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Efficient field sampling is a cornerstone of pest management: having some idea of
the status of pests provides growers and consultants with the necessary basis to
choose between management options. Many books have been written about pest
management, and some include extensive discussion of sampling methods (see, e.g.
Kogan and Herzog, 1980; Pedigo and Buntin, 1994). Most of these books are col-
lections of chapters written by individual authors and, although they may be of
high quality and cover a good deal of ground, they lack the unified structure which
is required to make them suitable for learning or teaching. This book aims to pro-
vide a unified approach to sampling for decision-making in pest management, that
can be used as an introduction to the subject. Moreover, the book is accompanied
by a set of modern computer-design tools that allow users to design and evaluate
their own sampling programs.

The book is aimed primarily at graduate or final-year undergraduate students who
are specializing in pest management. Those working in pest management, includ-
ing extension specialists, consultants and researchers, should find the book helpful
as a reference, as well as a tool that they can use in their professional endeavours.

This book covers the statistical concepts of sampling in agricultural pest manage-
ment. These concepts can be summarized quite simply as: how best to get sample
data from the field and how to use the data in decision-making. The focus is on col-
lecting samples and analysing the data, with a view to choosing which of two or
more pest management actions is most appropriate to use. Except where specifically
noted, we always assume that one of these actions is to do nothing. Others may
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include introducing or re-introducing natural enemies, applying a pesticide, or
adopting a wait-and-see approach by scheduling another sample to be taken after
an interval of time. Wider problems of sampling for estimation in ecological or
modelling studies are not covered, except where necessary for the main purpose.

We have tried to keep mathematical and statistical requirements as minimal as we
could. We have introduced only as much statistical theory as is necessary to under-
stand why certain procedures are recommended for sampling biological organisms,
and also to give the reader tools to infer (from sample data) properties of biological
populations which are relevant for pest management. The text should be under-
standable to anyone with introductory college mathematics: the ability to follow
and understand simple developments of mathematical formulae is required in some
parts of the book, but not (we hope) essential to understanding the concepts. The
ability to work with computer software is probably necessary, even if only to under-
stand how results might be obtained. Of course, we expect a general understanding
of the context in which sampling for pest management is done, in particular a basic
knowledge of agricultural pests and how they interact with agricultural crops.

The book starts with two introductory chapters on general principles of decision-
making, decision guides and sampling for pest management. Chapter 3 explains the
difference between sampling for classification and estimation, and develops a ratio-
nale for sequential sampling by comparing the performance of sampling plans that
use a fixed sample size and those that use batches, whereby sampling is terminated
as soon as enough sampling evidence is collected to make a decision. Chapter 4
presents four probability distributions, one of which is relatively new to crop pro-
tection, that can characterize frequency distributions resulting from sampling, and
which play a central role in the simulations of sampling performance in subsequent
chapters. Chapter 5 presents three alternative designs for developing sequential
sampling plans for classification, one of which is completely new to crop protec-
tion. Chapter 6 discusses how the techniques described in previous chapters fit into
practical pest management, and lists criteria and a quantitative methodology for
evaluating the usefulness of sampling information in crop protection. Chapter 7
looks at sampling plans that are based on the notion that pests are not enumerated
on sample units (as in Chapter 5), but that the sample units are classified as either
positive or negative with respect to some classification criterion concerning pest
density. This is called binomial count sampling. Chapter 8 explores variability in
pest counts arising from the aggregated distribution of pests and a nested structure
of sample collection. A procedure known as variable intensity sampling is
described, which guarantees that the field is adequately covered by presetting the
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number of locations at which sample units are taken, but which takes an adaptive
number of sample units at each location such that, when all sample units have
been collected, a reliable decision may be reached. Chapter 9 explains (bootstrap)
resampling as a method of evaluating pest management decision guides, when none
of the probability distributions discussed in Chapter 4 (or any other published in
the literature) adequately characterizes the sample data. Chapter 10 looks at
methods for classifying or estimating population growth curves, or trajectories, by
sampling over time. The first is an extension of a sequential classification plan
(introduced in Chapter 5) to the time domain, and the second uses sample data
collected over time continually to re-estimate a growth curve model. Chapter 11
deals with monitoring populations over time: how and when to take the next sam-
ple, based on current sample data. This is especially relevant for pests with multiple
generations per season that need to be kept in check for an extended period of
time. In these two chapters (10 and 11) there is a jump to a higher level of com-
plexity, because time comes in as a factor that affects sampling. An epilogue rounds
out the entire book, explaining how we think the principles described can be used
to improve the everyday practice of growing crops and managing pests. A glossary is
added at the end as a vade mecum for those who do not feel on friendly terms with
the statistical notation and ideas used in the book.

Throughout the book we have included worked examples (exhibits) to illustrate key
concepts and applications. These are a vital part of the book. The calculations
involved have been programmed in the mathematical software program MathCad™,
and are available as electronic chapters on the Internet (www.nysaes.cornell.edu/
ent/faculty/nyrop/cpdm). The electronic chapters are interactive mathematical and
simulation tools that allow you to check our examples, and explore your own
sampling problems and ideas. We have found that there are so many avenues which
are worth exploring with each worksheet that we have decided to leave it to you, the
reader, to follow where your fancy dictates. The sort of thing that can be done with
these electronic book chapters includes the following:

• investigating the effect on decision-making of decreasing or increasing the
sample size

• comparing the properties of sequential and fixed sample size plans
• investigating the difference in accuracy and effort between different types of

sequential plans
• comparing binomial and full count sampling plans
• generating aggregated distributions and comparing different sampling strategies

on them
• investigating control by sampling over time

amongst many other topics.
Not much expertise is required to use the MathCad™ computer tools. Beyond
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fearlessness in the face of something new, all that is required is the ability to change
numbers (input parameters) on a screen and a little patience to wait, while simula-
tions are running, for results to appear on your computer screen. A MathCad™
Explorer that will allow you to use our electronic tools, is provided free of charge
on the Internet (http://www.mathsoft.com). Although we have tried to make the
software as error-free as possible, we accept no responsibility for any errors or mis-
understandings arising from its use.

We started the enterprise of producing this book and software because we believed
that there is a need for an accessible introduction to sampling and decision-making
in pest management, as well as a need for easy to use interactive tools to see ‘living
math’ as related to sampling and decision-making on the screen of the computer.
We hope that it will provide insights and useful applications to you and the people
that you work with.

Kogan, M. and Herzog, D.C. (1980) Sampling Methods in Soybean Entomology. Springer-
Verlag, New York.

Pedigo, L.P. and Buntin, G.D. (1994) Handbook of Sampling Methods for Arthropods in
Agriculture. CRC Press, Boca Raton, Florida, 714 pp.

x Preface

Captatio benevoluntatis

References



We would like to thank all the institutions and agencies that have given their trust
and support to the three of us, during our collaborative adventures in sampling.
First of all, we want to thank our home institutions, department chairs and col-
leagues for making our mutual visits and collaborations feasible. Thus, M.R. Binns
thanks the Eastern Cereal and Oilseed Research Centre of Agriculture and Agri-
Food Canada for their hospitality, J.P. Nyrop thanks the New York State
Agricultural Experiment Station at Cornell University and W. van der Werf thanks
the Department of Theoretical Production Ecology at Wageningen University and
its chairpersons for the stimulus and opportunity that they provided.

Several institutions provided financial support for our work together. These
include the United States Department of Agriculture, which funded a small inten-
sive workshop in The Netherlands in 1989 (with J.P.N. and W.vdW.) on pest sam-
pling, the Rockefeller Foundation, which provided a Fulbright Fellowship to
W.vdW. for spending a sabbatical with J.P.N. in 1992, the North Atlantic Treaty
Organization, which provided travel money to the three of us during 1993–1995,
and the Wageningen University (WU), which offered a Visiting Scientist Grant to
J.P.N. in 1994. The C.T. de Wit Research School for Production Ecology (part of
WU) specifically provided Visiting Scientist Grants to both M.R.B. and J.P.N. in
1996 and 1997 for the purpose of writing this book. The job was bigger than we
thought, and more money was needed to complete it. The Dutch Technology
Foundation STW and Wageningen University funded additional stays of W.vdW.
with J.P.N. and M.R.B. to work on finalizing the book and software during 1997 to
1999. All of this financial support was instrumental in getting the job done,
because it required face-to-face discussion, brainstorming and mutual encourage-
ment. Several colleagues provided useful comments on our writing. We would like
to thank especially Mike Hardman for his encouragement and suggestions for
improvement and clarification of the text. Last, but not least, we thank our spouses
for their loving support during the whole of this project.

Acknowledgements

xi





Knowledge and information related to all aspects of the crop–pest system are the
foundations on which modern pest management decisions are based. In this intro-
ductory chapter we categorize these foundations, and discuss their relevance to pest
management. We show how pest injury, crop damage and crop loss are related to
concepts of acceptable thresholds for pest density in a crop. Sampling pest numbers
in the crop is a direct way of comparing the actual density in a field with the
acceptable threshold, and thus recommending a management decision. Sampling
thus plays a central role in pest management. We introduce principles and criteria
whereby different sampling strategies can be compared with each other. We discuss
the formal process for choosing test sampling plans and comparing them with each
other before recommending a plan for practical use.

When humans settled in communities and started farming agricultural crops, many
thousands of years ago, they introduced a new element into the existing state of
nature: an organized attempt to fill land areas with selected plants, and to exclude
unwanted plants and animals. The attempts were successful, supporting larger com-
munities and paving the way for civilization as we know it today. Nowadays, farm-
ing has become highly productive in many parts of the world, with large areas
devoted to monoculture, or some other kind of organized planting scheme. It is not
surprising that organisms other than humans try to cash in on the bounty laid out
before them. In particular, what we humans call pests try to share the results of our
labour, whether they be arthropods, vertebrates, other plants or pathogens.

Present-day growers are well equipped to protect their crops from excessive
damage, and they can draw upon a large body of knowledge and management
options, both preventative and curative. We have extensive knowledge about the
ecology of pests and their natural enemies in cropping systems. We have ever-growing
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knowledge about the genetics of plant resistance, and powerful techniques for
building resistance into plant material. We have a long experience in the use of
cropping plans and cultural practices for deterring pests. There is a wide choice of
effective chemical pesticides – which should, however, be used judiciously to mini-
mize deleterious side-effects. There is the challenge, therefore, of combining the
available management options in the most appropriate way into the practical busi-
ness of day-to-day farming. How can we identify strategies that integrate the avail-
able techniques in such a manner that crop losses are prevented, or reduced to
acceptable levels, with minimal harmful side-effects?

Questions on how to design systems for integrated pest management can be
formulated at different temporal and spatial scales. The management decisions that
growers make for their crops in any field and at any time during the season are
embedded in the larger framework of what their plans are for their entire farm oper-
ations over a time frame of 1, 2 or many years. Furthermore, what each grower
decides at the farm level is done in the context of the larger plans and desires of
farming communities and of society as a whole. Policy decisions taken by any level
of government have a profound impact on the behaviour of individual growers and
of grower groups. This book focuses attention at the field level: the crop protection
decisions that growers should make in their fields at any moment during a growing
season, given the local situation and the expected (and/or possible) future course of
events in these fields and on the market. Such a decision depends upon the grow-
ers’ objectives and on the peculiarities of the production system.

The knowledge and information affecting decisions about a production system
at the field level come from a variety of sources, such as scientific research,
economic and social studies, field sampling, community discussions and personal
opinions. It is useful to categorize this knowledge and information:

1. Process knowledge – knowledge about the dynamic behaviour of the component
processes in the system, and how they interact, in relation to the natural environ-
ment. This is generally valid biological knowledge about how the system ‘works’. It
includes: how rapidly pest populations grow (or decline) and when certain develop-
ment stages occur in the season; how pests affect plant growth and crop production;
how natural enemies affect pest populations; how abiotic factors drive population
processes; and how pest organisms are distributed in the crop. Such knowledge is
required to make sensible assessments of how pests affect crop production, and may
also be used to devise system structures for avoiding pest problems.
2. Socio-economic information and management objectives – knowledge about the
socio-economic framework in which a pest manager makes pest control decisions;
personal and public perceptions as well as normative judgements relating to the
crop and its management. This includes information on the value of the crop now,
and as it might be at harvest, costs of any management action taken to realign the
system, how individual growers deal with uncertainty about a pest’s impact on final
yield, and the acceptability of certain management actions (e.g. pesticide sprays).
3. Knowledge of state – knowledge about the current state of the system in the field.
Information on the current state of the system allows a pest manager to specify
which aspects of the general knowledge framework are relevant at a certain time

2 Chapter 1



and place. An essential component is some measure of the abundance of pests
and/or natural enemies. Other important components include the state and growth
stage of the crop, and the current and future weather. This information is collected
specifically to help decide on a course of action. The action might be: using a pesti-
cide or biological control agent; using a cultural technique; or possibly even doing
nothing. Without information on the current state of the system, a grower must
resort to some kind of automated decision process, such as calendar spraying. In
certain instances, a regional estimate or forecast provides enough information on
the current state of the system for decision-making, especially for very mobile pests
(e.g. potato blight), but in general a measure of abundance for each field is
required. We shall refer to the process of collecting data to estimate a measure of
abundance in the field as sampling. From this point onwards, we shall often refer to
the field, orchard or area for which a decision sample is taken as a management unit.
The objective of this book is to describe how best to collect and use data from a
management unit for the specific purpose of deciding on a course of action against a
pest.

The presence of pests in a crop may result in physiological injury to the crop (e.g.
change in leaf area or photosynthesis rate). Injury may result in damage to the crop
(i.e. a reduction in the amount or quality of harvestable product). The final effect
on financial revenue from the crop is called loss. Injury is expressed in crop physio-
logical terms, damage in units that express the amount or quality of the product,
and loss in monetary units. It is often convenient to combine injury due to pests
and damage consequent on injury, referring simply to damage caused by pests; we
shall follow this course.

Pest abundance is generally estimated in terms of average number (or density)
of pests contained in some specified unit of the crop, such as a leaf or stem of a
plant. Anticipating Chapter 2, we refer to this unit as a sample unit. By ‘pests’ we
mean the number of aphids, borers, pustules, weeds and so on per sample unit, not
the number of pest species. Suppose that we have estimated the amount of damage
(reduction of harvestable yield in kg) caused by a range of pest densities in the
absence of any control measures. Suppose also that we know the monetary value of
each kg of harvestable crop. We can then determine the level of pest density at
which the reduction in revenue from the crop, due to pest injury, equals the cost of
controlling the pest. This level of pest abundance is called the Economic Injury
Level (EIL). It is calculated from the equation

C = EIL × K × D × V (1.1)

where C is the cost of control ($ ha�1), EIL is the pest density at which control is
precisely worth the effort, K is the proportion of the pest population killed by con-
trol action, D is the proportion of crop damaged per unit pest density and V is the
value of the harvested product ($ ha�1).

Basic Concepts of Decision-making in Pest Management 3
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This simple derivation of the EIL is based on the assumption that the relation-
ship between pest density and damage is linear (Fig. 1.1). Much the same deriva-
tion can be made for curvilinear relationships. The total costs due to the presence
of a pest are the sum of the costs of control and of crop loss. Much has been written
about the concept of economic injury level (Higley and Pedigo, 1996). A few
points to keep in mind are as follows:

1. The concept of the EIL is focused on an economic evaluation. Other criteria
that a grower may find important when deciding on an intervention are ignored.
Such criteria include:

• the time available to the grower to implement a control treatment
• the possibility of combining interventions against multiple pests into one

management action (lower costs)
• a desire to minimize pesticide use
• a desire to conserve natural enemies

The EIL concept is therefore narrow in scope. Growers are likely to consider addi-
tional criteria beyond the EIL.
2. The EIL deals with preventable damage. If damage is no longer preventable,
because the injury is irreversible or the plant cannot compensate for damage
already done, or if there are no curative treatments (chemical, cultural or biologi-
cal), the EIL paradigm is irrelevant.
3. Using a threshold density to decide on a pest management action implies that
there is variability in pest density among management units (otherwise, there
would be no need to look), and that this variability is relevant to management.

4 Chapter 1
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defined as KDV × pest density, intersects the cost of control (___) at the EIL (▫).



This is not the case for many diseases, whose control follows a preventative rather
than a curative approach. For instance, the control of Phytophthora infestans (late
blight) in potatoes and Venturia inequalis (scab) in apples is geared towards prevent-
ing infection. Warning systems are therefore primarily based on weather condi-
tions, and do not take into account actual infection levels within the crop.
4. The EIL paradigm is a theoretical framework, that assumes perfect knowledge
about the quantities involved. In reality, we do not have that knowledge, and deci-
sions have to be made under uncertainty. Uncertainty affects thresholds.
5. The EIL concept assumes that there is a clearly defined instant in time when
the desirability of a control action should be evaluated. In practice, this can be too
restrictive. Many pest problems evolve over time, and decisions may be required at
different times for the same pest. The EIL equation (Equation 1.1) is not equipped
to deal with such uncertainty.
6. The EIL concept may cause an undesirable locking-in to a reactive mode of pest
control, which fosters pesticide dependence and is inappropriate for agriculture in
the present age. Crop production systems should be designed and developed to
exploit the ability of natural systems to prevent serious pest problems. Because such
mechanisms may occasionally fail, an efficient technology is needed to make
informed decisions about the necessity of corrective action. This book is about the
design of such technology.

Despite these important shortcomings, the EIL concept provides a useful
guideline in decision-making for crop protection. For the remainder of this chapter
(and for the rest of the book) we shall assume that some kind of threshold, or deci-
sion criterion, is appropriate for management actions. In determining such thresh-
olds, management objectives other than profit may have been taken into account.

In the literature, a useful distinction is made between the EIL, the break-even
density at which monetary costs and benefits of control are equal, and a lower pest
density (the economic threshold, ET), which is actually proposed as the decision cri-
terion for the initiation of corrective intervention. ET is lower than EIL, because
between the time when pest density is estimated and the time when a control treat-
ment can be applied, pest numbers may increase beyond the break-even EIL value,
or even change to such a degree that the proposed corrective action may not be
ideal. In this book, we often use the term critical density (cd) for the density to be
used as a decision criterion. We use this more neutral term, unburdened by histori-
cal connotations, for several reasons:

1. When uncertainties in process knowledge are taken into account, it may be
necessary to use lower thresholds than suggested by either EIL or ET reasoning to
avoid small probabilities of large damage.
2. Even if the evaluation is in purely economic terms and there is perfect knowl-
edge about processes and the value of the crop, it may be desirable to choose cd
unequal to ET. One reason is that it is impossible to know the pest density in the
field precisely. Estimation errors have to be accounted for. If erroneous decisions
not to intervene are costly, because of excessive pest damage, it may be best to have
cd less than ET, both to reduce the risk of excessive events occurring and to mini-
mize the expected total costs. We say more about this in Chapter 6.

Basic Concepts of Decision-making in Pest Management 5



3. Many more criteria can be used to define cd. A more complete and ecologically
sound evaluation of the pros and cons may be made than is the case for a purely
economic threshold.
4. There may be multiple critical densities. For example, if there are three decision
choices, two critical densities are required: (i) high density (greater than cd2) –
intervene immediately; (ii) intermediate density (between cd1 and cd2) – check
again after a week; (iii) low density (less than cd1) – no action necessary.

Use of the term critical density emphasizes that this density is used as a ‘critical’
cut-off point, when making a decision. It is no more and no less than that. Nothing
is implied about the background of its quantification.

Let us assume that we have perfect knowledge about our crop production system,
allowing us to quantify the economic threshold precisely. Suppose that ET = 5
pests per sample unit. Then, what should our decision be? The answer is obvious
(Fig. 1.2a): if pest density is 5 or below, the decision should be not to intervene (to
save time and costs and avoid side-effects), and if it is above 5, the decision should
be to intervene (to avoid losses greater than the costs of control). However, the
underlying assumptions are not realistic:

1. We never have perfect knowledge about the economic threshold, because our
process knowledge is imperfect; there may be uncertainty about prices, and there
may be ambivalence about management objectives.
2. We are never able to know the pest density in the field with absolute certainty
unless we go out and count the whole population.

Let us first consider fuzziness in socio-economic information and management
objectives. How does it affect the decision? There are different approaches to
answering this question and we come back to it in Chapters 6 and 12, where we
discuss performance indicators. Fuzzy socio-economic information includes – for
instance – a variable price that is unknown at the moment of decision-making. It
also includes uncertainty about the damage for a certain level of pest injury; for
instance, in relation to future weather. A high price would shift the EIL down, and
– conversely – a low price would shift it up. The EIL for a crop in one field will not
be the same as the EIL for another field, due to differences in productivity or the
pest density–damage relationship. One might argue that because the ‘real’ EIL is
unknown, gradually sloping curves as in Fig. 1.2b would be acceptable. The range
of densities over which these curves change from one to zero (or 0 to 1) would then
reflect the expected range of uncertainty about crop loss. However, if we can char-
acterize the expected distribution of crop loss for each pest density, then we could
in theory still calculate a precise cd, below which – averaged over all prices and
damages, and weighted for the likelihood of crop loss – it is best never to intervene,
and above which it is best always to intervene, as in Fig. 1.2a. We shall explore this
in Chapter 6.

6 Chapter 1

1.4 The Effect of Uncertainty on the Decision Process: 
Probabilities of Management Action



The strategy described in the previous paragraph is best ‘on average’, but it will
certainly be incorrect in specific instances. It is therefore equally defendable to
argue that over a limited range of pest densities it is unimportant which decision is
taken, because the advantages of either decision are more or less in balance with
the disadvantages. For instance, intervening has the advantage that the pest issue
may be ‘put to bed’ for some time; it has been taken care of and the grower has
peace of mind. On the other hand, not intervening saves time, money and
resources. The step curves (Fig. 1.2a) are for those people who are prepared to inte-
grate all uncertainty in the calculation of the critical density. The smooth curves
(Fig. 1.2b) are for those people who think that it is not of importance to balance all
advantages and disadvantages of a certain decision in detail, and are therefore pre-
pared to accept either decision within a certain area of indifference for pest density.
In both cases, there is a critical density, but only in the first case do the curves step
at precisely this value. In the other case cd is near the halfway point of either curve.

In establishing the critical density, one may be less interested in minimizing
the average total costs than in minimizing the chance of particularly nasty events;
for example, (almost) total crop failure. This strategy might be called risk-sensitive,
while the strategy that minimizes average total costs might be called risk-neutral.
Note that the pure EIL strategy is risk-neutral. Depending upon the approach that
is taken, different values for cd can be determined. Risk-sensitive thresholds are
lower than risk-neutral thresholds. Thresholds that minimize average total costs are
generally lower than the EIL, although this result is not intuitively obvious
(Rossing et al., 1994a,b).

The difficulty of obtaining precise knowledge of the state of the crop–pest
system will always result in smooth probability of decision curves, as in Fig. 1.2b.
Obtaining precise knowledge of state is costly in practice, because it requires extensive
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Fig. 1.2. Probability of decision curves: - - -, intervention; ___, no intervention. (a) Assuming
quantifiable uncertainty about the pest–loss relationship leading to a well defined threshold,
and perfect knowledge about pest density; (b), as (a), but with information about pest density
obtained from sample data.



sampling. We must be content with a level of information that is sufficient to pro-
vide a basis for making a reasonable decision. With less than perfect information,
we may find ourselves inadvertently doing the wrong thing (Fig. 1.3): at densities
above cd there will be some instances in which the decision is not to control, and
vice versa at densities below cd. Hence, the probability of decision curve, as a func-
tion of density, will not ‘step’ at cd, but will change in a smooth fashion from 1 at
low densities to 0 at high densities (or from 0 to 1), with the halfway point near cd.
The fewer sample units we take, the flatter these functions will be. To make them
close to a step function, we must collect very many sample units. Because this is
costly, and because the evaluation of multi-dimensional pest management decision
problems may be fuzzy anyway, probability of decision functions for practical sam-
pling plans tend to be smooth.

The information collected in a field, orchard or other management unit, and used
to help assess the state of the system, is called a sample. Each sample consists of
data recorded on a number of sample units, the smallest entities for which informa-
tion on pest abundance is independently assessed. We shall show in later chapters
that the number of sample units to be collected for a particular field is not necessar-
ily known in advance. The rules for collecting sample units often determine the
number of units collected: the number of sample units actually collected depends
on the average number of pests per sample unit and on the cd. Steeper probability
of decision curves usually require more sampling effort. This is a cost that must be
considered. Each sampling plan therefore has not only its own probability of deci-
sion curves, but also an average number of sample units curve. This is illustrated by
an example based on a sampling plan developed in Chapter 5 (Fig. 1.4).

8 Chapter 1

1.5 The Sampling Effort: the OC and ASN Functions
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Fig. 1.3. Alternative presentations for Fig. 1.2b. (a) Probability of correct decision. 
(b) Probability of incorrect decision.



At this point, we need to accept that sampling for making decisions is not a
new concept, and that certain technical terms have been used for many years now
in, for example, industrial quality control. Whether we like it or not, the use of
already accepted technical terms is necessary to avoid confusion when we want to
use results obtained outside agricultural pest management or when we want to
understand people working in other areas of decision-making. 

The term ‘operating characteristic function’, often shortened to OC function,
is widely used to refer to one of what we have called ‘probability of decision curves’.
Specifically, the OC function is equal to the ‘probability of not implementing a
management action against the pest’; for example, the curve in Fig. 1.4a, which
starts at 1 for low pest density and decreases to 0 for high pest density is an OC
function. Similarly, the term ‘average sample number function’, often shortened to
ASN function, is widely used to refer to the ‘average number of sample units curve’;
for example, the curve in Fig. 1.4b is an ASN function. Henceforth, we use the
terms OC function and ASN function.

The concept of OC functions can be presented as a simple table (Table 1.1). What
we require of a sampling plan is to give an ‘intervene’ decision if the density is very
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1.6 On Fuzziness and Satisfaction

Fig. 1.4. Probability of decision (a) and average number of sample units (b) curves, estimated by
simulation, for a sampling plan based on one of the methods of Chapter 5; minimum (5) and
maximum (50) numbers of sample units were specified in the plan. The OC function is the
probability of deciding not to implement a management action (___), the probability of deciding
to implement a management action is the complement of the OC function (- - -). The ASN
function is the continuous curve in b; the intervals in b represent the 10th and 90th percentiles
of the distribution of numbers of sample units in the simulations. The 10th percentile, for
example, is defined as the number below which lies 10% of the distribution.



high, and a ‘don’t intervene’ decision if the density is very low. At densities closer
to the critical pest density (however defined), we are more willing to accept devia-
tions from this preferred pattern. And if pest density is close to the threshold, we
might not be too much concerned whatever the decision is. Pest densities close to
the threshold form a kind of indifference area, where either decision is acceptable,
because there are so many uncertainties involved. Note that this is not a ‘couldn’t
care less’ attitude, but a realistic assessment of all the available information, includ-
ing that provided by the sample on the state of the system.

Growers may compensate for a decision in several ways. For instance, if a deci-
sion not to intervene has been made, but the risk of pest loss remains possible, a
grower may decide to be more watchful in the immediate future. Growers may also
be willing to refrain from using pesticides if they expect to be able to combine the
intervention later on with another management action that will have to be made.
The point is that models which are used to describe sampling processes and
pest–damage relationships and uncertainties therein can never capture all of the
decision elements that matter to a producer. Hence, some fuzziness in the OC func-
tion is quite acceptable.

As we noted above, some crops are more valuable than others, some growers
are prepared to take greater risks than others and, if the action to be taken is the
application of a chemical, there may be side-effects. These factors may have been
considered in specifying cd, but they should be considered also for the shape of the
OC function. It is reasonable that the OC function for a valuable crop would be
steeper than that for a less valuable one, in order to reduce the probability of a big
loss. Growers who are less prepared to take risks might prefer a steeper OC func-
tion. In effect, where the actual value of cd is regarded as critically important, the
steepness of the OC function also becomes critical. 

The most helpful type of sampling plan is one which takes into account all rel-
evant process, state and socio-economic knowledge, so that the user gets the best
decision at the end. The cost of arriving at a decision should be commensurate
with the value of the recommendation (discussed in detail in Chapter 6). Many
types of sampling plan are discussed in this book, and each plan has enough flexi-
bility to produce almost any shape of OC function (steepness and cd). It is in tailor-
ing sample theory to practical needs that skill, as well as wide knowledge and
understanding, is required.

10 Chapter 1

Table 1.1. Preference for chosen management action as a function of pest density.

Actual pest density

Decision Very low Low Around cd High Very high

No intervention Always Most often Sometimes Seldom Never
Intervention Never Seldom Sometimes Most often Always



So far, we have implicitly considered the situation in which sample information is
collected just once, a management decision is made and implemented, and the
process ends. For pests that pose a continual threat throughout a lengthy period
during the season, such a procedure is inadequate. Such pests must be regularly
checked by taking samples on several occasions. We call this monitoring. We define
monitoring as an overall strategy which includes setting up a schedule of potential
sampling occasions, with the added feature that the results of each sample specify
either: (i) a positive management action or (ii) when, in the schedule of potential
sampling occasions, to resample. We further define a monitoring protocol as a proce-
dure that directs how sampling resources are to be allocated. This is best explained
using an example.

Plant feeding mites can be deleterious to crops in agricultural systems. These
organisms can pose problems over an entire growing season, and the fluctuations in
population numbers may not be predictable over more than a relatively short time
horizon. As a result, it is necessary to check a population repeatedly to be sure that
intervention is not needed. Also, when a control action has been taken, further
checking may be required. Each time the population is checked, we propose a sam-
pling plan that can give more than two recommendations:

1. Intervention now.
2. No intervention now, but resample soon.
3. No intervention now, but wait some time before resampling.

Details of how this can be done will be described in later chapters. The main differ-
ence between sampling where there are only two possible recommendations and
where there are three is in the OC function and the use of a critical density. There
are now two critical densities (cd1, cd2) dividing the range of pest densities into
three parts: less than cd1, between cd1 and cd2, and greater than cd2. The rationale
for this set of management options for pest management is that: (i) some pest popu-
lations are already high and require treatment immediately (greater than cd2); 
(ii) some are not that high, but risk being too high within a short period of time
(between cd1 and cd2); (iii) some are low and can be expected to remain low for
some time (less than cd1). Category (iii) may be further subdivided, so that the rec-
ommended time for resampling can be after one of several time intervals.

An OC function for each sample occasion would have three curves as shown
in Fig. 1.5, and to prevent confusion we shall refer to sets of OC functions such as
these as probability of decision functions (PD functions). The two basic principles
behind the procedure are: (i) that predictive models for the pest are not reliable,
except in the short term, and (ii) that managing a crop does not require estimates
of pest density per se, but only inasmuch as they aid decision-making. We believe
that what we here call monitoring is done in some form or other by a great
number of people. We shall describe methods of optimizing the procedure. The
procedure itself is analogous to scheduling inspections of kitchens in public restau-
rants for health safety: restaurants with good records of safety are inspected less
frequently. 
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Assessing the cost of monitoring over a season is not done as in one-time
sampling with a single decision. In one-time sampling, the OC and ASN functions
describe the performance of the sampling plan for each mean pest density (Fig. 1.4).
For a monitoring protocol, similar performance measures can be calculated, but these
measures now refer to population numbers over the entire monitoring period, called
a population trajectory. Thus, for each possible population trajectory, there is a single
probability of intervening, corresponding to one point on a probability of decision
curve. Corresponding to the ASN, there are sample number data, such as the total
number of sample units collected during the entire monitoring period, and the
number of times the population was actually sampled. There are other considerations
and other performance criteria, which will be discussed in later chapters.

This book emphasizes formal methods for designing sampling and monitoring
plans. In practice, protocols developed via this method are often modified by users
to fit their particular needs, limitations and preferences. As a result, a natural ques-
tion is whether formal analyses and design of sampling plans and monitoring proto-
cols are necessary or useful. Our unequivocal answer to this question is ‘yes’. Even
when plans or protocols are modified from those proposed, it is important that the
foundation of the modifications be sound. Practitioners may take a plan developed
for another purpose and modify it simply by altering the sample size, or start with
the sample size they are prepared to use and go from there. Such a pragmatic
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Fig. 1.5. Probability of decision functions for a sampling plan with three alternative
decisions and two critical densities, 5 and 10. ___, Density classified as smaller than 5;
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1.8 The Formal Design of Methods for Sampling and 
Monitoring: Why and How?



approach may be successful, but if no attempt is made to investigate its properties
and properties of alternative schemes, users may easily miss out on a superior
scheme. Basing the design of plans and protocols on formal methods ensures that
explicit basic data and assumptions are used (instead of implicit or potentially
incorrect ones) and that the purpose and restrictions of the plans have been well
thought through. As a result, the plans are verifiable and their operation is under-
stood. Moreover, when well-tailored to specific needs they potentially perform
better than any ad hoc plan.

The design process that we outline here, and which will be explored in greater
detail in subsequent chapters, entails the construction of ‘models’ that relate pest
densities to decision recommendations. Pest density is always an unknown quantity
but, depending on the parameters of the sampling plans, these models define the
characteristics of calculable performance criteria such as the OC and ASN func-
tions. During the design process, different types of sampling plan can be tried out
and, for each type, its parameters can be varied to explore the effect on the perfor-
mance criteria. Based on the weight that is given to the different performance cri-
teria, an ‘optimal’ plan may be selected. Such a plan may not be strictly optimal in
a technical sense, because there are usually several criteria. Some criteria are
directly conflicting (e.g. sample size and precision), so compromises must be made.
Moreover, in practice, the parameter space of sampling plans can be only partly
explored, and some useful possibilities may be overlooked. Nevertheless, the explo-
rative approach using models immensely widens the selection from which choices
can be made, and a better end-product is more likely.

Another advantage of the formal approach is that whenever any model is con-
structed, whether it be a mathematical model or a conceptual model, the process of
constructing the model and explicitly describing its components engenders a level
of understanding that otherwise would not be possible. The increased insight may
suggest yet better solutions.

It may be impossible to develop acceptable agricultural production systems for the
future that rely solely on natural internal mechanisms of pest control. We believe
that, in agricultural production systems which exploit ecological processes to keep
pest populations under control, efficient sampling and monitoring tools are
required to keep the pulse of the system and to schedule interventions – of what-
ever nature – where and when necessary. We do not advocate that sampling plans
be designed and extended to practitioners as prescriptions. The final word is always
with the user. Moreover, users are likely to adapt plans, originally based on formal
methods, to their own needs and restrictions. In this way, sampling plans are taken
up in a stream of learning by doing. Therefore, the two approaches of design, by
‘engineering’ and by ‘learning by doing’, are complementary. To emphasize the
responsibility of the user, we prefer to use the term ‘decision guides’ rather than
‘decision rules’. Labour is expensive in highly productive agricultural systems. It is
therefore imperative that sampling and monitoring methods are effective (i.e. they
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produce good results), but require a minimum of input. This book provides tools for
designing sampling and monitoring plans that fulfil this criterion.

1. Growers make decisions at several spatial and temporal scales.
2. Three constituent types of information play a large role in decision-making: 

• knowledge about the dynamics of the production system
• socio-economic information and expectations
• knowledge about the actual state of the system

3. Pests reduce production and cause loss of revenue, depending on their density.
The calculation of the threshold level of pest density above which some kind of
intervention is necessary requires an integration of all types of information, possi-
bly accounting for uncertainties in knowledge. There are several potentially useful
threshold concepts: EIL, ET and modifications thereof. 
4. Sampling looks at the state of the system. The two basic performance indicators
of sampling plans are:

• the operating characteristic (OC) function – that is, the probability of a deci-
sion to do nothing about the pest, as a function of pest density

• the average sample number (ASN) function, also a function of pest density

5. Sampling uncertainty along with information uncertainty determine ideal
shapes of OC and ASN functions. 
6. A decision about the timing of future samples (if taken at all) may be needed, in
addition to a decision on what to do about the pest directly following sampling.
Monitoring is sampling through time. 
7. Properties of sampling and monitoring strategies can be calculated and then
optimized. The general structure of this optimization and design procedure encom-
passes setting up potential plans, calculating their performance using statistical or
simulation methods, and choosing the preferred plan, based on explicit perfor-
mance characteristics such as sample size and average expected loss. 
8. The formal design process described in this book leads to procedures that may be
adapted to the specific requirements of individual users. They then become part of
the evolving production system.

Brown, G.B. (1997) Simple models of natural enemy action and economic thresholds.
American Entomologist 43, 117–123.

Dent, D.R. (ed.) (1995) Integrated Pest Management. Chapman & Hall, London, 356 pp.
Dent, D.R. and Walton, M.P. (eds) (1995) Methods in Ecological and Agricultural Entomology.

CAB International, Wallingford, 387 pp.

14 Chapter 1

1.10 Summary

References and Suggested Reading



Higley, L.G. and Pedigo, L.P. (eds) (1996) Economic Thresholds for Integrated Pest
Management. University of Nebraska Press, Lincoln, Nebraska, 327 pp.

