maintain diversity; the propagation of large-scale events to smaller scales 
through dissipation of energy by fluid processes in the earth’s mantle, in the sea, and in 
the atmosphere; and the extraction of kinetic energy from large-scale fluid motions by 
mobile organisms to generate local spatial and temporal variability. Multiscale analysis, 
including fractal concepts, is needed to characterize phenomena that are smeared across a 
range of scales by the interaction of fast with slow processes. The interaction of fast with 
slow rates often plays out as the interaction of local with larger-scale processes.

Scaling has become a central concept in ecology (levin, 1992; Wiens, 1999). could 
it become a theoretically unifying concept? The history of power laws in ecology (partic-
ularly in body-size scaling) shows that classical scaling methods can go a long way. But 
the history of power laws in ecology also suggests that scaling based on nonequilibrium 
dynamics will be needed in order for scaling to become a theoretically unifying con-
cept. Power laws are expected to emerge from antagonistic rates when the history of a  
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system matters, and exponential losses or production occur episodically. These cross-
scale dynamics (levandowsky and White, 1977; Holling, 1992; carpenter and Turner, 
2000) and their resulting power laws (Bak et al., 1988; Barenblatt, 1996; Stanley et al., 
1996; Milne, 1998; Schneider, 2001b) have the potential to bring theoretical unity to 
ecology.

Defined Concepts and Terms for Review and  
Future Reference

____ allometry    ____ diversity index
____ biodiversity   ____ incomplete similarity
____ biodiversity distribution    ____ rank-abundance curve
____ complexity theory (universal scaling)   ____  taxonomic frequency distribution
____ cross scale dynamics 
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267–268, 268–269, 269f
Empirical scaling functions, 294–297, 301
Engineering research and scale, 11
Ensemble quantities see Variabilities, ensemble 

quantities; Weighted sums, ensemble 
quantities

Entities, 57–58, 67–70, 90–93, 91t, 92t
Epsilon () diversity, 25–26
Equality symbols, 285, 285t
Equations

calculations and, 282–284, 283t
defined, 13
dimensional analysis of conservation laws 

and, 298–301
dimensional homogeneity and, 279–282, 

280t
empirical and theoretical scaling functions 

for, 294–297, 297f
expression of, 275–276, 275f, 276f
for GLMs, 322–325, 322t, 325f
quantitative reasoning and, 293, 301–302, 

308
reading, 277–279
scope of, 218–219

synopsis of, 273
uses of, 274–275
see also Equations, derivative; Equations, 

writing
Equations, derivative

quantitative reasoning with the chain rule 
and, 308, 313–314

rules for, 303–305, 304t
scaling operators and, 313–314, 311–317, 

312t, 313t
spatial gradients from the density function 

and, 305, 306–307
synopsis of, 303
variance functions with the delta method 

and, 309–311, 309t
Equations, writing

combining, 293–294
general procedures for, 291–293, 291t
notation for, 284–288, 285t, 292
parsimony and, 288–289
sequential caricatures and, 283, 289–290
synopsis of, 284–294

Error components, 4, 7–8
Errors, heterogeneous, 359, 359–360
Errors, Type I/II, 65, 337, 339t
Euclidean scaling, 33, 34
Eulerian data, 127
Evolution, 148
Exhaustive surveys, 233
Expansion factors (EF), 228, 232, 241, 242f, 

246
Expected values, 322
Experimental lakes area, Ontario, 340–346, 

341f, 342, 343f, 344, 345, 346t, 353, 
357–358

Experiments, scope of
defined, 248–258
embedded experiments and, 257–258,  

258t
Fisherian experiments and, 251–254, 255, 

254–256
inference levels and, 260, 261–262, 

259–263
instruments and, 214–215, 214f
of integrated research programs, 265–270, 

266f, 268f, 269f
measurements and, 212, 212f
parameter estimates and, 248–251, 249f, 

266f, 268f, 269f
research program, 229f, 231, 233
ST diagrams of, 18f, 20f
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Experiments, scope of (Continued)
of surveys, 234
synopsis of, 222f, 221–224

