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Foreword

Fast changing global market has unleashed tremendous activities world over to
accelerate the pace of economic growth. In the process, majority try to sell their
food products without assessing their quality and safety aspects on daily basis. Food
adulterations nowadays are rampant to have quick economic gain, ignoring health
hazards. They are in fact partly successful in their business of selling low quality
foods because of lack of technologies, which can assess the food quality and safety
aspect quickly and on the spot of purchase. Consumers are therefore now more con-
scious for quality and safety of their food they buy, but they cannot do much because
presently foods are mostly tested in laboratory, and by the time report comes inter-
est of consumer goes down, some epidemic due to food poisoning already had have
taken place and the regulatory authorities are not able to do much to stop the miss-
happenings. Numerous research works on nondestructive and quick testing of food
quality using near infrared spectroscopy, Fourier transform infrared spectroscopy,
colour and visual spectroscopy, electronic nose and tongue, computer vision (image
analysis), ultrasound, X-ray, CT and magnetic resonance imaging are thus being
carried out worldwide.

All these technologies are different and are being applied for nondestructive
evaluation of different quality attributes of food materials on-site. Many books are
therefore published on each of the above topic and researchers may not be able
to afford to buy and carry them all the time. I am happy to see that the book on
“Nondestructive Evaluation of Food Quality: Theory and Practice” includes one
chapter on each of above topic covering all aspects of theory/basics in brief, practi-
cal applications (sampling, experimentation, data analysis) for evaluation of quality
attributes of food and some recent works reported in literature by the renowned
scientists/professors from USA, South Korea and India. I hope the purpose of this
book to guide the researchers at one platform to use any technology before and dur-
ing experimentation, data analysis and reporting will be fulfilled to all in general
and the new researchers coming in particular.

I warmly congratulate the editor of the book who himself is a pioneer in non-
destructive methods of quality evaluation of food in India; and authors of different
chapters who are well known in their own field for bringing such book on right time
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through a right publisher M/S Springer Verlag, Germany. I hope the book will be
publicized and distributed fast to harness the benefit of hard work of editors and
authors and R & D work will be accelerated in these areas. I wish them all success
in their endeavour.

Indian Council of Agricultural Research M.M. Pandey
New Delhi, India



Preface

Food quality and safety are of paramount importance for consumers, retailers as
well as regulators engaged in enacting food laws. Mostly quality and safety param-
eters are checked using the traditional laboratory (wet-chemistry) methods, which
are time consuming, laborious and leaving samples after test unfit for consumptions.
Nondestructive methods, which are fast, accurate and keeping samples intact, nowa-
days are being increasingly tried for various kinds of food. Numerous articles and
research papers are being published every year that deal with the applications of
various rapid and nondestructive methods of food testing. These methods are: near
infrared spectroscopy, colour and visual spectroscopy, electronic nose and tongue,
computer vision (image analysis), ultrasound technology, radiography, computer
tomography and magnetic resonance imaging. All these technologies are theoret-
ically different and only a few books dealing separately with some of them are
available. None of them presents all these topics at one place. This book fills the
void, including one chapter on each of the above topic covering theory/basics in
brief, practical applications for evaluation of quality attributes of food and some
recent works reported in literature. The purpose of this book is to guide the
researchers at one platform to use any technology before and during experimen-
tation, data analysis and reporting. The editor and authors of chapters are though
not responsible for any kind of loss/damage while practicing any technique or using
any data reported in this book; the contents of the book would help the most the new
researchers coming in this field.

The book has mainly been designed to serve as a text book for postgraduate
including the Ph.D. students and new scientists having interest in these fields. It
would also be useful to researchers engaged in developing fast, reliable and nonde-
structive methods for evaluation of food quality and safety aspects directly; and the
food industries and regulators responsible to check food quality to minimize public
hazards indirectly.

The nondestructive methods of evaluation of food quality involve various tech-
niques and therefore this book could not have been possible without the help of
personnel engaged in these fields. Contributions of authors of four different chap-
ters without which this useful volume could not have been possible are highly
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acknowledged. The editor wishes to acknowledge some of his colleague for reading
some chapters and rendering suggestions for improvement in the manuscript.

The editor is indebted to his parents, uncle (Lal kaka) and the late elder brother
who made him to reach such stage of editing a book of international standing.
Sacrifices of my wife Bandana and two lovely daughters Priya and Preeti, espe-
cially during my 4 months stay in USA when major portions of manuscripts were
prepared and editing of the same were carried out after returning to India are highly
acknowledged.

Ludhiana, India Shyam N. Jha
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Chapter 1
Food Quality and Safety: An Overview

Shyam N. Jha

Food quality and safety is the foremost issue amongst the present days’ consumers.
Fresh fruits and vegetables are often thought of as healthful, nutritious foods hav-
ing no risk of food borne illness associated with their consumption. However recent
food borne illness outbreaks in countries have been traced to fresh fruits, vegetables,
juices and milk. These incidences have caused producers, processors, transporters,
distributors, and importers to re-evaluate quality of their fresh fruits and vegeta-
bles produce and identify the hazardous points such as production, handling and
processing systems to prevent any food borne diseases.

Where fresh fruits, vegetables or any other food items are concerned, most people
now are able to decide difference between a product that is of good quality and one
that is not. Quality is thus an increasingly important factor in the production and
marketing of these products. Consumers of majority of countries are becoming more
quality conscious and the suppliers of products try to meet their choices to maintain
or increase their market share. There are three Ms, i.e. Meaning, Measurement and
Maintenance of quality, describing the key areas concerning quality and safety of
food. The primary emphasis of this chapter is the general discussion on what food
quality and safety are and how to control the critical points to produce quality and
safe food.

1.1 What Is Food Quality?

The term quality stands for rated ability of a product, whether it is a food or fruits
and vegetables, to perform its functions. Quality implies the degree of excellence
of product or its suitability for a particular use. In other words quality can be
viewed as an absence of defects in a product. So, quality means different things
to different handlers within the distribution chain. Food quality embraces both sen-
sory attributes that are readily perceived by the human senses and hidden attributes

S.N. Jha (B)
Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, Punjab, India
e-mail: snjha_ciphet@yahoo.co.in

1S.N. Jha (ed.), Nondestructive Evaluation of Food Quality,
DOI 10.1007/978-3-642-15796-7_1, C© Springer-Verlag Berlin Heidelberg 2010
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such as safety and nutrition that require sophisticated instrumentation to measure.
Quality is thus a human construct for a product comprising many properties and
characteristics desired by them. Quality produce encompasses sensory properties
(appearance, texture, taste and aroma); nutritive values (chemical constituents),
mechanical properties, functional properties and defects. Quality is not a single,
well-defined attribute but comprises many properties and characteristics.

In the ISO 9000 standard (developed by the International Standard Organization)
quality is defined as “the totality of the features and characteristics of product or
service that bear on its ability to satisfy stated or implied needs”.

Kader (1997) defines it for fruits and vegetables as “the combination of attributes
or properties that give them value in term of human food”. Quality may be equated to
meeting the standards required by a selective customer. In this context the customer
is the person or organization receiving the product at each point in the production
chain. This is important because quality is perceived differently depending on the
needs and intentions of the particular customer. If some thing is not a quality product
this implies that the product does not meet a certain standard that has been adopted
by the customer. In this case the market price is adversely affected. Conversely, if a
product is perceived to be a quality product, then it can be sold at a better price.

1.2 Quality Factors for Fresh Fruits and Vegetables

Following are the factors that can be included in any discussion of quality.

(i) Hygiene and quarantine factors:

(a) Quarantine – passenger parasites (larvae, pupae, adults)
(b) Consumer safety-natural toxicants, contaminants, mycotoxins (fungi etc.)

microbial contaminants.

(ii) Cosmetic appearance:

(c) Size: weight, volume, and dimensions
(d) Shape: regularity, length, diameter
(e) Surface texture: smoothness, waxiness, gloss
(f) Colour: uniformity, intensity, spectral
(g) Physiological: browning, genetic defects etc.

(iii) Texture and flavor factor:

(h) Texture- firmness, juiciness, fibrousness
(i) Flavor – sweetness, sourness, off flavor, off odors, etc.

(iv) Nutritional: cancer inhibitors, carbohydrates, lipids, minerals, proteins, vita-
min, etc.



1 Food Quality and Safety: An Overview 3

The ultimate objective of the production, handling and distribution of food
materials is to accommodate the above factors to satisfy the consumer. While the
term quality has been defined in many ways and contexts in preceding paragraph,
there is little agreement as to what it is, how it can be measured, and how it relates
to consumer acceptability.

1.3 Quality Orientation

Quality of food products changes as it proceeds from processors to handlers after
harvest. The relative importance of different quality attributes changes from han-
dling to purchase to consumption. Shewfelt (1999) points out that quality is often
defined from either product orientation or a consumer orientation. An understand-
ing of the different perspectives of different participants in postharvest distribution
is essential in any attempt to improve the quality of a fresh fruit or vegetable for the
consumer.

A product orientation views quality as a bundle of attributes that are inherent
in a product and can be readily quantified throughout handling and distribution.
A consumer orientation defines quality in terms of consumer satisfaction, a much
less tangible and less quantifiable concept. Both orientations have strengths and
limitations in the delivery of fresh items from harvest of the consumer. Selection
of measurement techniques and development of product standard depend on the
orientation. Failure to appreciate the differences in perspective results is barrier to
improvement in fresh fruit and vegetable quality.

1.3.1 Product-Oriented Quality

Most postharvest research (physiological as well as technological) assumes a prod-
uct orientation to quality. Quality is defined as a series of attributes selected on the
basis of accuracy and precision of measurement. These attributes are in turn used
to evaluate the effect of a breeding line or transgenic product, chemical or quar-
antine treatment, handling technique or system, set of storage conditions or other
postharvest variables. Product-oriented quality is readily defined and clearly under-
stood. Quality changes can be plotted as a function of time and directly related to
changes occurred, such as increase in free fatty acid in oil and rancidity of rice
bran during handling and storage. These data can be used to develop a mechanis-
tic understanding of effects on loss of quality. Product-oriented quality is usually
measured with analytical instruments and the data can be readily analyzed with
results readily reproduced. The accuracy and precision of measurement provide
“internal validity” to any scientific study. A product orientation provides a clear
assessment of which treatment(s) are superior or inferior within the context of study
objectives.

Product-oriented quality has its limitations however. Measurements that are less
readily quantified carry less weight than those that are readily quantified. Such
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biases then tend to favour handling and storage treatments that maintain appearances
(a readily quantifiable attribute) over texture (less quantifiable) over flavor (very
difficult to quantify). Likewise, sugar and acid measurement (readily quantified) are
likely to predominate over volatile compound analysis. Instrumental methods are
preferred to sensory evaluation, which is preferred over consumer testing. While
generation of large dataset provides a wide range of attributes to separate effects of
postharvest treatments, the results lack “external validity” or “the extent to which
the test results can be generalized to market behaviour”. Thus, it is not possible to
determine if the significant differences observed in appearance by treatment are even
detectable by many consumers much less lead to a change in purchase behavior.
Likewise it is not possible to determine whether large differences in predominant
volatile compounds affect flavour perception any more than small differences in
compounds present in trace amounts. In addition, the product-oriented approach is
unable to keep pace with changes in consumer desires and expectations.

A product orientation to quality is the best at assessing the effectiveness of
change in a handling system like cultivar selection, harvest technique or posthar-
vest treatment. It can be adjusted to become more responsive to the marketplace if
the quality attributes important to consumers are known and accurate and precise
measurements can be obtained.

1.3.2 Consumer-Oriented Quality

A consumer orientation to quality requires an understanding of consumer behavior
and is focused at predicting product performance in the marketplace. When per-
formed well consumer-oriented studies provide external validity, thus giving a better
appreciation of potential performance in the marketplace. Such studies focus more
on measuring human perception and behaviour than measurement of specific qual-
ity attributes. Measurement of consumer attitudes can be simplified to determine
either acceptability (superior, acceptable or unacceptable) or willingness to pur-
chase. Qualitative consumer studies can be used to identify quality attributes that
drive acceptability at the points of purchase and consumption. Judicious coupling
of quantitative consumer panels with sensory descriptive analysis can either verify
or refute the accuracy of consumer statements about the critical quality attributes.

A consumer-oriented approach to quality has its own limitations. The consumer
is frequently viewed as a monolith with consistent preferences. Realistically con-
sumer preferences vary widely from one cultural or demographic perspective to
another, from one consumer to another within a cultural or demographic group, or
even within the same consumer depending on many factors including current mood
and intended use of the product. Critical quality attributes that drive product accept-
ability can be more easily identified using a consumer-oriented approach, but these
attributes may be difficult to measure accurately and precisely. While consumers
represent only valid sources of preference or acceptability, they are not good at
expressing the rationale for these preferences. Furthermore, it may be difficult to
quantify these attributes during handling and storage.
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A consumer orientation to quality is best at identifying consumer needs and
expectations. It can be made more useful to physiologists if the consuming popula-
tion can be segmented into distinct user groups, based on quality preference rather
than demographic groupings and expressed as a percentage distribution of the pop-
ulation. It is an exact tool in assessing a particular experimental treatment within the
distribution chain.

1.4 The Quality Paradox

It has been my observation that within a food handling chain, for a given product
longer the shelf life, poorer is the quality delivered to the consumer. From a product
orientation, this statement is counterintuitive because the longer the shelf life, the
slower quality deterioration of the product during handling and storage and the more
likely a consumer is to purchase and consume it at an acceptable level of quality.
From a consumer orientation, evaluation of quality is of prime importance at only
two points – purchase and consumption. Management decisions made within a dis-
tribution chain to extend shelf life (selection of cultivars that ship well, maturity at
harvest, holding of product within the shelf life for an increase in price, use of visual
grading standards, etc.) all conspire to reward improved appearances frequently at
the expense of flavour.

Individual variability between fresh items within the same lot represents a qual-
ity defect from a product orientation as it interferes with the ability to accurately
predict quality changes during postharvest distribution under controlled conditions.
From a consumer orientation, such variability provides consumers with a greater
chance for matching their needs to available product particularly reflect consump-
tion preferences. A technique that models changes in individual items rather than
modeling changes in average quality was found to be a much more effective predic-
tor and should be an effective means of merging product and consumer orientations
for studies using non destructive quality measurements.

Studies using a consumer orientation to quality are likely to provide important
and sometimes unexpected results. Consumers are most satisfied with fresh items
like bananas and lettuce where the purchase signals of quality are an accurate pre-
dictor of consumption quality. Dissatisfaction with fresh products appears to be a
result of a faulty linkage between purchase and consumption attributes. While most
consumers cite flavour as an overriding consideration when asked how they eval-
uate good products particularly oil, consumer tests suggest that today’s consumers
are much more sensitive to subtle differences in texture than colour and flavour and
tend to use them as the primary limiting factors for acceptability.

1.5 Implications of Quality Orientation

Product oriented quality is well suited to meet the needs of distributors. It pro-
vides the best means of developing and assessing technical advances in postharvest
handling. It is more likely to emphasize appearances leading to extended shelf life
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and lower prices at the expense of flavour and disgruntled consumers. Consumer-
oriented quality is better suited to produce that is sensitive to the needs of
consumers. It is more likely to emphasize flavour at the expense of appearances
leading to shorter shelf life, higher prices, greater losses and disgruntled distributors.

Adherence to one type of orientation with a disregard of the other can have dire
consequences. The overemphasis on a product orientation to quality that has dom-
inated the American market in fresh fruits and vegetables has bred an overreliance
on appearance at sacrifice of flavour, particularly with items such as tomatoes and
peaches. A good understanding of postharvest physiology and shelf life extension
has not translated into greater acceptance of fruit and vegetable quality. A switch to
a consumer orientation presents a different set of problems, particularly with respect
to consumer variation and validity of quality measurements. A better appreciation
of differences in quality orientation should lead to development of better handling
systems that are more responsive to consumer desires. A distribution enterprise that
is willing to incorporate a consumer-oriented approach to postharvest handling of
fresh fruits and vegetables and can accept the initial losses associated with the switch
is likely to become the dominant figure in produce industry. A failure of the pro-
duce industry to be responsive to consumer wants and need could lead to a decline
in fruit and vegetable consumption and, in turn, less interest in postharvest research
that failed to meet industry need.

1.6 Food Safety

As the common saying goes “Prevention is better than cure”, it assumes utmost
significance in case of food products consumed by us. Many unnoticed chemicals,
which may cause irreversible damage to human in many unnoticed forms, are found
in food items and drinks. Even drinking water of every place is not safe. With the
publicities of these unwanted harmful adulterants through various media, there has
been a growing awareness among manufacturers and consumers alike regarding the
need for assuring safety of consumer products, especially foods. The introduction
of highly automated manufacturing systems coupled with innovations in packag-
ing and distribution systems has led to quicker and more efficient production and
distribution. In addition, there has been a drastic shift towards food products that
have higher shelf life. On the plea of safety from food, our various export con-
signments are rejected at foreign ports (Buchanan 1990). To avoid such situations,
various agencies and bodies for certification of food products are setting up stringent
quality standards.

Due to progress in science and technology – and the increasingly stringent leg-
islation of many countries that has resulted – today’s agri-foodstuffs sector must
respect ever stricter standards and increasingly rigorous quality control and moni-
toring procedures. Yet paradoxically, over the past decade there have also been an
increasing number of food alerts – artificial milk, pesticides in soft drinks, argemone
oil in mustard oil – creating a genuine crisis of confidence among consumers.
Research on food safety and quality must therefore be a priority.
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The paradox stems from changes resulting from two factors. While the global-
ization of supply and commerce provides for a very varied range of produce in the
shops, it inevitably increases the risk of poor quality. Also, the economic pressure
for ever-growing rationalization of the complete agri-foodstuffs chain – from the
farm to the supermarket shelf, including processing and transport – results in pro-
duce being sold in bulk. When there is a problem at any stage of this chain, the threat
of contamination can consequently assume alarming proportions with the potential
of placing large sections of the population at risk.

The agri-foodstuffs sector is now increasingly exposed to “industrial” risks.
Apart from the very particular cases of BSE (or mad cow disease), which originated
in the United Kingdom, or the Belgian “accident” concerning dioxin contamination,
attributable to the gross negligence of a supplier of animal feed, scientists are most
concerned by the much stealthier and generalised increase in the frequency of ill-
nesses linked to microbiological contamination by Salmonella, Campylobacter and
Listeria.

Another problem is the exposure to chemical elements contained in food, whose
source is much more difficult to trace. These may be natural toxic products (such
as mycotoxins) or a whole range of contaminants (compounds originating in
pesticides, dioxins, mercury, lead, and radionuclides).

There is, therefore more attention to food safety than quality control and monitor-
ing is required (Dean 1990). Biotechnology has opened up a vast field of exploration
into new methods of agricultural production, including the creation of genetically
modified plants and nutritional inventions such as so-called “functional” foods or
“pharmafoods” or BT eggplant fruits.

The GMO debate is currently raging between the promoters of these innova-
tions, who justify them in the name of the progress they bring (in particular for
solving environmental problems as well as problems of hunger or food shortages in
the world’s poorest countries), and their opponents, who condemn a profit motive
and a lack of both health and environmental precautions. But the debate is going
nowhere – a situation which created yet another reason for intensifying research.

Above all, the growing emphasis now is on rapid transfer of manufactured food to
the consumer, which has narrowed down the safety margins that existed for micro-
biological decontamination of food products. The rapid change in technology has
also resulted in microorganisms gaining resistance to anti-microbial products such
as antibiotics. Interestingly microorganisms that were considered safe are also now
a potential threat. There is a definite need, therefore, to ensure that all food products
manufactured meet appropriate safety requirements. Food safety needs to be assured
for the following reasons:

(a) To prevent spoilage of products due to microbial growth.
(b) To prevent health hazards to consumers due to pathogens.
(c) To protect the consumers from harmful/hazardous chemical contamination

Besides the need to protect the consumer from hazards and protect the brand
image of the manufacturer, it has become necessary to implement microbial safety
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assurance programs to conform to the specific government regulations. As the world
economy is becoming increasingly global, interactions between various countries in
terms of exports and transfer of technology has become very important. Since dif-
ferent countries have different safety criteria for various consumer products, there
exists an urgency and need to develop safety assurance procedures that can be
applied uniformly across international borders (Corlett 1993).

1.6.1 Management of Food Quality and Safety

In fruit or vegetable market, meeting a standard to govern the production and post-
production handling of product requires the appropriate quality assurance method.
To maintain the standard an appropriate quality control program is required to be
established. The ISO 9000 series of standard is a major helping guide to establish
a standard. For every food product a clear standard is defined, as this give producer
a clear indication of what actually is needed. Such standard tend to be large docu-
ments. They can be developed by producer or by marketing and retail organization
for their own products.

The application of management systems like ISO 9000 and HACCP (Hazard
Analysis Critical Control Point) to food safety and quality has been introduced in
the industry in the developed countries and has been reviewed (Mayes 1993). ISO
9000 is a specification for quality management system, which is accepted as being
applicable to all manufacturing and service industries. It requires manufacturers to
define their own standards and demonstrate that they conform to them. HACCP was
initially developed for identification of microbiological hazards and now is being
considered as being the most cost effective means of controlling food-borne dis-
eases and other adverse developments in the body in the form of infections and
intoxications arising from physical, chemical or microbiological hazards. It is more
of a self-assessment system and is aimed mainly at food safety, which will help in
generating confidence in the customers.

1.6.2 Safety and the HACCP System

Product safety assurance is an exercise that covers a whole gamut of interactions
between product ingredients, processing methods, manufacturing environment and
the other critical areas of manufacturing process that may affect the microbiolog-
ical quality and safety of the product. Due to large processing volumes and short
processing time, it is nearly impossible to monitor every aspect of manufacturing
process. However, it is possible to monitor certain key areas (“critical points”) where
implementation of safety measures can reasonably assure the safety of the manufac-
tured product (Bauman 1990). This is the basis for the HACCP system, which is a
systematic approach for identification, assessment and control of hazards. The sys-
tem offers a rational approach to the control of potential hazards in foods, which
avoids the many weaknesses inherent in the inspection process or approach and
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circumvents the shortcomings of reliance on end product testing. By focusing atten-
tion on the factors that directly affect the safety of a food, it also eliminates wasteful
use of resources on extraneous considerations, while ensuring that the desired level
of safety and quality are maintained.

1.6.3 HACCP Principles

There are basically seven principles, which summarize the theme of HACCP that
are of importance from international perspective. These are:

Principle 1 Identification of the potential hazard (s) associated with food pro-
duction at all stages, from growth, processing, manufacture and
distribution, till the point of consumption. Assess the likelihood of
occurrence of the hazard (s) and identify the preventive measures for
control.

Principle 2 Determination of the point(s)/procedures/operational steps that can
be controlled to eliminate the hazard (s) or minimize its likelihood
of occurrence- (Critical Control Point: CCP).

Principle 3 Fixing target level(s) and tolerances, which must be met to ensure
the CCP is under control.

Principle 4 Establishment of a monitoring system to ensure control of CCP by
scheduled testing or observation.

Principle 5 Establishment of a mechanism for the corrective action to be taken
when monitoring indicates that a particular CCP is not under control.

Principle 6 Documentation (record – keeping) concerning all procedures and
records appropriate to these principles and their application.

Principle 7 Establishment of verification procedures, which include appropri-
ate supplementary tests and procedures to confirm that HACCP is
working effectively.

1.6.4 Practical Implementation of HACCP Systems

The implementation of HACCP usually involves two separate stages, namely,
preliminary preparation and application of HACCP principles.

1.6.4.1 Stage 1: Preliminary Preparation

(a) Creating the HACCP team
The multi-disciplinary HACCP team should comprise of a quality assur-

ance specialist who understands the biological, chemical or physical hazards
connected with a particular product group, a production specialist who has the
responsibility of looking after the whole process for manufacturing the product,
an engineer who has a good knowledge of hygiene, design and operation of a
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plant and equipment, a packaging specialist who has a thorough knowledge of
the effect of packaging material, nature of packaging material for the desired
product, a distribution specialist who has an expertise in the area of handling,
storage and transportation right from production to consumer, a hygiene spe-
cialist who has the responsibility of looking at the process from hygiene and
sanitation point of view with a proactive approach, and a microbiologist to iden-
tify the gray areas of microbial contamination, enumeration of microorganisms
as and when required and suggest the safety measures (Codex Alimentarius
Commission 1995a, b).

(b) Describe the food product
The main purpose of this section is to provide as much information as possi-

ble to the HACCP team for proper evaluation. The description must include the
following:

Composition of product (e.g. list of ingredients, including description or
specifications of the raw materials), characteristics of product (e.g. solid, liquid,
emulsion, pH, Brix etc), processing methods (heating, smoking, cutting/slicing,
freezing), packaging methods/systems (vacuum, modified atmosphere, con-
trolled atmosphere), storage and distribution conditions, expected shelf life,
instructions for use.

(c) Identification of intended use
State the intended use of the product by the consumer and the consumer

target group, e.g., general public, institutional caterers, infants etc.
(d) Construct a flow diagram

The purpose of this step is to provide a clear, simple picture of all steps
involved in producing the product. The flow diagram must cover all steps in the
process that are under direct control of the manufacturing unit from receipt of
raw materials through distribution of the finished product (Process flow chart
for manufacturing of tomato puree is presented for guideline in Fig. 1.1).

(e) On – site verification of flow diagram
It is important for the HACCP team to verify the flow diagram on-site during

operating hours. Any deviation must result in an amendment of the original flow
diagram. If the analyses are applied to a proposed line, pre-production runs must
be observed carefully.

An effective HACCP programme works only on a specific product and pro-
cess and must take into account the actual procedure that is in use. For HACCP
programme to be useful, data generated from an initial HACCP study needs to
be constantly updated and implemented to assure maximum product safety.

1.6.4.2 Stage 2: Application of HACCP Principles

Principle 1 Identification of the potential hazard(s) associated with food produc-
tion at all stages, from receiving of raw material till consumption of
processed food. Assess the likelihood of occurrence of the hazard (s)
and identify the preventive measures for control.
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Receiving Ripe
Tomato 

Sorting out bad
quality   

Washing 

Crushing 

Blanching 

Bottle Washing &
sterilization  

Pulping 

Concentrating 

Final pulping/ 
Screening  

Storage 

Cooling & storage 

Sterilization 

Bottling 

Fig. 1.1 Process flow chart
for manufacturing of tomato
puree

On the basis of the flow diagram generated, the HACCP team should be able to
identify all the potential hazards that are expected to occur at each step. Hazards
must be of the nature such that their elimination or reduction to acceptable levels is
essential for the production of safe food. Once all the potential hazards have been
identified, the HACCP team may then consider and describe the control measures
to be adopted. There is a possibility that more than one control measure is required
to control one hazard and vice versa.

Principle 2 Determination of the point, procedures/operational steps that can be
controlled to eliminate the hazard(s) or minimize its likelihood of
occurrence- (Critical Control Point: CCP).
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The identification of CCP’s requires a logical approach such as the CCP decision
tree (Fig. 1.2). The sequence given in the flow diagram must be strictly followed.
At each step, the decision tree must be applied to each hazard whose occurrence
is probable and each control measure identified. The CCP is specific for specific
product as every product by and large requires different manufacturing process and
must not have unwanted or unnecessary critical points.

Q3. Does the control measure for the hazard
exist at this step? 

Is control at this step
necessary? 

CCP

The step is
not a CCP

No

Yes

Yes

No

Yes

No

Yes

Yes No

No

Not a CCP

Yes

No
Q1. Is the hazard identified
at this step of sufficient
likelihood of occurrence to
warrant its control?

Q2. Identify the prerequisite pro-
gram or procedure that reduces the
likelihood of occurrence of the
hazard to ensure that control at this
step is not necessary.

Q4. Does this step prevent, reduce or 
eliminate the likely occurrence of the 
hazard to an acceptable level?

Proceed to the step where a control 
measure exists for this hazard and
begin at Q4.

Q5. Could contamination with the identified hazard occur in excess of
the safe or acceptable level or could it increase to an unacceptable level?

Q6. Will a subsequent step eliminate the identified
hazard or reduce its likely occurrence to a safe level?

Subsequent
step is the
CCP.

Modify this step, process or
product to eliminate this hazard
or provide a control measure,
then revisit the hazard analysis

CCP (Control at this step is necessary to prevent or
reduce the risk of a hazard but may not eliminate it.)

Fig. 1.2 Decision tree for identifying the critical control points
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Principle 3 Fixing target level(s) and tolerances which must be met to ensure
that the CCP is under control.

The critical limits for each CCP or control measure should represent some quan-
titative (measurable) parameters that can be measured relatively quickly and easily.
For example, parameters like temperature, time, pH, preservative level, firmness,
texture, appearance etc. and those levels should commensurate with requirement of
food standards fixed by related regulatory authority in marketing areas

Principle 4 Establishment of a monitoring system to ensure control of the CCP
by scheduled testing or observations.

The programme should describe the procedure, frequency and personnel respon-
sible for carrying out the measurements or observations. The monitoring system
could be on-line (flow rate, temperature) or off-line (measurement of total solids,
carbon dioxide levels etc.). On-line systems give an immediate indication of the
performance so it is desirable to have on-line continuous monitoring systems for
each CCP but the same is not practically possible many times. It is therefore impor-
tant for the HACCP team to ensure that the results obtained are directly relevant to
the CCP and limitations if any are fully understood.

Principle 5 Establishment of mechanism for corrective action once a particular
CCP is not under control.

Since the HACCP team is a multidisciplinary in nature, it should be able to spec-
ify the action once the monitoring results show a deviation in CCP. There should be
facilities and planning for immediate disposition action when the CCP goes out of
the specified limits.

Principle 6 Documentation concerning all raw ingredients, procedures, and steps
of processing, procedures and records etc.

A comprehensive record keeping system for ingredients, processes, and product
controls should be established in order to facilitate tracing and recall of the prod-
uct whenever necessary. In addition, this will also help in finding and correcting
deviations in CCP’s. HACCP records must include the following:

• Product description and intended use
• Complete flow diagram of the process including the CCPs
• Hazards, control limits, monitoring measures and corrective action for each CCP
• Verification procedures and data.

Principle 7 Establishment of verification procedures to confirm the effective
working of HACCP

Verification is necessary to ensure that the HACCP system is working correctly.
Verification is defined as those activities, other than monitoring, that determine the
validity of the HACCP plan and that the system is operating according to the plan.
The NAS (1985) pointed out that the major infusion of science in a HACCP system
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centers on proper identification of the hazards, critical control points, critical limits,
and instituting proper verification procedures. These processes should take place
during the development and implementation of the HACCP plans and maintenance
of the HACCP system.

One aspect of verification is evaluating whether the HACCP system is function-
ing according to the HACCP plan or not. An effective HACCP system requires little
end-product testing, since sufficient validated safeguards are built in early in the
process. Therefore, rather than relying on end-product testing, firms should rely on
frequent reviews of their HACCP plan, verification that the HACCP plan is being
correctly followed, and review of CCP monitoring and corrective action records.

Another important aspect of verification is the initial validation of the HACCP
plan to determine that the plan is scientifically and technically sound, that all hazards
have been identified and that if the HACCP plan is properly implemented these
hazards will be effectively controlled (Sperber 1991). Information needed to validate
the HACCP plan often includes (1) expert advice and scientific studies and (2) in-
plant observations, measurements, and evaluations. For example, validation of the
manufacturing and packaging process for tomato puree should include the scientific
justification of the heating time and temperature needed to obtain an appropriate
destruction of pathogenic microorganisms (i.e., enteric pathogens) and studies to
confirm that the conditions that will deliver the required time and temperature to
each pack of juice.

Subsequent validations are performed and documented by a HACCP team or
an independent expert as needed. For example, validations are conducted when
there is an unexplained system failure; a significant product, process or packaging
change occurs; or new hazards are recognized. In addition, an unbiased, indepen-
dent authority should conduct a periodic comprehensive verification of the HACCP
system. Such authorities can be internal or external to the food operation. This
should include a technical evaluation of the hazard analysis and each element of
the HACCP plan as well as on-site review of all flow diagrams and appropriate
records from operation of the plan. A comprehensive verification is independent of
other verification procedures and must be performed to ensure that the HACCP plan
is resulting in the control of the hazards. If the results of the comprehensive verifica-
tion identify deficiencies, the HACCP team modifies the HACCP plan as necessary.
Individuals within a company, third party experts, and regulatory agencies carry out
verification activities. It is important that if an individual is doing verification, he
has appropriate technical expertise to perform this function.

1.7 Quality and Safety Determination Techniques

Methods of determining quality and safety parameters depend on their orientation of
any food. It could be broadly divided into two: analytical or objective methods and
subjective or sensory methods. Both methods have their own advantages and disad-
vantages. Analytical methods are based on product attributes, whereas, subjective
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or sensory methods are consumer oriented. Safety aspects however cannot be even
determined by the sensory methods. For scientific works one needs to measure
attributes numerically and thus may not be variations in those perspectives. Sensory
attributes changes with sensory panels, place, religion, society and so on. Practically
sensory method of quality determination is better for adoption in a particular region,
whereas the objective evaluation may be helpful in development of specific instru-
ments for measuring a specific quality attribute. The objective methods are of two
types: one can be said as destructive methods and the other nondestructive. Most
destructive methods use small samples and utilize them during investigation. The
used sample is not reusable by the consumers. Generally it is chemical analysis and
used at laboratory level. It is not necessary that whatever attributes are measured in
sample will be closely related with the bulk from where samples had been drawn.
There must be substantial variations. Moreover infectious foods even should not be
tested by the sensory panels or actual consumers from their health point of view.
In nondestructive methods, samples or bulk of materials even remain untouched. It
is nondestructive because samples are not destroyed. It remains intact as well for
future use.

In the preceding paragraphs various facets of quality of foods, safety from food
to prevent any disastrous situation by eating them and choices of their determina-
tion techniques have been discussed. Further to know the exact condition from both
quality and safety perspective, quick measurement of critical responsible param-
eters and that too without destroying rather harming the food in any way is of
paramount importance. For this purpose instrument which measure these param-
eters of food nondestructively and instantly are need of the hour. Lot of work in this
directions using various techniques, such as machine vision system, x-ray, CT, MRI,
ultrasound, near infrared (NIR) spectroscopy, Fourier transform(FT) NIR, Medium
Infrared, FTIR, electronic nose etc are being carried out worldwide. Concerted
efforts are required to have an accelerated development in developing countries to
have their own commodity based precision Postharvest Technology to save huge
postharvest losses and life of consumers by ensuring them safe foods.
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Chapter 2
Colour Measurements and Modeling

Shyam N. Jha

The most common property to measure quality of any material is its appearance.
Appearance includes colour, shape, size and surface conditions. The analysis of
colour is especially an important consideration when determining the efficacy of
variety of postharvest treatments. Consumers can easily be influenced by precon-
ceived ideas of how a particular fruit or vegetable or a processed food should appear,
and marketers often attempt to improve upon what nature has painted. Recently
colour measurements have also been used as quality parameters and indicator of
some inner constituents of the material. In spite of the significance of colour in food
industries, many continue to analyze it inadequately. This chapter deals with theory
of colour, colour scales and its measurement, sampling techniques, and modeling of
colour values for correlating them with some internal quality parameters of selected
fruits.

2.1 Light and Colour

Among the properties widely used for analytical evaluation of materials, colour is
unique in several aspects. While every material can be said to possess a specific
property such as mass, no material is actually coloured as such. Colour is primarily
an appearance property attributed to the spectral distribution of light and, in a way,
is related to (source of radiant energy) the illuminant the object to which the colour
is ascribed, and the eye of the observer. Without light or the illuminant, colour does
not exist. Therefore, several factors that influence the radiation subsequently affect
the exact colour that an individual perceives. Those factors are:

spectral energy distribution of light,
conditions under which the colour is viewed,
spectral characteristics of the object with respect to absorption, reflection, and

transmission, and
sensitivity of the eye.
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Visible light spectrum 

Wavelength, nm 

InfraredUltraviolet 

Fig. 2.1 Colour spectra
of light in visible range
of wavelength

Light is the basic stimulus of colours, it is important to consider the electro-
magnetic spectrum. Visible light forms only a small part of the electromagnetic
spectrum, with a spectral range from approximately 390 nm (violet) to 750 nm (red)
(Fig. 2.1). Wavelength intervals of major colour are summarized in Table 2.1. The
sensitivity of the eye varies even within this narrow visible range. Under conditions
of moderate-to-strong illumination, the eye is most sensitive to yellow-green light
of about 550 nm (Fig. 2.2).

If the spectral distribution throughout the visible region is unequal, then the sen-
sation of colour is evoked by radiant energy reaching the eye’s retina. An equal
spectral distribution makes the light appear as white. The unequal distribution
responsible for colour sensation may be characteristic of the source itself; such as
flame spectra (Fig. 2.2) composed of one or more monochromatic wavelengths, or
may result from selective absorption by the system, which appears coloured. The
latter includes several systems that show selective absorption for light and exhibit
colour as a result of reflection or transmission of unabsorbed incident radiant energy.
The radiant energy emitted by the radiator is characterized by its spectral quality,
angular distribution, and intensity.

The following material properties, lighting of the scene and interaction of matter
with light affect the total appearance of the object:

(i) Material properties:

Optical properties (spectral, reflectance, transmittance)
Physical form (shape, size, surface texture)
Temporal aspects (movement, gesture, rhythm)

Table 2.1 Breakup of wavelengths for major colours in visible range of wavelength

Colour Wavelength interval Frequency interval

Red ~ 700–635 nm ~ 430–480 THz

Orange ~  635–590  nm ~ 480–510 THz

Yellow ~ 590–560 nm ~ 510–540 THz

Green ~ 560–490 nm ~ 540–610 THz

Blue ~ 490–450 nm ~ 610–670 THz

Violet ~ 450–400 nm ~ 670–750 THz



2 Colour Measurements and Modeling 19

Wavelength, nm

R
el

at
iv

e 
en

er
gy

 

Fig. 2.2 Spectra of visible
light from common light
sources

(ii) Lighting of the scene:

Illumination type (primary, secondary, tertiary)
Spectral and intensity properties; directions and distributions
Colour-rendering properties

(iii) Interaction of light with matter

(a) Physical laws
When light falls on an object, it may be reflected, transmitted, or absorbed

(Fig. 2.3). Reflected light is the part of the incident energy that is bounced off the
object surface, transmitted light passes through the object, and absorbed light
constitutes the part of the incident radiant energy absorbed within the material.
The degree to which these phenomena take place depends on the nature of the
material and on the particular wavelength of the electromagnetic spectrum being
used. Commonly, optical properties of a material can be defined by the relative
magnitudes of reflected, transmitted, and absorbed energy at each wavelength.
Conservation of energy requires that sum of the reflected (IR), transmitted (IT),
and absorbed (IA) radiation equals the total incident radiation (I). Thus,

I = IR + IT + IA (2.1)

According to its transmittance properties, an object may be transparent,
opaque, or translucent. Almost all food and biological products may be con-
sidered to be opaque, although most transmit light to some extent at certain
wavelengths. The direction of a transmitted ray after meeting a plane interface
between any two non-absorbing media can be predicted based on Snell’s law:

n2 sin θT = n1 sin θi (2.2)



20 S.N. Jha

Specular reflection Incident radiation 

Diffuse reflection 
Medium 1,  n1

Medium 2,  n2

Light scattering and 
absorption 

Diffuse transmission 

Regular transmission 

I R

T

θ θ

θ

Fig. 2.3 Schematic representation of interaction of light with matter, θ I= angle of incidence, θR =
angle of reflectance, θT = angle of transmittance, n1, n2 = refractive index of medium 1 and 2,
respectively

Beer-Lambert’s law defines the attenuation of the transmitted ray in a
homogeneous, non-diffusing, absorbing medium:

log (IT /I) = abc (2.3)

The ratio IT/I is known as the transmittance T and is related to absorbance A
as:

A = log(I/T) (2.4)

From Eqs. (2.3) and (2.4), absorbance A can also be written as:

A = abc (2.5)

where a is called the absorptivity. [if c is expressed in mol/L and b in cm, a is
replaced by the molar absorptivity, ε (L/mol.cm).]

Various constituents of food products can absorb a certain amount of this
radiation. Absorption varies with the constituents, wavelength, and path length
of the light. Reflection is a complex action involving several physical phenom-
ena. Depending on how light is reflected back after striking an object, reflection
may be defined as regular or specular and diffused (Fig. 2.3). Reflection from
a smooth, polished surface is called” specular” or “regular”. It mainly produces
the gloss or shine of the material. The basic law of specular reflection states that
the angle at which a ray is incident to a surface must equal the angle at which it
is reflected off the surface. Fresnel equations define the phenomenon of specular
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reflection. The intensity of parallel Rpl and perpendicular Rpr components of the
reflected light are:

Rpl =
[

(n2/n1)2cos θI − [(n2/n1)2 − sin2θI]1/2

(n2/n1)2cos θI + [(n2/n1)2 − sin2θI]1/2

]2

(2.6)

Rpr =
[

cos θI − [(n2/n1)2 − sin2θI]1/2

cos θI + [(n2/n1)2 − sin2θI]1/2

]2

(2.7)

The regular reflectance R = Rpl
2 + Rpr

2 and for normal incidence (θ = 0◦),
Rpl = Rpr, and hence.

R =
[

n2 − n1

n2 + n1

]2

(2.8)

where n1 and n2 are refractive index of the medium and object, respectively:
and θ I is the incident angle (Fig. 2.3). If the material is absorbing, the refractive
index is a complex number n (1-ik), where n is the real part of the complex
number and k is an absorption constant, and the regular reflectance is written as:

R =
[

(n2 − n1)2 + (n2k)2

(n2 + n1)2 + (n2k)2

]
(2.9)

When the incident light is reflected from a surface evenly at all angles,
the object appears to have a flat or dull finish termed “diffuse reflection”.
No rigorous theory has been developed for diffuse reflectance, but several
phenomenological theories have been proposed, the most popular being the
Kubelka-Munk theory. The Kubelka-Munk model relates sample concentration
to the intensity of the measured spectrum in a manner analogous to the way
Beer-Lambert’s law relates band intensities to concentration for transmission
measurements. The Kubelka-Munk function f(R∞) is generally expressed as:

f (R∞) = (1 − R∞)2

2R∞
= k

s
(2.10)

where R∞ = absolute reflectance of an infinitely thick layer, k = absorption
coefficient, and s = scattering coefficient.

Kubelka-Munk theory predicts a linear relationship between spectral data
and sample concentration under conditions of constant scattering coefficient and
infinite sample dilution in a non-absorbing matrix such as KBr (potassium bro-
mide). Hence, the relationship can only be applied to highly diluted samples in
a non-absorbing matrix. In addition, the scattering coefficient is a function of
particle size, so samples must be prepared to a uniform fine size for quantitative
valid measurements.
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It is not easy to quantify diffuse reflectance measurements since sample
transmission, scattering, absorption, and reflection all contribute to the overall
effect. By reducing particle size and dilution in appropriate matrices, sur-
face reflection that can give strong inverted bands is reduced and the spectra
more closely resemble transmission measurements. Typically, quantitative dif-
fuse reflectance measurements are presented in log(I/R) units, analogous to
absorbance log(I/T) units for transmission measurements. Bands increase log-
arithmically with changes in the reflectance values. By comparison, bands in
spectra displayed in Kubelka-Munk units vary as a function of the square of
reflectance. This difference emphasizes strong absorbance bands relative to
weaker bands.

The diffuse reflectance may be measured with respect to non-absorbing stan-
dards and converted to produce a linear relationship with concentration c as
follows:

log (R′/R) = log (I/R) + log (R′) ∼= ac/s (2.11)

where R′and R – reflectance of the standard and the sample (R′> R), a = absorp-
tivity, c = concentration, and s = scattering coefficient. For monochromatic
radiation, log R′ is constant and may be ignored, and Eq. (2.11) may be written
as (2.12):

c = k + (s/a) log (I/R) (2.12)

where k = absorption coefficient. It should be noted that s is not a constant
but depends on a number of properties of the sample such as particle size (s is
inversely proportional to particle size) and moisture content. In food materials,
the primary factors that influence light reflection is a phenomenon known as
scattering or diffusion. If the surface of incidence is rough, incident light will
be scattered in all directions. Since the incident rays strike a rough surface more
than once before being reflected, they would be expected to have a lower total
reflectance than those reflected from a smooth surface.

In classical optics, diffuse reflection was thought to be responsible for colour.
It was also commonly believed that colour of natural objects, such as foods,
plants and foliage, are seen by means of light reflected off their surfaces. It is
also known that the light must be transmitted through pigment within the cells in
order to produce a coloured appearance. Since most food materials are optically
non-homogeneous, light entering such material is scattered in all directions.
Only about 4–5% of the incident radiation is reflected off the surface of these
materials as regular reflectance. The remaining radiation transmits through the
surface and encounters small interfaces from within the material and is scattered
back to the surface through the initial interface. This type of reflection is termed
as “body reflectance”. The body reflectance is nearly always diffuse and is the
most significant form of reflectance for foods. Some part of the transmitted light
diffuse deeper in to the material and may eventually reach the surface some
distance away from the incident point.
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(b) Factors affecting diffuse reflectance spectral data
Diffuse reflectance spectroscopy offers exceptional versatility in sample

analysis. This versatility results from both its sensitivity and optical characteris-
tics. Classically, diffuse reflectance has been used to analyze powered solids in
a non-absorbing matrix of an alkali halide such as KBr. The sample is typically
analysed at low concentrations, permitting quantitative presentation of the data
in Kubelka-Munk unit. This technique yields spectra that are qualitatively simi-
lar to those produced by conventional transmittance or pellet methods. However,
they exhibit higher sensitivity for quantification and are less subject to scattering
effects, that cause slopping baselines in pellet measurements.
Several factors determine band shape and relative/absolute intensity in dif-
fuse reflectance spectroscopy through their effect on the reflection/absorbance
phenomena specific to the sample. These include:

refractive index of the sample,
particle size,
sample homogeneity, and
concentration.

Refractive index: Refractive index affects the results via specular reflectance con-
tributions to diffuse reflectance spectra. With organic samples, the spectra display
pronounced changes in band shape and relative peak intensities, resulting in non-
linearity in the relationship between band intensity and sample concentration. For
some inorganic samples, strong specular reflection contributions can even result in
complete band inversions. Sample dilution in non-absorbing matrix can minimize
this overlay of diffuse reflectance and specular reflectance spectra, as well as the
resulting spectral distortions. In addition, accessory design can help reduce specular
reflectance contributions.

Particle size: Particle size is a major consideration when performing diffuse
reflectance measurements of solids. The bandwidth is decreased and relative inten-
sities are dramatically altered as particle size decreases. These effects are even more
pronounced in spectra of highly absorbing inorganic materials with high refractive
indices. For these samples, specular contributions can dominate the final spectra if
the particle size is too large. To acquire a true diffuse reflectance spectrum, it is nec-
essary to uniformly grind the sample and dilute it in a fine, non-absorbing matrix.
Similar preparation must be applied to the non-absorbing matrix material in order to
provide an “ideal” diffuse reflector for background analysis and as a support matrix
for the samples.

Sample homogeneity: The Kubelka-Munk model for diffuse reflectance is derived
for a homogeneous sample of infinite thickness. However, some sample analysis
methods, especially those designed for liquid sample (e.g., deposition of sample
onto a powdered supporting matrix) can result in a higher concentration of sam-
ple near the analysis surface. In these circumstances, variations in relative peak
intensities may be noticed. In particular, more weakly absorbing wavelengths tend
to be attenuated at higher sample concentrations. To avoid these peak intensity
variations it is necessary to distribute the analyte as uniformly as possible within
the non-absorbing background matrix.
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Concentration: One particularly important advantage of diffuse reflectance spec-
troscopy, especially in comparison to transmittance measurement, is its extremely
broad sample-analyzing range. While it is theoretically possible to acquire usable
diffuse reflectance spectra on samples of wide-ranging concentrations, practical
considerations often complicate the analysis process. With high concentration sam-
ples, especially those with a high refractive index, one can expect a dramatic
increase in the specular contribution to the spectral data. As a result, some sample
data may be un-interpretable without adequate sample dilution. Even when samples
can be measured satisfactorily at high concentrations, it is advisable to grind the
sample to a very uniform and fine particle size to minimize both specular reflectance
and sample scattering effects, which adversely affect quantitative precision.

From the preceding paragraphs one can say that in reality, colour is in the eye
of the observer, rather than in the “coloured” object. The property of an object that
gives it a characteristic colour is its light-absorptive capacity. Three items (light
source, object and observer) therefore are necessary for visual perception of colour
and the instrument quantifies the human colour perception in the visual observing
situation and we measure them in different units, scale or specification.

2.2 Colour Scales

There are three characteristics of light by which a colour may be specified: hue, sat-
uration, and brightness. Hue is an attribute associated with the dominant wavelength
in a mixture of light waves, i.e., it represents the dominant colour as perceived by
an observer. Saturation refers to relative purity or the amount of white light mixed
with a hue. Brightness is a subjective term, which embodies the chromatic notion
of intensity. Hue and saturation taken together are called chromaticity. Therefore,
a colour may be characterized by brightness and chromaticity. There are numerous
colour scales, one may even develop their own scale for uniformity in comparison
of their subsequent products. The basic colours however are only three: red, green
and blue, and other colours are derived by mixing these three. The light reflected off
of the object passes through a red, green and blue glass filter to simulate the stan-
dard observer functions for a particular illuminant. A photodetector beyond each
filter then detects the amount of light passing through each filter and these signals
are displayed as X, Y, and Z values. The specifications of basic standards used in
colourimetry however are based on definitions of The Commision de International
de l’Eclairage (CIE) by general consent almost in all countries. Some industries
however are also using Munsell System and atlas for their products.

2.2.1 CIE System

The Commission Internationale de l’Eclairage (CIE) defined a system of describ-
ing the colour of an object based on three primary stimuli: red (700 nm), green
(546.1 nm), and blue (435.8 nm). Because of the structure of the human eye, all
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colours appear as different combinations of these. The amounts of red, green, and
blue needed to form any given colour are called the’ ‘tristimulus” values, X, Y, and
Z, respectively. Using the X, Y, and Z values, a colour is represented by a set of
chromaticity coordinates or trichromatic coefficients, x, y, and z, as defined below:

x = X

X + Y + Z
y = Y

X + Y + Z
z = Z

X + Y + Z
(2.13)

It is obvious from the equations above that x + y + z = 1. The tristimulus values
for any wavelength can be obtained from either standard tables or figures. A plot
that represents all colours in x (red)-y (green) coordinates is known as a chromaticity
diagram (Fig. 2.4).

To understand the chromaticity diagram, the locus is superimposed, with the ref-
erence horseshoe curve obtained from a standard monochromatic light. It can be
seen from this figure that the chromaticity of unripe fruits falls near the center of
the CIE diagram. The position marked “c” in this diagram represents colour, which
is biochromatically achromatic or hueless. Oil palm actually appears reddish black
when unripe and this agrees well with colourimeter since this equipment treats both
pure white and black as hueless. As the fruit starts to ripen; the locus moves from
the hueless zone to the reddish red zone and ends at a point bordering the reddish
orange zone. It can be seen from this diagram that the difference in chromaticity
between unripe and underripe is relatively small compared to the difference in chro-
maticity between optimally ripe and overripe, indicating that there is a small degree
of change in colour at the early stage of ripening. The distance between unripe and
overripe is 0.202 compared to slightly over 0.03 between unripe and under-ripe.
Hence, distinguishing unripe from underripe samples or vice versa may be difficult
chromatically.
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Sometimes, tristimulus systems of representation of colours are not easily under-
stood by the users in terms of object colour. Other colour scales therefore were
developed to relate better to how we perceive colour, simplify understanding,
improve the communication of colour differences, and be more linear throughout
colour space. This gave the birth of opponent colour theory, which states that the
red, green and blue responses are re-mixed in opponent coders as they move up the
optic nerve in human brain. Based on this theory a 3-dimensional rectangular L, a,
b, colour space was evolved, in which at L (lightness) axis – 0 is black and 100 is
white, a (red-green) axis – positive values are red; negative values are green and
zero is neutral, and b (blue-yellow) – positive values are yellow; negative values are
blue and zero is neutral (Fig. 2.5). All colours that can be visually perceived can be
plotted in this L, a, b, rectangular colour space.

There are two popular L, a, b colour scales in use today – Hunter L, a, b, and
CIE L∗, a∗, b∗. They are similar in organization, but will have different numerical
values. Hunter L, a, b and CIE L∗, a∗, b∗ scales are both mathematically derived
from X, Y, Z values (Table 2.2). Neither scale is visually uniform, Hunter scale is
over expanded in blue region of colour space, while CIE scale is over expanded in
yellow region. The current recommendation of CIE is to use L∗, a∗, b∗.

Fig. 2.5 Hunter Lab colour
space

Table 2.2 Formulae for computation of L, a, b, and L∗, a∗, b∗ from X, Y, Z values

Hunter L, a, b CIE L∗, a∗, b∗

L = 100
√

Y
Yn

L∗ = 116f
(

Y
Yn

)
− 16

a = Ka

(
X/Xn−Y/Yn√

Y/Yn

)
a∗ = 500

[
f
(
X
/

Xn
)− f

(
Y
/

Yn
)]

b = Kb

(
Y/Yn−Z/Zn

Y/Yn

)
b∗ = 200

[
f
(
Y
/

Yn
)− f

(
Z
/

Zn
)]
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Where, Yn is the Y tristimulus value of a specified white object. For surface-
colour applications, the specified white object is usually (though not always) a
hypothetical material with unit reflectance and which follows Lambert’s law. The
resulting L will be scaled between 0 (black) and 100 (white); roughly ten times
the Munsell value. Ka is a coefficient which depends upon the illuminant (for D65,
which will be told in latter part of the chapter, Ka is 172.30; see approximate for-
mula below) and Xn is the X tristimulus value of the specified white object. Kb is
a coefficient which depends upon the illuminant (for D65, Kb is 67.20; see approxi-
mate formula below) and Zn is the Z tristimulus value of the specified white object,
subscript n suggests normalized values of X, Y, Z, and

f (t) =
{

t1/3 t>(6/29)3

1
3

(
29
6

)2
t+ 4

29 otherwise
(2.14)

The division of the f(t) function into two domains was done to prevent an infinite
slope at t = 0. f(t) was assumed to be linear below some t = t0, and was assumed to
match the t1/3 part of the function at t0 in both value and slope. In other words:

The value of b was chosen to be 16/116. The above two equations can be solved
for a and t0:

a = 1/(3δ2) = 7.787037. . .

t0 = δ3 = 0.008856. . .

where δ = 6/29. Note that the slope at the join is b = 16/116 = 2δ/3

Ka ≈ 175

198.04
(Xn + Yn)

Kb ≈ 70

218.11
(Yn + Zn)

2.2.2 Munsell System and Atlas

The Munsell colour system (Fig. 2.6) divides hue into 100 equal divisions around a
colour circle. This is similar in approach to the Newton colour circle except that the
circle is distorted by assigning a unit of radial distance to each perceptible difference
in saturation (called units of chroma). Since there are more perceptible differences
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Fig. 2.6 Schematic of Munsell colour system

for some hues, the figure will bulge outward to 18 for some hues compared to only
10 for others. Perpendicular to the plane formed by hue and saturation is the bright-
ness scale divided into a scale of “value” from zero (black) to 10 (white). A point
in the colour space so defined is specified by hue, value, and chroma in the form
H, V and C. The Munsell colour-system is therefore a way of precisely specifying
colours and showing the relationships among them. Every colour has three qualities
or attributes: hue, value, and chroma. A set of numerical scales with visually uni-
form steps for each of these attributes has been established. The Munsell Book of
Colour displays a collection of coloured chips arranged according to these scales.
Each chip is identified numerically using these scales. Comparing it to the chips
under proper illumination and viewing conditions can identify the colour of any sur-
face. The colour is then identified by its hue, value, and chroma. These attributes are
given the symbols H, V, and C and are written in a form H V/C, which is called the
Munsell notations. Using Munsell notations, each colour has a logical relationship
to all other colours. This opens up endless creative possibilities in colour choices,
as well as the ability to communicate those colour choices precisely. The Munsell
system is the colour order system most widely quoted in food industry literature.
Food products for which the US Department of Agriculture (USDA) recommends
matching Munsell discs to be used include dairy products such as milk and cheese,
egg yolks, beef, several fruits, vegetables, and fruit juices.

Other colour atlases and charts are available for use in the food industry, such
as the Natural Colour System and Atlas, Royal Horticultural Society Charts, etc.
These atlases and charts are used for comparison of a product colour with that of
a standard colour diagram, which is also commonly practiced in the food industry.
The evaluation of potato chip colour is a very good example.

Other colour scales, such as the RGB, CMY, HSI, HSV, HLS etc. also exist, but are
very similar to the CIE system. RGB system is generally used in analysis of colour
of an image, while others are now not in much use for measurement of colour of
food items, however have been dealt in detail in Chap. 3.

2.2.3 Transformation of Colour Values from One System to Others

There are, as we have discussed above, various colour scales. These scales can be
transformed from one to other forms, through simple trigonometric or mathematical
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functions (Eqs. 2.15, 2.16 and 2.17). A colour wheel subtends 360◦, with red-purple
traditionally placed at the far right (or at an angle of 0◦), yellow, bluish-green, and
blue follow counter clockwise at 90, 180, 270◦, respectively (Fig. 2.7).

L = L∗ (2.15)

h0 = tan−1 b∗

a∗ (2.16)

C∗ =
√(

a∗2 + b∗2
)

(2.17)

Arctangent, however, assumes positive values in the first and third and negative
values in the second and fourth quadrants. For a useful interpretation, h◦ should
remain positive between 0 and 360◦ of the colour shed.

Figure 2.8 shows the variation of CIELab values calculated from the oil palm
image. It can be seen that both hue and chroma increase in curvilinear fashion
with ripeness. The small hue and chroma values for unripe class (approximately
7.6◦ and 2.62, respectively) pushed the psychometric point nearer to the origin or
the achromatic zone of colour. These values increased to approximately 48◦ in hue
and 72.1 in chroma for overripe case. This location is equivalent to reddish orange
colour on CIELab space. Hence, the hue-moves further away from the origin and
in the upward direction as the oil palm ripens. These observations are consistent
with human vision and match strongly with the trend of the ripeness locus shown in
Fig. 2.4. Thus hue provides a much better discrimination compared to either RGB
or CIExy values when specifying colours of food materials. Because of this reason
usually hue is chosen for colour inspection by machine.
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Unlike colourimeter, the calculation of hue using machine vision system is math-
ematically involved since it requires colour conversion from RGB to HSl (Hue,
Saturation and Intensity) space. One way of achieving this is by firstly I establishing
a new coordinate system, YIQ. The relationship between the two coordinate systems
is: ⎡

⎣Y
I
Q

⎤
⎦ =

⎡
⎣0.30 0.59 0.11

0.60 −0.28 −0.32
0.21 −00.52 0.31

⎤
⎦
⎡
⎣R

G
B

⎤
⎦ (2.18)

Secondly, h is the rotational angle around the Q, I plane and therefore can be
written as:

ho = tan−1
[

I

Q

]
(2.19)

Equations (2.18) and (2.19) are theoretically valid and they can be found in
almost any textbook on colour and image processing. For practical reasons, h◦ was
calculated according to the Munsell’s colour system, which is given by:

ho =
{

360o − cos−1

(
−0.5 [(R − G) + (R − B)]√
(R − G)2 + (R − B)(G − B)

)}
× 255

360
if B ≥ G (2.20)

or

ho =
{

cos−1

(
−0.5 [(R − G) + (R − B)]√
(R − G)2 + (R − B)(G − B)

)}
× 255

360
if B < G (2.21)

The above equation transforms RGB information from three-dimensional space
to one-dimensional h◦ space. In order to speed-up analysis only h◦ values may be
processed. The hue values shown in this figure are normalized to 255 for the 8-bit
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machine vision system. A different approach is needed to solve this type of problem.
The method investigated for this application was to treat hue distributions as features
and apply multivariate discriminate technique to establish classification as discussed
in Chap. 6.

2.2.3.1 Example of Transformation of CIE/Hunter L a b Values to Chroma
(C) and Hue (h◦)

Assume a practical data given in Table 2.3 for analysis of grapefruit colour after
three heat treatments for quarantine control

Following subprogram may be used to compute the h◦ and C for above data

Data colour
READ (∗ ,∗ ) L, a, b
C=SQRT((a∗ b)+(b∗ b))
THETA=(ATAN(b/a)/6.2832)∗ 360
IF a>0 AND b>=0 THEN h = THETA
IF a<0 AND b>=0 THEN h=180+THETA
IF a<0 AND b<0 THEN h=180+THETA
IF a>0 AND b<0 THEN h=360+THETA
WRITE (∗ ,∗ ) a, b, THETA, h
STOP
END

Table 2.3 Conversion of grapefruit L a b values to hue and chroma values

Colour characteristics

Treatment L a b C h◦

1 76.6 –2.0 56.0 56.0 92.0
2 74.4 2.0 56.0 56.0 88.0
3 63.0 1.2 34.0 34.0 88

2.3 Colour Measurement

It is clear by now that to see colour three things (light source, object and the
observer) are needed. Similarly to measure colour three items are essential: light
source, specimen object and a spectrometer (colourimeter). When we have spec-
trometer or colourimeter the user first goes through the operational manual of the
instrument thoroughly to see the suitability for their specimen object, i.e. sam-
ple. Once suitability is judged then colour scale, illuminant and observer types, if
options are available in the instrument, are selected. CIE standard illuminants are
D50, D55, D65.
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2.3.1 CIE Standard Illuminants

D65 is a commonly used standard illuminant defined by the CIE. It is part of the
D series of illuminants that try to portray standard illumination conditions at open
air in different parts of the world. The subscript 65 probably is used to indicate
the correlated colour temperature of 6,500 K at which it is standardized. D65 cor-
responds roughly to a mid-day sun in Western Europe/Northern Europe, hence it
is also called a daylight illuminant. As any standard illuminant is represented as a
table of averaged spectrophotometric data, any light source which statistically has
the same relative spectral power distribution can be considered a D65 light source.
There are no actual D65 light sources, only simulators. The quality of a simulator
can be assessed with the CIE Metamerism index discussed elsewhere. D65 should be
used in all colourimetric calculations requiring representative daylight, unless there
are specific reasons for using a different illuminant. Variations in the relative spec-
tral power distribution of daylight are known to occur, particularly in the ultraviolet
spectral region, as a function of season, time of day, and geographic location.