Norton, G.A. and Mumford, J.D. (eds) (1993) Decision Tools for Pest Management. CAB
International, Wallingford, 279 pp.

Pedigo, L.P. and Buntin, G.D. (eds) (1994) Handbook of Sampling Methods for Arthropods in
Agriculture. CRC press, Boca Raton, Florida, 714 pp.

Rossing, W.A.H., Daamen, R.A. and Hendrix, E.M.T. (1994a) Framework to support deci-
sions on chemical pest control under uncertainty, applied to aphids and brown rust in
winter wheat. Crop Protection 15, 25–34.

Rossing, W.A.H., Daamen, R.A. and Jansen, M.J.W. (1994b) Uncertainty analysis applied
to supervised control of aphids and brown rust in winter wheat. Part 1. Quantification
of uncertainty in cost–benefit calculations. Agricultural Systems 44, 419–448.

Basic Concepts of Decision-making in Pest Management 15





In this chapter we start with the concept of randomness, and show how a lack of
randomness in sampling can lead to bias. Bias, precision and accuracy are defined
and described, and ways of avoiding bias when collecting sample data are pre-
sented. Four attributes that determine the basic trustworthiness of sampling plans
for pest management are described: representativeness, reliability, relevance and
practicality. The variances of sample data and of sample means are defined. The
precision of estimated population parameters is commonly characterized by the
variance. Using data on the distribution of Colorado potato beetle in potatoes as an
example, we demonstrate the reduction of variance with larger sample size. Using
the same data set, we demonstrate that sample means for large sample sizes are
described by the normal distribution. Using this result, we show how to compute a
probability of decision function (operating characteristic (OC) function) for a sam-
pling plan that classifies density using a sample mean. Simulation is introduced as a
tool for characterizing the properties of sampling plans. 

We introduce the concepts of randomness and random sampling by describing two
simple examples. Very often, bias is a consequence of non-random sampling. These
examples also allow us to illustrate some technical terms we need to use later on.

EXAMPLE 1: RANDOM NUMBERS 1–100. The human mind is generally incapable of
producing truly random samples, even from a defined population. We asked
people in the Department of Theoretical Production Ecology at Wageningen
University to write down, independently of each other, five numbers that they
were to choose randomly from the population of numbers 1–100. The results are
given in Table 2.1. As might have been expected from such an aware group of
people, the numbers were not too bad as random numbers, but even here there is
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a marked preference for numbers less than 10, and an aversion to numbers ending
in 0 or 6.

An inability to produce a random sample, even from so well defined a popula-
tion as the numbers 1–100, has important practical ramifications when sampling
for pest management. When we sample a population, we usually assume that
sample units are drawn randomly, so that each sample unit has an equally likely
chance of being selected. In this example, the sample units are the numbers 1–100.
When sample units are not selected randomly, the information collected may have
a slant or tendency that does not truly represent the population. As a result, esti-
mates obtained by sampling may not be accurate; the estimates might be systemati-
cally greater or less than the true population parameter. In this example, the
average of all chosen numbers was 45.3, whereas the average of all numbers from 1
to 100 is 50.5.

EXAMPLE 2: SAMPLING MARBLES. Imagine a sack that contains many marbles. The
total collection of marbles is defined as the population of all marbles. Some of the
marbles are red and the remainder are green. Now suppose that we wish to estimate
the proportion of red marbles in the sack without having to check all the marbles.
To do this, we decide to draw 20 marbles from the sack and we note the colour of
each. We might then infer that the proportion of red marbles in the sack is equal to
the number of red marbles drawn divided by 20. In order for our estimate of the
proportion of red marbles in the sack to be accurate, we must assume that marbles
were drawn from the sack randomly.

Sampling is said to be random if each item or set of items in the population is
equally likely to be drawn. For the most part, we would be willing to accept that
sampling the marbles in the sack is random, but there may be circumstances which
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Table 2.1. The tabulation of 185 numbers (five numbers from each of 37 people),
according to value. For example, the first row shows the total numbers received in the
range from 1 to 10: two 1’s, two 2’s, three 3’s, three 4’s, six 5’s, one 6, five 7’s, three
8’s, seven 9’s and one 10.

Units

Range 1 2 3 4 5 6 7 8 9 0 Total

1–10 2 2 3 3 6 1 5 3 7 1 33
11–20 4 2 2 3 0 0 3 1 3 2 20
21–30 1 2 5 0 0 4 1 0 2 0 15
31–40 1 2 2 1 3 2 4 2 2 1 20
41–50 1 0 2 2 8 1 2 0 0 2 18
51–60 3 0 1 4 0 0 1 0 2 0 11
61–70 2 1 1 5 1 1 5 2 3 0 21
71–80 3 1 1 2 3 0 2 5 0 0 17
81–90 2 0 2 2 1 1 1 4 1 1 15
91–100 0 1 2 2 2 0 0 4 3 1 15
Total 19 11 21 24 24 10 24 21 23 8 185



would cause this assumption to be questioned. For example, it might be that the red
marbles were placed in the sack first, the green marbles were then added, but the
marbles were not mixed before sampling. It might also be that the red marbles are
heavier than the green ones, which would make it more likely for the green mar-
bles to be on top in the sack and hence more likely to be selected. If we repeated
the sampling experiment several times under these conditions, our samples would
systematically contain more green marbles than if samples had been truly random.

A central difference between these two scenarios is that the expected value of
the sample proportion of red marbles is different. The expected value can be
defined heuristically as the long-term average of the sample means (i.e. propor-
tions). Let us imagine the experiment being repeated with random sampling (after
proper mixing) and with non-random sampling (without mixing). After a great
many repetitions all possible sets of 20 marbles would have occurred, some more
often than others. The relative frequency with which any one set of 20 marbles
occurs would be approximately equal to the probability of it occurring on any one
occasion. When sampling is random these probabilities are equal to each other, but
when sampling is non-random the probabilities of samples with high numbers of
green marbles would be relatively greater. Thus, with random sampling, the
expected value of the sample proportion of red marbles would be equal to the true
proportion of red marbles in the whole sack, whereas, with non-random sampling,
the expected value would be less. The actual value with non-random sampling
would depend on properties of the marbles themselves, of the sack, and of the
person (or machine) drawing the marbles: it might be only fractionally less than
the value under random sampling, or it might be much less. Therefore, if our goal
was to estimate the actual proportion of red marbles in the sack, but were unaware
of any weight difference between the red and green marbles or inadequate mixing,
our estimates would be biased downwards to some unknown degree.

At this point it is useful to distinguish between the sample unit itself and the
property (or properties) being investigated. In the marble example, the sample
units are marbles and the property being investigated is their colour. Even when
marbles are randomly selected (no selection bias), if the person doing the sampling
cannot readily distinguish between the colours red and green, the data collected
(colour) may be incorrect. This would lead to a different type of bias, enumeration
bias.

When samples are taken from a population to estimate a parameter such as the
mean number of weevils per plant in a lucerne field, the estimate will almost cer-
tainly not be equal to the true parameter. If the same population is sampled many
times there will be several different estimates of the mean, and these estimates will
be scattered about the true mean in some pattern. The central value and shape of
this pattern depend on the bias and precision of the sample estimates. Bias is any
systematic deviation of the sample estimate from the true parameter. In the marble
sampling model, we described how non-random sampling can lead to systematic
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error or bias. This systematic error is distinct from random error because it does not
balance out on average. Bias is defined as the size of the difference between the
expectation of a sample estimate and the population parameter being estimated. If
m is an estimate of the population mean µ, then bias is defined as E(m) � µ, where
E( ) denotes expectation. Bias is usually impossible to measure in practice, because
we rarely know what µ is. Certain types of estimators such as ratio estimators are
inherently biased because of their mathematical formulation, but in sampling for
pest management decision-making, a more important potential source of bias is the
way in which data are collected or analysed. 

Precision refers to how close to its own expectation we can expect one single
estimate to be. If m is an estimate of the population mean µ, then precision is
quantified by E(m � E(m))2. With ‘E( )’ occurring twice, this may look daunting,
but it can be put into words:

• (m � E(m))2 is the squared difference between an estimate and its long-term
average

• E(m � E(m))2 is the long-term average of these squared differences

E(m � E(m))2 is actually more a measure of imprecision than precision,
because it increases as estimates get more erratic. Note that if the difference, 
(m � E(m)), were not squared, the result would be zero.

Accuracy denotes the closeness of population estimates to the true population
parameter. Accuracy therefore incorporates both bias and precision. For example,
an estimate may have high precision, but low accuracy because of high bias. The
relationships among bias, precision and accuracy can be visualized by considering
again the ‘random’ numbers of Example 1 and comparing sampling from these
numbers to sampling from a set of truly random numbers. We simulated random
sampling from the data consisting of the numbers 1–100 (Fig. 2.1a and b) and from
the non-random TPE data set (Table 2.1; Fig. 2.1c and d). Both data sets were sam-
pled using a small sample size (Fig. 2.1a and c) as well as a large sample size (Fig.
2.1b and d). The figure shows the resulting four distributions of sample means.

As expected, the frequencies for trials (a) and (b) are centred on 50.5, illus-
trating zero bias, and the frequencies for (c) and (d) are centred to the left of 50.5,
illustrating negative bias. The spread of frequencies for trials (a) and (c) is wider
than in (b) and (d), illustrating less precision for (a) and (c) than for (b) and (d)
due, as we shall see below, to the smaller sample size. Obviously, the sampling strat-
egy for Fig. 2.1b gives the most accurate results, combining zero bias and compara-
tively high precision. 

EXAMPLE 3: SELECTION BIAS WHEN SAMPLING STONES. Bias can be studied in more
practical instances, as was done by Yates (1960). In one study, he laid out on a table
a collection of about 1200 stones (flints) of various sizes with an average weight of
54.3 g. He asked 12 observers to choose three samples of 20 stones each, which
would represent as closely as possible the size distribution of the whole collection of
stones. The mean weight over all 36 samples proved to be biased upwards: the aver-
age weight of all 36 samples was 66.5 g. Ten of the observers chose stones whose
average was greater than 54.3 g, and of their 30 samples only two had sample
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means less than 54.3 g. All three of the samples of one of the two other observers
had means less than 54.3 g. These results suggest that the non-random method of
selecting stones by observers resulted in unrepresentative samples, leading to biased
estimates of the average weight.

EXAMPLE 4: SELECTION BIAS WHEN COLLECTING ‘ADDITIONAL’ SAMPLE UNITS. In a second
study, Yates describes how a carefully designed and tested sampling protocol for
estimating wheat growth was, on two occasions, ‘adjusted’ at sampling time by an
observer because the situation that he faced had not been envisaged in the proto-
col. Following the protocol as far as he could, he realized that he would collect only
192 measurements of plant height, rather than the required 256, so he added 64 of
his own ‘randomly chosen’ plants, fortunately keeping the values separate. On the
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Fig. 2.1. Frequency distributions of 500 sample means based on random and non-
random sampling of the numbers 1–100. Samples consist of: (a) five randomly chosen
numbers, low precision, no bias; (b) 20 randomly chosen numbers, high precision, no
bias; (c) five numbers chosen randomly from Table 2.1, low precision, bias; (d) 20
numbers chosen randomly from Table 2.1, high precision, bias.



first date, the additional observations tended to be larger than the standard ones,
while on the latter date they tended to be smaller. Yates suggests why these differ-
ences might have arisen: on the first occasion, the plants were only half grown, and
the observer would have been more inclined to sample larger plants; on the second
occasion, the plants had come into ear, and the observer may have over-compen-
sated by looking for plants closer to the average.

These examples exemplify what is called selection bias. Yates (1960) lists four
possible causes of selection bias:

1. Deliberate (but unsuccessful) selection of a representative sample.
2. Selection of sample units on the basis of a characteristic which is correlated
with the properties to be investigated by sampling.
3. Omission of sample units that are (more) difficult or tedious to collect or
inspect than others.
4. Substitution of omitted or rejected sample units by more readily observable
units.

Selection bias is an ever-present danger in pest sampling work when sample units
are not selected in a truly random manner.

A second source of bias is called enumeration (counting) bias. Enumeration bias
occurs when counts on sample units are systematically less than or greater than the
actual number on the sample unit. This is obviously of concern when organisms are
very small, but may also be an issue when organisms are mobile or are difficult to
recognize. Not only can a procedure which has bias be bad in itself, but different
people may act in such a way that they have their own personal amounts of bias.
Different users of a sampling plan might then arrive at different conclusions, even
though they may be sampling from the same location and at the same time.

To minimize selection bias, the choice of sample units should be codified so that
the opportunity for bias to creep into the sampling process is minimized. If cost and
time were of no concern, each possible sample unit could be numbered and sample
units drawn by generating random numbers. Of course, this is impossible in prac-
tice, so a compromise must be made between selecting sample units entirely at
random and making the sample process reasonable. Sampling procedures should be
carefully codified to prevent any preferential selection of sample units which in
some way or other are related to their pest status. We illustrate two common situa-
tions in which care is needed:

1. Pests or pest injury is readily apparent on potential sample units. Leaf-rolling caterpil-
lars are often regarded as pests in apple orchards. These insects create feeding sites
by wrapping a leaf or leaves with silken threads. These feeding sites are readily visi-
ble, even when the caterpillars are very small, so there is great danger in using a sup-
posedly random collection of branch terminals or of clusters of leaves as a sample
set. Observers might preferentially select or avoid leaves with feeding damage. To
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circumvent this, a whole branch can be taken as the sample unit and all growing
tips on the branch examined for caterpillars. In this case, the sample unit itself is
redefined to minimize the chance of selection bias influencing the outcome.
2. The local distribution of pests among potential sample units is known. Even when the
pest is minuscule and not readily visible, bias can arise because of the way it is dis-
tributed among potential sample units. A phytophagous mite on apple, the
European red mite (Panonychus ulmi) is often more numerous on older leaves than
on younger leaves. The density on leaves of intermediate age is most representative
of the population in the whole tree. Therefore, to circumvent possible bias, leaves
in the middle of fruit clusters or mid-way along an expanding terminal are used as
sample units.

Codifying the way in which sample units are collected will not affect the other
source of bias – inaccurate enumeration. In some cases, enumeration bias cannot be
avoided. If this source of bias is consistent among observers then it can be largely
ignored, other than being sure that estimates take into account either the under- or
over-counting. If, however, enumeration bias differs greatly among observers,
efforts must be taken to discover the source of the bias and, if possible, remove it.
Otherwise, this source of bias can result in incorrect pest management decisions.

A procedure that is suspected to have bias is not necessarily to be avoided.
One of the most important criteria in pest management is cost, and it frequently
happens that procedures with less bias are more costly. In such a situation, good
arguments need to be made if a less biased procedure is to be adopted. For example,
a standard procedure for selecting plants in a field from which to take sample units
is to follow some more or less straight paths across the field, taking samples at more
or less equal intervals. This can easily introduce selection bias, either because of
the choice of paths or the actual selection of sample units. However: (i) even if a
complete list of all plants in the field could be envisaged, and a truly random
sample taken, walking through the field to reach the plants would take a lot of time
and would probably damage the crop too; and (ii) the protocol to select the sample
unit cannot afford to be too complicated. It has been found in practice that the
simple path method, along with close-to-random unit selection (e.g. tossing a stick,
or taking, say, the tenth unit after arriving at a particular sampling location) is usu-
ally acceptable.

A somewhat different way in which bias can occur is when a sampling plan is
proposed which is good on paper, but is hard to comprehend or difficult to imple-
ment. A pest manager may try very conscientiously to make the plan work, but it
inevitably runs into problems. It is then almost inevitable that data errors will
creep in, through exhaustion or frustration. Such a sampling plan is almost useless.

A trustworthy sampling plan should meet the following criteria: 

1. The sample information should be representative of the actual pest density. This
is simply another way of saying that unaccountable bias should be avoided. If the
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design of the sampling programme is such that you know that the expected value of
the sample mean is, say, 20% too low, you can easily adjust your estimate, but not
otherwise. 
2. The sample information should be reliable. It should not depend on the person
collecting the data. Reliability goes beyond this though, in that the sample infor-
mation should also not be affected by exogenous, uncontrolled variables such as the
weather, or by the possible diurnal behaviour of the pest. 
3. The sample information should be relevant, meaning that the estimate of pest
abundance should have a reasonable relationship to crop yield and loss.
4. Sampling in the proposed way must be practically feasible; that is, the procedure
must be simple enough to appeal to users and not be misunderstood; the time it
takes to collect a sample, and the moment at which it must be collected must fit in
the agenda of the user.

Meeting these criteria must take into account the specifics of the pest–crop
system, its scale of space and time, and how and by whom it is managed. In this
book, we will assume that a trustworthy sampling plan can be set up. We take it
from there by outlining how the performance of proposed plans, as characterized for
instance by probability of decision (or OC) functions and average sample number
(ASN) functions, can be determined, modified and optimized. In the remainder of
this book, we will often assume that the criteria of representativeness, reliability,
relevance and practicality have been met in principle. When they are not met,
looking at performance indicators such as the OC and ASN functions is of little
use.

You might now recognize that we have not included precision as a criterion for
a good sample. A sample protocol that delivers estimates with less variability than
another protocol provides more precise estimates. Usually, obtaining more precise
estimates requires more work either in terms of the type of information collected
from each sample unit or in terms of the number of sample units examined.
Depending on the context, added precision may or may not be important. We will
discuss this repeatedly throughout the book, but what is important to understand
now is that attaining high precision, or attaining some specified level of precision,
cannot be used as a criterion of a good sample without considering to what end the
sample information will be used. There will be instances when a moderately impre-
cise estimate of pest abundance is sufficient and other situations in which a more
precise estimate is needed.

When we collect sample data, we do so in three-dimensional space. During most
applications in pest management, this is ignored. Some sort of selection procedure
is used to choose samples, but once pest counts are made on the sample units, the
locations of the units are forgotten, and a summary such as the average count is all
that is used in the decision-making process. On some occasions, however, the loca-
tion of the sample units is important both for selection and for analysis. For exam-
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ple, when a known predictable edge effect exists, it may be wise to consider
whether these areas should be managed differently. Possibly they alone should be
sampled to act as an indicator of potential pest problems, or the edge and interior
of a site should be managed differently.

Another instance in which all three space dimensions need to be considered is
when the structure of the host, the behaviour of the pest and/or time considera-
tions make it more convenient to select sample units hierarchically. For example,
some methods for sampling the lucerne weevil on lucerne include protocols for ini-
tially sampling the stems and then sub-sampling leaves on these stems, counting
pests on only the selected leaves. This type of sampling in more than one ‘stage’
presents further problems, and is discussed in detail in Chapter 8.

A final case in which all three space dimensions must be considered is when
maps of pest abundance are desired. In such situations, the purpose of sampling is
not just to estimate the average abundance of a pest over some sample space, but to
quantify the spatial pattern of abundance. This is done so that control is only exe-
cuted on those portions of the management unit where pests exceed some critical
density. This type of sampling for pest management decision-making is not widely
practised and is beyond the scope of this book. Interested readers are referred to
Schotzko and O’Keeffe (1989, 1990) for an introduction to the subject. 

Throughout this book, we will use simulation of sampling processes as a tool to
address questions about the behaviour and performance of sampling plans.
Simulation is often the only practical way to do a particular analysis or to obtain
the desired information. In the example discussed below, mathematical statistics
could be used, but using simulation provides a different insight.

Simulation mirrors field sampling, and consists of four steps:

1. The population from which samples are to be drawn is described.
2. Sample observations are selected from the population at random, or using some
other specified method.
3. The sample data are summarized; for example, by the sample mean.
4. Steps 2 and 3 are repeated many times and the results summarized so that the
nature of the sample information can be studied.

Steps 1–3 are just the same as in field sampling. The fourth step is used to generate
a ‘long-term average’ description of the properties of the sampling protocol. We
have already used simulation to produce Fig. 2.1. We use sampling from the
‘almost’ random numbers 1–100 in Table 2.1 as an example.

One way of selecting a sample from the population of numbers summarized in
Table 2.1 is to write them in an array underneath an array of serial numbers (s.n.)
which go from 1 to the total number of sample units, as follows:
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s.n. 1 2 3 4 5 6 7 8 9 10 11 etc. 184 185
Data 1 1 2 2 3 3 3 4 4 4 5 … 99 100

A simple computer program can be written to select random numbers in the
range 1–185. Thus, 20 random numbers in this range can be chosen, and the
sample then consists of the data values corresponding to each of the 20 randomly
selected serial numbers. For example, if the 20 serial numbers were to include 5, 10,
5 and 8, representing the 5th (twice), the 8th and the 10th units in the population,
then the sample data would include the data values 3, 4, 3 and 4. 

In this example, we have allowed the 20 random numbers to include repeti-
tions, but we can specify that no repetitions are allowed. We should then need to
keep generating random numbers (often many more than 20 would be needed)
until 20 distinct sample units are found. The former type of sampling is called sam-
pling with replacement, and the latter is called sampling without replacement.
Sampling without replacement should not be done in this way, unless the sample
size, n, is small (see below).

A rationale for using with replacement sampling in this example is that the
data are assumed to be typical of data that would be provided by any group of
human beings. In other words, a much larger data set derived from many more
people would have essentially the same characteristics as the data in Table 2.1.
Removing sample units as they are chosen (i.e. sampling without replacement)
would alter these characteristics, especially if the sample size were large relative to
the total number of units, 185. On the other hand, if the data values represent a
specific physical entity whose properties we need to estimate, sampling without
replacement may be more sensible. For example, simulating sampling of grain car-
goes which might contain a quarantine pest would be better done using ‘without
replacement’ methods.

Another simulation method, which is easier in some circumstances, is to use
the frequency counts. The data values are arrayed alongside the frequencies, the
cumulated frequencies (c.f.) and cumulative probabilities (c.p.: c.p. = c.f./total
number of sample units):

Data 1 2 3 4 5 6 7 8 etc. 99 100
Frequency 2 2 3 3 6 1 5 3 … 3 1
c.f. 2 4 7 10 16 17 22 25 … 184 185
c.p. 0.011 0.022 0.038 0.054 0.086 0.092 0.119 0.135 … 0.995 1.000

A random choice is made by getting the computer to provide a random
number between 0 and 1, and finding where this number lies among the c.p. values.
For example, if the random number were 0.090, you would find where it lies
(between 0.086 and 0.092), look above to the top line, and choose the data value
on the right to get the selection ‘6’. If the random number were 0.999, the selection
would be ‘100’; and if it were 0.005, the selection would be ‘1’. If the number is
exactly equal to one of the c.p. values, the selection is the data value directly above
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that c.p. value. If sampling with replacement is being simulated, this procedure is
repeated 20 times.

Both of these methods can be used to simulate sampling with replacement. In
each instance, the more convenient one should be used. For sampling without
replacement, however, neither method is recommended. A sample of n units
should be simulated by generating a random permutation of the sample units, and
selecting the first n (Page, 1967). 

With this introduction to simulation, let us now examine how to summarize the
information collected from a sample and how to view the value of this summary.

Beall (1939) described counts of Colorado potato beetles taken from a field in
Ontario, Canada. Forty-eight contiguous rows of potatoes were subdivided into 48
lengths of 2 feet (71 cm) each, and the sample unit was defined as one 2 foot
length. The numbers of Colorado potato beetles were noted for all sample units. A
pictorial impression of the data is shown in Fig. 2.2. The numbers of sample units
found with no beetles, the numbers with one beetle, with two beetles and so on are
shown as a frequency distribution in Fig. 2.3a. Sampling from this field (as repre-
sented by the grid of 48 × 48 = 2034 units) can be simulated by selecting sample
units at random ‘without replacement’ using the computer and summarizing the
data to get the sample mean.

If the collection process is repeated (simulated) many times, the set of esti-
mated means can be displayed as another frequency distribution, which can be
compared with the frequency distribution representing the original data. Five hun-
dred simulations were done of a sample protocol that takes 25 sample units and
determines the average number of beetles in each set of 25 sample units. The fre-
quency distribution is shown in Fig. 2.3b. Two things are evident from a compari-
son of the frequencies of the original data and of the sample means: the means of
the two distributions are close to each other, but the spread of frequencies in the
sample means is much less than in the original counts. Because each of the simu-
lated samples represents a possible sample mean, you can see that you are more
likely to be near the true mean with a sample of size 25 than if you were just to take
one plant at random. What is more, statistical theory provides a guide that predicts
how much closer you can expect to be, depending on your sample size.

The measure of spread that has been found most useful in theory and practice
is the variance, σ 2. It is defined as an average of the squared difference of each data
value from the true mean. The variance of sample values is defined as

(2.1)

where n is the number of sample units selected (the sample size) and m is the
estimated mean. The division by one fewer than n, rather than n itself, is for
theoretical reasons dealing with mathematical bias.
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The guide provided by statistical theory is that the variance of the distribution
of sample means in Fig. 2.3b is a simple function of σ2 and n, and can be estimated
from V and n:

true variance of the sample mean = σ 2 / n (2.2)

It is estimated by

Vm = V / n (2.3)

By taking n sample units, we have reduced the variance of the sample mean by
a factor of 1/n. As is evident from Equation 2.3, the variances of sample means
decrease as sample size increases. Thus, the precision of a sample mean increases
with increasing sample size. This can be better visualized by using the square root of
the variance, and using standard deviation, standard error and so on (Table 2.2). A
concept which is very useful in a variety of circumstances is the coefficient of varia-
tion (CV): it combines the variance with the mean, so that variability can be
viewed as a percentage of the mean. This and other notations are presented in
Table 2.2.
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Fig. 2.2. A pictorial impression of counts of Colorado potato beetles in a field. Counts
on sample units are classified into the size intervals 0, 1, 2–3, 4–6, 7–12, 13–20 and
21+. Increasing numbers of beetles per sample unit are indicated by circles of
increasing size according to this classification, with a blank representing the zero
class.



A second useful result that we can take from statistical theory is the Central Limit
Theorem. As the sample size increases, not only does the variance of estimated
means decrease, but the shape of the distribution of means standardizes to the
shape of what is called the normal distribution. The normal distribution has a bell-
like shape, and two of its properties are that about two-thirds of it lies within one
standard deviation of its mean and about 95% lies within two standard deviations
of its mean. Therefore, we have a heuristic idea of what happens when sample sizes
increase: 

1. With about 66% probability, the sample mean, m, is within of the true
mean, µ.
2. With 95% probability, the sample mean, m, is within 2 of the true 
mean, µ.

σ can be replaced by the estimate, (Fig. 2.4).V

σ / n

σ / n
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Fig. 2.3. (a) A frequency diagram for counts of Colorado potato beetles; mean = 4.74.
(b) A frequency diagram for 500 means estimates from samples of 25 units each; mean
= 4.75.

2.9 The Distribution of Sample Means – the Central Limit Theorem



The properties of the normal distribution have been studied and many of them
described in detail; they can be found in statistical texts. In particular, the cumula-
tive distribution function of the normal distribution has been tabulated. The cumula-
tive distribution function defines the probability that a random variable takes on
values less than or equal to a specified constant. We can find in published tables
(available in many textbooks) the theoretical probability of a sample mean being,
say, 1.338 standard deviations away from the true mean – or any other number of
standard deviations. The only thing that we need to be careful about is that the
sample size is large enough for us to assume the normal distribution. There is much
folklore on this subject, and no globally true criterion exists. However, most workers
in pest management are prepared to assume a normal distribution if their sample
size is 25–30 or more. 
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Table 2.2. Notation for various statistical quantities based on the mean and the 

variance. There is some inconsistency in the literature (for example, s and are
often referred to as standard deviations). In this book we use the definitions noted
here.

True values
µ Mean

σ2 Variance

σ Standard deviation (sd)

Standard deviation of a sample mean (sdm)

Coefficient of variation

Coefficient of variation of a sample mean

Sample estimates
m Sample mean

V Sample variance, often written as s2

Sample sd, also called standard error (se)

Standard error of a sample mean (sem)

Estimated coefficient of variation

Estimated coefficient of variation of a sample mean
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Fig. 2.4. A typical normal distribution, with mean equal to 5 and standard deviation
equal to 1. The range from 4 to 6 contains about two-thirds of the distribution, and the
range from 3 to 7 contains about 95% of the distribution.

Exhibit 2.1. Variance of sample means and the Central Limit Theorem

Sampling was simulated on the computer by randomly selecting sample observa-
tions from Beall’s record of Colorado potato beetle counts. Three sample sizes were
used: 5, 25 and 50 sample units. For each sample size, the sampling process was
simulated 500 times, thereby resulting in 500 estimates of the mean. The variance,
σ 2, of the original counts was 14.995 and the mean, µ, was 4.74. The mean and
variance of the 500 simulated sample means were calculated and graphed as func-
tions of the sample size. The theoretical variance of the sample (Equation 2.2) was
also calculated and graphed as a function of the sample size. The results are shown
in Figs 2.5 and 2.6.

The squares in Fig. 2.5 represent the mean and variance of the original
counts, while the circles are the average of the sample means (the mean of the
means) and variances of the sample means. The means are essentially the same for
the original counts and for all three sample sizes. The variances of the sample
means decrease with increasing sample size and closely follow the theoretical
variance (solid line).

In Fig. 2.6, the 500 estimates of the sample means are arranged as frequency
distributions and are compared to frequencies based on the normal distribution
(lines). Frequencies are shown for an interval rather than a single value of the
mean (e.g. 0.2–0.4 versus 0.3), because the estimated means are continuous; and
in order to calculate a frequency, the number of means in an interval must be tal-
lied. As the sample size increases, the distribution of means is more like a normal
distribution.

Continued

Therefore we have two special reasons to be grateful to statistical theory: 

1. For the formula which tells us how the variance is reduced when the sample size
increases.
2. For defining the shape of the distribution of sample means when the sample size
is large.

These are illustrated in Exhibit 2.1.
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Fig. 2.6. Frequency distributions of 500 sample means for sample sizes of 
(a) n = 5, (b) n = 25 and (c) n = 50. Solid lines are theoretical frequencies based
on the normal distribution.
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Fig. 2.5. The (a) mean and (b) variance of the original count of Colorado potato
beetles (▫) and of means and variances of means (�) for sample sizes 5, 25 and 50.
The solid line in (b) is the theoretical variance of the sample mean, according to
Equation 2.3.



The purpose of sampling in pest management is to gather information on pest
abundance so that a decision can be made on the need for some control action.
Using the results discussed above, we can make inferences based on sample data
which allow us to make informed decisions. For example, suppose that, following
the principles laid out in this and the preceding chapter, we have decided that the
critical density (cd) for Colorado potato beetles in fields such as Beall’s, is 3.5
beetles per sample unit, and that 25 sample units are sufficient. In practice, this
would mean that the management protocol is to inspect 25 sample units, calculate
the average number of beetles per unit, and recommend a control action if the
sample mean is greater than 3.5. Typical values for the sample mean (obtained by
1000 simulations) are displayed in Fig. 2.7, along with an indication of cd. 

By looking carefully at Fig. 2.7a, we can count that about 30 of the 1000
sample means were less than 3.5, equal to a proportion 0.030, or 3%. It is tedious
and hard on the eyes to do this for each sample protocol, but a good approximation
is available based on the central limit theorem. For this, it is most convenient to
transform Fig. 2.7a into Fig. 2.7b, by changing the x-axis from simple average
counts of beetles per sample unit to their standardized form:

(2.4)

The transformed value, z, of the mean, m, is normally distributed (approxi-
mately), and has a mean value equal to zero and a variance equal to one. It is much
easier to use published tables of the normal distribution using z than using m, but to
do that, we need to transform cd in the same way:

  
z

m
sd

sd
nm

m= − =µ σ
, where 
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2.10 What Does this Mean for Decision-making?

Fig. 2.7. Frequency distributions for means based on 25 sample units each and 1000
simulations; the critical density, cd, is shown by a tethered balloon. (a) Unadjusted
sample means; (b) standardized sample means, based on Equation 2.4.



(2.5)

(2.6)

The goal of all these calculations is to estimate the probability of a mean of 25
sample units being less than or equal to 3.5, which is (approximately) equal to the
probability of a standardized normal deviate (z) being less than or equal to �1.596
(see Fig. 2.7b), and this is something that we can look up in tables. Note that z is
only notionally calculated: it is the fact that it is a standardized normal deviate that
is important, leading to the validity of looking up a table to obtain the probability.
This probability is 0.055, which can be compared with the counted result, 0.030.
The difference between these two numbers is the result of n = 25 not being large
enough for the Central Limit Theorem to hold exactly, and because 1000 simula-
tions may not be enough to give accurate enough results. For most workers, such an
approximation is usually good enough, given all the other imponderables relating
to pest management decision-making. 

Thus, we can be reasonably sure that the probability of a sample mean based
on 25 sample units is less than or equal to 3.5 is about 0.05. What this means for
decision-making is that the probability of not intervening, if such a sample proto-
col were to be used for Beall’s field, is about 0.05.

These calculations can be generalized to apply to any field of potatoes which is
sampled in a similar way to Beall’s. Before using any sample protocol, we need to
know what sort of decision recommendation it will give for whatever field may be
sampled. We need to calculate the probability of the sample data recommending
one or other management action. In Chapter 1 we introduced probability of deci-
sion and OC functions as summaries of these probabilities. The OC function is the
probability, based on a field sample, of classifying pest density as less than or equal
to some specified cd and thus the probability of deciding not to intervene.

The OC is the probability that m is less than or equal to cd, given a value for µ.
This probability can be determined, as above, provided that we know the true
variance, σ2, of the sample counts, and provided that the sample size, n, exceeds
some minimal level for the Central Limit Theorem to be relevant. Under these cir-
cumstances, we can calculate z (Equation 2.3) for any value of µ, and compare it
with the similarly transformed cd (Equation 2.4) to obtain a probability based on
the normal distribution. As above, z is not actually calculated – it is the fact that it
is approximately a standardized normal deviate that is used to estimate probabili-
ties. Thus we can calculate the OC function for a sampling protocol based on n
equal to 25. Some values of the function are given in Table 2.3.

By now, we can predict what will happen to the OC function as the sample

calculated as = −
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size, n, is increased. As the sample size is increased, the standard deviation of the
mean, sdm, decreases. As a result, the standardized form of cd, (cd � µ)/sdm,
increases in absolute value (unless µ = cd). This causes the spread of values in the
second line of Table 2.2 to become larger, which in turn causes the spread of proba-
bilities in the third line to shrink. The end result is that OC function becomes
steeper about cd as the sample size increases. This is illustrated in Exhibit 2.2.

The OC function for the sampling plan used to classify beetle densities with
respect to cd can also be determined using simulation. To simulate the OC func-
tion, the following procedure is used:

1. A range of true means (µ’s) is specified for which OC values are to be generated.
2. For each value of µ, a random variate is generated from a normal distribution
with mean µ and standard deviation , where σ is the population standard
deviation. Each of these random variates represents a sample mean, m.
3. If m ≤ cd, µ is classified as less than or equal to cd and the recommendation is to
do nothing; otherwise, µ is classified as greater than cd.
4. Steps 2 and 3 are repeated several times and the proportion of times µ is classi-
fied as less than or equal to cd is determined. This is the simulated OC value for
that value of µ.
5. Steps 2–4 are repeated for each µ in the range of true means.

How close the simulated OC is to the true OC depends on the variability in
the sample estimate and the number of times step 4 is repeated. This is illustrated
in Exhibit 2.2.

σ / n
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Table 2.3. OC function values when an estimated mean is used to classify density with
respect to a critical density, cd, equal to 3.5. A sample size of 25 is used, the sample
mean is assumed to be normally distributed and sdm = 0.774.

µ

2 2.5 3 3.25 3.5 3.75 4 4.5 5

1.94 1.29 0.65 0.32 0 �0.3 �0.7 �1.3 �1.9

0.97 0.9 0.74 0.63 0.5 0.37 0.23 0.1 0OC P z
cd
sdm

= ≤ −





µ
 

cd
sdm

− µ

Exhibit 2.2. Simple OC functions based on the Central Limit Theorem

For sampling plans that classify the population density on the basis of an estimate of
the mean, the OC is the probability of a sample mean, normally distributed with 
mean µ and standard deviation , being less than cd. This probability can be
found by determining the normal cumulative probability distribution value for these 
parameters. Because decreases with increasing sample size, the OC function 

Continued

σ / n

σ / n
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becomes steeper as the sample size is increased. This is illustrated in Fig. 2.8, in
which OC functions are shown for three sample sizes, 25, 50 and 100, when 
cd = 3.5 and σ 2 = 15.

OC functions can also be calculated using simulation. The normal distribution 
with the parameters µ and provides a model for sample means each calcu-
lated from a set of n sample units. Many such random numbers can be generated
and the proportion of times these numbers are less than cd is the OC value for a
particular µ. Simulation for a range of µ’s results in a set of proportions that consti-
tute an OC function. When simulation is used to determine OC values, the number
of times sampling is simulated for each value of µ determines how accurate
(smooth) the OC function will be. Three OC functions, one calculated analytically
and two using simulation, for n = 25 and σ 2 = 15 are shown in Fig. 2.9. Those
determined by simulation used either 25 or 250 simulation replicates for each OC
value. Note that when 250 simulation replicates were used, the simulated OC is
close to the analytical result. The number of simulation replicates required to
obtain a smooth OC function varies depending on the variability in the sample
data.