Explanatory variables, 319, 320–321, 322, 
322t, 324, 334, 336–337, 340, 341, 342, 
344–345, 346, 346t, 350–351, 353–354, 
357–358, 358t, 359

Exploratory analysis, 177
Extents, 219, 21–22, 32, 122, 124–125, 136, 

182, 200, 212, 215, 219–223, 226–228, 
233–235, 249–253, 264–270

Extinction equation, time to, 280, 281

F
F-distributions, 328, 329, 330, 346
Fish catch model, 18f, 19, 114, 115, 294–297, 

349, 347–350
Fisherian experiments, 9, 251–254, 255, 

254–256
Fixed genes, 148
Fluid systems, spatial variance in, 195
Flux rates, 147
Fluxes, 141t, 146–149, 299

see also divergences
Food consumption, 282–284, 293, 294
Formal expressions of concepts, 275–276, 

275f
Formal models, 4–5, 4f
Fortran, 62
Fourier, Joseph, 87, 100
Fractal dimensions, 33, 34,363
Fractal exponents, 80, 82, 79–84
Fractal fluxes, 149
Fractal geometry, 28–29, 356, 363, 372–374
Fractal scaling, 33, 34, 373
Frame-based surveys, 235–236, 234–236
Frames, 181, 234, 237, 240
F-ratios, 327–328, 331, 333t, 346
Frequency distributions, 192, 364–365
Functional expectations, 133
Functional expressions, 147, 148, 150, 141t
Functional notation, 285, 286
Functions, 140–141, 141t

G
Gadus morhua (cod), 18f, 19, 249, 249f, 250, 

322t
Galileo, 10–11, 56
Gamma () diversity, 25–26
Gene frequencies, 148–149

Gene migrations, 148
General linear models (GLM)

data equations for, 323, 324, 325f,  
322–325, 322t, 322t

estimates of scaling parameters via 
measurement scope and, 354–357, 
356–357, 356t

goodness of fit and hypothesis testing for, 
328, 329, 331, 327–332

interpreting models and their parameters 
for, 326

model-based statistical analysis and, 
320–321, 321f

reduced major axis estimates of scaling 
parameters and, 351, 353, 352f, 350–354

scaling and uncertainty via the, 357–360, 
358t

synopsis of, 319–320
see also General linear models (GLM), 

generic recipe for
General linear models (GLM), generic recipe for

comparing regression lines (ANCOVA) and, 
341f, 343f, 340–346, 346t

compound scaling with multiple regression 
and, 347–350, 350t

linearized power laws and, 336, 338, 335f, 
334–339, 333t, 339t

synopsis of, 332–346
Genes, lateral flux of, 148–149
Genetic diversity, 366
Genetic variability, 367
Geographic attributes see Spatial attributes
Geometric similarities, 362, 363
Geophysical fluid dynamics, 10t, 11–12, 

27–28, 29–30
Goodness of fit measures, 327–332
Governing equations method, 300, 301
Gradients, 90

see also Spatial gradients
Grain, 219
Graphical expressions of concepts, 275f, 276f, 

278, 275–276
Graphical models, 4f, 4–5
Graphs, scaled quantities, 51f, 52f, 51–52
Green variances, 199, 195–200
Greig-Smith plots (pattern analysis), 182
Grids, 127
G-statistic G(Ql), 179–180, 327–332
Gypsy moth (Lymantria dispar)example, 

132–133, 133–134, 135
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H
Habitat diversity, 366, 367–368, 370–371, 

372
Habitat loss, 17
Habitat quantification, 9
Haeckel, Ernest, 17
Heliothis armigera (corn earworm) example, 

142, 142–143, 143–146
Heterogeneous errors, 359, 359–360
Hibernia monitoring program, 241, 247–248, 

240–244
Hierarchical structured surveys, 245–246, 

247–248, 244–246
Homogeneity of scope, 218–219
Horton-Strahler accounting, 215–216
HS index, 216
Hubbard Brook watershed study, 259–260
Hue, 197, 198, 195–200
Hypothesis testing, 337, 338–339, 327–332, 