2.3.2 CIE Standard Observers

CIE has standardized the observer angle of field of view. Originally this was taken
to be the chromatic response of the average human viewing through a 2◦ angle, due
to the belief that the colour-sensitive cones resided within a 2◦ arc of the fovea of
human eye. Thus the CIE 1931 Standard Observer is also known as the CIE 1931
2◦ Standard Observer. Latter it was experimentally decided that cones were spread
beyond the fovea. The experiments were repeated in 1964 resulting in 1964, 10◦
standard observer. Of the two sets of observer function, the 10◦ standard observer is
recommended for better correlation with average visual assessment made with large
fields of view that is typical in most commercial application.

2.3.3 Instrument Geometry

A third important aspect for selection before actual experimentation is instrument
geometry. The geometry of an instrument defines the arrangement of light source,
sample plane, and detector. There are two general categories of instrument geome-
tries, directional (45◦/0◦ or 0◦/45◦) and diffuse (sphere). Directional geometry
typically has illumination at 45◦ angle and a measurement angle of 0◦ (meaning
from top of the object or from direction perpendicular to the sample). This is called
45◦/0◦ geometry. 0◦/45◦ geometry has illumination at 0◦ and measurement at 45◦.
Both exclude the specular reflection in the measurement. This provides measure-
ments that correspond to visual changes in appearance of the sample due to both
changes in pigment colour and surface gloss or texture. 0◦/45◦ instrument geometry
as I think is the best for the quality determination and monitoring applications.
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The fourth and the last consideration for colour measurement is the preparation
and presentation of the prepared samples as discussed below.

2.4 Sample Preparation and Presentation

Availability of wide range of techniques for measurement of quality parameters,
necessitates to know the suitability of characteristics of samples, i.e. whether it is
liquid, solid, paste, semisolid, transparent, opaque or translucent etc for a particular
technique to be employed. Complete history of the source of sample and a careful
attention to proper instrument operation and consistent sample handling is required
particularly for colour measurement.

2.4.1 Preparing Samples for Measurement

During sample measurement it is important to select them appropriately, using an
established method of sampling, and handling all samples in a consistent manner.

(a) Selecting samples
Sample representative of the entire batch should be selected for measurement.
One should always try to collect as number of varied materials as possible from
different sources whose colour is to be measured and

1. Choose samples that are truly representative of the materials collected from
various sources,

2. prepare samples in exactly the same manner each time they are measured.
Follow standard method, if they exist such as ASTM, BIS etc, and

3. present the sample to the instrument in a standard, repeatable manner.
Results obtained depend on the condition of the sample and their pre-
sentation. For established procedure, make a checklist so that laboratory
personnel may simply check each step. The checklist will also help in
training of new workers.

The sample must also be representative of attributes that are of interest.
If samples are non-representative of the batch or are spoiled, damaged, or
irregular, then the sample may be biased. While choosing a sample, select in
random fashion and examine the sample to avoid biased results. If sampling
procedures are adequate, a different sample selected from the same batch
should result in comparable measured values.

(b) Sample handling and presentation methods
If method of measurement is established so that same procedure is used each

time for specific samples or types of samples, results may be validated for com-
parison purposes. This also insures repeatability of results when measuring the
same sample.
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There are a variety of techniques that can be used in handling various forms
of objects and materials so that the most valid and repeatable measurement of
their appearance results. Consideration must be given to the conditions for sam-
ple preparation that are dependent upon the type of measurement to be made.
For example, when measuring the colour of sample that might spill into the
viewing aperture, one should hold the surface flat by using a cover glass taped
over the aperture window. Other materials being measured for colour may be
chopped up and placed in a glass specimen cell or made into paste and applied
to a glass plate. Sheets and films should be flattened by tension or by a vacuum,
if necessary.

(c) Directional samples
Averaging several measurements with rotation of the sample between read-

ings can minimize directionality. Examination of the standard deviation dis-
played with the average function can guide in selecting the appropriate number
of readings to average.

(d) Non-opaque samples
Non-opaque samples must have a consistent backing. A white un-calibrated

tile is recommended. If the sample is such that it can be folded to give multiple
layers, such as fruit leather, the number of layers for each sample should be
noted.

(e) Translucent samples
Light trapped in a translucent sample can distort the colour. The thickness

of the sample presented should be chosen to maximize the haze or colour
difference.

(f) Granular, powdery and liquid samples
These foods in required quantity may be taken into a petri dish of known

composition and characteristics and covered by other complete transparent and
flat petty dish of known properties. Thickness or depth of the sample should be
so maintained that it presents an opaque mass. Colour readings may be taken
keeping the flat portion of nosecone of the colourimeter on the surface of the
top petty dish ensuring that light thrown by the instrument neither goes out of
the nosecone nor passes through the sample. Part of the light is absorbed by the
sample and remaining portion (reflected from the sample) again comes back to
the nosecone of the instrument for measurement and interpretation. If samples
cannot be prepared to make it opaque (in case of transparent liquid sample)
instruments such as tintometer, photospectrometer etc are better to use.

2.5 Error in Colour Measurement

Every measurement has a chance of error, and colour measurement is not an excep-
tion. It has possibly two source of error: first may be due to instrument and second,
error in measurement. Instrumental errors are based on instrument you are using.
They are enumerated below:

• Errors in absolute scales of diffuse reflectance and 0/45 radiance factor.
• Errors due to differing properties of white reference standards.
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• Non-linearity of the photodetector.
• Incorrect zero level.
• Wavelength scale error.
• Specular beam exclusion error.
• Specular beam weighting error.
• Errors due to non-uniformity of collection of integrating spheres.
• Polarisation errors in the 0/45 geometry.
• Differences in methods for calculating colour data from spectral data.
• Errors due to thermochromism in samples.
• Errors due to the dependence of spectral resolution on band width, scan speed

and integration time.
• Geometry difference between illumination and collection optics within the

specified limits.

At present, there is no method for quantifying the effects of geometry differences
(last item) and applying corrections. The method used to minimise error due to non-
uniformity of collection by integrating spheres, which is to measure matt samples
against matt masters and glossy samples against glossy masters, has not proved very
effective. Integrating sphere errors are due to the fact that the integrating sphere is
not an ideal sphere but a hemispherical sphere. There are also some baffles inside
the sphere which prevent straight light from striking the detector.

Possibilities of error during measurement are due to following reasons:

(i) Nosecone of the instrument and surface of sample is not having good agree-
ment and thus leakage of light

(ii) Samples are non-uniform, translucent or transparent and cause leakage or
escape of light during measurement.

(iii) Improper alignment of colourimeter with sample surface
(iv) Surface of reference plate is not properly maintained and does not give

reference values supplied by the manufacturer
(v) Error due to incorrect type of sample for the instrument

It is now clear that there are significant undetermined errors. Instrumental error,
if any, should be checked and minimized with the help of manufacturer while error
due to measurement will be minimized with due care by the users. Accounted errors
should be measured and analysed properly for reporting.

2.6 Colour Analyses and Modeling

Colour values are generally analysed to see the colour difference in comparison
with the standard specimen, to see the trends of changes with storage or processing
conditions and are modeled sometimes to correlate with the specific attributes of
the products. Colour difference nowadays can directly be obtained using most of
the colourimeter, while for correlating colour values with any attributes; regression
analyses are performed.
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2.6.1 Colour Difference

Colour difference is always calculated as colour values of sample minus that of
standard specimen. If �L∗ is positive than sample is lighter than the standard. If
negative, it would be darker than the standard. If �a∗ is positive, the sample is more
red or less green than the standard. If it is negative, it would be greener or less red.
Similarly if �b∗ is positive, the sample is more yellow or less blue than the standard.
If negative, it would be bluer or less yellow. Now question arises what should be the
acceptable colour difference? The simple answer is the minimum perceptible colour.
What should be the acceptable tolerance? In theory the total colour difference of
1.0 is supposed to be indistinguishable unless samples are adjacent to one another.
Colour difference can be computed using the following formulas.

�L∗ = L∗
2 − L∗

1, �a∗ = a∗
2 − a∗

1, �b∗ = b∗
2 − b∗

1 and

�E∗
ab =

√(
L∗

2 − L∗
1

)2 + (
a∗

2 − a∗
1

)2 + (
b∗

2 − b∗
1

)2 (2.22)

Where subscript 1 is for standard specimen and 2 is for sample and Ea
∗

b is total
colour difference. It is intended to be a single number metric to have decision to
pass or fail the sample. �E itself is not always reliable, because it is non uniform in
colour space. It is therefore better, if can be, to set the tolerance limit for individual
colour values.

2.6.2 Colour Modeling

Modeling is a very useful tool for (relatively) quickly and inexpensively ascertain-
ing the effect of any system and parameters on the outcome of a process or effect of
parameters. The benefit of modeling is to minimize the number of experiments that
need to be conducted to know the effect of individual parameter. Models broadly can
be divided into two types: theoretical mathematical model and empirical or regres-
sion model. The first one becomes more accurate and generalized while the second
one is developed for a particular process or products and its accuracy depend on the
accuracy in experimental values used in development and regression coefficient of
determination of such models. In colour modeling majority of scientists have used
the second type of modeling. Any modeling process can roughly be divided into five
phases.

• First step is problem identification, i.e., what you want to predict using the
developed model

• The second step consists of constructing a mathematical model for the cor-
responding problems. This could be in the form of differential or algebraic
equations.

• In third phase the mathematical model is converted to numerical model by doing
some approximation for easy solution.
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• The fourth phase is the solution of the numerical model. It is generally not
required if modeling is empirical or regression equation.

• Fifth and the final phase is validation of solution or predictions done by the model
in real situations

2.7 Practical Applications

Numerous works on colour analyses and modeling of colour values of food materi-
als are reported in literature, majority of them however are based on colour values
extracted from the specimen’s images. Some of them are covered in the Chap. 3.
This chapter is limited to the most recent work on analyses of colour values acquired
in terms of CIE colour scale and usually using a colourimeter.

2.7.1 Vegetables

The green colour of vegetables changes considerably during heat treatments like
blanching and has been modeled using simplified kinetic mechanisms (Tijskens
et al. 2001). Validation of model indicated that the formation and degradation of
visible colour in vegetables is governed by processes related to the colouring com-
pounds Ž like chlorophyll and chlorophilides, irrespective of the vegetables under
study. This study helped in understanding of chlorophyll degradation and gave gen-
eralized information for any vegetable. But in another study (Martins and Silva
2002) on chlorophyll degradation of frozen green beans using Hunter colour val-
ues a, b and total colour difference in first order and reversible first order models
revealed that colour is a more important parameter to asses frozen greens visual
quality however chlorophyll content is not a good colour index for the same. Trends
of chromatic changes of broccoli under modified atmosphere packaging (MAP) at
20◦C in perforated and unsealed polypropylene film packages for a storage period of
10 days indicated using L∗C∗h∗ colour space diagram that the modified atmosphere
(6.1% O2 and 9% CO2) generated inside the perforated film packages having 4
macro-holes was the most suitable in maintaining the chromatic quality of the broc-
coli heads (Rai et al. 2009). Postharvest life of tomatoes is limited by colour as one
of the important parameters. One colour model correlates the colour level and bio-
logical age at harvest (Schouten et al. 2007). Data were analysed using non-linear
regression analysis and found that biological age of tomato can well be predicted at
farmers’ level and can save lot of postharvest losses of tomato especially during the
glut. Interestingly they also found very good correlation among the colour values
and firmness of tomato.

2.7.2 Fruits

The different combinations of L, a and b colour values have been fitted in different
form of linear models (Table 2.4) and regressed using multiple linear regression,
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Table 2.4 Generalized forms of maturity index (Im) models tested in terms of colour values
(L, a, b)

Model no. Variables Models∗

1 a, b, L Im = C1 + C2a + C3b + C4L
2 a, b Im = C1 + C2a + C3b
3 a, b, a × b Im = C1 + C2a + C3b + C4ab
4 a, b, a2, b2, a × b Im = C1 + C2a + C3b + C4ab + C5a2 + C6b2

5 a2, b2 Im = C1 + C2a2 + C3b2

6 b, a × b Im = C1 + C2b + C3ab

∗C1, C2, C3 are models’ constants.

partial least squares and principal component regressions to maturity index of
mango (Jha et al. 2007, 2009). Precision of prediction using models having the
parameters of a, b and their product (a×b) was verified by sensory evaluation of 55
ripe mangoes and was found that the fruits predicted to be mature could ripe with
high-satisfied taste while the ones predicted to be immature or over mature were
mostly rejected by the panels (Jha et al. 2007). Latter a colour chart for Dusheri
cultivar of mango was developed to read the maturity or ripeness level after taking
the values of a and b of mango in tree using a handheld colourimeter (Fig. 2.9). It is
evident from the study that internal quality parameters of mango (Jha et al. 2006b)
are correlated with the colour values and can be predicted satisfactorily. Similarly
a freshness index/over all quality index for five cultivars of apple was developed in
which colour values are important factors (Jha 2007, Jha et al. 2010, 2010a). The
relationship between colour parameters and anthocyanins of four sweet cherry culti-
vars using L∗, a∗, b∗, chroma and hue angle parameters (Berta et al. 2007) indicated
that chromatic functions of chroma and hue correlate closely with the evolution
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Fig. 2.9 Measurement of maturity and ripeness of mango in tree
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of colour and anthocyanins levels during storage of sweet cherries and that colour
measurements can be used to monitor pigment evolution and anthocyanin contents
of cherries.

Tiwari et al. (2008) used response surface methodology to develop the empirical
model to study the effect of ozonation on orange juice colour degradation and found
that predicted colour values obtained using model equations were in good agreement
with the experimental values. Mathematical equations using L, a, and b developed
by Atilla (2007) for predicting the optimum roasting degree of hazelnut and reported
that a and L values gave high r2 and obtained three-dimensional nonlinear equations
to determine the optimum roasting degree based on time and temperature.

The above paragraphs indicate that significant attempts have been made to model
colour values or combination thereof for prediction of various surface as well as
internal quality parameters of various fruits and vegetables. Very limited work how-
ever on modeling of colour values of other foods such as food grain, oilseeds etc.
are reported for prediction of their quality parameters. The coefficient of determina-
tion of these models may not be sometimes as high as it is expected. In such cases
one may try to obtain the complete spectra of specimen instead of individual colour
values (L, a, b etc.) in the visible range of wavelength (400–700 nm) and develop
models using the absorption or reflectance data (Jha et al. 2006a, 2005).
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Chapter 3
Computer Vision Systems

Sundaram Gunasekaran

Food quality is of paramount consideration for all consumers, and its importance is
perhaps only second to food safety. By some definition, food safety is also incor-
porated into the broad categorization of food quality. Hence, the need for careful
and accurate evaluation of food quality is at the forefront of research and devel-
opment both in the academia and industry. Among the many available methods
for food quality evaluation, computer vision has proven to be the most powerful,
especially for nondestructively extracting and quantifying many features that have
direct relevance to food quality assessment and control. Furthermore, computer
vision systems serve to rapidly evaluate the most readily observable foods qual-
ity attributes – the external characteristics such as color, shape, size, surface texture
etc. In addition, it is now possible, using advanced computer vision technologies, to
“see” inside a food product and/or package to examine important quality attributes
ordinarily unavailable to human evaluators. With rapid advances in electronic hard-
ware and other associated imaging technologies, the cost-effectiveness and speed
of computer vision systems have greatly improved and many practical systems are
already in place in the food industry. Thus, many of the quality evaluation opera-
tions are now done in a fairly routine basis at speeds matching the production and
high throughput requirements of the food industry. As the technology matures and
finds more mainstream applications, further growth will be in improving and speed
under challenging food processing environments – dusty, wet, hot etc. Turn-key
applications that would require only moderate operator intervention will be further
developed, which can operate trouble-free for prolonged durations. New advances
in terms of non-visible defect detection and hyperspectral imaging will continue to
evolve and bring additional computer vision innovations to the food industry, which
would require intensive research and developmental work by many new scientists
and technologists.
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3.1 Computer Vision System

Computer vision, also known as machine vision or computer image processing, is
the science that develops the theoretical and algorithmic basis by which useful infor-
mation about an object or scene can be automatically extracted and analyzed from
an observed image, image set, or image sequence. It is a branch of artificial intel-
ligence technique and deals with simulating human vision. We see an object and
perceive its optical characteristics based on the reflected light received from the
object being illuminated by natural or artificial light. Thus, in essence the task of a
computer vision system is to simulate human visual perception process illustrated in
Fig. 3.1.

The essential components of a typical computer vision system are:

a. computer, which is analogous to the human brain,
b. sensor or camera, which is analogous to the human eyes,
c. illumination system, which facilitates image capture,
d. frame grabber/digitizer, which digitizes the image information from the cam-

era, and
e. monitor(s), which displays the acquired and/or processed images.

The use of digital cameras eliminates the need to use a separate frame grabber in
the computer. A schematic of a computer vision system is presented in Fig. 3.2.

Fig. 3.1 Schematic illustration of the process of human vision perception
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Fig. 3.2 Basic steps in computer image processing (Panigrahi and Gunasekaran 2001)

A typical computer vision task involves a series of steps, which can be grouped
into three major tasks as depicted in Fig. 3.3. These include:

a. image acquisition, which deals with such issues/components as illumination,
camera, digitizer, etc.,

b. image processing, which encompasses preprocessing, segmentation, and feature
extraction, and

c. image understanding, which entails image recognition and interpretation.

Each of these sub-tasks is as important as the other two, and the success of a
good computer vision system, then depends on the success of all these sub-tasks

Fig. 3.3 A typical computer vision system (Panigrahi and Gunasekaran 2001)
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working in harmony. For example, an image acquired with utmost care will not yield
useful information if faulty processing methodologies are used; and if interpretation
of properly acquired and processed image is erroneous, all the time and money
invested in image acquisition and processing becomes worthless. Thus, all these
sub-tasks are closely linked with knowledge base available about the system studied
and the image features that are relevant for evaluating product quality of interest.

3.2 Image Acquisition

Capturing image for processing is the foremost activity in machine vision system. It
requires outmost care and manner which can be used repeatedly and image should
be without any shades. A good light source or illumination system and a camera are
important gadgets for acquiring a good digital image for processing.

3.2.1 Digital Image

A digital image is a spatial representation of an object or scene. A monochrome
image is a two-dimensional (2-D) light-intensity function, I(x, y) where the value or
amplitude of intensity I at spatial coordinates (x, y) is typically proportional to the
radiant energy received in the electromagnetic band to which the sensor or detector
(the camera) is sensitive in a small area around the point (x, y). As far as the com-
puter is concerned, the image is a matrix (x, y) of numeric values, each representing
a quantized image intensity value. Each matrix entry is known as a pixel (short for
picture element). The total number of pixels in an image is determined by the size
of the 2-D array used in the camera. Most commonly used cameras have a spatial
resolution of 1024 × 768 or better; the higher the resolution, the larger the image
size. For example, camera spatial resolution of 1280 × 960 produces an image size
of 1 Mb. The recent explosion in digital technology now makes possible to have
image sizes greater than 12 Mb. The intensity of a monochrome image is known
as gray level. The limit on gray level is that it is positive and finite. The gray level
interval (from low to high) is called a gray scale. A common practice is to shift this
interval numerically to the interval (0, L) where the lowest value 0 represents pure
black and the maximum value L represents pure white. All intermediate values are
shades of gray varying continuously from black to white. For example, when an
8-bit integer is used to store each pixel value, gray levels range from 0 to 255 (i.e.,
20−1 to 28−1).

Inferring an object’s size, shape, position, orientation and other attributes from
the spatial distribution of gray levels requires the capability to infer which pixels
belong to the object and which do not. Then, from the pixels that belong to the
object, it requires the capability to identify the object features of interest. Algorithms
have been developed to translate the gray levels of a pixel in a way that accentuates
the desired information.
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In the case of color images, the image intensity is represented by three compo-
nents denoting red, green, and blue (in the RGB system) or hue, saturation, and
intensity (in the HSI system). Various color scales and relationships among them
have already been discussed in Chap. 2 and further details of the color digital image
are presented in a latter section.

3.2.2 Illumination

The prerequisite for any vision application is that the features to be examined can be
seen in the image. Therefore, despite all the progress in image analysis/processing
algorithms, the performance of the camera and illumination subsystem can greatly
affect the success and reliability of a computer vision application. A well-designed
lighting and illumination system is essential for the accuracy and success of image
analysis by enhancing image contrast. Good lighting will improve feature dis-
crimination and reduce processing time and hardware requirements. Thus, it is
almost always cheaper to improve lighting than to enhancing image processing
algorithms. Food materials are nonhomogeneous, randomly oriented; and may be
dirty. Furthermore, singulation of objects, i.e., the ability to present objects one at
time under the camera for image acquisition is often difficult. Therefore, we have
to cope with objects that touch, overlap, and someway occlude hiding and/or cast-
ing a shadow during image acquisition. Overall, computer vision applications in the
food industry are faced with unusual challenges, compared to those in other indus-
tries, for example in the automobile industry, when designing proper illumination
systems.

Selecting appropriate light sources and identifying suitable configurations for
the light sources so as to obtain the highest quality images is the essence of proper
illumination for a computer vision system. The geometry of the imaging system
should be well known. This requirement is especially important for dimension mea-
surements. When the viewing geometry is more complicated, either because of the
non-planar image surface or non-perpendicular imaging angle, measurements are
more difficult and require determining the geometry of the imaging system. Most
lighting arrangements can be grouped as either front-lighting or back-lighting. The
front-lighting option (Fig. 3.3) is best suited for obtaining surface characteristics of
an object, while back-lighting (Fig. 3.4) is best for subsurface features. For exam-
ple, using back-lighting internal stress cracks in corn kernels (Gunasekaran et al.
1987), watercore in apples (Upchurch and Throop 1994), and cracks in eggs (Elster
and Goodrum 1991), automatic recognition of Fuji apples at harvest (Bulanon et al.
2002), and separating black walnut meat from shell (Jin et al. 2008). The appropri-
ateness of a well-designed illumination system can be evaluated by the suitability of
acquired images for successful further processing. The most commonly used illumi-
nation systems and their associated advantages and disadvantages are summarized
in Table 3.1.

A wide variety of light sources and lighting arrangements are available. Most
general computer vision applications are implemented using either incandescent or
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Fig. 3.4 A backlit imaging system (a) and it’s schematic (b) used for separating black walnut
meat from its shells. L1 and L2 represent the range between which rays penetrate the glass stage
covered with light diffusion film. The camera captures only a part of the scattered light from both
the sample and the diffusion film (Jin et al. 2008)

florescent lighting. However, use of polarizers and polarized light can improve the
light intensity contrast, eliminate unwanted glare and minimize diffuse reflectance.
This is especially suitable for transparent and translucent objects. Since an object’s
color depends on illumination, color measurements are easily affected by changes
in the color temperature of an incandescent bulb. Thus, measuring brightness infor-
mation, such as density or color values, requires a very stable illumination source
and sensor. Bright specular reflections may cause saturation, blooming or shifts in
image magnification. Sometimes the color of two objects will appear similar under
one light source but much different under another. So, a number of light sources
of different spectral responses must sometimes be tried when attempting to maxi-
mize image contrast for the best possible results. For multiple or brightly colored
fruits and vegetables, a multiple spectral lighting system is needed to assure accu-
racy over a large spectral range. Spectral reflectance properties of products should
be considered when developing an appropriate illumination system (lighting and
viewing geometries, light sources and sensor components) to obtain maximum dis-
crimination power. The spectral output of different light sources can be obtained
from respective manufacturers.

For on-line evaluations where speed of operation becomes an important criterion,
global uniformity (i.e., the same type of feature should look the same wherever it
appears in the image) is essential. This means that brightness and color values are
the same and thus it requires uniform, consistent image illumination. Furthermore,
the optomechanical construction of a camera and illuminator should withstand envi-
ronmental conditions such as mechanical vibrations and dust common in industrial
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Table 3.1 Comparison of different illumination systems (Courtesy, Machine Vision Society of
Manufacturing Engineers, Dearborn, MI)

System Advantages Disadvantages

Diffuse Front Illumination • Soft, fairly non-directional
• Reduces glare on metallic

surfaces
• Relatively easy to implement

• Edges of parts may be fuzzy
• Low contrast on monocolor

parts

Directional Front
Illumination

• Easy to implement
• Good for casting shadows
• Fibre optic delivery in many

configurations

• May create unwanted
shadows

• Illumination is uneven

Light Tent • Eliminates glare
• Eliminates shadows

• Must surround workpiece
• Can be costly
• Size can be a problem

Collimated Back Lighting • Produces very sharp edges
for accurate gauging

• Difficult to implement if
material handling interferes

• May be too bright for
camera without neutral
density filters

Dark Field Illumination • Illuminates defects
• Provides a high contrast

image in some applications

• Does not illuminate flat
smooth surfaces

Diffuse Backlighting • Easy to implement.
• Creates silhouette of part
• Very high contrast image
• Low cost

• Edges of parts may be fuzzy
• Difficult to implement if

material handling interferes

Low Angle Illumination • Shows topological defects • Single source will produce
uneven lighting across
surface

Polarized Front Illumination • Eliminates glare • Reduces amount of light
into the lens significantly

Polarized Backlighting • Highlights certain types of
features or defects in
translucent materials

• Relatively easy to implement

• Only works for birefringent
features.

• Edges of parts may be fuzzy
• Difficult to implement if

material handling interferes
Strobed Illumination • Crisp image with no blurring

• Can be area, fibre optic, or
light emitting diode (LED)

• Very long lifetime

• More costly than standard
sources

• Requires accurate timing
with camera

• Must be shielded from
personnel

Structured Light • Shows 3-D information
• Produces high contrast on

most parts
• Laser frequency can be

easily band pass filtered

• Lasers above 5 mW pose
safety issue

• Hard to image on some
metals and black rubber

Coaxial Lighting • Eliminates shadows
• Uniform illumination across

FOV

• Complicated to implement
• Harsh illumination for shiny

surfaces
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applications. Strobe lighting is useful for on-line applications to virtually arrest the
motion to aid in acquiring images without worrying about image “blur” due to image
motion. The strobe repetition rate should be selected to match the speed of object
motion. A strobe unit designed for machine vision use must be able to withstand
continuous operation with repetition rates of 30 times a second.

3.2.3 Camera

The camera is the sensor for capturing the image information in a computer vision
system. It functions similar to the eyes in human vision. Charge coupled device
(CCD) cameras have been used for nearly all computer imaging applications since
their introduction in the early 1960s. There have been many developments based
on the CCD technology. The complementary metal-oxide semiconductor (CMOS)
technology was introduced in the mid-1990s. Both CCD and CMOS technologies
are based on arrays of light-sensitive pixels (or photosites), which gather photons
of light and convert them to a visible image. How this process works has profound
influence on the qualities and capabilities of the image sensors. Many varieties of
black-and-white and color cameras are commercially available. The optical reso-
lutions available with CMOS sensors have improved tremendously over the last
few years. Resolutions are now high enough and run at fast enough frame rates
to enable electronic pan, tilt, and zoom in cameras. Because of how they capture
light, CMOS imagers offer lower dark (junction) current and enable applications
like high-definition television (HDTV) where CMOS image sensors capture con-
siderably better pictures (in terms of signal-to-noise ratio and dynamic range) at
HDTV rates. CMOS architecture allows for random pixel access and window-of-
interest readout for applications requiring image compression, motion detection, or
target tracking.

When selecting an appropriate camera, it is important to match the requirements
for a particular application with capabilities of a camera. In addition, the following
parameters are also critical when selecting a suitable camera: resolution, signal-to-
noise ratio, signal output, minimum illumination required, analog or digital output,
and additional camera adjustment capabilities.

3.3 Image Processing

The basic steps in image processing are image preprocessing, segmentation, and fea-
ture extraction (Fig. 3.3). The purpose of image preprocessing or image conditioning
is to enhance the quality of the acquired image, which is often degraded by distortion
and noise in the optical and electronic systems of the input device. Image prepro-
cessing steps include one or more of the following: noise reduction, geometrical
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correction, gray-level correction and correction of defocusing. These steps are
typically applied uniformly and are context-independent.

Image segmentation refers to the process of partitioning a composite image into
component parts or objects. Proper segmentation is very critical. Often, the first
step in assuring successful segmentation is control of background uniformity. For
monochrome images, segmentation normally is performed by examining the gray
scale histogram – a bar chart of the number of pixels in the image at different
gray levels. Segmentation algorithms are based on discontinuity or similarity of
the gray-level values. Discontinuities in image gray scale indicate sharp changes
in image brightness such as the background or the object. In general, autonomous
segmentation is one of the most difficult tasks in image processing. A real-time
adaptive thresholding is preferably used for on-line evaluation with line-scan cam-
eras. Adaptive thresholding algorithms of x-ray images for quarantining selected
fruits are presented in Jiang et al. (2008)

Segmented image constitutes raw pixel data of the image boundary or a region
of interest in the image. The image representation as boundary or region should be
selected based on the intended application. For example, boundary representation is
appropriate for image size and shape characterization; the region representation is
suitable for evaluating image texture and defects.

The feature extraction step is the key in deciphering require image data from the
composite image information. Feature extraction facilitates obtaining some quan-
titative information of interest, which is then processed in conjunction with the
knowledge base available for the feature studied. The “knowledge” of the features
in consideration is also critical at this stage in designing appropriate algorithms to
extract information pertaining to the desired feature(s).

3.3.1 Knowledge Base

At all steps during image processing, interaction with the knowledge base enables
more precise decision-making. Thus, knowledge about the system being stud-
ied should be an integral component of an image processing system. Without an
appropriate knowledge base, the vision system cannot “think” and make intelligent
decisions (Gunasekaran and Ding 1994). This problem is further complicated by the
fact that the output of a vision sensor is a complex combination of many parameters:
size, shape, texture, color, etc. Some requirements for intelligent decision making
are: (1) ability to extract pertinent information from a background of irrelevant
details, (2) ability to learn from examples and generalize this knowledge and apply
it in different circumstances and (3) ability to make inferences from incomplete
information.

Expert systems, neural networks and fuzzy logic are some methods of building
knowledge bases into computer memory, enabling recognition and interpretation
of image data and to provide on-line control capabilities. The image understand-
ing part of the computer vision system is inherently tied with the completeness and
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accuracy of the valid knowledge base available for the product(s) and the feature(s)
being studied. The successful image understanding step will lead to the ultimate
goal – translating image data into information useful for further action such as pro-
cess/machine control. Applying neural networks and/or fuzzy logic in conjunction
with computer vision systems is rapidly growing and commercial systems are avail-
able for quality sorting of fruits and vegetables (Benhanan et al. 1992, Blasco et al.
2007, Ozer et al. 1995, Riquelme et al. 2008, Saito et al. 2003).

3.3.2 Pattern Recognition

A pattern is a quantitative or structural description of an object or some other entity
of interest in an image. In general, a pattern is formed by one or more image features.
Pattern recognition by computer involves techniques for assigning patterns to their
respective classes automatically and with as little human intervention as possible.

In machine recognition of image patterns and shapes, generally two approaches
are used: (1) statistical or decision-theory approach in which features are extracted
and subject to statistical analysis and (2) syntactic or structural approach in which
image primitives are selected and subjected to syntax analysis.

The statistical or decision-theory approach is the traditional approach to pattern
recognition that has been studied since the 1960s. The system (Fig. 3.5) consists of
two parts, analysis and recognition. In the analysis part, a set of image features that
are judged to be non-overlapping (or as widely apart as possible) in the feature space
is chosen (Wong 1994). A statistical classifier (e.g., based on a fuzzy logic or neural
network system) is designed and trained with the chosen set of features to obtain
the appropriate classifier parameters. In the recognition part, an unknown image
is filtered or enhanced in the preprocessing stage, followed by feature detection
and classification. This approach, however, does not describe or represent structural
information in a pattern which is often desirable or necessary for certain applications
as, for example, when the number of classes is so large or the given pattern is very
complex. In these circumstances, the number of features required is probably very
large, making the statistical approach impractical.

In the syntactic or structural approach, complex patterns are decomposed into
subpatterns and recursively into sub-subpatterns and so on, until meaningful prim-
itive patterns (analogous to features in the statistical approach) can be reliably
extracted from them (Wong 1994). This approach allows us to describe and repre-
sent the input pattern, in addition to classifying it into a specific class. This approach
has attracted much attention in the recent development of pattern recognition
research.

3.3.3 Image Morphology

Image morphology refers to the geometric structure within an image which includes
size, shape, particle distribution and texture characteristics. A general approach in
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Fig. 3.5 Pattern recognition systems: (a) statistical and (b) syntactic (Panigrahi and Gunasekaran
2001)

analyzing image morphology is to transform the given image to another where the
information represented in the transformed image is more easily understood. For
example, investigations of the shape of objects in a binary image often use thinning
algorithms. Reducing an object to a minimal set of pixels representing an invariant
of the object’s geometrical shape is called thinning. A skeleton is a line-thinned cari-
cature of the binary image that summarizes the shape and conveys information about
its size, orientation and connectivity (Gonzalez and Woods 1992). An image result-
ing from the thinning process has fewer black pixels representing the object and is,
therefore, easier to manipulate. An example of thinning operation is illustrated in
Fig. 3.6. If the main goal of thinning is data reduction and exact reconstruction of
the original image is not essential, many techniques are available that yield accept-
able skeleton representations. However, if close or exact reconstruction is desired,
care must be taken in choosing an appropriate algorithm.

The morphological approach has been successfully applied to a wide variety
of problems. The power and usefulness of some basic morphological processing
algorithms have been illustrated by McDonald and Chen (1990). Morphological pro-
cessing for isolated, non-touching objects is easily done using commercial packages
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a b c 

Fig. 3.6 Illustration of morphology evaluation of an object (a), its outline (b), and line-thinned
image (c) (Di Ruberto and Cinque 2009)

which can perform object counting and dimensional measurements, etc. However,
touching and overlapping objects pose problems unique to the products being exam-
ined. Thus separate algorithms and procedures need to be developed. McDonald and
Chen (1991) developed a morphological algorithm to separate connected muscle
tissues in an image of beef ribeyes. Ni and Gunasekaran (1998, 2004) used image
thinning in conjunction with a syntactic approach to evaluate the morphology and
integrity of touching and overlapping cheese shreds (Fig. 3.7). The algorithm per-
formed very well with less than 10% error in individual shred length measurements.

(a) (b) (c)

Fig. 3.7 Morphological image processing for evaluating integrity of cheese shreds. (a) Cheese
shreds, (b) binary images of cheese shreds, and (c) line-thinned image of cheese shreds (Ni and
Gunasekaran 1998)
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Evaluation of an image skeleton was also used to characterize granular foods that
may agglomerate (Ros et al. 1995). Smolarz et al. (1989) used morphological image
processing to define structural elements of extruded biscuits and then to discrimi-
nate biscuit type. Morphological features have been used to separate touching grain
kernels (Anami et al. 2009, Zhang et al. 2005) and to classify cereal grains such
as wheat, barley, oats, and rye (Majumdar and Jayas 2000a, b). Dell’Aquila (2009)
used external and internal morphology of seeds determined from their X-ray images
to sorts them according to their physiological quality.

3.3.4 Shape Feature Extraction

Food material shape feature is very useful as it is often closely related to quality.
Due to the demands of high quality, automated food shape inspection has become
an important need for the food industry. Due to large inhomogeneities of food
materials, however, such invariant shape features cannot be used to detect local
defects. In many cases, therefore, the invariant feature extraction methods cannot
accurately distinguish between damaged and undamaged categories. Panigrahi et al.
(1995) evaluated invariant moments and fractal geometry for shape classification of
corn. Variant shape extraction methods (position, orientation and scale) are gaining
popularity for food material shape inspection (Lai et al. 1986).

In the variant method, the edge contour of the inspected object is transformed to
a given position, orientation and scale. Then the shape features are extracted from
every local edge point. Statistical model-based variant feature extraction method has
been used for shape inspection of corn kernels. This was based on a reference shape,
a transformed average shape of some undamaged corn kernels. After the reference
shape was obtained, the shape of kernels being inspected was compared with the
reference shape.

Ding and Gunasekaran (1994) proposed a new algorithm with improved ability
to adjust object location, orientation and scale to determine the edge contour of
a number of food materials for shape evaluation. This multi-index active model-
based feature extractor is based on a reference shape comparison principle. The
basic idea is to first transform and adjust a set of undamaged training objects to a
certain location, orientation, and scale to obtain the “average of transformed good
object edge contour” known as the reference shape. The second step is to transform
and adjust each object to the same location, orientation, and scale. Then the shape
of the objects under inspection can be compared with the reference shape to identify
any significant deviations. Corn kernel and animal cracker shape inspection is used
as example food materials to illustrate this method. Some recent advances in object
contour and shape detection are available in literature (Ferrari et al. 2006, Schindler
and Suter 2008).

Beyer et al. (2002) evaluated the image contour shape of sweet cherry (Prunus
avium L.) Using digitized images of individual fruit in front view (onto ventral
suture) and side view, they described the contour of Sam variety of sweet cherry
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Fig. 3.8 Shape contour measurement. (a) Overall image data acquisition scheme, (b) scatter plot
of left-half of Sam variety of mature sweet cherry fruit contour in x-z perspective (front view), and
(c) same as (b) but normalized for fruit height (Beyer et al. 2002)

fruit in front view (x, z-perspective) (Fig. 3.8). Their results are useful for various
applications including for such determinations as: fruit symmetry, changes of fruit
shape with development, effects of environmental factors (year, site, etc.) or differ-
ences in fruit shape among cultivars. For example, they determined that the shape of
a single cultivar did not differ significantly during later stages of fruit development
(Fig. 3.9), between two different sites or two different growing seasons. However,
fruits of different cultivars are significantly different. Furthermore, the relative depth
of the pedicel cavity and the height to width ratio of fruit are two major determinants
of sweet cherry fruit shape.

3.3.5 Image Texture

Texture is characterized by the spatial distribution of gray levels in a neighborhood.
For most image processing purposes, texture is defined as repeating patterns of local
variations in image intensity, which is too fine to be distinguished as separate objects
at the observed resolution. Thus, a connected set of pixels satisfying a given gray-
level property which occurs repeatedly in an image region constitutes a textured
region. A simple example is a repeated pattern of dots on a white background.

Image texture can be used to describe such image properties as smoothness,
coarseness, and regularity (Gonzalez and Woods 1992). There are three approaches
to study image texture characteristics: statistical, structural and spectral. Statistical
methods are used extensively in texture classification, identifying the given textured
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Fig. 3.9 Effect of development on the average shape (front-view) of Sam variety sweet cherry on
different days (the number in each frame) after full bloom. The frames identified with same letters
are not statistically different (Beyer et al. 2002)

region from a given set of textured classes. Image data such as mean, standard devi-
ation and moment (a measure of the frequency of occurrence of pixels of a given
gray level within a particular image region) are used to study smoothness, coarse-
ness, graininess, etc. Techniques are also available to study additional image texture
characteristics such as entropy (randomness) and uniformity.

Structural techniques of image texture analysis deal with the arrangement of
image primitives such as the description of texture based on regularly updated par-
allel lines. Spectral methods are based on the Fourier transform to study the global
periodicity of an image. For example, presence of high frequencies in the frequency
image may represent a coarse texture. Gonzalez and Woods (1992) have further
described the structural and spectral methods in some detail.

An overview of image texture analysis methods are presented in Fig. 3.10. Many
of these methods have been reviewed in detail by (Zheng et al. 2006). Image texture
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Fig. 3.10 Overview of different image texture analysis methods (Zheng et al. 2006)

analysis can be performed using either monochrome or color image data. Zayas
(1993) used gray-scale image characteristics to study bread crumb grain properties.
Tan et al. (1994) used HSI space image texture properties to evaluate corn extrudate
characteristics. Image texture of meat samples of different tenderness have been
reported to differ allowing computer vision-based evaluation of tenderness in meat
(Tan 2004). Image texture of beef muscles is considered to be correlated with that
of beef tenderness (Fig. 3.11).

3.4 Color Image Processing

Color is an important property of biological and food products as it plays a major
role in evaluating their quality. The basic differences between a gray level and a
color computer imaging system are in the camera, frame grabber, and display moni-
tor – camera should be a color camera; frame grabber/digitizer should be capable of
handling color information; and display monitor should be a color monitor capable
of displaying color information.
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(a) (b)

Fig. 3.11 Image texture (saturation images) of a more tender (a) and less tender (b) meat (Tan
2004)

Color computer vision systems represent image information in terms of color
coordinates. The Commission Internationale de l’Eclairage (CIE) defined three new
hypothetical light sources, x, y, and z, which yield positive matching curves. If
we are given a spectrum and wish to find the corresponding X, Y, and Z quan-
tities, we can do so by integrating the product of the spectral power and each
of the three matching curves over all wavelengths. The weights X, Y, Z form the
three-dimensional CIE XYZ space. Often it is convenient to work in a 2D color
space.

This is commonly done by projecting the 3D color space onto the plane X + Y +
Z = 1, yielding a CIE chromaticity diagram. The projection is defined as:

x = X

X + Y + Z
(3.1)

y = Y

X + Y + Z
(3.2)

z = Z

X + Y + Z
(3.3)

3.4.1 RGB Color Space

The RGB space is a three-dimensional color space whose components are the red,
green, and blue intensities that make up a given color. The additive color model
used for computer graphics is represented by the RGB color cube, where R, G, and
B represent the colors produced by red, green and blue phosphors, respectively. For
example, scanners read the amounts of red, green, and blue light that are reflected
from or transmitted through an image and then convert those amounts into digital
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(a) (b) (c)

Fig. 3.12 Different color spaces used in representing color images. (a) RGB, red-green-blue; (b)
HLS, hue-lightness-saturation; and (c) HSV, hue-saturation-value

values. Information displayed on a color monitor begins with digital values that
are converted to analog signals for display on the monitor. The analog signals are
transmitted to the phosphors on the face of the monitor, causing them to glow at
various intensities of red, green, and blue (the combination of which makes up the
required hue, saturation, and brightness of the desired colors). Any color expressed
in RGB space is some mixture of three primary colors: red, green, and blue. Most
RGB-based color spaces can be visualized as a cube as in Fig. 3.12, with corners
of black, the three primaries (red, green, and blue), the three secondaries (cyan,
magenta, and yellow), and white. The RGB color cube sits within the CIE XYZ
color space. The groups of color spaces within the RGB base family include: RGB
spaces and HSV and HLS spaces.

In RGB system, the three color components are the three primary or fundamen-
tal colors red, green, and blue, which are light generated by a monochromatic light
source at 700 nm, 435.8 nm and 546.1 nm, respectively. Different combinations of
these primary colors produce various secondary colors, the spectral primary system
RGB to define any color by combining red, green, and blue. The chomaticities r,
g, and b (normalized red, green and blue) are defined similar to x, y, and z above
with R, G, and B values used in place of X, Y, and Z values, respectively. RGB-
based color spaces are the most commonly used color spaces in computer graphics,
primarily because they are directly supported by most color displays and scanners.
RGB color spaces are device-dependent and additive. RGB technology is fine for
acquiring, storing and displaying the image, but processing the image in RGB space
is computationally intensive and algorithmic implementation is complex (Travis
1998). Moreover, RGB color coordinate is a poor way to represent images based
on human vision because people do not think of color in terms of combinations of
red, green and blue. RGB processing mimics human color perception so poorly that
some operations leave objectionable color artifacts and cannot be implemented as
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RGB images at all. For example, examining the red information of the RGB image
of yellow-colored food does not help determine in any meaningful way an object’s
color.

3.4.2 HSV and HLS Color Space

HSV (hue, saturation, and value) space and HLS (hue, lightness, and saturation)
space are transformations of RGB space that can describe colors in terms more nat-
ural to an artist. HSV is sometimes also known as HSB space, for hue, saturation, and
brightness. These two spaces can be thought of as being single and double cones, as
shown in Fig. 3.12. The value component in HSV describes the brightness. In both
color spaces, a value of 0 represents the absence of light, or black. In HSV space, a
maximum value means that the color is at its brightest. In HLS space, a maximum
value for lightness means that the color is white, regardless of the current values of
the hue and saturation components.

CMYK is another color system which uses Cyan, Magenta, and Yellow as its
primary colors, and is commonly used in color printing industry. This system is
based on light that we see reflected off surfaces such as the printed page, and these
are the colors of ink used by the printing industry. From these, all of the other colors
can be made, and when they are mixed together in equal parts, they make black.
Printers always add black ink (the shorthand for which is “K”) as a fourth color
because it comes out darker, and it is more efficient to print one spot of black than
to print the three primary colors on top of each other. It is best if RGB computer
display images are converted into CMYK images for printing purposes.”

3.4.3 Color Image Processing Applications

Appropriate color camera and digitizers are definitely very critical for color imaging
systems. As emphasized earlier selection of the appropriate light source (illumi-
nation source) is very critical. In addition to several other considerations when
selecting a gray level-based imaging system, two more factors need to be taken
into account when selecting light sources, especially for the color imaging system:
color rendering index and color temperature/chromaticity of the light source.

Calibration of a color computer imaging system is essential to handle, process,
and display color precisely. However, many end users or developers, unfortunately,
have not practiced color calibration. Many times, it is assumed that all components
are working satisfactorily. In many cases, however, a small deviation of calibration
of one component can introduce errors in the final result provided by the color com-
puter imaging. For example, if a color camera looking at an orange puts out the color
information as yellow or red instead of orange, then serious error is introduced.

Color computer imaging technology is extensively applied to numerous food-
related applications which can be broadly grouped into color evaluation, defect
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detection and texture evaluation of different food products including dairy, meat,
fish, fruit, vegetables and others. This variety of applications, however, presents
challenging color image processing issues. These applications can be discussed
under two broad image processing categories – color segmentation and image
analysis and understanding.

3.4.4 Color Segmentation

In processing color images, segmentation refers to isolating or separating a homoge-
nous or desirable region of interest in the image. Removal of a background from an
image is a simple example. Segmentation is also used to identify and quantify all
sorts of defects, diseases, and other abnormalities. The segmentation problem in
color image processing is more complex than in the gray-scale applications. A color
image is comparable to three gray-level images having color information contained
in three color components, e.g., red, green and blue. Thus, segmentation is more
time-consuming and involved for color images. Of course, the level of complex-
ity depends significantly on a given application. The inherent random variability of
quality attributes of raw materials (agricultural products) for food products further
adds to the complexity of segmentation of color images of many food products.

Thresholding based on histogram is used for applications that separate back-
ground from the object or separate two or three dissimilar contrasting regions in the
image. One requirement is that there should be a good amount of color difference
among the regions to be segmented. Sometimes investigation is necessary to choose
the appropriate color coordinate for performing segmentation. To evaluate the color
of French fries, for example, removing background information from the French
fries was required (Chtioui et al. 1998).

Use of adaptive thresholding techniques for a histogram-based segmentation is
also recommended for food images. They promise higher accuracy and robust-
ness than a fixed (global) threshold. Adaptive thresholding techniques can adapt
to changes in lighting and spectral characteristics of an object as well as the back-
ground. Therefore, they are well suited for real-world applications and most food
quality evaluation applications. The description of different adaptive thresholding
techniques including other traditional image segmentation techniques such as region
growing, clustering and region merging can be found in literature (Chtioui et al.
1998, Panigrahi et al. 1995).

The neural network technology, with its associated advantage of being fault-
tolerant intelligent, has been used for unsupervised segmentation of color images
(Pandya and Macy 1996). Unsupervised neural networks are best suited for
real world images. They do not need supervision or teacher as do supervised
neural networks in order to conduct segmentation. Self organizing map (SOM)
has been extensively studied for unsupervised image segmentation. This type of
neural network can work for multidimensional data such as a color image hav-
ing three-dimensional color information. It preserves the image topography and
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simultaneously maintains its spatial relationships. Though applications of SOM
networks or other neural networks for food image segmentation have not been
reported extensively in the literature, the success of their applications on natural
color images (Iivarinen 1998) and other multidimensional pattern recognition tech-
niques (Uchiyama and Arbib 1994) clearly reinforces the potential success of neural
network technologies for image segmentation of food products.

3.4.5 Image Analysis and Understanding

In analyzing color images of food, the exact techniques for image analysis and
understanding differ from application to application. For example, an image anal-
ysis and understanding algorithm developed for color classification of corn might
not work fully with high accuracy for potatoes or potato products. This pro-
vides additional challenges and requires investigation for developing successful
applications.

Selecting appropriate color coordinates for analyzing a given food color image
is very critical. For color evaluation of edible beans, Chtioui et al. (2003) evaluated
both RGB as well as HLS coordinates. Both sets of coordinates provided accuracy
up to 100% in classifying beans in three color groups. To identify and quantify fat
in meat images, RGB color space was used with a rectangular prism and Mahalano
bois distance criteria (Gerrard et al. 1996). RGB color coordinates were used for
locating citrus fruits for harvesting (Jimenez et al. 2000) and RGB color space was
utilized along with Bayes’ decision theory for image partitioning and subsequent
color classification of stoned fruits (Singh et al. 1993).

The potential of artificial intelligence technologies, such as neural networks and
fuzzy logic, has also been explored for image classification and understanding pur-
poses. Both neural network and fuzzy logic techniques are intelligent, adaptive and
fault-tolerant (Du and Sun 2006) and they complement each other. Neural networks
are a new paradigm of computing or information processing inspired by biological
models. For color classification of French fries, Chtioui et al. (1998) condensed both
hue and saturation histogram information by two separate back-propagation neural
networks. The condensed color information was then fed as input to another neu-
ral network. The maximum color classification accuracy obtained by this modular
network was 96% for classifying a given French fry sample into three color groups
(Chtioui et al. 1998). (In this case, neural networks were used in a modular format.)
Similarly, another probabilistic neural network was used for color classification of
French fry samples into three color groups: medium, light and dark. A few multi-
structure neural network classifiers were used to classify four varieties of pistachio
nuts with an average classification of accuracy of 95.9% (Ghazanfari et al. 1996).
Detection of blood spot and dirt staining on eggs was performed with an accuracy
of 85.6 and 80%, respectively, using neural networks (Patel et al. 1998).

Similarly, fuzzy logic is another intelligent information processing mathematical
paradigm for dealing with uncertainty, vagueness and ambiguity. Fuzzy logic has
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been successfully used for real-world complex image classification and understand-
ing (Du and Sun 2006). It was used to diagnose tomato disease and to analyze and
classify other biological and agricultural images (Panigrahi 1998). Extending its use
to classify and evaluate food images is definitely very encouraging.

Rough sets theory, similar to fuzzy logic technology, has also been used for
defect detection and quality evaluation of edible beans based on their color. The
maximum classification accuracy achieved was 99.6% (Chtioui et al. 2003). A
knowledge-based discrimination function was adopted for dissemination of corn
kernel properties along with a learning vector quantization network resulting in a
classification accuracy of up to 93% (Steenoek et al. 2001).

The complementary characteristics of neural networks and fuzzy logic have cre-
ated a new technique called “neuro-fuzzy” system. Neuro-fuzzy techniques have
been used to classify disease in soybean seed with a maximum accuracy of 95%.
Other applications of neural networks and fuzzy logic for image segmentation and
classification can be found (Panigrahi 1998).

3.5 Non-visible Computer Imaging

Though the majority of computer imaging technology uses the visible spectrum
(380–700 nm), the non-visible electromagnetic spectrum also has potential for use
in computer imaging. These non-visible bands include X-ray, ultraviolet (UV), near
infrared (NIR) and infrared (IR).

3.5.1 Fluorescent Imaging

Most food products or raw materials of food products can use fluorescent imaging.
For most cases of fluorescent imaging, the wavelengths used range from the far end
of UV (300 nm) to the far end of VIS (700 nm). Intensified CCD cameras have been
used for this type of application. Because of the low amount of signals available,
these intensified CCD cameras work better than a conventional CCD camera. Low-
light cameras have the capability to vary the time of integration of image information
from 1/60 or 1/130 s to several minutes. By integrating a weak fluorescent signal for
a longer time, a quality fluorescent image is obtained.

The introduction of BCCD has also generated another viable option for acquiring
quality fluorescent and NIR images. The spectral sensitivity of a BCCD camera is
significantly higher than that of intensified CCD and conventional CCD cameras,
especially in the UV and NIR ends of the visible spectrum.

3.5.2 NIR Imaging

NIR images can be very valuable for food quality evaluation. For imaging pur-
poses, the NIR waveband can be divided into two groups, 700–1,100 nm and above
1,100 nm.
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Because of the higher sensitivity of BCCD cameras in the lower NIR region,
they can be used for NIR imaging of food products. Similarly, some monochrome
CCD cameras have relatively high sensitivity in the lower NIR region. Though the
sensitivity of monochrome CCDs in the 900–1,100 nm zone is not as high as that of
a BCCD, there is a big difference in cost. Thus, depending on the application, one
needs to choose which to use. Note that before using a monochrome CCD camera
for NIR imaging, the IR filter in front of the CCD sensor head must be removed.
It is also highly recommended that the sensitivity curve of the camera be obtained
from the manufacturer to verify that the camera is appropriate for the application.

NIR imaging can also be achieved by using a liquid crystal tunable filter. Tunable
filters can be easily coupled to a standard CCD detector to produce digital images
at any wavelength within 400–1,100 nm. It has no moving parts. Since it is capable
of acquiring images at many wavelengths, it can be used to generate multi-spectral
images. Note that the quality of the image still depends on the sensitivity of the CCD
detector used.

NIR images based on 700–1,100 nm can be used for detecting defects and for
mapping moisture (970 nm) and protein (1,020 nm) in food products. An example
is detecting defects in peaches. A monochrome CCD camera with a band pass filter
centered at 750 nm (with a bandwidth of 40 nm) produced the images. The images
were further analyzed for placing a peach into one of eight classes based on different
defects. The classification error based on NIR images was 31% compared to 40%
obtained with color images (Miller and Delwiche 1991).

The NIR spectrum (700–2,500 nm) is sensitive to chemical constituents e.g.,
protein, moisture, oil of food and agricultural products. Though NIR spectroscopic
techniques have been used for quality evaluation of food products, NIR imaging
could provide additional spatial information that is not available from traditional
spectroscopic signals. For example, the NIR spectroscopy can be used to measure
the overall protein, oil, or moisture content; whereas, the NIR images will show the
distribution of such constituents within the food material. Therefore, NIR imag-
ing may replace NIR spectroscopy for some applications. It is more likely that
NIR imaging/visible imaging may be used in conjunction with visible/NIR spec-
troscopy. Park et al. (1996) integrated multispectral imaging (using 542, 571, 641,
700, 726, 847 nm) with visible/NIR spectroscopy (417–965 nm) for inspection of
poultry carcasses.

NIR images above 1,100 nm can be obtained using Indium-Gallium-Arsenide
(InGaAs) based cameras available from Sensors Unlimited (Princeton NJ). Area
cameras are sensitive to 900–1,700 nm and line-scan cameras are sensitive to 800–
2,200 nm. Both cameras produce analog and digital output including RS-170. They
can be operated at room temperature, thus eliminating the need for cooling (Miller
and Delwiche 1991). These capabilities show tremendous promise for integrating
non-visible NIR technology into evaluation and analysis of food composition and
constituents in a non-destructive manner. Most food constituents such as protein,
oil, water, starch, sucrose, glucose and other chemicals based on hydrogen-carbon
bonds have been evaluated by spectroscopic methods. NIR imaging would provide
additional spatial information that spectroscopy cannot provide. With these capabili-
ties, functional or compositional images of food products can be acquired which can
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help quality evaluation and inspection and also provide valuable information on the
interaction of food components that could be very valuable for product development
and quality evaluation.

3.5.3 Infrared (IR) Imaging

Focal plane array thermal infrared cameras without liquid nitrogen cooling (using a
stirring cycle-based cooler instead) are now available. They are compact, easy to use
and provide better spatial resolution and thermal sensitivity. They are sensitive to the
thermal infrared band (3–5 μm) and can capture images at 30 frames/s with 12-bit
dynamic ranges. With emissivity and atmospheric correction capabilities, they can
create thermal images of food products. IR cameras can also measure temperatures
from –10 to 1,500◦C. Thus, IR cameras promise another rapid and non-destructive
technique for food quality evaluation, especially for characterizing thermal proper-
ties, thermal mapping and moisture-related studies. IR imaging was used to estimate
the internal temperature of chicken meat after cooking (Ibarra et al. 1999).

3.5.4 X-Ray Imaging

X-rays are a part of the electromagnetic spectrum. They contain high energy and
can be used for non-destructive imaging. Recently, the development of film-less and
low energy X-ray detectors has created expanded possibilities for X-ray imaging,
also known as radiography, for food and agricultural applications. It has been dealt
in detail in the Chap. 5.

3.5.5 Hyperspectral Imaging

Hyperspectral imaging (HSI) combines conventional imaging and spectroscopy to
simultaneously acquire both spatial and spectral information from an object. Thus, a
typical HSI system consists of both a digital camera and a spectrograph (Fig. 3.13).
It is also known as chemical or spectroscopic imaging. Originally developed for
remote sensing applications, this technology has recently emerged as a powerful
process analytical tool for rapid, non-contact, and non-destructive food analysis.
Since spectroscopic data are obtained in addition to the optical properties, HSI
offers several advantages such as providing spatial and spectral information along
with data pertaining to multiple constituents of food systems. In addition, HSI is
sensitive to even minor system components (Table 3.2). Thus, a spectrum for each
pixel can be obtained along with a gray scale or tonal image for each narrow band.
Hyperspectral images, also known as hypercubes, are made up of hundreds of con-
tiguous wavebands for each spatial position of the object. Consequently, each pixel
in a hyperspectral image contains the spectrum of that specific spot. The image data
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Fig. 3.13 A schematic of hyperspectral imaging system. (a) CCD camera, (b) spectrograph, (c)
halogen lighting unit, (d) white nylon tent, and (e) computer and image acquisition software
(ElMasry et al. 2007)

Table 3.2 Advantages of hyperspectral imaging compared to conventional color imaging (RGB)
and near-infrared spectroscopy (NIRS). Based on (Gowen et al. 2007)

Feature RGB NIRS HSI

Spatial information x x
Spectral information x x
Multi-constituent information Limited x x
Sensitivity to minor components x

contains 3-D information comprising two spatial and one wavelength dimension, as
illustrated in Fig. 3.14. The hypercube allows for the visualization of biochemical
constituents of a sample, separated into particular areas of the image, since regions
of a sample with similar spectral properties have similar chemical composition.
Thus, the resulting spectrum can be considered a fingerprint useful to character-
ize the composition of that particular pixel. HSI has been successfully evaluated for
food quality applications (Kim et al. 2001). HSI systems have been used to detect
fecal contamination in apples (Kim et al. 2002a), skin tumors in chicken carcasses
(Kim et al. 2002b), feces on the surface of poultry carcasses (Park et al. 2002, 2004,
2005), cucumber chilling damage (Cheng et al. 2004), and caps of white mushrooms
(Agaricus bisporus), which can be used for non-destructive monitoring of damaged
mushrooms on the processing line (Gowen et al. 2008).

Hyperspectral imaging operates under simultaneous reflectance (400–675 nm)
and transmittance (675–1,000 nm) modes. It has been studied for non-destructive
and non-contact sensing of surface color and bloater damage in whole pickles. An
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Fig. 3.14 Hyperspectral image contains a 3-D array of image data (hypercube) pertaining to two
spatial (xi, yj) and on wavelength (λi) dimension at different i-j image planes (Gowen et al. 2007)

overall defect classification accuracy of 86% was achieved, compared with an accu-
racy of 70% by the human inspectors. With further improvement, the hyperspectral
imaging system could meet the need of bloated pickles detection in a commercial
plant setting (Ariana and Lu 2010). A visible/near-infrared hyperspectral imag-
ing system has also been used to predict tenderness of cooked beef with a 96.4%
accuracy (Fig. 3.15) (Naganathan et al. 2008).

Hyperspectral imaging in the visible and near-infrared (400–1,000 nm) regions
was tested for nondestructive determination of moisture content, total soluble solids,
and acidity in strawberry. Moreover, for classifying strawberry based on ripeness
stage, a image texture analysis was also conducted (ElMasry et al. 2007).