The accuracy of a simulated OC function can be predicted to a certain extent.
Equation 2.2 can be used to estimate the variance of any one simulated OC value,
if the variance of the true value (p) is known. We shall show in Chapter 4 that a

  σ / n

0                       2                       4                     6                      8

Population mean

1.0

0.5O
C

Fig. 2.8. OC functions computed using a normal cumulative distribution
function for three sample sizes when cd = 3.5 and σ 2 = 15: ____, n = 25; ----, 
n = 50; - - -, n = 100.
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simulated OC value follows a binomial distribution with expectation p and vari-
ance p(1 � p)/sr, where sr is the number of simulation replicates. It follows from the
Central Limit Theorem applied to the simulation process that the standard error of a
simulated OC value is

(2.7)

and, for two-thirds of the time, the simulated OC should be within one standard
error of the true OC, as noted above (Section 2.9). This is illustrated for the OC
function in Fig. 2.9, which is based on 25 simulation replicates: the simulated
values were mostly within one standard error of the true values (Fig. 2.10). When
OC functions, estimated by simulation, are compared with each other, their accu-
racy should be noted before bold statements are made.

Continued

simulation se
p p
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Fig. 2.9. OC functions computed using a normal cumulative distribution function
and via simulation for n = 25, cd = 3.5 and σ2 = 15: determined using the normal
distribution function (___), using simulation with 25 replicates (------) and with
simulation using 250 replicates (- - - -).
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Fig. 2.10. Predicting the accuracy of the simulated OC functions in Fig. 2.9. The
OC function is computed using the normal distribution (____), with error bars
indicating one standard error around it based on 25 replicates, and the simulated
OC function is based on 25 replicates (- - - -).

For readers who have worked with statistical hypothesis testing and statistical
significance, the OC function may not be new. An experiment could be set up to
examine whether the mean of a test population or process (e.g. the survival rate of
an insect under stress) is, or is not, less than a certain specified value, C. We plan to
assume a normal distribution for the data, with standard deviation equal to σ, and
use a 5% significance test (note that for a standardized normal distribution, the
probability of getting a value less than 1.645 is equal to 0.05). What this means is
that after the experiment, we intend to state that the true mean of the test
population is significantly less than C if the experimental mean is less than C �

. Depending on the true mean, the experiment will have varying 
probabilities of finding significance. A plot of these probabilities against true mean
values is called the power function of the experiment.

Making a pest management decision on the basis of a sample mean, as in
Exhibit 2.2, is similar to doing such an experiment. If

the OC function of Exhibit 2.2 and the power function for such an experiment are
the same. The plans discussed in Exhibit 2.2 can be regarded as designs for experi-
ments to test whether the true mean of pests per sample unit is, or is not, less than
C; it depends on how you view what is going on. Looked at the other way, there are

cd C n= − 1 645. /�

1 645. /� n



many statisticians who advocate looking at the entire power function for a pro-
posed experiment, rather than at the probabilities of accepting or rejecting one spe-
cific (often artificial) null hypothesis. Tukey (1950) drew attention to the similarity
of OC functions and power functions.

Five key ideas have been presented in this chapter:

1. Bias is an omnipresent factor when sampling for pest management. It is impor-
tant to consider data collection carefully, so that bias does not unwittingly influ-
ence the sample outcome.
2. A trustworthy sample satisfies four criteria: it should be representative, reliable,
relevant and practically feasible.
3. The precision of an estimated population parameter increases as the sample size
increases. This is because the variance of an estimated parameter decreases with
increasing sample size.
4. The distribution of sample means is described by a normal distribution function
provided that a minimum sample size is used. Often, n > 25 is sufficient for the
normal approximation to be acceptable.
5. OC functions for fixed samples that classify density based on an estimated mean
can be calculated using the normal cumulative distribution function. OC functions
for these sampling plans can also be generated by simulation.
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In this chapter we return to basics: the choice between sampling for estimation and
sampling to make decisions. We begin by contrasting estimation and classification,
and state why classification of pest density is more appropriate than estimation for
pest management decision-making. With this in mind, we examine how sample
costs can be reduced by collecting samples in batches, deciding after each batch
whether more samples are needed to come to a decision. Setting up such plans
requires knowledge of the variance of sample data, especially for mean pest densi-
ties near the critical density. We present variance–mean models which have been
used as formulae to estimate variances for any pest density, and we discuss the use-
fulness and limitations of these models.

The goal of integrated pest management is to protect the crop from pests in an
economical way, relying first on preventative and environmentally benign prac-
tices, such as crop rotation and sanitation, plant resistance, and naturally occurring
natural enemies and antagonists, and then, if the need arises, on the judicious use
of corrective control tactics such as pesticides or inundative natural enemy releases.
Many factors come into play when determining the need for pest control, such as
predicted weather conditions, closeness to harvest, other plant stresses and crop
value. A critical piece of evidence that is always required is whether pressure on
the crop from pests is too high.

At first glance, one might think that a really good estimate of pest density
would be the ideal piece of evidence. A grower could then weigh all the informa-
tion together, and come to a decision on the need for control. No one would argue
with this in principle, but in practice no reliable objective procedures for combin-
ing all relevant information have yet been developed (although some serious
attempts have been made). One must therefore rely on a few key pieces of information
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which, when coupled with practical experience and understanding, can indicate a
management action. One key piece of information is whether pest density is above
or below a level which is likely to cause unacceptable damage (see Chapter 1). This
is in principle a matter of classification. Precise knowledge about the true density is
unnecessary, except as a guide as to whether the true density is above or below the
critical density. Thus, because the information contained in a precise estimate of
density can rarely be fully used, density estimation seems to be less appropriate for
decision-making than density classification.

But are estimation and classification really so different? In both procedures,
samples must be collected, pests organisms are counted, and on many occasions a
sample mean is calculated (i.e. an estimate is found). It is only here that a vital dif-
ference is detected: in classification, the goal is to find out if pest density is too
high, and an estimate (if it is calculated at all) is only useful as an intermediate step
to reach that goal. At this point, therefore, we must tie down the differences
between sampling for estimation and sampling for classification, and note typical
criteria for designing good sampling plans for either purpose.

Suppose that we want to relate pest density to crop yield, or we want to determine
how the presence of natural enemies influences pest density. In circumstances such
as these, we need estimates of pest numbers per sample unit or per area. These esti-
mates – whether high, low or moderate – must be precise enough to give useful
results after they had been used in mathematical calculations or models (possibly
very complex ones). We want to be sure that the results of our calculations will be
acceptable to others and not easily brushed aside as, for example, ‘too vague’. We
want to be able to use variances and the Central Limit Theorem, perhaps in sophis-
ticated ways, to delimit how close our sample estimates probably are to the true
values.

This problem can usually be solved by relying on the representativeness (no
unaccountable bias) and reliability (no effect of uncontrolled variables) of the
sample protocol (see Section 2.5), and also on the two important statistical results
presented in Chapter 2:

1. Variance of the estimate of the mean, m, based on n sample units is equal to
σ 2 / n and is estimated by V / n.
2. For large n, the distribution of m is normal.

Representativeness and reliability ensure that the sample mean, m, is an unbi-
ased estimate of the true pest density, µ. In other words, the mathematical expectation
of m is equal to µ. Because of the two statistical results, the standard deviation of
the sample mean is , and, if n is large enough, the shape of the distribution

of m is known (it is close to normal). These can all be combined to show that the
distribution of all hypothetical sample means, m, is centred on the true mean den-
sity, µ, and the distribution is shaped like a normal distribution with standard devia-
tion equal to , which can be estimated by . Because all that we haveV n/σ / n

σ / n

42 Chapter 3

3.2.1 Estimation



is one value of m, we want to turn this statistical result around to allow ourselves to
infer a value for µ.

In Chapter 2 we noted some properties of the normal distribution, one of
which is that 95% of it lies within two standard deviations of the mean. Retaining
our assumption that the distribution of all hypothetical sample means in the above
discussion is normal, then 95% of these means are no more than two standard devi-
ations away from the true mean. This is the basis of what are called confidence
intervals. We can assume that our single value m is one of the 95% which are
within two standard deviations of the true mean µ , and say that µ must therefore
be no further than from the sample mean, m. We indicate that this is an
assumption by saying that the range

(3.1)

is a 95% confidence interval. We can replace by , to obtain

(3.2)

Confidence intervals are useful ways of describing where true means are. For
example, the press often quotes survey results in words such as ‘the percentage sup-
port for the governing party is between 37% and 43%, with a 1 in 20 chance of
error’. This corresponds to a 95% (95/100 = 1 � 1/20) confidence interval:

37% < true support < 43%

Naturally, we are not stuck with a 95% confidence interval. We can choose
any other percentage, but then the factor 2 in Equation 3.2 must be changed
accordingly. For example, if a 90% confidence interval were used, 2 would be
replaced by 1.645. This result can be checked by looking up tables of the normal
distribution. The number 2 is an approximation for the 95% interval; a more exact
value is 1.96. The general formula for a 100(1 � α)% confidence interval based on
the normal distribution is

(3.3)

where zα/2 is defined by the following statement: 100(1 � α)% of a standard normal
distribution (i.e. mean = 0, variance = 1) is within zα /2 of the mean. A 95% interval
has α = 0.05, because if you are unlucky and your estimate (m) happens to be
among the 5% which are outside the two standard deviation interval around µ, it
could equally well be on either side (Fig. 3.1a): α is the overall probability of ‘get-
ting it wrong’; that is to say that the interval does not contain the true mean.
Convention divides this error probability equally on both sides of the interval
(hence α /2 and zα /2), but this is not absolutely necessary. In the extreme case you
may decide that you want a one-sided interval, with all the uncertainty put on one
side of the estimated value m (Fig. 3.1b).
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Typically, a confidence interval is used after data have been collected, but if a rea-
sonable estimate, V, of σ 2 is available beforehand, Equation 3.3 can be turned
around to indicate how many sample units are required to achieve a desired preci-
sion. The half-width of the interval, substituting V for σ 2, is

(3.4)

which can be turned into an expression that defines n:

(3.5)

If we wished the 95% confidence interval (zα /2 = 1.96) to have a half-width equal
to 2.5 when V = 60, then n = 60(1.96/2.5)2 = 36.9, so 37 sample units would be
required.1

The coefficient of variation (see Table 2.2) is often used to indicate precision
after data have been collected. It also can be turned around to indicate how many
sample units are required to achieve a desired precision, provided again that a rea-
sonable estimate, V, of σ 2 is available beforehand. The formula for CV, the coeffi-
cient of variation of the sample mean, is (from Table 2.2) as follows:

(3.6)CV
V n= /
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3.2.1.1 Choosing the sample size, n, to achieve specified precision

1Strictly speaking, when σ is estimated, z based on the normal distribution should be replaced by
a number based on another distribution (the t-distribution). However, if the value of n is large
enough to satisfy the Central Limit Theorem, the difference should be ignorable.

Fig. 3.1. Areas under the standardized normal distribution (mean = 0, variance = 1)
indicated by shading. (a) Two-sided interval, �1.960 to 1.960, contains 95% of the
total probability; (b) one-sided interval, less than 1.645, contains 95% of the total
probability. 



so

(3.7)

For example, to obtain a CV equal to 25% when µ = 5 and V = 60, then 
n = 60(1/(5 × 0.25))2 = 38.4, so 39 sample units would be required.

Equations 3.5 and 3.7 are similar, but a critical difference is in how the
required precision is specified. In Equations 3.4 and 3.5, w is a constant, but in
Equations 3.6 and 3.7 CV is proportional to µ. In practical terms, this means that n
defined by Equation 3.7 changes as µ changes, but n defined by Equation 3.5 does
not. The two methods can be made equivalent if w and CV are both specified
either as constants or as proportional to µ. 

Clearly, any procedure which gives an estimate of µ can be used for classification.
Either of the Equations 3.5 or 3.7 can be used to determine n for a sampling plan,
data could be collected and the sample mean could be obtained. This mean would
then be compared with a critical density to make the classification:

µ ≤ cd if m ≤ cd or µ > cd if m > cd (3.8)

We can measure how good the classification is by turning around the confidence
interval (Equation 3.2) and determining whether m is inside or outside the classifi-
cation interval

(3.9)

If m is outside the classification interval, the (confidence) probability of the classifi-
cation (Equation 3.8) being correct is 1 � α, but if m is inside the classification
interval, the (confidence) probability of the classification being correct is less than
1 � α. The confidence probability, 1 � α, can be regarded as the probability of get-
ting it right. For pest management purposes, we are interested in the ‘correctness’ of
the classification. What we want in general terms is that the sample size, n, is
adjusted so that m is outside such a classification interval because a decision may
then be made with confidence. 

For readers with some knowledge of statistics, it is worth noting that the above
is linked to hypothesis testing. If m is outside the classification interval (Equation
3.9), then what is called a statement of statistical significance can be made: µ is sig-
nificantly different from cd, at the 100α% probability level. What we want for clas-
sification is to be able to make a statement such as this whenever we take a sample
for decision-making. We should like a sampling plan that automatically tries to
adjust n accordingly.

The key distinction between estimation and classification lies in the purpose
to which the sample information is directed. With estimation, we begin by specifying
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how close we wish an estimate to be to a true value. With classification, we begin
by specifying how frequently we wish to make correct classifications, or how fre-
quently we will tolerate incorrect classifications. In both cases, sample sizes can be
adjusted to achieve the specified objective. Clearly, concepts pertinent to estima-
tion and classification are related, but the purposes to which these concepts are
applied are quite different. In this chapter, we begin to show how concentrating on
sampling for classification produces its own optimal values for sample size. These
optimal values will turn out to be radically different from those for estimation.

In Chapter 2 we described how classification could be done after collecting a fixed
number of sample units and, using the normal distribution, we showed how OC
functions could be calculated. Fixed sample size plans have certain advantages: sim-
plicity and the relative assurance that a representative sample can be obtained.
However, when classification with respect to a critical density is the objective,
intuition suggests that fewer samples are needed to make a correct classification
when pest abundance is very different from the critical density than when it is close
to it. By reducing the number of samples required to make a correct classification, if
the data allow so, sampling costs are reduced, which is obviously an important con-
sideration.

Statisticians have proposed ways of cutting short sample collection if the evi-
dence overwhelmingly supports one of the possible classifications. The simplest
approach is to make one preliminary sample to get a quick idea of the situation,
and then take a second one if more information is needed. This process is called
double sampling. It may appear to be an obvious procedure, and it is, but working
out the probabilities of decision (operating characteristic (OC) function) and the
corresponding average sample number (ASN) function is not easy. 

A simple double sampling plan is to take an initial sample (‘batch’) of nB sample
units, and calculate the sample mean, m, and the ends of a classification interval
(Equation 3.9) around critical density (cd):

(3.10)

If the sample mean is greater than U, a decision is made to intervene, and if it is
below L, the decision is not to intervene. If it is between these two values, a second
sample of nB units is taken and the sample mean for all 2nB units is calculated, and
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a final decision is made, however small the difference between cd and the sample
mean. If the sample mean is greater than cd, intervene; otherwise, do not inter-
vene. No further sample units are taken. This approach is an attempt to ensure 
1 � α confidence in the final classification (see Section 3.2.2).

In practice, it is not necessary to calculate the sample mean each time – the
cumulative total count of organisms in the samples can be used. This reduces calcu-
lations during the sampling. The equations for L and U are then

(3.11)

The pair (L, U) at nB sample units, and cd (or 2nBcd if using Equation 3.11) at 2nB
sample units together define a primitive stop boundary, often referred to simply as a
boundary. A stop boundary specifies termination points in a graph or chart at which
points representing the sample data are plotted. Each point is plotted as data are
collected, with the number of sample units along the horizontal axis (x-axis) and
the current sample mean, or total, on the vertical axis (y-axis). The position of
each new point is compared with the stop boundaries. If a boundary is reached or
crossed, a final classification is made based on the location of the final point (classi-
fying µ as greater or less than cd); otherwise, more sample units are collected. This
is illustrated in Fig. 3.2.
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Fig. 3.2. Stop boundaries for a batch sampling plan with two batches; boundary points
are represented by open (L) and closed (U) circles. (a) Stop boundaries with the
average count per sample unit as dependent variable; (b) stop boundaries with the total
count as dependent variable. Two sample runs are illustrated: one stopping after the
first batch (×), and the other stopping after the second batch (+).



It is not easy to calculate the probability of decision (OC) or ASN functions
for double sampling plans analytically: the probabilities of intervening or not inter-
vening based on the initial nB sample units are easy enough, but the overall func-
tion involves conditional probabilities and double integrals, which are beyond the
scope of this book. However, simulation can be used to get approximations. The
basic idea behind the simulation approach is described in Chapter 2, and is the
method used in this book to estimate OC and ASN functions.

When we simulate the sampling process to estimate properties of a sampling
plan, we need to use the true variance in generating the simulated sample data.
Hence, to evaluate a sampling plan, we must take on two roles, one for setting up
the parameters of the sampling plan and the other for simulating and estimating
OC and ASN functions. For the first, we assume the role of the user who does not
know σ2 and, for the second, we assume the role of an all-knowing being who does.
The steps in the simulation are as follows:

1. Set up the sampling plan: calculate the stop boundaries L and U for sample
totals.
2. Specify a range of true means (µ’s) for which OC and ASN values will be gener-
ated.
3. For each value of µ, do sr simulations of the sampling plan:

3a. Mimic sampling by generating a random variable from a normal distribu-

tion with mean nBµ and standard deviation . Note that the true variance,
σ2, and not its estimate, V, is used.
3b. Compare the random variable with U and L (note that U and L are based
on the estimated variance, V). If it is less than L, classify the density as less than
or equal to cd and proceed to step 3d. If it is greater than U, classify the density
as greater than cd and proceed to step 3d. Otherwise …
3c. Generate another random variable from the same distribution and compare
the total of the two random variables to 2nBcd and make a classification accord-
ingly. Go to step 3d.
3d. Repeat steps 3a, 3b and 3c sr times.

4. Calculate the number of times density is classified as less than or equal to cd,
and divide this by sr. This is the estimated probability of not recommending inter-
vention; it can be plotted against the corresponding value of µ as part of the OC
function.
5. Calculate the average sample size as S/sr, where S is the sum of the number of
instances when the first sample was outside the interval (L, U) multiplied by nB,
and the number of instances when the first sample was inside this interval multi-
plied by 2nB. This can be plotted against the corresponding value of µ as part of the
ASN function.
6. Return to step 2 and repeat for another value of µ.

Changes in the parameters of a double sampling plan have some predictable
general effects on the OC and ASN functions, but the magnitude of these effects,
and the interactions among parameters, are not easily predicted. The OC and ASN
functions relate the true mean, µ, to two properties of the sampling plan, as exem-
plified in the simulation scheme above. The OC function represents the probability

σ nB
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of deciding not to intervene, and the ASN function represents the expected
number of sample units. The effects of different parameter changes in a double sam-
pling plan, which are explained and illustrated in Exhibit 3.1, are described in
Table 3.1:
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Table 3.1. The effects of different parameter changes in a double sampling plan.

Change Consequence

Increase error probability, The classification interval (L,U) is narrowed, which in 
α (decrease zα) turn decreases the ASN function. The OC function is

made flatter near cd, but the magnitude of the change
may be slight

Increase nB The OC function is made steeper and the ASN function
is increased

Increase cd The OC and ASN functions are shifted to the right on
the pest density axis

Increase the true variance, σ2, The OC function is made flatter. The ASN function is 
above the estimated (usually) decreased near cd, but increased far from cd
variance, V

Exhibit 3.1. Batch sequential sampling with two batches

Here we illustrate how changes in parameters of double sampling plans influence
OC and ASN functions. Double sampling plans were used to classify density about
a cd of 4.0. The estimated variance of sample counts (V) was 50. The base parame-
ters for the sampling plan were α = 0.2 and batch sample size (nB) = 20. Sample
means were assumed to be distributed normally, and simulation based on the
normal distribution was used to generate OC and ASN functions. Unless otherwise
stated, the true variance, σ2, was taken to be equal to V. Each OC and ASN
estimate was calculated using 1000 simulation replicates. Parameters were changed
one at a time to investigate the influence of α, nB, cd and σ2 on the OC and ASN.

The effect of α The value of α influences the points L and U that define the
intermediate boundary. Increasing α narrows the interval (L,U), with the effect that
sampling stops more often at nB. This reduces the number of times when 2nB
sample units are needed, so the ASN is decreased and more misclassifications
occur (OC is flattened), especially near pest densities corresponding to L and U.
Simulations were done for α = 0.05, 0.2 and 0.4. The resulting OC and ASN func-
tions are shown in Fig. 3.3. As α was increased, the ASN decreased and the slope of
the OC function decreased. Changes in the OC functions were slight, while for
population means close to cd the ASN was nearly halved. 

The effect of nB When nB is increased, the precision of the sample mean at nB
and at 2nB is increased (see Equations 2.2 and 2.3), and the classification error is
decreased (see Section 3.2.2). Therefore, the OC function is made steeper, at the
expense of a high ASN, as can be exemplified by simulation. Larger values of nB
resulted here in increased ASN functions, and had a notable effect on the OC
curves (Fig. 3.4). Increasing nB had a greater proportional effect on OC than had 
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increasing α in the previous paragraph. Both α and nB influence the intermediate
boundary (L,U), but nB also affects the precision of the sample means.

The effect of cd Increasing cd always shifts the OC and ASN functions to the
right and decreasing cd shifts the functions to the left. The effects of a 10% change
in cd either way are shown in Fig. 3.5. Changes in the OC function are easily seen;
the effect is less easily seen in the ASN function, but it is there nonetheless.
Because cd is often only crudely estimated in practice, the effect of this parameter
on the OC function is always worth checking. Different pest managers and growers
may feel inclined to adjust a cd to their own needs, especially if a value for cd has
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Fig. 3.3. The effect of α. OC (a) and ASN (b) functions for double sampling plans
with nB = 20, cd = 4 and V = 50: α = 0.05 (–––), 0.2 (-----) and 0.4 (- - - -). 
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Fig. 3.4. The effect of nB. OC (a) and ASN (b) functions for a double sampling
plans with cd = 4, V = 50 and α = 0.05: nB = 10 (–––), 20 (-----) and 40 (- - - -).
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been obtained elsewhere and imported into their area, but this raises questions that
should be addressed following principles described in Chapter 1. It is possible that,
despite the effort involved, more effort should be put into estimating critical densi-
ties in practice.

The effect of σ2 An estimate, V, of the true variance of sample observations,
σ2, is required to construct the boundaries for a double sampling plan. However, V
is rarely identical to σ2. The relationship between σ2 and V will be frequently
addressed in this book, although from a more complex perspective. A first insight
can be gained by studying the simple situation in which the estimated variance is
constant but the true variance varies. Boundaries were constructed using V = 50,
but different values of σ2 (25, 50 and 100) were used to simulate the OC and ASN
functions. The results are shown in Fig. 3.6.

When σ2 > V, the OC becomes flatter, indicating greater errors (reduced
accuracy) in classification. This is understandable because the (simulated) sample
observations are more variable than expected, resulting in a greater number of
incorrect decisions. The ASN function is reduced for means close to cd, because
the increased variability at nB sample units increases the probability of stopping
after the first batch: the sample mean is more likely to be outside the interval (L,U)
of Equation 3.10. The ASN function is increased for means much greater or smaller
than cd, because the increased variability at nB sample units now decreases the
probability of stopping after the first batch. The effects on OC and ASN are opposite
when σ2 < V.

The changes in variances used in this example are extreme – a halving or
doubling of the nominal value. However, they illustrate an effective approach to
deciding how well σ2 needs to be estimated, and can reduce considerably the field-
work spent estimating σ2. Based on a preliminary estimate (V), results as shown in
Fig. 3.6 can be obtained. σ2 must be estimated by V well enough so that:
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Fig. 3.5. The effect of cd. OC (a) and ASN (b) functions for a double sampling
plans with nB = 20, V = 50 and α = 0.05: cd = 3.6 (–––), 4.0 (-----) and 4.4 
(- - - -).



If double sampling seemed like a good idea, why not extend the idea to more
batches of samples? For example, if the sample sizes at each batch in the above plan
were divided into two batches of 10 each (or even 40 batches of one each!), the
maximum number of samples would still be 40, but there might be a chance of
stopping sampling with fewer sample units examined. When three or more batches
are used, the resulting plans are called batch sequential sampling plans. In general,
when the maximum number of possible sample batches is I, the general formulae
for the lower and upper stop boundaries for sample totals at each intermediate
batch, i, are as follows:

(3.12)

and

LI = UI = I � nBcd (3.13)
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1. The OC and ASN corresponding to extreme values of σ 2 are acceptable.
2. More extreme values of σ 2 are unlikely to occur in practice.
Considerations such as these can reduce the amount of effort put into estimating
σ 2, at the expense of merely doing some simulations.
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Fig. 3.6. The effect of σ 2. OC (a) and ASN (b) functions for a double sampling 
plans with nB = 20, cd = 4, V = 50 and α = 0.05: σ 2 = 25 (–––), 50 (-----) and 
100 (- - - -).

3.3.2 More than two batches: batch sequential sampling plans



If batch number I is reached, a final decision is made, however small the difference
is between cd and the sample total.

As the maximum number (I) of batches is increased and nB is reduced (keeping
the same maximum number of sample units, InB), there is more opportunity for
sample counts to cross the boundaries earlier, especially when the true mean is far
from cd, resulting in a lower ASN. Other things being equal, OC functions for
lower ASN plans are flatter than those for higher ASNs, meaning that there are
fewer correct classifications. The general rule is that the higher the ASN, the
steeper is the OC function, although improvements in the OC function are often
disappointing relative to increases in the ASN. We have noticed on numerous
occasions that large changes in the ASN can result in meagre changes to the OC:
the gain in OC appears to be not worth the pain of a greatly increased ASN.
However, as we noted in Chapter 1, whether an OC and ASN pair is acceptable, or
better than another pair, must be decided in a wider context. 

Because we are assuming that the Central Limit Theorem applies to sample
means estimated from each set of samples, we cannot reduce the batch sample size,
nB, much below 20 and still be reasonably confident the assumption is adequate.
We address this subject more fully in later chapters. For now, we impose the limita-
tion that the batch sample size is sufficient to ensure that the Central Limit
Theorem applies.

We can now begin to realize the wide choice that is available for designing a
batch sequential sampling plan. The patterns outlined for double sampling also
apply to batch sequential sampling with the addition that increasing the number of
batches (while holding the overall maximum sample size constant) generally
reduces ASN and flattens the OC. When designing a classification sampling plan,
the most important thing to bear in mind is that the objective is to achieve an
acceptable OC and ASN subject to the sample information being representative
and reliable. We shall illustrate this design process shortly (Exhibit 3.2), but first we
must address one important technical difficulty.

A perfectly usable decision-making plan can be set up even if σ 2 is completely
unknown. All that is needed is a value for cd. An estimate of σ 2 at cd is necessary
for setting up batch sampling plans as above (Equations 3.10–3.12), but a simple
plan can do without it (see e.g. Section 2.11). However, an estimate of σ 2 is critical
for assessing the properties of the decision guide; in particular, how often correct
decisions are obtained, as expressed in the OC function, and how many sample
units are needed, as expressed in the ASN function. Without estimates of the OC
and ASN functions, there is no way to judge the decision guide. Until now, we
have assumed that σ 2 is a constant. Unfortunately, this is much too simplistic. It is
well known empirically that the variance of counts of biological organisms tends to
increase with the mean count. There has been much dispute over a period of years
about indices and models to describe the relationship between the variance and the
mean (Taylor, 1984), but the dust has settled somewhat, and two entirely different
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3.4 Variance–Mean Relationships



empirical formulae have emerged. One is referred to as Iwao’s variance–mean rela-
tionship (IVM) and the other as Taylor’s Power Law (TPL: ‘Power Law’ is used to
emphasize the mathematical formulation):

IVM: σ 2 = (a + 1)µ + (b � 1)µ2 (3.14)

TPL: σ 2 = aµb (3.15)

The interpretations of the two parameters, a and b, are different from one
model to the other. Both TPL and IVM have been used on many occasions to esti-
mate the variance, given the mean, but TPL is more commonly used than IVM. In
this book, we shall use TPL. The interpretation of the TPL parameters is discussed
below.

To use TPL in practice, it must have been estimated beforehand. This is done
by fitting the model to data that consist of sets of estimated means and variances.
TPL can be estimated well only if data are available from a wide range of pest den-
sities, and if the estimated means and variances are reasonably precise. A general
rule of thumb is that at least 40 sample observations are required to estimate each
sample mean and variance, although smaller numbers have been successfully used
(see, e.g. Taylor et al., 1988). If the sample sets used to estimate TPL are small, the
scatter about the relationship will be large, and the fit will be poor. The range of
means must cover the critical density and the densities which might occur in man-
agement practice. No clear guidance can be given on the number of data points
that are required. It depends on the spread but, evidently, the more points the
better. 

Given good data, it is usually sufficient to estimate the regression of the loga-
rithmic form of Equation 3.15, that is, the regression of ln(σ2) on ln(µ):

ln(σ 2) = ln(a) + b ln(µ) (3.16)

Strictly, the regression technique is inappropriate because the values used for
σ2 and µ in the regression (namely, V and m) are estimates with random error, so b
will tend to be underestimated (Perry, 1981). However, where the range for m is
wide and the precision of the points representing the sample sets is good, the
underestimation should be ignorable. All it requires is a lot of fieldwork! 

Once the parameters of TPL have been estimated, the variance is a function of
the mean and can be calculated for any value of the mean. Thus equations such as
Equations 3.10, 3.11 or 3.12 can be written in the form:

(3.17)

TPL can also be incorporated into the simulations for the OC and ASN functions.
The real value of a variance–mean relationship lies in its portability. Many

empirical relationships work well in the context of the data that generated them,
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but break down when tried under different conditions. A portable relationship is
one that works under a wide range of conditions. TPL has been shown to have this
property in many instances: the parameter b is often regarded as being species-spe-
cific, while a depends primarily on the sampling method. There has been consider-
able controversy on this over the years (Taylor, 1984; Trumble et al., 1989). It is
often possible to show differences in a or b due the effects of plant cultivar or vari-
ety, the presence or absence of natural enemies, pesticide application or geographi-
cal location. However, there is often much similarity in the parameter estimates,
even among different species of pests which have similar biologies and for which
sample units are similar (e.g. phytophagous mites on temperate fruit trees). Modest
differences in the parameters for TPL can have small or even ignorable effects on
OC and ASN functions. Luckily, variability in TPL parameters is easy to investi-
gate using simulation, and practitioners are advised to study the effects of potential
variability before spending considerable effort gathering data with which to esti-
mate TPL parameters. This is illustrated in Exhibit 3.2.

Another type of variability in TPL can also be checked by simulation. Even if
portability is accepted, there remains the fact that there is variation about the
regression model Equation 3.16. In practice, this variability looks approximately
normal, so a more realistic model than Equation 3.16 would be:

ln(σ 2) = ln(a) + b ln(µ) + z(0,σε), or σ 2 = aµbez (3.18)

where z(0,σε) is a normally distributed random variable with mean 0 and standard
deviation σε. In other words, each time a sampling plan is used to classify a particu-
lar density during a simulation, Equation 3.17 could be used to generate the vari-
ance of the population being sampled. If an OC determined using simulation is to
be based on 500 simulation runs, then 500 values of ln(σ2) could also be deter-
mined, one for each run. As will be demonstrated in later exhibits, the general
effect of including this idea is to reduce the slope of the OC function. The square
root of the mean square error for the regression used to estimate TPL can be used as
an estimate of σε.
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Exhibit 3.2. Adjusting batch sampling parameters to achieve a specified goal for
the OC and ASN functions

Here we illustrate how the parameters of batch sequential sampling plans can be
adjusted to achieve design criteria specified for the OC and ASN functions. The tar-
gets specified for the OC here are very stringent and possibly unrealistic for practi-
cal purposes. However, they provide a useful sequence of problems which can be
solved by simulation techniques.

The objective chosen here is to classify density about a critical density of 5, so
that the OC when µ = 4 is greater than 0.9 (written as OC(4) > 0.9), and also that
OC(6) < 0.1. The average sample size is to be as small as possible subject to the
constraint that at least 25 samples are taken (to achieve a representative sample).
The expected variance of sample observations can be described as a function of the
mean using TPL with parameters a = 3.0 and b = 1.5. Upper confidence limits 
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(95%) for the TPL parameters are 3.5 and 1.7; lower 95% confidence limits are 2.5
and 1.3. A further requirement is that the OC specifications be met when the 95%
confidence limits for the TPL parameters are used. As we shall see, the design
process passes through a series of steps in which the sampling plan is modified to
improve its properties (by changing the boundary specifications). Simulations are
done after each modification to evaluate the effect on the performance of the plan
in terms of OC and ASN.

Sampling plan: batch sample size, nB, and maximum number of batches, maxb
A starting point in the design process is to examine the effect of batch sample size
and maximum number of batches on the OC and ASN. Three sampling plans were
examined with nB and maxb equal to 100 and 1, 50 and 2, and 25 and 4. Note that
the maximum sample size for all three plans is 100. Boundaries were calculated
using α = 0.2, and TPL parameters a = 3.0 and b = 1.5. The OC and ASN functions
were determined using simulation with 1000 iterations for each OC and ASN
value. The same TPL values used to calculate the boundaries were used in the
simulations. The simulated OC and ASN functions are shown in Fig. 3.7. The OC
functions are all alike, and all three plans have OC(4) > 0.9 and OC(6) < 0.1. Plan 3
(nB = 25, maxb = 4) has the lowest ASN.

Testing: TPL parameters As shown previously in Exhibit 3.1, using variances
in the simulations different from those used to construct the boundaries can affect
the OC and ASN functions in several ways. If larger variances are used, the OC
becomes flatter; whereas if smaller variances are used, the OC becomes steeper. In
terms of TPL, if larger parameter values are used, the OC becomes flatter, and con-
versely when smaller parameters are used. When the upper confidence limits for a
and b (3.5 and 1.7) were used, none of the three plans described above had 
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Fig. 3.7. OC (a) and ASN (b) functions for three batch sequential sampling plans
with stop boundaries based on cd = 5, α = 0.2 and TPL a and b = 3.0 and 1.5. The
batch sample size (nB) and maximum number of batches (maxb) were varied. For
plan 1 (–––) nB = 100 and maxb = 1; for plan 2 (-----) nB = 50 and maxb = 2; and
for plan 3 (- - - -) nB = 25 and maxb = 4 .
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OC(6) < 0.1 (for plans 1, 2 and 3, the values were 0.125, 0.135 and 0.196, respec-
tively). OC and ASN functions for the plan with nB = 25 and maxb = 4 were investi-
gated in more detail by using extreme values (upper and lower confidence limits)
for the TPL parameters in the simulations. The results are shown in Fig. 3.8.
Although there are clear differences among the OC functions, the specified target
OC(6) < 0.1 is not met, so further design changes are needed. Specifically, the OC
functions must be made steeper and/or moved along the pest density axis.

Sampling plan: TPL parameters and α One strategy for making the OC func-
tion steeper is to increase the width of the stop boundaries. This can be accom-
plished by decreasing α and/or increasing the variance (increasing TPL a and b)
used to calculate the boundary. Both strategies were explored by determining OC
and ASN functions for three sampling plans, all with nB = 25 and maxb = 4:

plan 1: α = 0.2 TPL a = 3.5 TPL b = 1.7
plan 2: α = 0.05 TPL a = 3.0 TPL b = 1.5
plan 3: α = 0.05 TPL a = 3.5 TPL b = 1.7

The simulations used the upper confidence limits for the TPL values (a = 3.5, 
b = 1.7). The OC functions did become steeper, but one of the design criteria was
still not met: values for OC(6) were 0.153, 0.121 and 0.116 for plans 1, 2 and 3,
respectively. The OC and ASN functions are shown in Fig. 3.9, and it can be seen
that relatively large changes in the ASN function can lead to only modest changes
in the OC function.