339t

I
Icelandic scallops (Chlamys islandica), 

235–236, 241–243, 247–248, 234–236, 
237–239

In situ rates, 148, 298–299
Incomplete similarity, 119, 368, 369–370, 

370–371
Indices (i), 164, 170, 164t
Indices (i)

spatial attributes recorded by, 124, 125
temporal attributes recorded by, 123–124

Index
Indices, diversity, 365–366, 367
Indices, HS, 216
Indices, MEI, 347, 348, 349–350
Indices, Morista’s, 191, 192

Inferences, 261–262, 233, 259–263
Instantaneous rates of change, 143–144, 145, 

146, 148
Instruments, scope of, 213–215, 214f, 234, 237
Integrals see Equations, derivative
Integrated research programs, scope of, 266f, 

268f, 269f, 265–270
Interaction rates of entities, 92t
Interaction terms, 341
International System of Units (SI) see SI 

System (International System of Units)
Interval scale measurements, 49, 50, 212, 213, 

213t

Inventory diversity, 25–26
Isometric scaling, 32, 33, 371–372
Iterative counting relations, 81, 82, 82–83, 95
Iterative measurement relations, 34, 37, 38t, 

82, 216
Iterative protocols, 215–216, 217
Iterative scaling relations

accumulation, 128–129, 129f, 189f, 182, 
215, 232, 233, 315, 312, 314

coarse graining, 127t, 129, 136, 182, 189f, 
215, 216, 237, 238, 312

dimensions and, 97, 98
lagging, 129f, 136, 189f, 182, 215, 312
operators for, 314, 315
power laws and, 37
rating, 129f, 136, 137, 315, 312, 314

Ivlev’s equation, 281

J
Juxtaposition, 163, 169

L
Lagging, 129f, 136, 189f, 182, 215, 312
LaGrangian data, 127
Lateral flux gradients, 155
Lateral flux of genes, 148–149
Latin square, 252
Leibniz, 139–140
Lengths [L], 87–88, 88–89, 88t
Linear models, 7
Linear scaling vs. power law scaling, 39–40, 

39t
Linearized power laws, 336, 338, 335f, 

334–339, 333t, 339t
Logarithmic scales, 51–52, 52f, 179, 221–224
Logarithms

computational rules applied to, 70
variability, 198, 199

Logical rescaling, 63, 64–65, 64t
Lotka-Volterra equation, 280
Lymantria dispar (gypsy moths) example, 

132–133, 133–134, 135

M
Mallotus villosus (capelin), 189f, 203f, 204f, 

202–203, 188–195
Manukau invertebrate studies, 18f, 20f, 

19–20, 266f, 268f, 257–258, 265–270, 
258t

Mark-recapture study, 249f, 250



410 INdEx
Mass [M], 88–89, 88t
Mass gradients, 90
MathCad, 15, 62, 131–132
Mathematica, 15
MatLab, 15
Matrix of contrasts, 139, 160–161
Maximum outer scale, 219
Mean crowding, 176, 191, 192, 206, 308
Mean square variance among groups, 183t
Mean sum of products, 201, 201t
Mean values, 7, 7f, 171–172
Measurement error, 4
Measurement scales, 49–51, 93–98, 125–126
Measurement theory, 12
MEI (morphoedaphic index), 347, 348, 

349–350
Menge invertebrate study, 257
Metabolic rate calculations, 292, 293
Metabolic rate scales, 362–363
Method of governing equations, 112, 112t
Method of similitude, 112–113, 112t
Migrations, bird, 222f, 222–223
Migrations, gene, 148
Minimum inner scale, 219
Mississippi River, 216
Mnemonic symbols, 284
Model-based statistics, 320–321, 321f
Models, 4–5

see also General linear models (GLM)
Mojave desert shrubs study, 254–256, 260
Moles, SI unit, 57, 89, 90, 91
Monitoring programs, 241, 242f, 240–244
Morista’s index, 191, 192
Morphoedaphic index (MEI), 347, 348, 

349–350
Multiple causation, 3
Multiscale analysis see Analysis, multiscale
Multiscale comparisons, 160, 181, 199
Murres, 188–195, 189f, 202–203, 203f, 204f