3.6 On-Line or Moving Scene Analysis

Most computer vision systems designed are concerned primarily with static scenes.
However, the perception of visual motion plays an important role in many emerging
computer vision applications. Input to a dynamic or moving scene analysis system
is a sequence of image frames taken from a changing world. The camera used to
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Fig. 3.15 A hyperspectral image of a beef-steak. Top row: typical spectral signatures of lean and
fat pixels; bottom row: images of at selected wavelengths (Naganathan et al. 2008)

acquire an image sequence may also be in motion. Each frame represents an image
of the scene at a particular instant in time. Changes in a scene may be due to the
motion of the camera, the motion of objects, illumination changes, or changes in an
object’s structure, size or shape. It is usually assumed that changes in a scene are
due to camera and/or object motion. A system must detect changes, determine the
motion characteristics of the observer and the objects, characterize the motion using
high-level abstraction, recover the structure of the objects and recognize moving
objects.

Depending on the design of the imaging system, different image processing
techniques are required. In the food industry, the most common design is that of
stationary camera and moving objects. Image input is a frame sequence represented
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by F(x, y, t) where x and y are the spatial coordinates in the frame represent-
ing the scene at time t. The value of function F represents the intensity of the
pixel.

In many applications, an entity, a feature or object, must be tracked over a
sequence of frames. If there is only one entity in the sequence, the problem is easily
solved. With many entities moving independently in a scene, tracking requires the
use of constraints based on the nature of the objects and their motion. A number of
real-time visual tracking systems have been reviewed by Morris and Trivedi (2008).
Due to inertia, however, the motion of a physical entity cannot change instanta-
neously. If a frame sequence is acquired at a rate such that no dramatic change
takes place between two consecutive frames, then no abrupt change in motion can
be observed for most physical objects. This has been the basis of most on-line
applications currently available in the food industry. The important factor is then
to set the image acquisition rate fast enough to minimize image blur so the analysis
of image data can take place frame by frame. Real-time image processing boards
and real-time processors are available to assist in on-line real-time computer vision
applications (Ahmad et al. 1999).

For a continuous stream of material flowing down a conveyor belt, a computer
vision system can be designed using a line-scan camera for image acquisition. A
line-scan camera contains a 1-D array of photosensitive sites. The line-scan camera
is suitable for fairly fast moving object scenes. In addition to higher speed, line-scan
cameras offer high resolution and the ability to handle infinitely long image scenes.
A new breed of cameras, known as time delay and integrate (TDI) cameras, are line-
scan cameras using CCD image sensor technology to gain an increase in speed or
sensitivity of up to 100 times that of conventional cameras while providing excep-
tional spatial resolution (Ni et al. 1997). A 2-D image can be produced if there is
relative motion between the camera and the object of interest. The columns of infor-
mation from the line-scan camera are usually stored sequentially in a framestore
allowing interpretation of returned data as a 2-D image. The author’s research team
is currently evaluating such an on-line system to evaluate the quality of shredded
cheese. The run-length coding (binarizing an image in which each pixel is a 1 or 0)
of the binary image is used to identify object locations in the scene (a string of 1s
represent an object’s presence). Syntactic pattern recognition technique was used in
the image interpretation step.

Use of strobe lighting is also an effective technique for acquiring on-line infor-
mation from a moving scene. To obtain a complete image of the scene under strobe
lighting, the strobe firing must be synchronized with camera and image acquisition.
Lack of synchronization will appear as partially light and/or partially or totally dark
digitized images. The most straightforward strobe and image acquisition synchro-
nization is where an object present is a signal typically generated by a photo eye or
a proximity switch device. In this technique, the strobe light is fired immediately on
an object’s arrival, so the amount of object placement uncertainty in the direction
of travel is reduced significantly. However, this technique requires high-precision
object sensors, a special television camera with the capability of scan inhibit and an
electronic circuit that synchronizes the various timing signals. Ni et al. (1997) used
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a strobe light to avoid image blur during image acquisition to examine individual
grain kernels. The kernels were traveling at a modest speed of 6.5 m/min.

A hyperspectral-multispectral line-scan imaging system was developed for dif-
ferentiation of wholesome and systemically diseased chickens. In-plant testing was
conducted for chickens on a commercial evisceration line moving at a speed of 70
birds per minute. This line-scan imaging system is ideal for directly implementing
multispectral classification methods developed from hyperspectral image analysis
(Chao et al. 2007).

General requirements for on-line applications are throughput (speed), accuracy,
consistency, durability, diversification, flexibility and adaptability. Considerations
of these conditions and constraints have to be given at all stages of system design
and development. Speed of evaluation is perhaps the most striking requirement. For
example, Tao et al. (1995) estimated that an on-line apple grading system may have
to examine at least 3,600 fruit/min. They described a computer vision system sorting
3.5 million fruit in an 8-h day, which consisted of two separate lighting units with
eight cameras and one processing and control console unit. This type of machine
is being widely installed in the packing industry for sorting apples, citrus, peaches,
tomatoes and various other fruits and vegetables.
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Chapter 4
Electronic Nose and Electronic Tongue

Nabarun Bhattacharyya and Rajib Bandhopadhyay

Human beings have five senses, namely, vision, hearing, touch, smell and taste.
The sensors for vision, hearing and touch have been developed for several years.
The need for sensors capable of mimicking the senses of smell and taste have been
felt only recently in food industry, environmental monitoring and several indus-
trial applications. In the ever-widening horizon of frontier research in the field
of electronics and advanced computing, emergence of electronic nose (E-Nose)
and electronic tongue (E-Tongue) have been drawing attention of scientists and
technologists for more than a decade. By intelligent integration of multitudes of
technologies like chemometrics, microelectronics and advanced soft computing,
human olfaction has been successfully mimicked by such new techniques called
machine olfaction (Pearce et al. 2002). But the very essence of such research and
development efforts has centered on development of customized electronic nose
and electronic tongue solutions specific to individual applications. In fact, research
trends as of date clearly points to the fact that a machine olfaction system as versa-
tile, universal and broadband as human nose and human tongue may not be feasible
in the decades to come. But application specific solutions may definitely be demon-
strated and commercialized by modulation in sensor design and fine-tuning the soft
computing solutions. This chapter deals with theory, developments of E-Nose and E-
Tongue technology and their applications. Also a succinct account of future trends
of R&D efforts in this field with an objective of establishing co-relation between
machine olfaction and human perception has been included.

4.1 Electronic Nose (E-Nose)

E-Nose is an instrument, which mimics the sense of smell of biological system.
Basically, this device is used to detect and distinguish complex odor at low cost.
In the parlance of food and agro produces, human expert panel and conventional
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analysis techniques such as Gas Chromatography (GC), High Performance Liquid
Chromatography (HPLC) etc, characterize aroma of any substance. Both techniques
have some difficulties. In case of human expert panel, it is a costly process since it
requires trained people who can work for only short period of time. Also addi-
tional problems such as subjectivity of human response to odors and the variability
between individuals are to be considered. On the other hand, the analytical instru-
ments for characterization of aroma involve high cost and require knowledgeable
people to operate those instruments, elaborate sample preparation and long time for
analysis. E-Nose provides a low cost, non-invasive and rapid method of objective
aroma measurement.

4.1.1 Nose in Biological System

Odours are sensations that occur when compounds (called odorants) stimulate
receptors located in the olfactory epithelium at the roof of nasal cavity. Odorants
are hydrophobic, volatile compounds with a molecular weight of less than 300 Da.
Humans can recognize and distinguish upto 10,000 different substances on the basis
of their odour quality. Odorant receptors (OR) in the nasal cavity detect and discrim-
inate among these thousands of diverse chemical traces. The olfactory region of each
of the two nasal passages in human is a small area of about 2.5 cm2 containing in
total approximately 50 million primary sensory receptor cells.

The olfactory region (Fig. 4.1) consists of cilia projecting down out of the olfac-
tory epithelium into a layer of mucous which is about 60 μm thick. This mucous
layer is a lipid-rich secretion that bathes the surface of the receptors at the epithelium

Olfactory bulb Olfactory nerve Olfactory tract

Bone

Sensory
cells

Epithelial cells

Volatile molecules

Fig. 4.1 Biological olfactory system
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surface. The mucous layer is produced by the Bowman’s glands which reside in the
olfactory epithelium. The mucous lipids assist in transporting the odorant molecules
as only volatile materials that are soluble in the mucous can interact with the
olfactory receptors and produce the signals that our brain interprets as odor. Each
olfactory receptor neuron has 8–20 cilia that are whip-like extensions 30–200 μm in
length. The olfactory cilia are the sites where molecular reception with the odorant
occurs and sensory transduction (i.e., transmission) starts.

Researchers in olfactory study have shown that every neuron in the olfactory
bulbs participates in the generation of olfactory perception. In other words, the
salient information about the stimulus is carried in some distinctive pattern of bulb
wide activity and not in a subset of specific neurons. In the absence of a stimu-
lus, the pattern of activity across the olfactory bulb has “chaotic” characteristics.
However, upon receiving a stimulus the chaotic behavior rapidly assumes a cross-
bulbar pattern. This pattern need not be the same each time for the same odour, but
may change its characteristics depending upon the previous stimulus. This system
allows for odorant conditioning, and also explains how we can be sensitive to odours
we have never previously experienced.

4.1.2 Odour Receptor and Odorant Relationship

An individual odorant can bind to multiple receptor types and structurally different
odorants can bind to a single receptor. Specific patterns of activation generate signals
that allow us to discriminate between the vast numbers of different smells. The
physicochemical attributes of odorants that induce specific odour sensations are not
well understood yet.

Odorants vary widely in structure and include many chemical classes includ-
ing organic acids, alcohols, aldehydes, amides, amines, aromatics, hydrocarbons,
nitrides, phenols etc. to state a few. The signals induced by the interactions of odor-
ants with OR’s in the olfactory epithelium are transmitted to the olfactory bulb and
ultimately to the brain. Most odorant sensations are produced by mixtures of hun-
dreds of odorants rather than by a single compound. Human have limited capacity to
identify single odorants in mixtures with three to four components being maximum.

Odour classification scheme based on adjective descriptors has been standardized
by American Society for Testing and Materials and some of the sample vocabulary
used are given in Table 4.1.

Table 4.1 Some samples of ASTM descriptive categories used for general odour quality
characterization

Fragrant Floral Chemical Eggy Metallic

Sweety Cheesy Varnish Fermented fruit Malty
Fruity (citrus) Beery Sour milk Chalky Woody
Eucalyptus Chocolate Strawbery Maple Fishy
Soapy Molasses Urine-like Nutty Aromatic
Garlic Cologne Clove-like Fried fat Burnt, smoky



76 N. Bhattacharyya and R. Bandhopadhyay

Although, good progress has been made in our knowledge of olfactory physi-
ology and bio-chemistry, the fundamental relationship between odour quality and
molecular property is still poorly understood. Even slight alteration in the chemi-
cal structure of an odorant can induce profound changes in odour quality. Current
structure – activity model in olfaction are, for the most part, simply collection of dis-
parate facts with no unifying theme. Furthermore, they have inadequate predictive
accuracy. As a consequence, the basic logic necessary to develop a comprehen-
sive odour classification scheme based on particular features of molecules remain
elusive.

4.1.3 Concept of E-Nose

An electronic nose is an instrument that is designed to detect and discriminate
among complex odours using a sensor array (Bhattacharyya et al. 2005). The sen-
sor array consists of non specific sensors that are treated with a variety of chemical
materials. The sensor array is exposed to the volatile (Wickremasinghe et al. 1979)
molecules and as soon as smellprint (or fingerprint) is generated from sensor array.
Patterns or fingerprints from known odours are used to construct the database and
train a pattern recognition (Shaffer et al. 1998) system so that unknown odours can
be classified and identified. This is classical concept of electronic nose. However in a
broader sense, electronic nose instruments are composed of three elements, namely:
(i) sampling handling system, (ii) detection system and (iii) data processing system
(Fig. 4.2)

(i) Sample handling systems
Sample handling is a critical step affecting the analysis by electronic nose.

The quality of the analysis can be improved by adopting an appropriate sam-
pling technique. To introduce the volatile compounds present in the headspace

Fig. 4.2 Block diagram representation of electronic nose system
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(HS) of the sample into the e-nose’s detection system, several sampling
techniques as below have been used in electronic nose.

(a) Static headspace (SHS) technique
SHS technique consists of placing the sample in a hermetically sealed vial

and, once equilibrium has been established between the matrix and the gaseous
phase, sampling from head space (HS) starts. Sample temperature, equilibra-
tion time, vial size and sample quantity are the main parameters that have to
be optimized. Because of the poor repeatability of manual HS injection, it is
recommended that an automatic HS sampler be used.

(b) Purge and trap (P&T) technique:
P&T and different headspace techniques have been used in some applica-

tions to increase sensitivity, since they provide a pre-concentration of volatile
compounds. In these systems, the volatile components are purged by a stream
of inert gas and trapped onto an adsorbent. In the case of P&T, the gas flow
is injected through the sample, whereas, in the case of Dynamic head space
(DHS), only the HS is purged with the gas.

(c) Solid-phase micro extraction (SPME) technique:
SPME is a user-friendly pre-concentration method. The principle involves

exposing a silica fibre covered with a thin layer of adsorbent in the HS of the
sample in order to trap the volatile components onto the fibre. The adsorbed
compounds are desorbed by heating and introduced into the detection system.
Apart from the nature of the adsorbent deposited on the fibre, the main param-
eters to optimize are the equilibration time, the sample temperature and the
duration of extraction. This technique has a considerable concentration capac-
ity and is very simple because, unlike P&T or DHS, it does not require especial
equipment.

(d) Stir bar sorptive extraction (SBSE) technique:
SBSE, a magnetic bar coated with polymers, is held in the HS for sampling.

Its loading capacity is much higher than that of SPME. Even though it has been
developed only recently, SBSE is a promising extraction technique when very
high sensitivity is required.

(e) Inside-needle dynamic extraction (INDEX) technique:
INDEX is also a pre-concentration technique. Its needles contain an absorb-

ing polymer phase very much like a fixed bed. The volatile compounds
are forced through the needle by repeated aspiration/ejection motions of the
syringe plunger. The potential advantage of this system compared to SPME
is its mechanical robustness and the possibility of increasing the amount of
absorbing polymer as well as the surface area available for adsorbing volatile
compounds.

(f) Membrane introduction mass spectrometry (MIMS) technique:
MIMS is a sample handling system used in mass spectrometry (MS) based

e-noses. This technique allows the direct introduction of specific compounds of
a liquid or gas sample into a mass spectrometer. A thin membrane is installed
between the sample and the ion source of a mass spectrometer in such a way
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that some compounds dissolve in the membrane, diffuse through it and, finally,
evaporate directly into the ion source.

(ii) Detection system
The most complicated part of electronic olfaction process is odour capture

and sensor technology to be deployed for such capturing. Any sensor that
responds reversibly to a chemical in gas or vapour phase has the potential to
be developed in an electronic nose format. Early electronic noses used either
polished wires in contact with porous rods saturated with different electrolytes
or thermistors coated with materials such as gelatin, fats or polymers. In the
1980s, advances were made with the appearance of chemically sensitive sen-
sors and developments in electronics and computing. Some of the essential or
desirable properties of the chemical micro-sensors to be used in electronic nose
are summarized as follows.

• Selectivity: The chemical sensor must respond to a range of chemical species
to be detected.

• Sensitivity: The chemicals to be detected may be present in the concentration
range of ppm or ppb. The sensor should be sufficiently sensitive to detect
small concentration level of gaseous species within a volatile mixture

• Speed of response: In order to be used for online measurements, the response
time of the sensor should be in the range of seconds.

• Reproducibility: The individual sensor element should be reproducible in
their manufacture and response characteristics. This will reduce the task of
calibrating each sensor element before use. Fabrication processes used to
make a single sensor must be compatible with the manufacture of an array
of reasonable size. Additionally, the sensors should have an inherently linear
response characteristic.

• Reversibility: The sensor should be able to recover after exposure to gas.
• Portability: Devices should be small so that small sample volumes can be

used. The power consumption should be low so that the device can be
operated with a battery, making the sensor portable.

Table 4.2 presents a list of sensor types and associated measuring princi-
ples used for electronic nose. Out of all types of sensors, conducting polymer,
metal oxide semiconductor and bulk acoustic devices are most commonly used
in commercial electronic noses. Brief descriptions of some commonly used
sensors (Fig. 4.3) are discussed below.

(a) Conducting polymer micro-sensors
Physical and electrical properties of conducting polymers are altered sig-

nificantly by a selective interaction with some chemical species. Hence,
conducting polymers have been widely used in thin-film gas sensors, such as
those found in commercially available artificial noses. Conducting polymer gas
sensors have a number of properties that make them attractive for commercial
use. Sensors can be fabricated easily by electro-polymerization in a controlled
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Table 4.2 Sensor types and measurement principles

Measuring
principle Sensor type Common materials used

Chemoresistors Metal oxides Doped tin di-oxide, zinc oxide,
tungsten trioxide

Conductive polymers Polypyrrole, polyaniline,
polythiophene

Conductive oligomers Short chain length conductive
polymers

Conductive material loaded
polymers

Carbon particles in
non-conductive polymers.

Self-organising films Discotic liquid crystals
Macrocyclic compounds Phthalocyanines

Mass sensitive
devices

Surface and bulk acoustic devices Poly (siloxanes), charged
polyelectrolytes,
fluoropolymers, polyalkanes,
hydrophilic polymers,
calixarenes and other
cavitands, chiral polymers,
metal phosphonates,
conducting polymers, lipids,
self assembled monolayers

Field effect devices Metal insulator semiconductors
or metal oxide semiconductors

Catalytic metals such as
palladium, platinum and
iridium, as well as other metals

Electrochemical
devices

Oxidation or reduction catalysts Precious metal and carbon with
concentrated liquid electrolyte
and counter electrode

Pellistors Catalytic combustion devices Platinum, palladium or alloys of
the two

Fibre optic systems Polymer bids on fibre optic
bundles

Fluorescent, solvochromic dyes
to detect solvation of vapours
in the polymer

Intrinsic molecular
parameters

Mass spectrometer, ion mobility
or pulsed spectroscopy
instrumentation

manner using a wide range of basic monomers. Different chemicals can be
added during the process of polymerization. The monomers react with these
chemicals during the process of polymerization to give a wide range of polymer
material. Additionally, different electrolytes and solvents during the process of
electro-polymerization give rise to polymers with different properties. Different
polymers show non-overlapping selectivity towards different chemicals, hence
an array of polymer sensors can be used to generate a pattern of response to
distinguish different gas species. Polymer films respond reasonably rapidly and
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Fig. 4.3 Commonly available e-nose sensors

reversibly at room temperature to some chemicals. Thus, the advantages of the
conducting polymer based sensors are:

• excellent reproducibility,
• eide selectivity,
• high sensitivity,
• wide range of applications,
• stable,
• low power,
• Operate at ambient temperature.

(b) Metal oxide sensors
Metal oxide sensors are based on semiconducting sensing elements, e.g., tin

oxide, which shows a change of resistivity on exposure to certain analytes.
Basic features of these sensors are:

• these are semiconducting sensing elements made from a metal oxide film,
e.g., tin oxide,

• they operate in the range from 300 to 500◦C,
• these sensors require O2 to function,
• volatiles undergo redox reactions at the sensor surface, resulting in a change

of conductivity across the sensor,
• selectivity can be modified by doping the metal oxide (e.g., with Pd, Pt) or

modifying the operating temperature of the sensor,

Advantages of metal oxide sensors are: longevity, sensitivity, low response
to RH, wide range of applications and large response and good discriminating
power

(c) Bulk acoustic wave (BAW) sensors
BAW sensors are piezoelectric devices based on quartz crystal oscillators.

The quartz crystal is coated with a range of materials that selectively adsorb
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analytes, which results in changes in the frequency of oscillation. Basic features
of BAW Sensors are:

• quartz crystal can be coated with a wide range of different selective coating
films,

• on adsorbing analytes the additional mass of the film results in a change in
the frequency of oscillation of the sensor, and

• a typical sensor has an operating frequency of about 10 MHz.

Advantages of BAW sensors are: high selectivity, able to measure both polar
and non-polar species, stable over a wide temperature range, low power (low
mW), low sensitivity to humidity, high stability, good reproducibility, and well
characterized coating chemistry

(d) Optical sensors
Optical sensing is very versatile as it can allow simultaneous collection of

intensity and wavelength information, and encompasses a range of techniques
(absorbance, reflectance, fluorescence, refractive index and colorimetry). The
most popular is fluorescence on absorption and colorimetric measurements.
Fluorescence techniques generally utilise optical fibres; although these can be
used directly, most chemical sensor applications use them to direct the light
source to the sensing element, which can be fabricated on the fibre or coated
onto an inert substrate. Most commonly the distal face or tip of the fibre is
coated. Total internal reflection fluorescence (TIRF) and fibre optic evanescent
wave (FOEW) sensors rely on evanescent field excitation; this takes place on
an unclad but coated circumference wall of the fibre. The distal tip conveys the
resultant light to a detector. The first optical E-nose used individual fibre optic
strands coated with fluorescent polymer dyes. Different polymer/dye gradients
led to differences in the sensing properties.

iii) Data processing system
The sensor response is stored in the PC through data acquisition card and

these data sets are analyzed to extract information. The details techniques are
discussed in 4.1.4 & 4.1.5.

4.1.4 Advanced Signal Processing

In a machine olfaction system, two major building blocks are the (1) sensors and
(2) the pattern classification engine. Interfacing electronics, signal conditioning
and data acquisition circuits provide the crucial link between these two blocks.
Olfaction sensors have a wide range of transduction mechanisms as described ear-
lier. But, at the output of these sensors, what is required is an electrical signal (say,
voltage or current) proportional to the gas/liquid exposure on the sensor surface.
Interface circuits convert the sensor output parameters to the electrical signal for
further processing. In chemoresistor sensor, a change in resistance is obtained when
exposed to the odour particles. A voltage divider or a Wheatstone bridge circuit can
be used as the basic interface circuit. Interfacing circuits of QCM or SAW devices
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are required to measure shift in the resonance frequency and frequency counters
can do the job. What follows the interfacing circuits is the signal-conditioning
block which is basically analogue conditioning of the electrical signal through five
sequential stages such as (1) buffering (2) amplification (3) filtering (4) conver-
sion and (5) compensation. In the machine olfaction system developed by C-DAC,
USB compatible data acquisition cards of National Instruments have been used
and the cards have got these entire signal conditioning features built-in into the
hardware. Data acquisition involves gathering signals from measurement sources,
i.e., sensors and digitizing the signal for storage, analysis, and presentation on a
personal computer (PC). Data acquisition (DAQ) systems are available in many
different PC technologies for flexibility and application-specific customization.
Various options in this regard include Peripheral Component Interconnect (PCI),
PCI eXtensions for Instrumentation (PXI), PCI Express, PXI Express, Personal
Computer Memory Card International Association (PCMCIA), Universal Serial
Bus (USB), Institute of Electrical and Electronics Engineers (IEEE 1,394), par-
allel, or serial ports for data acquisition in test, measurement, and automation
applications. Signal preprocessing means extraction of relevant information from
the responses obtained and preparation of this information for multivariate pat-
tern analysis (Wall et al. 2003). The major aspects of this preprocessing are: (a)
baseline identification and manipulation/determination, (b) compression, (c) nor-
malization or final preprocessing. Baseline is basically the sensor response to a
reference analyte and proper accommodation of the same into the actual sensor
response is expected to provide compensation due to drift, scaling and enhance-
ment of contrast and better identification. Three different techniques of baseline
manipulation are (a) differential, (b) relative and (c) fractional. Compression (Pan
et al. 2008) is a preprocessing stage where the response of sensor array is utilized
as a feature (Distante et al. 2002) vector or a fingerprint by reducing the number
of descriptors. Normalization is the final leg of preprocessing where techniques are
applied to operate on the sensor signal to compensate for sample-to-sample varia-
tions due to change in analyte concentration and drift in the sensors. Alternately,
entire database of a single sensor can be operated upon and scaling of sensors can
be effected. The former technique is known as local method and the latter as global
method.

The responses generated by an array of olfaction sensors are processed using
a variety of techniques. The pattern recognition engine may be developed using
both parametric and non-parametric methods. Parametric methods are commonly
referred to as statistical approaches and are based on the assumption that the
sensor data set may be represented as a probability distribution function. The
non-parametric methods do not assume any probability distribution function and
deal with biologically inspired techniques, viz., artificial neural networks (ANN)
(Haykin 2001) and expert systems. Researchers use both supervised and unsuper-
vised learning (Poggio and Girosi 1990) methodologies for the pattern recognition
system. There are many algorithms for analysis of an electronic nose data. Steps
involved in processing of signal data are depicted in a block diagram (Fig. 4.4) and
described briefly hereunder.
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Fig. 4.4 Block diagram of signal processing system

(i) Interface circuits:
Various kinds of interface electronics are used for electronic nose. They

are: voltage dividers, wheatstone bridge measurements, AC impedance spec-
troscopy for chemoresistors; detection of change in frequency of oscillation for
Acoustic Wave Devices; and monitoring of variation of volt-amp characteris-
tics for field effect devices.

(ii) Signal conditioning:
The electrical signal generated by sensor interface circuits is not ade-

quate for acquisition by computer. The signals from sensors must be further
processed through the analog signal conditioning steps as below.
(a) Buffering: Generally operational amplifiers in voltage follower mode are
used for buffering stage to ensure proper isolation of the sensor to rest of the
circuit.
(b) Amplification: The electrical signal available at the output of the buffer
stage needs to be amplified so that signal level becomes suitable for analog
to digital conversion. Integrated instrumentation amplifiers with high input
impedance and common mode rejection ratio are generally used in this stage
of electronic nose circuit.
(c) Filtering: Analog filters are used to remove unwanted frequency com-
ponents from the sensor signals. Both active and passive filters have found
application in electronic nose circuits depending on type of sensors and the
application for which the nose is used.
(d) Compensation: A number of special functions may be implemented
with analog circuits to compensate for deficiencies, non-linearity in sensor’s
response and reduce the computational load of a subsequent digital processing
stage. These circuits perform various functions including linearization, integra-
tion, differentiation, logarithmic conversions, peak to peak and phase detection,
temperature compensation etc. Operational amplifier based circuits are used in
this stage.

(iii) Data acquisition
Output of signal conditioning module is directly fed to data acquisition stage

of electronic nose system. For a PC-supported system, PCI compatible add on
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cards are generally used. For hand held versions, special intelligent cards using
advanced microcontrollers are used for capturing the conditioned data from
sensor array. The data acquisition module should digitize with a resolution
of 12-bits or higher at sample rate up to 250 kSamples/s. For most of e-nose
applications, much slower sample rate serves the purpose. The PCI data acqui-
sition cards come with Win32 application source code, device drivers and full
register programming details and also possess on board memory for efficient
processing. Application software is developed on virtual instrumentation or
other platforms to communicate effectively with the intelligent data acquisition
cards.

(iv) Signal pre-processing
Signal preprocessing means extraction of relevant information from the

responses obtained and preparation of this information for multivariate pattern
analysis. The major aspects of this preprocessing are:

(a) baseline identification and manipulation/determination,
(b) compression, and
(c) normalization or final preprocessing.

(a) Baseline identification: Baseline is basically the sensor response to a
reference analyte and proper accommodation of the same into the actual sen-
sor response is expected to provide compensation due to drift, scaling and
enhancement of contrast and better identification. Three different techniques
of baseline manupulation are: (a) differential, (b) relative and (c) fractional.

In differential technique, the preprocessed response is the difference
between the dynamic sensor response and the baseline reference. The differen-
tial technique may be represented mathematically as below.

ys(t) = (xs(t) + δA) − (xs(0) + δA) = xs(t) − xs(0) (4.1)

where

xs(0) and xs(t) = The sensor responses at 0th and “t” th instants of the sniffing
cycle,

δA = Additive noise or drift,

ys(t) = The pre-processed response.

In the relative method, the preprocessed response is obtained by dividing
dynamic sensor response along with multiplicative drift with baseline refer-
ence again along with this drift. In this case, the preprocessed response may be
mathematically represented as follows.

ys(t) = xs(t)(1 + δM)

xs(0)(1 + δM)
= xs(t)

xs(0)
(4.2)

Where δM = Multiplicative drift in the sensors.
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In fractional technique, baseline reference is subtracted from the dynamic
response and the result is divided by the baseline reference to obtain the frac-
tional manipulation. The pre-processed sensor response in this method would
be as follows.

ys(t) = xs(t) − xs(0)

xs(0)
(4.3)

Although choice of a particular technique is dependent on the sensor, its
technology and application, the fractional technique mentioned above seems to
be the best for adaptation to pattern recognition study and in all the multivariate
data analyses carried out under the present thesis; fractional technique of base-
line manipulation has been used. Fig. 4.5 shows the dynamic responsey (t), the
baseline reference y (0) values with odour input pulse time.
(b) Compression: Huge amount of data is generated in each sniffing cycle by
the sensor array and the data acquisition system from the transient dynamics
of the sensor output. Compression is a preprocessing stage where the response
of sensor array is utilized as a feature vector or a fingerprint by reducing the
number of descriptors. Transient or dynamic fingerprint is obtainable and tran-
sient compression technique such as (a) sub-sampling methods, (b) parameter
extraction methods, (c) system identification method which is employed for
compression. In (a), the dynamic information is obtained by sampling the sen-
sor transient response at different times during the exposure of the sensor.
In (b), the transient response is compressed using a number of descriptors
primarily the rise time, maximum and minimum responses, slopes and off

Response
Signal

t
t = 0

Reference on Time Odour
Odour OFF

y (t)

y (0)

Odour Pulse

Fig. 4.5 Odour response curve
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integral of the sensor curve
∑

�y (t). In (c), model response curve is attempted
to be fitted with the obtained one. The model curve is obtained by standard
techniques such as auto regression. In the e-nose system developed and exper-
imented with, the maximum value vector from the sensor output data has only
been considered for data analysis.

The data matrix stored in the computer in each sniffing cycle will consist of
a mixture of both baseline as well as actual sensor responses as shown below:
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In the above data matrix, the segment b11 to bh8 represents baseline
responses of the sensors during headspace generation and S11 to Sm8 repre-
sents the sensor responses when exposed to tea odour during sampling. Here
the number of sensor is considered as eight (8).

In most of the e-nose studies, maximum value of Sij for each column is
found out and a vector M is formed with these maximum values. So,

M = [Si1 max · · · · · · · · · · · · Si8 max] (4.4)

This maximum value vector is the feature set for each sniffing cycle, which,
in turn, is presented to the pattern classification software.
(c) Normalization: Normalization is the final leg of preprocessing where
techniques are applied to operate on the sensor signal to compensate for
sample-to-sample variations due to change in analyte concentration and drift
in the sensors. Alternately, entire database of a single sensor can be operated
upon and scaling of sensors can be effected. The former technique is known
as local method and the latter as global method. Normalization requires certain
known responses and related parameters to form a database, which also include
the concentration of the sample with a specified odour. If each odour pulse (or
sniff as is commonly known) produces the feature vector (response), the con-
ventional normalization process can be adopted for a straightforward analysis
to be followed. However in e-nose system, the global normalization procedure
is generally followed. This procedure may be divided in two categories:
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• Sensor auto scaling in which the distribution of responses of each sensor
across the entire database is set to have zero mean value and unit standard
deviation

• Sensor normalization in which the range of values of each sensor is set
to be between 0 and 1. If the sensor output is highly non-linear with very
wide range of response values, logarithmic transforms may be used. Another
transform, called Box–Cox transform is sometimes used to compensate for
the non-linearity.

4.1.5 Intelligent Pattern Recognition

The responses generated by an array of odour sensors may be processed using a vari-
ety of techniques. The pattern recognition (Gutierrez-Osuna 2002) engine may be
developed using both parametric and non-parametric methods. Parametric methods
are commonly referred to as statistical approaches and are based on the assumption
that the sensor data set may be represented as a probability distribution function. The
non-parametric methods do not assume any probability distribution function and
deal with biologically inspired techniques, viz., artificial neural networks (ANN)
(Kermani et al. 2005) and expert systems. Researchers use both supervised and
unsupervised learning methodologies for the pattern recognition system. In super-
vised learning method, an unknown odour is tested against a knowledge base of
known descriptors or classes. For unsupervised learning, pattern recognition engine
learns to discriminate different samples without being presented with correspond-
ing descriptors just like mammalian olfactory system. Commonly used techniques,
up-to-date algorithms and future trends in pattern analysis for electronic nose are
summarized in Table 4.3. Details of these statistical techniques are available in
separate books, yet some of them have been described in brief in Chap. VI

Table 4.3 Various pattern recognition methods and multivariate techniques used in electronic
nose

Statistical methods Quantitative Supervised MLR, PLS
Pattern analysis Unsupervised PCA, CA

Supervised DFA, PCR
Biologically inspired

methods
ANN Unsupervised

Supervised
SOM
MLP, PNN, RBF, LVQ

Fuzzy methods Supervised FIS, FNN, FCM
Self-supervised ART, Fuzzy ARTMAP

Others Self-supervised GA
Supervised NFS, wavelets

PCA, principal component analysis; PLS, partial least squares; MLR, multiple linear regression;
PCR, principal component regression; DFA, discriminant function analysis; LDA, linear discrim-
inant analysis; ANN, artificial neural network; SOM, self organizing map; GA, genetic algorithm;
ART, adaptive resonance theory; RBF, radial basis function; NFS, neuro fuzzy system.
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4.1.6 Application of Electronic Nose

Several successful applications of the electronic nose have been published. There
are five categories of use for electronic nose in food control. These are (i) process
monitoring, (ii) shelf life investigation (Boothe and Arnold 2002), (iii) freshness
evaluation (O’Connell et al. 2001), (iv) authenticity assessment, and (v) other
quality control studies.

4.1.6.1 Food Process Monitoring

Numerous successful applications of the electronic noses to the monitoring of fla-
vor and aroma components along a food production process have been published.
Aroma production along grape must fermentation has been monitored during bio-
conversion (Pinheiro et al. 2002). In this study, the muscatel aroma was chosen
because the profile formed as a result of yeast metabolism is complex, being com-
posed of many compounds. These differ from each other in concentration, chemical
and organoleptic properties and contribute to the overall muscatel aroma.

During the curing process (García et al. 2005), e-nose have been used to iden-
tify spoiled Iberian hams. The sensors involved were tin-oxide semiconductor thin
films, some of which were doped with metal catalysts such as Cr and In. A good
discrimination (success rate of 100%) of two types of Iberian hams (spoiled and
unspoiled) was obtained through the statistical methods of PCA and probabilistic
ANN (PNN).

E-noses have been also applied to bioprocess monitoring where microbiological
processes (Marilley et al. 2004) are involved in food production, i.e. to screen the
aroma generation of lactic acid bacteria strains in the production of cheese and other
fermented dairy products.

During the winemaking process (Cynkar et al. 2007), unpleasant organoleptic
taints arise from Brettanomyces yeasts spoilage. The two main components of the
taint are 4-ethylphenol (4EP) and 4-ethylguaiacol (4EG). The existing procedures to
monitor spoilage due to Brettanomyces/Dekkera sp. are time-consuming and expen-
sive, making it difficult for wine makers to monitor their wines at all stages of
production. Consequently, there is a need for a rapid and cost-effective screening
method to monitor the levels of 4EP and 4EG in wine.

MOS based e-nose (Air Sense) also has been applied for monitoring the changes
in aroma profile of tomato (Pani et al. 2008) slices during air dehydration processes.
Two kinds of samples (untreated and osmodehydrated in corn syrup) were studied.
E-nose data analysis by means of PCA was able to characterize the process aromatic
fingerprint, which could be helpful to understand and parameterize the degradative
events caused by dehydration.

Lebrun et al. (2008) undertake a study to discriminate between mango fruit matu-
rity by volatiles using a FOX 4,000 e-nose (comprising 18 metallic oxide sensors)
and GC. Three different mango fruit varieties (Mangifera indica L.) were harvested
at different maturities and at different sizes. Immediately after harvest (green) or
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after 1 week of ripening at room temperature (ripe), fruit were homogenized or
left intact and evaluated by the e-nose or by GC for aroma and other volatiles as
well as for soluble solids and acids. Volatile data from the different harvest maturi-
ties and ripening stages were discriminated by using discriminant function analysis
(DFA). Both the e-nose and GC were able, in most cases, to separate fruit from
different harvest maturities (at both the green and ripe stages) as well as discrim-
inate green from ripe fruit and fruit from the different varieties within a maturity
stage.

During black tea manufacturing, tealeaves pass through a fermentation in which
the grassy smell is transformed into a floral smell. Optimum fermentation is
extremely crucial in deciding the final quality of finished tea and it is very impor-
tant to terminate the fermentation process at the right time. (Bhattacharya et al.
2008) presented a study on real-time smell monitoring of black tea during the fer-
mentation process using an e-nose (8 MOS sensors array) as well as prediction of
the correct fermentation time. Different time-delay neural networks (TDNNs) and
self-organizing map (SOM) methods for the prediction of optimum fermentation
were used and both the methods appear to be suitable for the purpose. However,
the combined SOM- and TDNN-based prediction algorithm proved to be the bet-
ter alternative as the computational complexity is relatively less. The results showed
excellent promise for the instrument to be used for the on-line prediction of optimum
fermentation time by the industry.

Quantification of tea quality is a very complex problem because of the presence
of innumerable compounds (Anon 2010) and their multidimensional contribution
in determining the final quality of tea. Black tea that is produced at processing
(Banerjee 1993) plants is tasted by expert human panels called “tea tasters,” and
the gradation of tea is done on the basis of marks that are given by these tasters.
With tea being a widely consumed (Willson and Clifford 1992) beverage worldwide
with an expanding market, tea quality (Dutta et al. 2003a) estimation is mostly com-
mercially oriented, and region-specific customer taste and demand are kept in mind
by the tasters during quality identification (Lozano et al. 2006). Furthermore, human
panel tasting is highly subjective with numerous problems like inaccuracy and non
repeatability and is laborious and time consuming due to various human factors like
individual variability, decrease in sensitivity due to prolonged exposure, infection,
and adverse mental state at times.

MOS based electronic nose has been developed for tea aroma characterization
(Mahanta and Baruah 1989) at CDAC, Kolkata, India. The block diagram for the
electronic nose setup is shown in Fig 4.6.

Electronic-nose-based aroma and flavor categorization (Kawakami et al. 2004)
of black tea (Bhattacharyya et al. 2007) has been attempted, and promising results
have been obtained. An electronic nose has the potential to eliminate problems that
are associated with human panel tasting, and, if this instrument is standardized for
the quality characterization of tea, it may serve as a very useful gadget for fast,
reliable, noninvasive, continuous, and real-time monitoring of the aroma of finished
tea (Bhuyan and Borah 2001).
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Fig. 4.6 Internal structure of electronic nose

4.1.6.2 Shelf-Life Investigation

Monitoring and controlling ripeness is a very important issue in fruit and vegeta-
bles management since it is a very important quality indicator for consumers. Many
methods to monitor fruit ripeness have already been proposed but they are not use-
ful for packing houses and most of them require the destruction of samples used for
analysis. Therefore, predictions of shelf-life (Brezmes et al. 2001) ripeness state are
mainly based on practical experience. In this skeleton, e-noses have proved to be
promising tools for fruit ripeness assessment.

In the survey it is found that, an e-nose based on arrays of differently coated
Quartz Microbalance (QMB) has been used to discriminate between volatile organic
compounds (VOCs) formed during the post-harvest ripening of apples (Herrmann
et al. 2002). In this study, the compounds aldehydes and esters were monitored

The performance of a QMB coated by modified metalloporphyrins and related
compounds based e-nose (LibraNose) and a MS-based e-nose for tomato aroma
(Berna et al. 2004) profiling was evaluated. In the first experiment, the changes in
tomato aroma profiles of two different cultivars were monitored during shelf-life
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(days 1, 8, 12 and 19). The score plot of PCA for the e-nose measurements showed
a slight shift along the first principal component corresponding to an increasing
number of days of shelf-life. However, the tomato aroma profiles measured on days
1 and 8 could not be discriminated by the e-nose.

In addition to the evaluation of fruit and vegetables ripeness states, other e-noses
applications to shelf-life investigation have been performed in cheese (Benedetti
et al. 2005, Riva and Mannino 2005), milk (Labreche et al. 2005) and oil samples
(Cosio et al. 2007, Mildner-Szkudlarz et al. 2008).

4.1.6.3 Freshness Evaluation

Freshness is another important quality property in the food industry. Since a num-
ber of different VOCs are generated for the period of storage of foods the electronic
noses have shown their budding in predicting freshness or spoilage of different food
raw material and products. It also major finding in foods where volatile releases dur-
ing storage due to rapid degradation by bacterial processes, such as fish (Di Natale
et al. 2001, Du et al. 2002, Olafsdottir et al. 2005, Chantarachoti et al. 2006,Korel
et al. 2001), oysters (Tokusoglu and Balaban 2004), shrimps, eggs (Dutta et al.
2003b), soybean curds and meats (El Barbri et al. 2008).

4.2 Electronic Tongue

The Electronic Tongue (E-Tongue) is an instrument that measures and compares
tastes (Ivarsson et al. 2001b). Chemical compounds responsible for taste are per-
ceived by human taste receptors, and sensors of electronic instruments detect
the dissolved compounds. Like human receptors, each sensor has a spectrum of
reactions different from the other. The information given by each sensor is comple-
mentary and the combination of all sensors results generates a unique fingerprint.
Most of the detection thresholds of sensors are similar or better than those of human
receptors. In the biological mechanism, taste signals are transducted by nerves in
the brain into electric signals. E-tongue sensors process is similar: they generate
electric signals as potentiometric variations. Taste quality perception and recog-
nition is based on building or recognition of activated sensory nerve patterns by
the brain and on the taste fingerprint of the product. This step is achieved by the
e-tongue’s statistical software which interprets the sensor data into taste patterns.
The electronic tongue uses taste sensors to receive information from chemicals on
the tongue and send it to a pattern recognition system. The result is the detection
of the tastes that compose the human palate. The type of taste that is gener-
ated is divided into five categories sourness, saltiness, bitterness, sweetness, and
umami (deliciousness). Sourness, which includes HCl, acetic acid, and citric acid
are created by hydrogen ions. Saltiness is registered as NaCl, sweetness by sug-
ars, bitterness, which includes chemicals such as quinine and caffeine are detected
through MgCl2, and umami by monosodium glumate from seaweed, disodium in
meat/fish/mushrooms.
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4.2.1 Tongue in Biological System

Taste buds are small structures on the upper surface of the tongue, soft palate, upper
esophagus and epiglottis that provide information about the taste of food being
eaten. These structures are involved in detecting the five elements of taste percep-
tion: salty, sour, bitter, sweet, and umami (or savory). Parts of the food are dissolved
in saliva and come into contact with small openings in the tongue epithelium, called
taste pores or taste receptors. These are located on top of the taste receptor cells that
constitute the taste buds. The taste receptor cells send information detected by clus-
ters of various receptors and ion channels to the gustatory areas of the brain via the
seventh, ninth and tenth cranial nerves. Taste receptor cells, with which incoming
chemicals from food and other sources interact, occur on the tongue in groups of 50–
150. Each of these groups forms a taste bud, which is grouped together with other
taste buds into taste papillae. The taste buds are embedded in the epithelium of the
tongue and make contact with the outside environment through a taste pore. Slender
processes (microvilli) extend from the outer ends of the receptor cells through the
taste pore, where the processes are covered by the mucus that lines the oral cavity.
At their inner ends the taste receptor cells synapse, or connect, with afferent sen-
sory neurons, nerve cells that conduct information to the brain. Each receptor cell
synapses with several afferent sensory neurons, and each afferent neuron branches
to several taste papillae, where each branch makes contact with many receptor cells.
The afferent sensory neurons occur in three different nerves running to the brain –
the facial nerve, the glossopharyngeal nerve, and the vagus nerve. Taste receptor
cells of vertebrates are continually renewed throughout the life of the organism.

The human tongue on an average has 2,000–8,000 taste buds, implying that there
are hundreds of thousands of receptor cells. However, the number of taste buds
varies widely. For example, per square centimetre on the tip of the tongue, some peo-
ple may have only a few individual taste buds, whereas others may have more than
one thousand; this variability contributes to differences in the taste sensations expe-
rienced by different people. Taste sensations produced within an individual taste
bud also vary, since each taste bud typically contains receptor cells that respond to
distinct chemical stimuli – as opposed to the same chemical stimulus. As a result,
the sensation of different tastes (i.e., salty, sweet, sour, bitter, or umami) is diverse
not only within a single taste bud but also throughout the surface of the tongue.

(i) Basic tastes
For a long period, it has been commonly accepted that there are a finite num-

ber of “basic tastes” by which all foods and tastes can be grouped. Just like with
primary colors, these “basic tastes” only apply to the human perception, i.e., the
different sorts of tastes the human tongue can identify. Up until the 2000s, this
was considered to be a group of four basic tastes. More recently, a fifth taste,
savory, has been proposed by a large number of authorities associated with this
field.
(a) Bitterness: It is the most sensitive of the tastes, and is perceived by many
to be unpleasant, sharp, or disagreeable. Common bitter foods and beverages
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include coffee, unsweetened cocoa, South American “mate”, marmalade, bitter
melon, beer, bitters, olives, citrus peel, many plants in the Brassicaceae family,
dandelion greens and escarole. Quinine is also known for its bitter taste and is
found in tonic water.
(b) Saltiness: Saltiness is a taste produced primarily by the presence of sodium
ions. Other ions of the alkali metals group also taste salty, however the further
from sodium the less salty is the sensation. The size of lithium and potassium
ions most closely resembles those of sodium and thus the saltiness is most simi-
lar. In contrast rubidium and cesium ions are far larger so their salty taste differs
accordingly.
(c) Sourness: Sourness is the taste that detects acidity. The mechanism for detect-
ing sour taste is similar to that which detects salt taste. Hydrogen ion channels
detect the concentration of hydronium ions that are formed from acids and water.
The most common food group that contains naturally sour foods is the fruit, with
examples such as the lemon, grape, orange, and sometimes the melon. Wine also
usually has a sour tinge to its flavor. If not kept correctly, milk can spoil and
contain a sour taste.
(d) Sweetness: Sweetness, usually regarded as a pleasurable sensation, is pro-
duced by the presence of sugars, some proteins and a few other substances.
Sweetness is often connected to aldehydes and ketones, which contain a car-
bonyl group. Sweetness is detected by a variety of G protein coupled receptors
coupled to the G protein gustducin found on the taste buds. At least two different
variants of the “sweetness receptors” need to be activated for the brain to register
sweetness. The compounds which the brain senses as sweet are thus compounds
that can bind with varying bond strength to two different sweetness receptors.
(e) Umami: Umami, popularly referred to as savoriness, has been proposed
as one of the basic tastes sensed by specialized receptor cells present on
the human and animal tongue. Umami is a loanword from Japanese meaning
roughly “tasty”, although “brothy”, “meaty”, or “savory” have been proposed as
alternative translations.

4.2.2 Concept of Electronic Tongue (E-Tongue)

Mechanism involved for taste recognition in human and electronic tongue shows
the same three levels: the receptor level [taste buds in humans, lipid membrane or
novel metal sensors in the electronic tongues], the circuit level [neural transmission
in humans, transducers in the electronic tongues], the perceptual level [cognition in
the thalamus in humans, statistical analysis by software in the electronic tongues].

(i) Receptor level
At the receptor level, to detect dissolved organic and inorganic compounds

the sensor-probe assembly is used by the electronic tongue. Each probe
shows cross-sensitivity and selectivity so that each sensor could concurrently
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contribute to the detection of most substances found in the liquid matrix. These
sensors are composed of an organic coating sensitive to the species to ana-
lyze in the samples and a transducer that allows converting the response of the
membrane into signals that will be analyzed

(ii) Circuit level
At the circuit level, the sample is quantified, digitized and results are

recorded. Electroanalyical methods can be used for measuring the result,
which use both active and passive to study an analyte through the observation
of potential and/or current. Potentiometry measures the potential of a solu-
tion between two electrodes passively, affecting the solution very little in the
process. Voltammetry applies a constant and/or varying potential at an elec-
trode surface and measures the resulting current with a three-electrode system.
Coulometry uses applied current or potential to completely convert an ana-
lyte from one oxidation state to another. In this experiment the total current
passed is measured directly or indirectly to determine the number of electron
passed

(iii) Perceptual level
At the perceptual level, perception is done in the computer with the using

of an electronic tongue system. Depending upon the application for which it
is applied, the data analysis can produce a variety of information. Exploratory
data analysis can be performed using different statistical methods such that
PCA (Shlens 2009), LDA (Balakrishnama and Ganapathiraju 2009) etc. on the
data set, to correlate collected data.

4.2.3 Application of Electronic Tongue

At CDAC Kolkata, electronic tongue (E-Tongue) for determining the briskness/
strength of the black tea liquor (Ivarsson et al. 2001a) has been developed. The major
quality attributes which determines the qualities of black tea are briskness/strength,
flavour, aroma and colour. Human experts called “tea taster” usually evaluate tea
quality, and conventionally assign scores on a scale of 1–10, depending on the major
quality attributes of the tea sample. A virtual instrumentation based E-Tongue has
been developed using voltammetry (Parra et al. 2006) technique for correlating the
briskness/strength of tea liquor with the “tea taster” mark. In this work an array of
selected electrodes were immersed into black tea liquor-samples for analyzing the
tea samples and computational model has been developed to correlate the measure-
ments with the tea taster’s briskness/strength scores. With unknown tea samples,
encouraging results have been obtained with more than 90% classification rate. The
block diagram of developed electronic tongue is shown in Fig. 4.7 and laboratory
prototype is presented in Fig. 4.8.

In addition an electronic tongue has a potential to classify three kinds of grape
wine. Hong et al. (2008) shows that test recognition rate has reached 100% in the
experiment of grape wine recognition.
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Fig. 4.7 Internal structure of electronic tongue

In the survey, it is found that, an electronic tongue developed based on nano
structured films and impedance spectroscopy have been successful in detecting trace
amounts of impurities in water and distinguishing similar complex liquids, such as
different wines and coffees (Ferreira et al. 2007).

Robertsson et al. (2004) shows the problem of extracting the important informa-
tion from a complex response from an electronic tongue sensor. A wavelet transform
is used in this approach and the approximation coefficients are extracted as features
and classified using a minimum distance classifier (MDC). Two experimental setups
have been performed; water and milk, and the bacteriological growth are monitored.

For ageing testing electronic tongue has been helped and quality can be improved
with the help of electronic tongue (Robertsson and Wide 2005) shows overall
identification of different stages in the ageing process of baby food product.

(a) Commercial availability of E-Nose and E-Tongue
Nowadays instrument has been developed called as Electronic nose, for

classification of odours in different application area such as food processing,
shelf-life investigation, food freshness evaluation, and food authenticity assess-
ment and food quality control studies. Some manufacturers call their devices
“electronic nose”, whereas others avoid mentioning this term eve if there prod-
uct operates in a similar way. The following electronic noses are available in
market.



96 N. Bhattacharyya and R. Bandhopadhyay

Fig. 4.8 Laboratory prototype of electronic tongue at C-DAC, Kolkata, India

• FOX 2,000, 3,000, 4,000
• PEN 3
• GDA 2
• i-PEN
• Gemini
• Cybernose
• ZNose 4,200, 4,300, 7,100
• Astree
• Smart Nose 2,000
• LibraNose 2.1
• Artinose

(b) Commercially available Electronic Tongue:

• Mobile static version
• Astree.
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Fig. 4.9 Technological roadmap of electronic nose and tongue

4.3 Future Trends

Future technological roadmap is shown in Fig. 4.9. The developmental trend will
continue for the next decade also. This period should see the transfer of some of
the current research efforts of universities and R&D organizations into new com-
mercially deployed applications. Advances in other related fields of technology
would also logically influence electronic nose technology in terms of improvement
of sensors, microelectronics and data processing techniques as reviewed below.

4.3.1 Sensor Technology

• Development of hybrid sensors.
• Development of Bio-sensors, Nano-sensors and Nano-bio sensors
• More intelligent sensor structure design for eliminating effects of temperature

and humidity.

4.3.2 Microelctronic Technology

• Silicon micromachining techniques for sensor arrays.
• Development of miniaturized sensor array by micromachining techniques for

less power consumption.Application Specific Integrated Circuits (ASIC) for
electronic nose.

• Integration of sensor and electronic circuitry on same chip.
• Development of mass production facility for microelectronics required for

electronic nose.
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4.3.3 Data Processing Methods

• Establishment of odour and taste standards and odour data-sets.
• Development of new dynamic methods using transitory sensor signals and

adaptive filters close to human perception
• Customization efforts for newer applications.

References

Anon (2010) www.tocklai.net
Balakrishnama S, Ganapathiraju A (2009) Linear discriminant analysis: a brief tutorial. http://

www.zemris.fer.hr/predmeti/kdisc/bojana/Tutorial-LDA-Balakrishnama.pdf
Banerjee B (1993) Tea production and processing. Oxford & IBH, New Delhi, India
Benedetti S, Sinelli N, Buratti S et al (2005) Shelf life of crescenza cheese as measured by

electronic nose. J Dairy Sci 88:3044
Berna AZ, Lammertyn J, Saevels S et al (2004) Electronic nose systems to study shelf life and

cultivar effect on tomato aroma profile. Sens Actuators B Chem 97:324
Bhattacharyya N, Bandyopadhyay R, Bhuyan M et al (2005) Correlation of multi-sensor array data

with “tasters” panel evaluation for objective assessment of black tea flavour. In: Proceedings of
ISOEN, Barcelona, Spain

Bhattacharyya N, Seth S, Tudu B et al (2007) Detection of optimum fermentation time for black
tea manufacturing using electronic nose. Sens Actuators B Chem 122:627–634

Bhattacharya N, Tudu B, Jana A et al (2008) Preemptive Identification of Optimum Fermentation
Time for Black Tea Using Electronic Nose. Sens Actuators B Chem 131:110–116

Bhuyan M, Borah S (2001) Use of electronic nose in tea industry. In: Proceedings of EAIT, IIT
Kharagpur, India, pp 848–853

Boothe DDH, Arnold JW (2002) Electronic nose analysis of volatile compounds from poultry meat
samples, fresh and after refrigerated storage. J Sci Food Agric 82:315–322

Brezmes J, Llobet E, Vilanova X et al (2001) Correlation between electronic nose signals and fruit
quality indicators on shelf-life measurements with pinklady apples. Sens Actuators B Chem
80:41

Chantarachoti J, Oliveira ACM, Himelbloom BH (2006) Portable electronic nose for detection of
spoiling Alaska pink salmon (Oncorhynchus gorbuscha). J Food Sci 71:S414

Cosio MS, Ballabio D, Benedetti S et al (2007) Evaluation of different storage conditions of extra
virgin olive oils with an innovative recognition tool built by means of electronic nose and
electronic tongue. Food Chem 101:485

Cynkar W, Cozzolino D, Dambergs B et al (2007) Feasibility study on the use of a head space
mass spectrometry electronic nose (MS e-nose) to monitor red wine spoilage induced by
Brettanomyces yeast. Sens Actuators B Chem 124:167

Di Natale C, Olafsdottir G, Einarsson S et al (2001) Comparison and integration of different
electronic noses for freshness evaluation of cod-fish fillets. Sens Actuators B Chem 77:572

Distante C, Leo M, Siciliano P et al (2002) On the study of feature extraction methods for an
electronic nose. Sens Actuators B Chem 87:274–288

Du WX, Lin CM, Huang T et al (2002) Potential application of the electronic nose for quality
assessment of salmon fillets under various storage conditions. J Food Sci 67:307

Dutta R, Hines EL, Gardner JW et al (2003a) Tea quality prediction using a tin oxide-based
electronic nose: an artificial intelligence approach. Sens Actuators B Chem 94:228–237

Dutta R, Hines EL, Gardner JW (2003b) Non-destructive egg freshness determination: an
electronic nose based approach. Meas Sci Technol 14:190

El Barbri N, Llobet E, El Bari N et al (2008) Electronic nose based on metal oxide semiconductor
sensors as an alternative technique for the spoilage classification of red meat. Sensors 8:142



4 Electronic Nose and Electronic Tongue 99

Ferreira EJ, Pereira RCT, Mattoso LHC et al (2007) Random subspace method for analysing coffee
with electronic tongue. EMBRAPA Instrumentacao Agropecuaria Sao Carlos. Electron Lett
43:1138–1139

García M, Aleixandre M, Horrillo MC (2005) Electronic nose for the identification of spoiled
Iberian hams. Spanish on Conference Electron Devices, Tarragona, pp 537–540

Gutierrez-Osuna R (2002) Pattern analysis for machine olfaction: a review. IEEE Sen J 2:
189–202

Haykin S (2001) Neural networks: a comprehensive foundation, 2nd ed. Pearson Education Asia,
Hong Kong

Herrmann U, Jonischkeit T, Bargon J et al (2002) Monitoring apple flavor by use of quartz
microbalances. Anal Bioanal Chem 372:611

Hong M, Weiguang W, Zongnian G et al (2008) Application of neural networks to identify wine
based on electronic tongue. In: Computational Intelligence and Industrial Application (PACIIA)
1:896–900

Ivarsson P, Holmin S, Krantz-Rülcker C et al (2001a) Discrimination of tea by means of a
voltammetric electronic tongue and different applied waveforms. Sens Actuators B Chem
76:449–454

Ivarsson P, Kikkawa Y, Winquist F et al (2001b) Comparison of a voltammetric electronic tongue
and a lipid membrane taste sensor. Anal Chim Acta 449:59–68

Kawakami M, Sarma S, Himizu K et al (2004) Aroma characteristics of Darjeeling tea. In:
Proceedings of International Conference O-CHA (Tea) Culture Science, Shizuoka, Japan, pp
110–116

Kermani BG, Schiffman SS, Nagle HT (2005) Performance of the levenbermarquardt neu-
ral network training method in electronic nose applications. Sens Actuators B Chem
110:13–22

Korel F, Luzuriaga DA, Balaban MÖ (2001) Objective quality assessment of raw tilapia
(Oreochromis niloticus) fillets using electronic nose and machine vision. J Food Sci
66:1018

Labreche S, Bazzo S, Cade S et al (2005) Shelf life determination by electronic nose: application
to milk. Sens Actuators B Chem 106:199

Lebrun M, Plotto A, Goodner K et al (2008) Discrimination of mango fruit maturity by volatiles
using the electronic nose and gas chromatography. Postharvest Biol Technol 48:122

Lozano J, Santos JP, Aleixandre M et al (2006) Identification of typical wine aromas by means of
an electronic nose. IEEE Sens J 6:173–178

Mahanta PK, Baruah S (1989) Relationship between process of withering and aroma characteristics
of black tea. J Sci Food Agric 46:461–468

Marilley L, Ampuero S, Zesiger T et al (2004) Screening of aroma-producing lactic acid bacteria
with an electronic nose. Int Dairy J 14:849
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Chapter 5
Radiography, CT and MRI

Nachiket Kotwaliwale, Abhimannyu Kalne, and Karan Singh

Quality control is an important aspect of food production and processing for
providing foods of acceptable nutritional value, and safety of products. Several char-
acteristics such as size, shape, density, maturity, moisture content, oil content, flavor,
firmness, tenderness, color, defects, blemishes, etc., are routinely used in the quality
control of agricultural and biological food products. Until recently, most analytical
techniques used in quality control required isolation of the food component of inter-
est. The original properties of the product are, therefore, destroyed during sample
preparation and analysis. Oftentimes, such analyses are expensive, time consuming,
and require sophisticated instrumentation, and hence are not suited for “on-line”
quality control of food products. Recent progress in the development of instrumen-
tation utilizing the some physical, optical, acoustic and electromagnetic properties
of food products has provided several nondestructive techniques for quality evalu-
ation. Many such methods are highly sensitive, rapid, and reproducible, and have
been successively used in routine “on-line” quality control of a large number of
samples.

Quality evaluation is important for establishing price at various stages in market-
ing. Size, weight vis-à-vis density, product color vis-à-vis appearance, physical and
pathological damage are the major factors influencing quality. These factors mainly
depend on variety, environmental conditions during growth, processing, packag-
ing and storage practices. Quality of a food product depends on many properties,
such as, physical, mechanical, optical, electrical, magnetic, electro-magnetic, etc.
The non-destructive part, generally carried out by the producer/grower or the first
buyer, includes separation of material based on size and specific gravity. Rotary or
oscillatory sieves with or without aeration will separate larger and/or smaller mate-
rial from the desired size. Aeration helps by blowing away the lighter impurities of
the crop. It is therefore a common practice to draw a small weighed sample from
the crop lot, break each grain/fruit/nut and inspect it manually. Typically a sample
of 0.1% of the saleable load is recommended. The method is time consuming and

N. Kotwaliwale (B)
Central Institute of Agricultural Engineering, Nabibagh, Bhopal 462038, India
e-mail: nachiket@ciae.res.in

101S.N. Jha (ed.), Nondestructive Evaluation of Food Quality,
DOI 10.1007/978-3-642-15796-7_5, C© Springer-Verlag Berlin Heidelberg 2010



102 N. Kotwaliwale et al.

labor intensive; therefore it is a common practice to draw a samples even smaller
than 0.1% of the traded lot. Such a small sample may not be a true representative
of the lot. Taking a larger sample for destructive quality determination is also not
possible from the seller’s point of view, because this causes loss of saleable quan-
tity. Sometimes destructive method becomes more subjective and quality of same
crop can be assessed differently at different points of sale. Moreover, trained taste
panels are expensive, slow and in most cases only reliable when the product has
reached the eating stage. Further, quality determination through trained taste panel
and some other methods of quality determination require cutting, crushing, break-
ing, thus damaging the tested commodity and therefore, quality of a lot can only
be judged based on the drawn sample. Last century witnessed development of many
types of equipment to separate agricultural commodity based on one or combination
of similar (mostly physical) properties. Though effective, use of these equipments
requires multiple handlings to determine overall grade of the commodity. Using
multiple sensors, all the grade parameters of a commodity can be determined on one
platform and then separation can be effected based on overall quality. The computer-
controlled devices can also be flexible enough to accommodate similar or altogether
different commodities.