Sampling plan: cd Another approach to meeting the design criteria is to shift
the entire OC function to the left by reducing the cd. Shown in Fig. 3.10 are OC
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Fig. 3.8. OC (a) and ASN (b) functions for three batch sequential sampling plans
with stop boundaries based on cd = 5, α = 0.2, TPL a and b = 3.0 and 1.5, nB = 25
and maxb = 4. For plan 1 (–––) simulations were done using a = 3.0 and b = 1.5;
for plan 2 (-----) simulations used a = 2.5 and b = 1.3; and for plan 3 (- - - -)
simulations used a = 3.5 and b = 1.7.
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and ASN functions for three sampling plans set up with α = 0.05, a = 3.5, b = 1.7
and three values for cd (5.0, 4.8 and 4.6). The simulations used TPL values a = 3.5
and b = 1.7. As the cd value was decreased, the OC and ASN functions were
shifted to the left. OC(4) values for the three plans were 0.947, 0.903 and 0.835.
OC(6) values were 0.128, 0.096 and 0.055. The second plan therefore meets the
design criteria.
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Fig. 3.9. OC (a) and ASN (b) functions for three batch sequential sampling plans
with cd = 5, nB = 25, and maxb = 4, and with the following α and TPL a and b
values: α = 0.2, a = 3.5, b = 1.7 (–––); a = 0.05, α = 3.0, b = 1.5 (-----); α = 0.05, 
a = 3.5, b = 1.7 (- - - -). Sampling was simulated using TPL values a = 3.5 and 
b = 1.7.
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Fig. 3.10. OC (a) and ASN (b) functions for three sampling plans with α = 0.05, a
= 3.5 and b = 1.7, cd = 5 (–––), 4.8 (-----) and 4.6 (- - - -). Simulations were
performed using a = 3.5 and b = 1.7.



Before ending the discussion on variance–mean relationships, we need to
address the following question: Why is the variance not estimated at the time of
sampling? Would this allow us to forego the reliance on a formula (e.g. TPL) which
may not be perfectly applicable to our situation? Estimating the variance at time of
sampling is not recommended for essentially three reasons. Unless sample sizes are
very large, variance estimates are notoriously imprecise (e.g. Snedecor and
Cochran, 1967). The variance used in the formulation of stop boundaries (e.g. 
Li and Ui) is the variance at the cd; replacing it with an estimated variance implies
a different basis for batch sampling (not necessarily a bad thing!). Using an esti-
mated variance in the stop boundary formulae for each decision sample would be
complicated and impractical. In practice, the vast majority of practical sampling
plans for pest management decision-making use variance–mean models, or other
tools based on prior knowledge about variance, to determine expected variability.
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Testing: TPL parameters Although the design criteria have finally been met,
we must remember that the sampling plan was constructed using upper confidence
interval values for TPL a and b, and that these parameter values will usually over-
predict the variance of counts from the population being sampled. The conse-
quences of this can be evaluated by determining OC and ASN for lower values of
TPL a and b. Shown in Fig. 3.11 are OC and ASN functions when stop boundaries
were based on α = 0.05, a = 3.5, b = 1.7 and cd = 4.8. The following variants were
used for the simulations:

plan 1: TPL a = 3.5 TPL b = 1.7 (solid lines)
plan 2: TPL a = 3.0 TPL b = 1.5 (small dashed lines)
plan 3: TPL a = 2.5 TPL b = 1.3 (long dashed lines)
By using larger values of a and b, greater classification precision is achieved.

The differences among the ASN functions are modest, with at most a 20% increase
in the average number of samples required to make a classification.
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Fig. 3.11. OC (a) and ASN (b) functions for three sampling plans with α = 0.05, 
a = 3.5, b = 1.7 and cd = 4.8. Simulations were done using a = 3.5 and b = 1.7
(––––), a = 3.0 and b = 1.5 (-----) and a = 2.5 and b = 1.3 (- - - -).



1. Sampling to estimate pest density and sampling to classify pest density are dif-
ferent. They have different goals. Criteria for a good estimation sampling plan are
not necessarily the same as those for a good classification sampling plan.
2. For pest management decision-making purposes, basing a sampling plan on cri-
teria related to classifying pest density is usually more appropriate than basing it on
estimation criteria. This is because pest management decision-makers are mainly
interested in whether pest density (or incidence) exceeds some critical level.
Sampling for classification provides, through the OC function, a direct assessment
of the effectiveness of the sampling plan.
3. By collecting data in batches and noting whether a good decision can be made
after each batch, sampling costs can be reduced. This is implemented by setting up
stopping boundaries for cumulative sample data.
4. The variance of sample counts of biological organisms is rarely constant. This
variance can be modelled as a function of the sample mean. Variance–mean models
are often portable.
5. The parameters of batch sequential sampling plans can be manipulated to
achieve specific classification criteria, defined in terms of OC and ASN functions.
Of course, it is possible that certain specifications are unattainable.
6. Stochastic simulation of the sampling process is a powerful method for estimat-
ing OC and ASN functions of sampling plans. Comparing OC and ASN functions
for different sampling plans can be used to design good sampling plans.
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In this chapter we describe how spatial patterns in the field are related to observed
frequency distributions of sample counts. We describe four probability distributions
which are tools for characterizing the observed frequency distributions of sample
observations. These distributions are the Poisson distribution, the negative bino-
mial distribution, the binomial distribution and the beta-binomial distribution. We
show how these probability distributions can be helpful for assessing the properties
of sampling plans for decision-making.

When a random pattern of points is overlaid with a regular grid of sample
units, the resulting frequency distribution of classes with 0, 1, 2, … points conforms
to the Poisson probability distribution. If the spatial pattern is not random but is
aggregated, the resulting frequency distribution is usually more ‘spread out’ and has
larger variance than the Poisson variance. The negative binomial distribution can
often describe such a long-tailed frequency distribution.

Sometimes it is possible to observe only whether or not a sample unit contains
or is affected by a pest. The binomial probability distribution provides a model for
characterizing sampling results expressed as the proportion of affected sample units.
When sample units are taken in clusters, and the spatial pattern of the pest is
aggregated, the beta-binomial probability distribution can be used to characterize
the frequency distribution of the number of affected sample units in a cluster.

We explain how the parameters of these distributions can be fitted to data,
using the maximum likelihood method, and how the goodness of fit can be assessed
with the χ2 statistic.

The concept of spatial pattern1 is fundamental for understanding pest populations
and for planning methods aimed at assessing their potential for crop damage. Each
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© CAB International 2000. Sampling and Monitoring in Crop Protection 
(M.R. Binns, J.P. Nyrop and W. van der Werf)

4.2 Spatial Pattern, Frequency Distribution and Probability Distribution

1 Following Pielou (1977), we use the expression ‘spatial pattern’ rather than ‘spatial distribution’.



biological organism has its own preferred habitat, and that is where it is most likely
to be found. The Colorado potato beetle, for example, feeds on potato plants, so to
describe its spatial pattern, plants must be examined, the beetles counted, and the
data displayed as in Fig. 2.2. The spatial pattern of a biological organism is the
description of how the organism is dispersed (or disperses itself) in space. The key
aspect of a spatial pattern is that the locations of the organisms are retained in the
description. Although Fig. 2.2 is a valid picture of a spatial pattern, other equally
valid ones are possible, such as a description of the numbers of beetles on potato
stems, or on individual leaves. Ultimately, one can even ignore the host and envis-
age a spatial pattern of individuals as points in space, although this could be mis-
leading if the hosts are not evenly distributed. Such a concept (spatial pattern as
points in space) is useful for understanding the theory behind various sampling
strategies for pest management. It is especially useful for describing the link
between spatial pattern, frequency distributions and probability distributions. 

A frequency distribution can be extracted from a spatial pattern, provided that
a sample unit is defined. If a sample unit forms part of the spatial structure (as in
Fig. 2.2), it is simple enough to count the number of sample units where there are
no individuals, one individual, two individuals and so on, as in Fig. 2.3. If there is
no obvious sample unit, for example, with soil-borne organisms, a sample unit must
be chosen before a frequency distribution can be calculated. 

The difference between a spatial pattern and a frequency distribution is huge.
They are altogether different things. The spatial pattern is what we might see in a
field. The frequency distribution of number of specimens per sample unit is a less
information-rich piece of information, abstracted from the spatial pattern. You
cannot restore the spatial pattern from knowledge of a frequency distribution,
because all the information on spatial coordinates is lost. Therefore, you neither
know how specimens were arranged within the units; nor do you know how the
more densely and less densely populated units were arranged with respect to one
another. Spatial information is very important for the design of the sampling pat-
tern; for example, the transect to follow through a field and the distances at which
to take samples. We shall discuss this further in Chapter 8.

Other infestations by the Colorado potato beetle would have different spatial
patterns from that shown in Fig. 2.2. However, it has been found in practice that,
for a wide variety of species, when the same sample unit is used to examine the
same species in similar environments and the overall mean density is similar, the
frequency distributions are also similar to one other. So although spatial patterns
may be somewhat different from one time or place to another time or place, the fre-
quency distributions are often similar. This indicates that there is a role for theoret-
ical probability distributions. Theoretical probability distributions are models for
expected frequency distributions, based upon assumptions relating to the biological
process involved.

A frequency distribution and a probability distribution have much in common.
Both can be presented as bar charts with classes on the horizontal axis (often indi-
cating the number of pests per sample unit) and frequencies or probabilities on the
vertical axis. A frequency distribution is generally graphed with absolute numbers
of occurrences on the vertical axis, while a probability distribution (the name indi-
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cates it) is always graphed with probabilities on the vertical axis. A probability dis-
tribution is a model for a frequency distribution in the sense that the expectation
(or long-term average; see Section 2.2) of each frequency is proportional to the
corresponding probability:

E(fi) ∝ pi (4.1)

and the constant of proportionality is the sample size, n:

E(fi) = npi (4.2)

Of course, this is true only if the probability distribution, pi, is the correct model for
the frequency distribution. Even if Equation 4.2 is true, the frequencies are unlikely
to be equal to the probabilities, because of the randomness inherent in the biologi-
cal processes involved and in the sampling. The frequency distribution tends to be
more jagged than the corresponding probability distribution, especially for small
sample size, n. The values fi/n which correspond to the pi are often called relative
frequencies.

There are three reasons why crop protectionists are interested in knowing
probability distributions that describe the observed frequency distributions of sam-
pled pests:

1. As summary descriptions of reality.
2. As components of simulation models which allow us to explore the behaviour
of sampling methods, using a computer. Such distributions are often indispensable
tools when calculating the expected performance of sampling methods.
3. As models to calculate variability among sample units, so that we may make a
crop protection decision, solely based on comparing the average pest density to a
threshold. However, descriptive variance–mean relationships, such as Iwao’s (IVM)
or Taylor’s Power Law (TPL), (see Chapter 3), are better suited to this purpose. 

In this chapter, we explore the relationship between a spatial pattern and the
sample data taken from it, as well as how probability distributions can characterize
the frequency distributions of sample observations.

In a field which is infested by a pest (an arthropod, disease, weed and so on), indi-
viduals are spread about in some manner over the area of the field. The simplest sit-
uation arises when the location of each specimen is completely independent of the
location of others. Such a pattern is random. This might occur immediately follow-
ing a wind-borne invasion of pest insects or of disease propagules which are
deposited indiscriminately over a large crop area. With a computer, such a random
pattern can easily be generated. Points are generated one by one. The x and y coor-
dinates of each new point are drawn from a uniform probability distribution over
the interval 0 to 1, irrespective of the location of points already generated. Thus
each coordinate value in the interval (0,1) is equally likely. This procedure was
used to generate Fig. 4.1(a), which can be overlaid with a regular grid of sample
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units (Fig. 4.1b). The spatial pattern of numbers in sample units can be displayed
graphically as dots whose sizes represents the numbers of individual organisms in
the sample units (Fig. 4.1c). The frequency distribution of these numbers can be
calculated as in Chapter 2 (Fig 4.1d). What kind of frequency distribution should
one expect when points are spread out randomly like this?

Statistical theory shows that, when events occur at random locations in a
region, the number of events which can be found in any specified area within the
region follows a Poisson probability distribution. This implies that we can predict
the shape of the frequency distribution if we know the rate at which the events
occur or, equivalently, if we know the average number of events in a unit of area.
This average number of events constitutes the only parameter of the Poisson distri-
bution. It is called the mean and is denoted by the Greek symbol µ. The Poisson
probabilities of x = 0, 1, 2, … events per sample unit are defined as follows:
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Fig. 4.1. (a) A random spatial pattern of points. (b) The random pattern in (a) with a 20
× 20 grid superimposed. (c) A spatial pattern derived from (b) as a summary of (a). 
(d) Frequencies derived from (b) (bars) and fitted Poisson frequencies (�).



(4.3)

where x! denotes the product of the first x integers:

x! = 1 × 2 × 3 × … × x

The notation p(x|µ) is a common way of writing formulae for probabilities. It
should be understood as the probability of getting x individual organisms in a
sample unit when the parameter is equal to µ. The vertical bar is a convenient way
of separating the data (x) from the parameter (µ). Typical shapes of the Poisson dis-
tribution are shown in Fig. 4.2.

On the basis of Equations 4.2 and 4.3, we can compare the frequency distribu-
tion obtained by our simulated random process with the expected frequencies for a
Poisson distribution. The parameter µ is 1.25 because, in Fig. 4.1, 500 points were
placed in a field with n = 400 sample units. With µ = 1.25, the expected frequencies
can be calculated from Equation 4.3:

(4.4)

A comparison between the simulated results and theory is shown in Fig. 4.1d. The
process of finding the theoretical model which is closest to the data is called model
fitting. Here we have fitted the Poisson probability distribution to the observed fre-
quencies. The fitting procedure is quite simple, because we need to calculate only
the mean number of individuals per sample unit. This mean is an unbiased estima-
tor of µ. We usually denote it by the arabic equivalent of µ, namely m.

How does this help us make decisions? From the decision-making perspective,
the most important help it gives is that we now know the variance, σ2, of the
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Fig. 4.2. Poisson distributions with µ = 0.5 (first set of bars), 4 (�), 20 (second set of
bars).



number of individuals in a sample unit. For a Poisson distribution, the variance is
equal to the mean: σ2 = µ. With this knowledge, we can predict the variance of the
mean for samples of any size n as in Chapter 2. Therefore, assuming that we can use
the normal distribution approximation as in Chapter 2, we can go as far as calculat-
ing probability of decision or operating characteristic (OC) functions.

The probability distribution that we have obtained depends on the size and
shape of the sample unit. As a consequence, the OC function relates to the sample
unit used in the preliminary work, and cannot be used directly for a different
sample unit. For instance, when counting pests on a pair of adjacent plants, rather
than on one plant, the mean, µ, changes to 2µ. Likewise, the variance, σ2, changes
to 2µ. This new mean and variance would have to be used for calculating the OC
function. Therefore, if a Poisson distribution can be assumed for the new sample
unit, these few mathematical calculations are all that is required to adjust the OC
function.

In the previous section, we used the sample mean to estimate the parameter µ of
the Poisson distribution without indicating why this was a good idea. A motivation
can be given by the maximum likelihood principle. According to this principle, the
overall probability (or ‘likelihood’) of getting the data which were in fact obtained
is calculated, and the model parameters for which this ‘likelihood’ is maximized are
defined as the maximum likelihood estimates. These estimates have many desirable
properties. For example, in most situations which might be encountered by pest
managers, these estimates have the highest precision. Other properties are beyond
the scope of this book, and are discussed in statistical textbooks. In general, the
maximum likelihood principle forms the basis for estimating parameters of proba-
bility distributions. As an aside, it is also the principle that leads to least squares
estimates in linear regression.

Suppose that we have sample data X1, X2, …, Xn, and we want to estimate
some kind of probability distribution p(x|θ) with parameter θ. Then we should
look for the parameter that gives the highest value for the product

L(X1,X2,…,Xn|θ) = p(X1|θ) p(X2|θ) … p(Xn|θ) (4.5)

This product, L(X1,X2,…,Xn|θ), is called the likelihood function. Its value
depends on the parameter (or parameters) θ and on the sample data. The parame-
ter θ can be the mean, the variance or some other defining characteristic. For the
Poisson distribution, the likelihood is
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4.4 Fitting a Distribution to Data Using the Maximum Likelihood
Principle2

2This section is full of mathematics and may be skipped.



It is often easier to maximize the logarithm of the likelihood, so we do that. At the
same time we drop the division by (X1! X2! L Xn!), which has no influence on our
attempt to maximize L as a function of µ:

ln(L) = � nµ + nm ln(µ) (4.7)

It is worth noting that the data enter this expression only through the sample
mean, m, so that all we need to do is find the value of µ, in terms of m, which maxi-
mizes ln(L). This can be done by using calculus, and the value of µ so found is
called the maximum likelihood estimate of µ, denoted by ^µ; that is, we put a ‘hat’
on µ. For the Poisson distribution, the maximum likelihood solution is always 

^µ = m = ΣXi/n. The log likelihood for the Poisson distribution with µ = 5 is shown
in Fig. 4.3. In this chapter, we shall use the ‘hat’ notation to denote a maximum
likelihood estimate, as a reminder to the reader; but this will not be necessary in
subsequent chapters, so we will drop the practice after this chapter.

There are objective ways of testing the goodness of the fit between a set of observed
frequencies and a theoretical distribution fitted to them. We include here a brief
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4.5 Testing the Goodness of Fit of a Probability Distribution

0              2               4                6               8               10

200

100

�100

�200

Lo
g 

lik
el

ih
oo

d

True mean density

Fig. 4.3. A maximum likelihood example based on the Poisson distribution. The
curved line represents the log-likelihood for sample size n = 25, as a function of µ. The
maximum is at µ = m, which here is equal to 5.



guide to one of them, the χ2 test. In the simplest case, based on n sample units, the
parameters of the probability distribution model are determined (usually by maxi-
mum likelihood), and the expected frequencies are calculated as n p(xi|

^θ), where 
i = 1, 2, … , c and xi = i � 1. Note that here we are dealing with frequency classes
xi, whereas in Equations 4.5 and 4.6, and all of Section 4.3, Xj refers to the jth
sample unit, and j = 1, 2, … , n. The n p(xi|

^θ) are used in a comparison with the
observed frequencies, fi, to calculate a statistic X2 :

(4.8)

where c is the number of frequency classes. Note that the capital letter, X, is used to
distinguish the expression in Equation 4.8 from the theoretical χ2 distribution. If
the data truly come from the distribution p(x|θ), with θ = ^θ, X2 follows what is
called the χ2 distribution (with a few provisos, as discussed below), whose proper-
ties are well documented. The χ2 distribution has one parameter, its degrees of
freedom. The number of degrees of freedom, df, is easily calculated as c � 1 � np,
where c is the number of classes and np is the number of fitted parameters (np = 1 for
the Poisson distribution). If the data do not come from the distribution p(x|θ), or,
for some reason or other, θ is not equal to ^θ, X2 tends to be large, because it is basi-
cally the weighted sum of squared differences between observed (fi) and expected
(n p(xi|

^θ)) frequencies. Therefore, large values of X2 indicate that the fit to the dis-
tribution p(x|θ) is not good. 

How large is large? Because we know the properties of the χ2 distribution, we
can find the probability of getting a χ2 value equal to or greater than the calculated
value of X2. Suppose that this probability is 0.2. What this means is as follows:

• either the data come from the distribution p(x|θ) with θ = ^θ, but an event with
probability of occurrence equal to 0.2 occurred, or

• the data did not come from the distribution p(x|θ) with θ = ^θ

Our choice depends on how we view the probability 0.2 in connection with
our preconceived notion that the data might conform to the distribution p(x|θ). If
this preconception is strong, then why not accept that we have just been unlucky
and got a result which should happen only one time in five – that’s not too
unlikely. But what if the probability had been 0.02? Is our preconception so strong
that a 1 in 50 chance is just unlucky? Or should we reject the possibility that the
data conform to the distribution p(x|θ)? It has become standard usage that a prob-
ability equal to 0.05 is a borderline between: (i) accepting that we have just been
unlucky and (ii) that we should have grave doubts about our preconceived notion. 

The above procedure is an example of testing a hypothesis. Here the hypothesis is
that the data conform to the distribution p(x|θ). The data are used to estimate para-
meters, X2 is calculated and a χ2 probability (P) is found. The hypothesis is accepted
if P is greater than some standard, often 0.05, and rejected otherwise. If there are
many data sets, the proportion of data sets where the hypothesis is rejected can be
compared with the standard probability that was used. If all the data sets really do
conform to the distribution p(x|θ), this proportion should be close to the standard
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probability itself. Testing statistical hypotheses in this way has become common in
many branches of biological science, and some technical terms should be noted. X2

is an example of a ‘test statistic’, and the χ2 probability obtained from it is called a
‘significance probability’. If the significance probability, P, is less than 0.05, the
hypothesis is said to be rejected at the 5% level. This test is often called the χ2

goodness-of-fit test.
Use of the χ2 test implies that the observed frequencies can be regarded as fol-

lowing a probability model, with the class probabilities given by p(xi|
^θ). However,

a few conditions must be fulfilled before the results can be analysed by the χ2 test:

1. None of the expected frequencies, n p(xi|
^θ), should be small. Traditionally, 5

has been regarded as the minimum value, but some statisticians think that 1 is
often large enough. If the tail class frequencies are too small, the classes should be
grouped until all classes have acceptable expected frequencies. Some arbitrariness
is unavoidable here. Note that if there is grouping, the number of degrees of free-
dom, df, must be recalculated, because the number of classes, c, has changed.3

2. The number of sample units, n, should not be small. This requirement is con-
nected with the first because if n is small many of the expected frequencies will be
small, and too much grouping is not good. Another reason for n to be large (gener-
ally, at least 100) is that the estimated parameters and the significance test will be
more reliable.

These concepts are illustrated in Exhibit 4.1.
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3There are some theoretical difficulties when classes are grouped relating to degrees of freedom
(Chernoff and Lehmann, 1954), but in the present context they should be ignorable.

Exhibit 4.1. Sampling a random pattern produces a Poisson distribution

A random spatial pattern can be generated as in Fig. 4.1a. Sample units can be defined
by superimposing regular grid lines, as in Fig. 4.1b. Sample units of different shapes
and sizes can be defined by using different grids. Four types of sample unit were cre-
ated for the random spatial pattern of 500 points shown in Fig. 4.1a (see Fig. 4.4):

• 25 sample units in a 5 × 5 array (five sample units along each of the horizontal
and vertical axes)

• 100 sample units in a 10 × 10 array
• 400 sample units in a 20 × 20 array
• 100 sample units in a 20 × 5 array.

The means and variances were as follows:

Number, nx, of sample units along the x-axis 5 10 20 20
Number, ny, of sample units along the y-axis 5 10 20 5
Grid (nx × ny) 5 × 5 10 × 10 20 × 20 20 × 5
Number of sample units (n = nx × ny) 25 100 400 100
Mean per sample unit 20 5 1.25 5
Calculated variance per sample unit 29.1 5.88 1.41 6.08

Continued
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Although not exactly equal to the means, the variances were close to the
means for all shapes and sizes of sample unit. The frequency distributions were cal-
culated for each sample unit, and the Poisson distribution was fitted to each by
maximum likelihood (Fig. 4.5). As noted above, the maximum likelihood estimate
of µ for the Poisson distribution is always equal to the mean, m. The χ2 significance
probabilities, P, were calculated using the grouping criterion that the expected fre-
quencies for the tail classes should be at least equal to 1:

Grid (nx × ny) 5 × 5 10 × 10 20 × 20 20 × 5
X 2 19.9 7.8 6.4 9.8
df = c � 1 � np (np = 1) 14 9 4 9
Significance probability, P 0.13 0.55 0.17 0.36

Fig. 4.4. A random spatial pattern of 500 points, with superimposed grids of
sample units. (a) 5 × 5 grid, mean = 20, variance = 29.1; (b) 10 × 10 grid, 
mean = 5, variance = 5.88; (c) 20 × 20 grid, mean = 1.25, variance = 1.41; 
(d) 5 × 20 grid, mean = 5, variance = 6.08.



We know from experience that pests are often not distributed randomly. They tend
to be found in aggregated spatial patterns. There are many biological mechanisms
that lead to aggregation: the existence of ‘good’ and ‘bad’ resource patches, settling
of offspring close to the parent, mate finding and so on. Likewise, there are many
ways in which models for such processes can be combined to obtain probability dis-
tributions to account for the effect of spatial aggregation.
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Because these are all greater than the standard value, P = 0.05, we would be justi-
fied in assuming a Poisson distribution in each case.

Despite the non-significant P-value for the 5 × 5 grid, Fig. 4.5a is not convinc-
ing: the frequencies do not really look like the theoretical values. This is mainly
because n = 25 is too few sample units for a good test. There are people who are
reluctant to accept the results of a statistical significance test if the data do not look
convincing. It is unwise to lean too heavily on a statistical crutch. Statistical tests
are most useful when they summarize something that is not difficult to swallow.

Fig. 4.5. Observed frequency distributions for the four grid types shown in Fig.
4.4, with a Poisson distribution fitted to each (�) with grouping criterion equal to
one. (a) 5 × 5; (b) 10 × 10; (c) 20 × 20; (d) 5 × 20.

4.6 Aggregated Spatial Patterns and the Negative Binomial Distribution



What kind of frequency distribution should we expect when we sample an
aggregated pattern? It has been found in practice that, where sample units are col-
lected at random and the numbers of pests are spatially aggregated at the scale of
the sample units, the variance tends to be greater than the mean. There are many
theoretical distributions (in one way or another related to the Poisson distribu-
tion), which allow more variability among numbers in sample units: their variances
are greater than their means. The probability distribution that is most often used in
describing sampling distributions of pests is the negative binomial probability dis-
tribution. Because of its mathematical versatility, this distribution has been found
to be a powerful workhorse for matching the frequencies of a wide variety of pest
distributions in the field. The negative binomial distribution has two parameters,
the mean µ, and a parameter k, which is generally called the exponent or clustering
parameter of the distribution. The variance is as follows:

(4.9)

and the formulae for calculating the negative binomial probabilities are as follows:

(4.10)

If k increases while µ remains constant, the variance decreases. For very large
k, the negative binomial distribution is practically indistinguishable from the
Poisson distribution. The effects of changing the parameters is illustrated in Fig.
4.6. When µ = 5 (Figs 4.6a and c), the distribution looks like a Poisson distribution
if k = 10, but if k = 0.1, the tail of the distribution is very long: although µ is still
equal to 5, the probability of getting a count equal to 20 or greater is 0.07 (Fig.
4.6c, box). These figures (Figs 4.6a and c) illustrate how decreasing k increases the
variance per sample unit (Equation 4.9): for µ = 5,

k 0.1 1 10
Variance 255 30 7.5

The effect of varying µ while k remains constant is easier to understand (Figs
4.6b and d). As µ increases, the probability of getting a zero count decreases and
the distribution is stretched out to the right. Again, these figures illustrate how
increasing the mean also increases the variance (Equation 4.9): for k = 1,
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µ 1 5 10
Variance 2 30 110

The versatility of the negative binomial distribution allows it to model Beall’s
data very well, where the Poisson distribution fails badly (Fig. 4.7). The mean and
variance of the data are 4.74 and 15.00, respectively (see Chapter 2, Exhibit 2.1).
The fitted values and tests (grouping so that expected class frequencies ≥ 1) are as
follows:

^µ
^

k X2 df P

Poisson 4.74 – 6220 12 0.00
Negative binomial 4.74 2.21 30.6 25 0.20

The value of 
^

k is an indication of aggregation at the spatial scale of the sample
unit, and for µ near 4.74. If the sample unit is changed or the mean density is differ-
ent, there is no guarantee that k will remain the same. In fact, there is much
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Fig. 4.6. Negative binomial distributions, showing the effect of changing one
parameter while keeping the other one fixed. (a) and (b) show probabilities; (c) and (d)
show corresponding cumulative probabilities. (a,c) µ = 5 and k = 0.1 (□), 1 (�) and 10
(�); (b,d) k = 1 and µ = 1 (□), 5 (�) and 10 (�).



evidence in the literature that k changes with sample unit and mean density (see,
e.g. Taylor, 1984).

Computers can be made to generate aggregated spatial patterns in a number of
ways (for details, see the appendix to this chapter). A computer-generated aggre-
gated spatial pattern of points is shown in Fig. 4.8a. When a 36 × 36 grid is super-
imposed on this ‘field’ to create 1296 sample units, the aggregation among sample
units can be easily seen (Fig. 4.8b). We can fit the Poisson and negative binomial
distributions to these data by maximum likelihood (Fig. 4.9). We do not need a sta-
tistical test here to infer that the points are not randomly distributed – that is to
say, not at the spatial scale of the chosen sample unit – or that the negative bino-
mial distribution is a plausible model for the frequency distribution. Using the
spatial pattern in Fig. 4.8a as a basis, we illustrate the effect on k of changing the
size and shape of the sample unit.
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Fig. 4.7. Fitting probability distributions to Beall’s data (Fig. 2.2). (a) Poisson
distribution (�), ^µ = 4.74; (b) negative binomial (�), ^µ = 4.74, 

^
k = 2.21.

Fig. 4.8. (a) A computer-generated spatial pattern. (b) A representation of the pattern in
terms of a grid (36 × 36) of sample units, where each small dot represents the presence
of one point in the sample unit, and each increase in size represents the presence of
one more point.
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Exhibit 4.2. The effect of sample unit size and shape on the negative binomial k

The spatial pattern of points displayed in Fig. 4.8a was subdivided into sample units
by grids of various shapes and sizes. The negative binomial distribution was fitted to
each frequency distribution in turn.

Initially, all sample units were square, with equal numbers of sample units 
(nx and ny) along each axis:

Grid (nx × ny) n = nx × ny
^µ

^
k X2 df P

9 × 9 81 12.4 3.09 35.1 31 0.28
18 × 18 324 3.10 2.01 17.2 10 0.07
27 × 27 729 1.37 1.74 8.15 6 0.23
36 × 36 1296 0.77 1.70 5.3 4 0.25
48 × 48 2304 0.43 1.77 3.58 3 0.31

It is always a good idea to check where a test has produced a significance probabil-
ity near the critical value (we use P = 0.05 here as the critical value). Therefore,
before proceeding further, we need to check on ‘18 × 18’ (P = 0.07). The frequency
distribution and the fitted frequencies are shown in Fig. 4.10a. No wild departure is
evident (the worst fits are for counts 5 and 8), so we can proceed to use the above
results. The value of k increases as the size of the sample unit increases. Therefore,
the aggregation decreases as sample unit size increases. A plausible reason for this
is that a larger sample unit contains more centres of aggregation in the spatial
pattern, partially ‘averaging out’ the aggregation effect. Although there is no general
guarantee that increasing the size of the sample unit will increase the value of k, it
often occurs in practice.

Continued

Fig. 4.9. Fitting distributions to the data shown in Fig. 4.8(b). (a) Poisson; (b) negative
binomial. Fitted frequencies are shown as circles (�).
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What happens when the shape of the sample unit is changed? We can investi-
gate this by keeping the size of the sample unit constant, but adjusting the grids to
make rectangular sample units. Based on the sample unit size for ‘18 � 18’, we
find the following:

Grid (nx × ny)
^µ

^
k X2 df P

3 × 108 3.09 4.12 12.2 9 0.20
4 × 81 3.10 4.86 5.76 8 0.67
6 × 54 3.09 3.39 10.6 10 0.39

12 × 27 3.09 2.04 10.1 11 0.52
18 × 18 3.10 2.01 17.2 10 0.07
27 × 12 3.09 2.15 13.8 11 0.24
54 × 6 3.09 3.19 15.2 9 0.09
81 × 4 3.09 4.11 7.31 10 0.70

108 × 3 3.09 7.06 9.3 8 0.32

Again, we must check where near-significance occurred. A plot of the frequencies
and the fitted values of ‘54 × 6’ are shown in Fig. 4.10b. There is no obvious feature
which should make us want to reject the fit, so we can continue. There appears to
be a trend for k to increase as the shape of the sample unit becomes more elon-
gated, in either direction. When the pattern was originally generated, no purposeful
‘directional’ pattern was imposed. A plausible reason for increasing k is that as the
length of the sample unit grows, the sample unit itself contains parts of more and
more centres of aggregation, thus attaining, in part, some of the attributes of a larger
sample unit. From the previous discussion on the effect of sample unit size on k, we
might therefore expect a larger k as the rectangular shape of the sample unit
becomes more elongated.

Fig. 4.10. Fitting the negative binomial distribution to the pattern in Fig. 4.8a
subdivided into different sized sample units. (a) 18 × 18 superimposed grid; 
(b) 54 × 6 superimposed grid. Fitted frequencies are shown as circles (�).



At first sight, the results presented in Exhibit 4.2 should appear disturbing. On the
one hand, the negative binomial distribution is versatile enough to fit the fre-
quency distributions of many species of interest to pest managers. On the other
hand, the parameter k can vary depending merely on the size and shape of what-
ever sample unit is used. Have we taken one step forward and one step backward?
The answer is that we have not, because once we have decided on a sample unit
(based on concepts discussed in Chapter 2) we are generally not interested in
changing its size and shape. If there are several sample units which satisfy the criteria
noted in Chapter 2, we can always compare their precisions and choose the best.
But once the sample unit has been agreed upon, we are then only concerned about
how changes in the mean per sample unit, µ, might affect k. Here we can use one of
the variance–mean relationships discussed in Chapter 3, namely 

IVM: σ2 = (a +1)µ + (b � 1)µ2 (4.11)

TPL: σ2 = aµb (4.12)

Using what is called the ‘method of moments’, we can relate either of these equa-
tions to Equation 4.9, to obtain an estimate of k:

(4.13)

or

(4.14)

Once the parameters of either IVM or TPL are estimated, we can estimate k for any
value of µ, the mean per sample unit, and we do not need to worry about finding
models to justify it (Binns, 1986). Therefore, if we have a good estimate of IVM or
of TPL, we can estimate probability of decision (OC) functions for a range of mean
densities using the negative binomial distribution. We shall use Equation 4.14
frequently throughout the book.
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4.6.1 Estimating the negative binomial k from a variance–mean relationship

Exactly how the value of k changes as the sample unit size changes depends
on the type and degree of aggregation in the spatial pattern. Certainly, k depends on
the spatial aggregation and on the size and shape of the sample unit. Estimating
aggregation, per se, is beyond the scope of this book. For further discussion on
measures of aggregation see, for example, Pielou (1977).



In our examples so far, we have fitted the Poisson and negative binomial distribu-
tions to all of the data. That is, we have used the data from all the sample units
superimposed on a spatial pattern. In a sense, therefore, we have been working with
the ‘true’ values in the field. In practice, however, only some of the sample units are
collected and analysed. Can we compare the fits that we obtain from all the data
with those we might obtain when we collect only some of the sample units? 
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4.7 The Effect of Sample Size on Fitting Distributions

Exhibit 4.3. Using all sample units, or only a subset

If we collect only a few sample units, we cannot expect to obtain a good represen-
tation of the true frequencies. How much do we gain in precision by taking more
than a minimum number of sample units? Here we start with the spatial pattern and
grid of sample units displayed in Fig. 4.8b, and compare the fits to the negative
binomial distribution when fewer than the total number (1296) of sample units are
chosen and analysed. 

Fifty sample units were collected at random from the total number of units
(1296) in Fig. 4.8b. Poisson and negative binomial distributions were fitted to these
data (Fig. 4.11):

P (based on 
all 1296 

^µ
^
k X2 df P sample units)

Poisson 0.780 – 3.08 2 0.22 < 0.001
Negative binomial 0.780 1.57 1.16 2 0.56 0.25

Fig. 4.11. Fitting Poisson and negative binomial distributions to a subsample of
the total number of sample units shown in Fig. 4.8b. (a) A frequency distribution
of 50 randomly selected sample units and the fitted Poisson distribution. (b) A
frequency distribution of 50 randomly selected sample units and the fitted
negative binomial distribution.
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Based on these 50 sample units alone, it could be inferred (wrongly) that the
Poisson distribution is an adequate probability model. Clearly, we need to take a
reasonable number of sample units if we are going to fit distributions and make
inferences from the fits. Another two samples were taken with 100 and 200 sample
units each. This time, the inferences were like those using all the data (Table 4.1). In
this instance, 50 sample units were too few and 100 were enough.

We can compare the (approximate) standard errors (se) of the maximum likeli-
hood estimates (Table 4.1) with curves analogous to Equation 2.3, namely

(4.15)

These curves are

(4.16)

so they are equal to the data values at sample size n = 1296. We can plot the stan-
dard errors of the estimates of µ and k (Table 4.1) along with these curves (Fig.
4.12). It is not surprising that the se(^µ) values follow the curves, because Equation
4.15 refers specifically to means, but the same relationship holds (approximately)
for se(

^
k) also. We can generally assume the same effect of sample size on the vari-

ance of anything that we estimate, provided that all other aspects of the sampling
remain the same.

It is important to collect enough sample units to be able to decide whether a
specified probability distribution really does fit a given spatial pattern, at the level
of that sample unit. We have found that 100 sample units is usually enough, given
the fact that many different fields need to be sampled before a general conclusion
can be drawn about what is an adequate probability model.

Continued

  
se se

n
se se

nn n( ) ( )     and    ( ) ( )µ µ= =1296 1296
1296 1296

k k

  
V

V
n

sem
V
nm = =    or    

Table 4.1. Fitting subsamples of the complete data set shown in Fig. 4.8b to the
negative binomial distribution. Fitted parameters ( ^µ and 

^
k) and their standard

errors for all 1296 sample units, and for random subsamples.