N
Names, of a quantity, 46–48
Natural phenomena, scale of, 21, 27–28, 

31–32, 37, 38t, 220
Natural phenomena, scope of, 219–221
Negative divergence, 154
New Zealand Institute of Water and 

Atmospheric Research (NIWA), 265–270
Newton, 47, 75, 139–140
Nitrogen dynamics of a coral reef, 112–113, 

113–114

Nominal scale measurements
defined, 49, 50, 51
deviations on, 177
geographic attributes on, 125–126
scope of, 213, 213t

Nominal scale quantities, 172
Nonintegral units See Fractals
Nonisometric scaling, 371
Noniterative measurement relations, 35, 37, 

38t, 136
Noniterative measurements, 34, 35, 73, 77, 

217
Noniterative scaling, 35
Noniterative scaling relations

based on scope alterations, 136
dimensional analysis applied to, 100
dimensions and, 94, 95, 97, 98
operators for, 311–312, 314, 315
power laws and, 34, 35

Nonratio scale summation, 172–173
Nonrecurring variables, 105t
Normal distributions, 330
Normal scores, 71
Normalization, 63, 70–71
Notations

based on measurement and functional 
expressions, 141t

curl, 158, 159
for divergence/convergence of directed 

quantities, 154–157
for equations, 284–288, 285t, 292
flux, 147, 148
hue of spatial variability, 197, 198,  

195–200
mean value, 171–172
spatial gradient, 150
for spatial/temporal attributes, 132–136
synopsis of, 130–136
weighted sums, 164, 164t

Null models Ho, 322–323, 324, 337,  
338–339, 339t

O
Odds, 7
Operational definition of a dimension, 93–94
Operators, 311–317, 312t, 313t
Ordinal scale measurements, 49, 50, 213,  

213t
see also Rank scale measurements

Ordination, 65
Otters, 105t, 106–110
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P
 ratios, 100–101, 102–106
Pacific Coast, Panama prey depletion study, 

260–261, 261–262, 262–263
Panning, 160, 303, 312
Panning operators, 313–314
Parameters, 218–219, 248–251

see also General linear models (GLM)
Parametric quantities, 277
Parsimony, 288–289
Partitions of scope, 232–233
Patch size of phytoplankton, 110–111
Patchiness, 157, 190, 191–194, 308
Pattern analysis, 183t, 192–193
Pattern diversity, 25–26, 27
Patterns, scale dependent, 17, 22, 27
Per capita gradient, 152
Per capita quantities, 92t
Per capita rates of change, 143–144, 145, 146
Percent production, 286, 287
Percentages, 71
Periodograms, 182, 184f, 186, 187f, 189f, 

190–191, 194
Physical dimensions, 87–90, 88t
Physiology, 11
Phytoplankton, 110–111
Pink variabilities, 196–197, 199–200
Plymouth invertebrate prey study, 244–246, 

245–246, 246–248
Point diversity, 25–26
Polar grids, 127
Pope, John, 47
Population densities, 194, 308
Population sizes, crude rate of change in, 

142–143
Populations, 90–93, 91t, 92t
Potential contacts, 204–207, 207t
Power laws

based on iterative measurement, 82
based on scaling of one quantity to  

another, 97
body-size scaling theory and, 362–363
GLM and, 334–339, 335f
relating spectral density to frequency, 186, 

189f, 190–191
scope and, 32–40, 38f, 39t, 372–375
spatial/temporal scaling and, 372–375
synopsis of, 361–362
see also Biodiversity scaling

Predator exclosure study, 260–261, 261–262, 
262–263

Primary quantity, 284
Principle of similitude, 10–13, 11f, 34
Principles of good notation, 130–131, 131t
Procedural statements, 48–49, 51f
Process errors, 4
Processes, scale dependent, 17, 22, 27–28
Products (), 104
Propagation effects, 29–30, 30–31
P-values of variance ratios, 328, 329, 330, 