X-ray imaging or radiography is one of the most successful techniques for non-
destructive determination of internal quality. Radiography of agricultural materials
for quality determination is an upcoming field showing promising results for some
nuts, fruits, and grains. X-rays, because of their high energy, can penetrate through
many objects. However there are differences in penetration through different materi-
als due to the differences in the material properties. Photons in an X-ray beam, when
pass through a body, are either transmitted, scattered or absorbed. Radiography
intends to capture the difference in transmitted X-ray beam, due to material dif-
ference, in form of a visual contrast in the image. This contrast can be a measure
of spatial and quantitative distribution of a certain material(s) within a composite of
materials. The radiography technique can not only determine the extent of internal
damage but can also estimate volume of different internal features. Besides two-
dimensional radiography, used in medicine, and linescan radiography, applied on
grading machines, X-ray computed tomography (CT) is another powerful technique
from a research point of view. It is a proven method for evaluating a cross-section of
an object using a movable X-ray source and detector assembly to accumulate data
from a thin projected slice of sample. One of the major problems associated with
use of X-rays is that high-energy electromagnetic radiations, like X-rays, can ion-
ize and kill biological cells. It is therefore mandatory to provide a shield between
the radiation source and people working in the vicinity. Equipment designed for
radiography, therefore, needs to fulfill functional as well as radiation safety require-
ments. Magnetic Resonance Imaging (MRI) is another non-invasive technique that
allows detecting and follow-up the development of storage disorders over time. MRI
employs static magnetic fields and radio frequencies in order to obtain images of
proton (1H) mobility in biological systems. The signal comes from water or fat
present in the sample. The intensity of this signal depends on the dynamic char-
acteristics of the aqueous protons, which are modeled by three parameters: the
proton density (NH), the spin-lattice relaxation time T1 and the spin–spin relaxation
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time T2. Two instrumental parameters also determine the signal amplitude: the echo
time (TE), between the initial 90◦ excitation pulse and the observation of the echo
signal, and the repetition time TR, between each of the successive excitations needed
to acquire the image. Nuclear magnetic resonance is sensitive to the existence of
mobile water, oil and sugar, which are major components of agricultural materials
therefore it has a high potential for use in various internal quality factors, such as
bruises, dry regions, worm damage, stage of maturity, and presence of voids, seeds
and pits (Chen et al. 1989, McCarthy 1994).

Radiography, CT and MRI techniques give an output in form of images and deci-
sion making has been, historically, with human intervention. Experts, knowing the
anatomy of the object of interest could make decision about the internal quality,
i.e. presence and physical dimensions of any abnormality, foreign object etc. With
advent of computers, the digital image processing technique has evolved which not
only allows safe storage of images but quick retrieval, enhancement of features,
comparison and use of many mathematical and/or stochastic tools for decision sup-
port. In fact the techniques of CT and MRI are possible just because of very strong
computational powers of modern computers. The images generated in radiogra-
phy, CT and MRI are monochromatic and do not represent the optical properties
of the features. It is therefore necessary to correlate different feature attributes to
grayness and bunch size of different pixels or pixel bunches (2-D image) or voxels
(3-D image).

This chapter gives description of history, development, theory, equipment and
many related aspects about X-ray imaging (Radiography), Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI). To explain the theory and appli-
cations, many figures, images have been included, some of which are downloaded
from internet. The information has been downloaded from the internet over a long
period of time and from the sources which are no longer active, hence their sources
are not provided. It is expected that with time to come, noninvasive techniques
like radiography, CT and MRI would be used extensively for quality detection and
referencing services for agricultural commodities. Online sorting based on digi-
tal radiography is also likely to get place in agricultural pack-houses, especially
for high priced and export commodities. This chapter is intended for academi-
cians, researchers, students and entrepreneurs embarking into the exciting field of
‘INSIGHT’.

5.1 Radiography

X-ray radiation was discovered by Wilhelm Conrad Röntgen in 1895. He found that
X-rays are generated by bombarding electrons on a metallic anode. Figure 5.1 shows
radiograph which is believed to be the first known radiograph.

X-rays are produced when a fast moving electron, emanated from a heated cath-
ode, impinges on a heavy metal anode. There are generally two types of X-ray
emission (Fig. 5.2); (i) Bremstrahlung – A free electron is attracted to the nucleus,
to conserve momentum, a photon is created with an energy dependent upon change
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Fig. 5.1 Presumably first
radiograph

Production of X-rays by
Bremstrahlung  

Production of characteristics
X-rays 

Fig. 5.2 Production of X-rays

in electron’s trajectory; (ii) K-shell or characteristic X-rays – electron from cathode
dislodge orbital electrons in the target material and produce excited atoms which is
stabilized by X ray emission.

Generally less than 1% of the energy received by the anode is converted into
X-rays. The X-rays, emitted from the focal spot travel in a conical beam shape
through a window in the X-ray tube. Efficiency, quantity, quality and energy
of produced X-rays generally depend upon the anode material. A material with
higher atomic number will produce more X-rays. X-rays (or Röntgen rays) are a
form of electromagnetic radiation with a wavelength in the range of 10–0.01 nm,
corresponding to frequencies in the range 30–30,000 PHz (1 PHz = 1E15 Hz).
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X-ray imaging techniques have mainly been developed for medical, particle and
material physics. With this in mind, the use of X-ray imaging techniques in the
agricultural and food industries has not been exploited to its fullest potential. As
a sub-surface technique, X-ray radiation can give three-dimensional information
about the spatial density differences and changes of the atomic number within a
sample (Zwiggelaar et al. 1996).

5.1.1 Properties of X-Ray

Short electromagnetic waves, such as X-rays, behave like particles as well as waves
while interacting with matter. These particles are discrete bundles of energy and are
called photons or quantum. If a photon has 15 eV or more energy, it is capable of
ionizing atoms and molecules, and it is called “ionizing radiation”. An atom is ion-
ized when it loses an electron. Short electromagnetic waves, such as X-rays, interact
with matter as if they were particles rather than waves. Energy of a photon is given
by E = hν, where h is Plank’s constant (4.13×10–18 keV·s or 6.62×10–34 J·s), and
ν is frequency of photon wave (ν = c

λ
, where c is speed of light 3×108 ms–1, and

λ is wavelength). Rearranging and substituting values of h and c we get E = 12.4
λ

.

5.1.2 Attenuation Coefficient

The photons in a soft X-ray beam, when passed through an object, are either trans-
mitted, scattered (Compton scattering) or absorbed (photoelectric collision). As a
result, the energy of incident photons reduces exponentially (Curry et al. 1990) and
is given by

I = I0e−μmzρ (5.1)

Where, I is the energy of photons exiting through a body in keV; μm is mass
attenuation coefficient in mm2 g–1; ρ is material density in g mm–3; and z is thick-
ness in mm through which the X-rays pass. The mass attenuation coefficient for a
material is a function of the atomic number of the absorbing material and incident
photon energy. The exiting photon energy depends on material properties, includ-
ing thickness. If the absorbing material consists of more than one element, the mass
attenuation coefficient of the composite material will be a function of mass attenu-
ation coefficients of individual elements and their mass fraction in the path of the
photon beam (Hubbell and Seltzer 1995). Radiography intends to capture the differ-
ence in transmitted X-ray photons, due to material difference in the form of a visual
contrast in the image. Attenuation coefficient of a material changes with thickness
when measured under polychromatic X-rays (Paiva et al. 1998, Kotwaliwale et al.
2006). Buzzell and Pintauro (2003) defined ‘R-value’ for a material as the ratio of
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Fig. 5.3 Energy and number
of photons attenuate as they
pass through a matter

the attenuation coefficient at low-energy level to that at high-energy level. Figure 5.3
represents attenuation of X-ray beam when passing through a material.

5.1.3 Components Used in X-Ray Imaging

In any type of X-ray imaging, there are four basic elements: (i) X-ray source; (ii)
X-ray converter; (iii) imaging medium and (iv) casing for imaging medium. The
X-ray converter, e.g. phosphor screen, stops X-rays from reaching the imaging
medium and produces a visible output proportional to the incident X-ray pho-
tons. The imaging medium, e.g. photographic medium captures the image while
the casing protects the imaging medium from surrounding visible radiations.

X-ray Tube: Radioactive substances and X-ray tubes are the two sources of
X-rays. In X-ray tubes, X-rays are generated by interactions between the energetic
electrons and atoms of the target. Bombardment must take place in a vacuum to
prevent ionization of air. The X-ray source is one of the most important system
components in determining the overall image quality. Whereas, the radioactive sub-
stances may generate monochromatic X-rays (almost all the photons having same
energy level), X-ray tubes generate polychromatic beam. The literature shows that
X-ray tubes of different types have been used as X-ray sources in radiography of
agricultural produce. The variations in tubes are in the maximum tube voltage, cur-
rent, focal spot size, window material, electrode material, tube cooling system etc.
Major parts of an X-ray tube (Fig. 5.4) are: evacuated envelop (special glass or
metal tube), heated tungsten filament or cathode, anode, tungsten target attached to
the anode, electron focusing cup and high voltage power supply.

Imaging medium: Historically, X-ray imaging has been done on photographic
plates or films. In general, the acquisition of X-ray images can be either film-based
or digital. In film-based X-ray imaging, which is similar to that of conventional
photography, the X-ray is transmitted through the inspected object and a sensing
film is exposed to form the object image. After developing the film, an X-ray image
with high resolution can be obtained. Digital images by scanning of film radiographs
have been reported by many researchers. This technique helped in performing digital
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image processing and electronic storage of radiographs. Different resolutions and bit
depths have been reported for different products.

Photographic plate: The detection of X-rays is based on various methods. The
most commonly known methods are a photographic plate, X-ray film in a cassette,
and rare earth screens. In earlier periods a photographic plate was used to produce
radiographic images. The images were produced right on the glass plates. Film
replaced these plates. Since photographic plates are sensitive to X-rays, they pro-
vide a means of recording the image, but require a lot of exposure (to the patient),
so intensifying screens were devised. They allow a lower dose to the patient, because
the screens take the X-ray information and intensify it so that it can be recorded on
film positioned next to the intensifying screen. The object to be radiographed is
placed between the X-ray source and the image receptor to produce a shadow of the
internal structure of that particular body. X-rays are partially blocked (“attenuated”)
by dense tissues, and pass more easily through soft tissues. Areas where the X-rays
strike darkens when developed, causing bones to appear lighter than the surrounding
soft tissue.

Photostimulable phosphors (PSPs): An increasingly common method is the use
of photostimulated luminescence (PSL) wherein photostimulable phosphor plate
(PSP plate) is used in place of the photographic plate. After the plate is X-rayed,
excited electrons in the phosphor material remain “trapped” in “colour centres” in
the crystal lattice until stimulated by a laser beam passed over the plate surface.
The light given off during laser stimulation is collected by a photomultiplier tube
and the resulting signal is converted into a digital image by computer technology,
which gives this process its common name, computed radiography (also referred to
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as digital radiography). The PSP plate can be reused, and existing X-ray equipment
requires no modification to use them.

Scintillators: Some materials such as sodium iodide (NaI) can “convert” an X-ray
photon to a visible photon; an electronic detector can be built by adding a photo-
multiplier. These detectors are called “scintillators”, filmscreens or “scintillation
counters”. The main advantage of using these is that an adequate image can be
obtained while subjecting the patient to a much lower dose of X-rays.

Direct semiconductor detectors: Since the 1970s, new semiconductor detectors
have been developed (silicon or germanium doped with lithium, Si(Li) or Ge(Li)).
X-ray photons are converted to electron-hole pairs in the semiconductor and are
collected to detect the X-rays. When the temperature is low enough, it is possi-
ble to directly determine the X-ray energy spectrum; this method is called energy
dispersive X-ray spectroscopy (EDX or EDS); it is often used in small X-ray fluores-
cence spectrometers. These detectors are sometimes called “solid state detectors”.
Detectors based on cadmium telluride (CdTe) and its alloy with zinc, cadmium zinc
telluride, have an increased sensitivity, which allows lower doses of X-rays to be
used.

Scintillator plus semiconductor detectors (indirect detection): With the advent
of large semiconductor array detectors it has become possible to design detector
systems using a scintillator screen to convert from X-rays to visible light which is
then converted to electrical signals in an array detector. Indirect Flat Panel Detectors
(FPDs) are in widespread use today in medical, dental, veterinary and industrial
applications.

X-ray Camera: Using digital X-ray scanning sensors, digitized X-ray images can
be acquired and analyzed in real time since this allows for online inspection of
materials, the applications of digital X-ray imaging in industries have increased sig-
nificantly in recent years. Two types of digital cameras are typically used; line-scan
cameras and 2-D camera. In a line scan cameras, relative movement of sample and
camera is required to acquire a digital radiograph. Two types of arrangements exist
for 2-D radiography; a digital plate comprising of X-ray converter, CCD or CMOS
array and casing replaces the conventional ‘film cassette’ this plate is then read
through a image reader, alternatively, digital X-ray cameras giving instantaneous
or ‘on-line’ read-out are also available. X-ray digital camera typically has a two-
dimensional photodiode array or CMOS having pixels spaced apart in a sensing
area. A scintillator screen, placed in direct contact with the photodiode array, con-
verts incident X-ray photons to light, which in turn is detected by the photodiodes. A
graphite window shields against ambient light and protects the sensitive electronics
from accidental damage (Fig. 5.5).

The analog signal from the photodiode sensor is digitized. Resolution of digiti-
zation, number of A/D channels, dynamic range (defined as the maximum signal
divided by the read noise), type of frame grabber required, frame rate are some of
the variable features that decide quality of the camera (Kotwaliwale et al. 2007a).

Shield: X-rays in the range of 10–50 keV are about 10,000 times more energetic
than visible light. Due to its high energy content, the photons can penetrate almost
all materials. These electromagnetic radiations also have ionization properties that
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Fig. 5.5 Layout of detector and screen

can kill biological cells and hence a proper shielding is required while dealing with
X-rays.

Maximum dose gets generated when the X-ray tube operates on its peak volt-
age and current. In thicker shields, a phenomenon of buildup from scattering must
be accounted for. The thicker and taller is the shield, the larger the build up of
scatter component. Also, the energy of the source affects the contribution of the
scatter factor to the exposure range. For primary X-rays, the buildup due to shielding
transmission is given as:

Bx = 1.67 × 10−5 Hd2

DT
(5.2)

where, Bx = shielding transmission, H = maximum permissible dose equivalent
(mrem/h), d = distance between X-ray source and reference point (m), D = absolute
dose index rate (rad m2/min), and T = area occupancy factor.

The effect of material thickness on the penetration of neutrons as a modified form
of Eqn. 5.1 is given as:

I(z) = BI0e−∑t z (5.3)

where
∑

t is the macroscopic total cross section for neutrons, and B is build-up
factor. The build-up factor could be expressed in a form of B(μ · z) = 1 + μ · z and
thus:
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I(z) = (1 + μz)I0e−∑t z (5.4)

Approximating
∑

t by μ for X-rays we get

I(z) = (1 + μz)I0e−μ·z (5.5)

This equation could be solved for z to get the thickness of shield required to
reduce radiation dose by a desired factor.

Shield thickness to protect against this dose is determined using two approaches.
A safe reduction of photon energy through shielding is considered as one million
times reduction, i.e., I

I0
= 10−6:

Approach I – Incorporating buildup due to shield, thus Eqn. 5.1 becomes

I = I0(1 + Bx)e−μmzρ (5.6)

A conservative estimate of Bx is 1.148×10–9 calculated at a distance of 0.25
m away from source of 3 MeV, 2 mA, 1 cm diameter electron beam and area
occupancy factor of 1. Equation. 5.6 is then solved for shield thickness, z.

Approach II – Using Eq. 5.5 and solving for shield thickness, z.
(Mass attenuation coefficient of Pb for 50 keV, μm= 6.74 cm2 g–1. Linear
attenuation coefficient μ = μm

∗ Density → 6.74 cm2 g–1 ∗ 11.35 g/cm3 =
76.49 cm–1.)

The Imaging process: As shown in Fig. 5.6 and 5.7, the object for which radio-
graph is generated lies between X-ray tube and imaging medium. This is in contrast
to the photography where light source and camera are normally in the same direc-
tion compared to object of photography. This situation poses a limitation that the
imaging medium (film or camera’s sensing area) should be larger than the object.
The line scan detectors help alleviate this problem to some extent (at least there
is a freedom in one dimension). Further, the distance between object and imaging

(a) (b) 

X-ray beam spot 

Object 

Imaging medium 

Radiograph 

Fig. 5.6 Deviation in image size due to distance of subject from imaging medium (a) and
geometric unsharpness due to size of beam spot (b)
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Fig. 5.7 Schematic of the X-ray digital imaging equipment setup

medium is also very vital if the dimensions of features in the radiographs have any
significance the study. The spot size of X-ray beam at the source should be as small
as possible. Possible artifacts due to distance from object to imaging medium and
due to larger spot size are shown in Fig. 5.6.

5.1.4 X-Ray Digital Imaging Equipment

Schematic of a typical equipment setup is shown in Fig. 5.7. The equipment consists
of an X-ray tube that generates polychromatic X-rays, an X-ray camera, a computer
and data acquisition and control card(s) for communication between equipment and
computer.

5.1.5 Applications of X-Ray Imaging in Non-destructive
Quality Evaluation

Many applications are reported using human intervention for making decisions
about presence of defects in various commodities like apples, mango, onion, meat,
pistachio nuts, almonds, wheat, pecans, grains etc. (Diener et al. 1970, Han et al.
1992, Thomas et al. 1995, Keagy et al. 1996, Schatzki et al. 1997, Casasent et al.
1998, Abbott 1999, Arslan et al. 2000, Kim and Schatzki 2000, Casasent et al. 2001,
Kim and Schatzki 2001, Haff and Slaughter 2004, Karunakaran et al. 2004, Tollner
et al. 2005, Neethirajan et al. 2006a, Fornal et al. 2007, Kotwaliwale et al. 2007b,
Narvankar et al. 2009) X-ray with energy ranging from 15 to 80 kVp at various cur-
rent levels has been reportedly used. However, higher energy of 100 kVp has been
found not suitable for radiography of food products. The X-ray exposure time as
high as 90 s has been reported while taking the exposure on film.
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Defect inspection and classification have been difficult problems in the develop-
ment of non-destructive sorting systems for fruits and vegetables. This is because
various types of defective tissues with differing severity, as well as other features,
may occur on the agricultural products due to unpredictable natural environmen-
tal conditions, insects, pathogens, or physiological disorders. Spectral imaging,
machine vision and pattern recognition techniques are considered effective tools
to identify defective tissues on fruits and vegetables. Before introduction of digi-
tal imaging and image processing the decision system for identification of desired
or undesired features has been manual. Computer based image processing system
has given a support to the decision system and made it possible to quickly identify
the features for opening a prospect for online sorting. Different types of image pro-
cessing algorithms have been adopted for enhancement of images to aid decision on
attributes. The image processing algorithms have been improving with improvement
in computational skills and hardware. Whereas the initial works included mor-
phological image processing techniques to enhance features of interest, the recent
approaches use stochastic and advanced techniques leading to automatic decision
support. Some primary image processing algorithms like image subtraction have
been suggested to determine relative movement of live insects infesting the kernels.
Figure 5.8 shows an X-ray based system used for sorting of mangoes. The unit is
typically similar to the devices used at airports for scanning of passenger baggage.
Figure 5.9 shows radiographs of pecans distinctly showing some kind of abnor-
malities which were otherwise invisible from outside. X-ray images of some more
agricultural products are shown in Fig. 5.10.

Dual energy X-ray imaging: Dual energy X-ray imaging is a method for produc-
ing images with different contrast characteristics. Two images, produced with short
time between exposures, and with different contrast properties are obtained using
two exposures with different kVp. Using these two images makes it possible, for
instance, to subtract the bone structures produced in the low-kVp image from the
high-kVp image, thus generating a “soft tissue image”. Inversely, visualizing high
attenuating regions can be improved by subtracting the high-kVp image from the
low-kVp image. Figure 5.11 shows a schematic of DEXA setup.

Dual energy X-ray imaging is an alternative technique to simple transmission
X-ray imaging. A small contrast in a X-ray transmitted image can be enhanced by
a suitable selection of two X-ray photon energies (Zwiggelaar et al. 1997). Dual

Fig. 5.8 X-ray based sorting
system for mangoes
(Courtesy: CEERI, Chennai,
India)
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a – Good nut; b – Good nut with shucktight; c – Nut with mechanical damage; d – Nut with shriveled nutmeat; e – Insect 
damage to one cotyledon from inside; f – visible insect hole;  g – Insect damage and insect; h – Hollow nut. 

Fig. 5.9 X-ray images of some pecans with different visible attributes

Wheat (Source: Neethirajan 
et al., 2007) 

Wheat (Source: Fornal 
et al., 2007) 

Almond (Source: Kim & 
Schatzki, 2001) 

Pistachionut (Source: Casasent, 
et. al., 1998) 

Mango Onion (Source: Abbott, 
1999)

Fig. 5.10 Radiographs of some agricultural commodities showing internal artifacts

energy X-ray imaging has been successfully used to detect glass contamination in
horticultural peat (Ayalew et al. 2004); to evaluate meat tenderness (Kroger et al.
2006), to classify vitreousness in durum wheat (Neethirajan et al. 2007) and to pre-
dicts carcass composition from live sheep and chemical composition of live and
dead sheep (Pearce et al. 2009). DEXA has been used to study composition of pork
carcasses and to predict bone mineral content in live pigs, for predicting total weight
and the amount of lean and fat in lamb carcasses and their primal cuts, to assess meat
fat content.
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Fig. 5.11 Principal layout of
DEXA scanner (Source:
Kröger et al. 2006)

5.2 Computed Tomography (CT)

The technique of X-ray computed tomography (CT) enables the acquisition of two-
dimensional X-ray images of thin “slices” through the object. CT, originally known
as computed axial tomography (CAT or CT scan) and body section rentenography,
is an imaging method employing tomography. The basic principle behind CT is that
the internal structure of an object can be reconstructed from multiple X-ray pro-
jections of an object. Figure 5.12 shows an illustration of a CT scanner. The first
commercially viable CT scanner was invented by Godfrey Newbold Hounsfield
in Hayes, England at Thorn EMI Central Research Laboratories using X-rays.
Hounsfield conceived his idea in 1967, and it was publicly announced in 1972. Allan
McLeod Cormack of Tufts University, MA, USA independently invented a similar
process and they shared a Nobel Prize in medicine in 1979. The first prototype took
160 parallel readings through 180 angles, each 1◦ apart, with each scan taking a
little over 5 min. A large computer required almost 2.5 h to process the images from
these scans by algebraic reconstruction techniques.

The first practical CT instrument was developed in 1971 by Dr. G. N.
Hounsfield in England and was used to image the brain. The projection data were
acquired in approximately 5 min, and the tomographic image was reconstructed in

Fig. 5.12 CT scan machine
schematic (Source:
Cuningham and Judy 2000)
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approximately 20 min. Since then, CT technology has developed dramatically, and
CT has become a standard imaging procedure for virtually all parts of the body in
thousands of facilities throughout the world.

5.2.1 Generations of CT

Several generations of scanners have been developed which differ in tube-detector
configuration and scanning motion (Table 5.1) (Canadian Association of Medical
Radiation Technologists CT Imaging 1-Theory textbook).

In the first and second generation designs, the X-ray beam was not wide enough
to cover the entire width of the ‘slice’ of interest. A mechanical arrangement was
required to move the X-ray source and detector horizontally across the field of view.
The first and fourth generation of CT are compared graphically in Fig. 5.13. In the
3rd and 4th generation designs, the X-ray beam is able to cover the entire field of
view of the scanner. This avoids the need for any horizontal motion; an entire ‘line’
can be captured in an instant. This allowed simplification of the motion to rotation
of the X-ray source. Third and fourth generation designs differ in the arrangement
of the detectors. In 3rd generation, the detector array is as wide as the beam, and
must therefore rotate as the source rotates. In 4th generation, an entire ring of sta-
tionary detectors is used. Figure 5.14 shows a modern CT scanner with the cover

Table 5.1 Generations of CT scanners

Generation Configuration Detectors Beam Minimum scan time

First Translate-rotate 1~2 Pencil thin 2.5 min
Second Translate-rotate 3~52 Narrow fan 10 s
Third Rotate-rotate 256~1,000 Wide fan 0.5 s
Fourth Rotate-fixed 600~4,800 Wide fan 1 s
Fifth Electron beam 1,284 detectors Wide fan electron beam 33 ms

First generation CT Fourth generation CT

Fig. 5.13 Configuration of two generations of CT
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Fig. 5.14 CT scanner with cover removed to show the principle of operation

removed, demonstrating the principle of operation. The X-ray tube and the detec-
tors are mounted on a ring shaped gantry. The object is placed in the center of the
gantry while the gantry rotates around them. In this arrangement, the machine has a
broad fan-shaped X-ray beam with rotating source and detectors.

Instead of rotating a conventional X-ray tube around the object, the Electron
Beam CT (EBCT) machine houses a huge vacuum tube in which an electron beam
is electro-magnetically steered towards an array of tungsten X-ray anodes arranged
circularly around the object. Each anode is hit in turn by the electron beam and
emits X-rays that are collimated and detected as in conventional CT. The lack of
moving parts allows very quick scanning, with single slice acquisition in 50–100 ms.
However, the equipment is exorbitantly expensive.

Helical, also called spiral, CT was introduced in the early 1990s. In helical CT
the X-ray sources (and detectors in 3rd generation designs) are attached to a freely
rotating gantry. During a scan, the table moves the object smoothly through the
scanner; hence the X-ray beam follows a helical path (Fig. 5.15). It was the devel-
opment of two technologies that made helical CT practical: slip rings to transfer
power and data on and off the rotating gantry, and the switched mode power sup-
ply powerful enough to supply to the X-ray tube, but small enough to be installed
on the gantry. The major advantage of helical scanning compared to the traditional
shoot-and-step approach, is speed; a large volume can be covered in 20–60 s. This
is advantageous for a number or reasons: (1) often the patient can hold their breath
for the entire study, reducing motion artifacts, (2) it allows for more optimal use of
intravenous contrast enhancement, and (3) the study is quicker than the equivalent
conventional CT permitting the use of higher resolution acquisitions in the same
study time. The data obtained from spiral CT is often well-suited for 3D imaging
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Fig. 5.15 Spiral CT Arrangement

because of the lack of motion mis-registration and the increased out of plane reso-
lution. All other factors being equal, helical CT has slightly lower z-axis resolution
than step-and-shoot.

Multislice CT scanners are similar in concept to the helical or spiral CT but there
are more than one detector rings. There could be 64 or more detector rings in this
type of scanners. Recent models have up to three rotations per second and isotropic
resolution of 0.35 mm voxels with z-axis scan speed of up to 18 cm/s. The major
benefit of multi-slice CT is the increased speed of volume coverage. This allows
large volumes to be scanned.

Inverse geometry CT (IGCT) is a novel concept which is being investigated as
refinement of the classic third generation CT design. Currently the technique is
proven at laboratory level only. IGCT reverses the shapes of the detector and X-
ray sources. The conventional third-generation CT geometry uses a point source of
X-rays, which diverge in a fan beam to act on a linear array of detectors. In multide-
tector computed tomography (MDCT), this is extended in 3 dimensions to a conical
beam acting on a 2D array of detectors. The IGCT concept, conversely, uses an
array of highly collimated X-ray sources which act on a point detector. By using a
principle similar to electron beam tomography (EBCT), the individual sources can
be activated in turn by steering an electron beam onto each source target.

The rationale behind IGCT is that it avoids the disadvantages of the cone-beam
geometry of third generation MDCT. As the z-axis width of the cone beam increases
the quantity of scattered radiation reaching the detector increases and the z-axis res-
olution is degraded because of the increasing z-axis distance that each ray must
traverse. This reversal of roles has extremely high intrinsic resistance to scatter, and
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by reducing the number of detectors required per slice, it makes the use of better per-
forming detectors (e.g. ultra-fast photon counting detectors) more practical. Because
a separate detector can be used for each ‘slice’ of sources, the conical geometry can
be replaced with an array of fans, permitting z-axis resolution to be preserved.

5.2.2 CT Number

In CT system, the studied object is irradiated from specific directions by an X-ray
source. The intensities of X-rays going through the object are measured by detectors,
digitized, and used in the reconstruction of a digital image of the test object using
CT numbers. The CT number is defined in equation below. The CT number is based
on linear X-ray absorption coefficients and, in general, is expressed by brightness
data in an image. In the case of k = 1,000, the CT number is called a Hounsfield
unit.

CT number = (μ − μw) × k

μw
(5.7)

where, μ = object linear X-ray absorption coefficient (m–1); μw = linear X-ray
absorption coefficient of water (m–1); k = constant (1,000).

Ogawa et al. (1998) computed Hounsfield numbers as CT numbers, and the mea-
suring range was from –1,000 to +4,000 with the CT number for air being –1,000
and the CT number for water being 0.

5.2.3 CT Image Generation and Processing

Pixels in an image obtained by CT scanning are displayed in terms of relative
radiodensity. The pixel itself is displayed according to the mean attenuation of
the tissue(s) that it corresponds to on a scale from –1,024 to +3,071 on the
Hounsfield scale. Pixel is a two dimensional unit based on the matrix size and
the field of view. When the CT slice thickness is also factored in, the unit is
known as a Voxel, which is a three dimensional unit. The phenomenon that one
part of the detector cannot differ between different tissues is called the “Partial
Volume Effect”. Water has an attenuation of 0 Hounsfield units (HU) while air
is –1,000 HU, cancellous bone is typically +400 HU. The attenuation of metal-
lic insertions/impurities depends on atomic number of the element used: Titanium
usually has an amount of +1,000 HU, iron steel can completely extinguish the
X-ray and is therefore responsible for well-known line-artifacts in computed
tomograms.

Windowing is the process of using the calculated Hounsfield units to make an
image. The various radiodensity amplitudes are mapped to 256 shades of gray.
These shades of gray can be distributed over a wide range of HU values to
get an overview of structures that attenuate the beam to widely varying degrees.
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Alternatively, these shades of gray can be distributed over a narrow range of HU
values (called a “narrow window”) centered over the average HU value of a particu-
lar structure to be evaluated. In this way, subtle variations in the internal makeup of
the structure can be discerned. This is a commonly used image processing technique
known as contrast compression.

Three dimensional (3D) Image Reconstruction: Because contemporary CT scan-
ners offer isotropic, or near isotropic, resolution, display of images does not need to
be restricted to the conventional axial images. Instead, it is possible for a software
program to build a volume by ‘stacking’ the individual slices one on top of the other.
The program may then display the volume in an alternative manner.

Multiplanar reconstruction (MPR) is the simplest method of reconstruction. A
volume is built by stacking the axial slices (Fig. 5.16). The software then cuts
slices through the volume in a different plane (usually orthogonal) as shown in
Fig. 5.17. Optionally, a special projection method, such as maximum-intensity pro-
jection (MIP) or minimum-intensity projection (mIP), can be used to build the
reconstructed slices. Other techniques include 3D rendering techniques like Surface
rendering and Volume rendering.

Fig. 5.16 Axial slices of brain used for stacking and building 3-D image (courtesy: Wikipedia)

Fig. 5.17 Orthogonal slice of
brain generated by the
software form the 3-D image
(courtesy: Wikipedia)



120 N. Kotwaliwale et al.

5.2.4 Application for Detection of Physical Foreign Materials
in Foods

Application of CT in non-destructive quality detection of agricultural products is
still in nascent stage. Most of research work has been carried out using medical
CT scanners (Fig. 5.18) and employing software developed for analysis of human
anatomy. Despite these lacunae, several successful attempts have been reported. The
feature identification process is manual however use of image processing algorithms
(readily available or tailored) has been reported for image enhancement and bet-
ter readability. A possibility of determining chemical composition of agricultural
materials has also been explored using CT. Although, changes in hardware has now
considerably reduced the time required for CT scan, but it is still a matter of con-
cern. Lim and Barigou (2004) observed that to scan a 10 mm cube over 180◦ in 200
discrete steps of 0.9◦, it took about 30–45 min.

Sonego et al. (1995) monitored wooly breakdown of cool stored nectarines using
and observed that areas exhibiting wooliness appeared darker indicating presence
of gas inclusions, which were unable to absorb X-rays. Ogawa et al. (1998) used
a medical CT scanner for the detection of selected non-metallic materials embed-
ded in various fluids and food materials. The author determined detection limits for
foreign materials and commented that when the volume of the foreign materials
was smaller than the physical resolution of the X-ray CT scanner, small parts may
be detected as foreign materials but not correctly identified as being which type of
materials. They also commented that food materials possesses a range of CT num-
ber due to their inhomogenity and when CT number of a foreign material was within
this range, a foreign material not detectable even if it had a volume larger than the
physical resolution of the X-ray CT scanner.

Barcelon et al. (1999) produced histogram for the peach image, reflecting the
frequency of the CT number of peach slice under consideration. Judging from the
histogram of the image, a fresh peach had less attenuation frequency between the
CT numbers ranging from – 300 to –1,000. In contrast, peaches after 2 weeks of

Fig. 5.18 Medical CT
scanner being used for
internal defect detection in
mangoes
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ripening had a considerable increase in attenuation frequency on this CT number
range. This confirmed the presence of voids and a drier region that was proba-
bly developed due to the loss of moisture towards the outermost layer in the fruit.
Author further determined relationship between CT number and the physicochem-
ical contents. Further, Barcelon et al. (2000) used X-ray CT technique to analyze
the internal changes associated with the ripening process of mango. They evaluated
mango fruits for X-ray absorption, density, moisture content, soluble solids, titrable
acidity and pH. The author commented that CT image showed visible features of
the internal structural changes between the fresh and ripened mangoes. They con-
cluded that CT number, moisture content and titrable acidity decreased significantly
with postharvest ripening time, while pH and soluble solids increased with posthar-
vest ripening time. Similarly, Haseth et al. (2007) successfully modeled dependency
of CT value on chemical composition of meat and the linear relationships between
sodium chloride (NaCl) and CT value.

Lammertyn et al. (2003) found a clear contrast between healthy and brown tis-
sue of ‘Conference’ pears. The highest pixel intensity value of the affected tissue
was still lower than the lowest pixel intensity value for unaffected tissue, and one
threshold value was sufficient therefore to separate both types of tissue.

Lim and Barigou (2004) described imaging, visualization and analysis of the
three dimensional (3D) cellular microstructure of a number of food products (aer-
ated chocolate, mousse, marshmallow and muffin) using X-ray micro computed
tomography. Author determined a 3D model of the foam microstructure and by
combining image analysis with a stereological technique; they obtained quantita-
tive information on a number of parameters including spatial cell size distribution,
cell wall thickness distribution, air cell connectivity and degree of microstructure
anisotropy. Neethirajan et al. (2006b) developed algorithms to determine total grain
surface area, total airspace area, number of airflow paths, areas of the individual
airflow paths and length of the individual airflow paths using CT images of five
types of grains (wheat, barley, flax seed, peas and mustard). They further developed
method to analyse pores that influenced fluid transport phenomenon inside grain
bulks. Quality evaluation based on voids has also been attempted by Mousavi et al.
(2007) who showed that from the reconstructed 3D image based on a set of 2D
images, voids formed due to freeze drying could be measured in number of foods
like meat, fish, chicken, potato, cheese and carrot. Leonard et al. (2008) illustrated
the use of X-ray microtomography to investigate the effect of drying temperature
on microstructure of a banana. 3D gray level images were formed by two phases:
the pore space at low gray levels (dark voxels), and the banana skeleton at high gray
levels (bright voxels). The author segmented the 3D image by assigning the value
1 to all pixels whose intensity was below a given gray tone value and 0 to others.
From the 3D processed binary images the porosity was measured. Increase in dry-
ing temperature was found to lead to an increase in final porosity of the products.
Figure 5.19 shows some CT images of different agricultural commodities.

X-ray microtomography is a nondestructive technique that has been used suc-
cessfully for structural investigation of wide range of materials such as food
materials, ceramic, metals, rock, and bones. It is an emerging technique which
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Banana (Source: Leonard 
et al., 2008) 

Wheat (Source: Dogan, 2007) Corn (Source: Dogan, 2007) 
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Fig. 5.19 Cross-sections developed using CT 3-D models for some agricultural commodities

operates on the same basic principles as medical CT scanners, but has much higher
resolution. Using microtomography, Dogan (2007) observed that physical discon-
tinuity of protein in the soft-wheat kernels resulted in distinctly different X-ray
image patterns than that of hard-wheat kernels and enabled clear discrimination
between hard and soft varieties. He also tested the images for visual examination
of infested kernels (wheat, corn). Images clearly indicated the presence of instars,
larvae tunneled along the endosperm, as well as adults. Also presence of visually
unnoticeable fissures perpendicular to crease line of wheat could be observed in the
microtomographs.

5.3 Hazards of Radiation

Some common effects of X-rays are: alteration in physical properties of material
(metals can be made brittle, plastics can be made stronger; transparency of mate-
rial can be altered; electrical current can be induced in some semi-conductors);
chemical changes (mixture of N2 and O2 gases gives nitrogen oxides, ethylene
gas to polyethylene); biological effects (killing living organisms, preserving foods,
medical applications – such as radiation oncology). All electromagnetic radiations
having energy of 15 eV or more can ionize atoms.
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CT is regarded as a moderate to high radiation diagnostic technique. While tech-
nical advances have improved radiation efficiency, there has been simultaneous
pressure to obtain higher-resolution imaging and use more complex scan tech-
niques, both of which require higher doses of radiation. The radiation dose for a
particular study depends on multiple factors: volume scanned, patient build, number
and type of scan sequences, and desired resolution and image quality. Because CT
scans rely on intravenously administered contrast agents in order to provide supe-
rior image quality, there is a low but non-negligible level of risk associated with the
contrast agents themselves. Certain patients may experience severe and potentially
life-threatening allergic reactions to the contrast dye.

The International Commission on Radiological Protection (ICRP-60) has recom-
mended the following to minimize hazards of radiations:

• No practice shall be adopted unless its introduction produces a positive net
benefit.

• All exposures shall be kept as low as reasonably achievable
• The effective dose equivalent (whole body) to individuals working in radiation

area (radiation workers) shall not exceed 2 rems (20 msv) in any 1 year and for
the general public is 0.2 rem (2 msv) in a year. The above occupational limits are
for adults (age > 18 years). No person under the age of 16 shall be assigned work
involving ionizing radiation.

• There are three basic ways to minimize the exposure to harmful radiations:

◦ Minimum exposure time: Individuals should not stay near the radiation source
or the radiation source should not be kept ON for any longer than required.

◦ Maximum distance from source: Individuals should stay as far as possible or
practical from the source, the radiation intensity decreases with distance
following inverse square law.

◦ Proper shielding: It is not practically possible for radiation workers to stay
far away from the radiation source. A proper shield made of lead, steel,
concrete or depleted uranium is useful is protecting against radiations. The
shields can be put to cover the entire radiation area or could be used as
personal protective gears (gloves, apron, mask etc.)

Besides above, proper training, mock-up drills, proper design of facility for con-
trolled access, display of danger signs etc. are some of the recommended ways to
protect individuals from hazardous radiations.

5.3.1 Units Used in Radiation

The unit used to measure the energy of photons is electron volts (eV). An electron
volt is the amount of energy that an electron gains as it is accelerated by a potential
difference of 1 V. In the case of X-ray it is generally expressed as energy from 0.12
to 120 keV. The higher the energy the stronger is transmittance.
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The unit for radioactivity is Becquerel (Bq), which is s–1 in SI base units, mea-
sured as decay of one nucleus per second (dps). Earlier Curie was the unit used
for radioactivity which corresponds to 3.7E10 dps. The unit for absorbed dose is
Roentgen (R or A.s.kg–1 or Coulomb.kg–1), quantity of radiation which produces
one electrostatic unit of positive or negative electricity per cubic centimeter (cc) of
air at STP, or, quantity of radiation that will produce 2.083E09 ion pairs per cc of
dry air, or radiation received in 1 h from a 1 g source of radiation at a distance of one
meter; other known units for dose are Rad (J·kg–1) and SI Unit Gray (Gy), 1 R =
8.72E–03 Gy, which is m2 s–2 in SI base units. Equal absorbed doses from different
radiations do not necessarily have equal biological effect. Therefore a term ‘dose
equivalent’ (DE) is commonly used. The DE is equal to absorbed dose multiplied
by a factor for energy distribution in tissues. The unit for DE is Sievert (sv) which
is equal to Gy×F. The value of F is taken as one for gamma rays, X-rays and beta
particles. A unit ‘rem’ was used earlier for DE, where 1 Sievert = 100 rems.

The X-ray tube current, measured in mA, refers to the number of electrons flow-
ing per second from the filament to the target. Whereas, eV or keV is the unit to
represent photon energy in X-rays, kVp is a commonly used unit to represent the
peak energy of photons in the polychromatic X-ray beam generated by X-ray tube.

5.3.2 Measurement of Radiation

The term ionizing radiation refers to those subatomic particles and photons whose
energy is sufficient to cause ionization in the matter with which they interact. The
ionization process consists of removing an electron from an initially neutral atom or
molecule. Ionizing radiation, such as X-rays, alpha rays, beta rays, and gamma rays,
remains undetectable by the human senses, and the damage it causes to the body
is cumulative, related to the total dose received. Since the photon is uncharged, it
does not interact through the Coulomb force and therefore can pass through large
distances in matter without significant interaction. The average distance traveled
between interactions is called the mean free path and in solid materials ranges from
a few millimeters for low-energy X rays through tens of centimeters for high-energy
gamma rays. When an interaction does occur, however, it is catastrophic in the sense
that a single interaction can profoundly affect the energy and direction of the pho-
ton or can make it disappear entirely. In such an interaction, all or part of the photon
energy is transferred to one or more electrons in the absorber material. Because the
secondary electrons thus produced are energetic and charged, they interact in much
the same way as described earlier for primary fast electrons. The fact that an original
X ray or gamma ray was present is indicated by the appearance of secondary elec-
trons. Information on the energy carried by the incident photons can be inferred by
measuring the energy of these electrons. The three major types of such interactions
are Photoelectric absorption, Compton scattering and Pair production.

In Photoelectric absorption, the incident X-ray or gamma-ray photon interacts
with an atom of the absorbing material, and the photon completely disappears; its
energy is transferred to one of the orbital electrons of the atom. Because this energy
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in general far exceeds the binding energy of the electron in the host atom, the elec-
tron is ejected at high velocity. The kinetic energy of this secondary electron is
equal to the incoming energy of the photon minus the binding energy of the elec-
tron in the original atomic shell. The process leaves the atom with a vacancy in
one of the normally filled electron shells, which is then refilled after a short period
of time by a nearby free electron. This filling process again liberates the binding
energy in the form of a characteristic X-ray photon, which then typically interacts
with electrons from less tightly bound shells in nearby atoms, producing additional
fast electrons. The overall effect is therefore the complete conversion of the pho-
ton energy into the energy carried by fast electrons. The fast electrons, detectable
through their Coulomb interactions, indicate the presence of the original gamma-ray
or X-ray photon, and a measurement of their energy is tantamount to measuring the
energy of the incoming photon.

An incoming gamma-ray photon can interact with a single free electron in the
absorber through the process of Compton scattering. In this process, the photon
abruptly changes direction and transfers a portion of its original energy to the
electron from which it scattered, producing an energetic recoil electron.

Pair production: The third type of interaction (pair production) occurs in gamma-
ray and is possible when the incoming photon energy is above 1.02 MeV. In the field
of a nucleus of the absorber material, the photon may disappear and be replaced by
the formation of an electron-positron pair.

Monitoring of radiation inside a facility or monitoring the dose received by an
individual are the two important aspects of radiation control. Installed or portable
instruments for monitoring radiations in an area are available. The detectors used in
portable instruments are ionizing chambers, Gieger Muller counters and scintillation
detectors. Initially, most common detection methods were based on the ionization
of gases, as in the Geiger-Müller counter: a sealed volume, usually a cylinder, with a
mica, polymer or thin metal window contains a gas, a cylindrical cathode and a wire
anode; a high voltage is applied between the cathode and the anode. When an X-ray
photon enters the cylinder, it ionizes the gas and forms ions and electrons. Electrons
accelerate toward the anode, in the process causing further ionization along their tra-
jectory. Figure 5.20 shows one portable instrument that can measure instantaneous
radiation or dose accumulated over a period of time.

Fig. 5.20 A dosimeter
(make: Radcal, USA)
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Common types of wearable dosimeters for ionizing radiation include:

• Quartz fibre dosimeter
• Film badge dosimeter
• Thermoluminescent dosimeter
• Solid state (MOSFET or silicon diode) dosimeter.

A real dose (dose-unit = cGy or rad) reflects something objective: The energy
deposited by X-rays per gram of irradiated body-tissue. By contrast, an “effective”
dose is a calculation which estimates what dose, if given to the entire body, might
produce approximately the same amount of risk as would the real dose actually
received by the irradiated sections. “Effective” doses (dose-unit = cSv or rem) incor-
porate a crude adjustment for the different types of ionizing radiation, plus “tissue
weighting factors” which attempt to assess the attributable probability of fatal can-
cer in different organs, the additional detriment from non-fatal cancer and hereditary
disorders, and the different latency periods for cancers in various tissues.

5.4 Magnetic Resonance Imaging (MRI)

MRI is based on the principles of nuclear magnetic resonance (NMR), a spectro-
scopic technique used to obtain microscopic chemical and physical information
about molecules. Magnetic resonance imaging is an imaging modality which is pri-
marily used to construct pictures of the NMR signal from the hydrogen atoms in
an object. Due to negative connotations associated with the word nuclear in the late
1970s, the technique was called magnetic resonance imaging rather than nuclear
magnetic resonance imaging (NMRI). Felix Bloch and Edward Purcell, both of
whom were awarded the Nobel Prize in 1952, discovered the magnetic resonance
phenomenon independently in 1946. In the period between 1950 and 1970, NMR
was developed and used for chemical and physical molecular analysis. In short the
MRI technique follows following steps: Put subject in big magnetic field; Transmit
radio waves into subject [2~10 ms]; Turn off radio wave transmitter; Receive radio
waves re-transmitted by subject; and Convert measured RF data to image.

5.4.1 Physics of MRI

Spin is a fundamental property of nature like electrical charge or mass. Spin comes
in multiples of 1/2 and can be + or –. Protons, electrons, and neutrons possess spin.
Individual unpaired electrons, protons, and neutrons each possesses a spin of 1/2.
To understand how particles with spin behave in a magnetic field, consider a proton
having spin as a magnetic moment vector, causing the proton to behave like a tiny
magnet with a north and south pole. In the absence of any external magnetic field
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Fig. 5.21 Random
orientation of nucleus

the nuclei’s spin angular momentum have random orientations (Fig. 5.21) in their
atomic or molecular environment.

When the proton is placed in an external magnetic field, the spin vector of the
particle aligns itself with the external field (Fig. 5.22), just like a magnet would.
There is a low energy configuration or state where the poles are aligned N-S-N-S
and a high energy state N-N-S-S.

This particle can undergo a transition between the two energy states by the
absorption of a photon. A particle in the lower energy state absorbs a photon and
ends up in the upper energy state. The energy of this photon must exactly match the
energy difference between the two states. The energy, E, of a photon is related to its
frequency, γ , by Planck’s constant (h = 6.626×10–34 J·s).

E = hγ (5.8)

Bo

Fig. 5.22 Nucleus oriented after application of external magnetic field Bo
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When the energy of the photon matches the energy difference between the two
spin states, absorption of energy occurs. In NMR spectroscopy, γ is between 60
and 800 MHz for hydrogen nuclei. In clinical MRI, γ is typically between 15 and
80 MHz for hydrogen imaging.

When certain types of nuclei like protons, cabon-13 and fluorine-19 are placed in
a strong static magnetic field (Bo) they absorb electromagnetic radiation in the radio
frequency range. Such nuclei are said to be spin- active. The precise frequencies
at which spin-active nuclei resonate can be picked up and displayed by instru-
ment. Imposing a linear magnetic gradient on the external magnetic field causes
the proton resonance frequency to vary and thus position of resonating nuclei can
be determined and represented as image (Chen et al. 1989, Clark et al. 1997).

At equilibrium, the net magnetization vector lies along the direction of the
applied magnetic field Bo and is called the equilibrium magnetization Mo. In this
configuration, the Z component of magnetization MZ equals Mo. MZ is referred to
as the longitudinal magnetization. There is no transverse (MX or MY) magnetization
here. The time constant which describes how MZ returns to its equilibrium value is
called the spin lattice relaxation time (T1). The equation governing this behavior as
a function of the time t after its displacement is:

Mz = Mo(1 − e−t/T1 ) (5.9)

T1 is the time to reduce the difference between the longitudinal magnetization (Mz)
and its equilibrium value by a factor of e. If the net magnetization is placed along
the −Z axis, it will gradually return to its equilibrium position along the +Z axis at
a rate governed by T1.

The time constant which describes the return to equilibrium of the transverse
magnetization, MXY, is called the spin-spin relaxation time, T2, the time to reduce
the transverse magnetization by a factor of e.

MXY = MXYoe−t/T2 (5.10)

Both spin lattice relaxation and spin-spin relaxation processes occur simultane-
ously with the only restriction being that T2 is less than or equal to T1.

An MR system consists of the following components: (1) a large magnet to gener-
ate the magnetic field, (2) shim coils to make the magnetic field as homogeneous as
possible, (3) a radiofrequency (RF) coil to transmit a radio signal into the body part
being imaged, (4) a receiver coil to detect the returning radio signals, (5) gradient
coils to provide spatial localization of the signals, and (6) a computer to reconstruct
the radio signals into the final image.

The signal intensity on the MR image is determined by four basic parameters: (1)
proton density, (2) T1 relaxation time, (3) T2 relaxation time, and (4) flow. Proton
density is the concentration of protons in the tissue in the form of water and macro-
molecules (proteins, fat, etc). The T1 and T2 relaxation times define the way that the
protons revert back to their resting states after the initial RF pulse.
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5.4.2 Image Formation

The principle behind all magnetic resonance imaging is the resonance equation,
which shows that the resonance frequency ν (also known as Larmor frequency) of a
spin is proportional to the magnetic field, Bo, it is experiencing.

ν = γ B0 (5.11)

where γ is the gyromagnetic ratio. For hydrogen, γ = 42.58 MHz/Tesla.
Magnetic field gradient allows imaging position of regions of spin. A magnetic

field gradient is a variation in the magnetic field with respect to position. A mag-
netic field gradient could be one-dimensional or multi-dimensional. The most useful
type of gradient in magnetic resonance imaging is a one- dimensional linear mag-
netic field gradient. A one-dimensional magnetic field gradient along the x axis in a
magnetic field, Bo, indicates that the magnetic field is increasing in the x direction.
Here the length of the vectors represents the magnitude of the magnetic field. The
symbols for a magnetic field gradient in the x, y, and z directions are Gx, Gy, and Gz.

The point in the center of the magnet where (x, y, z) = 0, 0, 0 is called the
isocenter of the magnet. The magnetic field at the isocenter is Bo and the resonant
frequency is νo. When linear magnetic field gradient is applied, different regions
in the subject experience different magnetic fields. The result is an NMR spectrum
with more than one signal. The amplitude of the signal is proportional to the number
of spins in a plane perpendicular to the gradient. This procedure is called frequency
encoding and causes the resonance frequency to be proportional to the position of
the spin.

ν = γ (Bo + xGx) = νo + γ xGx (5.12)

x = ν − νo

γ Gx
(5.13)

One of the first forms of magnetic resonance imaging to be demonstrated was
backprojection. In the backprojection technique, the object is first placed in a mag-
netic field. A one-dimensional field gradient is applied at several angles (between
0 and 359◦), and the NMR spectrum is recorded for each gradient. Once this data
has been recorded the data can be backprojected through space in computer mem-
ory. After suppressing the background intensity an image can be seen. The actual
backprojection scheme is called the inverse Radon transform.

The most major application of MRI is for examining human or animal anatomy,
hence some important terms related to imaging and image processing are derived
with reference to the subject of imaging, i.e. human body.

Imaging Coordinates: Clinical imagers do not use the XYZ magnetic resonance
coordinate system for collection and presentation of images. Instead the anatomic
coordinate system is used. In this system the axes are referenced to the body. The
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Fig. 5.23 The three imaging coordinates

Fig. 5.24 The three imaging
planes

three axes are left-right (L/R), superior-inferior (S/I), and anterior-posterior (A/P)
(Fig. 5.23).

Similarly, on clinical imagers the terminology XY, XZ, and YZ are not used to
indicate the imaged planes. An imaged plane perpendicular to the long axis of the
body is called an axial plane. The sides of this plane are L/R and A/P. A plane
bisecting the front of the body from the back is referred to as a coronal plane. The
sides of this plane are L/R and S/I. A plane bisecting the left and right sides of the
body is called a sagittal plane. The sides of this plane are S/I and A/P. This has been
graphically shown in Fig. 5.24.

5.4.3 Application of MRI for Quality Detection
of Agricultural Produce

MRI in non-destructive quality detection of agricultural products is a new appli-
cation. Most of research work has been carried out using medical MRI machines
(Fig. 5.25) and employing software developed for analysis of human anatomy.
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Fig. 5.25 An open MRI machine being used for MRI of mangoes

Brusewitz and Stone (1987) used a 10.7 MHz NMR sensor for measuring the MC
of wheat. They showed that a ratio between the two Free Induction Decay (FID)
peaks could be used to determine the MC with an error range of + 0.2%. Tollner
et al. (1992) found that NMR outputs could be used to determine the MC of wheat,
corn, soybean and peanut. They developed a MC prediction model using FID and
spin echo measurements as independent variables. The r 2 values of the models were
less than 0.97.

A fruit undergoes various changes during the maturation process. It has been
shown that as a fruit becomes more mature, the water content decreases while the
oil content increases. The mobility of hydrogen nuclei of water and oil may also
change. These changes in the fruit may result in changes in T1 and T2 of water and
oil in the fruit and thereby affect the NMR measurements.

Based on this, Chen et al. (1993) established an experimental protocol suitable
for an on-line NMR sensor for evaluating the maturity of intact avocado fruit.

Sonego et al. (1995) monitored woolly breakdown of cool-stored nectarines
(Prunus persicu) and detected the abnormality as dark areas corresponding to low
proton density. However, the development of woolliness did not affect the mobility
of water in the tissues of nectarines. Clark et al. (1997) reviewed many applications
pertaining to the study of fruits and vegetables as well as recent developments that
employ nuclear magnetic resonance principles as on-line sensors in post harvest
sorting and processing situations. Authors described successful attempts of getting
high resolution MR images to determine moisture content, oil content, sugar con-
tent, bruises, dry regions, watercore, worm damage, internal quality, stage maturity,
etc. for various fruits and vegetables.

Kim et al. (1999) investigated the feasibility of using MRI as a quality sorting
or grading technique for intact food products and to construct and test a prototype
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in-line sensor utilizing high speed NMR techniques. Authors were interested in the
degree to which motion influences the correlation between NMR data and quality
factors in fruit. They examined two typical applications. One is the use of NMR
spectral information to predict a quality factor, the measurement of oil to water
ratio in avocados to predict maturity. The other application was the use of one-
dimensional projections to detect the presence of a pit in cherries.

Barreiro et al. (2000) tested apples for mealiness and peaches for wooly struc-
ture using mechanical and MRI techniques. Mealy apples turned to more skewed
histograms than crisp apples, while the histograms of woolly peaches turned to be
more flat loosing the Gaussian appearance. This fact could be understood as a dif-
ferent physiological change underlying mealiness and woolliness. Gonzalez et al.
(2001) studied the development of internal browning induced by high levels of car-
bon dioxide in controlled atmosphere storage of ‘Fuji’ apples. They reported that
spin-spin relaxation (T2) measurements gave images with better contrast between
normal tissue and issue with internal browning than image generated using dif-
ferences in proton density or spin-lattice (T1) relaxation measurements. Authors
reported that they could obtain meaningful images in 20–40 s by reducing spa-
tial resolution and the time between repetitive scans. They concluded that the rapid
development of MRI technology may, in the near future, permit MRI to be used for
non-destructive detection of defects such as internal browning. However, it seems
likely that the MRI equipment that would be used for such applications would be
expensive and relatively sophisticated. Therefore, low-field non-imaging magnetic
resonance sensing, which is lower in cost, simpler and requires less signal process-
ing, should be thoroughly investigated to determine which defects it can detect and
the detection limitations.

Core breakdown in ‘Conference’ pears is a storage disorder, which is char-
acterized by brown discolouration of the tissue and development of cavities.
Lammertyn et al. (2003) used MRI to monitor the development of core breakdown
in ‘Conference’ pears during storage. Pears stored under disorder-inducing condi-
tions were followed with MRI technique during 6 months of controlled atmosphere
storage. After 2 months, incipient browning could be detected with both techniques.
They also reported that the contrast between affected and unaffected tissue was
higher on the MR images than on images from X-ray CT scans.

Cho et al. (2008) determined the effects of internal browning and watercore on
the spin–spin relaxation (T2) signal of whole apples. They used the non-imaging
MR sensor to test apples affected by watercore, internal browning, along with
unaffected apples. Marigheto et al. (2008) investigated the internal sub-cellular
physiological changes associated with ripening and mealiness in apples with novel
two-dimensional NMR relaxation and diffusion techniques. Authors showed that
two-dimensional relaxometry reveals more subtle physiological changes than con-
ventional one-dimensional relaxometry. In particular, it was showed by their study
that the T1 of the peak associated with the cell wall in mealy apples was much longer
than that of fresh apples. 1H Nuclear Magnetic Resonance (NMR) has been evalu-
ated for use in measuring the moisture of several grains. The MC measurement is
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based on the principle that the 1H NMR signal intensity is proportional to the total
proton numbers in the sample.

It has been shown by Aspect AI (2010) that using fast MRI techniques various
internal features of fruits and vegetables could be detected. These features are not
only physical like presence of a foreign body or physical/physiological damage but
also certain biochemical parameters like sugar levels could be correlated to the MRI
signals. Application and success of this technique has been summarized in Table 5.2.
Results of some successful applications of MRI to see internal defects are shown in
Figs. 5.26, 5.27, 5.28 and 5.29.

Table 5.2 Successful application of fast MRI in detecting internal features

Features Apples Citrus Fresh tomatoes Potatoes Fresh cut fruits Stone Fruits

Hollow/split pit + + + + +
Pests and insects + + + + + +
Bruising and cracks + + + + +
Rot + + + + + +
Mold damage + + + + +
Browning + + + +
Seed size/# + +
Maturity + +
Sugar level + + + + +
Mealiness/texture + + + + +

Source: Aspect AI.

Fig. 5.26 Internal structure of tomato, onion and strawberry visible in MRI (Courtesy:
http://people.web.psi.ch/kuehne/)

Fig. 5.27 Internal structure of tomato visible in MRI (Courtesy: Aspect AI 2010)
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Fig. 5.28 Internal structure of citrus visible in MRI (Courtesy: Aspect AI 2010)

Fig. 5.29 Axial, coronal and sagittal views of mango in MRI scan showing physical and
physiological disorders
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5.5 Comparison of Techniques

X-rays (radiographs) are the most common and widely available diagnostic imag-
ing technique. Small level and short duration of radiation exposure from X-rays is
not harmful. The images are ready quickly. X-rays may not show as much detail as
an image produced using newer, more powerful techniques. Computation in digi-
tization of radiographs is comparatively less and there are varieties of 2-D image
processing algorithms for image enhancement and automated feature detection.
Some of common artifacts in radiographs are due to beam hardening, heal effect,
fogging due to Compton scattering, inappropriate window material. Unsatisfactory
radiographs result due to:

Density related defects: High-density defect in radiographs are caused due to
overexposure or overdevelopment, while low-density defects can be observed due
to underexposure or underdevelopment. The remedial action for this is viewing
the image with appropriate intensity illuminator or by adjusting the exposure time
suitably using characteristic curve. For appropriate development of film, developer
temperature should be optimum.

Contrast problems: High contrast and low contrast are often observed in radio-
graphs. High contrast images have limited sharpness while low contrast images are
prone to have noise. Varying thickness of the object produces high subject contrast
and thus high image contrast. Adjustment of voltage and use of multi film tech-
nique can help prevent high contrast. Another reason for high contrast is due to
high film contrast and using lower contrast characteristics film can eliminate it. Low
contrast is due to low subject contrast, low film contrast and underdevelopment of
film. The respective remedies are to reduce voltage, using film with higher contrast
characteristics and adjusting temperature of developer.