^µ se(µ)
^
k se(

^
k) PP

1 Pnb
2

All data 0.772 0.029 1.70 0.259 0.00 0.25
(n = 1296)
n = 200 0.780 0.075 1.78 0.712 0.00 0.58
n = 100 0.690 0.103 1.313 0.679 0.04 0.80
n = 50 0.710 0.145 1.57 1.168 0.62 0.27

1 Significance probability for fitting the Poisson distribution.
2 Significance probability for fitting the negative binomial distribution.



In the previous section we stated that the parameters of the negative binomial dis-
tribution were fitted to the observed frequencies without being explicit on how this
was done, except to note that the principle of maximum likelihood was used. The
problem is to find the maximum value of an expression (such as Equations 4.5 or
4.7) that represents the combined probability of getting the data as a function of
one or more unknown parameters. Occasionally, as with the Poisson distribution,
there is an analytical solution (as we have demonstrated), but usually there is no
analytical solution and we have to use a numerical optimization algorithm. 

Such an algorithm works something like the following:

1. An initial parameter set is determined, either automatically by the algorithm or
given by the user.
2. An area of search around the initial parameter set is determined based on user
input or internal calculations.
3. The algorithm searches the likelihood function by calculating the likelihood at
various values of the parameters in the search area, using built-in knowledge of
what the shape of the likelihood ought to be, and calculates a parameter set which
is likely to be nearer the solution.
4. The likelihood is calculated at this new parameter set.

4a. Based on a criterion, often given by the user (such as a desired small value
for the distance between the new and old parameter sets), the algorithm decides
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Fig. 4.12. The relation between the standard errors of estimates of negative
binomial parameters and sample size: estimated values and a theoretical curve
(Equation 4.16). The base data are the sample units illustrated in Fig. 4.6b. 
(a) Estimates of µ; (b) estimates of k.

4.8 The Mechanics of Fitting Distributions to Data4

4This section is full of mathematics and may be skipped.



whether it has reached a solution. If it has, the algorithm ends with the current
parameter set. 
4b. If the stopping criterion is not satisfied, a new iteration is started (step 5),
unless a predetermined maximum number of iterations has already been done,
in which case the algorithm stops.

5. Initiate the next iteration.
5a. If the new parameter set gives a better value for the likelihood, the new
parameter set replaces the old set, and the algorithm returns to step 3, possibly
defining a smaller area of search.
5b. If the new parameter set does not give a better value, most algorithms
retain the previous parameters set and return to step 3 with new search parame-
ters (for example an enlarged or differently shaped area of search).

To create even a reasonable algorithm requires a very good understanding of
numerical methods and the underlying mathematics. When no more than two
parameters are used, a very simple algorithm can be used. Starting from an initial
parameter set (e.g. µ and k of the negative binomial distribution), calculate a 5 × 5
array of parameter values using values of δ1 and δ2, which are determined as ‘small’
with respect to µ and k, respectively:

µ � 2δ1, k + 2δ2 µ � δ1, k + 2δ2 µ, k + 2δ2 µ + δ1, k + 2δ2 µ + 2δ1, k + 2δ2
µ � 2δ1, k + δ2 µ � δ1, k + δ2 µ, k + δ2 µ + δ1, k + δ2 µ + 2δ1, k + δ2
µ � 2δ1, k µ � δ1, k µ, k µ + δ1, k µ + 2δ1, k
µ � 2δ1, k � δ2 µ � δ1, k � δ2 µ, k � δ2 µ + δ1, k � δ2 µ + 2δ1, k � δ2
µ � 2δ1, k � 2δ2 µ � δ1, k � 2δ2 µ, k � 2δ2 µ + δ1, k � 2δ2 µ + 2δ1, k � 2δ2

The likelihood can be calculated at each of the 25 sets of parameters, and the max-
imum value can be determined, thus finding the next pair of values for the parame-
ters. These are then placed in the middle of another array, defined by smaller values
of δ1 and δ2 than those used in the previous iteration. Repeating this a number of
times, a solution can be reached.

Two critical features of this, or of any search for a likelihood solution, remain:
which parameters to use, and how to obtain initial values. The first of these may
not appear to be a problem. Why not use the parameters used in the mathematical
definitions (e.g. µ and k for the negative binomial)? The answer lies at least partly
in the initial values. It has now become fairly well known that parameters that
reflect easily identified properties of the data are best when searching for a maxi-
mum likelihood solution (see, e.g. Ross, 1970, 1990). One reason for this is that
initial values are then easy to calculate directly from the data and, furthermore,
these values should not be far from the solution. For fitting distributions, it is easy
to calculate the mean and variance of a set of data, and if the parameters are
chosen to be closely related to these, the search for the solution should be rela-
tively easy. For example, the parameters of the negative binomial distribution are
the mean itself (µ) and the parameter k, which is closely related to the variance
and the mean: k = µ2/(σ2 � µ).
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In many instances, the only information that is obtainable, or even needed, is
whether a sample unit contains, or does not contain, a pest. Note that ‘contain a
pest’ includes, for example, ‘infected by a pathogen’ and, for convenience, we use
the expression ‘infected sample unit’. If the probability of a sample unit being
infected is p, the probability of x infected sample units out of the total n sample
units selected at random from a field is given by the binomial distribution:

(4.17)

The theoretical mean and variance of x are as follows:

mean number of infested sampling units = np, with variance = np(1 � p) (4.18)

and the theoretical mean and variance of the incidence, x/n, are

(4.19)

Typical shapes of the binomial distribution are shown in Fig. 4.13. If economic
injury is related to pest incidence, the binomial distribution can be used directly to

mean incidence with variance
( )= = −

p
p p

n
,

1

  
p x n p

n

x
p px n x

| ,( ) =






−( ) −
1

82 Chapter 4

4.9 The Binomial Distribution

Fig. 4.13. Binomial distributions with n = 10 and p = 0.05 (▫),0.5 (�) and 0.9 (�).



develop sampling plans for decision-making in crop protection. If economic injury
is related to density, however, but the sample data are proportions of plants con-
taining a pest, the problem arises of relating incidence to density. This is discussed
in detail in Chapter 7.

A striking feature of the binomial distribution is that, in a sense, it always
holds when sampling is random. For any spatial pattern which is sampled by
random selection of sample units, the proportion of sample units containing a pest
(or that are infected) can be characterized by the binomial distribution.

The binomial distribution is relevant also for simulated OC functions. Each
simulation of a sampling plan provides an estimate of the true probability of
making a decision not to intervene, whatever the mean density. This is analogous
to collecting binomial samples in the field. The mean of sr simulation replicates is
an estimate of the true probability of a decision not to intervene, and is therefore
distributed exactly as the mean of sr samples from a binomial distribution. This is
important for comparing simulated OC functions.

When sampling to estimate incidence, it is sometimes practical to take a cluster of
sample units at each location instead of only one sample unit. The main argument
for this would be to save time and effort. However, this immediately destroys the
inevitability of the binomial distribution. If the pest is aggregated at the scale of the
sample cluster, the number of infected sample units per cluster is no longer bino-
mial. In particular, the variance is increased. Such sampling data can be analysed
using the beta-binomial distribution.

The beta-binomial distribution describes the number of infected units (x) in a
cluster of R sample units and has three parameters: R, α and β, although R is known
(of course!). The formulae for the beta-binomial probabilities are formidable,
involving the gamma function:

(4.20)

It may be comforting to know that the gamma function is just an extension of the
factorial function (!): for integer arguments i, Γ(i) equals (i � 1)! For example,
Γ(3) = 2! = 2, and Γ(4) = 3! = 6. For non-integer arguments (i + u), where i is an
integer and 0 < u < 1, Γ(i + u) lies between (i � 1)! and i! For example, Γ(3.1) =
2.198 and Γ(3.9) = 5.299. 

When n clusters of R sample units are collected, the mean and variance of the
proportion of infected sample units, under the beta-binomial distribution, are as
follows:
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4.10 The Beta-binomial Distribution



(4.21)

and where p is the overall probability of a sample unit being infected, and ρ is the
intra-cluster correlation. Typical shapes of the beta-binomial distribution for 
p = 0.05, 0.4, 0.9 and for ρ = 0.02, 0.1, 0.33, 0.7 are shown in Figs 4.14a–d. The cor-
responding mathematical parameters α and β are as follows:
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Fig. 4.14. Beta-binomial distributions with cluster size equal to 10. Each graph presents
distributions for p = 0.05 (▫), 0.5 (�) and 0.9 (�). (a) ρ = 0.02; (b) ρ = 0.1; 
(c) ρ = 0.33; (d) ρ = 0.7.



ρ p = 0.05 0.5 0.9

(a) 0.02 α = 2.45 24.5 44.1
β = 46.55 24.5 4.9

(b) 0.1 α = 0.45 4.5 8.1
β = 8.55 4.5 0.9

(c) 0.33 α = 0.102 1.015 1.827
β = 1.929 1.015 0.203

(d) 0.7 α = 0.021 0.214 0.386
β = 0.407 0.214 0.043

Note that when ρ is small (ρ = 0.02), the distributions (Fig. 4.14a) are not very
different from the corresponding binomial distributions (Fig. 4.13). When ρ is
large, the distribution becomes U-shaped, even for small or large values of p (Fig.
4.14d).
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Exhibit 4.4. The description of the number of virus-infected plants per cluster in
sugar beet

As part of a study on the spread of beet yellows virus in experimentally inoculated
fields of sugar beet in The Netherlands, symptoms were noted on all plants in 21
rows of one of the fields. The degree of aggregation was estimated in terms of the
intra-cluster correlation, ρ.

The disease was clearly aggregated (Fig. 4.15). Plants were allocated to clusters
of 10 consecutive individual plants within rows (Fig. 4.16). The binomial and beta-
binomial distributions were fitted to the numbers of affected plants in each cluster.
The binomial distribution is clearly unable to model the data, but the beta-binomial
distribution provides a good fit (Fig. 4.17). The fitted parameters were as follows:

p ρ α β X2 df P

Binomial 0.195 0 – – 1417 5 < 0.001
Beta-binomial 0.193 0.291 0.472 1.968 9.6 8 0.29

The beta-binomial distribution fits the data with different cluster sizes also. The
value of p does not change much, but the value of ρ does:

Cluster size, R p ρ

1 × 5 (R = 5) 0.195 0.363
1 × 10 (R = 10) 0.193 0.291
1 × 15 (R = 15) 0.195 0.270
3 × 5 (R = 15) 0.197 0.294

The effect of cluster size on the value of ρ is investigated in more depth in the next
exhibit.

Continued
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Fig. 4.15. The incidence of beet yellows virus on individual sugarbeet plants in 21
rows of 240 plants.

Fig. 4.16. The numbers of diseased sugarbeet plants in clusters of 10 plants in
each row of the field depicted in Fig. 4.15. Each small dot represents a cluster
with one diseased plant, and each increase in size of the dot represents one or
two more diseased plants in a cluster: 1, 2, 3 or 4, 5 or 6, 7 or 8, 9 or 10.



The intra-cluster correlation, ρ, is not estimated during routine pest manage-
ment sampling, but is important in defining the variance of the incidence estimate
(Equation 4.21). Intuitively, the average correlation among sample units in a
cluster should decrease as the cluster size increases, because of distance. This atten-
uation of the correlation as cluster size increases is illustrated in the following
exhibit.
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Fig. 4.17. Fitting the data shown in Fig. 4.16 to the binomial (a) and the beta-
binomial (b) distributions, using a grouping criterion equal to 1. Fitted frequencies
are shown as circles.

Exhibit 4.5. The effect of cluster size and shape on the intra-cluster correlation

Under random sampling, any aggregation among sample units is immaterial, and
the binomial distribution is appropriate. If for any reason sampling is not random,
then the binomial distribution cannot be assumed to hold. In particular, if sample
units are chosen in clusters of adjacent sample units, the beta-binomial distribution
should be used. The grid of sample units shown in Fig. 4.8b was rendered into a
pattern of incidence by allocating 0 to units with 0 or 1 points and 1 to units with at
least two points (Fig. 4.18). The effect of cluster size and shape on the intra-class
correlation, ρ, was studied for this spatial pattern of incidence. The results are
shown in Table 4.2.

The estimate of incidence was always near 0.20, but the estimate of ρ
depended on the size and shape of the cluster. The larger clusters (12 sample units)
tended to have lower values of ρ than the smaller clusters (six sample units). This is
not surprising: the aggregation in the spatial pattern is local (as we noted above
when we used the same data to study the negative binomial distribution), and the
correlation between sample units decreases as the distance between them
increases. As clusters became more elongated, ρ decreased. This result is similar to
that noted in Exhibit 4.2, and the reason for the decrease is the same: clusters with
longer edges cover more sources of aggregation, and thus average them out.

Continued
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Fig. 4.18. The spatial pattern derived from Fig. 4.8b. Each sample unit in Fig. 4.8b
containing two or more individual points is plotted here as a point. All other
sample units are blank. 

Table 4.2. Estimates of incidence and intra-cluster correlation for different sizes
and shapes of clusters, used to sample the computer-generated spatial pattern in
Fig. 4.18. All frequency distributions fitted the beta-binomial distribution, but
none fitted the binomial distribution.

Number of sample 
units along the Estimates and approximate standard errors

x-axis y-axis p se(p) ρ se(ρ)

4 1 0.200 0.014 0.166 0.032
2 2 0.201 0.014 0.217 0.035
1 4 0.201 0.013 0.156 0.032
6 1 0.201 0.014 0.098 0.026
3 2 0.200 0.015 0.174 0.031
2 3 0.200 0.015 0.165 0.030
1 6 0.202 0.014 0.113 0.026

12 1 0.201 0.016 0.103 0.024
6 2 0.201 0.017 0.113 0.026
4 3 0.199 0.018 0.149 0.029
3 4 0.200 0.018 0.136 0.028
2 6 0.200 0.016 0.107 0.025
1 12 0.202 0.015 0.075 0.021



As with the negative binomial distribution, we are left with the knowledge
that the beta-binomial distribution is able to model incidence very well, but do we
need to estimate ρ every time? A model relating the beta-binomial variance to the
binomial variance has been proposed by Hughes et al. (1996) which can do for the
beta-binomial distribution what TPL can do for the negative binomial distribution
(Section 4.5.1). Hughes et al. (1996) showed that the relationship

(4.22)

fitted a number of data sets, and proposed it as a general formula. We retain their
original notation. On the basis of this formula and Equation 4.21, the intra-class
correlation can be calculated as

(4.23)

For certain choices of parameters, the distributions in this chapter may be indistin-
guishable from each other. 

The negative binomial distribution with mean µ approaches the Poisson distri-
bution with mean µ as k increases. For example, compare Fig. 4.2 (diamond) with
Fig. 4.6a (diamond).

When sampling to detect a rare event (binomial distribution with very small
p), the total number of sample units where the rare event is observed (Xn out of a
total of n sample units) is approximately Poisson with mean equal to np. This is
exemplified in Fig. 4.19. When p = 0.025 and n = 40, the Poisson and binomial dis-
tributions are indistinguishable. When p is increased to 0.125 there is little differ-
ence between Poisson and binomial. When p = 0.25, there begins to be a
noticeable difference, but it is still not great. The binomial distribution is more
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4.11 Relationships among the Distributions

Note that we have not referred here to the defining mathematical parameters α
and β of the beta-binomial distribution. The parameters p and ρ are easier to under-
stand in practical terms than α and β. As can be seen from Equation 4.21, there are
simple relationships among α, β, p and ρ.



peaked than the Poisson, reflecting the fact that its variance is always less than its
mean.

The beta-binomial distribution with mean probability p (= α/{α + β})
approaches the binomial distribution with mean probability p as both α and β
increase (incidentally, forcing ρ to decrease).

The beta-binomial distribution is a binomial distribution when the cluster size,
R, is equal to 1.

When R is large and p is small, the beta-binomial distribution becomes like the
negative binomial distribution with k equal to p/ρ (Madden and Hughes, 1999). If
ρ is small, this is true for moderate values of R, but as ρ increases, R must also
increase for there to be much similarity between the two distributions.
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Fig. 4.19. A comparison of the Poisson (— ▫ —) and binomial (�) distributions. 
(a) Poisson mean = 1, binomial n = 40, p = 0.025; (b) Poisson mean = 5, binomial n =
40, p = 0.125; (c) Poisson mean = 10, binomial n = 40, p = 0.25.



We have intentionally restricted ourselves to four distributions: Poisson, negative
binomial, binomial and beta-binomial. Other distributions have been suggested for
modelling the frequency distributions of biological organisms, and routines for fit-
ting data have been written (see, e.g. Gates et al., 1987; Payne et al., 1993).
However, those that we have described here are the ones that have been found to
fit most often, and therefore are the most commonly used.

Because each newly calculated frequency distribution is potentially unlike any
other, it is normal practice to try fitting several probability distributions, in an
attempt to find one that can be used in subsequent work. Frequently, more than
one probability distribution fits adequately. There is no statistical procedure that
can indicate which, if any, is the one to choose. Collecting more data in a wider
range of environments should clarify the issue. What usually happens is that one
distribution fits more often than the others, and the real question is whether the
number of times it does not fit is a serious obstacle to using it as a foundation for
decision-making (see, e.g. Nyrop et al., 1989). Of course, there is a possibility that
no theoretical distribution fits often enough to be convincing. We discuss how to
deal with this problem in Chapter 9.

The fact that a probability distribution such as the negative binomial distribu-
tion fits a frequency distribution does not mean that the species represented by the
data will always fit that probability distribution. Only if many independent data
sets consistently follow a certain probability distribution can we begin to assume
that at other times and places this probability distribution should be applicable.
Once we have obtained enough data to convince ourselves, and others, that this is
the case, we can calculate probability of decision (OC) functions for any sampling
plan we wish. The data sets used to do this job of convincing do not need to have
as detailed a coverage of individual fields as in the Colorado potato beetle example
of Beall. Costs prohibit such extensive data collection. A reasonably large sample
(say 100) is often sufficient. Of course, how large the data set should be depends on
the spatial pattern itself. The greater the aggregation or variability is, the more
sample units are needed. It is important to ensure that the ‘application domain’
that is, the pest densities around the critical threshold) is well covered by the sets
of data that are used to fit the distributions. This advice is similar to that given in
Section 3.4, for estimating TPL.

1. A frequency distribution is a summary of a spatial pattern, ignoring the location
of sample units. It depends on the properties of the sample unit; in particular, its
size and shape.
2. A probability distribution is a model for a frequency distribution, but only if it
fits the data well.
3. The Poisson distribution is an appropriate model for a frequency distribution
based on a random spatial pattern.
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4.12 On the Choice of Probability Distribution Model 

4.13 Summary



4. The negative binomial distribution, with two parameters (µ and k), is a useful
model for a frequency distribution based on an aggregated spatial pattern. Both
parameters depend on the size and shape of sample units. A variance–mean model
can be used to estimate k for varying µ.
5. The binomial distribution is appropriate for modelling incidence when sample
units are collected at random throughout the field.
6. The beta-binomial distribution is appropriate for modelling incidence when
sampling is done by collecting random clusters of adjacent sample units throughout
the field. Spatial aggregation is accommodated by a parameter that measures the
intra-cluster correlation, ρ. The size of ρ depends on the shape and size of the clus-
ter. A model relating the variance of incidence estimates under both types of sam-
pling (random collection of sample units and random collection of clusters of
sample units) can be used to estimate ρ.
7. The χ2 test can be used to make an objective decision on whether a probability
distribution is an adequate model for a frequency distribution. At least 100 sample
units are needed to make an acceptable goodness-of-fit test.
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The computer-generated spatial patterns that we refer to in this book were derived
using one or other of two methods described in the literature: the Poisson cluster
processes (see, e.g. Diggle, 1983) and Gibbs processes (see, e.g. Ripley, 1981). We
present here a brief outline of how we have implemented them.

For many years statisticians have developed a wide variety of probability distribu-
tions which are called compound Poisson distributions. The ones that are relevant
here are those in which independent distributions of ‘parents’ and ‘offspring’ are
specified. Our implementation uses the Poisson distribution for ‘parents’, and either
a Poisson or a log-series (see, e.g. Pielou, 1977) distribution for the ‘offspring’. This
is put together in four stages to create a spatial pattern:

1. A number, N, of ‘parents’ is distributed randomly in the unit square.
2. Each ‘parent’ gives rise to M ‘offspring’, M being generated from a Poisson or
log-series distribution with predefined mean.
3. The positions of these ‘offspring’ relative to the corresponding ‘parent’ are gen-
erated as bivariate normal with zero correlation.
4. Points generated outside the unit square are ignored.

Gibbs processes use an initial spatial pattern of points and derive, by iteration, a
new spatial pattern. The goal is to adjust the initial pattern (by repeated rejection
and replacement) of points, so that in the final pattern the distribution of the
number of neighbouring points of each point conforms to a prespecified probability
distribution. To implement this, a definition of ‘neighbouring point’ and rules for
rejection and replacement are required. We start with a random spatial pattern of
N points. Points are defined as neighbours of a given point if they are within a
circle of radius r centred on that point. The rejection criterion is that new points
are rejected with probability proportional to the number of their neighbours. 

1. Start with a random spatial pattern of N points in the unit square.
2. Choose one of the N points at random to be replaced.
3. Generate a potential replacement point at random.
4. Calculate the number of neighbours, t, of the new point.
5. Generate a uniform random number, x, between 0 and 1.
6. If x > t/N accept the new point; otherwise, return to step 3.
7. Repeat steps 2–6 a number of times. Using a slightly different rejection crite-
rion, Ripley (1979) suggested that 4N times should be sufficient.

Faddy (1997) demonstrated how various probability distributions arise from
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Appendix: Computer Generation of Aggregated Spatial Patterns

Poisson cluster processes

Gibbs processes



inhomogeneous Poisson processes in the time domain. His definition of the nega-
tive binomial distribution as an inhomogeneous Poisson process in time is similar
to how the above method generates spatial patterns (his definition was our motiva-
tion). When a grid is superimposed on a spatial pattern generated by this method
to define sample units, then, in many instances, the frequency distribution of num-
bers of points in sample units is either Poisson or negative binomial. However,
there are sufficient differences between a time dimension and two-dimensional
space (in particular, time is an ordered dimension) that a negative binomial distrib-
ution is not guaranteed for these spatial patterns (Exhibit 4.2).

The generation of spatial patterns by the Gibbs process method tends to be
much slower than by the Poisson cluster method. The computer-generated patterns
referred to in this chapter were derived using the Gibbs method. Most of the com-
puter-generated patterns referred to in subsequent chapters were derived by the
Poisson method.
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In this chapter we present three methods for sequential classification of pest abun-
dance or pest incidence. With such methods, the need for further sample informa-
tion is evaluated after each sample unit is examined by making one of three
possible decisions: (i) the density is classified as greater than the critical density
(cd), and sampling is stopped; (ii) the density is classified as less than or equal to cd
and sampling is stopped; or (iii) an additional sample unit is taken and examined.
A classification ‘greater than the critical density’ will probably trigger some kind of
intervention. The decisions are reached by comparing total counts to stop bound-
aries. The three sequential methods differ in the shape of the stop boundaries pro-
duced and the parameters used to specify the boundaries. We describe each of the
methods and illustrate how various parameters influence the operating characteris-
tic (OC) and average sample number (ASN) functions for each. The OC and ASN
functions are estimated using simulation. Finally, we compare the three procedures
in reference with each other.

In Chapter 3 we introduced the notion of examining a batch of sample units and
deciding whether, on the basis of the data so far, it was possible to come to a con-
clusion, or whether another batch of sample units was required. The idea of reduc-
ing the batch size to one sample unit was suggested, but there we ran up against the
assumption of normality; there are few, if any, pest counts that can be described by
a normal distribution, whatever the sample unit. If we had nevertheless proceeded
to calculate OC and ASN functions (not difficult), these functions might have
been misleading. The probability distributions described in Chapter 4 come much
nearer to describing actual counts of pests, and, in any particular instance, one
among them is usually good enough to give a reliable representation. We will make
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use of these probability distributions to model sample counts, and use these models
to estimate OC and ASN functions for sequential sampling plans.

The expression sequential sampling was introduced in the early 1940s by
Abraham Wald to describe the (then) new technique of taking sample units, one at
a time, and (using what is called a likelihood ratio) deciding whether there is cur-
rently enough information to classify population density into one of two categories,
or whether at least one more sample unit is required. In those days, before the
widespread availability of electronic computers, Wald obtained analytical expres-
sions for the corresponding OC and ASN functions. Unfortunately, although his
sampling procedures might have been appropriate in the industrial work for which
they were intended, they are not necessarily the most cost-effective elsewhere. In
fact, a considerable literature arose with proposals for improving Wald’s procedures,
especially in the medical field. We shall discuss three methods of sequential sam-
pling for classification, starting with batch sampling, where the batch size is
reduced to one sample unit. This is often referred to as Iwao’s procedure, in recog-
nition of Syun’iti Iwao who first proposed it (Iwao, 1975).

Like the batch sequential sampling discussed in Chapter 3, the stop boundaries for
Iwao’s procedure are based on classification intervals (Equation 3.9). In fact, the
boundaries for the cumulative sample total are the same as Equation 3.12 for batch
sampling, but with nB = 1 (we change the notation slightly so that it is more like
what is found in the literature):

(5.1)

where n is the running total number of samples and maxn is the maximum sample
size (a decision is made at maxn, if not before). As in batch sampling, sampling is
stopped if n reaches the maximum sample size, by making the two boundaries equal 

to each other (Equation 5.1). It is worth remembering that is the standard
error of the mean, and that V is the variance estimate when the true mean is equal
to cd. Thus, four parameters are required to calculate Iwao stop boundaries; the crit-
ical density, a maximum sample size, the variance of a sample unit when the den-
sity is equal to cd and zα /2. All except zα /2 have readily understood interpretations.
In Section 3.2.2, when we began to discuss classification sampling, zα /2 had a prob-
ability meaning, but this held only because the sample size, n, was fixed and we
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could assume a normal distribution for the sample mean m. Sequential sampling
induces a probability distribution on the final sample size, n (when sampling stops),
which in turn alters the probability distribution of the value of m when sampling
stops. Therefore zα /2 is best thought of as a parameter that defines the distance
between the boundary lines. In particular, α should not be interpreted as an ‘error
rate’ or even as defining a single point on the OC function. However, for consis-
tency with the literature, we retain the notation used by Iwao and others.

The variance used to calculate the stop boundaries, V, can be based either on
the probability distribution used to describe the sample counts or on Taylor’s Power
Law (TPL) (Table 5.1). In estimating the properties of an Iwao plan, we must refer
to a probability distribution (see below).

The stop boundaries calculated using Equation 5.1 are curvilinear lines that
diverge with increasing n. To ensure a representative sample, the stopping rule is
usually not applied until a minimum number of samples units, minn, is collected.
Then, if the cumulative count after n samples, Sn, is greater than or equal to Un,
sampling is stopped and the density is classified as greater than cd; and if Sn is less
than or equal to Ln, sampling is stopped and the density is classified as less than or
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Table 5.1. Variances used for setting up Iwao sequential plans based on one of four
probability distributions. Critical density equal to cd; critical proportion equal to cp.

Distribution Variance when true mean = cd or cp

Poisson Variance = cd

Negative binomial with Variance =
constant k

Negative binomial with TPL Variance = a(cd)b

where a and b are parameters of TPL and cd is the
critical density

Binomial Variance = cp (1 � cp)
where cp is the critical proportion

Beta-binomial with Variance =
constant ρ

where cp is the critical proportion, R is the number of
sample units in a cluster and ρ is the intra-cluster
correlation

Beta-binomial with Variance =
variance-incidence 
power law where A and b are parameters of the power law, cp is

the critical proportion and R is the number of sample
units in a cluster 
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equal to cd. The stop boundaries are adjusted so that sampling must terminate
when n reaches a specified maximum value, maxn. If n = maxn is reached, the esti-
mate of mean density, Smaxn/maxn, is compared with cd and the natural classifica-
tion is made (Equation 5.1). Because at maxn the density is classified as greater
than cd if Smaxn > cd × maxn, this classification can be made if Sn > cd × maxn, for
any n. This results in a portion of the upper boundary being a horizontal line that
ends at the point (maxn, cd × maxn). The general shape of the stop boundary is
shown in Fig. 5.1.

To estimate the OC and ASN functions, simulation must be used. The general
routine for all sequential procedures that use minimum and maximum sample sizes
is as follows:

1. The probability distribution that will be used to simulate sampling is specified.
For the negative binomial and beta-binomial distributions, an aggregation parame-
ter must be provided (not necessary for the Poisson and binomial distributions).
The value of the aggregation parameter can be either fixed or made to vary accord-
ing to a variance–mean or variance–incidence model. For the negative binomial
distribution, Taylor’s variance–mean relationship is often used to calculate a k
value that is appropriate for the mean. For the beta-binomial distribution, a similar
type of model may be used to calculate a value for the intra-cluster correlation coef-
ficient that is appropriate at a given level of incidence. Allowance can be made for
biological variability around the fitted models. Details can be found in the
Appendix. 
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Fig. 5.1. Stop boundaries for a sequential classification sampling plan based on Iwao’s
method. Un and Ln are the upper and lower stop boundaries respectively. Minimum
and maximum sample sizes are minn and maxn and the critical density is cd.



2. A range of true means (densities or proportions: µ’s or p’s) is specified for which
OC and ASN values will be estimated.
3. For each value of µ (or p), do steps 4–7.
4. Set up the distribution from which samples are to be generated. Note that, as in
Section 3.5.1, the distribution used for simulation may differ from that used for set-
ting up the plan.
5. Do steps 5a–5c sr times (sr is the number of simulation repetitions).

5a. To start each simulation, generate minn random variables from the specified
distribution, set n equal to minn, and calculate Sn, the cumulative total.
5b. Compare Sn with the stop boundary (Ln, Un) at n:

• if Sn ≤ Ln, the density is classified as ≤ cd; store this value of n, and go to
step 5a for the next simulation,

• if Sn ≥ Un, the density is classified as > cd; store this value of n, and go to
step 5a for the next simulation, otherwise,

5c. Increment n to n + 1, generate another random variable, recalculate Sn,
and return to step 5b.

6. Calculate the number of times the density is classified as less than or equal to cd,
and divide this by sr. This is the estimated probability of not recommending inter-
vention; it can be plotted against the corresponding value of µ (or p) as part of the
OC function.
7. Calculate the average value of n when sampling stopped; this can be plotted
against the corresponding value of µ (or p) as part of the ASN function.
8. Repeat from step 3 until all values of µ (or p) have been done.

We use simulated OC and ASN functions to compare different sampling plans.
Because a simulated OC function is closely related to the binomial distribution, we

have a simple estimate of its standard error (Section 2.11): , where p
is the OC value. We have found that sr = 1000 usually gives adequate accuracy,
provided that the values of µ (or p) are not far apart: the estimated functions should
be smooth over the chosen range.

Sequential procedures, including Iwao’s, allow for classifications of the density
to be made after very few sample units have been examined. Above, we stated that
in practice it is desirable to take a minimum number of samples before comparing
counts to the stop boundaries. The importance of this cannot be over-emphasized.
In Chapter 2 we discussed at length four criteria for an adequate sampling plan:
representativeness, reliability, relevance and practicality. The reliability and repre-
sentativeness of the sample would almost certainly be violated if sequential sam-
pling stopped at one, two, or even five sample units. If care is not taken in the
implementation of sequential sampling, one or more of the necessary attributes of a
good sample can be lost. Any sequential plan should include the specification of a
minimum number of samples to be taken at the start and following the criteria of
Chapter 2. Some experienced pest managers are so concerned with potential prob-
lems related to early stopping (or for other practical reasons) that they never use
sequential sampling. We feel that this level of caution is unnecessary, but any
sequential plan that we discuss from this point onwards will include a minimum
number of samples.

p p sr( )1− /
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Changes in the parameters of Iwao’s sequential procedure and changes in the
distribution of sample counts have similar general effects on the OC and ASN
functions as in batch sampling (Section 3.3). They are summarized in Table 5.2.
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Table 5.2. Main general effects of changing parameters of three sequential sampling
plans: Iwao, Wald and Converging Lines (CL). The magnitude of any of these effects
must be determined by simulation. For Wald, the critical density (cd) is taken to refer
to (µ0 + µ1)/2. These effects hold when sampling for proportions: replace cd by cp.

Change Main general effects

Iwao Increase α (decrease zα) Decreases the interval between the boundaries,
which in turn decreases the ASN function. The
OC function is made flatter near cd

Wald Increase α (β fixed) Lowers the upper stop boundary.a Lowers the 
CL Increase aU (aL fixed) upper left part (< cd) of the OC, making it flatter,

and lowers the right part (> cd) of the ASN

Wald Increase β (α fixed) Raises the lower stop boundary.b Raises the lower 
CL Increase αL (αU fixed) right part (> cd) of the OC, making it flatter, and

lowers the left part (< cd) of the ASN

Iwao, CL Increase cd The OC and ASN functions are shifted to the right
on the pest density axis

Wald Increase µ0 (µ1 fixed, Raises the upper stop boundary. Makes the upper 
but cd = (µ0 + µ1)/2 left part (< cd) of the OC steeper, and increases 
increases) the corresponding part of the ASN

Wald Decrease µ1 (µ0 fixed, Decreases the lower stop boundary. Makes the 
but cd = (µ0 + µ1)/2 lower right part (> cd) of the OC steeper, and 
decreases) increases the corresponding part of the ASN

Iwao, Wald Increase minn The sloping part of the OC becomes narrower, 
(minimum sample and the OC as a whole becomes steeper, 
size) especially the curved parts that converge into the

horizontal asymptotes (at 0 and 1). The ASN is
increased

CL Increase minn (minimum Increases the distance between the boundaries, 
sample size) which increases the ASN function. The OC

function is made steeper

Increase maxn (maximum Near cd, the OC function is made steeper and the 
sample size) ASN function is increased

Increase the true variance, σ 2, The ASN function is (usually) decreased near cd, 
above the estimated variance, V but increased far from cd. The OC function is

made flatter
a For Wald, the lower stop boundary is also affected: it is raised, but not by so much provided that
α and β are small. The effects may appear counter-intuitive.
b For Wald, the upper stop boundary is also affected: it is lowered, but not by so much provided
that α and β are small. The effects may appear counter-intuitive.



The effect of increasing σ 2 above V is worth more discussion than is found in Table
5.2. If the true distribution of sample counts is not the same as that used for calcu-
lating the stop boundaries, the effects are not immediately clear. Increasing the
variance of the sample observations above the variance used to construct the stop
boundary (this applies only to the negative binomial and beta-binomial distribu-
tions) flattens the OC function. The effect on the ASN function is not so straight-
forward: near cd (or cp) the ASN tends to be lower; otherwise, it tends to be higher.
The basic reason for this is that the increased variability of Sn when the true mean
is near cd (or cp) makes the sample path more erratic and it crosses the boundary
earlier than it would otherwise; more incorrect classifications are also likely.
However, if the true mean is far from cd (or cp), so that the sample path is expected
to exit quite quickly, the increased variability of Sn can make the path remain
within the boundary longer than it would otherwise. It should be noted that the
variability would have to be very much larger before the path would be so erratic as
to make an exit out of the ‘wrong’ side of the stop boundary, so the OC function is
unlikely to be affected far from cd.

As noted for batch sampling, the magnitude of these effects on the OC and
ASN functions is difficult to predict. The effects may be small and even ignorable;
whether or not they are ignorable depends on practical considerations such as
those discussed in Chapter 1. Some of these points are illustrated in Exhibit 5.1. 

Sequential Sampling for Classification 103

Exhibit 5.1. Iwao’s plan: the effect of altering parameters

In this example, we demonstrate how the performance of Iwao’s sequential proce-
dure is influenced by different values for α and maximum sample size, and by vari-
ation in the model used to describe sample observations. We also demonstrate
savings in sample resources that can be realized through the use of a sequential
procedure. The example is based on sampling lucerne weevil (Hypera postica), a
defoliator of lucerne with one generation per year throughout its range in North
America. Critical densities for this pest range from 0.5 to 4.5 individuals per plant
(Barney and Legg, 1988). Sampling procedures have been based either on removal
of foliage from a specified area, or on stem sampling. Legg et al. (1985) proposed a
sample unit of six stems taken from a 100 m2 area and suggested that a minimum of
five such samples be taken in each field. Barney and Legg (1988) determined the
variance of six-stem sample counts taken from 100 m2 as a function of the mean: V
= 1.0µ1.2 . Miller et al. (1972) had previously noted that the distribution of counts
from six stems taken from an approximately 1 m2 area can be described by a nega-
tive binomial distribution, so it is reasonable to suppose (although it has not been
specifically shown) that counts from six stems taken from 100 m2 are also distrib-
uted according to a negative binomial model. However, the variances among
sample observations are less when stems are taken from 100 m2 than when they are
taken from 1 m2, probably because the six stems are drawn from a larger sample
universe, which would tend to reduce the effect of aggregation of the larvae on the
sample variance. This would be in line with the simulations done in Section 4.6,
where we showed that sample means from ever increasing areas had higher values
of the parameter k.