331, 339, 346
See also, F-distributions

Q
Quantitative ecology, 13–14, 303–304
Quantitative grammar, 284
Quantitative models, 4–5, 6f, 13–14
Quantitative reasoning

chain rule and, 308, 313–314
equations and, 293, 301–302, 308
expressions of, 5, 6f
need for, 3–5, 4f
quantitative ecology and, 13–14
scaled quantities and, 8–10, 10t
statistical analysis and, 7f, 7–8, 8t
tools for, 14–15
using principle of similitude, 10–13, 11f

Quantities
defined, 45–46
geographic attributes in one dimension, 

124–127
graphing scaled, 51f, 52f, 51–52
names and symbols for, 46–48
notation, 130–136
procedural statements for, 48–49, 51f
quantitative reasoning and, 8–10, 10t
scope of, 215–218
synopsis of, 45
temporal attributes of, 122–124
types of measurement scales for, 49–51
weighted sums of scaled, 167–170, 168t, 

170t see also Rescaling quantities

R
RMA (reduced major axis) estimates of scaling 

parameters, 350–354, 352f
Randomization, 359–360

see also Fisherian experiments
Randomization tests, 331, 339
Randomized p-value, 331
Rank scale measurements, 65, 177

see also Ordinal scale measurements
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Rank scale quantities, 172, 173
Rank-abundance curves, 364–365, 365f,  

367
Rating, 129f, 312, 314, 315, 136, 137
Ratio scale measurements, 49, 212, 213, 213t, 

223, 365f, 364–365
Ratio scale units, 53–55, 58–62, 59b, 61t
Rayleigh’s method, 104, 105, 295–296
Reconnaissance studies, 227, 228, 232
Recurring variables, 105t
Recursive procedures, 48–49
Red variances, 195–200
Reduced major axis (RMA) estimates of 

scaling parameters, 350–354, 352f
Reference quantities, 70
Regressions, 137, 294–297, 324, 325f, 

320–321
see also General linear models (GLM), 

generic recipe for
Relevés, 227–228, 229f, 229–230, 231, 232, 

233
Renormalization, 370
Rescaling quantities

algebraic operations on, 65–66
applications, 67–70, 67t
elastic, 63, 76–78, 77t
fractal exponents and elastic, 80, 82,  

79–84
logical, 63, 64–65, 64t
rigid, 63, 72–76, 73t, 74
synopsis of, 63–64
via normalization, 63, 70–71

Research models, 133–134
Residual variations, 133, 325f, 329, 330
Response variables, 319, 320–321, 322, 324, 

326, 330, 332–333, 334–335, 341, 342, 
336–337, 358t, 359

Rigid rescaling, 63, 72–76, 73t
Rigid scaling factors, 75
Rotary motions see Curls
Rubber band measurements, 79

S
Sampling efforts, 230
Sampling fractions, 232
Sampling surveys, 233
Sandpipers, 222f, 222–223
Scalar fields, 134
Scalar quantities, 128
Scale

defined, 20–22

in experimental ecology, 256, 257, 258t
problems of, 18f, 20f, 17–22
scope, power laws, and, 32–40, 38f, 39t

Scale, concept of
chronology of, 23f, 23, 24, 24t, 25–26, 

26–27
graphical expressions for, 31f, 31–32
themes for, 27–31

Scale arguments, 10–13
Scale of measured variables, 21–22
Scale-dependent variabilities, 182, 183t
Scale-ups, 181, 229f, 242f, 241, 232–233, 

246–248
Scaling as a mathematical operation, 59
Scaling functions

derivatives and, 314, 315
empirical and theoretical, 294–297
model-based statistical analysis and, 

320–321
power laws and, 32–40
uses of, 111
see also dimensional analysis; General 

linear models (GLM)
Scaling maneuvers, 312, 312t, 313t
Scaling operators, 311–317, 312t, 313t
Scaling theories

body-size, 362–363
spatial/temporal scaling and, 372–375
synopsis of, 361–362
see also Biodiversity scaling