Poor definition: Many reasons, like (1) specimen not in contact with film (2) large
focal spot (3) screens and film not in close contact (4) high film graininess and (5)
too short source to film distance result into poor image definition.

Fog: Fog and scatter reduces radiographic contrast. The scatter is due to Compton
scattering and fog effect on the imaging medium is undesirable. Some other causes
of fog and are (1) exposure to light; (2) improper film storage condition (located
close to radiation areas or presence of dust, heat, gases); (3) defective developer
solution; and (4) static discharge and mishandling of film. In case of digital radio-
graphy the defects of imaging medium can be rectified by making dark current
corrections.

Sampling and quantization: The quantity of digital radiographs depends on
sampling, i.e. number of pixels recorded per unit dimension of the sample and quan-
tization i.e. digitized pixel intensity/amplitude values. Better sampling and higher
quantization result in more details in image but this requires higher computational
power and time for processing and storage of images. Further, such images are more
prone to noise.

A CT scan can show the size, shape, and position of structures that are deep
inside. A CT scan costs more and takes more time than a regular X-ray. Although
CT scan technique gives maximum 3-D information, it requires narrow X-ray
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beam, special hardware to continuously rotate and shift the source and camera or
the object, high energy X-rays, and extensive computation. For these reasons the
time required for scanning an object is far more than taking one radiograph. The
advantages CT poses over radiography are:

CT completely eliminates the superimposition of images of structures outside the
area of interest. Because of the inherent high-contrast resolution of CT, differences
between tissues that differ in physical density by less than 1% can be distinguished.

Data from a single CT imaging procedure consisting of either multiple con-
tiguous or one helical scan can be viewed as images in the axial, coronal, or
sagittal planes, depending on the diagnostic task. This is referred to as multiplanar
reformatted imaging.

Although CT is a relatively accurate test, it is liable to produce artifacts such as:

• Aliasing Artifact or Streaks: These appear as dark lines which radiate away from
sharp corners. It occurs because it is impossible for the scanner to ‘sample’ or
take enough projections of the object, which is usually metallic. It can also occur
when an insufficient mA is selected, and insufficient penetration of the x-ray
occurs.

• Partial Volume Effect: This appears as ‘blurring’ over sharp edges. It is due to the
scanner being unable to differentiate between overlying structures and respective
HU’s. The processor tries to average out the two densities or structures. This can
be partially overcome by scanning using thinner slices.

• Ring Artifact: Probably the most common mechanical artifact, the image of one
or many ‘rings’ appears within an image. This is due to a detector fault.

• Noise Artifact: This appears as gaining on the image and is caused by a low signal
to noise ratio. This occurs more commonly when a thin slice thickness is used. It
can also occur when the kV or mA is too low.

• Motion Artifact: This is seen as blurring which is caused by movement of live
or moving object/patient. This is not so much a problem these days with faster
scanning times in the use of MDCT.

• Windmill: Streaking appearances can occur when the detectors intersect the
reconstruction plane. This can be reduced with filters or a reduction in pitch.

• Beam Hardening: This can give a ‘cupped appearance’. It occurs when there is
more attenuation in the center of the object than around the edge. This is easily
corrected by filtration and software.

Unlike radiography and CT, which require ionizing radiation, MRI is based on a
safe interaction between radio waves and hydrogen nuclei in the body in the pres-
ence of a strong magnetic field. A CT scan uses X rays to build up a picture. MRI
uses a magnetic field to do the same and has no known side effects related to radi-
ation exposure. MRI has much higher detail in the soft tissues. One of the greatest
advantages of MRI is the ability to change the contrast of the images. Small changes
in the radio waves and the magnetic fields can completely change the contrast of the
image. Different contrast settings will highlight different types of tissue. Another
advantage of MRI is the ability to change the imaging plane without moving the
object. Most MRI machines can produce images in any plane. Presence of metal in
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Table 5.3 Artifacts and their causes

Artifact Cause

RF offset and quadrature ghost Failure of the RF detection circuitry
RF noise Failure of the RF shielding
Bo inhomogeneity Metal object distorting the Bo field
Gradient Failure in a magnetic field gradient
Susceptibility Objects in the FOV with a higher or lower magnetic

susceptibility
RF inhomogeneity Failure or normal operation of RF coil, and metal in the

anatomy
Motion Movement of the imaged object during the sequence
Flow Movement of body fluids during the sequence
Chemical shift Large Bo and chemical shift difference between tissues
Partial volume Large voxel size
Wrap around Improperly chosen field of view
Gibbs ringing Small image matrix and sharp signal discontinuities in an

image

the samples cause malfunction during magnetic resonance imaging. MRI equipment
is expensive to purchase, maintain, and operate. Like any other imaging technique
there are certain artifacts NMR images which can lead to wrong identification of
internal features. Artifacts are typically classified as to their source, and there are
dozens of image artifacts (Table 5.3).

Radiography, computed tomography and magnetic resonance imaging are very
effective methods for inspection of internal quality of various biological products.
Although they differ in terms of obtainable details (Yacob et al. 2005), safety of
operation, convenience, cost of machinery, sample preparation, time required for
imaging and expertise required for operation, their effectiveness has been proven
through plethora of research applications. These techniques are yet to find extensive
place in the commercial agricultural processing but it is expected that with intro-
duction of cheaper and faster electronic hardware, these will soon replace arduous
human intervention in quality detection of agricultural products.
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Chapter 6
Near Infrared Spectroscopy

Shyam N. Jha

The discovery of near-infrared energy is ascribed to Herschel in the nineteenth
century; the first industrial application however began in the 1950s. Initially near
infrared spectroscopy (NIRS) was used only as an add-on unit to other optical
devices, that used other wavelengths such as ultraviolet (UV), visible (Vis), or mid-
infrared (MIR) spectrometers. In the 1980s, a single unit, stand-alone NIRS system
was made available, but the application of NIRS was focused more on chemi-
cal analysis. With the introduction of light-fibre optics in the mid 1980s and the
monochromator-detector developments in early 1990s, NIRS became a more pow-
erful tool for scientific research. This optical method can be used in a number of
fields of science including physics, physiology, medicine and food.

The use of NIRS as rapid and often nondestructive technique for measuring the
composition of biological materials has been demonstrated for many commodities.
This method is now no longer new even in the field of food; as it started in early 1970
in Japan, just after some reports from America. Even an official method to deter-
mine the protein content of wheat is available. The National Food Research Institute
(NFRI), Tsukuba has since been become a leading institute in NIRS research in
Japan and Central Institute of Post-harvest Engineering and Technology (CIPHET)
is considered pioneer for conducting research in the field of quality determination
of food using NIRS in India. The major advantages of NIR Spectroscopy are:

(i) No sample preparation
Since the bands in the near infrared (NIR) are mainly overtones and com-

binations they are less intense than the bands (primary vibrations) in the
MIR region. Because of this, samples can be measured directly without any
dilution.

(ii) No waste
Spectroscopic methods are ideal since the sample is measured directly and

is retained. Thus, there is no tedious sample preparation involved and there
are no waste materials such as toxic solvents.
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(iii) Fast measurements
NIR Spectrometers can analyze the sample and calculate results in seconds,

thereby providing instant answers and increasing sample throughput.
(iv) Glass containers

Glass is transparent in the NIR. Thus samples can be measured in their
containers, or liquids can be easily analyzed in inexpensive disposable glass
vials and test tubes.

(v) Water
Water as compared to other solutions has less absorbance in the NIR region.

Thus, aqueous solutions can be measured directly, with careful control of the
sample temperature.

(vi) Fibre optic sampling
High quality quartz fibre optics can be used to transmit NIR light over a

long distance without significant loss of intensity. These sampling accessories
are very robust and are ideally suited for use in factory environment. Using
fibre optic probes, materials can be analyzed remotely in large containers and
reaction vessels.

(vii) Easy and accurate analysis
Since NIR methods require no sample preparation, the amount of sampling

error is significantly reduced thereby improving the accuracy and repro-
ducibility of the measurement. Furthermore since the sample is not destroyed
during the analysis the measurement can also be repeated.

(viii) Analysis Costs
In comparison with wet chemical analysis, for NIR, there is an inverse rela-

tionship with quantity and cost. The major costs for NIR are incurred during
the initial implementation of the methods. Thus, as the number of samples
increases the cost per analysis decreases.

(xi) Measurement in fields
Nowadays small portable and robust NIR spectrometers are available and

can be carried to any site. So, one can even observe the change in behav-
iors of individual fruits during their growth leaving them in tree till their full
maturity.

(x) Skill requirements:
NIRS technique is so robust and user friendly, that once an instrument is

calibrated, the day-to-day analysis is a simple task and does not require the
user to learn any elaborate procedures. It can be used very easily even by a
semi or an unskilled person. It does not require special skill to operate and
drawing inferences from the data.

6.1 Theory

NIR is a spectroscopic method which uses the near infrared region of the elec-
tromagnetic spectrum (from about 700 nm to 2,500 nm). It is based on molecular
overtone and combination vibrations. As a result, the molar absorptivity in the NIR
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region is typically quite small, but one advantage is that NIR can typically pene-
trate much deeper into a sample than mid infrared radiation. NIRS is therefore not
only a particularly sensitive technique, but it can be very useful in probing bulk
material with little or no sample preparation. The molecular overtone and combi-
nation bands seen in the NIR are typically very broad, leading to complex spectra.
It therefore can be difficult to assign specific features to specific chemical com-
ponents. Multivariate (multiple wavelength) calibration techniques (e.g., principal
components analysis or partial least squares, which will be dealt in later part of
this chapter) are often employed on absorbance, transmittance or reflectance data
to extract the desired chemical information. Careful development of a set of cali-
bration samples and application of multivariate calibration techniques is essential
for near infrared analytical methods. Interactions of light with matter have already
been discussed in Chap. 2, therefore, other theoretical aspects of NIR are discussed
hereunder:

6.1.1 Properties of Electromagnetic Radiation

Infrared is a part of electromagnetic radiation, which is considered as a simple har-
monic wave. The electric and magnetic properties of these waves are interconnected
and interact with matter to give rise to a spectrum. A simple harmonic motion has a
property of the sine wave defined by Eq. (6.1)

y = A sin θ (6.1)

where y is the displacement with a maximum value of A, and θ is an angle varying
between zero and 2π radians.

Now consider a point P traveling with uniform angular velocity ω rads–1 in a
circular path of radius A (Fig. 6.1); P describes an angle θ = ωt radians after t s
passing Q and its vertical displacement therefore is

y = A sin ωt (6.2)

Equation (6.2) is presented in graphical form in the right hand side of Fig. 6.1.
P will return to Q after 2π /ω s and complete one cycle in 1 s and the pattern will
be repeated ω/2π times. This is called the frequency (ν) of the wave and the basic
equation of the wave motion then may be written as:

y = A sin 2πνt (6.3)

The wavelength (λ), the distance traveled in a complete cycle, is another prop-
erty of the wave. The Eq. (6.3) is required to be expressed in terms of variation
of displacement with distance instead of with time. This is done by substituting
t = l/c where l is the distance covered by the wave in time t at velocity c. The
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Fig. 6.1 Wave representation of electromagnetic radiation

velocity c is known as the velocity of light in vacuum and is the universal constant.
The wavelength therefore may be defined as:

λ = c/ν (6.4)

Wavenumber (ν̄), defined as the reciprocal of wavelength in centimeter, is another
way of expressing the character of the electromagnetic radiation. The wavenumber
therefore is considered as the number of waves or cycles per centimeter of radiation.
Spectroscopists describe the position of an infrared (IR) absorption band in term of
wavenumber. It is directly proportional to frequency (ν = cν̄) and is related to the
energy changes involved in transitions between different vibrational states.

The wave model is employed to explain many properties of electromagnetic radi-
ation, but it fails to describe phenomenon associated with the absorption or emission
of energy. It is therefore necessary to view electromagnetic radiation as a stream of
discrete particles called photons with an energy proportional to the frequency of the
radiation (Eq. 6.14).

6.1.2 Properties of Vibrating Molecules

(a) The harmonic oscillator
Mechanical model: To understand the harmonic oscillation of a molecule

in vibration, consider a mass m at one end of a spring which is fixed at the
other end. The force of gravity is constant and therefore only influence is the
equilibrium point and not the motion of the masses about that point. The dis-
turbance of the mass along the axis of the spring results in motion, which may
be described by Hooke’s law. This state that the restoring force F exerted by
spring is proportional to distance y that it has traveled from the equilibrium
position
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F = −ky (6.5)

where k is a force constant. The acceleration a of the mass from equilibrium is

a = d2y

dt2
(6.6)

and by applying Newton’s second law of motion, F = ma,

md2y

dt2
= −ky (6.7)

A solution of the differential equation (6.7) is

y = A sin αt (6.8)

where α is the positive square root of k/m. After one period of motion, y returns
to its initial value and the sine wave repeats each time and αt is increased by
2πν. From this, it may be derived as

ν = 1

2π

√
k

m
(6.9)

Putting α = √
k/m = 2πν into Eq. (6.8) we get Eq. (6.3). The electromag-

netic waves and mechanical oscillators therefore, by first approximation, may
be described in the same terms, and the significance of spectroscopic measure-
ments lies in the association between the frequency of radiant energy and the
frequencies of molecular motions. Equation (6.9) may be modified to describe
the behavior of a system consisting of two masses m1 and m2 connected by a
spring, by substituting the reduced mass μ = (m1m2)/(m1 + m2) for m,

ν = 1

2π

√
k

μ
(6.10)

Any system containing more than two masses follows similar or more com-
plex equations. The vibration of a chemical bond therefore may be considered
analogous to the behavior of the spring when m1 and m2 become the masses
of two atoms and k is the force constant for the chemical bond. Using this
simple mechanical model, it is possible to explain many spectral observations
in the IR. For example, compound containing a carbonyl group C=O has been
found experimentally to have an IR band in the region ν̄ = 1,500–1,900 cm–1

(Osborne et al. 1983).
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Putting ν = cν̄ and approximate values of 1×103 Nm–1 for the force con-
stant of a double bond, 2×10–26 and 2.7×10–26 kg for the masses of carbon
and oxygen, respectively, and 3×108 ms–1 for the velocity of light into Eq.
(6.10), we get

ν̄ = 1

2×3.14×3×108

√
1 × 103(2 + 2.7) × 10−26

2 × 2.7 × 10−52

= 1.565 × 105m−1, or 1565 cm−1

Considering the mass and spring model, it is obvious that the energy of the
system undergoes cyclic conversion from potential energy to kinetic energy.
The potential energy diagram for a harmonic oscillator is presented as the
dotted curve in Fig. 6.2. At the equilibrium position, potential energy may be

Coulombic    repulsion 

Dissociation

Yeq

E

ED

y

Fig. 6.2 The energy of a diatomic molecule undergoing simple harmonic motion (dotted curve)
and anharmonic vibration (firm curve)
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considered to be zero but as the spring is compressed or stretched by a small
amount dE,

dE = −Fdy (6.11)

combining Eqs. (6.5) and (6.11) we get

dE = kydy (6.12)

Integrating from y = 0 to y

E∫
0

dE = k

y∫
0

ydy

E = k
y2

2
(6.13)

The kinetic energy is zero and the total energy is potential energy at the
turning point of the motion corresponding to maximum amplitude A. At
the equilibrium position spring gets compressed or stretched and the energy
reverts to kinetic and decreases parabolically to zero.

Quantum mechanical model: Towards the end of the 20th century exper-
imental data were not sufficiently available to support the postulation that
matter can take up energy continuously. Max Planck in 1900 proposed that
the energy of an oscillator is discontinuous, changes in its content and only
occur by means of transition between two discrete energy states brought about
by the absorption or emission of discrete packets of energy called quanta. This
idea was known as the quantum theory and the energy levels are identified by
integers called quantum numbers.

When appropriate amount of energy �E = E2–E1 either is absorbed or
emitted by the system, transition occurs between energy levels E1 and E2
(Fig. 6.3). Planck further proposed that this energy takes the form of the elec-
tromagnetic radiation and frequency of that radiation is related to the energy
change �E by the equation as follows:

�E = hν (6.14)

where h is universal Planck’s constant. Equation (6.14) signifies that if a radi-
ation beam containing a wide range of frequencies is directed onto a molecule
in energy state E1, energy will be absorbed from the beam and a transition
to energy state E2 will occur. A detector placed to collect the radiation after
its interaction with the molecule shows that the intensity of the radiation
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Fig. 6.3 Depiction of the quantum theory of absorption and radiation

decreases at frequency ν = �E/h and all other frequencies remain undi-
minished and produces the absorption (Fig. 6.3). In practice, the number of
energy levels for a molecule is infinite, there are many possible transitions and
therefore a spectrum even from the simplest molecule would be very complex.

A molecule in space possesses many forms of energy such as vibrational
energy due to periodic displacement of its atoms from their equilibrium posi-
tion and rotational energy due to rotation of body about its center of gravity.
Absorption of IR radiation is largely confined to molecular species for which
energy differences exist between different vibrational and rotational states.
The energy required to cause a change in rotational states is, however, very
much smaller than for vibrational states and rotational absorption bands may
only be absorbed in the case of gases. Therefore, for the study of IR spectra of
solid and liquid samples, only vibration motion needs to be considered.

Vibration energies, like other molecular energies, are quantized and the
allowed vibrational energies for any particular system are found by solving
a series of partial differential equations known as quantum mechanical wave
equation. Solution of these equations assuming a simple harmonic oscillator
are found for energy levels as below (Eq. 6.15)

E = (υ + 0.5) hν (6.15)

where υ is the vibrational quantum number (0,1,2,. . .). From Eq. (6.15), it
may be seen that the lowest vibrational energy level E0 is at υ = 0 is hν/2.
Therefore, a molecule can never have zero vibrational energy because an
atom can never be completely at rest relative to each other. E depends only
on the strength of the chemical bond and the atomic masses. Prediction of E
is the basic difference between wave mechanical and classical approaches to
molecular vibrations. Promotion to first excited state (υ = 1) thus requires
absorption of radiation of energy,

(
3 hν

/
2
) − (

hν
/

2
) = hν; the frequency

(ν) of radiation that will bring about this change is identical to the vibration
frequency of the bond defined by Eq. (6.10), therefore
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�E = h

2π

√
k

μ
(6.16)

From Eq. (6.15) it can be seen that �E given by Eq. (6.16) is the energy
associated with transition between any pair of adjacent levels.

Selection rules: (1) According to quantum theory, the allowed vibrational
transitions are those in which υ changes by one (�υ = ±1).

(2) Spectral bands are observed if the vibration interacts with the radi-
ation. Vibration due to radiation therefore is electromagnetic in origin and
such interaction depends upon the existence of an electric moment across
the vibrating bond. Thus, homo-nuclear diatomic molecules for example, do
not exhibit vibrational absorption bands. It is sufficient, however, for polar
bonds to be present molecular vibration which causes a temporarily induced
dipole moment. In order to understand the anharmonicity selection rules,
Mills’ group at Readings University (England) used a high resolution spec-
trophotometer to study the NIR spectra of small molecules in the vapour phase
(Holland et al. 1990).

(b) The anharmonic oscillator
Quantum-mechanical treatment of a harmonic oscillator explains the

observed IR absorption bands due to fundamental modes of molecular vibra-
tion but it does not explain the presence of overtone bands in the NIR. These
bands arise from transitions when �υ is ±2, ±3 etc. and so are forbidden
by selection rule (1) above. This anomaly is because real molecules do not
obey exactly the laws of simple harmonic motion and real bonds, although
elastic; do not obey Hooke’s law exactly. As two atoms approach one another,
Coulombic repulsion between the two nuclei causes the potential energy to rise
more rapidly than the harmonic approximation predicts, and, when the inter-
atomic distance approaches at which dissociation occurs, potential energy
levels off (Fig. 6.2). It may be seen from the dotted curve in Fig. 6.2 that
the success of the harmonic model stems from the fact that the two curves are
almost identical at low potential energies. An empirical function due to Morse,
fits the solid curve in Fig. 6.2 to a good approximation as below (Eq. 6.17):

E = Ed(1 − e−αy)2 (6.17)

where α is a constant for a particular molecule and Ed is dissociation energy.
Equation 6.17 is used to solve the wave mechanical equation. The solution for
the so-called an-harmonic oscillator becomes as in Eq. (6.18).

E = (υ + 0.5)hν − (υ + 0.5)2 hνx − (υ + 0.5)3 hνx′ − . . . (6.18)

where x, x′. . . . are small and positive an harmonicity constants which
decreases in magnitude. For small values of υ, the third term and beyond in
Eq. (6.18) may be ignored and then we get (Eq. 6.19)
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E ≈ (υ + 0.5)hν − (υ + 0.5)2 hνx ≈ hν[1 − x(υ + 0.5)](υ + 0.5) (6.19)

Equation (6.15) gives the same energy level as Eq. (6.19) if ν are replaced by

ν′ = ν[1 − x(υ + 0.5)] (6.20)

The anharmonic oscillator thus behaves like the harmonic oscillator with an
oscillation frequency which decreases steadily with increasing υ. E0 is now
(hν/2) (1–0.5x), and the energy associated with a transition from υ to υ+�υ

may be expressed as (Eq. 6.21).

�E = hν[1 − (2υ + �υ + 1)x] (6.21)

According to selection rules �υ = ±1, ±2, ±3,. . .. They are therefore
same as for the harmonic oscillator but with the additional possibility of larger
jumps. These are in practice of rapidly diminishing probability, and normally
bands only due to �υ = ±1, ±2 and ±3, at the most, have observable inten-
sity. Furthermore, according to Maxwell-Boltzmann law almost all molecules
in a particular sample at room temperature remains at the lowest energy level.
According to this law, proportionality of molecules in an excited state n1/n2,
where n1 is the number of molecules in the excited state and n2 the number
of molecules in the ground state, is in the form of an exponential function
(Eq. 6.22)

n1

n2
= e−�E/kT (6.22)

where k is the Boltzmann constant and T is the absolute temperature. �E =
hν � kT at room temperature.

Three most important transitions according to above discussion in IR
spectroscopy may be as:

(i) υ = 0 → υ = 1; �υ = +1
�E = hν(1 − 2x)

(ii) υ = 0 → υ = 2; �υ = +2
�E = 2 hν(1 − 3x)

(iii) υ = 0 → υ = 3; �υ = +3
�E = 3 hν(1 − 4x)

At x ≈ 0.01, the three bands approximately lie very close to ν, 2ν, and
3ν. The line near ν is called the fundamental absorption, while those near
2ν and 3ν are called the first and second overtones, respectively. The high-
est wavenumber at which absorption of radiation at fundamental vibration
frequencies occurs is about 4,000 cm–1 and the region between 4,000 and
14,300 cm–1 is termed as NIR in which absorption at overtones frequen-
cies occurs. In addition to overtone bands, combination and difference bands
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are possible theoretically if two or more different vibrations interact to give
bands with frequencies that are the sums or differences of multiples of their
fundamental frequencies as in Eq. (6.23),

νcomb = n1ν1 ± n2ν2 ± n3ν3 ± .... (6.23)

where n1, n2,. . .. are positive integers. Combination bands are of very low
probability unless they arise from no more than two vibrations involving
bonds, which are either connected through a common item, or multiple bonds.
Difference bands, which are due to absorption by molecules residing in
excited vibrational states, are of very low probability at room temperature as
a consequence of Eq. (6.22).

NIR region of the electromagnetic spectrum is from about 700 to 2,500 nm
and whole IR range may be divided both instrumentally and functionally into
near, middle and far IR (Table 6.1). The far IR is the region in which rotation
absorptions occur and will not be discussed further in this chapter.

(c) Chemical assignments of near infrared bands
Modes of vibration

It is necessary to define the number of momentum co-ordinates required to
describe the system for calculating the number of possible modes of vibra-
tion for a polyatomic molecule. A space is defined using three co-ordinates.
To define n points in space therefore 3n co-ordinates are required. Three of
these momentum co-ordinates define the translational motion of the entire
molecule and another three the rotational motion of the same. This gives 3n–6
co-ordinates to describe the inter-atomic vibrations. A linear molecule only
requires two co-ordinates to describe the rotational motion because rotation
about the bond axis is not possible. There are therefore 3n–5 modes in this
case are possible. Each of these possible vibrations is represented by a sep-
arate potential energy curve and is subjected to the selection rules described
above. For a very simple molecule, it is possible to describe the nature as
well as the number of vibrational modes, which, with reference to a tri-atomic
molecule or group AX2 are shown in Fig. 6.4.

Vibration is categorized either as stretching or bending. If there is a continu-
ous change in the inter-atomic distance along the axis of the bond between the
two atoms, vibration is called as stretching, which may occur symmetrically

Table 6.1 Approximate ranges of the infrared region

Region Characteristic transitions Wavelength range (nm) Wavenumber (cm–1)

Near infrared (NIR) Overtones combinations 700–2,500 14,300–4,000
Middle infrared (MIR) Fundamental vibrations 2,500–5 ×104 4,000–200
Far infrared (FIR) Rotations 5 × 104–106 200–10
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Fig. 6.4 Modes of vibration of a group AX2z

in a tri-atomic group of atoms AX2, whereas the two A–X bonds vibrate in
and out together or, asymmetrically when they vibrate in opposite directions.
Vibration involving a change in bond angle is known as bending and is further
classified into four types: scissoring, rocking, wagging and twisting. These
are also known as symmetrical in-plane deformation, asymmetrical in-plane
deformation, symmetrical out-of-plane deformation and asymmetrical out-
of-plane deformation, respectively (Fig. 6.4). Each of these vibration modes
give rise to overtones combinations observable in the NIR. The intensity of
such bands however depends on degree of anharmonicity. Bond involving
hydrogen, the lightest of atoms, vibrate with large amplitude when undergo-
ing stretching and therefore motion is deviated appreciably from harmonic.
Consequently, almost all the absorption bands observed, arise from overtones
of hydrogenic stretching vibrations involving AHy functional groups or com-
binations thereof involving stretching and bending modes of vibration of such
groups in the NIR range.

(d) Interpretation of NIR spectra
It is evident from the above discussion that the most NIR spectra may be

explained by assignment of the band of overtones and combination of fun-
damental vibrations involving hydrogenic stretching modes. The position of
fundamental bonds in the IR are very well documented (Bellamy 1975) and as
a starting point, it is possible to use them for prediction of the positions of the
corresponding overtone bands.
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(i) Carbon-hydrogen (CH) overtone bands
The carbon-hydrogen bond is the most important organic molecules and its

fundamental stretching bands lie in the regionν̄ = 2,972–2,843 cm–1 for alka-
nes, 3,010–3,095 cm–1 for alkenes, and aromatic systems 3,310–3,320 cm–1

for alkynes. The first overtone bands in alkanes would therefore be expected
to be found around 2ν̄ cm–1 or 107/2ν̄ nm =1,700 nm. The position may,
however, be predicted more accurately by applying the formula (Eq. 6.24)

ν̄ = nν̄0(1 − nx) (6.24)

where ν̄ is the wavenumber of the overtone band, x is anharmonicity constant
(0.01 as first approximation) and n is an integer which has the same value as
�υ, i.e. 2 for the first overtone. Using Eq. 6.24, it is possible to construct a
table of predicted wavelength and compare these with observed values. Tosi
and Pinto (1972) studied NIR spectra of fifty alkanes from 1,690 to 1,770 nm
and identified five bands at 1,693, 1,710, 1,724, 1,757 and 1,770 nm while
Wheeler (1959) reported bands at 1,695 and 1,705 nm for methyl group and
1,725 and 1,765 nm for the methylene group. Rose (1938) reported methylene
bands at 1,730 and 1,764 nm and methyl bands at 1,703, 1,707, 1,724 nm.
Thereafter many researchers have identified various bands corresponding to
various chemical constituents and combinations thereof.

A similar analysis may be applied to the weaker second overtone band
which is expected to be around 1,150 nm. The observed position for absorp-
tion by methyl and methylene respectively are 1,190 nm and 1,210 nm (Liddel
and Kasper 1933, Rose 1938) or 1,195 and 1,215 nm (Wheeler 1959). In poly-
mers, methylene bands were observed at 1,214 nm in polyethene and 1,206 nm
in nylon (Glatt and Ellis 1951). The third overtone exhibits extremely weak
absorption in the region of 880 nm. The relative absorptivities of the first,
second and third CH stretch overtones in case of chloroform are in the ratio
of 484:22:1 (Lauer and Rosenbaum 1952). The first and second overtones of
aromatic CH group are at 1,685 and 1,143 nm (Wheeler 1959), second over-
tone lie in the region 1,136–1,149 nm (Liddel and Kasper 1933) and first and
second overtone at 1,695 and 1,143 nm (Rose 1938). Terminal methylene first
overtone bands lie in the region 1,611–1,636 nm (Goddu 1960), and terminal
methylene as in pent-1-yne at 1,533 nm. The presence of polar substitutes may
considerably change the wave length, at which, fundamental C–H vibration
and overtones occur.

More complex molecules follow the similar CH stretch overtone bands,
though more complex patterns, due to the effect of C–C coupling of the
chain units. Polythene exhibits bands 1,730 and 1,763 nm due to CH2 first
overtone and 1,214 due to second overtone (Glatt and Ellis 1951). Poly (2-
methylpropane) exhibits bands at 1,760 and 1,210 nm due to methylene and
1,690 and 1,200 nm due to methyl; polypropene 1,750, 1,700 and 1,200 nm;
polyphenylethene typical aromatic bands at 1,650 and 1,150 nm (Foster et al.
1964) The CH bands in nylon (Glatt and Ellis 1951) and proteins (Hecht
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and Wood 1956) occur in the same region as similar compounds without
the peptide group; e.g. 1,190, 1,700 1,730, and 1,760 nm in wheat protein
(Law and Tkachuk 1977). Starch and pentosans have bands at 1,200, 1,700
1,720, 1,780 nm while wheat lipid has 1,170, 1,210, 1,720, 1,760 nm (Law
and Tkachuk 1977). Fatty acids have CH2 first overtone bands at 1,740 and
1,770 nm and =CH first overtone at 1,680 nm (Holman and Edmondson
1956).

(ii) Oxygen–hydrogen (OH) overtone bands
The NIR bands assignable to first to third overtones of OH stretch, in case

of water, is at 1,450, 970 and 760 nm (Curcio and Petty 1951). The position
of three bands with all OH bands is dependent on temperature and hydrogen
bonding environment, although the first overtone of OH in water bound to pro-
tein was also observed at 1,450 nm. The OH first overtone bands in alcohol and
phenols occur in the region 1,405–1,425 nm (Goddu 1960) with second over-
tone between 945 and 985 nm. Iwamoto et al. (1987) have postulated that the
band in 1,450 nm region is a composite of three bands due to water molecules
with no hydrogen bond, one hydrogen bond and two hydrogen bonds at 1,412
1,466, and 1,510 nm, respectively. These bands shift as a consequence of water
solute interactions and hence may be useful in the study of the state of water
in foods.

The effect of hydrogen bonding in carbohydrates and cyclic alcohols was
studied and three bands were observed in spectra of cyclohexanol (Trott et al.
1973), α-D-glucose and glycogen (Table 6.2). The first band at about 1,440 nm
in the carbohydrates was attributed to first overtone of the stretching vibration
of a free OH group while those about 1,490 and 1,580 nm were due to an
intra and intermolecular hydrogen bonded OH group respectively. Osborne
and Douglas (1981) reported a similar effect in the case of wheat starch and
the first two bands were observed at 1,450 and 1,540 nm by Law and Tkachuk
(1977).

(iii) Nitrogen–hydrogen overtone bands
Overtone bands of primary amines are expected to be at about 1,500 and

1,530 nm due to NH stretch first overtone and a band at about 1,000 nm
due to the second overtone. Secondary amines should have a single band at
about 1,520–1,540 nm and 1,030 nm and aromatic primary amines at 1,460,

Table 6.2 Bands due to O–H stretch first overtone band (Trott et al. 1973)

Free OH H-bond (intra-molecular) H-bond (inter-molecular)

Cyclohexanol 1,417 1,520 1,573
α-D-glucose 1,443 1,484 1,581
Glycogen 1,445

1,440
1,481
1,470

1,581
1,575

Starch 1,440
1,450

1,528
1,540

1,588
–
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1,500 and 1,000 nm. No band due to the amine group would be expected
in case of tertiary amines. Methylamine and dimethylamine have bands at
1,520 and 1,528 nm respectively. NH bands due to amine are not temper-
ature sensitive though the same are displaced by hydrogen bonding. In the
spectrum of nylon, for example (Glatt and Ellis 1951, Foster et al. 1964),
the free NH band at 1,500 nm is shifted to 1,559 nm by hydrogen bond-
ing. The origin of amide absorption bands was proposed by Krikorian and
Mahpour (1973). Ethanamide has asymmetrical and symmetrical NH stretch
first overtone bands at 1,430 and 1,490 nm while N-methyl ethanamide has a
single band at 1,475 nm. Protein molecules contain peptide (-CONH-) linkage
and, in some cases, free amine or amide side groups. Hecht and Wood (1956)
reported an NH band at 1,550 nm whereas Law and Tkachuk (1977) observed
this bands due to NH first overtone at 1,500 and 1,570 nm in wheat protein.

(iv) Miscellaneous overtone bands
A few bands other than CH, OH, or NH, which may be of importance in the

NIR spectra of foods, also exists. The carbonyl group has an strong fundamen-
tal band at about 1,700 cm–1 and would therefore expected to have first to fifth
overtones at 2,900, 1,950, 1,450, 1,160, and 970 nm. The second overtone has
been observed at 1,960, 1,900–1,950, 1,920, 1,900 nm in aldehydes, ketones,
esters, peptides, and carboxylic acids, respectively (Wheeler 1959). These
bands are too weak and too close to the water band at 1,940 nm. Overtones
of hydrogenic groups other than those discussed above should in theory be
observable in simple compounds. It is possible for example to observe a very
weak band at 1,892 nm due to PH in some organophosphorous compounds
(Wheeler 1959). Terminal epoxides have very similar absorption properties to
terminal alkenes and their first overtone band may be seen at about 1,640–
1,650 nm. The observed frequency of NIR bands depends on the masses of
the vibrating atoms, exchange of hydrogen for deuterium causes a shift which
is a useful tool for study of NIR spectra. It is possible to assign NIR bands
to combination of frequencies using Eq. 6.23. In practice, however, there are
enormous number of possible combinations which can only be accounted for
a very simple compounds. Kaye (1954) assigned all sixty-two possible combi-
nation bands in the case of haloforms which have simple symmetry and only
a simple CH group.

(v) Carbon hydrogen combination bands
Bands in stretching and various deformations (deformed) modes involving

CH group are the most important combination bands, which occur between
2,000 and 2,500 nm. A much weaker combination bands have also been
observed between 1,300 and 1,450 nm and 1,000–1,100 nm. Thus, bands
observed at 1,390, 2,290, 2,300, 2,340, and 2,740 nm in wheat gluten, 1,370,
2,290, 2,320, 2,490 nm in wheat starch, 1,390, 2,310, 2,340 nm in wheat
lipid (Law and Tkachuk 1977), 2,314, 2,354, 2,371 nm in polyethene, 2,303,
2,349, 2,370 nm in nylon (Glatt and Ellis 1951), 1,400, 2,260, 2,310, 2,350,
2,470 nm in poly (2-methylpropane) and 1,400, 2,270, 2,310, 2,400, 2,470 nm
in polypropane (Foster et al. 1964) are all CH combination bands. Holman
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and Edmondson (1956) have observed bands at 2,140 and 2,190 nm in fatty
acids due to cis-unsaturation. These bands are undoubtedly due to combination
arising from =CH or CH2 and C=C vibrations. For example =CH stretched
(3,020 cm–1) plus C=C stretched (1,660 cm–1) gives 2,137 nm while CH2
asymmetrically stretched (2,915 cm–1) plus C=C stretched (1,600 cm–1) gives
2,186 nm. The carbon hydrogen bond involving the carbonyl carbon atom of
an aldehyde has a pair of characteristic fundamental vibration bands at 2,820
and 2,720 cm–1, a combination of the 2,820 cm–1 band with the C=O band at
1,735 cm–1 was observed near 2,200 nm in simple saturated aldehydes.

(vi) Oxygen–hydrogen combination bands
Bands at 1,940 nm in spectrum of liquid water (Curcio and Petty 1951) and

water bonded with protein at 1945 nm were observed (Hecht and Wood 1956).
It is considered to be the most important absorption in the NIR spectroscopy
from the analytical point of view. An OH stretched/OH deformed combination
band occurs in all hydroxyl compounds, for example at 2,080 nm in ethanol
(OH stretched 3,500 cm–1 plus OH deformed 1,300 cm–1). The OH combina-
tion bands are shifted, as in case of overtone bands, with hydrogen bonding
combination bands and may also be observed between OH stretched and C–O
or C–C stretched (Osborne and Douglas 1981).

(vii) Nitrogen–hydrogen combination bands
Krikorian and Mahpour (1973) reported bands at 1,960, 2,000, 2,050, 2,100

and 2,150 nm which they assigned to NH asymmetrically stretched plus amide
II, NH symmetrically stretched plus amide II, NH asymmetrically stretched
plus amide III, NH symmetrically stretched plus amide III and twice amide I
plus amide III, respectively. Primary amines would be expected to have an NH
stretched/ NH deformed combination band at about 2,000 nm.

Proteins have three prominent bands in the NH combination region; at
1,980, 2,050 and 2,180 nm (Law and Tkachuk 1977). Bands at 2,058 nm and
2,174 nm were noted by Elliott et al. (1954) in the spectra of α-polypeptides.
Hecht and Wood (1956) assigned the 2,060 nm band to NH stretched H bonded
(3,280 cm–1) plus NH deformed amide II (1,550 cm–1) and the 2,180 nm band
to twice C=O stretched, amide I (1,650 cm–1) plus amide III (1,250 cm–1).
Three bands of this type were reported for secondary amides: 2,000 nm due to
NH stretched plus amide II, 2,100 nm due to NH stretched plus amide III and
2,160 nm due to twice amide I plus amide III. An NH stretched /NH deformed
band at 2,050 nm was observed in nylon (Glatt and Ellis 1951).

Murray (1987, 1988) traced the characteristic absorption patterns for a num-
ber of functional group by studying the NIR spectra of homologous series of
organic compounds. Using this work, assignments of wavelengths in the spec-
tra of agricultural products have been made and a concept of food composition
in terms of CH, OH and NH structures was proposed.

(e) Summary on chemical assignments
Chemical assignments for NIR bands available are summarized in Fig. 6.5.

Though these summaries represent only some of the important NIR bands,
the degree of complexity of spectra is obvious. It is of interest to note also
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that the spectral information is repeated through the successive overtones and
combination regions and since the bands involved become weaker by an order
of magnitude each time, this represents a useful built-in dilution series. A
library of 328 NIR spectra of pure chemicals and agricultural and food prod-
ucts is contained in monograph by Williams and Norris (1987). Recent library
is the NIRS library “NICODOM NIR Pharmaceuticals” which contains 696
NIR spectra (4,200–11,000 cm–1) of active substances and excipients used in
pharmaceutical industry. The sources of the samples were local pharmaceuti-
cal companies. The basic version of this library is also available in the form of
a book, which contains 385 NIR spectra. Another huge library with passage
of time by contribution of various researchers has also been developed as a
public domain and can be reached at www.spectraonline.com.

6.1.3 NIR Imaging

In addition to chemical assignments of different NIR bands for analysis of foods and
other materials, it is also being used nowadays for chemical imaging of samples.
Chemical imaging is the analytical capability (as quantitative – mapping) to create a
visual image from simultaneous measurement of spectra (as quantitative – chemical)
spatial, and time information. The technique is most often applied to either solid or
gel samples, and has applications in chemistry, biology, medicine, pharmacy, food
science, biotechnology, agriculture and industry. NIR imaging is also referred to as
hyperspectral, spectroscopic, spectral or multispectral imaging. Chemical imaging
techniques can be used to analyze samples of all sizes, from the single molecule to
the cellular level in biology and medicine, and to images of planetary systems in
astronomy, but different instrumentation is employed for making observations on
such widely different systems, which is beyond the scope of this book. Some work
however on NIR imaging is reported in Chap. 3.

6.2 NIRS Instrumentation

Previous sections have dealt with what actually NIRS is and how is it working for
quality determination. The user usually faces an increasingly difficult task in deter-
mining the most appropriate instrument for their application, be it in the laboratory,
in field or in on-line application.

The generalized instrumentation used in nondestructive type of spectrometry for
measurements of absorption and/or reflectance consists of a light source, wavelength
selector or isolator, holder, detector and a computer (Fig. 6.6). These components,
except computer (which is not considered a part of spectrometry, though an essential
requirement) are connected nowadays through fibre optics cable or single thread.
Wavelength isolator and detectors are combined in spectrometer. Selections of these
components of NIR spectrometry are of paramount importance and therefore are
discussed in brief hereunder different subheads:
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Fig. 6.6 Basic instrument layout for transmittance and reflectance measurement

6.2.1 Light Source

Common incandescent or quartz halogen light bulbs are most often used as
broadband sources of near infrared radiation for analytical applications. The quartz-
halogen lamp is the most popular source of NIR energy because of their widespread
use for household lighting, The use of the word “energy” is more suitable in case of
NIRS as compared to the “light”, because NIR energy is not visible to the human
eye and therefore is not light. Light-emitting diodes (LED) are the second most pop-
ular source of NIR energy. They have greater lifetime, spectral stability and reduced
power requirements.

The method by which light is spectrally modulated or selected defines the optical
operating principle of an NIR spectrometer. All such instruments are grouped into
three categories: dispersive, interferometric and non-thermal. Devices in the first
two groups generally employ broadband, thermal radiation produced by an incan-
descent filament. The third group consists of non-thermal or ‘cold’ sources where
wavelength selection is inherent in the source’s spectrally narrow emitting range.
The resolving power of an instrument, its ability to distinguish between two close
spectral elements, its transmission, the amount of light that can be admitted, are all
fundamental features of the optical operating principle. The resolving power (resolu-
tion), R, is defined as λ/δλ, where δλ is the resolution usually expressed in microns.
The same expression can, of course, be defined in wave numbers (cm–1). The solid
angle of light (luminosity) admitted by the instrument, �, is related to P such that

R� = constant (6.25)
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The resolution luminosity product is constant. This criterion, a figure of merit for
spectrometers, has been fully developed by Jaquinot (1958). In a given instrument,
resolving power has to be traded for luminosity. The higher the value of R� the
better is the instrument.

6.2.2 NIR Spectrometers

NIR spectrometers are classified according to wavelength isolation techniques.
Wavelength isolators broadly come under two groups: (i) Discrete-value and (ii)
full spectrum devices. Full-spectrum spectrometers also known as “scanning instru-
ments” produce spectra with equally spaced data, i.e. at fixed intervals across the
full range from 700 to 2,500 nm. Interval may be any one number such as 1.5 nm,
2 nm, 2.2 nm etc. Discrete-value spectrometers may be further categorized by the
technology used to produce narrow wavelength bands. Table 6.3 presents major
wavelength-isolating technologies used in NIRS.

(i) Diodes
Light Emitting Diode Arrays (LEDA): Several light-emitting diodes (LEDs)

are commercially available and are making possible the construction of multi-
channel or multiband NIR spectrometers, which are being used for numerous
applications in the food industry. A schematic diagram of an LEDA spectrom-
eter is shown in Fig. 6.7. Four LEDAs are systematically arranged in a matrix
array. As per requirements, the bandpass of individual diodes are narrowed by
adding narrow-band interference filters. A diffuser is interposed between the
sample and the diode matrix to provide uniform illumination from all diodes
simultaneously.

Photodiode Detector Arrays (PDA): Nowadays most of the NIR spectrom-
eters have not a single moving part which is useful for many applications.
Photodiode detector arrays (PDA) are used in such spectrometers. A basic setup
of a PDA spectrometer is shown in Fig. 6.8, which is configured with a fibre-
optic bundle for conducting diffusely reflected energy from the sample to the
fixed grating monochromator. This instrument uses a linear diode array for mea-
suring the reflected energy. These arrays cover the range 200–1,000 nm, but the
signal becomes more noisy below 450 nm and above 900 nm.

Greensill and Walsh (2002) have developed procedures for standardizing
the miniature Zeiss MMSI PDA spectrometers and Clancy (2002) has demon-
strated a simple linear slope and bias correction for effective normalization
of instruments and thus allowing a single master calibration to be used on
all instruments (Clancy 2002). Morimoto (2002) developed two field-operable
PDA instruments for determining fruit quality based on PDA technology.

Laser Diodes: The advantages of laser diode spectrometers are that the
bandwidths of lasers are very narrow, and the output intensity can be very
high compared to other spectrometers. A schematic diagram of a laser diode
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Table 6.3 Classification of NIR spectrometers based on wavelength isolating technology

Technology Status

Diodes

Light emitting diode
arrays (LEDA)

LEDA is a nonscanning instrument. Using these emitters, making very
compact spectrometers for specialized applications requiring only a
few wavelengths is possible. A limited number of light-emitting
diodes are available in the market

Diodes-array
detectors (DAD)

DAD spectrometers are full-spectrum instruments. DAD is used in
conjunction with a fixed grating for making compact spectrometers
with resolution limited only by the number of receptors in the array

Laser diodes Laser-based instruments are wavelength limited and therefore are not
full-spectrum instruments. Production of many wavelengths from
laser diodes is still lagging other technologies

Filters

Fixed The bandpass of these filters may be as narrow as 1 nm. Fixing the
plane of a narrow-band interference filter (NBIF) normal to an NIR
beam provides a single wavelength band. Fixed filter spectrometers
are not capable of producing full spectrum

Wedge A wedge-interference filter (WIF) consists of two quartz plates spaced
by a dielectric wedge. Moving the wedge in front of a slit produces
incremental wavelength bands. Spectrometers that incorporate a
WIF are full-spectrum instruments

Tilting Tilting results in an increased band width and diminished
transmission. Tilting a NBIF in a beam of parallel NIR energy
produces incremental wavelength bands. Tilting-filter
spectrometers, though limited to a narrow range of wavelengths are
full-spectrum spectrometers

AOTF An acousto-optical tunable filter (AOTF) is a specialized optic whose
bandpass is determined by the radio frequency applied across the
optic. AOTF spectrometers are full spectrum instruments

LCTF Liquid crystal tunable filter (LCTF) spectrometers may be designed to
operate in the visible, NIR, MIR and FIR range. However, the
switching speed is much slower than the AOTF (maximum of 1 ms)

Prism Prism, used in the early days of spectrometry, produce nonlinear
dispersion of NIR spectrum, making it difficult to coordinate prism
position with wavelength. Prism based spectrometers are
full-spectrum instruments

Grating Grating produce a near-linear dispersion with wavelength. The
remaining nonlinearity can be removed with software.
Spectrometers incorporating grating are said to be full-spectrum
instruments

FT-NIR Fourier transform near-infrared (FT-NIR) spectrometers produce
reflection spectra by moving mirrors. Once plagued by noise
modern FT-NIR spectrometers boast noise levels equivalent to
grating-based instruments. FT-NIR spectrometers are full-spectrum
instruments

Hadamard This initially was made using a complex arrangement of shutters.
Hadamard technology has never competed with dispersion-type
instruments. This technology is capable of producing a full
spectrum
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Fig. 6.8 Schematic diagram of basic setup of photodiode detector array spectrometer using a
single fibre optic cable to collect spectra from a solid sample

spectrometer is shown in Fig. 6.9. The cost of laser diode has fallen much in
last 25 years, but the laser diode spectrometers are still in the research stage.

(ii) Filters
Fixed Filter: A typical fixed filter spectrometer (FFS) includes filters that

are useful for calibrations in high-volume food applications, such as moisture,
protein, and fat. The first commercial grain NIR analyzer was made using fixed
filters (FF). Today several companies produce multiple FF instruments using the
fast Fourier transform for noise reduction. A schematic diagram of a fixed filter
spectrometer (FFS) is shown in Fig. 6.10. It cannot do everything because FFS
is capable of producing limited number of bands only; and the NIR absorptions
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Fig. 6.10 Schematic diagram of a fixed filter spectrometer
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of food and food products are broad and overlapping. Morimoto et al. (2001)
since when have demonstrated that derivative calibrations can be developed
with filters, a renewed interest in FFS has emerged.

Wedge-Interference Filters (WIF): This filter is similar to FF with a single
exception that the optical dielectric between the plates is wedge shaped. That
is, the dielectric at one end is thicker than at the other end, producing longer
to shorter wavelengths, respectively. A slit between the source and the sample
allows passing of a narrow band of wavelengths, with the band changing as the
wedge is moved from one end to the other. WIF are also available in circular
form in which the thickness of the optical dielectric varies with filter rotation.
Figure 6.11 illustrates construction of a WIF spectrometer.

The recent development is a variable filter array (VFA) spectrometer. It
enables to acquire NIR spectra on a variety of materials wherever they occur,
whether in the production plant or in the field. It consists of an Attenuated
total reflection (ATR) sample plate with an elongated pulseable source mounted
close to one end and a linear variable filter attached to a detector array mounted
close to the other. Use of this technology has resulted a very compact spec-
trometer with no moving parts and no optical path exposed to air and is able
to produce NIR spectra of powders, films, liquids, slurries, semisolids, and
surface. Sample cups are not required in this type of instruments and sample
loading simply involves loading the ATR with a suitable thickness of material.

Tilting Filter: This filter has definite advantages over wavelength-isolation
techniques. First, narrow-band NIR interference filters can be produced for
any wavelength in the NIR region. Second, NIR filters characteristics can be

Sample

NIR Source

Quartz plate

Quartz plate

Optical dielectric

Wedge interference filter

Slit

Detector

Fig. 6.11 Schematic diagram of a wedge-interference filter spectrometer. Two quartz plates hold
the optical dielectric in static position
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reproduced, making it much easier to duplicate spectrometers characteristics.
Third, the bandpass of a filter may be increased or decreased (increasing or
decreasing the energy falling on the sample, respectively) depending on the
application. Spectrometers implementing narrow-band interference filters com-
pete quite well for online and field (hand-held) applications where the objective
is to measure a limited number of parameters.

Major disadvantages of tilting-filter spectrometer (Fig. 6.12) are: the rela-
tionship between angle and wavelength is nonlinear, the bandpass of the filter
increases as the angle from the normal energy beam increases (clockwise or
counterclockwise) and the peak transmission of the filter decreases as the angle
of the filter from normal to the source beam increases (clockwise or coun-
terclockwise), besides its expensiveness. The first three disadvantages make
difficult to reproduce specifications from one instrument to another. Due to
these problems this kind of spectrometers are not produced.

Acousto-optical Tunable Filter (AOTF): It is a solid-state electronically tun-
able spectral bandpass filter (Anon 2010). It operates on the principle of
acousto-optic interaction in an anisotropic medium. The AOTF has recently
reached technological maturity, moving from the research laboratory to the
commercial environment (Fig. 6.13). It utilizes an anisotropic, birefringent
medium for its operation. It has a relatively long acoustic interaction length,

Detector 

Sample

Narrow band of 
wavelengths

Tilting filter

Lens

Tungsten
halogen lamp

Fig. 6.12 Schematic diagram of a tilting-filter spectrometer. Three tilting filters are provided for
wavelength isolation in three regions of NIR spectrum
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required to achieve a narrow spectral bandwidth. That one can only be achieved
for a certain momentum-matching configuration, i.e., the group velocity for the
extraordinary wave should be collinear with the ordinary wave. It is shown on
the Fig. 6.14, where the momentum-matching vectors represent the phase veloc-
ities of the incident light k, diffracted light kd, and acoustic waves ka. In this
geometry, the tangents for the incident and diffracted light beams are parallel
to each other. Note that the two optical beams do not separate until the light
propagates inside the acousto-optic medium. This long coherent buildup of the
diffracted beam would be only partially beneficial to the AOTF. To a first order,
any momentum mismatch, due to the light arriving at some angle from this ideal
condition, is compensated by a change in the birefringence for this orientation,
and thus the AOTF displays its most important characteristic: a large angle of
view, which is unique among acoust-optical devices. The tuning dependence of

(b)

(a)

kd

kd ka

Ka

k

k

Fig. 6.14 Phase matching condition for: (a) non-collinear AOTF, (b) collinear AOTF. k, wave vec-
tor of entrance radiation; ka, wave vector of acoustic wave; kd, wave vector of diffracted radiation
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AOTF: F = c×Dn/λ, where F is the frequency of the radio frequency signal;
Dn = ne–no; ne, no are refractive indices for extraordinary and ordinary rays; c
is the constant and λ is the light wavelength

Liquid Crystal Tunable Filters (LCTF): It is a stack of polarization sensitive
plates. Specific regions of the NIR spectrum are fixed by the number and thick-
nesses of plates usually made up of crystal quartz plates. Switching speeds from
one wavelength band to another is dependent on the relaxation time of the crys-
tal and can be as high as 50 ms. Although special crystal have been made with a
switching time of 5 ms, this time far exceeds that of grating and ATOF technol-
ogy and is restricted to a short sequence of wavelength. The spectral resolution
is on the order of 10–20 nm, although special crystal can reduce the bandpass
to 5–10 nm, which nowadays are considered not good enough. It has therefore
a limited success in NIR spectroscopy, however can perform considerably well
in visual region. Tilotta et al. (1987) did further development in this field and
utilized liquid crystal to modulate radiation in a Hadamard spectrometer, which
is considered to be the first no moving parts spectrometer.

Hadamard Spectrometer: Combination of multiplexing and dispersive spec-
trometers in which choice of transparent or opaque elements of multi-slit mask
provides information that may be transformed into conventional NIR spectrum
with Hadamard mathematics and are the basis of Hadamard-transform NIR
spectrometry (HT-NIR) (Hammaker et al., 1986, Tilotta et al. 1987). Usually
tungsten halogen lamp is used as a light source. The energy is first dispersed
into spectral elements (wavelengths) and then collected and focused onto a focal
plane. Unlike purely dispersive systems where there is only one exit slit, the
focal plane of a Hadamard system implements a multislit array. Signals from
this multiple-slit arrangement are collected by a single-element detector. The
HT-NIR spectrometry is still not preferred one due to complex problems which
are still in research stages.

Prisms: There are three types of prisms (a) polarizing (b) dispersing, and
(c) reflecting, Polarizing prisms are made of birefringent materials. Dispersing
(or transmission) prisms were most popular in the early development of NIR
technology. Reflecting prisms were designed to change the orientation or direc-
tions (or both) of a NIR beam. Initially prism based spectrometers (Fig. 6.15)
were used to acquire absorption NIR spectra in the range of 210–2,700 nm
automatically (Kaye et al. 1951) by replacing photomultiplier tube with a lead
sulfide (Pbs) cell and including a chopper and an electronic recorder. Absence
of a digitizer for photometric signal was a major drawback of this kind of
instrument.

Gratings: The first commercial gratings used were grooved by machine using
a diamond ruling tool. Nowadays holographic gratings are used in this kind of
spectrometer. They are made by a deposing photosensitive material onto a flat
glass plate. Lasers are used to make grooves in the material, and aluminum is
vacuum deposited in the grooves to make them reflective. Holographic grat-
ings are a less efficient than the original replica gratings, but the precision of
the grooves reduces scattered light. This kind of spectrometer is capable of
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Fig. 6.15 A simple prism
spectrometer

much higher resolution than prisms and is much easier to implement volumes.
Schematic diagram of a grating spectrometer is shown in Fig. 6.16.

Fourier Transform-Near Infrared (FT-NIR): FT-NIR spectrometers are made
using an entirely different method for producing spectra. No dispersion is
involved in this method. Energy patterns set up by an interaction with a sam-
ple and reference and moving mirrors (or other optical components) produce
sample and reference interferograms that are decoded using a well known
mathematical technique called Fourier transformation with the help of micro-
computer in the spectrometer which produces the desired spectral information
to users for interpretation and further manipulations. There are two distinct
advantages of FT-NIR spectrometers that make it more attractive. The first is
the throughput advantage. In the absence of dispersion, the energy at the output
of an FT-NIR interferometer (similar to a monochromator) can be many times
greater than that obtained from a grating monochromator. The second, FT-NIR
improves spectra reproducibility and wavenumber precision, which may give
better accuracy in prediction using chemometrics.

Entrance 
slit Collimating 

mirror 1
Source

Collimating 
mirror 2

Sa
m

pl
e

Exit
slit

Detectors

Grating

Fig. 6.16 Schematic diagram
of a simple grating
spectrometer
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6.2.3 Infrared Detectors

Infrared detectors are divided into two types: photon detectors, comprising pho-
toconductors and photodiodes, and thermal detectors. The latter respond to total
radiated energy, irrespective of wavelength and are not efficient enough for serious
use in the NIR. The response characteristics of some detectors useful in the NIR are
shown in Table 6.4 and Fig. 6.17.

Responsivity (R), noise equivalent power (NEP) and specific detectivity (D∗) are
commonly used terms to define detectors. The responsivity (R) is expressed as:

R = VW−1 (6.26)

where V is the root mean square (rms) output voltage and W the rms of power input.
The NEP is defined as the power input required to give an output noise voltage

equal to the rms of noise voltage, whereas the inverse of the NEP is the detectivity
D. When D is expressed in a normalized form for a detector of 1 cm2 area and 1 Hz
bandwidth, it is called the specific detectivity and expressed as D∗. The unit of D∗
is cm Hz1/2 W–1. Silicon and germanium photodiodes cover the very near infrared
(VNIR) part of the spectrum. These cells consist of reverse-based p-n junctions.
Sufficiently energetic photons create an electron – hole pair across the boundary,
producing a small potential ≈μV. Silicon detectors respond through the visible part
of the spectrum and up to 1 μm, peaking at 0.85 μm. Germanium detectors peak at
about 1.5 μm (Fig. 6.17).

Compound lead – salt semiconductors are the most widely used detectors in the
NIR and operate in the photoconductive mode. Lead sulphide (PbS) is used over the
range 1–3.6 μm and lead selenide, PbSe, is useful from 1.5 to 5.8 μm (Table 6.4).
PbSe is much less sensitive than Pbs (Fig. 6.17). They are available, individually, as
squares of material from 1 mm × 1 mm to 10 mm × 10 mm and can be operated at
room temperature or cooled environment. Cooling shifts the sensitivity of the cell
to longer wavelengths but increases the response time and signal to noise ratio.

The absorption of photons causes the creation of electron – hole pairs across the
n-p junctions and electrons are excited from valence bands to conduction bands.
When electrons are in this state, they can conduct electricity and the resistance of
the cell falls. The decay time back to the valence bands dictates the response time
of the cell, which is typically 100–200 μs for PbS and less than 1 μs for PbSe.

Lead-salt detectors are formed by chemical deposition by the precipitation of the
salt. PbS is an n-type semi-conductor, rendered photo conducting by oxygen treat-
ment. Oxide layers some 200 Å thick are grown into the semi-amorphous crystals. In
effect, a two-dimensional array of n-p-n junctions is produced. Variability of crystal
size and p-layer thickness means that the sensitivity and wavelength response of the
cell varies over its surface. This must be taken into account in instrument design.

Another detector, with an exciting feature, is epitaxially – grown indium gal-
lium arsenide, InGAs. This detector operates over the range 0.7–1.7 μm peaking
at 1.7 μm. They are available from 1 to 6 mm diameter and are a few times more
sensitive than PbS. Response times are below 1 μs. Lattice mismatch occurs at
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indium levels required to give a peak response at longer wavelengths. Although
a progressive matching technique can produce such detectors, lattice strain and
defects render them noisier and production costs also become higher. Performance
of any detector varies with the environmental conditions in which it is used. It is
very much sensitive to temperature and humidity.

6.2.4 Fibre Optics

The use of fibre optics as a means of delivery and transfer of NIR energy and infor-
mation is of paramount importance. There are many situations, particularly on the
production line, where the operating environment is unsuitable for sensitive equip-
ment. This may be because of temperature, vibration, space or explosion hazards.
In these situations, the ability to deliver and collect NIR energy via optical fibre is
advantageous.

Principle of total internal reflection governs the science of fibre optics. It covers
all aspects of transmission of light along optically transparent fibres by means of
the phenomenon of total internal reflection. The transparent medium may be silica
glass, plastic or any other exotic materials.

Unlike normal reflections from metallic or dielectric surface, which may be up
to 99%, efficient, total internal reflection is highly efficient, typically better than
99.999% at each reflection. Even with several hundreds or several thousands of
reflections per metre, significant amounts of energy can be transmitted over useful
distances. The attenuation of fibre is measured in db km–1 or dB m–1. Figure 6.18
shows the attenuation for the three most suitable fibres for NIR.
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Fig. 6.18 Approximation of NIR transmission of optical fibres
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Chalcogenide fibres best cover the wavelength region from 4 to 11 μm but trans-
mission is limited to distances of a few metres. It can be seen that silica glass is
ideal below 2-μm region. Zirconium fluoride is still very expensive. It offers very
low attenuations, less than 1 dB km–1, with theoretical performance much better
than this.

(a) Optical concepts
The basic structure of a fibre is presented in Fig. 6.19. The cladding is a

low index material and outer is optional and for protective purpose only. If the
refractive indices of core and cladding are n1 and n2 where n1 > n2, an internal
ray of light, incident on the boundary at an angle φ1 will be partly reflected at
the same angle and partly refracted into the cladding at an angle φ2 according
to Snell’s law.

sinφ1

sinφ2
= n2

n1
(6.27)

When φ1 increases, a point reaches where φ2 becomes 90◦ and no light
escapes the core. The light is totally internally reflected. The complementary
angle at which this occurs is known as the critical angle (θ ). From Snell’s law,
it is defined in terms of the refractive indices as Eq. (6.28).