Continued
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Iwao stop boundaries were used to classify the density about cd = 15 (2.5 per
plant × six plants in a sample unit) and OC and ASN functions were determined
using simulation (sr = 1000 for each mean). In the first simulation comparisons
were made among three values of α: 0.15, 0.05 and 0.0125. The minimum sample
size was five units of six plants each, and the maximum sample size was 15.
Taylor’s Power Law with a = 1.0 and b = 1.2 was used to describe the variance as a
function of the mean, both for setting up the stop boundaries and for generating the
sample observations in the simulations. The stop boundaries and OC and ASN
functions are shown in Fig. 5.2. The increased width between the stop boundaries

Fig. 5.2. Stop boundaries (a) and OC (b) and ASN (c) functions for an Iwao
sequential classification sampling plan. The effect of changing the boundary
parameter α : α = 0.15 (___), 0.05 ( … ) and 0.0125 (- – -). Other boundary
parameters: cd = 15, minn = 5, maxn = 15, TPL a = 1.0, TPL b = 1.2, k estimated
by TPL. Simulation parameters: negative binomial with k estimated by TPL, 1000
simulations.
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with decreasing values for α resulted in increased ASN values, but the correspond-
ing changes in the OC function are nearly undetectable.

In the second simulation, comparisons were made among three maximum
sample sizes; 15, 25 and 35, with α = 0.05. All other parameters were as for the first
simulation. The stop boundaries and OC and ASN functions are shown in Fig. 5.3.
As when α was reduced, increasing the maximum sample size resulted in larger ASN
values, but the effect on the OC function was easily detectable. Note that the greater
steepness of OC was associated with an increase in the number of sample units,
especially for those population means which are close to the critical density.

Fig. 5.3. Stop boundaries (a) and OC (b) and ASN (c) functions for an Iwao
sequential classification sampling plan. The effect of changing the boundary
parameter maxn: maxn = 15 (___), 25 ( … ) and 35 (- – -). Other boundary
parameters: cd = 15, α = 0.05, minn = 5, TPL a = 1.0, TPL b = 1.2, k estimated by
TPL. Simulation parameters: negative binomial with k estimated by TPL, 1000
simulations.

Continued
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In the third simulation, we took the same plan, constructed with TPL a = 1, 
b = 1.2, α = 0.05, and minimum and maximum sample sizes equal to 5 and 25 (Fig.
5.3a, dotted line), and studied the effect of variation in the TPL parameters. The
report on the TPL parameters (Barney and Legg, 1988) did not provide estimates of
mean square error or estimates of parameter variances. We decided that a 30%
adjustment to a would provide a good test, and used a = 0.7, 1.0 and 1.3 in turn.
The OC and ASN functions computed using the three TPL models are shown in Fig.
5.4. When TPL a for the simulated data counts was greater than that used to con-
struct the stop boundary, the OC function became flatter and ASN values were
reduced, although, as noted above, for mean values far from cd, the ASN was
increased (but only slightly). The effect of a 30% variation in the TPL parameter a
on the OC and ASN functions is noticeable but, depending on other factors, may
not be unduly large. 

It is worth comparing the effects of widening the distance between the stop
boundaries (Fig. 5.2) and of increasing the maximum sample size (Fig. 5.3). Both
changes increased the average number of sample units (Figs 5.2 and 5.3), but only
one of the changes, the increase in maximum sample size, paired the greater effort
to an improved OC (Fig. 5.3). Widening the stop boundaries (Fig. 5.2) resulted in
more work, but did not noticeably improve the accuracy of the classification. At
first sight this appears perverse, but a more detailed examination of the variation in
numbers of sample units required, n, provides some illumination. The variation can
be quantified by quartiles of the distributions of the number of sample units
required in the six sampling plans of Figs 5.2 and 5.3. Quartiles are defined as the
25th and 75th percentiles of the frequency distribution of sample sizes generated in
the simulations, while the median is defined as the 50th percentile. The pth per-

Fig. 5.4. OC (a) and ASN (b) functions for an Iwao sequential classification
sampling plan. The effect of changing the simulation parameter TPL a: a = 0.7
(___), 1.0 ( … ) and 1.3 (- – -). Boundary parameters: cd = 15, α = 0.05, minn = 5,
maxn = 15, TPL a = 1.0, TPL b = 1.2, k estimated by TPL. Simulation parameters:
negative binomial with k estimated by TPL (with different values of a), 1000
simulations.
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centile is defined as the value below which p% of the population lies (e.g. Fig. 1.4).
Figures 5.5a–c show quartiles for the three plans of Fig. 5.2, while Figs 5.5d–f show
quartiles for the three plans of Fig. 5.3. Figures 5.5a–c illustrate that decreasing α in
Fig. 5.2 meant only that more and more simulations stopped at the maximum
sample size part of the stop boundary (n = 15): a relatively low maxn can nullify the
expected effect (Table 5.2) of a wider stop boundary. On the other hand, increasing
the maximum sample size in Fig. 5.3 allowed many more simulations to exit
through the stop boundary before maxn, and the larger maxn also allowed higher
precisions for estimates at maxn. If maxn is already reached quite frequently in the
basic plan, adjusting parameters to widen the distance between the stop bound-
aries but not changing maxn will have little effect: all that happens is that the plan
becomes more and more like a fixed sample size plan, with a sample size equal to
maxn. Conversely, if maxn is decreased, the plan also becomes more and more like
a fixed sample size plan, with a sample size equal to the new maxn. 

Comparison of the ASN functions of Figs 5.2 and 5.3 with the solid line curves
in Fig. 5.5 shows that presenting percentiles of the sample size distribution provides

Fig. 5.5. Percentiles (25%, 50% and 75%) of the frequency distribution of sample
size in the six sets of simulations presented in Figs 5.2 and 5.3. (a)–(c) refer to Fig.
5.2, maxn = 15 and α = 0.15, 0.05, 0.0125, respectively; (d)–(f) refer to Fig. 5.3, 
α = 0.05 and maxn = 15, 25, 35, respectively. Median number required (___), 
25th and 75th percentiles (bars), based on 1000 simulations. Note that (b) and (d)
are based on the same plan.

Continued



Decision-making with batch sampling is based on estimating the mean pest density
as each batch is sampled, and comparing the estimate with the critical density.
Because Iwao’s procedure can be envisaged as based on batch sampling with unit
batch size, it can also be thought of as using estimation as an intermediate step to
decision-making. Wald’s procedure has no such intermediate step.

The SPRT is based directly on the classification problem: if the true mean den-
sity of a field is equal to µ0 or less (µ0 < cd), classification must be correct at least
100(1 � α)% of the time, but if it is equal to µ1 or greater (µ1 > cd) classification
must be correct at least 100(1 � β)% of the time. Concentrating on µ0 and µ1
alone, the goal of SPRT is to continue to collect sample units until there is enough
evidence to be able stop and make a classification with predetermined probability
of being correct if either of these values represents the true density. These require-
ments can be summarized in a table showing probabilities of correct and incorrect
classification for µ = µ0 and µ = µ1 (Table 5.3). With two probabilities, α and β,
specifying the probabilities of misclassification we can, if we want, allow relatively
more correct ‘no intervention’ than ‘intervention’ actions (by letting α be less than
β). In some pest management situations, this may be useful.

The stop boundaries for SPRT are based on the ‘likelihood ratio’, which is the
ratio of likelihoods (Section 4.3):

(5.2)

This can be represented as the product of ratios, each ratio referring to the data
from one sample unit:

(5.3)

where Xi refers to the sample data in sample unit i. For example, if disease inci-
dence were being tested based on the binomial distribution (Section 4.9), and r
sample units were found to be infested among the first n units examined (i.e. 
Sn = r), the ratio would be
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added insight into how a sampling plan is performing. When the median curves all
reach the maximum sample size, this might warn an alert user that there is a prob-
lem. There may be a case for presenting the percentiles for the number of sample
units instead of ASN or in addition to it, but we feel that this might often be more
confusing than helpful. We shall continue to use ASN because it a useful summary
statistic which is generally easy to interpret, but the reader should be aware that an
average without an estimate of precision can be misleading.

5.4 Wald’s Sequential Probability Ratio Test (SPRT)



(5.4)

Wald defined the SPRT as the rule, starting at n = 1:

ii(i) continue collecting sample units while 

i(ii) stop and classify µ = µ0 if         

(iii) stop and classify µ = µ1 if      

Wald showed that the SPRT resulted in probabilities of action as in Table 5.3,
and that the SPRT was optimum in the sense that of all potential methods that are
able to provide a decision between µ0 or µ1 at the specified error rates α and β,
SPRT requires the smallest average number of sample units. Wald then gave formu-
lae to calculate the rest of the OC function and the whole of the ASN function
(see, e.g. Fowler and Lynch, 1987). These formulae were very useful when elec-
tronic computers were in their infancy, but nowadays it is better to use simulation
to estimate both the OC and ASN functions, for two main reasons:

1. Wald’s formulae are approximations.
2. Wald’s formulae do not allow a minimum or maximum sample size.

The second of these disallows the formulae in practice, although they remain ade-
quate approximations in general.

Classification by SPRT makes heuristic sense. Suppose, for example, that sam-
pling stops with classification µ = µ1. Based on (iii) above, this means that, when
sampling stops, and whatever the value of n,
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Table 5.3. The probabilities, under SPRT, of classification for the pivotal mean
densities µ0 and µ1 (µ0 < cd < µ1).

Classify as ‘acceptable’ Classify as ‘unacceptable’
(µ = µ0): action = (µ = µ1): action =

True value no intervention intervene

µ = µ0 1 � α α
µ = µ1 β 1 � β



where � means that the equality is approximate, because the final ratio may be
slightly greater than (1 � β)/α. We proceed to classify µ as equal to µ1, which we
promised to do with probability 1 � β if µ = µ1, and with probability α if µ = µ0.
This is precisely what Equation 5.5 states! The reader with some knowledge of sta-
tistics will by now recognize as two ‘statistical hypotheses’ the assumptions that the
true mean density is either µ0 or µ1; the classification problem can be regarded as
testing one hypothesis against the other.

For many distributions, the stop boundaries presented in (i), (ii) and (iii)
above can be written out and reorganized into more convenient forms, involving
cumulative totals, Sn, and the sample size, n. More specifically, the boundaries are
parallel straight lines. This simplification works for the Poisson, negative binomial
and binomial distributions. It does not work for the beta-binomial distribution;
boundaries for it are so complicated that no one has calculated and published them.
Equations for stop boundaries for the Poisson, negative binomial and binomial dis-
tributions are shown in Table 5.4. 
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Table 5.4. Formulae for computing stop boundaries for a SPRT based on binomial,
Poisson, negative binomial and normal distributions. The normal distribution can be
used when the boundaries for the desired distribution (e.g. beta-binomial) are not
simple straight lines. µ0 < µ1 and p0 < p1.

Distribution and 
parameters Low intercept High intercept Slope

Poisson; µ0 and µ1

Binomial; p0 and p1, 
q = 1 � p

Negative binomial; 
µ0 and µ1, k

Normal; µ0 and µ1 , σ2  
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As with Iwao’s procedure, SPRT stop boundaries are adjusted so that sampling
must terminate when n reaches a specified maximum value, maxn. If n = maxn is
reached, the estimate of mean density, Smaxn/maxn, is compared with cd, and the
density is classified as greater than cd if Smaxn > cd × maxn. This same classification
can be made if Sn > cd × maxn, for any n, which results in a portion of the upper
boundary being a horizontal line ending at the point (maxn,cd × maxn).

The effect of SPRT parameters on the OC and ASN functions is similar to the
effects noted with Iwao’s procedure. With Iwao’s procedure as originally formulated,
there is only one parameter that controls the width of the stop boundaries (zα /2).
While two parameters could be used (zα for the lower boundary and zβ for the
upper), we have retained the original formulation. With SPRT there are two para-
meters, α and β, one for each boundary. Increasing either α or β decreases the width
between the stop boundaries and makes the OC flatter and reduces ASN values.
The effects are summarized in Table 5.2, but because they are not altogether intu-
itive, it is worth describing how changing α affects the OC and ASN functions
(the effect of changing β is similar).

Through its effect on the ‘ln’ functions in Table 5.4, increasing α perceptibly
lowers the upper stop boundary and slightly raises the lower stop boundary (pro-
vided that α is small). Narrowing the distance between the parallel stop boundary
lines reduces the number of sample units required to reach a decision, so the ASN
is reduced for all values of µ; because the upper stop boundary is lowered more than
the lower one is raised, the reduction is greater for µ > cd. Therefore the ASN
should be visibly reduced for µ > cd.

The relatively greater lowering of the upper stop boundary increases the rela-
tive chance of exit through the upper stop boundary whatever the value of µ. In
other words, the chance that true mean values less than cd are (incorrectly) classi-
fied as greater than cd is increased. Therefore the OC function to the left of cd is
lowered. The effect on the OC function could alternatively be deduced from Table
5.3. 

Some effects of changing the parameters are illustrated in Exhibit 5.2.

Sequential Sampling for Classification 111

Exhibit 5.2. Wald’s SPRT plan: the effect of altering parameters and the distribution

In this example we illustrate how α and β of Wald’s SPRT and models for the distri-
bution of sample counts influence the OC and ASN functions. The example is
based on sampling nymphs of the three-cornered alfalfa hopper (Spissistilus festinus
(Say)), which is a pest of soybean. The adult girdles stems and leaf petioles with its
sucking mouthparts, which diverts plant sugars and may allow disease entry. Sparks
and Boethel (1987) found that counts of first-generation hopper nymphs from 10
beat-net samples were distributed according to a negative binomial distribution,
while counts from the second generation could be adequately modelled by the
Poisson distribution. Taylor’s Power Law fitted to all the data for both generations 

Continued



112 Chapter 5

together gave a = 0.96 and b = 1.26 (variance = 0.96µ1.26). Sparks and Boethel esti-
mated the relationship between nymph and adult numbers, and were able to deter-
mine a critical density for nymphs: 11.3 per 10 beat-net samples. The sample unit
was defined as 10 beat-net samples. The basic plan was SPRT with µ0 = 10.3, 
µ1 = 12.3, α = 0.2, β = 0.2, minn = 10, maxn = 40, TPL with a = 0.96 and b = 1.26,
and negative binomial distribution with k = 14 (determined at the midpoint
between µ0 and µ1 by Equation 5A.5 and TPL).

Changing α and β Three SPRT classification sampling plans were set up,
using the above basic parameters, but with different values of α and β: α and β
were both equal to 0.05, 0.10 or 0.2 for the three plans. The OC and ASN functions
were determined using simulation with the sample counts distributed according to
a negative binomial model and the variance modelled as a function of the mean
using TPL. One thousand simulation replicates were made to estimate each OC and
ASN value. Decreasing α and β caused the stop boundaries to lie further apart, the
ASN values to be higher and the OC function to be slightly steeper (Fig. 5.6).
However, the change in the OC function might be regarded as modest. Based on
this finding, using larger values for α and β than those suggested by Sparks and
Boethel (they used α and β equal to 0.05) might be justified because the average
sample size would be reduced by almost one half over a wide range of pest densi-
ties without appreciable loss in classification precision.

Different simulation distributions Sparks and Boethel found that all the
sample counts obtained with the beat-net method could be described using a nega-
tive binomial distribution, but also that 40% of these data sets could be described
by the Poisson distribution. The authors designed a sequential classification sam-
pling plan based on the negative binomial distribution: ‘it permits conservative
sampling with little added effort [when counts are randomly distributed] because of
the low level of clumping as indicated by the value of k (approximately 14)’. By
simulation we can determine just how conservative this sampling would be and
how little the ‘added effort’ actually was. Stop boundaries were created using the
above basic parameters. Sample counts were simulated in three ways; using a nega-
tive binomial distribution with k = 14, using a negative binomial distribution allow-
ing TPL to determine the value of k based on Equation 5A.5, and using a negative
binomial distribution with k = 100, which essentially means using the Poisson dis-
tribution (Section 4.9). The OC and ASN functions obtained for the three models for
the sample counts are shown in Fig. 5.7. When the sample counts could be approx-
imately described using the random distribution (Poisson), the ASN function was
slightly larger and the OC function slightly steeper. There were essentially no differ-
ences between the OC and ASN functions obtained when the variance was
described as a function of the mean using TPL or when a fixed value of k was used.
The latter result is not surprising, because the variances among sample counts are
nearly the same when k = 14 as when the variances are determined using TPL.

When the stop boundaries are based on the Poisson distribution but sample
counts are more aggregated, the results are similar. Stop boundaries were created
using the basic set of parameters, except that k = 100. The same three types of dis-
tribution were used to estimate OC and ASN functions (Fig. 5.8). As before, when
the variance among sample counts was greater than that used to compute the stop
boundaries, the OC functions were less steep and the ASN functions were reduced.

These results indicate that, for the three-cornered hopper that infests soybeans,
what at first observation might be regarded as somewhat imprecise descriptions of
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sample counts are in fact quite adequate for developing a sequential classification
plan. Sensitivity to different values of unknown parameters, such as k, can be exam-
ined by estimating OC and ASN functions for these different values. Conservative
estimates of the OC and ASN functions can be obtained by using parameter values
which make the sample variance greater (e.g. by using smaller values of k in the
simulations than were used to set up the sampling plan).

Continued

Fig. 5.6. Stop boundaries (a) and OC (b) and ASN (c) functions for an SPRT
sequential classification sampling plan. The effect of changing the boundary
parameters α and β: α,β = 0.2 (___), 0.1 ( … ) and 0.05 (- – -). Other boundary
parameters: µ0 = 10.3, µ1 = 12.3, minn = 10, maxn = 40, TPL a = 0.96, TPL b =
1.26, k estimated by TPL. Simulation parameters: negative binomial with k
estimated by TPL, 1000 simulations.
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Fig. 5.7. OC (a) and ASN (b) functions for an SPRT sequential classification
sampling plan. The effect of changing simulation parameters defining the negative
binomial k: k = 14(___), k estimated by TPL ( … ), k = 100 (- – -). Boundary
parameters: µ0 = 10.3, µ1 = 12.3, α = β = 0.2, minn = 10, maxn = 40, TPL a = 0.96,
TPL b = 1.26, k estimated by TPL. Simulation parameters: negative binomial with
the above values of k, 1000 simulations.

Fig. 5.8. OC (a) and ASN (b) functions for an SPRT sequential classification
sampling plan. The effect of changing simulation parameters defining the negative
binomial k: k = 14(___), k estimated by TPL ( … ), k = 100 (- – -). Boundary
parameters: µ0 = 10.3, µ1 = 12.3, α = β = 0.2, minn = 10, maxn = 40, k = 100.
Simulation parameters: negative binomial with the above values of k, 1000
simulations.
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Changing cd A parameter that has a large effect on the OC and ASN func-
tions is the critical density. We illustrated this for batch sampling in Exhibit 3.1. We
illustrate a similar effect with SPRT. Three SPRT plans were created using the basic
parameters, but changing µ0 and µ1: we used the pairs (10.3, 12.3), (11.3, 13.3) and
(9.3, 11.3). Stop boundaries and OC and ASN functions are shown in Fig. 5.9.
These differences in µ0 and µ1 result in the OC and ASN functions being shifted
either to the left or the right on the density axis. Of all the parameters studied in this
example, an approximately 10% change in the critical density had the greatest
effect on the OC and ASN. Often, the critical density is the least studied of all para-
meters used to formulate a decision guide. Although it may be unrealistic or
impractical to obtain a very accurate estimate of the critical density, it is always
worth using simulation to find out the effects on the OC and ASN functions of a
slightly different value.

Fig. 5.9. Stop boundaries (a) and OC (b) and ASN (c) functions for an SPRT
sequential classification sampling plan. The effect of changing boundary
parameters µ0 and µ1: µ0,µ1 = 10.3,12.3 (___), 11.3,13.3 ( … ) and 9.3,11.3 (- – -).
Other boundary parameters: α = β = 0.2, minn = 10, maxn = 40, TPL a = 0.96, TPL
b = 1.26, k estimated by TPL. Simulation parameters: negative binomial with k
estimated by TPL, 1000 simulations.



Both Iwao’s and Wald’s methods are based in some way or other on statistical
theory. But it may be possible to improve the efficiency of classification by escaping
from established theoretical frameworks and concentrating on practical goals.

Iwao’s stop boundaries consist of divergent curvilinear lines and those for the
SPRT are parallel lines (for most distributions of interest to pest managers). To
force a decision at a maximum sample size, both sets of lines are abruptly brought
together to a point. An alternative approach would be to bring the upper and lower
boundaries together more gradually, to meet at the maximum sample size. This
makes intuitive sense, because precision of a classification should improve as the
sample size increases, so the stop boundaries should be allowed to converge. In fact,
this type of boundary proved popular with the medical researchers, who found that
Wald’s SPRT was not entirely ideal for their purposes (Armitage, 1975).
Converging Line stop boundaries have not to our knowledge been applied in pest
management.

Converging Line stop boundaries could be developed in several ways. We use
the following rationale: the boundaries consist of two straight lines, one of which
meets the Sn-axis (the total count axis) above zero, and the other of which meets
the n-axis (the sample size axis) above zero. The two lines converge and meet at
the point (maxn, cd × maxn) (see Fig. 5.10). The question to be answered when
specifying one of these boundaries is: Where should the stop boundaries meet the
horizontal (n) and vertical (Sn) axes? In general, the further apart the lines are, the
greater the sample size and consequently the greater the precision in classification.
An intuitive way to quantify the spread in the stop boundaries is to specify the
minimum sample size, minn, and calculate classification intervals there about the
critical density (as in Equation 3.11, with minn replacing nB). This allows for sym-
metric stop boundaries as well as boundaries that differentially guard against the
two types of misclassification.

The upper and lower boundary points corresponding to the minimum sample
size are calculated exactly as for Iwao’s method:

(5.6)

where zαL and zαU are standard normal deviates, and V is the variance when the
mean is equal to cd.

The complete stop boundary consists of straight lines joining the point (maxn,
cd × maxn) to each of the points (minn, Lminn) and (minn, Uminn). These lines can
be extended to meet the axes, but of course the boundary is not strictly relevant
below minn (Fig. 5.10).
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5.5 Converging Lines



The quantities used to specify the width of the stop boundaries can be inter-
preted as classification intervals (Section 3.2.2), but this is not particularly mean-
ingful. It is best to do as we have suggested with other sequential plan parameters:
αU and αL should be viewed as tools for manipulating the stop boundaries so that
desirable OC and ASN functions are achieved (Table 5.2). Additional parameters
that can be used for this purpose are minn, maxn and cd (or cp). In general, decreas-
ing αU and/or αL will increase the width of the boundaries, make the OC more
steep and increase ASN. Decreasing αU but keeping αL fixed raises the upper arm
of the stop boundary and makes the upper part of the OC steeper, and similarly for
αL. Increasing minn and maxn will increase the width of the boundaries, make the
OC more steep and increase ASN. As for Iwao’s and Wald’s plans, increasing the
variance of the sample observations above the variance used to construct the stop
boundary (which applies only to the negative binomial and beta-binomial
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Fig. 5.10. Converging Line sequential classification stop boundaries. The boundaries
consist of Converging Lines that meet at the point maxn, cd × maxn, where maxn is
the maximum sample size and cd is the critical density. The upper and lower boundary
points corresponding to the minimum sample size (minn) are determined as 

, 

where zαU is a standard normal deviate such that P(Z > zαU) = αU, zαL is a standard
normal deviate such that P(Z > zαL) = aL, and V is the variance when the mean = cd.
The complete stop boundary consists of straight lines joining the boundary points at
minn to the point (maxn, cd × nmax ) and extending to the ‘Total count’ and ‘Sample
size’ axes.
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Exhibit 5.3. Converging Lines plan: the effect of altering parameters

In this example we illustrate how some of the parameters for Converging Line stop
boundaries influence the OC and ASN functions. The example is based on sam-
pling lepidopteran pests of fresh market sweetcorn in New York State. Hoffman et
al. (1996) showed that the sampling distribution of plants infested with caterpillars
could be described by a beta-binomial distribution when plants were sampled in
groups of 5 (‘clusters of five’, to use the terminology of Chapter 4). These authors
parameterized the beta-binomial distribution using θ, which is a measure of aggre-
gation that ranges from 1 to infinity, rather than ρ. However, ρ = θ/(1 + θ). These
authors reported the median value for ρ to be 0.1, and the 90th and 95th per-
centiles to be 0.23 and 0.44. The critical proportion of plants infested with larvae
was 0.15 prior to silking of the maize and 0.05 after silking. In this example, we use
cp = 0.15.

The influence of αU and αL was first studied by setting both of these parame-
ters equal to one of three values: 0.05, 0.1 or 0.2. The remaining parameters for
these plans were the same: cp = 0.15, the number of plants examined at each
sample location in the field (R) = 5, ρ = 0.1, minn = 15 and maxn = 50. One thou-
sand simulation replicates were made to estimate each OC and ASN value. The
stop boundaries and OC and ASN functions are shown in Fig. 5.11. Increasing αU
and αL caused the stop boundaries to move closer together. This resulted in
decreasing ASN functions, but only a small reduction in the precision of the classi-
fications.

The influence of the maximum sample size was examined by setting αU and
αL to 0.05 and allowing maxn to have one of three values: 25, 50 or 75. All other
parameters were as described above. The stop boundaries and OC and ASN func-
tions are shown in Fig. 5.12. Increasing maxn resulted in steeper OC functions
(increased precision of classification) and increased ASN functions. Note that the
maximum ASN value is much less than maxn when maxn = 75. This is because the
stop boundaries are very narrow for this value of maxn.

The influence of the minimum sample size was examined by setting maxn = 50
and allowing minn to have one of three values: 10, 20 or 30. All other parameters
were as described above. The stop boundaries and OC and ASN functions are
shown in Fig. 5.13. Increasing the minimum sample size over the range 10, 20, 30
caused the stop boundaries to lie further apart and resulted in an increase in the
ASN functions by nearly 50% (from 10 to 20) and by nearly 25% (from 20 to 30).
The corresponding changes in the OC functions were small and might not be justi-
fied by the extra sampling costs.

The parameter ρ of the beta-binomial distribution measures the correlation in
incidence rate among plants within a cluster of plants. As noted in Section 4.8, as ρ
increases, the variability of p, the proportion of plants infested, also increases. This
in turn increases the variance in the estimated proportion of infested plants
throughout the field. Shown in Fig. 5.14 are OC and ASN functions when stop

distributions) flattens the OC function, while near cd (or cp) the ASN tends to be
lower; otherwise, it tends to be higher. These patterns are illustrated in Exhibit 5.3.
The OC and ASN functions can only be obtained by simulation.
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boundaries were calculated using ρ = 0.1 and sampling was simulated using 
ρ = 0.1, 0.23 and 0.44. As might be expected, increasing the ρ used in the simula-
tions above the value used to calculate the stop boundaries caused the ASN func-
tion to decrease and the OC function to become more shallow (less precision). This
is the same type of effect as we found in Exhibits 5.1 (Iwao) and 5.2 (SPRT).
Whether or not these changes are important depends on the frequency with which
different values of ρ might occur in practice.

Continued

Fig. 5.11. Stop boundaries (a) and OC (b) and ASN (c) functions for a Converging
Lines sequential classification sampling plan and the beta-binomial distribution.
The effect of changing the boundary parameters αU and αL: αU = αL = 0.05 (___),
0.1 ( … ) and 0.2 (- – -). Other boundary parameters: cp = 0.15, R = 5, ρ = 0.1,
minn = 15 and maxn = 50. Simulation parameters: beta-binomial with ρ = 0.1,
1000 simulations.
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Continued

Fig. 5.12. Stop boundaries (a) and OC (b) and ASN (c) functions for a Converging
Lines sequential classification sampling plan and the beta-binomial distribution. The
effect of changing the boundary parameter maxn: maxn = 25 (___), 50 ( … ) and 75
(- – -). Other boundary parameters: cp = 0.15, αU = αL = 0.05, R = 5, ρ = 0.1 and
minn = 15. Simulation parameters: beta-binomial with ρ = 0.1, 1000 simulations.

In this chapter, we have not (so far) mentioned estimation. As noted in Chapter 3,
the goals of estimation and classification are different, so stop criteria for sequential
plans for estimation should probably be different from those for classification.
Sequential sampling plans for estimation do exist. Some discussions are highly
mathematical (see, e.g. Siegmund, 1985) and others are less so (see, e.g. Green,
1970). In contrast to stop boundaries for classification, stop boundaries for estima-
tion have no critical density and they tend to bend in towards the starting point (n

5.6 Green’s Stop Boundary for Estimation
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Fig. 5.13. Stop boundaries (a) and OC (b) and ASN (c) functions for a Converging
Lines sequential classification sampling plan and the beta-binomial distribution. The
effect of changing the boundary parameter minn: minn = 10 (___), 20 ( … ) and 30 
(- – -). Other boundary parameters: cp = 0.15, αU = αL = 0.05, R = 5, ρ = 0.1 and
maxn = 50. Simulation parameters: beta-binomial with ρ = 0.1, 1000 simulations.

Fig. 5.14. OC (a) and ASN (b) functions for a Converging Lines sequential
classification sampling plan and the beta-binomial distribution. The effect of
changing simulation parameters defining the beta-binomial ρ: ρ = 0.1 (___), ρ =
0.23 ( … ) and ρ = 0.44 (- – -). Boundary parameters: cp = 0.15, αU = αL = 0.05, R
= 5, ρ = 0.1, minn = 20 and maxn = 50. Simulation parameters: beta-binomial with
the specified value of ρ, 1000 simulations.



and total count, Sn, both equal to zero). Green’s boundary is based on TPL and a
precision requirement for the CV. From Equation 3.7,

(5.7)

Replacing µ by Sn/n,

(5.8)

which can be turned around to give Sn in terms of n:

(5.9)

This defines the boundary. As soon as the point representing (n,Sn) crosses the
boundary, sampling stops and µ is estimated by Sn/n. The boundary is exemplified in
Fig. 5.15. As noted for the simple case in Section 3.2, such a boundary is not likely
to be useful for classification; for example, because sample size is large for large µ,
whatever the value of cd. We now return to classification.

We have described three types of stop boundary which can be used to construct a
sequential classification sampling plan. Which stop boundary should be used? In
most cases, the choice of boundary type (Iwao, SPRT or Converging Lines) is much
less important than the choice of parameters for whatever boundary type is chosen.
Having said this, there is some evidence that Converging Line boundaries provide
OC functions that are nearly identical to those obtained using either Iwao or SPRT
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5.7 Which Stop Boundary?
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Fig. 5.15. The stop boundary for estimation by Green’s method. The required CV is
25%; TPL parameters are a = 4 and b = 1.3. (a) Untransformed numbers; 
(b) logarithms.
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Exhibit 5.4. A comparison among the three sequential plans: Iwao, SPRT and
Converging Lines

Vincelli and Lorbeer (1987) described a sequential sampling plan for use in determin-
ing when fungicide applications should be started for control of botrytis leaf blight of
onion, caused by Botrytis squamosa. The sample unit was the three oldest leaves on a
plant and the critical density was three disease lesions per sample unit. When this
density is reached, fungicide applications are to be initiated. Counts of lesions per
plant can be described using a negative binomial distribution. The authors modelled
the variance as a function of the mean using a model different from TPL. For demon-
stration purposes, we estimated TPL parameters by computing the variance as a func-
tion of the mean using the model reported by the authors and then fitting TPL to these
values using regression. The estimates for a and b were 3.05 and 1.02 respectively.

Continued

boundaries, but with smaller ASN functions. Thus, Converging Line boundaries
seem to be more efficient than either SPRT or Iwao boundaries. This evidence is
not extensive and consists only of a few sets of simulations that we have completed.
One such example is shown in Exhibit 5.4.

1. Sequential sampling requires fewer sample units than fixed sample size sampling
to obtain the same OC function.
2. Three types of sequential classification sampling plan have been presented:
Iwao, Wald’s SPRT and Converging Lines. Of these, Iwao and Wald’s SPRT are
commonly used in pest management sampling. There is some evidence that
Converging Lines may be at least as efficient as the other two.
3. Each of the types has a number of parameters – minimum and maximum sample
sizes, plus:

Iwao SPRT Converging Lines

Critical densities cd or cp µ0, µ1 cd or cp

Misclassification probabilities α α, β αL, αU

Distribution parameters V or variance– Negative V or variance–
mean binomial k mean 
relationship relationship 
(e.g. TPL) (e.g. TPL)

4. The general effects of changing plan parameters are summarized in Table 5.2. 
5. The only requirement for setting up Iwao or Converging Lines stop boundaries
is that an estimate of the variance at cd (or cp) is available.
6. When the distribution parameters are not known precisely, the effect of using
incorrect values in setting up the stop boundaries must be examined by simulation.

5.8 Summary



124 Chapter 5

Sequential sampling plans were constructed using Iwao, SPRT and Converging
Line boundaries. The minimum and maximum sample sizes were the same for all
three boundary types; 15 and 50 respectively. Other parameters for each sampling
plan were adjusted until OC functions for plans based on the three boundary types
were approximately the same. This allowed for comparison of sampling costs
required to achieve comparable levels of classification precision.

Shown in Fig. 5.16 are the stop boundaries and OC and ASN functions for the
Iwao and Converging Line sampling plans. Recall that the minimum sample size
was set to 15, so the big difference in stop boundaries is that those for Converging
Lines become narrower with increasing sample size, while those for Iwao become
wider until the maximum sample size is reached. The OC functions for the two
plans are nearly identical, but the ASN function of the Converging Line plan is
either close to or less than the ASN function for the Iwao plan.

Fig. 5.16. Stop boundaries (a) and OC (b) and ASN (c) functions for an Iwao (___)
and a Converging Lines ( … ) sequential classification sampling plan and the
negative binomial distribution. Boundary parameters: cd = 1, minn = 15, maxn =
50, TPL a = 3.05 and TPL b = 1.02. Iwao plan, α = 0.15. Converging Lines plan, αL
= 0.05 and αU = 0.1. Simulation parameters: negative binomial with k estimated
by TPL, 1000 simulations.
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A similar, although less extreme, pattern is evident when the Converging Line
and SPRT plans are compared (Fig. 5.17). Here also, the OC functions are nearly
identical, but the ASN function for the Converging Line is again either close to or
less than the ASN function for the SPRT.

Fig. 5.17. Stop boundaries (a) and OC (b) and ASN (c) functions for an SPRT
(___) and a Converging Lines ( … ) sequential classification sampling plan and
the negative binomial distribution. Boundary parameters: cd = 1, minn = 15,
maxn = 50, TPL a = 3.05 and TPL b = 1.02. SPRT plan, µ0 = 0.8, µ1 = 1.2 and α =
β = 0.25. Converging Lines plan αL = 0.05 and αU = 0.1. Simulation parameters:
negative binomial with k estimated by TPL, 1000 simulations.
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This appendix provides details on how to calculate the aggregation-related parame-
ters k of the negative binomial distribution and ρ of the beta-binomial distribution.
For both distributions, three cases may be distinguished:

1. The aggregation parameter is constant, and a single value can be used for all
densities (negative binomial) or incidences (beta-binomial). In this situation, the
methods in this appendix are not needed. In practice, however, k and ρ are rarely
constant.
2. The parameter varies in value with the level of density or incidence, and a
model is needed to capture the relationship. For both the negative binomial and
the beta-binomial distributions, good descriptions of the aggregation parameter are
obtained on the basis of a relationship between the variance and the mean density
or incidence.
3. The parameter varies in value with the level of density or incidence, but in
addition to this, there are significant differences in variance between fields with
similar densities. This variability affects expected sampling performance.

This appendix deals with situations 2 and 3.

The value of k can be modelled as a function of the mean, using TPL:

σ 2 = aµb (5A.1)

Some variability always exists in variance–mean models, so actual values of σ 2 will
vary about the value predicted by the model (Equation 5A.1). In the simulations
where OC and ASN functions are estimated, allowance can be made for variability
around the model as follows. If TPL is fitted by linear regression, we generate a
value for σ 2 by

(5A.2)

where z is normally distributed with mean 0 and standard deviation σε (the square
root of the mean square error for the regression used to estimate TPL can be used as
an estimate of σε). By equating sample and theoretical variances for the negative
binomial distribution,

(5A.3)

we obtain an estimate of k:
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Appendix: Calculating Aggregation Parameters for Use in the Simulations

Negative binomial k



(5A.4)

Each time a sampling plan is used to classify a particular density during a simula-
tion, Equation 5A.4 is used to generate k for the population being sampled. If an
OC determined using simulation is to be based on 500 simulation runs, then 500
different values of k would be determined, one for each simulation run at each
value of µ. If variability is not to be included in the simulations, the value used for k
is

(5A.5)

Equating theoretical and sample variances is an example of the ‘Method of
Moments’, because according to statistical terminology the variance is one of the
‘moments’ of a probability distribution (it is the second moment, the first being the
mean).