Scaling up by summation, 170
Scallops see Icelandic scallops (Chlamys 

islandica)
Scanning, 199
Scope

alteration of, 136, 137
calculations, 234, 241
diagrams, 18f, 20f, 221–224
of equations, 218–219
of instruments, 213–215, 214f
of natural phenomena, 219–221
of parameters and equations, 218–219
power laws and, 32–40
of quantities, 215–218
rescaling and, 63, 70
of single measurements, 212f, 212–213, 

213t
synopsis of, 211

Scope of research programs
computational models and, 264, 265f
integration and, 266f, 268f, 269f, 265–270
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measurement sets and, 228, 231, 229f, 
226–230

monitoring and, 241, 242f, 240–244
partitions and, 232–233
synopsis of, 225–226
see also Experiments, scope of; Surveys

Self-organization, 372–373
Self-similarity, 34
Semivariances k(Q), 182, 183t, 189f, 190
Semivariograms, 182, 193
Sequential caricatures, 283, 289–290
Sequential elimination, 100–101, 111, 103
Sequential measurements

contrasts in, 160–161
curls and, 158–160
divergences and, 153–154, 153–158
fluxes and, 146–149, 148–149
spatial gradients and, 149–153
synopsis of, 139
time rate of change as a percentage and, 

144, 145, 143–146
time rates of change and, 139–143, 

142–143, 141t
Shearing motion of curls, 159
SI base units, 55t, 57
SI System (International System of Units), 55t, 

88, 90t
Similarity groups, 87–88, 91–92, 92t, 

116–117, 119
see also dimensions

Simple random surveys, 228, 235–236, 
234–236, 247

Simple rescaling, 70–71
Simple rotary motion of curls, 159
Simplification, 116–117
Software packages, 328, 330–331
Space-time (ST) diagrams

research program, 229f, 230
scale concepts and, 20f, 31f, 31–32
scope of, 32, 216f, 221–222, 224

Spatial analysis, 313t
Spatial attributes

explicit studies and, 126–127, 127t
notation for, 130–136, 132–136, 131t, 133t
in one dimension, 124–127
scope of, 226, 234
in two and three dimensions, 127–129, 129f

Spatial averages, 171
Spatial derivatives d/dx, 305, 306–307
Spatial gradients, 149–153, 199, 305, 

306–307

Spatial resolution, 124, 126
Spatial scale

biodiversity scaling and, 364
chronology of, 23, 25
conservation laws and, 298, 299
defined, 21–22
for equations, 278, 279
isometric, 34
maneuvers for, 129f, 312, 313t
operators for, 313t
power laws and, 372–375
research programs and, 228, 247
scope alteration of, 136–137
spatial variability as function of, 194–195
themes for, 27, 30

Spatial scale-ups, 229f, 232–233
Spatial scopes

of geographic attributes, 124
of measurement sets, 226–230, 229f, 231
of monitoring programs, 240–244, 242f
for surveys, 233–248
see also Experiments, scope of

Spatial support, 226
See also Spatial attributes

Spatial variability
measures of, 188–195, 180t, 183t, 189f
patchiness and, 29, 190, 191–194
production and erosion of, 194–195
see also Variabilities, ensemble quantities

Species-area relations, 93–98
Spectral analysis, 186, 193
Spectral densities, 182, 186, 183t
Spreadsheets, 14–15, 359
Square grids, 127
ST diagrams see Space-time (ST) diagrams
Standard deviations, 180t, 181
Standard multiple units, 57t
Standard units, 55, 55t, 56t
Statistical practice, 7f, 7–8, 8t,  65, 301, 348, 

349
Statistical expectations, 133–134
Statistical inferences, 233, 261–262,  

259–263
Stratified random surveys, 237, 245–246
Stretching units, elastic rescaling, 78,  

79–84
Structural models, 7–8, 322, 324, 325, 

334–335, 336–337
Subscripts, 122, 123, 124, 125
Sum of products, 201t
Sum of squares SS(Q), 178, 179–180
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Sums, weighted see Weighted sums, ensemble 
quantities