θ = cos−1n2
/

n1 (6.28)

n2 Cladding

n1 Core

θc

φ1 φ1

φ2

Numerical Aperture defined by acceptance cone ……  half angle θ

Fig. 6.19 Schematic structure of fibre showing light rays



174 S.N. Jha

Rays with angles less than the critical angle are totally internally reflected
with high efficiency. A similar arrangement is used to calculate the maximum
angle to the normal, at which light admitted to the fibre and transmitted by total
internal reflection. The sine of this is defined as the numerical aperture (NA) as
Eq. (6.29).

NA = sinθ = (n2
core − n2

clad)1/2

nair
(6.29)

The angle θ defines an acceptance cone for the fibre. The square of the
numerical aperture defines the light gathering capacity of the fibre. There is
obviously no point in attempting to feed light onto the fibre at greater angles
than this. In theory, light entering a fibre at a given angle should emerge at
the other end at the same angle. However, the azimuthal angle varies rapidly
with input angle and rays generally emerge on an annular cone, centred on
the input angle. Scattering and inhomogeneties also causes the degradation of
images.

(b) Monofilaments and bundles
Fibres are available in form of clad, single fibres (monofilament) or as bun-

dles of filaments. Bundles are randomized, branched or structured as spatially
coherent arrays for optical uniformity and mixing, for multiple input/output
applications or be structured as spatially coherent arrays for imaging purpose.
Core diameters normally range from 0.02 to 2 mm. Bundles are available with
diameters from less than 1 to 8 mm. Monofilament fibres are less expensive
and can be easier to use than bundles provided that the energy required can
be imaged through the end of the fibre. Large diameter fibres are attractive for
these reasons although account will need to be taken of the minimum bend-
ing radius. For a 1 mm silica glass fibre this will be approximately 150 mm.
Repeated bending will cause microfractures (silica is bad for this), resulting in
loss of transmission by scattering into the cladding.

Thermal and mechanical stress affects the transmission characteristics and
is disastrous for accurate NIR transmission measurements. For example, a
1 mm monofilament fibre, stressed by 10% bending can change its relative
transmission characteristic of about 1.8/1.9 μm ratio by as much as 0.5%.
This problem can be obviated with double-beam optical design. Fibre bun-
dles are normally made from much smaller core sizes, 30–100 μm, giving
much better flexibility. The minimum bend is defined by the protective jacket.
However, bundles are less efficient than monofilaments because a propor-
tion of the incident light is lost on the cladding and interstices between
fibres. Packing fractions of 35–45% are typical, but this means that more than
50% of the available energy is lost every time when light is coupled into
a bundle.
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6.2.5 Sample Preparation and Presentation

Two main areas of measurement, laboratory and production line, can be subdivided
into solids and liquids. The former are more common and the latter usually require
less sample preparation.

(i) Solids on-line
1. There may be wide variations in dimensions of some products. Generally a

diffuse reflection sensor tolerates ±25 to ±50 mm random product height fluc-
tuation at maximum sensitivity. If the height variation exceeds the observed
performance of the sensor then it is necessary to plane the surface immediately
prior to its passing by the target area.

2. NIR penetration is generally superficial and may range from tens of microns to
a few millimeters. The penetration can be much greater at shorter wavelengths
in the region 0.8–1.1 μm but currently the very near infrared (VNIR) part of
the spectrum is not widely used in on-line sensing. Particularly if moisture is
being measured it is important to ensure that the surface is typical of the bulk
material. Surface drying in that case may be a problem. Mixing, turning or
ploughing may solve these problems for granular or leaf materials up to some
extent.

3. The sensor reading depends, to a small degree, on the mean orientation of the
product in relation to the sensor. Generally leaf or laminar products are more
problematic than granular materials and powders and thus instantaneous sensor
reading may be erroneous. So, it will be useful if orientation is averaged. As the
product passes under the sensor the readings will fluctuate around the correct
value for the mean orientation on the production line. These fluctuations can
be called ‘presentation noise’ and must be integrated out with an appropriate
time constant. Typically a few second signals averaging may be required.

4. Product coming out from driers may contain steam and produce erroneous
results, so a proper care is needed to avoid such situation.

5. It is essential that the sample patch should be filled with product and that the
sensor should not be able to ‘see’ the transport mechanism. If gaps in the pro-
duction flow are unavoidable, gauging biscuits, for example, then it is essential
that the sensor should have a fast and efficient ‘gating’ facility.

6. An extreme case as stated above is that of vacuum-transported powders such
as flour. Here, the instantaneous density is too low for a successful NIR diffuse
reflection measurement. This type of situation must be avoided.

All the product presentation problems can be minimized by intelligent
location of the sensor. In practice, excellent results can be obtained.

A limited number of applications are employed to present samples to an
off-line or laboratory sensor. In case of measurement of fruits and vegeta-
bles in tree, manual sorting in laboratory or in pack house at small scale, this
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arrangement seems to be more appropriate to avoid mechanical complexity of
the continuous sorting system and to fit to requirements of the analyzer.

(ii) Liquids-general
The measurement of liquid is generally easier than that of solids. The

Beer-Lambert absorption law is followed obeyed unless the liquid is full of par-
ticulate matter or extremely turbid. The width of the cuvette of flow-through
cell can be adjusted to optimize the absorption sensitivity. Finally, it is rela-
tively easy to adapt existing equipment to make the measurement. A simple
test tube may also be used in place of cuvette for holding the liquid sample.

There is a choice between diverting a proportion of the product to an off-line
instrument, or installing a cell or an insertion probe directly in the production
flow in online condition. Tables 6.5 and 6.6 summarize the advantages and dis-
advantages of working in the laboratory environment and on-line, respectively.
The profiles of some absorption features are significantly temperature depen-
dent. Some form of corrections such as calibrated temperature correction, a
chemometrically applied correction or by calculating ratio against a reference
cell may be required. Two cells, with the same working gap, are maintained at
the same temperature by the process stream. In this way, automatic temperature
correction is achieved.

Table 6.5 Advantages and disadvantages of piping of samples in instrument

Advantages Disadvantages

Preparation and filtering of samples are
possible

There may be some difficulty in controlling
flow of samples

Sampling from various points are possible Condition of sample may change in transit
An instrument may be utilized May not be suitable for the factory

environment and only limited quantity of
product can be measured

Existing laboratory spectrometers can be
utilized

There is possibility of transit delay

There is possibility of stabilized temperature
and pressure in the process

“Clean in place” systems are required,
otherwise there is a possibility of wastage
of samples

Table 6.6 Advantages and disadvantages of measurement “in place”

Advantages Disadvantages

Fast, accurate and direct measurement Multiple point measurement is not possible
No wastage of samples Some form of temperature compensation

might be required as control of
temperatures and pressures may not be
possible

Significant quantity of samples can be tested Cleaning, maintenance and standardization
of probe are difficult

Product usually remain undisturbed
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(a) Cells
Most instrument and accessory manufacturers produce a range of cells of

glass or quartz. These can be of fixed-gap or adjustable types. The increas-
ing use of fibre optic coupling has led to the development of more versatile
arrangements of open-path cells and attenuated total reflectance (ATR) attach-
ments equally suitable for immersion into laboratory beakers, or via insertion
mechanisms into process streams, vats and reaction vessels. Some of these
devices employ reflective surface and it is useful to note the distinction between
direct transmission and retroreflection. Figure 6.20 shows two cells with the
same effective absorption path. When liquid in the cell is clear and the cell is
clean, there is no significant distinction between the performances of the two
arrangements. However, if the liquid is cloudy, reflection cell will suffer from
an apparent gap reduction as a proportion of the light is scattered back from
particles or turbidity. The cloudier the contents, the shorter are the effective
path. A similar problem occurs if the cell wall is dirty. With the true trans-
mission cell this problem does not arise. Provided that the illumination and
collection optics employ quasi-parallel light, the cell will have a high tolerance
to particle scattering. Most of the singly- and doubly scattered light will not
be collected; and will take almost a direct path through the cell. Light must be
at least triply-scattered to be returned to the collection optics after significant

1/2d

Reflector

d

Transmitting glass/fibre wall

1

3

2

(a) (b)  

Fig. 6.20 Scattering of light by suspended particles in (a) reflecting and (b) transmitting sample
holder of diameter d
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Fig. 6.21 Flowing liquid samples for acquiring transflectance data

deviation and a high level of scattering can be tolerated before this occurs.
For situations, where scattering dominates, a ‘path-extension ratio’ which is
related to effective path length through the cell, can be defined. Figure 6.21
is what is known as a transflectance cell originally developed by Technicon to
fit the sample drawer of an InfraAnalyzer (Fearn 1982). Rather than using a
mirror, the light is scattered back from a ceramic surface to be compatible with
the diffuse reflection characteristics of the instrument. It can be noted that the
term ‘transflectance’ also has another meaning in NIR applications. Referring
to the measurement of scattering films or sheets it describes the simultaneous
collection of back scattered and transmitted energy produced by the instru-
ment. Another simple, less costly holder made of aluminum which can hold
liquid samples in ordinary test tube at constant temperature (Jha and Matsuoka
2004a, b) is shown in Fig. 6.23c.

(b) Attenuated total reflection (ATR)
The phenomenon of ATR relates to what happens at the boundary between

the high-and low-index materials. It can be shown from Maxwells equations
(Born and Wolf 1977) that an electromagnetic disturbance exists in the low-
index medium beyond the totally reflecting interface. This energy exhibits the
same frequency as the incoming wave but it is evanescent and the amplitude of
the electric field falls off exponentially away from the boundary.

E = Eo exp(−d
/

D) (6.30)

Eo is the field strength at the boundary, D is the length attenuation distance
or penetration depth, and d is the actual distance. The penetration depth is
proportional to the wavelength and also depends on the ratio of the refractive
indices and the angle of incidence. The better the index matching, greater is the
penetration depth. Also, the penetration depth is infinite at the critical angle and
rapidly falls to about λ/10 at grazing incidence.

Attenuated total reflection occurs when an absorbing medium is very close
to, or in contact with, the reflecting surface. The internally reflected light is
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(c)  

(b)  

(a)   

Fig. 6.22 Configurations of ATR crystal (a) optical fibre without cladding (b) double pass
reflection plate (c) single pass reflection plate

attenuated, the energy being dissipated as a tiny amount of heat. The reflection
loss does not follow a simple law and ATR spectra differ from classical
absorption spectra.

As the extent of the evanescent wave is typically only a few wavelength, one
reflection is equivalent to a very small transmission cell. For ATR to be use-
ful, multiple reflections are required. There are numerous designs of rods and
plates developed for specific applications and the basic concepts are shown in
Fig. 6.22. The single-pass arrangement is suitable for mounting across a pipe
or in an insertion probe. The double-pass system is ideal for laboratory appli-
cations where it can be lowered into a test-tube or flask. The cylindrical rod
is interesting because it corresponds to a portion of an optical fibre with the
cladding removed. A simple probe incorporating many reflections can be pro-
duced this way. In practical instruments, it is useful to ratio against a reference
plate or crystal or similar dimensions to the absorption crystal. A clear advan-
tage of ATR technique is the avoidance of using a cell. If the equivalent cell
needs to be narrow, for example, significantly less than a millimeter, ATR may
be only solution for viscous materials. A disadvantage is that the ATR crystal is
vulnerable to the build-up of deposits on its surface and to abrasive substances.
Currently, the ATR approach is more popular in the MIR than the NIR where
absorptions are stronger and the penetration depth greater.

(iii) Presentation of solids
Solid materials may be measured in transmission or by diffuse reflectance.

Measurement can be held with intact or grinded samples. Nowadays usually
people prefer intact samples and nondestructive measurements such as protein
measurement of whole grain. A few hundred grams of grain are run past the
sample area through a cell with a gap of typically 20 mm. There are various
commercially-produced sampling systems for achieving this, all deriving an
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average over many measurements. For wavelengths in the region 0.8–1.1 μm,
transmittances can be obtained through a few centimeters of tissue such as
apple or potato, 20 mm of whole grain, 10 mm of homogenized meat or cream
and a few millimeters of powders such as flour (Norris 1984). In case of dif-
fuse reflectance measurements, the 1–2.5 μm region is usually employed. Most
instruments use a similar construction. A circular quartz cover about 3.5 cm in
diameter is mounted in a black plastic cylinder to form a sample holder 1 cm
deep. For most substances, this depth ensures negligible transmittance.

In many cases, little preparation is required, but, it is important that the sam-
ple should be thoroughly mixed or homogenized prior to analysis. Grains and
seeds need to be ground before packing into the cell, if nondestructive mea-
surement is not a compulsion. Most substances will have a significant particle
size distribution or will be a heterogeneous mixture. It is vital to prevent strat-
ification causing either a partial separation of components in the sample or
larger particles to come to the surface.

The sample should be scooped into the holder and then levelled off with
the minimum disturbance. The lid of the cup, a black plastic cover, fitted with
lugs to engage the other half of the cup is now placed in position. A backing
plate, mounted on a rubber pad is included. This arrangement ensures con-
stant and reproducible packing density. The window of the sample holder is
brushed clean prior to insertion in the measuring instrument. Some materials
such as biscuits, dough and bread can be placed directly in the sample cup after
trimming to size using a knife cutter. Small samples and liquid samples can
be supported on glass, fibre paper which act as a diffusely scattering matrix.
This method has been used by Meurens (1984) for determining sucrose in soft
drinks.

Nowadays various grain analyzers are available using these principles.
Numerous holders for solid samples, especially for the individual fruit, have
been developed and are in practical use in laboratory (Kawano et al. 1992, Jha
and Garg 2010). Self explained photographs of some of them are presented in
Fig. 6.23.

Usually commercial instruments offer their own software but increasingly
systems are becoming more open with control and acquisition software running
on standard Pentium computers. Standard file formats allow transfer of raw
data to a range of proprietary software such as ‘Unscrambler’ for chemometric

(a) (d)(b) (c)

Fig. 6.23 Presentation of various types of samples (a) and (b) fruits, (c) liquid, (d) grain
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analysis for spectral manipulation. Both microprocessors and associated soft-
ware are evolving rapidly and the potential user is well advised to consult the
trade press or specialists in the field for current information.

6.3 Multivariate Analysis

NIR spectra contain a great deal of physical and chemical information about
molecules of a material. The characteristics of NIR bands can be summarized as
follows.

• NIR bands are much weaker and broader than IR bands.
• NIR bands strongly overlap with each other because of their origins in overtones

and combinations of fundamentals and thus yielding severe multicollinearity.
• NIR bands are difficult to assign because of overlapping of bands, complicated

combinations of vibrational modes, and possible Fermiresonance.
• The NIR region is dominated by bands due to functional groups containing

a hydrogen atom (e.g., OH, CH, NH). This is partly because the anharmonic
constant of an XH bond is large and partly because the fundamentals of XH
stretching vibrations are of high frequency.

• Band shift in NIR range is much larger for a particular band as compared to that
in mid-IR spectrum because of hydrogen bonding.

From the above characteristics one may consider that NIR spectroscopy has prop-
erties that appear to be disadvantageous because NIR bands are weak and broad and
overlap heavily. However, NIR spectra are still very rich in inherent information that
is extracted through rigorous multivariate analyses.

Multivariate analysis in spectroscopy is a process like churning of cream to get
better and larger amount of butter or ghee from the same amount of milk. There is
no limit of independent and dependent variables. It is like ocean in which you have
to dive to get some useful information as per your need and level of satisfaction. A
large number of variables are considered and their effects on selected attributes are
seen. To simplify the model, independent variables are reduced to a bare minimum
possible number by following certain rules and techniques without scarifying the
accuracy of prediction of attributes.

NIR spectroscopy is a field where multivariate calibration has shown to be an
efficient tool with its ability to embed unknown phenomena (interfering compounds,
temperature variations etc.) in the calibration model. Multivariate data analyses are
used for a number of distinct, different purposes and have been dealt in details in
Chemometrics books. The objective here is to give a brief exposure to new comers
into three main aspects:

• Data description (explorative data structure modeling),
• Regression and prediction.
• Discrimination and classification
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6.3.1 Data description (Explorative Data Structure Modeling)

A large part of multivariate analysis is concerned with simply “looking” at data,
characterizing it by useful summaries and very often displaying the intrinsic data
structures visually by suitable graphic plots. As a case in point, the data in question
can be state parameter values monitored in an industrial process at several locations,
or measured variables (temperature, refractive indices, reflux times, etc.) from a
series of organic syntheses – in general any p-dimensional characterization of n
samples.

The objective of univariate and multivariate data description can be manifold:
determination of simple means and standard deviations, etc., as well as correlations
and functional regression models. For example, in case of organic synthesis, inter-
est is in observing variables, which affect the product yield the most. The variables
from the synthesis could also be used to answer questions like: how correlated is
temperature with yield? Is distillation time important for the refraction index? The
Principal Component Analysis (PCA) method is frequently used for data descrip-
tion and explorative data structure modeling of any generic (n, p)-dimensional data
matrix.

There are different multivariate techniques such as: PCA, Principal Component
Regression (PCR), Partial Least Squares (PLS) and Multiple Linear Regression
(MLR). PCA, PCR and PLS are also known as “bilinear modeling”. These aspects
denote a more geometrical and a more mathematical approach, respectively. One
may opt, for instance, to start with the fundamental mathematics and statistics,
which lie behind these methods; this is often the preferred approach in statistical
textbooks.

Principal component analysis (PCA)
PCA involves decomposing one data matrix, X, into a “structure” part and a

“noise” part. There is no Y-matrix, no properties, at this stage. Representing the
data as a matrix, the starting point is an X-matrix with n objects and p variables,
namely an n × p matrix. This matrix is often called the “data matrix”, the “data
set” or simply “the data”. The objects can be observations, samples, experi-
ments etc., while the variables typically are “measurements” for each object.
The important issue is that the p variables collectively characterize each, and
all, of the n objects. The exact configuration of the X-matrix, such as which vari-
ables to use – for which set of objects, is of course a strongly problem-dependent
issue. The main up front advantage of PCA – for any X-matrix – is that one is
free to use practically any number of variables for multivariable characteriza-
tion. The purpose of all multivariate data analysis is to decompose the data in
order to detect, and model, the “hidden phenomena”. The concept of variance is
very important. It is a fundamental assumption in multivariate data analysis that
the underlying “directions with maximum variance” are more or less directly
related to these “hidden phenomena”.



6 Near Infrared Spectroscopy 183

6.3.2 Regression and Prediction

Regression is widely used in science and technology fields. It is an approach for
relating two sets of variables to each other. It corresponds to predicting one (or sev-
eral) Y-variables on the basis of a well chosen set of relevant X-variables, where X
in general must consists of more than, say, three variables. Note that this is often
related to indirect observations as discussed earlier. The indirect observation would
be X and the property we are really interested in would be Y. Prediction means deter-
mining Y-values for new X-objects, based on a previously estimated (calibrated)
X-Y model, thus only relying on the new X-data. Though, various types of analysis
methods are available in statistic book, only certain important and directly usable in
NIR spectral modeling/analysis such as PLS, PCR and MLR are described, in brief,
hereunder.

(a) Partial least squares regression
It is also known as Projection to Latent Structure (PLS), a method for relating

the variations in one or several response variables (Y-variables) to the variations
of several predictors (X-variables), with explanatory or predictive purposes.
This method performs particularly well when the various X-variables express
common information, i.e. when there is a large amount of correlation, or even
co-linearity.

PLS is a method of bilinear modeling where information in the original X-
data is projected onto a small number of underlying (“latent”) variables called
PLS components. The Y-data are actively used in estimating the “latent” vari-
ables to ensure that the first components are those that are most relevant for
predicting the Y-variables. Interpretation of the relationship between X-data and
Y-data is then simplified as this relationship is concentrated on the smallest
possible number of components.

By plotting the first PLS components one can view main associations
between X-variables and Y-variables, and also interrelationships within X-data
and within Y-data. There are two versions of the PLS algorithm: PLS1 deals
with only one response variables at a time; and PLS2 handles several responses
simultaneously. Procedure of PLS can be depicted by the Fig. 6.24.
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Fig. 6.24 Depiction of PLS procedure
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Bilinear modeling: Bilinear modeling (BLM) is one of several possible
approaches for data compression. These methods are designed for situations
where co-linearity exists among the original variables. Common information in
the original variables is used to build new variables that reflect the underlying
(“latent”) structure. These variables are therefore called latent variables. The
latent variables are estimated as linear functions of both the original variables
and the observations, thereby the name bilinear. PCR, PCA and PLS are bilinear
methods.

Observations = Data structure + Error

In these methods, each sample can be considered as a point in a multi-
dimensional space. The model will be built as a series of components onto
which the samples – and the variables – can be projected. Sample projections
are called scores and variable projections are called loadings.

The model approximation of the data is equivalent to the orthogonal projec-
tion of the samples onto the model. The residual variance of each sample is the
squared distance to its projection.

It models both the X- and Y-matrices simultaneously to find the latent vari-
ables in X that will best predict the latent variables in Y. These PLS components
are similar to principal components, and will also be referred to as PCs.

Principles of projection
Bearing that in mind, the principle of PCA is to find the directions in space

along which the distance between data points is the largest. This can be trans-
lated as finding the linear combinations of the initial variables that contribute
most to making the samples different from each other.

These directions, or combinations, are called Principal Components (PCs).
They are computed iteratively; in such a way that the first PC is the one that
carries most information (or in statistical terms: most explained variance). The
second PC will then carry the maximum share of the residual information (i.e.
not taken into account by the previous PC), and so on. Figure 6.25 describes
PCs 1 and 2 in a multidimensional space. This process can go on until as many
PCs have been computed as there are variables in the data table. At that point, all
the variation between samples has been accounted for, and the PCs form a new
set of coordinate axes, which has two advantages over the original set of axes
(the original variables). First, the PCs are orthogonal to each other. Second, they
are ranked so that each one carries more information than any of the following
ones. Thus, you can prioritize their interpretation: Start with the first ones, since
you know they carry more information.

The way it was generated ensures that this new set of coordinate axes is the
most suitable basis for a graphical representation of the data that allows easy
interpretation of the data structure.



6 Near Infrared Spectroscopy 185

PC1

PC2

Variable 1

Variable 2

Variable 3Fig. 6.25 Description of
principal components

(b) Principal component regression (PCR)
PCR is a method, which suited in situations as PLS. It is a two-step method.

First, a principal component analysis is carried out on the X-variables. The prin-
cipal components are then used as predictors in a MLR method. The Fig. 6.26
can describe PCR procedure.

(c) Multiple linear regressions (MLR)
It is a method for relating the variations in a response variable (Y-variable)

to the variations of several X-variables, with explanatory or predictive purposes.
An important assumption for the method is that the X-variables are linearly
independent, i.e. no linear relationship exists between the X-variables. When
the X-variables carry common information, problems can arise due to exact or
approximate co-linearity.
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Fig. 6.26 Description of PCR procedure
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In MLR, all the X-variables are supposed to participate in the model inde-
pendently of each other. Their co-variations are not taken into account, so
X-variance is not meaningful there. Thus the only relevant measure of how well
the model performs is provided by the Y-variances.

6.3.3 Selection of Regression Method

Selection of regression method is of paramount importance in NIR modeling for
nondestructive method of quality evaluation of foods. One should know well that
which type of analysis is useful to his data for better prediction. For knowing the
suitability of regression methods, knowledge of their characteristics are essential to
save time. Otherwise one has to analyze data by all techniques and compare results
for selection, which is again tedious and time consuming job.

In MLR the number of X-variables must be smaller than the number of samples.
In case of co-linearity among X-variables, the b-coefficients are not reliable and they
may be unstable. MLR tends to over fit when noisy data is used.

PCR and PLS are projection methods, like PCA. Model components are extracted
in such a way that the first PC conveys the largest amount of information, followed
by the second PC, etc. At a certain point, the variation modeled by any new PC is
mostly noise. The optimal number of PCs – modeling useful information, but avoid-
ing over fitting – is determined with the help of the residual variances. If difference
between standard error of calibration (SEC) and standard error of prediction (SEP)
as well as between biases of calibration and prediction sets of samples are minimal,
one may assume model is stable. SEP is variation in the precision of predictions
over several samples. It is computed as the standard deviation of the residuals and
standard deviation is computed as the square root of the mean square of deviations
from the mean. Bias is the systematic difference between predicted and measured
values. It is computed as the average value of the residuals.

PCR uses MLR in the regression step; a PCR model using all PCs gives the same
solution as MLR (and so does a PLS1 model using all PCs).

If one runs MLR, PCR and PLS1 on the same data, one can compare their perfor-
mance by checking validation errors (Predicted vs. Measured Y-values for validation
samples root mean square error of prediction, RMSEP). It can also be noted that both
MLR and PCR can model only one Y-variable at a time.

The difference between PCR and PLS lies in the algorithm. PLS uses the infor-
mation lying in both X and Y to fit the model, switching between X and Y iteratively
to find the relevant PCs. So PLS often needs fewer PCs to reach the optimal solution
because the focus is on the prediction of the Y-variables (not on achieving the best
projection of X as in PCA).

If there is more than one Y-variable, PLS2 is usually the best method if you
wish to interpret all variables simultaneously. It is often argued that PLS1 or PCR
has better prediction ability. This is usually true if there are strong non-linearity
in the data. On the other hand, if the Y-variables are somewhat noisy, but strongly
correlated, PLS2 is the best way to model the whole information and leave noise
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aside. The difference between PLS1 and PCR is usually quite small, but PLS1 will
usually give results comparable to PCR-results using fewer components.

Formal tests of significance for the regression coefficients are well known and
accepted for MLR. If one chooses PCR or PLS, he may check the stability of his
results and the significance of the regression coefficients with Marten Uncertainty
Test. However, the final model must be properly validated, preferably by a test set
(alternatively with cross validation), but never with just leverage correction.

6.3.4 Modeling Error

How well does the model fit to the X-data and to the Y-data? How small are the
modeling residuals? One may perhaps feel that a good modeling fit implies a good
prediction ability, but this is generally not so, in fact only very rarely, that happens.
To minimize such chance one should compare at least the SEC, SEP, and biases as
discussed in above paragraphs.

6.3.5 Classification Analysis

Classification or sometimes it is called as discrimination of samples, deals with the
separation of groups of data. Suppose that you have a large number of measurements
of apples and, after the data analysis, it turns out that the measurements are clustered
in two groups – perhaps corresponding to sweet and sour apples. You now have
the possibility to derive a quantitative data model in order to classify these two
groups. Similarly, if a food and drug inspector collects milk samples from different
sources just to know which milk sample is adulterated and which not. In this case
you have to assign numerical values to these two categories to make digital decision.
Classification has a somewhat similar purpose, but here you typically know before
the analysis a set of relevant groupings in the data set, that is to say which groups
are relevant to model.

Classification thus requires a prior class description. Note that discrimina-
tion/classification deals with dividing a data matrix into two, or more groups of
samples. Classification thus can be seen as a predictive method where the response
is a category variable. The purpose of the analysis is to be able to predict which
category a new sample belongs to. Interestingly, here also Principal Component
Analysis can be used to great advantage, but there are many other competing
multivariate classification methods.

(a) Classification methods
Any classification method uses a set of features or parameters to characterize

each object, where these features should be relevant to the task at hand. We con-
sider here methods for supervised classification, meaning that a human expert
both has determined into what classes a sample may be categorized and also has
provided a set of sample objects with known classes, e.g. adulterated and pure
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milk. This set of known objects is called the training set because it is used by the
classification programs to learn how to classify objects. There are two phases in
constructing a classifier. In the training phase, the training set is used to decide
how the parameters ought to be weighted and combined in order to separate the
various classes of objects. In the application phase, the weights determined in
the training set are applied to a set of objects to determine the likely classes they
belong to.

If a problem has only a few (two or three) important parameters, then classi-
fication is usually an easy problem. For example, with two parameters one can
often simply make a scatter-plot of the feature values and can determine graphi-
cally how to divide the plane into homogeneous regions where the objects are of
the same classes. The classification problem becomes very difficult, when many
parameters have to be taken into consideration. The resulting high-dimensional
space is not only difficult to visualize, but so many different combinations of
parameters of the space rapidly become computationally infeasible. Practical
methods for classification always involve a heuristic approach intended to
find a ‘‘good-enough’’ solution to the optimization problem. There are many
classification methods, a few are discussed hereunder in brief:

(i) Neural networks
Among the classification methods, probably neural network methods are

most widely known. The biggest advantage of neural network methods is that
they are general, they can handle problems with many parameters, and they
are able to classify objects well even when the distribution of objects in the
N-dimensional parameter space is very complex. The disadvantage of neural
networks is that they are notoriously slow, especially in the training phase
but also in the application phase. Another significant disadvantage of neural
networks is that it is very difficult to determine how the net is making its
decision. Consequently, it is hard to determine which of the features of the
sample being used are important and useful for classification and which are
worthless. The choice of the best features as discussed below is an important
part of developing a good classifier, and neural nets do not give much help in
this process.

(ii) Nearest-neighbour classifiers
A very simple classifier can be based on a nearest-neighbour approach. In

this method, one simply finds in the N-dimensional feature space the closest
object from the training set to an object being classified. Since the neigh-
bour is nearby, it is likely to be similar to the object being classified and so
is likely to be the same class as that object. Nearest neighbour methods have
the advantage that they are easy to implement. They can also give quite good
results if the features are chosen carefully (and if they are weighted carefully
in the computation of the distance.) There are several serious disadvantages
of the nearest-neighbour methods. First, they (like the neural networks) do
not simplify the distribution of objects in parameter space to a comprehen-
sible set of parameters. Instead, the training set is retained in its entity as a
description of the object distribution. (There are some thinning methods that
can be used on the training set, but the result still does not usually constitute
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a compact description of the object distribution.) The method is also rather
slow if the training set has many examples. The most serious shortcoming of
nearest neighbour methods is that they are very sensitive to the presence of
irrelevant parameters. Adding a single parameter that has a random value for
all objects (so that it does not separate the classes) can cause these methods to
fail miserably.

(iii) Decision trees
Decision tree methods have also been used for solving many problems. In

axis-parallel decision tree methods, a binary tree is constructed in which at
each node a single parameter is compared to some constant. If the feature
value is greater than the threshold, the right branch of the tree is taken; if the
value is smaller, the left branch is followed. After a series of these tests, one
reaches a leaf node of the tree where all the objects are labeled as belonging to
a particular class. These are called axis-parallel trees because they correspond
to partitioning the parameter space with a set of hyperplanes that are parallel
to all of the feature axes except for the one being tested.

Axis-parallel decision trees are usually much faster in the construction
(training) phase than neural network methods, and they also tend to be faster
during the application phase. Their disadvantage is that they are not as flexible
at modeling parameter space distributions having complex distributions as
either neural networks or nearest neighbour methods. In fact, even simple
shapes can cause these methods difficulties. For example, consider a simple
2-parameter, 2-class distribution of points with parameters x, y that are all of
type 1 when x>y and are of type 2 when x<y. To classify these objects with
an axis-parallel tree, it is necessary to approximate the straight diagonal line
that separates the classes with a series of stair-steps. If the density of points is
high, many steps may be required. Consequently, axis-parallel trees tend to be
rather elaborate, with many nodes, for realistic problems.

(iv) Oblique decision trees
Oblique decision trees attempt to overcome the disadvantage of axis-parallel

trees by allowing the hyperplanes at each node of the tree to have any orienta-
tion in parameter space. Mathematically at each node a linear combination of
some or all of the parameters are computed (using a set of feature weights
specific to that node) and the sum is compared with a constant. The sub-
sequent branching until a leaf node is reached is just like that used for
axis-parallel trees.

Oblique decision trees are considerably more difficult to construct than axis-
parallel trees because there are so many possible planes to consider at each tree
node. As a result the training process is slower. However, they are still usually
much faster to construct than neural networks. They have one major advantage
over all the other methods: they often produce very simple structures that use
only a few parameters to classify the objects. It is straightforward through
examination of an oblique decision tree to determine which parameters were
most important in helping to classify the objects and which were not used.

There are many other methods and software for classifying the samples
in different categories. For example The Unscrambler has soft independent
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modeling by class analogy (SIMCA) model using PCA and PLS regression for
these purposes. SIMCA focuses on modeling of similarities between members
of the same class. A new sample will be recognized as a member of the class,
if it is similar enough to the other members; else it will be rejected. Readers
are advised to consult software or relevant books which deals exclusively in
these topics.

(b) Steps in developing a classifier
The choice of an algorithm for classification is in many ways the easiest part

of developing a scheme for object classification. The discussion above demon-
strates that there are several ‘‘off-the-shelf’’ approaches available (though there
is obviously still room for improvement). There are two major hurdles to be
faced before these methods can be used, though: a training set must be con-
structed for which the true classifications of the objects are known, and a set of
object parameters must be chosen that are powerful discriminators for classifi-
cation. Once a possible classifier has been identified, it is necessary to measure
its accuracy.

(i) Training set
A training set must contain a list of objects with known classifications.

Ideally the training set should contain many examples (typically thousands of
samples) so that it includes both common and rare types. Creating a training
set requires a source of true object classifications, which is usually difficult
even for human experts to generate if it must rely on the same data being used
by the classifier.

To construct a training set for example to identify the adulterated sam-
ples of milk, one has first to identify all possible adulterants including water
and identify the more sensitive factor and accordingly simulate them giving
proper weight. It is difficult but to know the adulterants it should be done.
To know just whether samples are adulterated or not is easier as in this case
there will be only two class and we can assign them specific values to make a
separate group.

(ii) Feature selection
Adding many irrelevant parameters makes classification harder for all

methods, not just the nearest neighbor methods. Training classifiers is an
optimization problem in a many-dimensional space. Increasing the dimen-
sionality of the space by adding more parameters makes the optimization
harder (and the difficulty grows exponentially with the number of param-
eters.) It is always better to give the algorithm only for the necessary
parameters rather expecting it to learn to ignore the irrelevant parameters.

One should not ask the classifier to rediscover everything you already
know about the data. Not only should irrelevant parameters be omitted, but
highly correlated parameters should be combined when possible to produce
a few powerful features. For example, if you expect the shapes of images
of a particular class of object to be similar, include a brightness-independent
shape parameter rather than simply giving the classifier raw pixel values and
expecting it to figure out how to extract shape information from the pixel
values.
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If the training process does not require too much computation, a useful
approach to identify the best parameter is to train many times on subsets of
the features. This method can be used in two ways, both starting from the
complete list of features and reducing it by removing parameters, and starting
from a minimal list, augmenting it by adding parameters. Both methods have
proven effective at pruning unnecessary parameters. This procedure can be
very fast if axis-parallel trees are used for the exploration.

Another useful approach with the decision tree methods is to examine
directly the weights assigned to the various features. Important features are
given a high weight, while unimportant features may not be used at all. This
information can be used as a guide for pruning experiments.

(c) Assessing classifier accuracy
Once a potentially useful classifier has been constructed, the accuracy of the

classifier must be measured. Knowledge of the accuracy is necessary both in the
application of the classifier and also in comparison of different classifiers.

The accuracy can be determined by applying the classifier to an independent
training set of objects with known classifications. This is sometimes trickier
than it sounds. Since training sets are usually difficult to assemble, one rarely
has the resources to construct yet another set of objects with known classifica-
tions purely for testing. One must avoid the temptation to train and test on the
same set of objects, though. Once an object has been used for training, any test
using it is necessarily biased.

We normally use five-fold cross-validation to measure the accuracy of our
classifiers. The training set is divided into five randomly selected subsets hav-
ing roughly equal numbers of objects. The classifier is then trained five times,
excluding a single subset each time. The resulting classifier is tested on the
excluded subset. Note that each training session must be completely indepen-
dent of the excluded subset of objects; one cannot, for example, use the results
of an earlier training session as a starting point.

The advantage of cross-validation is that all objects in the training set
get used both as test objects and as training objects. This ensures that the
classifier is tested on both rare and common types of objects. The cost of cross-
validation is that the training process must be repeated many times, adding to
the computational cost of the training. In most applications, though, the com-
puter time necessary to repeat the training is more readily available than is
the human expert time required to generate completely independent test and
training sets.

6.3.6 Validation of NIR Model

Validation of a model means testing its performance on unknown set of samples,
which has not been used in calibration and whose actual results or specifications are
known. This new data set is called the test set. It is used to test the model under real-
istic, future conditions, specifically because it has been sampled so as to represent
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these future conditions. Indeed if possible, one should even use several test sets.
“Realistic” here means that the test set should be chosen from the same target pop-
ulation as the calibration set, and that the measuring conditions of both the training
(calibration) set and the test set are as representative of the future use as indeed
possible. However, this does not mean that the test set should be too closely similar
to the training set. For instance, it will not do to simply divide the training set in
two halves, provided the original set is large enough, as has unfortunately some-
times been recommended in chemometrics. This would decidedly be wrong. The
brief overview below is intended only to introduce those important issues of val-
idation which must be borne in mind when specifying a multivariate calibration.
From a properly conducted validation, one gets some very important quantitative
results, especially the “correct” number of components to use in the calibration
model, as well as proper, statistically estimated, assessments of the future prediction
error levels.

(a) Test set validation
The procedure introduced above – using a completely new data set for vali-

dation – is called test set validation. There is an important point here; one also
has to know the pertinent Y-values for the test set, just as said for the calibra-
tion set. The procedure involved in test set validation is to let the calibrated
model predict the Y-values and then to compare these independently predicted
values of the test set with the known, real Y-values, which have been kept out of
the modeling as well as the prediction so far. Generally predicted Y-values are
called Ypred and the known, real Y-values as Yref. (hence the term “reference”
values). An ideal test set situation is to have a sufficiently large number of train-
ing set measurements for both X and Y, appropriately sampled from the target
population. This data set is then used for the calibration of the model. Now an
independent, second sampling of the target population is carried out, in order to
produce a test set to be used exclusively for testing/validating of the model, i.e.
by comparing Ypred with Yref. The comparison results can be expressed as pre-
diction errors, or residual variances, which now quantify both the accuracy and
precision of the predicted Y-values, i.e. the error levels which can be expected
in future predictions.

(b) Cross-validation
There is no better validation than test set validation: testing on an entirely

“new” data set. One should always strive to use validation by test set. TEST
IS THE BEST! There is, however, a price to pay. Test set validation entails
taking twice as many samples as would be necessary with the training set alone.
However desirable, there are admittedly situations in which this is manifestly
not always possible. For example when the measuring of the Y-values is (too)
expensive, unacceptably dangerous or the test set sampling is otherwise limited,
e.g. for ethical reasons or when preparing samples is extremely difficult etc.
For this situation, there is a viable alternative approach, called cross validation.
Cross validation can, in the most favourable of situations, be almost as good as
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test set validation, but only almost – but it can never substitute for a proper test
set validation! And the most favourable situations do not occur very often either.

(c) Leverage corrected validation
This is a “quick and dirty” validation method. This is actually the one which

was being used initially, because we had not yet introduced the concept of val-
idation. This method uses the same calibration set to also validate the model,
but now “leverage-corrected”. It is obvious that this may be a questionable val-
idation procedure; all depending on the quality of the corrections employed.
Furthermore this often gives results, which are too optimistic. However, dur-
ing initial modeling, where the validation is not really on the agenda yet, this
method can be useful as it saves time.

6.3.7 Data Pre-processing

Detection of outliers, groupings, clusters, trends etc. is just as important in multi-
variate calibration as in PCA, and these tasks should in general always be first on
the agenda. In this context one may use any validation method as discussed above
in the initial screening data analytical process, because the actual number of dimen-
sions of a multivariate regression model is of no real interest until the data set has
passed this stage, i.e. until it is cleaned up for outliers and is internally consistent
etc. In general, removal of outlying objects or variables often influences the model
complexity significantly, i.e. the number of components will often change.

There are however, still a large number of applications that utilize only two or
three wavelengths in routine prediction. These applications have shown that the full
PLS model is sometimes inferior to a model based on a relatively small number of
variables found in various methods for variable selection. This is partly due to the
redundancy and the large amount of noisy, not relevant variables in NIR spectra.
Recent results show that variable selection based on jack-knife estimates is a fast
and reliable method with low risk of over fitting.

(i) Spectroscopic transformations
Most spectroscopists prefer to work with absorbance data, because they

are more familiar with this type of data, and feel more at home interpret-
ing absorbance spectra. Many modern multi-channel analytical instruments
can provide spectra as absorbance readings, using some form of correction
and transformation. If you do not know which formula is used in the instru-
ment software, it may be wise to import the raw spectra instead and make
the appropriate transformations yourself. In general it is recommended that
you start by analyzing the absorbance spectra. If this does not work, then
you should try to transform your data. Transmission data are often non-
linear, so they are “always” transformed into, e.g. absorbance data, using a
modified logarithmic transformation. Diffuse reflectance data are “always”
transformed into Kubelka-Munk units, but exceptions may be around in more
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problem-specific cases. The Multiplicative Scatter Correction is another very
useful transformation for spectroscopic data.

(ii) Reflectance to absorbance
We shall here assume, without loss of generality, that the instrument read-

ings R (Reflectance), or T (Transmittance), are expressed in fractions between
0 and 1. The readings may then be transformed to apparent absorbance
(Optical Density).

(iii) Absorbance to reflectance
An absorbance spectrum may be transformed to Reflectance/Transmittance

directly using appropriate analysis software or even using the spectra acqui-
sition software.

(iv) Absorbance to Kubelka-Munk
In addition the apparent absorbance units may also be transformed into

the pertinent Kubelka-Munk units by performing two steps: first transform
absorbance units to reflectance units, and then reflectance to Kubelka-Munk.

(v) Transmission to absorbance and back
It can be done by computing function using the expression X = –log(X)

to transform X from transmission into absorbance data. X = 10(–X) gives
transmission data again.

(vi) Multiplicative scatter correction (MSC)
Spectroscopic measurements of powders, aggregates of grains of differ-

ent particle sizes, slurries and other particulate-laden solutions often display
light scattering effects. This especially applies to NIR data, but is also rele-
vant to other types of spectra; scatter effects in IR spectra may be caused by
background effects, varying optical path lengths, temperature, and pressure
variations. Raman spectra also often suffer from background scattering. In
UV-VIS varying path lengths and pressure may cause scatter. These effects
are in general composed both of a so-called multiplicative effect as well as
an additive effect. Other types of measurements may also suffer from similar
multiplicative and/or additive effects, such as instrument baseline shift, drift,
interference effects in mixtures, etc. Multiplicative Scatter Correction is a
transformation method that can be used to compensate for both multiplicative
and additive effects. MSC was originally designed to deal specifically with
light scattering. However, a number of analogous effects can also be success-
fully treated with MSC. In The Unscrambler MSC transformation can be done
from the Modify – Transform menu. The idea behind MSC is that these two
undesired general effects, amplification (multiplicative) and offset (additive),
should be removed from the raw spectral signals to prevent them from dom-
inating over the chemical signals or other similar signals, which often are
of lesser magnitude. Thus we may well save one or more PLS-components
in our modeling of the relevant Y-phenomena, if we were able to eliminate
(most of) these effects before multivariate calibration. This, in general, will
enable us to proceed with more precise and accurate modeling, based on the
cleaned-up spectra. MSC can be a very powerful general pre-processing tool.



6 Near Infrared Spectroscopy 195

(vii) Derivatives computations
The first or second derivatives are common transformations on continuous

function data where noise is a problem, and are often applied in spectroscopy.
Some local information gets lost in the differentiation but the “peakedness” is
supposed to be amplified and this trade-off is often considered advantageous.
It is always possible to “try out” differentiated spectra, since it is easy to see
if the model gets any better or not. As always however, you should preferen-
tially have a specific reason to choose a particular transformation. And again,
this is really not to be understood as a trial and error optional supermarket –
experience, reflection, and more experience! The first derivative is often used
to correct for baseline shifts. The second derivative is often used as an alter-
native to handling scatter effects, the other being MSC, which handles the
same effects.

(viii) Averaging
Averaging is used when the goal is to reduce the number of variables or

objects in the data set, to reduce uncertainty in measurements, to reduce the
effect of noise, etc. Data sets with many replicates of each sample can often
be averaged over all sets of replicates to ease handling regarding validation
and to facilitate interpretation. The result of averaging is a smoother data set.
A typical situation in routine applications is fast instrumental measurements,
for instance spectroscopic X-measurements that replace time-consuming
Y-reference methods. It is not unusual for several scans to be done for each
sample. Should we average the scans and predict one Y-value for each sample,
or should we make several predictions and average these? Both of these give
the same answer, which is why averaging can also be done on the calibration
data and its reference values.

(ix) Normalization
Normalization is concerned with putting all objects on an even footing.

In above paragraph, we have so far mostly treated the so-called column-
transformations, i.e. making specific pre-processing or transformations which
act on one column-vector individually (single-variable transformations).
Normalization is performed individually on the objects (samples), not on the
variables (such as wavelength in NIRS). Each object vector is re-scaled –
normalized – into a common sum, for example 1.00 or 100%. The row
sum of all variable elements is computed for each object. Each variable
element is then divided by this object sum. The result is that all objects
now display a common size – they have become “normalized” to the same
sum area in this case. Normalization is a row analogy to column scaling
(1/SDev). Normalization is a common object transformation. For instance,
in chromatography it is used to compensate for (smaller or larger) varia-
tions in the amount of analyte injected into the chromatograph. Clearly it
will be of considerable help in the analytical process if this particular mea-
surement variance can be controlled by a simple data analytic pre-processing
like normalization, otherwise a whole extra PLS-component would have
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to be included in order to model these input variations. There are several
other data analysis problems where normalization can be used in a similar
fashion.

6.4 Practical Application of NIRS

6.4.1 Quantitative Prediction

The use of near-infrared spectroscopy for predicting the composition of biological
materials has been demonstrated for many commodities. Recently, it has become a
useful technique for measuring soluble solids content (SSC), fruit firmness, acidity
etc. (Lu and Ariana 2002, Lu et al. 2000, Lu and Peng 2006, McGlone and Kawano
1998, Peng and Lu 2007, 2006a, b). Lu (2003, 2004) developed a technique for esti-
mating fruit firmness, based on analyzing scattering images from the fruit at multiple
wavelengths in the visible and near-infrared (NIR) region. Radial scattering profiles
were extracted and analysed using neural network prediction model, which gave
good firmness prediction for apple fruit. Peng and Lu (2006b) further proposed a
Lorentzian (LD) function with three parameters to characterize the multispectral
scattering profiles of apple fruit. In analyzing hyperspectral scattering images for
peach fruit, Lu and Peng (2006) utilized a two-parameter LD function for prediction
of peach fruit firmness. More recently, Peng and Lu (2006b) proposed a modi-
fied Lorentzian distribution (MLD) function with four parameters to describe the
entire scattering profiles, including saturation area of the spectral scattering images
acquired by a compact multispectral imaging system equipped with a liquid crys-
tal tunable filter (LCTF). Numerous investigations to quantify the natural sugars in
different fruit juices have also been conducted using NIR and FTIR spectroscopy
(Luis et al. 2001, Lijuan et al. 2009, Bureau et al. 2009). In one study, content of
various sugars in juice of naturally ripe mango stored at –20◦C was determined
using FTIR spectroscopy (Duarte et al. 2002). An official method to determine the
protein content of wheat was established long ago using NIRS (AACC 1983).

Now various NIR spectrometers are available and are being used commercially.
Some modifications in these available spectrometers, especially for holding the
intact samples, are available. In the same sample holder a test tube for holding liquid
foods such as milk was also used to estimate fat content (Chen et al. 1999). Jha et al.
2006 has identified the quality parameters of mango to be used for their determina-
tion using visual and/or NIR spectroscopy. Eating quality of some ripe mangoes
has also been determined in Japan with good accuracy (Saranwong et al. 2004).
Numerous works for quality evaluation of other food materials using NIR spec-
troscopy is reported but are beyond the scope of this book to accommodate all (Jha
and Matsuoka 2000, 2004b, Jha 2007, Jha et al. 2010, Jha and Garg 2010). To under-
stand the whole process for new researchers in this field, right from experimentation
to final prediction of sweetness and sourness of tomato juice (a liquid sample) (Jha
and Matsuoka 2004a) and sweetness of apple (solid sample) is presented hereunder:
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(a) Prediction of acid-brix ratio (ABR) of tomato juice
(i) Instrumentation

An NIR transmittance measuring unit similar to that described by
Jha et al. (2001) was assembled (Fig. 6.27). The spectrometer (MMS1,
Zeiss, Germany) used in this experiment has a spectral wavelength range
between 311.7 and 1,124.8 nm with a spectral resolution of 3.3 nm and a
256-element photodiode array detector. The optical fibre bundle (0.5 mm
diameter) contained thirty individual fibres of 70 μm diameter. Elongated
and rectangular shaped detector elements allow the fibre bundle to be rear-
ranged in a linear fashion to function as the entrance slit of the spectrometer.
The halogen lamp (100 W), which had a voltage-regulating knob graduated
in ten divisions for controlling the intensity of light, was used as a light
source. A sample holder similar to the cell reported by Chen et al. (1999)
for liquid was used in the experiment.

(ii) Materials
Good quality fully ripened tomato (cv house momotaro), cultivated

hydrophonically in a greenhouse was harvested and sorted manually. Good
colour (fully red) and size (big) were selected so that sufficient amounts of
juice with a wide range of acid and brix values were obtained. One hundred
and ten of them were numbered randomly for using in the experiment.

Tomatoes were cut in two halves and wrapped in a piece of muslin cloth
(Hikari, Heiwa, Japan). A plunger type hand juicer was used to compress
the wrapped tomato till juice was coming out through the wrapped muslin
cloth. The flesh, skin and seeds of tomato retained in muslin cloth were
thrown away. The extracted juice was thoroughly shaken and about 50 mL
was filtered for experimental use, by using another piece of the same muslin
cloth to minimize the suspended solid particles. A new piece of cloth was
used for each sample for filtration. The sweetness and sourness of samples
were measured in terms of ◦Brix by using a digital refractometer (Model
PR-101, Atago Co., Tokyo, Japan) and acid values (titratable acid, %),

Light source

Sample holder

Fibre optics cable

Portable spectrometer

Computer

Fig. 6.27 NIR setup for measurement of transmittance of liquid samples
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which were measured by an acid meter (Sourty, Model Sou-1, Shimadzu,
Japan) supplied with a standard reagent. Test tubes filled with filtered juice
of known acid and brix values were kept in a water-bath at 30◦C for about
30 min so that all samples experienced a constant and uniform temperature
before spectra acquisition because there is an appreciable effect of sam-
ples’ temperature on spectra (Kawano et al. 1995). The temperature of the
water-bath was set and verified by a mercury thermometer before putting
the sample in it. Acid and brix values of juice samples at uniform temper-
ature were again measured and the mean of two values, before and after
keeping in water-bath, were computed. The average acid value was divided
by the average brix value of the same juice to obtain acid–brix ratio (ABR),
which could then be used to calibrate the NIR model.

(iii) Spectra acquisition
A test tube (12 mm diameter, 10 mL capacity) filled with tomato juice

was placed into the vertical hole of an aluminum block that had a pre-set
temperature of 30◦C and was kept constant by a temperature controller
(least count ± 0.1◦C). Test tubes were covered by an aluminum tum-
bler to prevent any incident light and illuminated by the light (wavelength
range 311.7–1,124.8 nm) from the halogen lamp (100 W) via fibre bundles
(0.5 mm diameter) at one side of the block (Fig. 6.27). The transmitted
energy was detected by a silicon detector at 180◦ to the light source at the
other side of the block and was transmitted through the fibre optics (0.5 mm
diameter) to the MMS1 system connected to a computer loaded with soft-
ware (Japanese version Bunko, Tokyo, Japan) supplied with the MMS1
spectrometer system to acquire the spectra. The intensity of the light source
was adjusted and fixed to 70% of its full capacity using the graduated knob
provided for the purpose in front of the light source box. The spectra of
110 samples over the wavelength region from 311.7 to 1,124.8 nm were
obtained by averaging 100 scans each of 10 ms. A ceramic plate (2 mm
thickness) was held vertically in a slot cut to be exactly perpendicular to the
source detector axis through the centre of the hole made in the aluminum
block for holding the test tube and this plate was used as the reference mate-
rial. Dark (by blocking the light) and reference spectra were acquired after
every ten samples and the absorbance spectra were recorded.

(iv) Data analysis
Acquired spectra were imported to the Unscrambler (CAMO AS,

Trondheim, Norway), a statistical software package, for multivariate cal-
ibration. Data of all 110 samples were plotted to inspect the nature of spec-
tra. Three samples were identified as outliers because of their somewhat
odd nature when compared with the rest of the samples. Data between the
wavelengths 311.7–700 nm and outlier samples were deleted. The remain-
ing samples (107) were split randomly into calibration (54 samples of ABR
range 0.05–0.14, mean 0.094 and s.d. 0.022) and validation (53 samples
of ABR range 0.06–0.15, mean 0.097 and s.d. 0.023) sets before fur-
ther analysis of the spectral data between wavelengths 703.25–1,124.8 nm.
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In order to search for a small and simple model, spectra between wave-
length range 703.3–1,124.8 nm were divided into six separate regions with
an almost equal number of data/region as: 703.3–775, 778.3–846.3, 849.5–
917, 920.2–987.1, 990.3–1,056.4 and 1,059.5–1,124.8 nm. Partial least
squares (PLS) regression was calculated on the original and preprocessed
(treated) spectra over the whole range of wavelength (703.3–1,124.8 nm) so
as to develop a calibration model for determining the ABR of tomato juice.
Second derivative, multiplicative scatter correction (MSC) and smoothing
were applied to the two best models and the model of the whole range
of wavelength used as a preprocessing treatment in order to improve their
predictability. The best amongst them, based on their standard error of cal-
ibration (SEC), correlation coefficients (R), and optimum number of latent
variables (factors) used in the calculation, were selected. The optimum
number of factors was selected at a minimum level of mean-squared error
to avoid over fitting. The performance test of the calibration model for
prediction of ABR of tomato juice was done on another set of validation
samples.

(v) Results and discussion
NIR spectra

The original spectrum of tomato juice in the wavelength range between
703.3 and 1,124.8 nm is shown in Fig. 6.28. Visual inspection of the spec-
tra did not show any obvious special characteristics that could be used
in quantitative measurement, except that the relative absorbance increased
with wavelength between both 925 and 975 nm; and between 1,050 and
1,125 nm. This caused an increased discrimination between the spectra.
The peak and depression in the spectra around 971 and 1,053 nm, respec-
tively, showed the strong and weak absorbance characteristics of tomato
juice within this region.
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Fig. 6.28 Original spectra of tomato juice
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Calibration and prediction
Different calibration models involving different sets of wavelengths were

calculated for acid–brix ratio (ABR) using PLS (Table 6.7). The quality of
the calibration model was quantified by the standard error of calibration
(SEC), standard error of prediction (SEP) and the correlation coefficient
(R) between the predicted and measured parameter. A good model should
have a low SEC, a low SEP, a high correlation coefficient but also a
small difference between SEC and SEP. A large difference indicates that
too many latent variables (principal components) are used in the model
and noise is modelled (Lammertyn et al. 1998). The SEC and SEP val-
ues decreased with data sets from higher wavelengths except over the
wavelength range 849.5–917 nm, whereas the correlation coefficients (R)
followed the reverse trend (Tables 6.7 and 6.8). Among the sets of wave-
lengths tested, the SEC, SEP and bias values were found to be the lowest

Table 6.7 Statistical results of PLS regression of different sets of wavelengths for determining
the acid-brix ratio of tomato juice of calibration and validation samples’ sets (Jha and Matsuoka
2004b)

SEC/SEPa Bias Correlation

Wavelength
range (nm) Factor Calibration Validation Calibration Validation Calibration Validation

703.3–775.0 8 0.105 0.112 0.005 0.004 0.80 0.74
778.3–846.3 8 0.049 0.053 0.003 0.002 0.83 0.81
849.5–917.0 8 0.057 0.051 0.003 0.004 0.82 0.78
920.2–987.1 8 0.046 0.047 0.005 −0.004 0.84 0.85
990.3–1,056.4 8 0.024 0.035 0.004 0.007 0.89 0.86
1,059.5–1,124.8 8 0.009 0.009 0.000 −0.003 0.92 0.92
703.3–1,124.8 8 0.453 0.628 0.013 0.024 0.78 0.77

aSEC, standard error of calibration; SEP, standard error of prediction.

Table 6.8 Influence of preprocessing of spectra on the prediction performance of PLS models of
different sets of wavelength (Jha and Matsuoka 2004b)

Calibration Validation

Wavelength range (nm) Preprocessing methods SEC Correlation SEP Correlation

703.3–1,124.8 Second derivative 0.143 0.78 0.156 0.73
MSC 0.129 0.79 0.121 0.75
Smoothing 0.152 0.73 0.166 0.71

1,059.5–1,124.8 Second derivative 0.015 0.90 0.018 0.89
MSC 0.011 0.91 0.011 0.90
Smoothing 0.063 0.89 0.048 0.90

990.3–1,056.4 Second derivative 0.028 0.86 0.038 0.87
MSC 0.026 0.88 0.035 0.89
Smoothing 0.072 0.85 0.047 0.86
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(0.009) and the value of R was the highest (0.92) for the wavelength
range 1,059.5–1,124.8 nm, whereas for the full wavelength range (703.3–
1,124.8 nm), the SEC, SEP, and bias were found to be the highest and the
R-value was the lowest in both the cases, i.e., untreated and treated (prepro-
cessed) models (Tables 6.7 and 6.8). The reason may be that the data from
the entire range of wavelength may include many weak absorbance bands
as compared with sets of wavelength of smaller range. The preprocess-
ing of spectra such as computation of second order derivatives, MSC and
smoothing of spectra could not improve the calibration models (Table 6.8),
in contrast to some previous reports from other materials (Kawano et al.
1992, 1993), this was not the case for the model obtained directly from
the original spectra without any treatment. However the treatment effect of
MSC, based on SEC/SEP and R-values, was found to be the best, whereas
it was the least for the smoothing. The effect of sample cell (test tube in this
case) was not investigated, however, the NIR spectra of milk were affected
in the same way as chemical components of the sample in the sample cell
used (Chen et al. 1999).

The best calibration model was obtained by using PLS regression on the
original spectra between the wavelengths from 1,059.5 to 1,124.8 nm. The
reason for this may be that there is a strong absorption band of the acid
contents of tomato juice and the parallelism of the majority of spectra after
about 1,060 nm wavelength. If the spectra are parallel, the response of the
detector for the sample is linear within the range of study, which in turn may
give better results (Kawano et al. 1993). To check the performance of the
calibration model, whose regression coefficients could be used directly in
prediction, fifty-three validation samples were used. The predicted results
for both original as well as preprocessed spectra of each segment are almost
the same as the calibration results (Table 6.7). The calibration and vali-
dation results show that the SEC, SEP and correlation coefficients R are
similar with no significant bias in either of the cases. Similarities in these
values also dispel the confusion of over fitting of the model. In the lit-
erature, no model for ABR in tomato juice is available to compare with
the present results. However, the performance of the model that has been
developed in this work is better than a model that has been reported to
be able to predict the soluble solids in intact tomatoes with a correlation
coefficient of 0.92 for calibration, but with a very poor correlation coeffi-
cient (only 0.57) for prediction besides having larger SEC- and SEP-values
(Peiris et al. 1998). This NIR model may be able to accurately determine
the acid–brix ratio of tomato juice to give an indicator of taste using a single
NIR model for practical usage.

(b) Prediction of taste of whole fruits
A numerous work on measurement of TSS and acidity of majority of fruits

using NIRS has been reported in literature. Some work on apple and mango has
also been reported from India. Experiments and their results for apple (Jha and
Garg 2010) are reported hereunder for an exposure to the new entrants in this
field.
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(i) Sample collection
In order to find the taste of apple in terms of sweetness (TSS), sourness

(titratable acidity %), and acid brix ratio, freshly harvested apples (Malus
domestica Borkh) variety ‘Golden Delicious’, ‘Red Delicious’, ‘Ambri’ and
2 unknown varieties were procured from local fruit market, Ludhiana. The
samples were brought to laboratory and screened manually to discard the
damaged ones. Sound apples were wiped with muslin cloth to remove dirt
and kept for 28 days at 32±0.5◦C and 65±7% RH for accelerated changes
in biochemical quality parameters. Three samples from each variety were
randomly chosen bi-weekly for experimentation.

(ii) Spectra acquisition
Transmittance spectra in wavelength range of 900–1,700 nm of 118

apples were acquired using a portable NIR-spectrometer (model EPP 2,000-
InGaAs, 2.25 nm resolution StellarNet Inc., USA) connected to 30 W
halogen lamp and sample holder with 400 μm optical fibre cable and spec-
tra wiz software (version 3.3). Dark and reference spectra for a standard
supplied with the equipment were taken for 50 scan in 100 ms integration
time. Apple fruit was then placed on sample holder arbitrarily from girth
side in stable position by hand (Fig. 6.29). The probe (having both fibres for
sending light and sensor for receiving the transmitted light) was fixed in the
centre of the base of sample holder and transmittance spectra were acquired
at an interval of 2.25 nm for the wavelength range of 900–1,700 nm.