The derivation for ρ is very similar. Its value can be modelled as a function of the
incidence, p, using the model (Hughes et al., 1996)

(5A.6)

where R is the cluster size, and A and b are the parameters of the variance–
incidence model. Again, there is always some variability in incidence–mean
models, so actual values of σ 2 will vary about the value predicted by the model
(Equation 5A.6). In the simulations where OC and ASN functions are estimated,
allowance can be made for variability around the model as follows. If the model is
fitted by linear regression, we generate a value for σ 2 by

(5A.7)

where z is normally distributed with mean 0 and standard deviation σε. By equating
sample and theoretical variances,
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Beta-binomial �



(5A.8)

we obtain an estimate of ρ:

(5A.9)

This formula is used exactly as described above for Equation (5A.4). If variability is
not to be included in the simulations, the value used for ρ is
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In this chapter we review how the usefulness of sampling plans for pest manage-
ment decision-making may be maximized by proper choice of design ingredients, by
suitable presentation of the decision tool to users, and by use of simulation tools
and field methods, along with user interaction, for evaluation and target-oriented
design of plans. Evaluation of a sampling plan involves more than just the operat-
ing characteristic and average sample number functions, which were discussed in
the preceding chapters. Qualitative aspects, such as the practicality and simplicity
of the decision guide, and the reliability, representativeness and relevance are
equally important. These aspects, although not easily expressed quantitatively,
have a considerable influence on adoption in practice. It is therefore necessary to
evaluate qualitative aspects of performance in direct consultation and interaction
with end-users. Quantitative indicators of performance, such as the expected out-
come from sampling and time spent sampling, can be readily defined and analysed
using computer simulation. While field evaluations of sampling plans can generally
not be used to estimate operating characteristic (OC) and average sample number
(ASN) functions, they are useful in other contexts and have the advantage that
there are no model-based artefacts in the evaluation results. When evaluating the
results of a field or computer evaluation, interaction with end-users is again indis-
pensable. The economics of sampling are an important aspect of sampling plan
evaluation, and we need a decision-theoretic framework that allows a quantitative
evaluation of the value of sampling.

The text covers the full range of components which go into creating and
implementing a good decision guide. We look first at the nature of the design
process: the process between the recognition that a decision guide based on
sampling is needed and the implementation of a decision guide in practice. We
follow this with an examination of the necessary design ingredients of a decision
guide, expanding the introductory discussion in Chapter 2. Then we discuss 
the various ways decision guides can be evaluated. Finally, we show how to
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estimate the overall economic value of decision guide sampling under a variety of
crop loss formulations and expected likelihoods of high pest densities.

Decision guides must satisfy the objectives and constraints of users. If they do not,
the usefulness of a proposed tool may be compromised and the decision guide may
never be adopted. The specific objectives of crop and pest managers evolve as prod-
uct prices vary and pressures from society change, but certain basic objectives are
always present (see Chapter 1):

Minimize
• pest damage
• control costs
• the use of environmentally harmful control measures
• the potential for resistance to chemicals

Maximize
• natural controls
• the use of techniques that promote a natural and healthy image of the farm

business and the farm product
• economical and ecological sustainability (robustness) of the farming system

Compared with pest management approaches that rely on calendar- or phenol-
ogy-based pesticide applications, the use of a sample-based decision guide has
potential benefits: a reduced risk of severe crop loss, reduced pest control costs,
reduced environmental contamination, a reduced risk of pests developing resis-
tance to chemicals, conservation of natural enemy populations, a better public
image and increased sustainability of the production system. However, growers or
pest management advisors will use a sample-based decision guide only if it fits their
overall objectives and management approach (or if it is compulsory to do so).
Assuming free will, they will adopt a proposed procedure for collecting sample
information only if it provides key information in a cost-effective manner.

Unfortunately, sampling is often framed in the narrow perspective of economic
optimization, where all the other factors that make life and farming worthwhile
seem to play no role. This is demeaning to the real values and priorities of farmers
and other stakeholders in the agricultural landscape, as well as to researchers and
extension specialists who assist in the development of sampling plans. We need a
richer approach in evaluation, where all the quantitative and qualitative aspects of
management approaches are evaluated more comprehensively. However, we cannot
escape the need to make economic evaluations, because one of the primary goals of
farming is to make a profit and earn a living.

The design and evaluation of sampling plans as crop protection decision guides
follows a cyclical process that consists of three phases:

1. Proposing or modifying a sampling method.
2. Determining and evaluating the performance of the proposed method.
3. Implementing the decision guide.
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6.2 The Cyclical Process of Learning, Improvement and Design



Phases 1 and 2 cycle together until the evaluation indicates that the sampling plan
is acceptable; only then is phase 3 (implementation) entered. In the process of
cycling through these phases, a learning process unfolds which should result in a
successful design being implemented – or the realization that there is no viable
sampling approach for the problem. 

Proposing a sampling method entails:

• Determining the basic design ingredients of sampling, such as the size of the
management unit to which sample results will be applied, the sample unit, the
timing of sampling and the sample path in the crop (Section 6.3).

• Determining a critical density (Chapter 1), with the understanding that this
parameter can be changed in order to modify sampling plan performance (e.g.
the OC function, as in Exhibits 3.2 and 5.2).

• Choosing the design parameters of the sampling plan (Chapter 5): a template
such as the SPRT, and all its parameters (e.g., for the SPRT, the lower mean, µ0,
and associated risk, α, the upper mean, µ1, and associated risk, β, and minimum
and maximum sample sizes).

Modifying a sample method entails using theory and simulation results to sug-
gest changes in sampling plan parameters which are preferable in their own right or
which may improve performance indicators. Possibly, another template for the
sampling plan may be used.

Determining the performance of a method entails:

• Choosing performance indicators (these may include non-economic measures)
• Conducting field tests to place values on performance indicators (Section 6.4.1)
• Conducting simulation experiments to place values on performance indicators

(Section 6.4.2)

Evaluating the performance of a method entails:

• Consulting, individually or together, with people who represent the knowledge
base capable of judging the usefulness of the proposed decision guide

• Discussing the pros and cons of alternative sampling plans in view of their
design ingredients and performance measures

Following successful completion of phase 2, implementation can proceed. This may
include describing the procedure in bulletins, or by speaking to groups of farmers or
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6.2.1 Proposing or modifying a sampling method (phase 1)

6.2.2 Determining and evaluating the performance of the proposed method (phase 2)

6.2.3 Implementing the decision guide (phase 3)



crop consultants. Often, an intermediary step of demonstrating the utility of the
proposed procedure on a practical scale is needed (similar to a field evaluation).

To complete the cycle successfully, a variety of expertise is needed: 

• for phase 1 – crop protection experience; theoretical and practical knowledge
on sampling

• for phase 2 – mathematical and computer skills; practical experience in the field
• for phase 3 – communication and innovation skills with respect to crop protec-

tion

It should be clear that there are many potential collaboration and linkage
problems in this cycle. In particular, there always tends to be a gap between the two
more research-oriented phases 1 and 2, and the extension to practice, phase 3
(Pedigo, 1995).

This book concentrates on phases 1 and 2. The purpose of all the theory and
simulation tools presented here is to create opportunities and provide simulation
and analysis tools for developing sample methods that are as useful as possible for
pest management.

A useful sampling plan is one in which sample information is obtained quickly and
economically: the plan should be easy to follow, and it should fit within normal
management practice. The sample information should answer questions that the
grower is actually asking and the procedure must be clearly defined in terms of: 
(i) the size of the management unit; (ii) the sample unit; (iii) when and what to
sample; (iv) the sample path in the crop; and (v) the procedure for recording data.

In principle, the size of the management unit should be based on the uniformity of
the required management: the more homogeneous the crop, the larger the manage-
ment unit may be. However, in practice, labour deployment and practicality have
the greatest influence. Risk also plays a role, as do external pressures from society.
These aspects are illustrated in the following exhibit.
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6.3 Design Ingredients of Sampling Plans that Affect Usefulness

6.3.1 The size of the management unit

Exhibit 6.1. Modernizing the management of fire blight disease in Dutch flower
bulbs

Until recently, Dutch flower bulb growers used routine spraying of fungicides as the
main strategy for combatting fire blight disease, caused by Botrytis spp., in flower
bulb crops. These crops (e.g. lily and tulip) are grown for market and can be worth
more than US$100,000 per hectare. The bulbs are thus very valuable and worth
protecting at almost any cost. Another important threat to the crop is the spread of



There are several take-home messages here. One is that the growers’ evalua-
tion of the usefulness of sampling plans and other decision tools depends heavily on
their perceived risks and management constraints, and on the pressures and
demands from the world around. The size of the management unit varies according
to these internal and external objectives and constraints. Another message is that
multiple pests are important.

Statistical and practical considerations both play a role in the definition of the
sample unit, and there may be a trade-off between them. The precision of sample
estimates is generally greater if many small sample units are collected, rather than a
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viruses by aphids. Regular spraying with either pesticides or mineral oils (which
affect virus transmission), or a combination of these, is practised to limit virus
spread. Because growers need to control virus spread, and botrytis is a continuous
threat to the crop, tank mixing of aphicides and fungicides has become standard
practice. Spraying has tended to be done on a calendar basis with large manage-
ment units. From a labour standpoint, this is economical, but from the perspective
of trying to limit pesticide usage it is not beneficial. What options are there for lim-
iting fungicide usage?

It was recently rediscovered that some cultivars are hardly or not at all suscep-
tible to botrytis and require very few, if any, treatments. Farmers who had never
grown flower bulbs without an umbrella of pesticides in the past 20 or more years
were unaware of this fact. The situation is currently being improved as disease
warning systems are being developed and farmers are becoming more aware of dif-
ferences between varieties in disease susceptibility (van den Ende et al., 2000) and
more sensitive to environmental issues (Rossing et al., 1997). A consequence of this
may be a reduction in the size of the management unit. In order to reduce their
input of unneeded pesticides, growers will have to do more fine-tuning. In prin-
ciple, this would save costs, but it would also make their farming operations more
complex. Moreover, growers may perceive a reduction in sprays as risky, especially
in view of the high value of flower bulb crops. Therefore, an economic incentive
may not be enough to pull them over to a less pesticide-reliant management
approach. Regulation by the government may help here, and indeed, in the frame-
work of the Dutch Multi-year Crop Protection Plan (Ministry of Agriculture, Nature
Conservation and Fisheries, 1991), the bulb growers and the government have
reached an agreement on reducing the pesticide input in this sector by about 60%
from the year 1987 to the year 2000. Many European countries have implemented
such policy plans in the late 1980s and early 1990s in order to make agriculture in
the year 2000 more sustainable and socially acceptable (Jansma et al., 1993). Such
policy developments help the adoption of more environment-friendly approaches
which make use of decision tools. A benefit of reducing pesticide inputs may be the
restoration of populations of natural enemies and microbial antagonists, reducing
the need for pesticides in the long term. But it remains to be seen how beneficial
such restoration will be.

6.3.2 The definition of the sample unit



few large units. This is because, within larger units, counts on smaller sub-units are
likely to be correlated. For instance, the probability of finding mildew on a haulm
of wheat is higher when the disease has already been observed on another haulm of
the same plant than when the disease was not observed on that other haulm. This
implies that inspecting another haulm on a plant does not provide quite as much
information as inspecting a haulm on another, distant, plant. The principle of cor-
relation between sub-units within units applies to many different levels: leaves on
stems, stems on plants, plants in clusters and so on. Practicality, however, may sug-
gest that sample units be taken in clusters (i.e. a few plants at a sample location, a
few branches on a tree and so on), because it reduces the travel time between
sample units and may speed sample collection. However, if correlation within clus-
ters is large, the statistical usefulness of extra subsamples within clusters is minimal.
Hence, a compromise is often necessary between the ease of taking only a few large
samples versus obtaining a more representative sample by examining a greater
number of smaller sample units. We deal with this subject more formally in
Chapter 8.

Practical considerations may dictate using a smaller sample unit when a larger
one would provide better information. For example, the larvae of some scarab bee-
tles feed on the roots of turf grass, and sampling these organisms requires digging
soil and sod to count the larvae. On turf plantings such as golf courses it is desirable
to minimize damage to the turf from the actual sampling. Thus, while a better pic-
ture of scarab larval densities might be obtained by examining a 30 cm × 30 cm
area of turf, this would result in excessive damage. Instead, a circle of turf 12 cm in
diameter is examined (Dalthorp et al., 1999).

Sampling should be done when pests are readily observed and controlled, when
observable indicators of injury are good predictors of damage and when damage is
still (largely) preventable. Often, the time of sampling insects can be based on the
development of the crop, as herbivorous insects are frequently synchronized with
their host plants. It is important to choose the moment of sampling carefully. If
sampling is done too early, the presence of damaging pest populations may not be
noticed or might be underestimated, whereas if sampling is too late, the target stage
may no longer be present or damage may no longer be preventable. In addition to
crop stage, temperature sums, regional warnings or pheromone catches of adult
flying insects can be used to trigger the need for sampling. 

It is important that the proposed decision guide should be robust to errors in
the timing of sampling, because it may not be possible to predict precisely when the
sample should be taken. For example, the spotted tentiform leafminer
(Phyllonorycter blancardella) is a pest in apple orchards whose phenology cannot be
precisely predicted using temperature summations. To deal with this problem, a
decision guide was proposed which called for sampling on more than one occasion
(Schmaedick and Nyrop, 1995), making use of a procedure called ‘cascaded
sequential sampling’ (described in Chapter 11). The robustness of sampling plans
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6.3.3 When and what to sample



to variations in the timing of the sample may also be enhanced by clever choice of
the measurement variable. For instance, signs of feeding damage or ‘frass’ are some-
times more reliable indicators of pest presence than the pest themselves, which
may be hiding, or in a stage that is difficult to find.

When developing a decision guide, it is obvious that the pest will be sampled.
An important question is whether natural enemies should also be sampled. There
are good reasons for including natural enemies: if we were to use sample-based
knowledge about natural enemy abundance, we might be able to predict the future
dynamics of pest populations. This might save pesticide applications by raising
thresholds if natural enemies are present in sufficient densities (Brown, 1997).
Refraining from pesticides if natural enemies are abundant might also conserve nat-
ural enemy populations, with a view to the evolution of a cropping system that
would not be reliant on using corrective tactics as much.

Very few practical plans have been worked out on the principle of sampling
pests and their natural enemies (Croft and Nelson, 1972; Nyrop, 1988; Baillod et
al., 1989) and adoption in practice has been low. The principal reason for this must
be the multiplication of work that goes with expanding sampling plans to include
natural enemies in addition to pests, and at the same time requiring a great deal of
biological knowledge on the part of the grower or pest management practitioner. It
might, however, be argued that the latter is an advantage rather than a disadvan-
tage, as sociologists have found that learning is one of the prime ‘qualities’ of deci-
sion support systems (Leeuwis, 1993).

In theory, samples have to be taken at random, because only then can one be
assured that the mathematical expectation (Section 2.2) of the sample estimate is
equal to the true value: in other words, that the estimate is truly representative of
the whole management unit. In practice, sample units are always collected in a
pseudo-random way, usually by specifying an approximate V- or W-shaped path to
be followed through the crop. Samples are taken at (ir)regular intervals along the
path in such a way that broad coverage of the management unit is obtained. This
approach is generally deemed to be adequate; possible errors have been investigated
in some instances and found to be acceptable or insignificant (see, e.g. Legg et al.,
1985). Care must still be exercised to ensure that bias does not creep into the selec-
tion of sample units while traversing the sample path. Ways to avoid such bias have
been discussed in Chapter 2.

Data may be recorded into charts, forms or computer software. Charts and forms,
on which users can log and evaluate their observations, are universally used.
Ideally, the advised management action (e.g. a stop boundary) should appear as a
natural consequence of the sample information as it is recorded. It is also helpful to
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6.3.4 The sample path in the crop

6.3.5 Procedures for recording data



present the decision guide as a graphic and to include numerical values with the
graphic. This is illustrated in Fig. 6.1. The benefit of a graphic is that it helps users
to understand the logic of what they are doing during sampling. The benefit of
including numerical values for stop boundaries is that interpolation is simplified.

In the previous sections a lot of emphasis has been put on meeting practitioners’
needs when developing decision guides. This might suggest that development of
decision guides is predominantly a customer satisfaction enterprise, in which devel-
opers of decision tools should develop what practitioners like to use. We do not
intend to give this impression. There is a large body of knowledge about pest sam-
pling that can be put to good use by smart designers who take account of the man-
agement objectives of practitioners, and who have the insight and tools to create
decision guides suited to specific needs. The simulation tools presented in previous
chapters allow a smart designer to develop sampling plans that may be unfamiliar
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6.4 Evaluation by Users, Field Tests and Simulation

Fig. 6.1. Stop boundaries for classifying European red mite densities into one of three
categories: greater than the action threshold (treat), less than the action threshold and
requiring resampling in 7–10 days (sample in 7 days), and much less than the action
threshold, with sampling not needed again for 14–20 days (sample in 14 days). The
numbers are the actual stop boundary values (from Breth and Nyrop, 1998).



to the client, but which provide satisfactory management advice (as described in
the OC function), and yet keep the sampling effort at as low a level as possible (as
described by the ASN function). In a fruitful collaboration, practitioners will ask
questions and developers will provide answers, as well as the other way round. This
produces a continuous cooperative evaluation process in which all participants
learn and teach.

What, if any, is the role of field experiments in the evaluation process? One reason
why field tests can be viewed as indispensable is that the models used to represent
sample observations may be inadequate and may not cover the full variability of
real systems. If this were the case, estimates of OC and ASN functions calculated
by the tools described in previous chapters would not be representative of what
happens in the real world. However, this should not be a critical concern, because
OC and ASN functions are relatively robust to departures from the models used to
represent sample observations (Nyrop et al., 1999). Therefore, field experiments are
not essential for estimating OC and ASN functions. This is indeed fortunate,
because field experiments cannot realistically be used to estimate OC and ASN
functions directly. This is because in order to estimate a point on the OC and ASN
functions, the sampling plan must be applied many times to populations with the
same or similar means, and this process must be repeated over a range of means.
This would be extremely difficult, if not impossible, to accomplish in the field. As
an aside, we note that field data can be used in a simulation context to estimate
OC and ASN functions; we will return to this in Chapter 9.

While field experiments can generally not be used to estimate OC and ASN
functions, they do serve three important roles in the development and evaluation
of crop protection decision guides. First, they can provide real-world estimates of
the actual time and resources required to obtain sample information. Second, they
can alert developers to possible erroneous assumptions or factors that they may
have overlooked in the development process. These assumptions or factors are not
related to the distribution of the sample observations, but to the timing of sampling
during the day, the selection of sample units and other types of bias that may influ-
ence the sample counts. Finally, field experiments can serve to demonstrate to prac-
titioners the usefulness of the decision guide.

The simplest way to test a guide using a field experiment is to apply the sample
protocol at a site and follow it immediately with validation sampling, to provide a
precise and accurate estimate of pest density or incidence. If the influence of pest
phenology on sample outcome is being evaluated, the timing of the validation sam-
pling must be carefully considered. By comparing the results from the decision
guide with the validation estimate, one can determine whether the guide provided
the correct advice. The decision guide might also be used by several testers at the
same site to provide information on possible observer bias. Another possibility is to
test the sampling plan over a short period of time during which the actual pest
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density does not change, but the conditions (e.g. light, wind and temperature)
under which the sampling plan is used do change.

We have stated that OC and ASN functions are relatively robust to variability in
the models used to represent sample observations. Given this robustness, we
believe that a viable strategy for developing sampling methods for a new crop–pest
system is to guess the parameters used to describe the distribution of sample counts
on the basis of similar crop–pest systems, and perform a sensitivity analysis (see, e.g.
Exhibits 5.1–5.3) to see whether the performance of a pest-control decision guide
would be sensitive to any differences in parameter values in the plausible range
(Nyrop et al., 1999). This is not a novel insight. Green (1970) and Jones (1990)
came to similar conclusions, although from the perspective of estimating abun-
dance rather than from the view of sampling for decision-making. Elliott et al.
(1994) also suggested that generic models of sampling distributions might suffice
for developing sampling plans for pests of wheat and rice. From the perspective of
sampling for decision-making, we think an even stronger case can be made for the
use of generic models of sampling distributions.

Based on work described in the literature and the examples provided thus far
in this book, we make three recommendations for developing sampling plans for
use in pest management decision-making. 

Ideally, the first step is to obtain a good estimate of the critical density or critical
proportion (cd or cp). Of course, this may not be possible, and it is often the case
that using some value for this parameter, even though not the theoretically correct
value, would markedly improve pest management decision-making, compared to cal-
endar- or phenology-based tactics. It is then important to recognize the vagueness
of cd or cp, and to understand that precise information about pest abundance pro-
vides a false sense of security. In such cases, reductions in decision errors will come
from improved knowledge of cp or cd, rather than from increasing the precision of
the sample information.

The second recommendation is that when developing sampling plans, one should
start by determining what is known about the sampling distribution, use this infor-
mation to develop a sampling plan, and then perform a sensitivity analysis to deter-
mine if further refinement of this information is warranted. When nothing is
known about the sampling distribution for a particular pest, sampling distribution
models might be grouped for similar taxa on similar crops (e.g. aphids on small
grains, or disease incidence on perennial fruit crops). This hypothesis is easily
tested using simulation.
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6.4.2.2 Sensitivity with respect to sampling distribution

6.4.2 Simulation, sensitivity and robustness

6.4.2.1 Critical density



The third recommendation is that sample size should first be based on the require-
ment that the sample information should be representative. This means that the
sample information must be a good indicator of pest abundance or incidence in the
management unit. Sample information may not be representative if sample obser-
vations are not collected from throughout the sample universe, which can happen
when very few samples are taken. Therefore, when using sequential sampling, a rea-
sonable minimum sample size and sample path need to be defined.

A final important evaluation question to answer is whether collection of the
sample information leads to reduced pest control costs. This is addressed in the
next section.

What is the value of using decision guide sampling to recommend a management
action, as against always intervening, or as against always leaving nature to take its
course? At one extreme, farmers whose crops rarely have pest problems might feel
that spending time and money collecting samples to tell them mostly what they
already know (don’t intervene) would be wasteful. At the other extreme, farmers
whose crops nearly always require treatment might feel the same – and continue to
treat. For these two extremes, and between them, we can calculate the long-term
economic value of decision guide sampling. The results provide a comprehensive
economic scale for comparing decision guides.

The economic value of the sample information used to guide pest management
decision-making is the reduction in pest control costs that can be attributed to
basing management decisions on the sample data. While it is desirable that pest
control costs be reduced as a result of using the sample information, a sampling
plan with a negative economic gain may still be worthwhile if it carries other bene-
fits, such as reduced pesticide inputs (Nyrop et al., 1989). We use the approach for
quantifying the economic benefit of sampling proposed by Nyrop et al. (1986),
which is rooted in economic decision theory.

To quantify the economic benefit, we require more detailed information about
the context in which decisions are made than is needed to estimate OC and ASN
functions, although these functions are still used in the analysis. First, we need a
quantitative relationship between pest density, µ, and monetary loss when no con-
trol is used, L(µ). In theory, such a relationship is used to provide an initial esti-
mate of the critical density (see Chapter 1), but a provisional critical density can
be formulated when the pest–loss relationship is rather poorly defined. Second, we
need to know the likelihood of encountering each pest density within the range of
possible densities. A probability distribution function is used to model this informa-
tion. Because it provides the likelihood of any pest density before a sample is taken,
it is called the prior distribution, P(µ), of the pest density, µ. Another way of look-
ing at this prior distribution is to think of it as a long-term frequency of occurrence
for each pest density. 
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6.4.2.3 Size and representativeness of sample

6.5 The Economic Value of Sample Information



The value of the sample information is determined as the difference between
the pest control costs incurred when using the best control strategy not based on
sample information, and the pest control costs when decision strategies are based
on sample information. 

The first step is to determine the best control strategy when decision guide sam-
pling is not used. We compare two strategies (more than two could be considered,
but the essentials are the same). The first strategy is a laissez faire approach, which is
to always do nothing (Decision 0), and the second is an always control approach
(Decision 1). 

The best strategy to use when no sample information is collected is the one
with the lowest expected costs, where the expectation is taken with respect to the
prior pest density. For each pest density, the cost of damage is multiplied by the
likelihood of the density. These products are then summed to produce the expected
cost.

The total cost for doing nothing (not treating, Decision 0) is calculated as fol-
lows:

Cost(0) = ΣP(µ)L(µ) (6.1)

where P(µ) is the prior probability that models the likelihood of pest density µ and
L(µ) is the loss (e.g. the reduction in crop value) due to pest density µ. Note that
L(µ) is expressed on a per management unit basis, such as per hectare or per acre.
The total cost for always treating (Decision 1) is as follows:

Cost(1) = ΣP(µ)L(µ(1 � ControlEffect)) + ControlCost (6.2)

where ControlEffect is the effectiveness of the control treatment as measured by the
proportion of the pest population removed by the treatment (ControlEffect neces-
sarily lies between 0 and 1), and ControlCost is the cost of treatment on a per unit
basis. The smaller of these two (Equations 6.1 and 6.2) is the minimum total cost
due to pest damage and pest control (without sampling). The best strategy to adopt
when not sampling is that which minimizes total cost:

MinimumTotalCostWithoutSampling = Min(Cost(0),Cost(1)) (6.3)

If Cost(0) = Cost(1), we choose Cost(0).
These equations confirm what we would intuitively reason, when we have esti-

mates for P(µ) and L(µ). If the pest density is regularly less than the critical density,
then the best strategy without sampling is to do nothing. This pattern of pest abun-
dance would be reflected by a prior distribution in which the likelihoods for densi-
ties less than the critical density are greater than the likelihoods for densities
greater than the critical density. Conversely, when the pest density is regularly
greater than the critical density, the best strategy without sampling is always to
treat. It follows that sampling can be advantageous only in situations in which it is
not certain a priori whether the density is above or below the critical density.
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6.5.1 Best control strategy with no sampling



When sampling is used, intervene or not-intervene decisions depend on the pest
density, µ, as specified by the operating characteristic function, OC(µ) (the proba-
bility of deciding on action 0: do nothing). The costs which are incurred for non-
intervention and intervention when a decision is based on sampling are as follows:

Classification Cost

No intervention Cni = �P(µ)OC(µ)L(µ)
Intervention Ci = �P(µ)(1 � OC(µ)){L(µ(1 � ControlEffect)) + ControlCost}

Therefore

TotalCostWithSampling = Cni + Ci (6.4)

The (economic) value of sampling is the difference between TotalCostWithSampling
(Equation 6.4) and MinimumTotalCostWithoutSampling (Equation 6.3):

ValueOfSampling =
TotalCostWithSampling � MinimumTotalCostWithoutSampling (6.5)

But sampling is not free. The cost of sampling includes a fixed cost and a variable
cost per sample unit. The variable cost can be estimated from the ASN function of
the sampling plan, so

TotalCostOfSampling =
FixedCostOfSampling + �P(µ)ASN(µ)CostPerSampleUnit (6.6)

The net value of sampling is the difference between the ValueOfSampling (Equation
6.5) and the TotalCostOfSampling (Equation 6.6):

NetValueOfSampling = ValueOfSampling � TotalCostOfSampling (6.7)

A final quantification which can provide insight about the decision guide is
the expected frequency of intervention:

ExpectedFrequencyOfIntervention = �P(µ)(1 � OC(µ)) (6.8)

This can be related to the frequency of intervention for the best strategy with-
out sampling, namely 1 if Cost(0) > Cost(1) and 0 otherwise, as a change in treat-
ment frequency (from 0 or 1, as appropriate):

if Cost(0) ≤ Cost(1)
ChangeInTreatmentFrequency = ExpectedFrequencyOfIntervention

(6.9)

if Cost(0) > Cost(1)
ChangeInTreatmentFrequency = ExpectedFrequencyOfIntervention � 1

We have presented all of these computations as discrete summations even
though pest density is continuous. We use discrete equations because it simplifies
computations on a computer and, for those not currently familiar with calculus,
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6.5.2 Calculating the value of sample information



they are easier to visualize. Use of discrete representations in lieu of continuous
ones will not introduce large errors provided that the interval between discrete
values is not too large.

How should these concepts be used to satisfy the needs of farmers? Farmers show a
variety of styles characterized by values, interests, objectives, preferences, inclina-
tions and constraints (Van der Ploeg, 1990). Some farmers may make a purely eco-
nomic evaluation and choose the management tactic that gives the best net gain.
However, it is strongly in the farmers’ interests to use integrated management and
reduce pesticide inputs. Hence, they may be willing to accept a negative net gain
(in monetary terms) because of benefits that may be attributed to reduced pesticide
inputs (Section 6.2). It is also possible that the best strategy to choose when no
sample information is collected is never to treat, which leads to the value of the
sample information being zero or even negative. Even then, farmers may still
choose to sample because, while the expected net value of the sample information
is on average zero or negative, sample information may alert them to relatively rare
but catastrophic events where the pest density is unexpectedly high. We illustrate
these concepts with an example.
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6.5.3 The value of sample information in practice

Exhibit 6.2. The value of sampling for lepidoptera larvae infesting sweetcorn

Three lepidopterous insects infest sweetcorn grown in New York State: European
corn borer (Ostrinia nubilalis), fall armyworm (Spodoptera frugiperda) and corn ear-
worm (Helicoverpa zea). These pests may feed throughout the plant and render the
ears unmarketable. The first of these pests is indigenous to the northeastern United
States, while the latter two are migratory. Hoffman et al. (1996) determined that the
sampling distribution of plants infested with these caterpillars could be described
by a beta-binomial distribution (see Exhibit 5.3). Prior to the whorl stage of crop
growth, a cp of 0.3 is recommended to schedule control; after this stage (the tassel
and silk stages) the critical proportion should be decreased to 0.15. Here we scruti-
nize the value of sample information collected after the whorl stage. Because in this
exhibit we are dealing with incidences and critical proportions, we replace µ in the
above formulae by a more generic symbol, θ.

Loss, L(θ) A pest–loss relationship was determined from data provided by Riggs et
al. (1998), in which several treatment thresholds were tested. On the basis of their
data, we estimated a linear relationship through zero, between the last estimate of
the proportion of infested plants (θ) and the proportion of infested ears at harvest.
The relationship has a slope equal to 0.43 (intercept = 0). In using this relationship,
we assume that the incidence rate estimated at any time during the silk stage of
crop growth will remain constant until the end of the sampling period. This is
unlikely, but we lack the information needed to describe changes in the incidence
rate over time. The remaining parameters for the cost functions were obtained from
Nyrop and Binns (1991), with some adjustments for inflation. We used 17,500 ears
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of maize per acre as a yield estimate and each ear was valued at US$0.02 (so the
value, V, of the crop per acre is 17,500 × 0.02 dollars per acre). The damage per
infested plant is derived from the above regression: D = 0.43. The cost of insecti-
cide treatment, C, was set to US$15 per acre with an effectiveness, K, equal to 0.75
(or 75%). Based on the above, the loss without control for plant infestation equal to
θ is defined by the equation:

L(θ) = V D θ = (17,500 × 0.02)0.43θ = 150.5θ US$/acre

and the loss with control (i.e. with θ reduced to θ(1 � K) and the addition of C) is

L(θ(1 � K)) = C + V D θ (1 � K) = 15 + 37.60θ US$/acre

The economic injury level, EIL, is where these two losses intersect; that is at θ
= 0.13 (Fig. 6.2). Because the loss function L(θ) is linear, EIL can also be calculated
using Equation 1.1. The value (θ = 0.13) is close to the treatment threshold recom-
mended by Riggs et al. (1998), although their treatment threshold was based on a
lack of measurable crop damage rather than economic criteria.

Prior distributions, P(θ) Three prior distributions were used to model the likeli-
hood of an incidence rate (Fig. 6.3). We assumed initially that pest incidences
would never be greater than 0.4. The first prior distribution (uniform prior) mod-
elled each incidence rate within the range 0.0–0.4 as equally likely. This range was
based on the range of incidences after the whorl stage as reported by Riggs et al.
(1998) (the actually estimated range was from 0.01 to 0.42). The remaining two
priors were based on the frequency with which classes of incidence rates occurred
in the Riggs et al. (1998) study. Two groups of incidence rates were used: the first
applied to fields that had been treated with an insecticide before the silk stage and

0               0.1               0.2             0.3             0.4

60

40

20

0

C
os

t

Proportion of infested plants

Fig. 6.2. Costs per acre (in US$) with (- – -) and without (___) control of
lepidoptera infesting maize. The filled circle corresponds to the economic injury
level.
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the second to fields that had not been treated. In the first group incidences were
much lower (the low-incidence prior) than in the second (the high-incidence prior).
To quantify the prior distributions, we created five incidence classes (0–0.05,
0.05–0.1, 0.1–0.15, 0.15–0.2 and 0.2–0.4) and calculated the frequency with
which incidence rates fell into them.

For the uniform prior distribution (all incidences equally likely), the best strat-
egy in the absence of sampling is always to treat, because this minimizes total costs
(Equations 6.1 and 6.2). The same is true when higher incidence rates are more
likely (high-incidence prior). When low incidence rates are most likely (low-inci-
dence prior), the best strategy is never to treat.

We used these values for L(θ) and P(θ) to study three questions:

1. Is the net value of sampling positive and, if so, how much sampling should be
done?
2. What is the effect of shortening the range of incidences for the prior distribu-
tions?
3. What is the effect of different pest–loss models?

The net value of sampling The value of sample information was determined for
fixed sample sizes of 25, 50 and 100 plants, sampling groups of five plants at each
location in a field. The density was classified with respect to cp = 0.13. The OC
functions were estimated using a beta-binomial distribution (Section 4.10), and the
results are shown in Fig. 6.4. The value of the sample information (Equation 6.5)
and its net value (Equation 6.7) for each sampling plan and prior distribution are
displayed in Fig. 6.5. The summations in these equations used an increment of 0.01
between levels of incidence. The value of sample information is positive for each
prior distribution and each sample size, although it is much lower for the high-inci-
dence prior. 

Fig. 6.3. Prior distributions used to model the likelihood of the proportion of
maize plants infested by lepidoptera larvae; uniform infestation (___), low
infestation ( … ) and high infestation (- – -).
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Fig. 6.4. OC functions for sampling plans with fixed sample sizes of 25 (___), 
50 ( … ) and 100 (- – -), used to classify the proportion of infested plants with
respect to a critical proportion of 0.13. The OC functions were estimated using a
beta-binomial distribution with R = 5 and ρ = 0.1.

Fig. 6.5. The value (a) and net value (b) in US$ per acre of sample information
used to classify the proportion of infested maize plants with respect to a critical
proportion of 0.13. Prior distribution 1 is the uniform model, distribution 2 is the
low-infestation model and distribution 3 is the high-infestation model. The
sampling plans consisted of 25, 50 or 100 samples and are nested within the prior
distributions.

Continued
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For the high-incidence prior distribution, the value of the sample information is
increased by reducing pesticide applications, because without sampling, the best
strategy is always to treat. However, with the high-incidence prior, densities less
than the critical proportion occur infrequently, so there is little chance to realize
savings by not applying a pesticide. For the uniform and low-incidence prior distri-
butions, the value of the sample information is about the same. This similarity
occurs by chance alone. With the uniform prior, the value of the sample informa-
tion accrues through savings in pesticide applications, whereas with the low-inci-
dence prior, the value in the sample information accrues because sampling
prevents loss when there are high rates of incidence. For each prior distribution the
value of the sample information increased (slightly) with increasing sample size, but
the net value of the sample information decreased with increasing sample size, sig-
nalling that the increased precision obtained when more samples were taken was
not economically justified (Fig. 6.5b). The net value of the sample information was
positive for the uniform and low-incidence priors, but was always negative for the
high-incidence prior.

An obvious question is whether sequential sampling can be used to improve
the net value of the sample information. To study this, we constructed a sequential
sampling plan using Iwao stop boundaries with cp = 0.13, α = 0.1, minimum
sample size equal to 25, maximum sample size equal to 60, cluster size R = 5 and
intra-cluster correlation coefficient ρ = 0.1. The maximum sample size was chosen
to make the maximum ASN value approximately 50. The value of the sample infor-
mation obtained using this plan was compared to those for fixed sample sizes of 25
and 50. OC and ASN functions for the three sampling plans are shown in Fig. 6.6.
The original three prior distributions were used in the calculations and the resulting
value and net value of the sample information for each prior and sampling plan are
shown in Fig. 6.7. These graphs show that the sequential plan has both the greatest

Fig. 6.6. OC (a) and ASN (b) functions for a fixed sample size plan (n = 25[___], n
= 50 [ … ]), and an Iwao sequential plan (- – -) used to classify the proportion of
infested plants with respect to a critical proportion of 0.13. The OC functions were
estimated using a beta-binomial distribution with R = 5 and ρ = 0.1. For the
sequential plan, α = 0.1, the minimum sample size was 25 and the maximum
sample size was 60.
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value and the greatest net value of all plans, although differences among sampling
plans are small.