Sums of squared deviations, 178, 180–181, 
328, 327–332

Sums of squared deviations SS(Q), 327–328, 
329, 346

Superposable, 167, 168
Superposition, 163, 169
Supplementary units, 55t
Surveys

comparison of, 239, 237–239
embedded experiments in, 257–258
geographic attributes on, 125–126
integrated research programs and,  

265–270
monitoring programs and, 242f, 241–243, 

240–244
scale-up in, 246–248
scope synopsis for, 233–248
temporal attributes of, 122
types of, 235–236, 245–246, 234–236, 237, 

244–246
Symbols, for quantities, 13, 46–48, 61–62

see also Notations

T
Taxonomic diversity, 366, 370–371,  

371–372
Taxonomic frequency distributions, 364–365, 

371
Taylor’s power law, 192
Temporal analysis, 312t
Temporal attributes, 122–124, 130–136, 

132–136, 131t, 133t, 226
Temporal averages, 171
Temporal effort, 230
Temporal scale

chronology of, 23
defined, 21, 22
for equations, 278, 279
maneuvers for, 129f, 312, 312t
of monitoring programs, 240
operators for, 313–314, 312t
power laws and, 372–375
for research programs, 247–248
scope alteration of, 136–137
themes for, 27, 30

Temporal scale-ups, 229f, 232–233
Temporal scopes

of measurement sets, 228, 231, 229f, 
226–230

of monitoring programs, 241, 242f, 240–244
for surveys, 233–248
see also Experiments, scope of

Temporal support, 226
Temporal variabilities, 184f, 185, 187f, 

183–188
Tensor notation, 148

See also Temporal attributes
Terms of equations, 277
Theoretical scaling functions, 296, 297f, 

294–297
Thompson, d.W., 10–11, 362
Time [T], 68, 83, 67–70, 87–88, 88–89, 88t
Time rates of change, 47, 139–143, 142–143, 

141t
Time rates of change as percentages, 144, 145, 

146, 143–146
Time scales, 29, 122–124
Time series, 184f, 187f, 186–188
Tools, quantitative ecology, 14–15
Total deviations, 178, 177–180
Translation among expressions, 14
Type I errors, 65, 337, 339t
Type II errors, 65, 337, 339t
Typefaces, 285–286
Types of measurement scale, 21

U
Unconventional units, 56–58, 57t
Unit vectors (i), 128, 150–151
Units of measurement

comparison among journals, 9–10, 10t
computational rules applied to, 66, 68, 

67–70
of monitoring programs, 240
ratio scale, 53–55, 58–62, 59b, 61t
standard, 55, 55t, 56t
of surveys, 234, 237
synopsis of, 53, 234
unconventional, 56–58, 57t
using, 8–10
see also Entities

Universal scaling, 362, 372–373
Unweighted summation, 166

V
Variabilities, ensemble quantities

as deviations, 176, 178, 177–180
hue and, 197, 198, 195–200
measures of, 203f, 204f, 180–182,  

200–207, 205, 180t, 201t, 207t
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scale-dependent, 182, 183t
synopsis of, 175–176
temporal, 185, 184f, 187f, 183–188
see also Spatial variabilities, Temporal 

variabilities
Variable quantities, 49, 277
Variance functions, 310, 311, 309–311,  

309t
Variance MSA(Q), 182, 183t
Variance ratios, 327–328, 331, 346
Variances var (Q), 178, 180–181, 180t
Vector notation, 147, 148

dot product, 154, 158
cross product, 158

Vector quantities, 127–129
Vectors, 46, 49, 124, 125, 127–129

see also Fluxes; Spatial gradients
Verbal expressions of concepts, 275f, 275–276
Verbal models, 4f, 4–5

W
Weighted deviances, 177, 178, 200–207
Weighted sums, ensemble quantities

mean values and, 171–172
on nonratio scales, 172–173
notation for, 164, 164t
of numbers, 165–166, 165t
of scaled quantities, 167–170, 168t,  

170t
synopsis of, 163

White variabilities, 196, 199
Willets (Catoptrophorus semipalmatus), 123, 

123–124, 125, 179
Wireworm example, 252, 253–254

Z
Zoom operators, 303, 313b, 313–314, 316
Zooming, 160, 181, 199 
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