(iii) TSS and acidity measurement
Immediately after recording the spectra, juice of the whole apple was

extracted using domestic juicer at ambient room temperature (28–30◦C)
and filtered through a new piece of muslin cloth every time. The TSS of the
filtered juice was measured thrice using a hand held digital refractometer
(Pal-1, Atago, range 0–53◦Brix, least count 0.2◦Brix, Japan) and acidity
was determined using standard titration method (AOAC 1990). Mean values
were used for computation of acid-brix ratio and for NIR calibration and
validation.

(iv) Data analysis
NIR spectral data were imported to MS-excel software from spectra

wiz software, and then to Unscrambler (CAMO AS, Trondheim, Norway,

Fig. 6.29 NIR spectra acquisition set-up
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version 8.0.5) software for multivariate analyses with TSS, acidity and
acidity/TSS ratio. Spectral data were plotted to inspect the nature of the
spectra. Four curves visually odd amongst the group were identified as out-
lier and were deleted. Altogether 114 samples were used for calibration and
validation for prediction of TSS, acidity and acidity/TSS ratio.

Two methods of regression, partial least square regression (PLS) and
multiple linear regressions (MLR) with the option of full cross validation
available in the software were performed on the whole original spectra to
develop the NIR model for predicting TSS, acidity and acidity/TSS ratio
non-destructively. In order to search for a small and simple model, the
whole range of spectra was divided into small groups of 35 wavelengths
continuously at an interval of 2.25 nm and both PLS and MLR were per-
formed on each group. The best models based on the standard error of
calibration (SEC), multiple correlations coefficients (R) and standard error
of prediction (SEP) were selected.

In order to improve the predictability of selected models, pre-processing
of spectra such as smoothing (second order, S. Golay), full multiplicative
scatter correction (MSC) and second order derivative (Savitzky-Golay, by
averaging one point to the left and one point to the right and fitting a sec-
ond order polynomial) of selected range of wavelengths were performed.
A few outlier samples were also identified with the help of software and
removed for further improvements in the models. To minimize the number
of wavelengths further, the effect of individual wavelength by eliminating
them from the model of best performing group of wavelengths on the root
mean square error was investigated (Kawano et al., 1995). Scatter plots
between measured and predicted parameters were plotted to know the actual
predictability using NIRS non-destructively.

(v) Results and discussion
Typical spectral curves in the wavelength range of 900–1,700 nm for all

five varieties (2 curves for each variety of apples) did not show any varietal
differences in peaks and depressions (Fig. 6.30). The peaks and depressions
in spectra show the strong and the weak transmittance characteristics of the
apples, respectively within the range of the study. The relative values in
other regions of spectra, however, are differed from sample to sample.

R values for calibration and validation of TSS in PLS regression were
found to be 0.562 and 0.454, respectively for the wavelength range of
1,136.25–1,212.75 nm, whereas these values were 0.749 and 0.457 in case
of MLR for the same range of wavelengths, which indicated that MLR is
better for prediction of TSS. There is however a large difference in R val-
ues of calibration and validation and thus results may be unstable during
prediction. Ventura et al. (1998) obtained higher R values for prediction of
TSS as compared to this study. Lower values here are mainly due to use
of 5 cultivars of apples which are distinctly different in characteristics. The
present model is thus applicable to wide varieties of apple whereas it was
only for one variety (cv. Jonagold) in case of Lammertyn et al. (1998).
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Fig. 6.30 Typical NIR spectra of different varieties of apple in wavelength range 900–1,700 nm

Effect of various pre-processing techniques for enhancement of pre-
dictability of the selected model showed that the MSC treatment yielded
highest R values for calibration and validation, 0.889 and 0.745, respec-
tively (for details reader can see the referred paper), which shows that after
treatment, TSS can be predicted with reasonable accuracy. If no treatment
is given even then we can predict the TSS but stability in prediction is at
stake because of large difference in R values of calibration and prediction.
Similar views have also been reported by Saranwong et al. 2004. Scatter
plots of models after MSC treatments for the wavelength range of 1,136.25–
1,212.75 nm are shown in Fig. 6.31, which indicate that slope of the curve
is near to 45◦ and thus prediction is near to measured values.

Acidity can be predicted in the wavelength range of 900–976.5 nm using
PLS as well as MLR. R values in case of PLS were found to be 0.736 for
calibration and 0.66 for validation. So, prediction is stable but may not be
so accurate as in MLR, where R values for calibration and validation were
found to be 0.853 and 0.481, respectively. In this case large gap indicates
that prediction may not be stable as in PLS. The predictability of selected
MLR model was further enhanced after applying MSC and removing some
outlier samples. The lowest SEC/SEP highest R values and biases for cal-
ibration and validation of MSC treated spectra were found to be 0.016,
0.890, –0.001 and 0.024, 0.752, –0.001, respectively. Negative biases indi-
cate that predicted values may be lower than the actual values, but the lower
SEC, SEP, higher R values and lower differences in them indicated that pre-
diction of acidity was much better and stable. These parameters without
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Fig. 6.31 Observed and predicted TSS in wavelength range of 1,136.25–1,212.75 nm after MSC
treatment (a) for calibration (b) for validation set of apple samples

giving any treatments to data were also closer to the values of MSC treated
data. Thus, one may choose spectra of wavelength range 900–976.5 nm
without treatment or with MSC treatment depending upon the accuracy
requirement for prediction of acidity. Prediction of acidity is better than
that of TSS in case of apple.

Wavelength range (900–976.5 nm) and regression method (MLR) for pre-
diction of acidity/TSS ratio was found to be the same as that of acidity.
But after applying data treatment techniques not much improvement was
found in R values. Thus model without data treatment whose SEC, SEP and
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Fig. 6.32 Observed and predicted acid brix ratio of apple in wavelength range of 900–976.5 nm
(a) calibration (b) for validation set of apple samples

R values were found to be 0.001, 0.002, 0.893 for calibration and 0.751
for validation, respectively may be used for prediction of acidity/TSS ratio.
Comparison of statistical results indicated that quality of apple could better
be judged using acidity rather than TSS. The taste of apple however could be
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Fig. 6.33 NIR based fruit tester being used for checking the maturity of apple and muskmelon

judged with almost same accuracy as acidity, using acidity/TSS ratio, which
include both acidity and TSS. Scatter plots for predicting acid/brix ratio are
shown in Fig. 6.32. The multiple correlation coefficients in all cases are little
lower than some of the reported values because of inclusion of five varieties
to nullify the effect of varieties during commercial grading of apple. A com-
mercial fruit tester (Fig. 6.33) manufactured by the Kubota, Japan is being
used to check the maturity of apple and musk melon in the field.

6.4.2 Samples Classification

Adulteration of food materials especially fruit juices, milk, edible oil etc. is not
new in food industries. Discriminate between authentic and adulterated sample is of
crucial importance from regulatory perspective, number of work therefore have been
reported to detect them. Adulteration of apple juice with high fructose corn syrup
and sugar solutions has been detected using near infrared spectroscopy (Leoń et al.
2005) and synthetic apple juice had been monitored using FTIR-ATR spectroscopy
(Irudayaraj and Tewari 2003). Different samples of apple juice adulterated by adding
sugars have been classified between adulterated and unadulterated with 82.4–96%
success (Kelly and Downey 2005).

Adulteration of juice by a less costly juice is also a common practice in food pro-
cessing industries. Different markers to identify the adulteration of apple juice with
pear juice were developed using HPLC (Thavarajah and Low 2006), and adulter-
ation of pomegranate juice concentrate with grape juice was successfully detected
using FTIR technique with R2 of 0.975 (Vardin et al. 2008). Linda et al. 2005 differ-
entiated the apple juice even based on the source of apples and heat treatment during
processing using chemometrics and mid Infrared (MIR) and NIR data. Detection of
sugars as adulterants in honey using FTIR and chemometrics has also been reported
(Tzayhri et al. 2009). Classification of mango juice adulterated by added sugar has
been performed by Jha and Gunasekaran (2010) using PLS discrimination analysis
and PCA projection method as below:
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Preliminary classification of samples was performed using PLS discrimination
analysis. In this method unadulterated mango juice and adulterated samples in ques-
tion were assigned values of 0 and 1, respectively. These values are called category
variables. Discrimination was carried out using PLS regression on full raw spectra
and the three peak regions of spectra and also by computing the second deriva-
tive (Savitzsky-Golay) and multiplicative scatter correction (MSC) of these spectral
regions. A predicted value of 0.5 was selected as a cutoff for keeping the sam-
ples either in category of unadulterated or adulterated. To further verify the above
classification, PCA projection method of classifications was used. For this purpose,
whole samples were grouped into two categories: unadulterated and adulterated.
Separate PCA for each category was performed and optimum numbers of principal
components (same for both categories) were selected based on x-explained variance.
These PCA models were used to develop classification tables using the classifica-
tion module available in the Unscrambler software to assign each sample to either
unadulterated or adulterated group.

It is evident from the summary of the analysis (Table 6.9) that all unadulter-
ated samples have predicted category variables less than 0.5 and is higher than
the same for all adulterated samples. Model developed using MSC treated data
therefore correctly discriminated all samples between adulterated and unadulterated
(Table 6.9). Best results however using PCA projection method did not discrim-
inate 100% samples correctly (Table 6.10). Results showed that concentration of
added sugar (AS) up to 1, 5, and 3% in sugar syrup, first lot and second lot of juice
samples, respectively fell in both categories and therefore could not be classified
correctly. In case of commercial juice, 20% samples having 3.6% AS concentra-
tion were correctly classified. In case of fresh juice samples higher percentage
of AS as compared to pure sugar syrup could not be discriminated. It may be
attributed to higher concentrations of natural sugars in these samples. Other com-
mercial samples were having AS declared by the manufacturer on their packages,
and concentrations were more than the limit of 3.6%. It therefore can be stated that
commercial mango juice having AS of more than 3.6% could be easily identified as
adulterated.

Table 6.9 Initial classification of prepared and commercial samples to adulterated and
unadulterated groups using PLS discriminate analysis on full spectra after baseline offsetting and
MSC

Number of samples with computed
category variables

Sample type
Total number of
samples <0.5 >0.5

Correct
classification (%)

Unadulterated 30 30 0 100
Adulterated 135 0 135 100
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Table 6.10 Classification of prepared and commercial samples to adulterated and unadulterated
groups using PCA projection method at 5% significance level in wavenumber range 1,476 to
912 cm–1 after baseline offset correction

Added
sucrose
(%)

Total
number of
samples

Number of samples classified Correct
classification
(%)Sample type Unadulterated Adulterated

Sugar solution 0 5 5 5 0
1 5 5 5 0
5 5 0 5 100
9 5 0 5 100

13 5 0 5 100
17 5 0 5 100
21 5 0 5 100
25 5 0 5 100

Prepared juice-1 0 5 5 5 0
1 5 5 5 0
5 5 5 5 0
9 5 0 5 100

13 5 0 5 100
17 5 0 5 100
21 5 0 5 100
25 5 0 5 100

Prepared juice-2 0 5 5 5 0
3 5 5 5 0
7 5 0 5 100

11 5 0 5 100
15 5 0 5 100
19 5 0 5 100
23 5 0 5 100
27 5 0 5 100

Commercial
juice-1

3.6 5 4 1 20

7.1 5 0 5 100
10.7 5 0 5 100

Commercial
juice-2

12.8 30 0 30 100
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Chapter 7
Ultrasonic Technology

Byoung-Kwan Cho

Ultrasonic has proven its merit as one of the most promising sensing methods for
food quality evaluation due to its non-destructive, noninvasive, precise, rapid, and
on-line potential. Ultrasonic is mechanical wave at frequencies above 20 kHz propa-
gating by vibration of the particles in the medium and penetrating through optically
opaque materials to provide internal or surface information of physical attributes,
such as texture and structure. Ultrasonic non-destructive testing is a way of charac-
terizing materials by transmitting ultrasonic waves into a material, and investigating
the characteristics of the transmitted and/or reflected ultrasonic waves. For the pur-
pose of quality measurement of materials, low-intensity ultrasonic with the power
level of up to 1 W/cm2 has been used. The low-intensity ultrasonic doesn’t cause
physical or chemical changes in the properties of the specimen when it transmits
through the material. However, high-intensity ultrasonic of the power range above
1 W/cm2 may produce physical/chemical disruption and alteration in the material
through which the wave propagates. High-intensity ultrasonic is usually used in
cleaning, promotion of chemical reactions, homogenization, etc

The two parameters that are mostly used in ultrasonic measurements are the
ultrasonic velocity and attenuation coefficient. Among the parameters, velocity is
the most widely used parameter because of its simplicity. However, a limitation of
this method is the distance traveled by the wave must be known. Ultrasonic velocity
and attenuation coefficient could serve as good indicators of material property or
a change in material characteristics since they are dependent on the properties of
the material, such as density, elastic modulus, and viscosity. Hence, the ultrasonic
parameters can provide detailed information about physicochemical properties, such
as structure, texture, and physical state of the components of the media. In addi-
tion, foreign objects such as bone, glass, or metal fragments residue in or on food
products can be precisely detected using ultrasonic technique due to the strong ultra-
sonic reflection and refraction at the interfaces of the host tissue and foreign object
interface.
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Conventional contact ultrasonic procedure uses a coupling medium between the
transducer and the test specimen to overcome the high attenuation due to large
acoustic impedance mismatch between air and the material. However, the use of
couplant might change or destroy the liquid-sensitive, porous, and continuously
formed food materials. In addition, the use of a couplnat makes the rapid mea-
surement and process control cumbersome. Recently, several novel methods of
non-contact ultrasonic have been developed. The advantage of the non-contact
ultrasonic measurement is its ability to measure the ultrasonic velocity, attenuation
coefficient, and thickness without contacting the sample. The non-contact ultrasonic
became an exciting alternative of the conventional ultrasonic technique especially
for a certain food quality evaluation. In this chapter, basic principles of both contact
and non-contact ultrasonic and its applications to food products are explored.

7.1 Basic Concepts

The mechanism of ultrasonic wave propagation can be described with stress and
strain. When stress is applied to a material, it produces elastic waves, which carry
changes in stress and strain. Wave propagation is created by a balance between the
stress and strain when fractions of a medium are distorted due to traction forces as
shown in Fig. 7.1. From the definition of stress and strain (Eqs. 7.1 and 7.2), the
wave equation can be derived as the Eq. (7.9).

Fig. 7.1 Fraction of a
medium (a) undistorted and
(b) distorted
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T = F

A
(7.1)

where T is the stress, F is the longitudinal force, and A is the cross-sectional area. If
dz is assumed to be small

ξ + dξ = ξ +
(

dξ

dz

)
dz (7.2)

dξ =
(

dξ

dz

)
dz (7.3)

S = dξ
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=
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)
dz

dz
= dξ

dz
(7.4)

where ξ is the longitudinal displacement of a particle, S is the strain, and z is the
displacement in the longitudinal direction.

dF = (F + dF) − F = (F + ∂F

∂z
dz) − F

= ∂F

∂z
dz = A

∂T

∂z
dz (7.5)

From the Newton’s law

F = ma = ρAdz
∂2ξ

∂t2
= TA (7.6)

∂T

∂z
= ρ

∂2ξ

∂t2

T = F
A

(7.7)

where ρ is the density of a medium.
Particle velocity, ν is obtained from the time derivative of particle displacement

v = ∂ξ

∂t
(7.8)

Hence, the wave equation becomes

∂T

∂z
= ρ

∂v

∂t
(7.9)

The above equation is the one dimensional wave equation. This partial differen-
tial equation can be used to analysis for ultrasonic wave propagation in an elastic
material.
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7.2 Ultrasonic Parameters

The two parameters that are most widely used in ultrasonic measurements are the
ultrasonic velocity and attenuation coefficient. The parameters are related to the
physical properties of media, such as structure, texture, and physical state of the
components.

7.2.1 Velocity

The ultrasonic velocity is a constant quantity for a material in a given state and
depends on its physical properties. Velocity is a vector quantity that describes both
the magnitude and the direction, while speed is a scalar quantity, which provides
only the magnitude of velocity. In fact, ultrasonic speed is more accurate expression,
however both terms have been used equally in engineering fields since the direction
of ultrasonic velocity is always considered as the same direction with the ultrasonic
propagation. In case of solid material, the ultrasonic velocity is related to modulus
of elasticity, E and density, ρ of the solid material. The theoretical background of
acoustic wave velocity in viscoelastic materials are as follows:

Stress, T, in a viscoelastic material is related to the elastic modulus and viscosity
by the relationship,

T = ES + η
dS

∂t
(7.10)

where E is the elastic modulus and η is the viscosity.

∂S

∂t
= ∂

∂t

(
∂ξ

∂z

)
= ∂v

∂z
(7.11)

Substituting Eq. (7.10) into Eq. (7.9)

∂

∂z

(
ES + η

∂S

∂t

)
= ρ

∂v

∂t
(7.12)

∂2

∂t∂z

(
ES + η

∂S

∂t

)
= ρ

∂2v

∂t2
(7.13)

From Eq. (7.11),

∂2S

∂z∂t
= ∂2v

∂z2 (7.14)

Substituting Eqs. (7.11) and (7.14) into Eq. (7.13)

ρ
∂2v

∂t2
= E

∂2v

∂z2
+ η

∂3v

∂t∂z2
(7.15)
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Assuming the solution is a plane wave, the velocity can be defined as,

v = Ce j(wt−k̂z) (7.16)

where k̂ is the wave number, w is the angular velocity (= 2π f), and C is a constant.
If attenuation by absorption is included, the only effect is that the wave number

becomes complex. It can be assumed as,

k̂ = β − jα (7.17)

where α is the attenuation coefficient by absorption and β is the wave propagation
constant defined as 2π divided by the wavelength (= 2π

λ
).

From Eq. (7.16),

∂2v

∂t2
= −w2v (7.18)

∂2v

∂z2
= −k̂2v (7.19)

Substituting Eq. (7.18) and (7.19) into Eq. (7.15)

−ρw2 = −Ek̂2 − jηk̂2w (7.20)

where

k̂2 = β2 − α2 − j2βα (7.21)

Hence, Eq. (7.20) becomes

−ρw2 = −Eβ2 + Eα2 − 2ηβαw + j(2Eβα − ηβ2w + ηα2w) (7.22)

Using the real part of Eq. (7.22),

−ρw2 = −Eβ2 + Eα2 − 2ηβαw (7.23)

If η, α << β, w, the acoustic wave velocity is obtained as

va = w

β
=
√

E

ρ
(7.24)

The wave propagation in an extended solid medium implies that the lateral
dimension of the material is more than 5 times greater than the wavelength of ultra-
sonic in the material and is denoted as bulk propagation. In this case, the modulus
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of elasticity should be described by the combination of the bulk modulus and the
shear modulus as the following equation (Kinsler 2000),

E = K + 4

3
G (7.25)

where K and G are the bulk and shear modulus respectively.
Hence, the longitudinal ultrasonic velocity in solids is defined as,

v =
√

(K + 4
3 G)

ρ
(7.26)

Note that the Eq. (7.26) holds for plane longitudinal waves traveling in homog-
nous and isotropic solids.

In case of liquid medium, ultrasonic waves are different from those in solids
because liquids in equilibrium are always homogeneous, isotropic, and compress-
ible. In addition, the pressure in liquids is a scalar and uniform on a volume element.
Hence, the shear modulus needs not to be considered, and only bulk modulus can
be an appropriate modulus for longitudinal wave propagation in liquid medium. The
ultrasonic velocity in liquid is simplified as,

v =
√

B

ρ
=
√

γ BT

ρ
(7.27)

where B is the adiabatic bulk modulus, BT is the isothermal bulk modulus, and γ is
the ratio of the specific heats.

Measurement of ultrasonic wave velocity: A simple experimental arrangement
can be constructed as shown in Fig. 7.2 for measuring the ultrasonic wave velocity.
The system consists of an ultrasonic transducer, a pulser-receiver, and a position
control system linked to a personal computer. The measurement technique is pulse-
echo method. The sample is placed in the bottom and the wave propagation velocity
through the sample is computed. An electrical pulse generated from the pulser-
receiver is converted into an ultrasonic pulse by the transducer. The ultrasonic pulse

Fig. 7.2 Schematic diagram
of ultrasonic system for
velocity measurement (Cho
et al. 2001)
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Fig. 7.3 Ultrasonic pulse-echo signal for a sample (Cho et al. 2001)

travel through the sample and reaches to the bottom where it is echoed back to the
transducer. Reversely, the ultrasonic pulse is converted back into an electrical pulse
by the transducer, and the electrical pulse is sent to the oscilloscope for display and
further process. Velocity was calculated by dividing the total distance traveled by
the time of flight. Time of flight is the time interval between the peak of the first
pulse through the sample and the peak of the second pulse reflected from the bot-
tom. Figure 7.3 shows a typical ultrasonic pulse-echo signal for measuring wave
propagation velocity.

7.2.2 Attenuation

Attenuation is the amount of the decreasing power of a wave as it travels through a
material. The major reasons of attenuation are due to absorption and scattering as
the wave propagates through the medium. In the absorption process the ultrasonic
energy is permanently converted into heat energy which may cause a temperature
increase in the material. The absorption caused by a variety of mechanism, such
as internal friction caused by viscosity, thermal conduction, and molecular relax-
ation. When an ultrasonic wave travels through a non-uniform medium, scattering
occurs, in which part of the wave changes its initial direction and propagates sep-
arately from the original incident wave, distorting and interfering with the initial
wave. Ultrasonic scattering does not decrease the mechanical energy, however it’s
difficult to be detected because the wave direction has been changed. The disconti-
nuity within a medium, such as cracks, holes, and foams plays a role in scattering.
The effect of scattering is lesser than that of absorption in homogeneous media.
Also attenuation is affected by the frequency of the ultrasonic wave. In general,
attenuation of ultrasonic signals increases as a function of frequency. Theoretically
attenuation can be derived from the Eq. (7.22). From the imaginary part of equation
we can write as
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2Eβα − ηβ2w + ηα2w = 0 (7.28)

If η, α << β, w, the attenuation can be defined as

α = ηwβ

2E
= ηw2

2v3
aρ

(7.29)

As shown in the above equation, attenuation is related to the wave velocity, den-
sity, viscosity, and frequency. When ultrasonic is propagated through a material, the
total loss of the ultrasonic energy can be described as follows,

W = 20 · log

(
A0

A

)
(7.30)

where W is the total loss in dB, A0 is the amplitude of the transmitted intensity
without a test material in between the transducers, and A is the amplitude of the
transmitted intensity through the test material.

It is assumed that the extent of attenuation is linearly dependent on the thickness
of a material, while the other factors affecting the attenuation, such as reflection and
coupling loss is not related with the thickness. The reflection and coupling loss for
a material and transducer are constant. Hence, the total loss W can be expressed as,

W = α · x + β (7.31)

where α is the attenuation coefficient (dB/mm), x is the thickness of the test matrial
(mm), β is the reflection and coupling loss (dB).

Attenuations of two materials with different thickness are defined as follows,

W1 = 20 log

(
A0

A1

)
= α · x1 + β (7.32)

and

W2 = 20 log

(
A0

A2

)
= α · x2 + β (7.33)

where WI is the total loss after traveling the distance xI, W2 is the total loss after
traveling the distance x2, AI is the amplitude of the received signal after travel-
ing the distance xI and A2 is the amplitude of the received signal after traveling a
distance x2.

The attenuation coefficient can be calculated by subtracting Eq. (7.32) from
(7.33) as follows,

20 log(
A0

A2
) − 20 log(

A0

A1
) = α(x2 − x1) (7.34)

α = 20 log(A1/A2)

x2 − x1
(7.35)

There are two types of attenuation coefficient, apparent attenuation coefficient
measured in time domain and frequency dependant attenuation coefficient. The
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apparent attenuation coefficient is determined by measuring the peak amplitudes of
transmitted ultrasonic pulses in time domain at two different sample thicknesses. If
the frequency of the transducer is narrow-banded, the apparent attenuation is accept-
able, however in case of broadband, the frequency dependent attenuation needs to
be used.

7.3 Non-contact Ultrasonic (NCU) Measurement

To date, conventional contact ultrasonic procedure uses a couplant, such as a gel
between the transducer and the test sample to overcome the high attenuation due
to large acoustic impedance mismatch between air and the material. The use of a
coupling media has the potential to change or destroy the liquid-sensitive, porous,
and continuously formed food materials by absorption or interaction of liquid cou-
plants and contributing to contamination and making the measurement process
cumbersome.

The limitations of conventional contact ultrasonic techniques can be overcome by
using non-contact (or air-coupled) ultrasonic transducers. The most important ele-
ment in developing air-coupled transducer is the matching layer, which determines
the efficiency of ultrasonic transmission from piezoelectric material to medium.
For perfect transmission of ultrasonic, specific matching layer should be developed.
The thickness of matching layer should be a quarter of a wavelength and a specific
acoustic impedance of 0.1 Mrayls (Hayward 1997).

To overcome the high acoustic impedance mismatch between air and the test
material, highly sensitive non-contact transducers need to be developed. Fox et al.
(1983) developed non-contact ultrasonic transducers of 1 and 2 MHz central fre-
quency using silicon rubber as the matching layer. They demonstrated the ability of
the transducers to measure the distance in air from 20 to 400 mm with an accuracy
of 0.5 mm. Haller et al. (1992) enhanced the transmission efficiency of the non-
contact ultrasonic transducers using a specially designed matching layer with tiny
glass spheres in the matrix of silicone rubber. Bhardwaj (1997, 1998) demonstrated
the highly efficient acoustic matching layer for non-contact ultrasonic transducers
using soft polymers.

7.3.1 NCU Velocity Measurement

The non-contact ultrasonic system can be constructed using two transducers, which
can operate both as a transmitter and a receiver as shown in Fig. 7.4. Since the
system has two channels for data acquisition (with two amplifiers and two analog
I/O boards), it can provide four operation modes: two reflection (one for each of the
two transducers) and two transmission modes (one used as transmitter and the other
as receiver and vice-versa). After a simple calibration for the air velocity (Va) using
a known thickness calibration material, the thickness and ultrasonic velocity of a
sample can be calculated directly by the following equations (Bhardwaj 2000).
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Fig. 7.4 Schematic of (a) the non-contact ultrasonic measurement with a sample material, and
(b) the non-contact air instability compensation ultrasonic measurement (b) without and (c) with a
sample material (Cho and Irudayaraj 2003c)

Dm = Va

(
ta − t1 + t2

2

)
= S − Va

t1 + t2
2

(7.36)

Vm = Dm

tm
= Dm

tc − t1 + t2
2

(7.37)

where, Dm is the sample thickness, Va and Vm are the respective velocities of ultra-
sonic in air and through the sample, S is the distance between transducer 1 and
transducer 2, tm is the time-of-flight in the test material, ta is time-of-flight between
transducer 1 and transducer 2 in air, tc is time-of-flight between transducer 1 and
transducer 2 with sample, t1 is the round trip time-of-flight between the trans-
ducer 1 and sample, and t2 is the round trip time-of-flight between the sample and
transducer 2.

In case of food sample measurements, the signal of non-contact ultrasonic mea-
surement is weak and mixed with a random noise, hence it is difficult to identify
the original signal from the mixed signal in case the noise level is higher than the
signal level. An original signal is shown as Fig. 7.5a and the simulated real signal
is displayed as Fig. 7.5b, which is the combination of the random noise and the
original signal with a time delay. The original signal is hidden in the random noise
of which the level is twice that of the original signal amplitude. To eliminate the
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Fig. 7.5 Transmitted signal (a) which was (b) embedded in noise, (c) pulse compressed signal of
(b), (d) enveloped signal of (c) (Cho and Irudayaraj 2003a)

random noise from the mixed signal cross-correlation method can be utilized. The
correlated result is as shown in Fig. 7.5c in which the noise is much reduced. The
advantages of the cross-correlation method are that it is not only reduces the noise
but also estimates the time shift between the signals. Since the position of the max-
imum output correlation indicates the shifted time between the original signal and
the transmitted signal at a time delay, time-of-flight of the ultrasonic wave through
the sample can be determined by reading the location in time of the maximum peak.
For precise identification, the maximum peaks from the correlated signal, the signal
envelop was made using Hilbert transformation (Oppenheim et al. 1999). As shown
in Fig. 7.5d the waveform clearly shows where the main peak is located. In addi-
tion, the area underneath the most significant peak above –6 dB from the transmitted
signal in dB unit denoted as integrated response (IR) can be depicted as ultrasonic
energy. The IR provides information of the energy attenuation during transmission
of the ultrasonic wave through air and/or a specimen (Bhardwaj 2000).
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Fig. 7.6 A typical non-contact ultrasonic signal transmitted through a solid sample (Cho and
Irudayaraj 2003a)

7.3.2 NCU Attenuation Measurement

A typical non-contact ultrasonic through-transmission signal of a solid material is
shown in Fig. 7.6. The first peak is the transmitted signal through air and sample
material directly while the second peak is caused by internal reflection of the trans-
mitted signal. Other periodic peaks are multi-reflected peaks by a sample material,
which are hardly observed in materials with high attenuation rate. The attenua-
tion coefficient can be calculated by dividing the difference between the integrated
response of the first and the second peak by the sample thickness.

7.3.3 Calibration of Ultrasonic Measurement

The non-contact ultrasonic system can be calibrated before measurement using a
known property material, such as polystyrene block or a Dow Corning (DC) silicon
fluid. After aligning the transducers parallel to each other and verifying the shape of
the received signal, the polystyrene block was placed between the two transducers.
The measured thickness was compared with the actual thickness. If the difference
is not acceptable, the system parameters, such as the computer generated chirp used
for a transmitted signal, and the parallelism of the transducers need to be adjusted
within 0.1% error.

7.3.4 NCU Image Measurement

To obtain a non-contact ultrasonic image of samples, an X-Y positioning system
to obtain ultrasonic image can be constructed as shown in Fig. 7.7. All scan-
ning and data acquisition were controlled by a personal computer and a real-time
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Fig. 7.7 Schematic of the non-contact ultrasonic imaging system (Cho and Irudayaraj 2003b)

operating system. The velocity and attenuation coefficient through the sample can
be measured.

Figure 7.8 shows the ultrasonic attenuation images of a metal fragment in a poul-
try breast and cracks in cheese. Since the ultrasonic attenuation is more sensitive
to the difference in product characteristics than velocity, the attenuation provides
better images than those of velocity in general. The results of NCU images demon-
strate its potential to detect the presence of foreign objects and defects inside food
materials.

Fig. 7.8 Modified NCU attenuation images of a metal fragment (5×3 mm2) (a) in a poultry breast
and a crack in extra sharp cheddar cheese (b) (Cho and Irudayaraj 2003b)
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7.4 Ultrasonic Image

Ultrasonic images are two-dimensional ultrasonic representation of the internal
structure of materials. Of the ultrasonic imaging methods, a C-scan is the most
common imaging type, which is a sequence of waveforms taken at points on a grid
overlaid on the surface of a material, as illustrated in Fig. 7.9. The waveform to be
imaged is defined through the use of an electronic gate. Along with the C-scan there
are other two types of ultrasonic data display, A- and B-scans. An A-scan (Fig. 7.10)
is a displayed waveform of ultrasonic signal for a point on a sample material, in
which an axis represents the time and the other corresponds to the intensity of the
signal. The A-scan provides one-dimensional depth information along the line of
beam propagation. A B-mode stands for “brightness” modulation of the displayed
signal. The B-scan is a sequence of A-scans taken at points along a line on the
surface of a material, and displayed side-by-side to represent a cross-section of the
material, as shown in Fig. 7.11. The scans can be made by using either pulse-echo
or through-transmission inspection techniques.

Another widely used imaging type is a steered image which made by steered
sweeping beams of a linear array of transducers. The measurement is performed
in the pulse-echo mode so that there is no separate moving receiver. The beam is

Fig. 7.9 Illustration of test
arrangement for C-scan

Fig. 7.10 Illustration of A-scan
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Fig. 7.11 Illustration of B-scan

Fig. 7.12 Steered wave

controlled by introducing successively increasing time delays across the transducer
array as shown in Fig. 7.12. The orientation of the wavefront is steered by changing
the excitation times across the array. The technique is usually operated in the pulse-
echo mode and extensively used in medical imaging.

Ultrasonic imaging techniques have already been used to provide information
about the meat quality, such as ratio of fat and lean tissue, both in live animal and
in carcasses. Commercialized ultrasonic inspection systems for meat quality are
widely used these days. Ultrasonic imaging was also applied to monitor creaming
and sedimentation processes in emulsions and suspensions as well as detection of
foreign objects in food materials.
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7.5 Application of Ultrasonic to Food Quality Measurement

The application of ultrasonic to food quality measurement have increased due to
its non-destructive, rapid, and automated potential. The most important ability of
ultrasonic is that the waves can propagate through optically opaque samples and
provide useful quality information. The early usage of ultrasonic techniques has
been limited mostly for non-destructive measurement of medical and industrial
materials. With the development of fabrication and measurement techniques, ultra-
sonic is broaden its application to various research fields including food quality
assessment.

Previous researches using ultrasonic techniques on meat, fruits, and dairy prod-
ucts have explored the feasibility of noninvasive measurement. Lee et al. (1992)
investigated shear wave ultrasonic spectra to measure the rheological properties
of cheese and dough. The determined rheological values from ultrasonic were
compared with traditional oscillating rheometry. Gunasekaran and Ay (1996) used
ultrasonic attenuation to determine the optimum cutting time of cheese based on the
degree of coagulation of milk. Results indicated that ultrasonic could be a poten-
tial non-destructive tool to measure the cutting time during cheese making. It was
demonstrated that ultrasonic velocity could be a good indicator of cheese maturity
(Benedito et al. 1999). Since ultrasonic velocity is closely related to the rheolog-
ical properties of solid materials (Povey and McClements 1988), such as elastic
modulus, it can be used to monitor and determine the maturity of cheese which
is objectively represented by moisture and rheological parameters. Recently, non-
contact ultrasonic technique was utilized for food quality measurements to avoid
the use of a couplant which might change or destroy the liquid-sensitive, porous,
and continuously formed food materials. The use of a coupling liquid limits the
rapidity, on-line monitoring, measurement and process control severely. Cho and
Irudayaraj (2003a) applied the non-contact ultrasonic technique to measurement of
mechanical properties of cheeses. The ultrasonic velocity and attenuation coefficient
of the different types of cheeses are shown in Table 7.1. They demonstrated that the
ultrasonic velocity gradually increased with the increment of elastic modulus, hard-
ness, and toughness. The relationship between ultrasonic velocity and mechanical
properties of cheeses is shown in Fig. 7.13.

Theoretically, ultrasonic velocity is related to the square root of the elastic mod-
ulus (E) and density (ρ) of the solid material. As mentioned in previous section, the

Table 7.1 Ultrasonic parameters values of cheeses (Cho and Irudayaraj 2003a)

Cheese type Ultrasonic velocity (m/s) Attenuation coefficient (dB/mm)

Sharp cheddar 1,573.37 ± 2.0a 0.192 ± 0.012a

Reduced fat sharp cheddar 1,609.49 ± 6.0 0.226 ± 0.056
Asiago 1,618.09 ± 6.29 0.464 ± 0.229
Romano 1,651.77 ± 4.8 0.279 ± 0.102
Parmesan 1,648.12 ± 2.43 0.237 ± 0.02

aStandard deviation.
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Fig. 7.13 Relationship between ultrasonic velocity and mechanical properties of cheese: (a)
elastic modulus, (b) hardness, and (c) toughness (Cho and Irudayaraj 2003a)

elastic modulus can be replaced with the combination of bulk modulus and shear
modulus for an isotropic solid material as shown in the following equation.

v =
√

E

ρ
=
√

B + 4
3 G

ρ
(7.38)

where B is the bulk modulus and G is the shear modulus.
Since the bulk modulus is about 106 times greater than the shear modulus in

a food system, the velocity is highly dependent on the bulk modulus (Povey and
McClements 1988). The differences in density of cheeses are lower than those of
elastic modulus. Thus, the ultrasonic velocity of cheeses is mainly determined by its
bulk modulus which is not easy to measure non-destructively. Usually it is assumed
that bulk modulus is closely related with the mechanical properties, such as elas-
tic modulus, hardness, and toughness. Hence, the mechanical properties can be
predicted using ultrasonic measurements. In general, the power of non-contact ultra-
sonic is very weak so that the relationship between strain and stress is linear. Thus,
it’s difficult to compare the ultrasonic parameters quantitatively with mechanical
properties defined by the large strain level.

Although the attenuation coefficient is assumed to be related to the combination
of the physical properties, such as viscosity, density, and ultrasonic velocity, the
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correlation between ultrasonic attenuation coefficient and the mechanical parame-
ters is not high. The reasons are that the sensitivity to sample surface unevenness,
minor surface defects, and uneven component distribution in sample materials
make it difficult to find the relationship between the attenuation coefficient and the
mechanical property of cheeses.

The non-contact ultrasonic technique is able to measure the thickness of soft
food materials without sample distortion. Figure 7.14 shows the compared result
of thickness measured by non-contact ultrasonic and the actual thickness for three
types of cheese, such as Sharp Cheddar (n = 6), Asiago (n = 7), and Romano
(n = 7) with different thicknesses. The non-contact ultrasonic measured thickness
values agreed well with the actual thickness values with an R2-value > 0.999 and
the standard error of estimation of 0.089 mm (Cho and Irudayaraj 2003a).

When the shape becomes complex and/or the sample surface are not parallel
and smooth, the measurement cannot be made precisely. In addition, non-contact
ultrasonic measurement is not practically suitable for very high acoustic impedance
materials such as fruits and vegetables. For ultrasonic measurement of fruits and
vegetables, specific contact ultrasonic transducer needs to be designed. Figure 7.15

Fig. 7.14 NCU thickness
measurement for cheese
blocks (Cho and Irudayaraj
2003a)

Fig. 7.15 Schematic of
ultrasonic transducer
designed for fruits
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Fig. 7.16 The relationship between apparent elastic modulus of apple and ultrasonic parameters,
(a) velocity and (b) attenuation coefficient (Kim et al. 2009)

is an example of the focusing contact type ultrasonic transducer specially designed
for fruits with 100 kHz central frequency (Kim et al. 2004). The concave front
matching layer of the transducer acts a role of acoustic lens which focus the power
of ultrasonic wave to a designated area. The matching layer is made of Teflon with
the dimension of 60 mm diameter and 4.3 mm thickness at the center.

The relationship between ultrasonic parameters and apparent elastic modulus is
demonstrated in Fig. 7.16. The results show significant relationships between elastic
modulus and velocity and attenuation coefficient with the correlation coefficients of
0.884 and –0.867, respectively. Ultrasonic velocity increased with the increment
of the elastic modulus, while attenuation coefficient is in inverse proportion to the
elastic modulus.

Mizrach et al. (1994a) developed continuous-touch systems for non-destructive
quality evaluation of fruit and vegetables. The system consists of a two transducers
having exponential beam-focusing elements, high-power low-frequency pulser-
receiver, and a mounting structure for the transducers as illustrated in Fig. 7.17.
The angle between the transducers was set to 120◦, while the gap between the
transducers could be adjusted.

An ultrasonic signal was transmitted from a transducer, and the transmitted signal
through the sample was received by the other transducer. Ultrasonic pulse penetrated
the peel and propagated through the underneath the peel along the gap between the
two probes. The ultrasonic wave propagation velocity can be calculated by measur-
ing the time of the ultrasonic pulse traveled between the two probes. The velocity ν

was obtained by the following equation,

v = l

t
(7.39)

where l is the distance and t is the traverse time between the two probe tips.
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Fig. 7.17 Schematic diagram for non-destructive ultrasonic system for fruit and vegetables

The attenuation coefficient, was determined using the following equation,

α = 1

l
log

A0

A
(7.40)

where A0 and A are the ultrasonic pulse amplitudes at the beginning and the end of
the propagation through the specimen.

The non-destructive ultrasonic system has been used for the quality measure-
ments of the variety of fruits and vegetables over the last decade. Mizrach and the
colleagues (1999) studied non-destructive monitoring of physicochemical changes
in whole avocado during maturation by the ultrasonic system. They demonstrated
that ultrasonic attenuation coefficient could be used to monitor the change of dry
weight (DW) which is an indicator of oil content in avocado. Since ultrasonic atten-
uation measurement could estimate the DW percentage during growth, it could be
an evaluation method for harvest time of avocado. In addition, ultrasonic attenu-
ation increased with the decrease of firmness regardless of storage temperatures
(Mizrach et al. 2000). The results indicated that ultrasonic attenuation was good
quality predictor for pre- and postharvest avocado. Mizrach et al. (2003) investigated
the feasibility of the ultrasonic parameters for the measurement of mealiness levels
for “Cox” apples, and indicated that the ultrasonic attenuation was well matched
with the mealiness levels. The physicochemical properties of mango fruit were
measured with the ultrasonic system (Mizrach et al. 1997). The ultrasonic atten-
uation and the firmness of mango were well fitted with a parabolic regression model
(Fig. 7.18a). The relationship between attenuation and sugar content was expressed
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Fig. 7.18 Relationship between ultrasonic attenuation coefficient and (a) firmess, (b) sugar
contents (©) and acidity (�) of mango fruits (Mizrach et al. 1997)

with a third-degree polynomial equation, and a parabolic model was selected for
the relationship between attenuation and acidity (Fig. 7.18b). The internal quality
parameters of melon, such as firmness and sugar contents were investigated using
ultrasonic surface wave velocity and attenuation (Mizrach et al. 1994b). For the
monitoring of the physicochemical changes of greenhouse tomatoes after harvest,
Mizrach (2007) demonstrated that ultrasonic attenuation was linearly related to the
firmness of the fruit during 8 days storage time. The studies demonstrated ultra-
sonic technology has a good potential for non-destructive evaluation of pre and
postharvest quality of fresh fruit and vegetables.

The advantages of ultrasonic technology are its non-destructive, noninvasive,
precise, rapid, and on-line potential. In addition, it can be applied to systems that
are concentrated and optically opaque, which would be suitable for monitoring
food processing operations. On the other hand, ultrasonic technology has disadvan-
tages. One of those is that the presence of small porosities or bubbles in a sample
attenuates ultrasonic energy so much that the ultrasonic signal cannot be preceded
and hard to be acquired. The effect of the porosities can be reduced in pulse-echo
measurements; however the signal from the porosities may complicate those from
other components. Another disadvantage is that lots of thermophysical properties
(e.g. density, compressibility, heat capacity, thermal conductivity, etc) of a material
need to be defined to determine ultrasonic properties of the material theoretically.
However the theoretical values of the material don’t need to be considered if the
same ultrasonic system is used in routine experiments. Non-contact ultrasonic has
same limitations as the contact/immersion ultrasonic method. Moreover, the non-
contact ultrasonic parameters are very sensitive to sample surface unevenness and
minor surface defects. The technique is easily applicable to a sample with flat and
smooth surface. However, when the shape becomes complex and/or the sample sur-
face are not parallel and smooth, the measurement is very difficult to be made. Also,
non-contact ultrasonic is not practically suitable for very high acoustic impedance
materials such as fruits and vegetables.
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Chapter 8
Miscellaneous Techniques

Shyam N. Jha

Nondestructive way of determining the food quality is the need of the hour. Till now
major methods such as colour measurements and their modeling; machine vision
systems; X-ray, CT and MRI; NIR spectroscopy; electronic nose and tongue; and
ultrasonic technology have been discussed in detail. These techniques, in general,
are considered to be sophisticated and costly, and therefore probably are not being
adopted as fast as it should be. I am however of the reverse opinion. While going
through these techniques, it has been seen that majority of quality parameters have
been measured and correlated with the signals obtained using different equipment.
I am therefore of the opinion that any quality parameters or combination thereof
can be correlated with the most simple parameters such as weight, electrical con-
ductivity, magnetic properties, and even with days of storage etc., which can be
measured with reasonable accuracy. Only important aspects of development of such
techniques are quality of regression (calibration), validation and stability of predic-
tion, which have been already dealt in previous chapters. This chapter illustrates the
use of few other technologies such as electrical, thermal imaging, magnetic, and
modeling of some quality parameters, hitherto estimated subjectively, for using in
nondestructive way of measurement of different food quality.

8.1 Electrical Technology

Electrical characteristics of agricultural materials have been of interest for many
years (Nelson 2006) and are being utilized in one or the other form. Electrical
properties such as electrical conductance, resistance, capacitance, dielectric prop-
erties, pulsed electric fields, ohmic heating, induction heating, radio frequency,
and microwave heating are important to develop instruments for determination of
various quality parameters. Dielectric properties of various agri-foods and other
biological materials are finding increasing application in their respective industries
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and research laboratories (Venkatesh et al. 2004). Detailed theory of these proper-
ties have been dealt in various text books of electrical technologies, here however
important ones are presented for convenience of readers interested in nondestructive
methods of quality evaluation of food.

8.1.1 Electrical Conductivity

Electrical conductivity is a measure of electric current flows through a food of unit
cross-sectional area A, unit length L, and resistance R. It is the inverse value of
electrical resistivity (measure of resistance to electric flow) and is expressed in the
following relation:

σ = L

AR
(8.1)

Electrical conductivity or specific conductance is thus a measure of a material’s
ability to conduct an electric current. When an electrical potential difference is
placed across a conductor, its movable charges flow and consequently electric cur-
rent produced. The conductivity σ is also defined as the ratio of the current density
J to the electric field strength E:

J = σE (8.2)

It is also possible to have materials in which the conductivity is anisotropic and in
such case σ is a 3×3 matrix (or more technically a rank-2 tensor). The SI and CGS
unit of electrical conductivity is Siemens per metre (S·m–1) and inverse of second
(s–1), respectively. The electrical conductivity is commonly represented by a Greek
letter σ , or κ (especially in electrical engineering science) or γ are also occasionally
used.

One should not get confused with electrical conductance, which is a measure
of an object’s or circuit’s ability to conduct an electric current between two points.
Electrical conductance is dependent on the electrical conductivity and the geometric
dimensions of the conducting object.

The conductivity of a material is generally measured by passing a known current
at constant voltage through a known volume of the material and by determining
resistance. Basic instruments involved in measurement of electrical conductivity
are bridge networks (such as the Wheatstone bridge circuit) or a galvanometer.
Nowadays many devices are available to measure it directly. An EC meter, for
example, is used to measure conductivity of a liquid sample.

8.1.2 Dielectric Properties

A dielectric is a non-conducting substance, i.e. an insulator. Although “dielectric”
and “insulator” are generally considered synonymous, the term “dielectric” is more
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often used to describe materials where the dielectric polarization is important, such
as the insulating material between the metallic plates of a capacitor, while “insula-
tor” is more often used when the material is being used to prevent a current flow
across it.

Dielectric is the study of dielectric materials and involves physical models to
describe how an electric field behaves inside a material. It is characterized by how
an electric field interacts with an atom and is therefore possible to approach from
either a classical interpretation or a quantum one. Many phenomena in electronics,
solid state and optical physics can be described using the underlying assumptions of
the dielectric model. It could be understood that the same mathematical model can
be used to describe different physical phenomena.

Dielectric properties of food materials are those electrical properties which mea-
sure the interaction of food with electromagnetic fields (Ahmed et al. 2007). Relative
permittivity, dielectric loss factor, loss tangent and the alternate current conductivity
are of concern in heating, drying and storage of grains. However, the first dielectric
properties for grain were not reported until 45 years ago (Nelson 1965). Electrical
permittivity is a dielectric property that determines the interaction of electromag-
netic waves with matter and defines charge density under an applied electric field
(Barbosa et al. 2006). In solids, liquids, and gases the permittivity depends on dielec-
tric constant ε′, which is related to capacitance of a substance and its ability to store
electrical energy. The dielectric loss factor ε′′ is related to energy losses when the
food is subjected to an alternating electrical field i.e., dielectric relaxation and ionic
conduction (Barbosa et al. 2006).

(a) Permittivity and loss factor
In foods, permittivity can be related to chemical composition, physical struc-

ture, frequency, and temperature, with moisture content being the dominant
factor (Ryynanen 1995). The absolute permittivity of a vacuum is ε0 and it is
determined by the speed of light (c) and the magnetic constant (μ0) which are
linked together by the equation:

c2μ0ε0 = 1 (8.3)

The numerical value for ε0, is about 8.854 × 10–12 F/m and for μ0 it is 1.26
μHm–1. In other media (solid, liquid and gaseous), the permittivity has higher
values and is usually expressed relative to the value in vacuum (Nyfors and
Vainikainen 1989): εabs = εrε0 or the relative permittivity, εr of a material equal
to εabs/ε0. Where, εabs and εr are absolute and relative permittivity of a material.

High frequency and microwave fields are sinusoidal time dependent (time-
harmonic) and common practice is to use complex notation to express them
(Nyfors and Vainikainen 1989). Thus permittivity is also a complex quantity
with real and imaginary components. The equation for complex permittivity is
(Risman 1991):

ε = ε′ − jε′′ (8.4)
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where, ε = relative complex permittivity, ε′ = relative real permittivity
(dielectric constant), ε′′ = dielectric loss factor, j = imaginary unit.

The real component of permittivity (dielectric constant) is related to the
capacitance of a substance and its ability to store electrical energy. The imag-
inary component, the dielectric loss factor is related to various absorption
mechanisms of energy dissipation and is always positive and usually much
smaller than dielectric constant. The substance is lossless if dielectric loss fac-
tor = 0 (Mudgett 1986, Nyfors and Vainikainen 1989). The ratio of dielectric
loss factor to dielectric constant (ε′′/ε′) is called the loss tangent (tan σ) or dis-
sipation factor, a descriptive dielectric parameter, is also used as an index of the
material’s ability to generate heat (Mudgett 1986).

(b) Power density and penetration depth
The rate of heating can be expressed by the power equation:

Pv = 2Ef ε0ε
′′ |E|2 (8.5)

where, Pv = energy developed per unit volume (W/m3), f = frequency (Hz),
and |E| = electric field strength inside the load (V/m).

The electric field inside the load is determined by the dielectric properties
and the geometry of the load, and by the oven configuration. Therefore, this
equation is generally impractical as the determination of the electric field distri-
bution is very complex (Buffler 1993). To gain a better practical understanding
of the meaning of the values of the dielectric properties, a penetration depth
should be calculated from the dielectric properties.

(c) Wave impedance and power reflection
Transmission properties, which are related to the dielectric and thermal prop-

erties of the medium, determine the distribution of energy (Mudgett 1986).
Since dielectric constant (absolute permittivity) decreases with the speed of
propagation, wavelength in the dielectric medium is shorter than in free space.
This change in wavelength leads to a reflection at the interface between
two media with different dielectric constant (Nyfors and Vainikainen 1989).
The reflection phenomena can be analyzed in terms of characteristic wave
impedances, ε (Ohlsson 1989):

η = η0√
ε

(8.6)

where, η and η0 are the characteristic wave impedance of material and free
space (~377 �), respectively.

The reflection and transmission at a plane boundary are primarily related
to

√
ε, and the principal determining factor for the magnitude of reflection is

from the real permittivity of material. Characteristic impedance is important
when different materials are heated simultaneously. The change in charac-
teristic impedances at the food surface results in reflection of about 50%
of microwave power falling on the surface. Most of this energy is reflected
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back to food via metal cavity walls. For frozen food, the impedance matching
is better, often resulting in higher power utilization for thawing than for heat-
ing (Ohlsson 1989). The impedance measurements of the real capacitor are the
basis for the determination of material dielectric properties at low frequencies.

(d) Polarization of dielectrics
When two charges are separated by a distance, they constitute an electric

dipole. The dipole can be represented by a vector called the dipole moment.
Molecules with nonzero permanent electric dipole moments are called polar
molecules. Non-polar molecules may acquire a dipole moment in an electric
field as a result of the distortion of their electronic distributions and nuclear
positions. The polarization is the average dipole moment per unit volume.
The relation between permittivity and polarization is (Nyfors and Vainikainen
1989):

P = (ε − 1) ε0E (8.7)

where, P = polarization, ε–1 = electric susceptibility, ε0 = absolute permittiv-
ity of vacuum, E = electric field.

The relative permittivity ε (or electric susceptibility, ε–1) is thus a measure
of the polarizing effect from an external field, that is, how easily the medium
is polarized. There are four types of polarization: ionic, orientation, atomic and
electronic polarization. Electronic polarization occurs in atoms, where elec-
trons can be displaced with respect to the nucleus. This polarization occurs
in all substances. In atomic polarization, the atoms can be moved in crystals or
molecules. Electronic polarization together with atomic polarization gives most
dry solids a permittivity in the order of (ε < 10). When only these two mech-
anisms are present, the material is almost lossless at microwave frequencies.
Atomic or vibration polarization is closely related to electronic polarization
but, because of the much greater mass to be moved, the resonant frequencies
of atomic polarization are lower. Atomic polarization is found in the infrared
band while electronic polarization is found in the optical band (Nyfors and
Vainikainen 1989). In microwave or high frequency field, the dipoles try to fol-
low the rapidly changing field. The energy is then lost to the random thermal
motion of the water, which is equivalent to a temperature rise. This is ori-
entation polarization. Hydrated ions try to move in the direction of electrical
field and they transfer energy by this movement (Nyfors and Vainikainen 1989,
Ohlsson 1989). Polarization can be due to various effects ranging from charge
accumulation at the surfaces between materials with different electrical prop-
erties (interfacial polarization) to dipole orientation and other effects (Gerard
et al. 1999).

(e) Factors affecting the dielectric properties
Various factors such as frequency of the applied alternating electric field,

moisture content, bulk density, temperature (Icyer and Baysal 2004a, Nelson
1965, 1984, Ryynanen 1995, Venkatesh and Raghavan 2004) ionic nature,
concentration (density), structure and constituents of food materials (Engelder
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and Buffler 1991, Feng et al. 2002, Guan et al. 2004, Nelson 1991, 1992,
Nelson et al. 1994, Nelson and Bartley 2002, Ohlsson et al. 1974a, Venkatesh
and Raghavan 2004, Sipahioglu et al. 2003) influence the dielectric proper-
ties of food materials. Dielectric properties have been reported for different
agricultural commodities, including grains and seeds (Nelson 1965), fruits and
vegetables (Feng et al. 2002, Guan et al. 2004, Ikediala et al. 2000, Nelson
1983, Nelson et al. 1994, Wang et al. 2003), juice and wine (Garcia et al. 2004),
baked foods and flours (Kim et al. 1998, Zuercher et al. 1990), dairy products
(Green 1997, Herve et al. 1998), fish and meat (Bengtsson and Risman 1971,
Lyng et al. 2005), egg white solutions and thermal denatured egg albumen
gels (Lu et al. 1998). Possibilities of using dielectric properties for assess-
ing the quality of agri-food products have been also explored (Nelson et al.
1995, Dev et al. 2008). The dielectric constant and conductivity of carrots
depends largely on moisture content, frequency, temperature, density, and par-
ticle size. Although moisture content is important, carbohydrate, both ash and
protein content can also affect the dielectric properties (To et al. 1974, Zhang
et al. 2007). The principal state variables that influence the dielectric prop-
erties at a given frequency are temperature and moisture content. Effects of
different parameters such as moisture content, temperature, bulk density and
frequency on the dielectric properties of agri-food materials are summarized
in Table 8.1. The relationship between these factors, composition and the
dielectric properties of food and food products are discussed in the following
sub-sections:

The influence of salt, fat and other constituents: At higher moisture and
lower fat contents, the loss factor increased somewhat with temperature
(Datta and Nelson 2000). Increase in fat/lipid content decreased the dielectric
properties of different food and food products (Table 8.2). The influence of
water and salt or ash content depends to a large extent on the manner in which
they are bound or restricted in their movement by the other food components
(Sun et al. 1995). The most common food products have a loss factor of less
than 25, which implies a penetration depth (PD) of 0.6–1.0 cm. However,
literature data are mostly limited to pure foods and food components. For
complex and formulated foods, the dielectric properties must be measured
or estimated (Ohlsson 1989, Buffler and Stanford 1991). An increase in
flour slurry concentration of Indian Basmati rice, systematically reduced
dielectric constants during the entire frequency range while variations in
dielectric loss factor values were mixed (Ahmed et al. 2007). Addition of
1% salt markedly increased loss factor of slurries. Salt addition decreased
dielectric constant (ε′) and increased loss factor (ε′′) in different food and
food products (Table 8.3). Microwave permittivities of bread dough can
be measured as a function of water-flour composition, proofing time, and
baking time (Zuercher et al. 1990, Ohlsson et al. 1974). Influence of differ-
ent water and salt content on dielectric properties was significantly larger,
especially at 450 and 900 MHz. It was also found that dielectric constant
decreased gently with temperature above 60◦C, whereas loss factor increased,
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Table 8.2 Effect of fat/lipid content on dielectric properties of food and food products

Food/product
source Freq. (MHz) Comments References

Model meat
emulsions

900 ε′′ decreased with increasing
fat faster between 15 and
35% vs. 0 and 15% fat

Ohlsson et al. (1974)

Potato 300–3,000 Lipid content of food
depresses dielectric activity
by volume exclusion

Mudgett et al. (1995)

Lard, corn
oil

0.01–100 Both ε′ & ε′′ of fats are low
and vary slightly with
source

Ryynanen (1995)

Beef burgers 2,430 10% fat decreased both ε′ and
ε′′

Lyng et al. (2002)

Pork fat and
beef

27.12, 2,450 20% fat decreased both ε′ &
ε′′ at both frequencies

Lyng et al. (2005)

Vegetable
oils

– ε′′ found to increase with ash
content and to decrease
with fat content of oil

Rudan-Tasic and
Klofutar (1999)

Table 8.3 Effect of salt or ash on dielectric properties of food and food products

Food/product
source

Range of
parameters Comments References

NaCl solutions 3,000,
10,000 MHz

Salt addition can decrease
dielectric constant (ε′)

Hasted et al. (1948)

Beef, pork 915 MHz 4% salt more than doubled
loss factor ( ε′′) while 1%
salt increased ε′′ by 20%

Van Dyke et al. (1969)

Gravy 2,800 MHz Adding 1% salt to gravy
increased ε′′ by about
20%and also slightly
increased ε′

Bengtsson and Risman
(1971)

Ham 2,450 MHz Salt content (0.5–3.5%)
increased ε′′ while ε′
remained relatively
constant

Li and Barringer
(1997)

0.27% Guar
solution

30,100 MHz Salt concentration
(0.2–0.7%) was not
significant vs. ε′′ while ε′
may be lowered

Piyasena and Dussault
(1999)

Beef burgers 2,430 MHz 3% salt depressed ε′ and ε′′ Lyng et al. (2002)
Aqueous and beef 27.12,

2,450 MHz
Salt depressed ε′′ and

increased ε′′ most
noticeably at 5% and
27.12 MHz in aqueous
solution

Lyng et al. (2005)

Flour slurry
concentration of
Indian basmati
rice

500–2,500 MHz
(temp. 30 and
80◦C)

Addition of 1% salt
markedly increased ε′′ of
slurries

Ahmed et al. (2007)
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particularly at lower frequencies for salty foods (Bengtsoson and Risman
1971). A decreasing trend of dielectric constant and loss factor was observed
in the lower moisture range for grapes (Tulasidas et al. 1995b). At higher
microwave frequencies 2,800 MHz only salty foods showed an increase in
dielectric loss, with temperature but at lower microwave frequencies there is
a general increase in loss factor (Bengtsson and Risman 1971, Ohlsson et al.
1974). The dielectric loss factors increased with ash content and decreased
with fat content of oil (Rudan-Tasic and Klofutar 1999). Microwave permit-
tivities of bread dough were measured over the frequency range from 600 to
2.4 MHz as a function of water-flour composition. The dielectric constant and
loss factor decreased with water content and reduction in baking time (Zuercher
et al. 1990). The penetration depth of bread dough was, however, surprisingly
low (8–10 mm) in comparison with normal foods (10–15 mm). As the vol-
ume expands during proofing, the penetration depth increased up to 16–19 mm
(Mellgren et al. 1988). Both dielectric constant and loss factor of flour are low
at microwave frequencies for lower water content (Kent 1987).

The influence of moisture content, temperature and frequency: Temperature
dependence of dielectric properties was not seen for dried granular solids but
increased dramatically at higher moisture contents over 9.4 GHz (Stuchly and
Stuchly 1980). Both the dielectric constant and loss factor of various foods
increased with increasing moisture content (Bengtsson and Risman 1971). The
dielectric properties of fruits and vegetables as a function of moisture and
temperature are reported by Calay et al. (1995). In general, dielectric con-
stant increases with temperature, whereas loss factor may either increase or
decrease depending on the operating frequency. Loss factor of fresh fruits
and vegetables generally increased with increasing temperature (Nelson 2003,
Sosa-Moralesa et al. 2009) and dielectric constant increased with temperature
at lower frequencies, but decreased with temperature at higher frequencies.
Temperature dependence of dielectric constant was minimal in the frequency
range between 0.01 and 1.8 GHz (Nelson 2003). The dielectric constant and
loss factor of flaxseed increased with an increase in moisture content and
bulk density, and decreased with frequency (Sacilik et al. 2006). The rate of
change of dielectric constant and loss factor with temperature depends on the
free and bound water content of the food materials (Calay et al. 1995). The
dielectric constant of fatty acids increased with an increase in the number of
double bonds or molecular chain length. Both dielectric constant and dielec-
tric loss of oils decreased with increasing temperature and dielectric constant
increased with increasing moisture content (Lizhi et al. 2008). The loss fac-
tor increased with temperature and transition phase of solid to liquid (Stier
2004). The dielectric constant of oils decreased with increasing temperature
(Rudan-Tasic and Klofutar 1999). Both the dielectric constant and loss fac-
tor of nuts increased regularly with moisture content at all frequencies and
decreased as the frequency increased. At lower moisture contents, the temper-
ature dependence was minimal, but both the dielectric constant and loss factor
increased rapidly with temperature at high moisture levels (Lawrence et al.
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1992, 1998). For salty foods at lower microwave frequencies, dielectric con-
stant shows a sharp decrease with increasing temperature. For moist foods, loss
factor increases with falling frequency (Bengtsson and Risman 1971, Ohlsson
et al. 1974, Nyfors and Vainikainen 1989). At constant temperatures, dielectric
constant and loss factor increase with decreasing frequency (Kent 1987) and
penetration depth decreases with increasing frequency, temperature and mois-
ture content. This was large enough at 27 MHz to develop large-scale industrial
radio frequency (RF) treatments. Dielectric constants of many cereal grains and
soybeans as functions of frequency, moisture content, and bulk density have
been reported (ASAE 2000, Nelson 1987, Kraszewski and Nelson 1989). For
moist foods, loss factor decreases with increasing frequency (Ryynanen 1995).
Ohlsson et al. (1974) observed that dielectric constant and loss factor increased
significantly with falling frequency for most foods tested and in most cases,
dielectric properties increased sharply with temperature during the transition
from –10 to 0◦C (thawing). At temperatures below the freezing point, dielec-
tric constants of codfish increases slightly before the abrupt increase depending
on the frequency (Bengtsson and Risman 1971). Dielectric properties of fish
meal as a function of the temperature and moisture content are reported by Kent
(1970, 1972). Both the dielectric constant and loss factor increased non-linearly
with moisture content and almost linearly with temperature (Kent 1970, 1972).
The dielectric constant of marinated catfish and shrimp, generally decreases
with increase in temperature whereas the loss factor increases with increase in
temperature (Zheng et al. 1998). The dielectric constant and loss factor of tuna
fish varies with the composition of a substance and the temperature (Liu and
Sakai 1999). A sharp increase in dielectric properties was observed around the
freezing point. The dielectric constant and loss factor increases with increased
water content at constant temperature. The dielectric constant and loss factor of
lean tuna were larger than those of fatty tuna. Penetration depths as the temper-
atures below the freezing point increased rapidly as the temperature decreased
(Liu and Sakai 1999). For beef products, both dielectric constant and loss factor
increase with decreasing frequency at constant temperature; however, dielec-
tric constant decreases and loss factor increases with increasing temperature at
constant frequency (To et al. 1974).

Physical structure of material: Dielectric properties vary with number of
physical attributes including bulk density, particle size and homogeneity. Bulk
density has been identified as a major source of variation for dielectric constant
and loss factor (Kent 1977, Kent and Kress-Rogers 1986, Nelson 1983, 1984,
Nelson and You 1989). The density dependence of the dielectric properties of
materials must be accounted in elaborating functions determining grain mois-
ture content and this relation could also be used in the control of continuous
on-line processing of grains (Meyer and Schilz 1980).

(f) Measurement techniques
Measurement of dielectric properties has gained importance because it

can be used for nondestructive monitoring of specific properties of materials
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undergoing physical or chemical changes and is finding increasing applica-
tion as a new electro-technology for use in agriculture and food processing
industries. A comprehensive overview of different techniques can be found
elsewhere (Venkatesh and Raghavan 2005). The dielectric properties of food
materials in the microwave region can be determined by several methods using
different microwave measuring sensors (Kraszewski 1980). Measurement tech-
niques mainly can be categorized as reflection or transmission types using
resonant or non resonant systems, with open or closed structures for sens-
ing properties of samples (Kraszewski 1980). Waveguide and coaxial line
transmission measurements represent closed structures while the free-space
transmission measurements and open-ended coaxial-line systems represent
open-structure techniques.

More practical measurement method appears to be utilizing the measure-
ment of dielectric properties of the agri-food products and the grain; more
specifically its relative permittivity and loss factor (Hlavacova 2003). These
techniques include wave guide measurements, resistivity cell, parallel plate,
lumped circuit, coaxial probe, transmission line, resonant cavity, free space,
parallel plate capacitor, cavity resonator, and time domain spectroscopy. The
lumped circuit techniques are only suitable for low frequencies and high loss
materials. Each method is having unique advantages and disadvantages (Icyer
and Baysal 2004b, Nyfors and Vainikainen 1989). Among these techniques,
open-ended coaxial probes have been the most commonly used method to deter-
mine the dielectric properties of high loss liquid and semi-solid foods (Nelson
et al. 1994, Herve et al. 1998), and fresh fruits and vegetables (Nelson and
Bartley 2000). The choice of a method for any desired application depends
on the nature of the dielectric material to be measured, sample physical state
(liquid or solid), shape (thickness, flatness) and electrically desired range of
frequency and the degree of accuracy required (Agilent Technologies 2005,
Nelson 1999). The choices of measurement equipment and sample holder
design depend upon the dielectric materials to be measured, the extent of
research, available equipment, and resources for the studies. The advantages
and disadvantages of various methods are compiled to aid selection of mea-
suring technique in Table 8.4. The particular measurement methods used in
agri-food sector are described here with their principles and limitations:

Cavity perturbation technique: The cavity perturbation technique is
frequently used for measuring dielectric properties of homogeneous food mate-
rials because of its simplicity, easy data reduction, accuracy, and high temper-
ature capability (Bengtsson and Risman 1971, de Loor and Meijboom 1966).
The technique is also well suited to low dielectric loss materials and can be very
accurate and are sensitive to low loss tangents (Hewlett-Packard 1992, Kent
and Kress-Rogers 1986, 1987). The resonant cavities are designed in the stan-
dard TM (transverse magnetic) or TE (transverse electric) mode of propagation
of the electro-magnetic fields. It is based on the shift in resonant frequency
and the change in absorption characteristics of a tuned resonant cavity. The
measurement is made by placing a sample completely through the centre of a



8 Miscellaneous Techniques 251

Ta
bl

e
8.

4
A

dv
an

ta
ge

s
an

d
di

sa
dv

an
ta

ge
s

of
di

ff
er

en
td

ie
le

ct
ri

c
pr

op
er

tie
s

m
ea

su
re

m
en

tt
ec

hn
iq

ue
s

Te
ch

ni
qu

e
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

C
av

ity
Pe

rt
ur

ba
tio

n
te

ch
ni

qu
e

Fr
eq

ue
nt

ly
us

ed
fo

r
m

ea
su

ri
ng

di
el

ec
tr

ic
pr

op
er

tie
s

of
ho

m
og

en
eo

us
fo

od
m

at
er

ia
ls

be
ca

us
e

of
its

si
m

pl
ic

ity
,

ea
sy

da
ta

re
du

ct
io

n,
ac

cu
ra

cy
,a

nd
hi

gh
te

m
pe

ra
tu

re
ca

pa
bi

lit
y.

A
ls

o
w

el
ls

ui
te

d
to

lo
w

di
el

ec
tr

ic
lo

ss
m

at
er

ia
ls

.C
an

be
ve

ry
ac

cu
ra

te
an

d
th

ey
ar

e
al

so
se

ns
iti

ve
to

lo
w

lo
ss

ta
ng

en
ts

.C
al

cu
la

tio
ns

ar
e

ra
pi

d.
Sa

m
pl

e
pr

ep
ar

at
io

n
is

re
la

tiv
el

y
ea

sy
an

d
a

la
rg

e
nu

m
be

r
of

sa
m

pl
es

ca
n

be
m

ea
su

re
d

in
a

sh
or

tt
im

e.
T

hi
s

m
et

ho
d

is
al

so
ea

si
ly

ad
ap

ta
bl

e
to

hi
gh

(u
p

to
+

14
0◦

C
)

or
lo

w
(–

20
◦ C

)
te

m
pe

ra
tu

re
s.

Fo
r

liq
ui

d
sa

m
pl

es
,b

ot
h

so
lid

an
d

liq
ui

d
m

ea
su

re
m

en
ts

ca
n

be
ac

cu
ra

te
ly

m
ea

su
re

d

T
he

re
so

na
nt

ca
vi

ty
sy

st
em

s
re

st
ri

ct
th

e
m

ea
su

re
m

en
ts

to
a

si
ng

le
fr

eq
ue

nc
y

O
pe

n-
en

de
d

co
ax

ia
lp

ro
be

s
M

os
tc

om
m

on
ly

us
ed

m
et

ho
d

to
de

te
rm

in
e

th
e

di
el

ec
tr

ic
pr

op
er

tie
s

of
hi

gh
lo

ss
liq

ui
d

an
d

se
m

i-
so

lid
fo

od
s

an
d

fr
es

h
fr

ui
ts

an
d

ve
ge

ta
bl

es
.Q

ui
te

ea
sy

to
us

e
an

d
ca

n
be

us
ed

fo
r

liq
ui

d
an

d
se

m
i-

so
lid

m
at

er
ia

ls
in

cl
ud

in
g

bi
ol

og
ic

al
an

d
fo

od
m

at
er

ia
ls

.T
hi

s
m

et
ho

d
is

co
nv

en
ie

nt
an

d
of

te
n

lit
tle

or
no

sa
m

pl
e

pr
ep

ar
at

io
n

D
ue

to
de

ns
ity

va
ri

at
io

ns
in

m
at

er
ia

l,
su

ch
te

ch
ni

qu
es

ar
e

no
tf

re
e

of
er

ro
rs

.N
ot

su
ita

bl
e

fo
r

de
te

rm
in

in
g

pe
rm

itt
iv

iti
es

of
gr

an
ul

ar
an

d
pu

lv
er

iz
ed

sa
m

pl
es

T
ra

ns
m

is
si

on
lin

e
te

ch
ni

qu
e

M
or

e
ac

cu
ra

te
an

d
se

ns
iti

ve
th

an
th

e
m

or
e

re
ce

nt
co

ax
ia

l
pr

ob
e

m
et

ho
d.

L
iq

ui
ds

an
d

vi
sc

ou
s-

flu
id

ty
pe

fo
od

s
ca

n
be

m
ea

su
re

d.
T

he
di

el
ec

tr
ic

pr
op

er
tie

s
ca

n
be

ea
si

ly
an

d
in

ex
pe

ns
iv

el
y

ob
ta

in
ed

Sa
m

pl
e

pr
ep

ar
at

io
n

is
al

so
m

or
e

di
ffi

cu
lt

an
d

tim
e

co
ns

um
in

g

R
es

on
at

or
s

an
d

tr
an

sm
is

si
on

lin
e

T
he

m
et

ho
d

ap
pl

ie
s

to
al

ll
iq

ui
d

an
d

so
lid

m
at

er
ia

ls
N

ot
ap

pl
ie

s
to

ga
se

s
si

nc
e

th
ei

r
pe

rm
itt

iv
iti

es
ar

e
to

o
lo

w
.P

ro
bl

em
s

w
ith

th
e

sa
m

pl
e

pr
ep

ar
at

io
n

of
so

lid
m

at
er

ia
ls

.T
he

ac
cu

ra
cy

is
no

ta
s

go
od



252 S.N. Jha

Ta
bl

e
8.

4
(c

on
tin

ue
d)

Te
ch

ni
qu

e
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

T
im

e
do

m
ai

n
sp

ec
tr

os
co

py
/r

efl
ec

to
m

et
ry

T
he

m
ea

su
re

m
en

ti
s

ve
ry

ra
pi

d
an

d
ac

cu
ra

cy
is

hi
gh

.T
he

sa
m

pl
e

si
ze

us
ed

is
ve

ry
sm

al
la

nd
th

e
su

bs
ta

nc
e

to
be

m
ea

su
re

d
m

us
tb

e
ho

m
og

en
eo

us
.T

he
y

ar
e

ex
ce

lle
nt

to
ol

s
fo

r
ad

va
nc

ed
re

se
ar

ch
on

th
e

in
te

ra
ct

io
n

of
el

ec
tr

om
ag

ne
tic

en
er

gy
an

d
m

at
er

ia
ls

ov
er

a
w

id
e

fr
eq

ue
nc

y
ra

ng
e

T
he

se
m

et
ho

ds
ar

e
ex

pe
ns

iv
e

Fr
ee

sp
ac

e
tr

an
sm

is
si

on
te

ch
ni

qu
es

D
o

no
tr

eq
ui

re
sp

ec
ia

ls
am

pl
e

pr
ep

ar
at

io
n,

th
er

ef
or

e
th

ey
ar

e
pa

rt
ic

ul
ar

ly
su

ita
bl

e
fo

r
m

at
er

ia
ls

at
hi

gh
te

m
pe

ra
tu

re
an

d
fo

r
in

ho
m

og
en

eo
us

di
el

ec
tr

ic
s.

T
he

y
m

ay
be

ea
si

ly
im

pl
em

en
te

d
in

in
du

st
ri

al
ap

pl
ic

at
io

ns
fo

r
co

nt
in

uo
us

m
on

ito
ri

ng
an

d
co

nt
ro

le
.g

.,
m

oi
st

ur
e

co
nt

en
td

et
er

m
in

at
io

n
an

d
de

ns
ity

m
ea

su
re

m
en

t.
A

cc
ur

at
e

m
ea

su
re

m
en

to
f

th
e

pe
rm

itt
iv

ity
ov

er
a

w
id

e
ra

ng
e

of
fr

eq
ue

nc
ie

s
ca

n
be

ac
hi

ev
ed

Si
x-

po
rt

re
fle

ct
om

et
er

(S
PR

)
us

in
g

an
op

en
-e

nd
ed

co
ax

ia
lp

ro
be

SP
R

ca
n

pr
ov

id
e

no
n-

de
st

ru
ct

iv
e

br
oa

db
an

d
pe

rm
itt

iv
ity

m
ea

su
re

m
en

ts
w

ith
ac

cu
ra

cy
co

m
pa

ra
bl

e
to

co
m

m
er

ci
al

.D
at

a
ac

qu
is

iti
on

an
d

re
du

ct
io

n
ar

e
fu

lly
au

to
m

at
ic

T
hi

s
m

et
ho

d
in

vo
lv

es
a

m
or

e
co

m
pl

ex
m

at
he

m
at

ic
al

pr
oc

ed
ur

e
in

or
de

r
to

tr
an

sl
at

e
th

e
si

gn
al

ch
ar

ac
te

ri
st

ic
s

in
to

us
ef

ul
pe

rm
itt

iv
ity

da
ta

C
ol

lo
id

di
el

ec
tr

ic
pr

ob
e

It
ca

n
m

ea
su

re
di

el
ec

tr
ic

pr
op

er
tie

s
of

co
llo

id
al

liq
ui

d
m

at
er

ia
ls

in
fo

od
,c

he
m

ic
al

,p
ha

rm
ac

eu
tic

al
,

an
d

bi
oc

he
m

ic
al

in
du

st
ri

es
qu

ic
kl

y
an

d
ac

cu
ra

te
ly

T
he

lu
m

pe
d

ci
rc

ui
tt

ec
hn

iq
ue

s
A

ll
m

at
er

ia
lt

yp
es

,e
xc

ep
tg

as
es

,c
an

be
m

ea
su

re
d

N
ot

us
ed

w
id

el
y

be
ca

us
e

of
su

ita
bl

ili
ty

on
ly

fo
r

lo
w

fr
eq

ue
nc

ie
s

an
d

hi
gh

lo
ss

m
at

er
ia

ls



8 Miscellaneous Techniques 253
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Vector Network Analyzer 

Fig. 8.1 Schematic representation of a resonant cavity method (R, reflected power, T, transmitted
power) (Jha et al. 2010)

waveguide (rectangular or circular) that has been made into a cavity (Fig. 8.1).
Changes in the centre frequency and width due to insertion of sample are related
to dielectric constant. For ease of measurement, the vector network analyzer
(VNA) can be used to automatically display changes in frequency and width
(Engelder and Buffler 1991). The measurement details and the perturbation
equations adapted for calculation of dielectric constant and loss factor along
with accuracy information were reported by Liao et al. (2001) and Venkatesh
(2002). The resonant cavity systems restrict the measurements to a single fre-
quency. Each cavity needs calibration but, once the calibration curves have been
obtained, calculations are rapid. Sample preparation is relatively easy and a
large number of samples can be measured in a short time. This method is also
easily adaptable to high (up to +140◦C) or low (–20◦C) temperatures (Ohlsson
and Bengtsson 1975, Risman and Bengtsson 1971). Sharma and Prasad (2002)
have used the cavity perturbation method to measure the dielectric properties
of garlic at selected levels of moisture content and at 35–75◦C temperature.

Open ended coaxial probe technique: The coaxial probe method is basically
a modification of transmission line method. It uses a coaxial line, which has a
special tip that senses the signal reflected from the material. The tip is brought
into contact with the substance by touching the probe to a flat face of a solid
or by immersing it in a liquid. The reflected signal is related to the dielec-
tric properties of the substance. Though the method is quite easy to use and
is possible to measure the dielectric properties over a wide range of frequen-
cies (500 MHz–110 GHz) with limited accuracy particularly with materials
with low values of absolute permittivity i.e. dielectric constant and loss factor
(Engelder and Buffler 1991, Hewlett-Packard 1992). This technique is valid for
915 and 2,450 MHz, for materials with loss factors greater than one (Sheen and
Woodhead 1999, Hewlett-Packard 1992). Typical open-ended probes utilize
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3.5 mm diameter coaxial line. For measurement of solid samples, probes with
flat flanges are suggested to use (Hewlett-Packard 1992).

This technique is also used to measure the dielectric properties as thermal
treatments for controlling insects in fruits at temperature range of 20–60◦C
over a frequency range from 1 to 1,800 MHz (Wang et al. 2003). For liquid
and semi-solid materials including biological and food materials, open-ended
coaxial-line probes have been used for broadband permittivity measurements
(Blackham and Pollard 1997, Grant et al. 1989). A similar technique is used for
permittivity measurements on fresh fruits and vegetables (Nelson et al. 1994,
Ohlsson et al. 1974). Due to density variations in material, such techniques are
not free of errors. If there are air gaps or air bubbles between the end of coaxial
probe and sample, this technique is not suitable for determining permittivity of
granular and pulverized samples. This method is convenient, relatively easy to
use, and often little or no sample preparations are required over a wide range
of frequencies (Feng et al. 2002, Ikediala et al. 2000, Nelson 2003, Venkatesh
and Raghavan 2004, Wang et al. 2003, 2005).

Transmission line technique: In transmission line methods, sample is put
inside an enclosed transmission line and both reflection and transmission are
measured. Although this method is more accurate and sensitive than the more
recent coaxial probe method, it is useful in a narrower range of frequencies. As
the sample must fill the cross-section of the transmission line (coaxial or rectan-
gular), sample preparation is also more difficult and time consuming (Engelder
and Buffler 1991, Hewlett-Packard 1992). When such methods are used to
determine moisture content, the frequency used should be above 5 GHz to avoid
the influence of ionic conductivity and bound water relaxation (Kraszewski
1996). Liquid and viscous-fluid type foods can be measured with this method
by using a sample holder at the end of a vertical transmission line. The dielectric
properties can be easily and inexpensively obtained by this technique, partic-
ularly if one utilizes a slotted line and standing wave indicator (Nelson et al.
1974). A more sophisticated implementation of the technique utilizes a swept-
frequency network analyzer, where the impedance is measured automatically
as a function of frequency. This technique is cumbersome because the sample
must be made into a slab or annular geometry. At 2,450 MHz, the sample size is
somewhat large, particularly for fats and oils (Venkatesh and Raghavan 2005).

Resonators and transmission line: A microwave resonator, partly or com-
pletely filled with a material, can also be used to determine permittivity. The
resonator (perturbation technique) is usually calibrated with materials whose
dielectric properties are known, usually with organic solvents such as methanol,
ethanol, etc. The measurement frequency range is from 50 MHz to more than
100 GHz. If the transmission line is enclosed, the permittivity of a material can
also be measured without the resonator by putting it directly inside the waveg-
uide. The method applies to all liquid and solid materials, but not to gases since
their permittivities are too low. There are, however, problems with the sam-
ple preparation of solid materials. The accuracy is not as good as that of the
transmission line with resonator (Venkatesh and Raghavan 2005).
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Waveguide and coaxial transmission line method: Early efforts to charac-
terize the dielectric properties of materials were made at the Massachusetts
Institute of Technology (Roberts and Von Hippel 1946) using this method.
Coaxial-line and rectangular wave-guide sample holders are used with various
microwave measurement systems assembled for dielectric properties determi-
nation on grain, seed, and fruit and vegetable tissue samples at frequencies from
1 to 22 GHz (Nelson 1973, 1983, 1991). The same sample holders are useful
for measurements on pulverized coal and mineral samples (Nelson 1983) also.

Time domain spectroscopy/reflectometry (TDR) method: Time domain spec-
troscopy/reflectometry methods have been much developed in the 1980s. They
cover a frequency range from 10 MHz to 10 GHz. This method also utilizes the
reflection characteristic of the food material under test to compute the dielec-
tric properties. The measurement is very rapid and accuracy is high, within a
few percent error (Afsar et al. 1986). The sample size used is very small and
the substance to be measured must be homogeneous. Although these methods
are expensive, they are excellent tools for advanced research on the interac-
tion of the electromagnetic energy and materials over a wide frequency range
(Mashimo et al. 1987, Ohlsson et al. 1974). The dielectric properties of honey-
water mixture have been investigated and tabulated using this technique in the
frequency range of 10 MHz–10 GHz at 25◦C by Puranik et al. (1991).

Free space transmission techniques: In this method sample is placed between
a transmitting antenna and receiving antenna and the attenuation and phase
shift of the signal are measured. The dielectric sample holders with rectangular
cross-sections were placed between the horn antennas and a similar radiating
element (Trabelsi et al. 1997). The usual assumption made during this tech-
nique is that a uniform plane wave is normally incident on the flat surface
of a homogenous material, and that the planar sample has infinite extent lat-
erally (Venkatesh and Raghavan 2005). Special sample preparations are not
required in this method. Therefore, they are particularly suitable for materi-
als at high temperature and for inhomogeneous dielectrics. In addition, they
may be easily implemented in industrial applications for continuous monitor-
ing and control e.g., moisture content determination and density measurement
(Kraszewski 1980). Accurate measurement of the permittivity over a wide
range of frequencies can be achieved by this technique.

Micro strip transmission line: Micro strips have long been used as microwave
components suitable for use in dielectric permittivity measurement. It shows
many properties and overcome some of the limitations. It is thus well known
that the effective permittivity (a combination of the substrate permittivity and
the permittivity of the material above the line) of a micro strip transmission line
(at least for thin width to height ratios) is strongly dependent on the permittiv-
ity of the region above the line (Venkatesh and Raghavan 2005). This effect has
been utilized in implementing microwave circuits and to a lesser extent inves-
tigation of dielectric permittivity. Furthermore, the measurement of effective
permittivity is relatively straightforward and well suited for implementation
in industrial equipment. Such a system could be based on determining the
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effective permittivity of a micro strip line covered by an unknown dielectric
substance (Keam and Holmes 1995).

Six-port reflectometer (SPR) using an open-ended coaxial probe: SPR
can provide nondestructive broadband permittivity measurements with accu-
racy comparable to commercial one (Venkatesh and Raghavan 2005).
Nondestructive broadband permittivity measurements using open-ended coax-
ial lines as impedance sensors are of great interest in a wide variety of
biomedical applications (Ghannouchi and Bosisio 1989). The device under
test is an open-ended coaxial test probe immersed in the test liquid kept at a
constant temperature. Data acquisition and reduction are fully automatic. This
effective transmission line method, used to represent the fringing fields in the
test medium, provided a good model to interpret microwave permittivity mea-
surements in dielectric liquids. Using such a model, the precision on relatively
high-loss dielectric liquid measurements is expected to be good. However this
method involves a more complex mathematical procedure in order to translate
the signal characteristics into useful permittivity data (Venkatesh and Raghavan
2005).

Colloid dielectric probe: This electrical technology can quickly and accu-
rately measure dielectric properties (permittivity) for evaluation of colloidal
liquid materials in food, chemical, pharmaceutical, and biochemical industries.
The advanced sensing technique provides permittivity vs. frequency character-
istics. Its electromagnetic technique eliminates the electrode polarization effect,
which causes measurement error when ionic materials are measured with metal
electrodes (Venkatesh and Raghavan 2005).

Measurement of correct dielectric constant as envisaged from the preceding
paragraphs is a difficult job. The relative static permittivity, εr, is measured for
static electric fields as follows: first the capacitance of a test capacitor, C0, is
measured with vacuum between its plates. Then, using the same capacitor and
distance between its plates the capacitance Cx with a dielectric between the
plates is measured. The relative dielectric constant can be calculated as

εr = Cx

C0
(8.8)

Various instrumental setups nowadays are available to measure the capacitance
of a sample. Reader can choose the most suitable for their type of samples.

8.2 Thermal Imaging

Thermal imaging (TI) is an emerging, noninvasive process analytical technique suit-
able for the food industry. Originally it was developed for military applications,
but has recently emerged as a powerful nondestructive measurement technique in
other industries (Gowen et al. 2010). It is an emerging tool for food quality and
safety assessment in the food industry too (Gowen et al. 2010). Thermal imaging
is a technique to convert the invisible radiation pattern of an object into visible
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images for feature extraction and analysis (Vadivambal and Jayas 2010). Thermal
imaging or infrared (IR) thermography is a two-dimensional, noncontact diagnos-
tic technique for measuring surface temperature of materials which can be usefully
employed in non destructive quality evaluation (Giorleo and Meola 2002, Gowen
et al. 2010). Thermal imaging utilizes the radiation emitted to produce a pseudo
image of thermal distribution of a body surface. In thermography, a large number of
point temperatures are measured over an area and processed to form a thermal map
or thermogram of the target surface. Thermography with high spatial resolution is a
powerful tool for analyzing and visualizing targets with thermal gradients. Research
to date shows that opportunities exist for its potential application in food quality and
safety control. Nondestructive evaluation using this technique provides information
of product properties such as discontinuities and separations; structure; dimensions
and metrology; physical and mechanical properties; composition and chemical anal-
ysis; stress and dynamic response; signature analysis and abnormal sources of heat
(Giorleo and Meola 2002). It is a nondestructive, non-contact system of recording
temperature by measuring infrared radiation emitted by a body surface (Arora et al.
2008). Food processors are increasingly investigating new and innovative technolo-
gies for food quality and safety profiling. Thermal imaging studies were limited due

Table 8.5 Advantages and disadvantages of selected measurement techniques

Technique Principle Advantages Disadvantages

Visual testing Mechanical-optical Low cost, minimum
training

Time consuming,
low resolution,
repeatability and
high error

Radiographic testing Penetrating radiation Non-contact Time consuming,
hazardous

Nuclear magnetic
resonance

Magnetic field Quick, can be used
in routine analysis

Expensive

Ultrasonic testing Sonic-ultrasonic Non-contact Single point
measurement,
limited to
acoustics
impedance

Thermal imaging Temperature and
heat flow
measurements

Non-contact, no
harmful radiation,
high portability,
real-time imaging

Requires training,
expensive

X-ray topography Electromagnetic
spectrum
wavelength
(<1 nm)

Non-contact Time consuming,
hazardous, not
applicable to bulk
flowing products

Hyperspectral
imaging

Spectroscopy Multi-constituent
information
Sensitivity to
minor components

Requires training,
expensive
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to the poor sensitivity of the TI systems available (Gowen et al. 2010). With the
advancement in computer, analytical tools with digitalized high-resolution imag-
ing, it has found application in various other fields including medicine, material
science and fire safety (Amon et al. 2008). In medical sciences, thermal imaging
has been shown to be a useful method for analyzing patterns of temperature change,
which can help to locate areas of maximum heat production (McCullagh et al. 2000).
Thermal imaging quantifies the changes in surface temperature with high temporal
and spatial resolution compared to single point measurements as in the case of other
contact methods (e.g. thermocouples, thermometers). Recent advances and potential
applications of TI for food safety and quality assessment such as temperature vali-
dation bruise and foreign body detection and grain quality evaluation are reviewed.
Applications of TI for determining food quality and safety and comparison of this
technique with other key nondestructive methods were reviewed by Gowen et al.
(2010) and are presented in Table 8.5. Thermal imaging systems are suitable for
a wide range of applications due to their portability, real-time imaging, noninva-
sive and noncontact temperature measurement capability. They can also be applied
to real food systems without alteration (Nott and Hall 1999). Increasing demands
for objectivity, consistency and efficiency within the food industry, have necessi-
tated the introduction of computer-based image processing techniques which have
already been discussed in Chap. 3.

8.3 Magnetic Methods

Magnetic materials are suitable for characterization of changes in structure of fer-
romagnetic materials, because their magnetization processes are closely related to
the microstructure of the materials. This fact also make the magnetic measurements
an evident candidate for nondestructive testing, for detection and characterization
of any modification and/or defects in materials and manufactured products made
of such materials. Structural non-magnetic properties of ferromagnetic materials
have been nondestructively tested using various magnetic methods for a long time
but with fair success only. The application of magnetic methods, therefore, in daily
testing has not been succeeded.

The main research therefore in this method is focused towards clarification and
quantification of relationship between microstructure and magnetism in materials
and develop in-situ magnetic inspection techniques for quantitative nondestructive
evaluation of components and structures including: (i) methods for evaluating per-
formance related properties of materials from their structure sensitive magnetic
properties (ii) new techniques and instrumentations for evaluation of materials con-
ditions using magnetic properties, and (iii) models for description of magnetic
properties and their dependence on structure.

A large number and quite different methods exist in this area. Few are: magnetic
hysteresis loop measurements, barkhausen noise measurement, magnetic acous-
tic emission, micromagnetic, multiparameter, microstructure, and stress analysis,
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magnetic flux leakage analysis, combination of conventional eddy current tech-
nique with magnetic field measurement, magneto-optical methods, magnetostrictive
delay line technique and classic low frequency magnetometry. Majority of these
methodologies are being tried in metallurgy and may be tried in food items to detect
the presence of items having ferromagnetic characteristics and properties in food.
Magnetic resonance imaging (MRI) is being tried world wide.

MRI primarily was developed and being used as a medical diagnostic tool. It is
a technique for obtaining high-resolution images of internal structure by mapping
the distribution of hydrogen nuclei. The principle of MRI is that all atomic nuclei
with an odd number of protons are positively charged. As nuclei spin, they create
micro-magnetic fields around themselves, so that each nucleus resembles a tiny bar
magnet with the north and south poles along the axis of spin. Ordinarily, nuclei
are oriented randomly so that there is no net magnetic field. However, if a strong
and uniform external magnetic field is applied, the nuclei will line up to create a
detectable magnetic field. This technique however is costly and requires special skill
to use in field. This technique has been covered in detail in Chap. 5.

8.4 Modeling of Quality Attributes

Foods are numerous, so as the quality attributes too. It is therefore usually difficult to
measure all the quality attributes of any food item. People therefore measure some
important attributes and decide about the overall quality of a particular food. Here,
two important quality parameters such as maturity and over all quality index of some
fruits and freshness index of vegetables, which are often not measureable directly,
have been reproduced from literature for understanding the modeling process of
quality attributes.

8.4.1 Maturity Index

Maturity is a concept which is not easy to define quantitatively. For the purpose,
three maturity indices of apple have been introduced: physiological maturity, Streif
index and respiratory maturity (Peirs et al. 2005).

(a) Physiological maturity
Physiological maturity is defined as the number of days before the optimal

harvest date. The harvest date is set equal to the mean of the period provided to
the growers. Generally this period is 1–2 weeks longer, depending on the cul-
tivar, and is predicted based on a comparison of time course of soluble solids
content, acidity, background colour, size, firmness and Streif index with his-
torical data. The disadvantage of this approach, however, is that the prediction
is some extent a subjective interpretation and that the accuracy of the harvest
prediction can only be verified based on the fruit quality after a few months
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of storage and subsequent shelf-life, i.e., at consumption. In addition, the mea-
surements are very time-consuming. Calibration models, which are based on
the relation between historical spectral data and their respective harvest dates,
would offer a tool to non destructively predict the harvest date of future fruit, a
couple of weeks prior to harvest.

(b) Streif index
Streif index is an indirect measurement of the maturity, which is widely used

by commercial growers in Belgium and other countries in Europe, and is a
combination of three fruit attributes: firmness, soluble solids content and starch
index. The Streif index is calculated using Eqn as follows (Streif 1996):

Is = F

R × S
(8.9)

Where, Is is Streif index, F is firmness in kgcm–2, R soluble solids content in
oBrix and S is starch index.

The Streif index decreases exponentially during maturation of the fruit until
reaching the cultivar-specific threshold value for optimal harvest. At this point,
fruit destined for extended storage must be harvested. The Streif index latter on
can be correlated with physiological maturity and may also be modeled with
NIR spectral data for nondestructive prediction.

Based on the concept of relation between development of physiological matu-
rity and soluble solids content, another simple maturity index for mango has
been developed as expressed in the following Eqn (Jha et al. 2007):

Im = Ts

8
× 100 (8.10)

where, Im is maturity index in percent, Ts is total soluble solids content in oBrix.
This index may vary from about 50% maturity to even up to 250%. When values
reach to about 100% it is assumed that mango is fully mature for harvesting.
Beyond this value, it indicates over-maturity or states of ripeness. Highly ripped
mango will have value of Im as high as 250% or more.

(c) Respiratory maturity
Changes in respiration rate up to the respiration minimum are also used to

monitor the change in maturity. The optimal harvest date is typically slightly
later than this minimum. Respiration rate calculation is well known in the text so
is not being presented here. The respiratory maturity was defined as the number
of days between the measurement date and the day when the minimal respiration
rate was reached. The minimum of this curve was determined by calculation of
the derivative of the second-order polynomial that best fitted through the data
points. The disadvantage of this technique is that the minimum is found rather
late while the growers have to be informed a few weeks in advance. Further,
it is not relevant to use NIR spectra to predict the respiration rate as the abso-
lute minimal respiration rate might differ among the seasons. Therefore, it is
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suggested to examine the relation between spectra and time remaining until the
respiratory minimum is reached (Peirs et al. 2005).

8.4.2 Quality Index

Quality of food is a relative term and is judged subjectively. It has been described in
detail in Chap. 1. For quantitative determination of quality, various factors (quality
attributes) have to be taken together to formulate an index which would give the
overall idea of the product quality. Sometimes it is also referred as freshness index
which gives an idea of how old or new the products are, or what approximately
remaining shelf life of the product will be?

(a) Formulation of quality index (Iq): Jha et al. (2010b) modeled various quality
parameters of apple to define the overall quality in terms of quality index (Iq).
At the outset they assumed the index for a very good selected apple as one
and then fourteen model expressions (Table 8.6) taking ideas from the trends
of quality attributes such as TSS, titratable acidity, gloss, density, colour val-
ues, yellowness index etc. with physiological maturity were formulated. For the
purpose, experience from literature (Jha et al. 2007) and preliminary trials on
many other expressions, not shown here, were also considered. The Iq values
were thereafter computed at each storage interval and matched with the trends
of likeness of the sensory panel for selecting the best expression. The computed

Table 8.6 Possible models
for computing overall quality
index (Iq) of apple

Model no. Model equations

1. D × TS × G60/Yi
2. G45 × TS/(L + a + b)
3. G60 × TS/(L + a + b)
4. TS × G60/(TS/A)
5. A × TS/|(a × b)|
6. A × TS × D/|(a × b)|
7. TS × G45/Yi
8. TS × G60/Yi
9. TS × G60/(TS/A × D)

10. TS × G45/(Yi ×D)
11. A × TS × D × G45/(b × Yi)
12. G45 × G60 × D/L
13. A × G60/(b + Yi)
14. Yi/(D × TS/A)

Ts, total soluble solid in ◦Brix; A, acidity in %; G45
and G60 are gloss values at 45 and 60◦ angle in GU,
respectively; D, density in kgm–3; L, a, b are colour
values; Yi, yellowness index.
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Table 8.7 Computed quality index of apple using different model equations

Storage period (days)

Model no. 0 2 4 6 8 11 21 23 26 28

1. 1.050 0.544 0.350 0.451 0.446 0.490 0.451 0.459 0.397 0.345
2. 1.233 0.931 0.726 0.708 0.685 0.732 0.755 0.733 0.682 0.622
3. 1.096 0.616 0.407 0.506 0.440 0.521 0.471 0.492 0.418 0.384
4. 1.072 0.456 0.272 0.351 0.301 0.250 0.198 0.249 0.249 0.210
5. 1.008 0.659 0.533 0.553 0.514 0.344 0.281 0.369 0.260 0.267
6. 1.040 0.645 0.518 0.537 0.509 0.337 0.273 0.358 0.254 0.257
7. 1.168 0.839 0.642 0.652 0.701 0.703 0.743 0.704 0.663 0.580
8. 1.039 0.556 0.361 0.466 0.451 0.501 0.465 0.473 0.407 0.358
9. 1.060 0.466 0.280 0.361 0.304 0.257 0.204 0.256 0.255 0.218

10. 1.155 0.858 0.661 0.672 0.709 0.718 0.765 0.724 0.680 0.602
11. 1.015 0.506 0.352 0.334 0.292 0.232 0.195 0.233 0.230 0.218
12. 1.001 0.469 0.243 0.283 0.277 0.304 0.266 0.263 0.289 0.212
13. 1.038 0.426 0.250 0.314 0.277 0.222 0.167 0.212 0.210 0.177
14. 1.020 0.839 0.776 0.776 0.674 0.513 0.439 0.542 0.628 0.609

Iq from selected model was thereafter correlated to storage period and other
measured parameters to know its predictability nondestructively.

Selection of expression for overall quality index: Computed Iq using various
model equations were ranged between 1.001 and 0.177 (Table 8.7). The trends
of computed values of Iq of model number 5 and 12 indicated that the initial
values of quality index are very nearer to one as assumed, but values computed
by model 12 declined suddenly after 2 days, during storage. The sudden fall in
quality within 2 days of storage was not visible and was also not indicated by
the sensory panel. It was probably because this model comprised of only phys-
ical parameters. The values computed by model 5, however, yielded gradual
changes in quality index as compared to any other model and was comprised
of both physical as well as biochemical parameters. Other researchers had have
also indicated the importance of both physical and bio-chemical parameters on
maturity. Therefore, model 5 was tentatively selected for further validation.

The range of quality index and percent of likeness of apple (Table 8.8) indi-
cate that initially, majority of apples were either liked extremely or moderately.
The degree of likeness was determined till 100% respondents extremely dis-
liked the apples. The data indicated that “liked extremely” decreased to a level
of 31% when predicted Iq was in the range of 0.69–0.60. The sensory scores
also indicated that deterioration in apple is as gradual as the computed quality
index. The trend of acceptability of apple was thus almost matching with the
trend of predicted quality. Thus, the expression (model no. 5) (Table 8.6) was
finally selected among all the expressions. The quality index of apple thus may
be defined as the ratio of product of acidity (%) and TSS (ºBrix) to the mode of
product of a and b Hunter colour values of apple.
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Table 8.8 Percentage of respondents for sensory scores with their predicted quality index (Iq)
using model no. 5

Predicted
quality
index

Liked
extremely
(9a)

Liked
moderately
(7a)

Disliked
moderately
(3a)

Disliked
extremely
(1a) Remarks

1.00–0.90 64 35 1 0 Good taste and
appeal

0.89–0.80 58 33 7 2 Good taste but,
not fresh

0.79–0.70 44 30 19 7 Fair appearance
& taste

0.69–0.60 31 28 28 13 Dull colour and
gloss Y

0.59–0.50 26 25 33 16 Shriveled, rotting
spots

0.49–0.40 11 18 24 47 Partially rotten
0.39–0.30 0 0 8 92 Major portions

rotten
0.29–0.20 0 0 0 100 Unacceptable,

rejected

aSensory scores (9 point hedonic scale).

Relationship between Iq and measured quality parameters: Regression equa-
tions viz. linear, logarithmic, power, second order polynomial and exponential
were fitted to computed Iq and measured quality parameters and storage period
to see the possibility of predicting Iq using either of these physico-chemical
parameters nondestructively. Best fitted expressions with their respective corre-
lation coefficients are presented in Table 8.9. It shows that Iq decreased inversely
with storage period. Rate of decrease was initially faster (almost exponential)

Table 8.9 Regression equations with their corresponding correlation coefficient (R) for various
measured quality parameters

Parameter Regression equation R

Total soluble solids –0.0006 Sp
3 + 0.0225 Sp

2–0.1332 Sp + 12.927 0.940

Acidity –7E–06 Sp
3 + 0.0005 Sp

2–0.0118 Sp + 0.151 0.956

Gloss at 45◦ –0.0009 Sp
3 + 0.0432 Sp

2–0.6143 Sp + 7.136 0.918

Gloss at 60◦ –0.001 Sp
3 + 0.0502 Sp

2–0.7098 Sp + 5.8204 0.859

Density –1E–05 Sp
3 + 0.0005 Sp

2–0.0072 Sp + 1.0005 0.808

L values –0.0011 Sp
3 + 0.0238 Sp

2 + 0.3277 Sp + 49.319 0.859

a values 0.0016 Sp
3–0.0495 Sp

2 + 0.419 Sp + 11.146 0.937

b values –0.001 Sp
3 + 0.0243 Sp

2 + 0.213 Sp + 18.317 0.939

Yellowness index 0.0011 Sp
3–0.0452 Sp

2 + 0.8507 Sp + 86.032 0.915

Sp, Storage period in days.
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than at latter stages and reached to its minimum value of 0.26 after storage
period of 23 days, and thereafter it became almost constant. It decreased with
increase in TSS whereas, it increased with increase in acidity. This means that
as the TSS increased with storage, the degree of likeness got reduced, whereas
the apple with slightly acidic taste is preferred by the consumer. Similarly the Iq

increased with increase in gloss and density of apple during storage period. This
is due to the fact that glossy surface and non-shriveled fruit surface is always
preferred. Density and gloss actually decreased with storage period and qual-
ity index follows the trend. At the end of storage period of 28 days the overall
indices were about 0.26 and 0.3. These values are almost the same as those
computed using storage period, yellowness index and at stage of rejection of
apple by the sensory panel. The color values (L, a, b) and yellowness index was
satisfactorily correlated with the computed quality index and decreased with
the increase of these parameters. This is in line with the trend followed by the
acceptability scores. This might be attributed to the perception that red, less
green and less yellow apples are liked by the consumers. Comparison of results
indicated that consumers might reject the apple even if the quality index comes
about 0.25–0.3. Similar trends for the colour values with strong correlations
with the consumer acceptability has also been reported by Vieira et al. (2009),
Drogoudi et al. (2008), Iglesias et al. (2008), Orak (2007).

Based on respiration rate Joas et al. (2009) has developed a ripening class
index (Rci) of mango. The Rci was used to study the impact of agronomic
conditions such as leaf-to-fruit ratio and harvest stage on the changes in
physicochemical criteria traditionally used as quality descriptors. Sugar con-
tent increases with the increase in carbon supply and the harvest stage, whereas
the titratable acidity and the hue angle decrease during ripening. This type of
index can be used to validate the relevance of harvest indicators by verifying the
homogeneity of the changes in stored batches or for more effectively assessing
the impact of a storage technique on fruit metabolism.

(b) Freshness index (If): The freshness index of eggplant was defined as the ratio of
product of relative spectral reflectance (surface gloss) and stiffness ratio to the
density ratio and was computed using mean surface gloss ratio (Gsr), stiffness
ratio (Sr) and density ratio (Dr) of eggplant as below (Jha and Matsuoka 2002):

If = GsrSr

Dr
(8.11)

8.5 Practical Applications

8.5.1 Electrical Technology

The most common application of electrical technology is in the determination of
moisture content of agricultural materials. One of the earliest applications of such
electrical properties is the study of direct current (d.c.) and electrical resistance
of grain for rapid determination of its moisture content. Jha and Matsuoka (2004)
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Fig. 8.2 Schematic arrangement of instruments used for measuring the electrical resistance of the
eggplant: (1) platinum electrode; (2) insulated plate; (3) electronic balance; (4) sample holder; (5)
cloth piece; (6) eggplant fruit; (7) constant temperature chamber (Jha and Matsuoka 2004)

determined the electrical resistances of eggplant fruits (Fig. 8.2) and correlated them
with gloss, weight and storage period; and advanced applications of electrical resis-
tance measurement was compiled by Leppack (1998). Later radio-frequency (RF)
measurements (Kim et al. 2003, Nelson and Payne 1982, Nelson and Whitney 1960,
Wang et al. 2006a, 2001), changes in the capacitance of sample-holding capacitors,
when grain samples were introduced between the capacitor plates, were correlated
with grain moisture content and used for grain moisture measurement (Nelson 1996,
2006). Dielectric properties of various agri-foods and biological materials are find-
ing increasing application, as fast and new technology is adapted for use in their
respective industries and research laboratories. Kato (1997) developed a sorting
system based on soluble solids content of watermelon using the concept of elec-
trical density and Bauchot et al. (2000) assessed the physiological condition of
kiwifruit using electrical impedance spectroscopy. A convenient, simple, rapid and
nondestructive method using electrical properties for evaluating the moisture con-
tent (Toyoda 2003) and monitoring the quality of various agricultural materials has
been developed (Nelson 1991, 2005, Barbosa et al. 2006). Majority of the food
materials, including oils and fat (Cataldo et al. 2010, Pace et al. 1968, Lizhi et al
2010, El-shaml et al 1992, Carey and Hayzen 2008, Fritsch et al 1979, Hein et al
1998, Inoue et al 2002), meat and poultry (Basaran et al. 2010, Li and Barringer
1997, Ragni et al. 2007, Castro-Giráldez et al. 2010, Ghatass et al 2008), fruits and
vegetables (Garcia et al. 2001, Gordeev 1998, Guo et al. 2007a, Harker and Dunlop
1994, Harker and Forbes 1997, Harker and Maindonald 1994, Inaba et al 1995,
Maezawa and Akimoto 1996, Nelson 1980, 2008, Nelson et al. 2007, 2006, Ikediala
et al. 2001, Tran et al. 1984, Varlan and Sansen 1996, Bauchot et al 2000) and
dairy products (Nunes et al. 2006, Kudra et al 1992, O’Connor and Synnot 1982,
Prakash and Armstrong 1970, Rzepecka and Pereira 1974) are availablein literature
and some of them are presented in Tables 8.1–8.3, 8.10.
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8.5.2 Thermal Imaging

Thermal imaging (TI) is well recognized as an important sensing technology for
detection, monitoring and diagnosis in medical and military applications. However,
recently, thermal imaging has found applications in other biological systems includ-
ing agriculture and food processing for process monitoring, product development
and storage analysis (Alchanatis et al. 2006, Chaerle and Van der 2000, Gowen
et al. 2010, Lamprecht et al. 2002, Oerke et al. 2006, Stajnko et al. 2004, Sugiura
et al. 2007, Vadivambal and Jayas Digvir 2010). Infrared thermal imaging was
first developed for military purposes but later gained a wide application in various
fields such as aerospace, agriculture, civil engineering, medicine, and veterinary.
Infrared thermal imaging technology can be applied in all fields where temper-
ature differences could be used to assist in evaluation, diagnosis, or analysis of
a process or product. Potential use of thermal imaging in agriculture and food
industry includes predicting water stress in crops, planning irrigation scheduling,
disease and pathogen detection in plants, predicting fruit yield, evaluating the
maturing of fruits, bruise detection in fruits and vegetables, detection of foreign
bodies in food material and temperature distribution during cooking. Applications
of thermal imaging in agriculture and food industry are presented in Tables 8.11

Table 8.11 Application of thermal imaging in food quality evaluation

Food product Application Reference

Chicken Combined IR imaging-neural network method:
Internal temperature of meat immediately
following cooking

Ibarra et al. (2000)

Food simulant Controlled heating and cooling cycles at the surface
of food samples

Foster et al. (2006)

Wheat grain Detection of infestations by six developmental
stages (four larval instars, pupae and adults) of
Cryptolestes ferrugineus inside wheat kernels

Manickavasagan
et al. (2008c)

Apple Detection of bruises in apples during forced
convective heat transfer

Varith et al. (2003)

Apple Surface quality analysis of apple Veraverbeke et al.
(2006)

Tomato Bruise damage (soft spots) Van Linden et al.
(2003)

Potato,
cauliflower

Ice nucleation and freezing of plants Fuller and
Wisniewski
(1998)

Wheat Wheat class identification (Manickavasagan
et al. 2008a, b)

Meat Pig meat quality defects Gariepy et al.
(1989)

Walnut Temperature–time history and surface temperature
distributions of walnut kernels during radio
frequency treatment

Wang et al. (2006)

Citrus drying Determination of drying time for citrus fruit Fito et al. (2004)
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and 8.12. Thermal imaging has been employed to facilitate controlled heating
and cooling cycles at the surface of food samples (Foster et al. 2006). Ibarra
et al. (2000) estimated the internal temperature of chicken meat immediately after
cooking using TI working within a spectral range of 3.4–5.0 μm. Application
of thermal imaging can improve heat consumption and fruit quality control (Fito
et al. 2004). Thermal imaging can be used to trace the ingress of potentially
contaminated air to reduce the airborne contamination of foods (Burfoot et al.
2000).

(a) Fruits and vegetables’ quality
Maturity evaluation of fruits and vegetables is a crucial operation in both pre-

harvest and post-harvest stages. Even though several automatic methods are
available for this purpose, visual inspection is followed in many parts of the
world (Manickavasagan et al. 2005). This manual method of maturity evalua-
tion is a time consuming process and human fatigue frequently influences the
results (Danno et al. 1980). Thermal imaging has potential applications in many
post-harvest operation such as quality evaluation of fruits and vegetables (e.g.
bruise detection in fruits, maturity evaluation of fruits), quality testing of meat,
detection of foreign materials in food, temperature mapping in cooked food
and grain, drying, and detection of defects in packaging (Vadivambal and Jayas
Digvir 2010). Bruising is the major factor for rejecting fruits during sorting
because bruised fruits can cause significant damage to unbruised fruits during
storage as well as consumers are not willing to purchase fruits with bruises.
The existing sorting systems are not capable of effectively distinguishing fruit
with bruises which has occurred at short time before inspection. Mechanically
damaged fruits and vegetables result in significant economic losses for food
processors due to impaired appearance, increased microbial contamination and
accelerated ripening (Varith et al. 2003). With the advancement in imaging tech-
nology on-line detection of subtle bruises on fruits and vegetables is feasible.
Non destructive methods for detecting bruised fruits using imaging technolo-
gies including hyperspectral imaging have been reported (Gowen et al. 2007,
Ueno et al. 2008, Zhao et al. 2008). Thermal imaging also shows potential
for objective quantification of bruise damage in fruits and vegetables. The first
application of thermal imaging as a potential alternative technique for bruise
detection in apples was reported by Danno et al. (1980). They monitored bruised
apples under changes in temperature by means of natural convection. Varith
et al. (2003) concluded that the bruise detection was mainly due to the varia-
tion in thermal diffusivity, not due to thermal emissivity differences since they
observed no temperature differences between bruised and sound tissue under
steady state conditions.

(b) Grain quality
Grain infestation by pests, microbial spoilage or contamination is a sig-

nificant problem for the food industry. Manual inspection, sieving, cracking-
floatation and Berlese funnels are used to detect insects in grain handling
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facilities. However, these methods are not efficient and time consuming
(Neethirajan et al. 2007) with poor accuracy for the developing life stages
of pests. Detection of pest infestation in food commodities and in their stor-
age premises is essential to ensure wholesome and acceptable produce for
human consumption, for regulatory compliance, for diagnosis of incipient
infestation and to ascertain the success of the control measures such as fumi-
gants (Rajendran 1999). Application of thermal imaging for the detection of
all insect post-embryonic stages is based on the temperature difference due
to heat production during respiration compared to grain temperature (Emekci
et al. 2002, 2004). This temperature difference due to infestation inside a
kernel can be detected by thermal imaging. Manickavasagan et al. (2008c)
studied the temperature distribution pattern of the infested wheat kernel and
observed a strong correlation between the temperature distribution patterns of
infested grain surface with the respiration rate of each insect developmental
stage. These studies show the potential for on-line continuous detection of
food grain infestation. Manickavasagan et al. (2006) studied the application
of thermal imaging for detection of hot spots in grain storage silos, report-
ing that thermal imaging was possible only after coating the silo exterior with
high emissivity paint. Recently Manickavasagan et al. (2008a,b) showed the
potential of thermal imaging for classification of wheat cultivars which are
difficult to distinguish by visual inspection. They observed higher accuracies
in pair wise discrimination and concluded that thermal imaging approaches
may have potential to develop classification methods for varieties and grain
classification.

(c) Detection of foreign body in food
The presence of foreign bodies in food is a major safety concern and vari-

ous methods are employed in the food industry. Visual inspection is commonly
used but it is affected by several factors. Physical separation methods such
as sieving, sedimentation, screening, filtering, and gravity systems are used
and more sophisticated systems such as metal detectors, X-ray machines,
optical sensors, and ultrasonic methods are used for the detection of foreign
objects, which have been dealt in previous chapters. But there is no system
capable of determining every contaminant regardless of size and shape. The
presence of foreign bodies in food is a major food safety issue. The thermog-
raphy technique may be used as a supplementary method to detect foreign
materials, which could not be separated by mechanical and optical methods.
Meinlschmidt and Maergner (2003) reported that thermography could be used
to detect foreign substances in the food material very easily. The quality of
detection was related to the physical behaviour of the food and the foreign
body, their form, and the noise of the images. Ginesu et al. (2004) studied the
potential of thermal imaging to detect foreign bodies in food products using
a Thermosensorik CMT 384 thermal camera and concluded that results are
promising and thermal imaging has a potential to detect foreign bodies in food
materials.



8 Miscellaneous Techniques 271

8.5.3 Magnetic Properties

Various methods for using magnetic properties in nondestructive methods of qual-
ity evaluation have been indicated in previous paragraphs. Till now no application
in food, however, has been reported, except work based on magnetic resonance
imaging, which has already been covered in Chap. 5.

8.5.4 Modeling of Quality Attributes

Quality attributes such as invisible surface bruises, colour, gloss, firmness, density,
volume expansion of processed food (Jha and Parsad 1996) etc. are important in
first instance when consumer proceed for selection of food items. Often they select
food materials, particularly fruits and vegetables by judging these parameters visu-
ally. Multiple efforts have been made to determine these parameters visually. A
fluorescence technique was used to detect invisible surface bruises on Satsuma man-
darins (Uozumi et al. 1987). They also tested this method successfully to know the
freshness of cucumbers and eggs.

Glossiness and colour, in fact, are the only visual attributes for measuring the
quality of fruits and vegetables. A unique gloss meter for measuring the gloss of
curved surfaces was used in parallel with a conventional, flat surface glossmeter
to measure peel gloss of ripening banana (Ward and Nussinovitch 1996). Usually
banana ripeness is judged by the colour of the peel. The new glossmeter is able to
measure the peel correctly which helps in predicting the correct time and level of
ripening. This is also able to measure the gloss of other fruits and vegetables such as
green bell pepper, orange, tomato, eggplant and onion. Jha et al. (2002) measured the
gloss using spectroradiometer, light source and computer (Fig. 8.3) and correlated
the same with weight for easy and nondestructive prediction of freshness of eggplant
fruits.

Different forms of equation, viz., linear, power, exponential, and second order
polynomial were fitted to the data of If and weight ratio, density ratio, stiffness
ratio, surface gloss ratio, and storage period and best empirical models were found
as below (Jha and Matsuoka 2002):

If = 0.979

(
w

w0

)19.303

(8.12)

If = 0.919

(
ρ

ρ0

)−6.27

(8.13)

If = 1.01e−0.0194θ (8.14)

If = 1.05Sr − 0.107 (8.15)

If = 12.905G2
sr − 18.71Gsr + 6.83 (8.16)
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Fig. 8.3 Schematic arrangement of instruments used for the measurement of surface reflectance
(spectral radiation): (1) spectroradiometer; (2) computer; (3) printer; (4) light source; (5) sample
holder; (6) sample eggplant; (7) sample table (Jha et al. 2002)

Where w, ρ, θ , are weight, density and time at any storage period Wo, ρo at and
zero storage period, respectively, whereas Sr, and Gsr are stiffness ratio and surface
gloss ratio of eggplant fruits during storage. If of another group of samples including
the fresh one was then computed using above equations and were plotted against
price variation in local vegetable markets to know the price of stored eggplant fruits
based on quality parameters or storage period.

Another property that helps a consumer in deciding the quality is firmness. Takao
(1988) developed a fruit hardness tester that can measure the firmness of kiwifruit
nondestructively. The tester is called a “HIT counter” after the three words, hard-
ness, immaturity and texture. By just setting the sample in the tester, the amount of
change in shape is measured and a digital reading within a few seconds indicates
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about the freshness. Based on the same principle another on-line prototype HIT
counter, fruit hardness sorting machine has also been developed (Takao and Omori
1991). A computer driven testing system to measure the firmness and other physical
properties of fruit and vegetables was reported by Duprat et al. (1995). The system
had multiple functions and was used for a range of crops in either destructive or non
destructive mode. Measurements made include skin firmness or rupture strength,
flesh firmness at any given depth, compressibility, modulus of elasticity, energy
absorption during a loading cycle, and compression strength between flat platens.
The system consisted of a computer with a multi-function input/output card and two
computer controlled stepper motors which drove a vertical column up to 4 mm s–1.
Various indenters were attached to the column to compress or crush the fruit sample.
The specimen to be sampled was placed on a load cell under the indenter column,
and the output from the load cell was fed to the computer at a sampling rate of
40 kHz through an analogue/digital converter. The computer was programmed to
conduct the required test measurements as soon as the specimen was detected. In
this way, measurements could be taken by inexperienced personnel too. Each test
took under 30 s to complete, and results were fed back to the user immediately.
System had successfully been tested for tomatoes, apples and cherries.

In addition to above, a novel fruit firmness index has been proposed (Cherng
and Ouyang 2003) for solid ellipsoids with one long and two equal short principal
axes, usually possessed by the most of fruits. The developed index is dependent on
the mass, density, and two natural frequencies of the lowest spherical modes (under
free boundary conditions) moving along long and short axes, respectively. In fact,
the new index is a generalization of the conventional firmness index for a sphere,
because the two natural frequencies for an ellipsoid become equal for a sphere. This
newly developed index extends the firmness estimation for fruits or vegetables from
a spherical to an ellipsoidal shape. The formula was developed using the follow-
ing steps: (1) assign mode shape functions observed from a finite element model;
(2) approximate the potential energy and kinetic energy over the whole volume; (3)
apply Rayleigh’s quotient to determine natural frequencies in a simple form; and (4)
deduce an appropriate mathematical equation relating firmness (equivalent to mod-
ulus of elasticity) with natural frequencies, mass, and density. Detailed derivations
are provided, together with finite element models for verifications of the new firm-
ness index. Satisfactory results from simulations show that the proposed formula is
quite suitable for predicting the firmness of ellipsoidal fruits or vegetables.

In an interesting study, McGlone et al. (2002) have compared the prediction of
dry matter and soluble solids content of unripe and ripe kiwifruit using density and
NIR modeling and have reported that use of density rendered fairly similar accu-
racy for unripe fruit at harvest with root mean square standard error of prediction
of 0.53%. This means, modeling of density accurately may successfully be used
to develop nondestructive method to predict the harvest stage of fruit. Use of den-
sity has also been demonstrated for sorting of watermelon. An optimum range of
density was first determined and then a new automatic density sorting system was
developed to measure the hollowness of watermelon with cavities or deteriorated
porous flesh to be removed and permits estimation of the soluble solids content of
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this fruit. Gamma-absorption technique combined with a scanning device for con-
tinuous non destructive crop mass and growth measurement in the field has given
promising results (Gutezeit 2000). The accuracy of the measurement was found to
be in agreement with the direct weighing system. This method has made it possible
to assess the reaction of plants and their dependence on environmental factors by
growth analysis.

Six sensory attributes such as crunchiness, chewiness, touch resistance, meali-
ness, juiciness and fondant of apple were modeled using multi regression method
which showed that some sensory parameters, like touch resistance and fondant,
could be predicted reasonably with one measured parameter while for other more
complex and more number of variables are needed (Mehinagic et al. 2004).
Numerous softwares for modeling and solving the model are available. Neural
network however has lately gained popularity as an alternative to regression models
to characterize the biological processes. Its decision-making capabilities can best be
used in image analysis of biological products where the shape and size classification
is not governed by any mathematical function. Many neural network classifiers have
been used and evaluated for classifying agricultural products, but multi-layer neural
network classifiers perform such tasks best.

Preceding sections indicate that very limited work on nondestructive methods
using electrical, magnetic and modeling of quality attributes have been reported. It
however has demonstrated that various (physical, electrical, magnetic etc.) prop-
erties, which may be measured without harming the sample, can very easily be
modeled to predict some internal quality parameters such as maturity, total solu-
ble solids content, dry matter, sweetness, hollowness etc and possibly has removed
the thinking that only high-tech techniques such as NIR and FTIR spectroscopy,
X-ray, CT, MRI, ultrasonic etc. can be used for nondestructive prediction of quality
of foods. One in fact needs to research which properties are important for predicting
which quality parameters of ones product.
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