Shortening the range of the prior distributions It is already apparent that the prior
distribution strongly influences the value of the sample information. We have
demonstrated this by using priors with different shapes. Does the possible range of
pest incidences have an equally large effect? The data that we have used to estimate
the prior distributions suggest that very low (< 0.05) and very high (> 0.3) incidence
rates are uncommon. Therefore, we made calculations using prior distributions
incorporating these restrictions and using the sequential plan described above. The
adjusted prior distributions restrict incidences to between 0.05 and 0.3 (Fig. 6.8).
Restricting the range of pest abundance reduced the value and net value of the
sample information (Table 6.1).

At the original limits of pest abundance, the sample information almost cer-
tainly leads to a correct decision, and this decision contributes to the value of the
sample information. However, this contribution is lessened when these extreme
incidences are eliminated. If the best strategy without sampling is always to treat
(uniform and high-incidence priors), then at the lower limit of pest abundance the
sample information leads to reduced costs by eliminating unnecessary pesticide
applications. With the reduced lower range of possible pest incidences, the magni-
tudes of these cost reductions are lessened. On the other hand, if the best pest con-
trol strategy without sampling is never to treat (low-incidence prior), at the upper
limit of pest incidence the sample information leads to reduced costs by calling for
a pesticide application and thereby reducing pest damage. With the reduced upper 
range of pest abundance, the magnitude of these savings is also reduced. Note that 

Continued

Fig. 6.7. The value (a) and net value (b) in US$ per acre of sample information
used to classify the proportion of infested maize plants with respect to a critical
proportion of 0.13. Prior distribution 1 is the uniform model, distribution 2 is the
low-infestation model and distribution 3 is the high-infestation model. The
sampling plans consisted of 25 (1) or 50 (2) samples, or a sequential stop
boundary (3), as for Fig. 6.6.
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Table 6.1. The influence of the range of prior distributionsa on the value of sample
information for lepidoptera larvae infesting sweetcorn. Sampling: Iwao sequential
classification with cp = 0.13, α = 0.1, minimum sample size = 25, maximum sample size =
60. Simulation: beta-binomial distribution, R (cluster size) = 5 and ρ = 0.1.

Uniform infestation Low infestation High infestation

Full Restricted Full Restricted Full Restricted 
rangeb rangec range range range range

Best action without Always Always Never Never Always Always 
samplingd treat treat treat treat treat treat

Value of samplinge 2.47 1.47 2.57 1.77 0.38 0.01

Net value of samplingf 1.23 0.20 1.32 0.50 �0.86 �1.23

Change in treatment 
frequencyg �0.34 �0.37 0.25 0.32 �0.12 �0.10

a Refers to prior distributions in Fig. 6.2.
b 0.0–0.4.
c 0.05–0.3.
d Equations 6.1–6.3.
e Equation 6.5.
f Equation 6.7.
g Equation 6.9. A negative value represents a reduction in pesticide applications and a
positive value an increase.

Fig. 6.8. Prior distributions with restricted ranges used to model the likelihood of
the proportion of maize plants infested by lepidoptera larvae; uniform infestation
(___), low infestation ( … ) and high infestation (- – -).
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in both cases the change in frequency of treatment is not greatly influenced by the
reduced range in the prior distributions. This is because both very low and very
high incidence rates are eliminated from the priors. These are the reasons why, in
this example, the range of pest abundance used in the prior distributions plays a rel-
atively large role in determining the value of sample information.

Different pest–loss models The third question posed was what is the effect of dif-
ferent pest–loss models on the value of the sample information? This is an important
question, because pest–loss relationships are almost never known precisely. To
study this, we set up three loss functions with slopes equal to 100, 150.5 (the calcu-
lated value) and 200, and recalculated the EIL for each (0.2, 0.13 and 0.1, respec-
tively). Using the original prior distributions and sequential sampling (Iwao, as
before) with critical proportions equal to the EILs, we obtained the results shown in
Table 6.2.

Continued

Table 6.2. The influence of the slope of the pest–loss model on the value of sample
information for lepidoptera infesting sweetcorn. Sampling: Iwao sequential classification with
cp = 0.13, α = 0.1, minimum sample size = 25, maximum sample size = 60. Simulation:
beta-binomial distribution, R (cluster size) = 5 and ρ = 0.1.

Prior distributiona

Uniform infestation Low infestation High infestation

Slope of pest–loss modelb

200 150.5 100 200 150.5 100 200 150.5 100

Critical 0.1 0.13 0.2 0.1 0.13 0.2 0.1 0.13 0.2
proportionc

Best action AT AT AT NT NT NT AT AT AT
without samplingd

Value of samplinge 1.87 2.49 3.73 5.00 2.57 0.88 0.16 0.40 1.15

Net value of 0.63 1.24 2.48 3.78 1.32 �0.35 �1.07 �0.84 �0.13
samplingf

Change in �0.26 �0.34 �0.50 0.38 0.25 0.125 �0.06 �0.12 �0.30
treatment 
frequencyg

a Refers to prior distributions in Fig. 6.2.
b Refers to the slope of the solid line in Fig. 6.2.
c Equal to the EIL.
d AT = always treat, NT = never treat. Equations 6.1–6.3.
e Equation 6.5.
f Equation 6.7.
g Equation 6.9. A negative value represents a reduction in pesticide applications and a
positive value an increase.



The bottom line of the calculations in this exhibit is that, when the value of
sampling is to be evaluated, one needs to have information about the pest densities
that may occur. Without an insight into this, it is not possible to make an evalua-
tion. Given the large number of sampling plans and decision guides that have been
developed over the past 30 years, the number of studies that have looked at the
value of sample information is very small. This is unfortunate, because important
insights might be gained from doing these analyses, both in successful and in
unsuccessful systems. We can suggest reasons why there are so few studies: the
required information, such as crop loss and expected pest abundance, is not easy to
obtain; the value of sample information is likely to turn out to be small, and there
is an assumption that such a result is difficult to publish; studies at higher integra-
tion levels are less attractive, because the publication climate favours reductionist
rather than integrative studies.

Although the relationships that are required to do the analysis may not be well
defined, the ability to do the computations quickly on a computer allows a quick
sensitivity analysis of the major assumptions made for decision sampling. These
assumptions are made regardless of whether decision theory analysis (as outlined
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The best action to take when no sample information is collected did not
change with the different loss models, although the expected costs for the two
strategies (always treat, never treat) did change (data not shown). For the uniform
and high-incidence prior distributions, the lower slope (100) for the pest–loss
model (increased economic injury level, 0.2) resulted in an increased value of the
sample information, while the converse was true for the higher slope. This occurred
because with the increased economic injury level (and critical proportion for the
sampling plan), there was a greater likelihood that densities less than the critical
proportion would occur and, concordantly, an increased savings in pesticide appli-
cations. These reductions in control treatments, which are also quantified as change
in frequency of treatment applications (Table 6.2), led to an increased value of the
sample information. For the low-incidence prior, the opposite pattern occurred: an
increased economic injury level led to a decrease in the value of the sample infor-
mation. This occurred because, for this prior distribution, the value of the sample
information was based on making pesticide applications when needed, and the
best action to take when no sample information was collected was never to treat.
However, with a higher economic injury level, treatment becomes less necessary,
so there is reduced value in the sample information. This is again reflected in the
change in frequency of treatment applications.
Summary Overall, sampling to determine the need for control is probably eco-
nomically justified when the uniform or low-incidence prior, or any prior that spans
the range between these two, applies. In contrast, sampling is probably not eco-
nomically justified when the high-incidence prior is applicable. This means that
when a corn field has not been treated before the tassel stage, it should probably
always be treated in the silk stage. These recommendations are valid for data fol-
lowing the pattern of incidence as reported by Riggs et al. (1998). Under different
conditions, the recommendations could change.



here) is conducted. It therefore seems worthwhile to study the possible conse-
quences of such assumptions, given the possible economic and ecological conse-
quences.

Thus far in this book, we have emphasized the quantitative evaluation of sampling
plans used for pest management decision-making and, especially, using the OC and
ASN functions for this purpose. These quantitative evaluations are essential, and
in this chapter we have extended these evaluations to include the economic value
of the sample information. Qualitative evaluation of the sampling plans is equally
important. Practicality, simplicity, reliability, representativeness and relevance are
key considerations when developing and evaluating a sampling plan. In the devel-
opmental process, it is important that users and developers engage in a collabora-
tive effort. While it will often be the case that insufficient information is available
to estimate the value of sample information with great confidence, these valuations
are still useful, because they force assumptions to be explicitly stated.
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In Chapter 4, we noted that sometimes, with disease assessment, the only informa-
tion that could readily be obtained from a sample unit was whether the unit did or
did not display disease symptoms. We recognized that trying to get more informa-
tion from the sample unit, such as the severity of the infestation, might not be
worth the effort. Under these circumstances, it is natural to use a critical propor-
tion (cp) as the criterion for decision-making, instead of a critical density (cd), and
to use the binomial (or beta-binomial) distribution for setting up sample plans, as
in Chapter 5.

An infestation by whatever kind of pest can be recognized in binomial terms.
A sample unit can be regarded as ‘infested’ if it contains any pests at all, and the
severity of the infestation (i.e. how many individual pests are present) can be
ignored. The only sample information collected is the mean proportion of infested
sample units. If the critical density, estimated following the principles noted in
Chapter 1, can be related to a critical proportion, then such a ‘presence–absence’
binomial sample plan can be used as a decision guide. Because it takes more effort
to count all the pests on a sample unit than to note merely whether any pests are
present, a binomial count plan incurs fewer sample costs than does a traditional full
count plan. However, less sample work equals less sample information. Before rec-
ommending a binomial sample plan, it is necessary to discover whether the infor-
mation loss is more than balanced by the savings in sample costs.

In this chapter, we show how to construct presence–absence binomial count
sample plans and other more general binomial plans as replacements for full count
plans. Intuition suggests that some information is lost. We show how to assess the
loss of information, and how to ensure that the loss is not critical to pest manage-
ment decision-making. We present types of sample plans which have been found
useful and cost-effective in practice.
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The basic principles of field sampling remain those noted in Section 2.5: represen-
tativeness (no unaccountable bias), reliability (no effect of uncontrolled variables),
relevance (relationship with crop loss) and practicality. Suppose that we have
developed a sample plan in which all individual pests are counted on each sample
unit (what we refer to as a full count sample plan) and that we are satisfied that it fol-
lows the first three of these basic principles, but the fourth presents a problem. We
realize that practitioners are reluctant to use the plan, because the pests are difficult
or tedious to count. Potential users of the full-count sample plan have decided that
the value of the information obtained from this sampling procedure is not worth
the time expenditure. Binomial methods can sometimes be used to make sampling
less tedious and less costly.

The foundation of a binomial sample plan is the mathematical link between
counts and proportions. This link is essential, because it is used to translate sample
information on the proportion of infested sample units into the pest density per
sample unit, the criterion for decision-making. Two types of link exist: one where a
theoretical probability distribution (Chapter 4) can be assumed, and one where no
theoretical distribution can be used to describe sample counts. Both types of link
are described in this chapter, beginning with the link based on a theoretical proba-
bility distribution.

With the Poisson distribution (Section 4.3), the probability of finding at least one
individual on a sample unit when the mean density is µ can be written as

p = Prob(x > 0|µ) = 1 � p(0|µ) = 1 � e�µ (7.1)

If, out of n sample units, r contain at least one pest, then the ratio, r/n, is an esti-
mate of p in the above equation. Rearranging the equation provides an estimate
mbin of µ itself:

(7.2)

What this means is that, without actually counting how many individuals there are
in each sample unit, we still have an estimate of the mean density per sample unit.
The potential savings in sampling time can be very great, depending on how hard
it is to count the pests or assess pest severity on a sample unit. However, these sav-
ings come with two penalties: an increase in variance and the introduction of bias.

The variance of mbin, var(mbin), can be shown to be approximately (see the
Appendix)
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7.2 What is Binomial Sampling?

7.3 Presence–Absence Binomial Sampling with the Poisson Distribution



(7.3)

which is large when µ is large, or p is small, var(mbin) is always greater than the
variance for a full count sample from a Poisson distribution (µ/n). This can be
shown by using the series expansion of eµ:

(7.4)

We have already noticed that, with full count sampling, the higher the variance,
the flatter is the operating characteristic (OC) curve (see, e.g. Exhibit 2.2). The
increased variance that occurs with binomial sampling has the same effect: the OC
function of a binomial sample plan is flatter than the OC function of the corre-
sponding full count plan.

As an estimate of µ, the mean density per sample unit, mbin, is not only com-
paratively imprecise, but it is also biased. This bias is a result of the underlying
mathematics of the curvilinear relationship between the proportion of infested
sample units and the mean density, and is not due to the way in which sample units
are collected. It can be shown that the bias in mbin is positive and approximately
equal to (see the Appendix)

(7.5)

which, like the variance, is large when µ is large or p is small. Like the variance, the
bias is reduced if sample size, n, is increased. Explicit removal of the bias is possible,
but turns out to be unnecessary for classification sampling, given the tools at our
disposal (see below).

In presence–absence binomial sampling, we use an estimate of Prob(x > 0) to
give us information on the mean, µ. If µ is large, most of the distribution is far from
0 and Prob(x > 0) is close to 1. There is less scope for precision when the only rea-
sonable choice for r/n is 1, or possibly (n � 1)/n. It is not surprising that there are
problems when µ is large (or when p is small). We will discuss this later, in connec-
tion with what we call ‘tally numbers’. Note also that a sample proportion equal to
0 or 1 can raise arithmetic problems. For example, if r = n in Equation (7.2), the
estimate of µ does not exist. In practice, this is avoided by adjusting such data:

Sample proportion r Adjusted r

0 0 δ
1 n n � δ

where δ is a small number between 0 and 1. Naturally, the estimate depends on the
value of δ. However, because we are interested in classification rather than estima-
tion, we do not need to worry about the exact value of δ, provided that small
changes in its value do not change the classification.

bias( )m
n

p
p

e
nbin =̇

−
= −1

2 1
1

2

µ

  
eµ µ µ µ= + + + + …1

1 2 3

2 3

! ! !

  
var( )m

n
p

p
e

nbin =
−

= −1
1

1µ

Binomial Counts 157



The following table summarizes how to set up a presence–absence binomial
plan and simulate its properties:

Full count plan Poisson presence–absence plan

Criterion cd cp = 1 � e�cd

Range of means for simulation µi pi = 1 � e�µ i

Distribution for simulation Poisson Binomial

Setting up a sample plan based on the second column above was discussed in
Chapter 5. Setting up a binomial plan with a given value of cp was also discussed in
Chapter 5. The extra feature here is that cp and the range of values pi depend on cd
and µi. As far as the mechanics of setting up a presence–absence sample plan are
concerned, the only novelty is this relationship between probabilities and means.

When the decision criterion is the level of infestation, or incidence, of a pest, the
only information required from a sample unit is whether or not it is infested.
However, when the decision criterion is a pest density, but we want to take advan-
tage of the simplicity of binomial sampling, we are not tied to a ‘presence–absence’
definition of incidence. Other definitions depend on what we call a tally number,
T. A sample unit is defined as infested if the number of organisms in the sample
unit exceeds T. The presence–absence definition corresponds to T = 0.

There are two reasons why we may wish to increase T: variance and bias. We
noted that the variance and bias of the Poisson presence–absence sample estimate
are large when µ is large. We suggested that this had something to do with an esti-
mate of p giving little information about µ if µ is large. It is obvious from Equations
7.3 and 7.5 that increasing the sample size would reduce both variance and bias,
but it turns out that moving T closer to µ would also reduce them both. Whether
variance or bias is a problem and, if so, which of n and T should be adjusted, must
be assessed on a practical basis by cost comparisons of OC and average sample
number (ASN) functions.

When T > 0, the equation corresponding to Equation 7.1 is

(7.6)

Setting up sample plans for T = 0 and T > 0 is similar:
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7.4 Tally Numbers Other than Zero



Full count plan Poisson binomial plan with T

Criterion cd

Range of means for simulation µi

Distribution for simulation Poisson Binomial

Note that even though cd does not change, a change in T forces a change in cp.
Because of this, we put a suffix on cp to avoid confusion, to give cpT.

Unfortunately, it is now impossible to give a direct formula corresponding to
Equation 7.2 for the binomial estimate of µ, but the calculation is easy with a com-
puter. However, because we are interested in classifying density rather than esti-
mating it, this is not of particular concern. All that is required is that cpT be
calculated and the rest is as for T = 0: the decision made in the field is based on
comparing the sample proportion with cpT. The concepts that we have presented
thus far are illustrated in Exhibit 7.1.
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Exhibit 7.1. Binomial classification sampling with the Poisson distribution

In this example, we demonstrate how the tally number, T, and sample size, n, influ-
ence the OC functions for binomial count sample plans that classify density with
respect to a critical density, cd. The example is based on sampling the potato
leafhopper, Empoasca fabae, which is considered to be one of the most consistently
damaging pests of lucerne in north-central and northeastern United States. The
potato leafhopper feeds by inserting its mouthparts into cells of lucerne stems. This
results in the clogging of phloem tissue, which may lead to reduced plant growth
and plant quality. Leafhopper density is assessed by sweeping a net through the
plants and counting the number of hoppers. Various numbers of sweeps of a net
have been proposed as sample units; an acceptable one is a ten-sweep unit (Shields
and Specker, 1989). Counts of leafhoppers using a ten-sweep sample unit can be
described using a Poisson distribution (Shields and Specker, 1989). Critical densi-
ties for potato leafhopper vary depending on the height of the plants. For plants
greater than 30 cm in height, a proposed cd is two hoppers per sweep, or cd = 20
hoppers per 10 sweeps (Cuperus et al., 1983).

It might be tedious and even difficult to count all the leafhoppers in a net fol-
lowing 10 sweeps, because the net can harbour insects other than the leafhopper
along with plant material. Because the leafhoppers can fly, there is the additional
danger of missing some of the leafhoppers captured in the net. For these reasons,
binomial sampling is an attractive option. Because of the relatively high cd, using T
= 0 is not practical: with a true mean of 10, the proportion of sweep samples
infested with leafhoppers would be nearly 1. Therefore, development of a binomial
count sample plan was begun using T = 10.

Continued
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Initially, three fixed sample size plans with cd = 20 were studied. The first plan
used complete counts with n = 30, the second used binomial counts (T = 10) with n
= 30 and the third used binomial counts (T = 10) with n = 60. The relationship
between p and µ, and the OC functions, are shown in Fig. 7.1. The p–µ relationship
is clearly not ideal, because p is close to one when µ = cd. Due to the positive bias
(estimates are greater than they ‘should’ be), the OC function with n = 30 is notice-
ably shifted to the left – that is, to lower densities – in comparison to the chosen
critical density of 20 hoppers per ten sweeps. However, classification using the
binomial count plan with n = 60 is less biased than when n = 30. It is difficult to see
much effect of the increased sample size on the steepness of the OC function.

Increasing T beyond 10 towards cd should decrease the bias and increase the
precision of the classification. The magnitude of these effects was studied by formu-
lating three further sample plans, each with n = 30: complete counts, binomial with
T = 10 and binomial with T = 20. The p–µ relationships and the OC functions are
shown in Fig. 7.2. With T = 20 the OC functions for the binomial and complete
count sample plans are nearly identical. Note that p is close to 0.5 for µ = 20 when
T = 20. Even though such a high tally number probably requires considerably more
work than T = 10 or T = 0, using T = 20 may still be worthwhile, because it should
be easy to determine if the number of leafhoppers in the net greatly exceeds 20 or
is much less than 20, and more effort might have to be made only when hopper
numbers in the net were in the range 10–30.

Sequential methods can be used with binomial sampling. Sequential binomial
sampling was studied by constructing three SPRT plans: full counts based on the
Poisson distribution (α and β both equal to 0.1), binomial with T = 20 (α and β both
equal to 0.1) and binomial with T = 20 (α and β both equal to 0.05). The OC and
ASN functions for these plans are shown in Fig. 7.3. Both binomial plans required
more sample units than the full count plan, and (as shown in Chapter 5) the use of

Fig. 7.1. The relationship between p and µ for the Poisson distribution (a) when 
T = 10, and OC functions (b) for three sampling plans that classify the density
about cd = 20; complete enumeration and n = 30 (___), binomial counts with 
T = 10 and n = 30 ( … ), and binomial counts with T = 10 and n = 60 (- – -).
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lower values of α and β results in a higher ASN function. However, these increases
in sampling effort had almost no effect on the OC function: there was little differ-
ence among all three OC functions. 

Continued

Fig. 7.2. The relationship between p and µ for the Poisson distribution (a) when 
T = 20 (- – -) and T = 10 ( … ), and OC functions (b) for three sampling plans with
n = 30 that classify the density about cd = 20; complete enumeration (___),
binomial counts with T = 10 ( … ), and binomial counts with T = 20 (- – -).

Fig. 7.3. OC (a) and ASN functions (b) for three sequential sampling plans used to
classify the density with respect to cd = 20. Stop boundaries constructed using the
SPRT. Parameters for each plan are as follows: full count, Poisson distribution, 
µ1 = 22, µ0 = 18, α = β = 0.1, minn = 5, maxn = 50 (___); all parameters the same
except binomial counts used with T = 20 ( … ); all parameters the same except
binomial counts used with T = 20 and α = β = 0.05 (- – -).



We have shown how the tally number, T, influences the OC function for a bino-
mial count sample plan, especially for large cd. Now we provide further insight into
why this occurs. When T = 0, we use the sample data to estimate p = Prob(x > 0).
This estimate is then used to obtain an estimate of the mean, µ, which determines
the management recommendation. If µ is very large and p is close to 1, all or
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As with a fixed sample size plan, T affects the ASN. It does this by determining
the critical proportion cpT and the upper and lower critical proportions used to
construct the stop boundaries. These patterns are illustrated in Fig. 7.4, which pre-
sents OC and ASN functions for three binomial count sample plans. The plans differ
only in T (T = 20, 15 and 12). The OC functions for all three plans are approxi-
mately the same, but with T = 12, the ASN is greatly increased. This is because, on
the binomial scale, the upper and lower proportions used to construct the stop
boundaries are determined by T. With T = 20 they are 0.61 and 0.27, with T = 15
they are 0.92 and 0.71, and with T = 12 they are 0.98 and 0.91. When sampling
with T = 12, one has to decide between two very similar proportions (0.98 and
0.91), which naturally requires many sample units. Because of the high ASN, the
plan with T = 12 seems the least attractive. Of the other two plans, T = 15 is prefer-
able to T = 20, for the practical reason that T = 20 may be so tedious that enumera-
tive bias could creep in and nullify any theoretical advantage that it might have.

Fig. 7.4. OC functions (a) and ASN functions (b) for three binomial count sequential
sampling plans used to classify the density with respect to cd = 20. Stop boundaries
constructed using a Poisson SPRT. Parameters for each plan are as follows: T = 20, 
µ1 = 22, µ0 = 18, α = β = 0.1, minn = 5, maxn = 50 (___); all parameters the same
except T = 12 ( … ); all parameters the same except T = 15 (- – -).

7.4.1 The tally number and precision



almost all of the sample units will contain at least one individual, so the sample
proportion will usually be equal to 1, and only occasionally equal to 1 � 1/n, or possi-
bly 1 � 2/n. This, and its effect on the estimate of µ, is illustrated in Fig. 7.5. With
only 25 sample units, sample proportions less than 24/25 are unlikely (Fig. 7.5a),
so, in practice, there are only two possible ‘estimates’ of µ, and both of these are of
inferior quality (Fig. 7.5b). (Note that, as described above, a sample proportion
equal to 1 is adjusted before obtaining the estimate of µ; we used δ = 0.0005: values
as large as 0.02 gave the same type of unacceptable result, but with all estimates
below the true value.) What this means is that presence–absence sampling may
provide only scanty information about µ. If we use a larger T, the problem can be
reduced considerably. For example, if T = 4, many more distinct sample proportions
are likely to occur (Fig. 7.5c) and the distribution of the sample estimate of µ (Fig.
7.5d) shows that the estimate is more useful for discriminating among values close
to µ.

Such explanations are part of the reason why binomial estimates can be biased,
and can have large variances. The biases and variances for these examples, and
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Fig. 7.5. The effect of T on mbin, the estimate of µ (µ = 5, n = 25). (a) Distribution of
sample proportion with T = 0; (b) distribution of mbin with T = 0 (the tethered balloon
represents the true mean, µ); (c) distribution of sample proportion with T = 4; 
(d) distribution of mbin with T = 4 (the tethered balloon represents the true mean, µ).



others, were calculated from the distributions of the estimates of µ and are pre-
sented in Table 7.1. These illustrate the fact that the bias and variance decrease as
T increases, until around the value of µ, after which they begin to increase. There
are usually several values of T near µ for which there are no practical differences
among the results: a choice can be made based on sample costs. They also illustrate
the reduction in bias and variance when n is increased.

Another way of investigating the effect of T on the precision of sampling is to
study the mathematical relationship between p and µ. This relationship depends on
T (Fig. 7.6). In the Appendix to this chapter, we show how to derive an approxi-
mation to the variance of the sample estimate (mbin) of µ based on the mathemati-
cal relationship, µ = f(p):

(7.7)

Unfortunately, the relationship µ = f(p) is often very complicated when T > 0,
while the inverse relationship p = g(µ) (see, e.g. Equation 7.6) is simpler. We can
use the fact (which can be proved by elementary calculus) that 

(7.8)

to obtain the approximation 

(7.9)

In practice, µ is replaced by mbin in dg/dµ.
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Table 7.1 The effect of the tally number, T, on the bias and variance of the sample
mean for binomial count sampling from the Poisson distribution with mean equal to 5.
Results are for sample sizes n = 25 and n = 50. Note that the slightly anomalous values
for T = 0, especially for n = 25, arise because of the adjustment that has to be made
when the sample proportion is equal to 1 or 0; in this table, 1 is replaced by 1 � 0.1/n,
and 0 is replaced by 0.1/n.

T

0 2 4 5 6 8

n = 25
Bias 0.16 0.28 0.03 0.00 �0.04 �0.24
Variance of sample mean 0.74 1.28 0.35 0.33 0.38 0.90

n = 50
Bias 0.52 0.11 0.02 0.00 �0.02 �0.12
Variance of sample mean 1.22 0.42 0.17 0.16 0.18 0.42



We can make formula (Equation 7.9) a little more palatable by noting that 
dg/dµ is the slope of the p–µ relationship, p = g(µ). Equation 7.9 states that the
variance of mbin decreases as this slope increases. Because changing T changes this
slope, it also changes the variance. These relationships are illustrated in Fig. 7.6a.
When µ = 5, the slope, dg/dµ, is maximum when T = 4 or T = 5 (Fig. 7.6b). The
slope is often greatest when T is near the true mean.

As we noted in Chapter 4, the Poisson distribution is rarely satisfactory for counts
of arthropods or diseases, because the spatial pattern of counts is usually aggregated.
One distribution that can often be used to describe sample counts is the negative
binomial. Of course, there are instances in which no probability distribution is sat-
isfactory, and we discuss later in this chapter how to deal with that. Now, we focus
on the situation in which the negative binomial distribution provides a good
description of the distribution of sample counts.

Unlike the Poisson distribution, the negative binomial distribution has two
parameters, µ and k, and this extra parameter, k, adds further difficulties for bino-
mial sampling. It is not practical in sampling for decision-making to estimate
both µ and k, so we must choose a value of k independently of the sample data.
In full count sampling, not knowing a precise value for k influences the precision
of the estimate of µ but not the bias: the bias is zero whatever value is chosen for
k. We observed this in Chapter 5, where the OC functions were all centred on
cd.
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Fig. 7.6. The relationship between p and µ (mean) for the Poisson distribution (a)
when T = 0 (___), 1 ( … ), 3 (- – -) and 5 (– . – . –) and the slope (b) of the p–µ model
for µ = 5 as a function of T.

7.5 Binomial Sampling Based on the Negative Binomial Distribution



With binomial sampling, however, incomplete knowledge of k can result in
bias. This occurs because the negative binomial distribution can take many forms,
depending on k. In particular, the probability of zero incidence, Prob(count = 0)
can correspond to a large number of mean pest densities, µ, each of which corre-
sponds to a different value of k. If Prob(count = 0) is moderately large, µ must be
small, and does not change much for different values of k. However, if Prob(count
= 0) is small, µ must be large, and its estimated value depends greatly on the
assumed value for k (Table 7.2). This is presented graphically in Fig. 7.7: for
Prob(count = 0) = 0.6, the possible negative binomial distributions that have the
same p, but different µ and k are all close together, but for Prob(count = 0) = 0.2,
they are greatly different.

Independently of the effect of k, there remain similar effects of T and n on the
variance and bias as with the Poisson distribution. Formulae derived from
Equations 7A.4 and 7A.6 in the Appendix summarize these effects. Increasing n
decreases the bias and the variance, making the OC steeper. Increasing T to
around the critical density also reduces bias, including the effect of uncertainty in

166 Chapter 7

Table 7.2. Mean values, µ, for negative binomial distributions corresponding to fixed
probabilities of zero incidence and a range of values of k.

k = 0.5 k = 1 k = 2

Prob(count = 0) = 0.2 12 4 2.5
Prob(count = 0) = 0.4 2.6 1.5 1.2
Prob(count = 0) = 0.6 0.89 0.67 0.58
Prob(count = 0) = 0.8 0.28 0.25 0.24

Fig. 7.7. Negative binomial distributions with common values for Prob(count = 0) but
unequal values of k (k = 0.5 (+–+), k = 1 (…), k = 2(o-o-o)). (a) Prob(count = 0) = 0.6 
(µ = 0.9, 0.7, 0.6); (b) Prob(count = 0) = 0.2 (µ = 12, 4, 2.5).



k, and makes the OC steeper (Binns and Bostanian, 1990a). An OC obtained
when sampling a population with k less than that used to formulate the stop
boundaries will lie to the right of the nominal OC and will move towards the
nominal OC (to the left) as T is increased. However, with continued increases in
T to values greater than the critical density, the OC for the populations having k
less than the nominal value will eventually cross the nominal OC and lie to the
left of it (Fig. 7.8).

When formulating binomial count classification sample plans based on the
negative binomial distribution, it is essential that the effect of uncertainty in k be
evaluated and perhaps ameliorated by manipulating T and the sample size. These
points are illustrated in Exhibit 7.2.
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Exhibit 7.2. Binomial classification sampling with the negative binomial distribution

In this example, we illustrate the influence of k on the OC functions for binomial
count classification sample plans based on the negative binomial distribution, and
how an appropriate choice of T can reduce bias due to not knowing the true value
for k. The example is based on sampling European red mite (Panonychus ulmi), a
small plant-feeding mite which is a common pest in commercial apple orchards.
These arthropods damage leaves by inserting their mouthparts into cells to remove
fluids. In doing so, they reduce the leaf’s ability to photosynthesize. Severe red mite
injury can lead to reduced crop yield and quality.

Nyrop and Binns (1992) found that the sampling distribution of counts of
European red mite on leaves could frequently be described by a negative binomial
distribution. Although k tended to increase with increasing mite density, there was
considerable variability in k at any particular mite density. European red mites are
small and difficult to count. As such, they are good candidates for binomial count
sample plans. The potential for damage by the European red mite depends on the
time of year, the crop load and the geographical location, so the critical density is
not constant. One common working critical density is five mites per leaf.

Continued

Fig. 7.8. Binomial sampling based on the negative binomial distribution with cd = 2
and n = 30: the effect of T on OC when k is not known precisely. The assumed value
for k is 1; true k is equal to 0.5 (___), 1 ( … ), 2 (- – -). (a) T = 0; (b) T = 3; (c) T = 8.
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Nyrop and Binns (1992) reasoned that because k increased with µ, variability
in k should be assessed for a restricted range of densities around each critical den-
sity and not over the entire range of densities observed. For cd = 5, they found that
the median value for k was 0.8, with 10th and 90th percentiles equal to 0.4 and 1.5
respectively.

Initial comparisons were made among three sample plans: full count fixed
sample size (n = 50), binomial count fixed sample size (T = 0, k = 0.8, n = 50),
binomial count SPRT (T = 0, k = 0.8, µ1 = 6, µ0 = 4, α = β = 0.1, minn = 5 and maxn
= 50). The results are shown in Fig. 7.9. The sequential and fixed sample size bino-
mial count plans had nearly identical OC functions that were flatter than the OC for
the complete enumeration plan. This reflects the greater variability inherent in bino-
mial counts. The sequential plan resulted in some savings over the fixed sample
size plan for small mean densities. However, the p–µ relationship for T = 0 is quite
flat for densities greater than 5 (Fig. 7.6), so the variance is high (Equation 7.9). In
turn, this means that the sampling plan requires close to the maximum number of
sample units – the ASN function for means greater than 5 is relatively flat.

The OC functions for these binomial count sample plans can be made to look
more like the OC for the full count plan by increasing the sample size. However,
the effect of imperfect knowledge about k is more important. A binomial count
Sequential Probability Ratio Test (SPRT) plan (T = 0, k = 0.8, µ1 = 6, µ0 = 4, α = β =
0.1, minn = 5 and maxn = 50) was set up and tested on negative binomial distribu-

Fig. 7.9. OC (a) and ASN (b) functions for three sampling plans used to classify the
density with respect to cd = 5. Sample counts were described by a negative
binomial distribution (k = 0.8). Plan 1 (___) used a fixed sample size (n = 50) and
complete counts. Plan 2 ( … ) used binomial counts with T = 0 and n = 50. The
third plan (- – -) used binomial counts, was sequential and based on the SPRT, with
the parameters T = 0, µ0 = 4, µ1 = 6, α = β = 0.1, minn = 5 and maxn = 50.
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tions with different values of k: k = 0.8 (corresponding to the parameters of the
sample plan), k = 0.4 and k = 1.5 (representing possible lower and upper bounds
for k). The effect of these values on the OC functions is extreme: the OC for k = 1.5
is shifted far to the left of the nominal OC and the OC for k = 0.4 is shifted far to the
right (Fig. 7.10).

By increasing T, the differences among the three OC functions depicted in Fig.
7.10 can be greatly reduced, and in many instances effectively eliminated. This is
shown in Fig. 7.11, where the sample plan parameters are identical to those
described in the above paragraph, but with T equal to 3, 5, 8 and 11. The use of T =
7 would probably minimize bias due to imperfect knowledge about k. However, it
would also make scoring samples much more time-consuming than using T = 0. It
is necessary to estimate OC and ASN functions for different scenarios, so that the
properties of any given plan can be assessed against user needs and expectations.
For example, plans with T = 7 have been used successfully by growers and exten-
sion personnel in Quebec for several years.

Continued

Fig. 7.10. The OC (a) and ASN (b) functions for a binomial count SPRT plan used
to classify the density with respect to cd = 5. Sample counts were described by a
negative binomial distribution. Parameters for the sampling plan was T = 0, k = 0.8,
µ0 = 4, µ1 = 6, α = β = 0.1, minn = 5 and maxn = 50. The parameter k of the
negative binomial distribution used to describe the populations sampled was 0.8
(___), 0.4 ( … ), and 1.5 (- – -).



Up to this point, we have assumed that while k may not remain constant, it does
not change systematically with density. However, as noted in previous chapters, k
often tends to increase with density and can be modelled using a variance–mean
relationship. If a variance–mean relationship, such as Taylor’s Power Law (TPL)
(Equation 3.14) holds for the pest in question, and the negative binomial distribu-
tion describes sample counts, the value of k can be regarded as a function of µ:
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Fig. 7.11. The OC functions for binomial count SPRT plans with T = 3(a), 5(b), 8(c)
and 11(d) used to classify the density with respect to cd = 5. Sample counts were
described by a negative binomial distribution. Parameters for all sampling plans
were k = 0.8, µ0 = 4, µ1 = 6, α = β = 0.1, minn = 5 and maxn = 50. The parameter
k of the negative binomial distribution used to describe the populations sampled
was 0.8 (___), 0.4 ( … ), and 1.5 (- – -).

7.6 Incorporating a Variance–Mean Relationship



(7.10)

This is fine if we can believe that σ 2 is perfectly estimated from µ by TPL.
That would be too much to ask, but we should be able to assume that σ 2 can be
estimated by TPL with a little variability. We showed in Chapter 5 (Appendix)
how we could include variability around TPL in the simulations to estimate OC
and ASN functions for full count sampling plans. The extension to binomial count
sampling plans is reasonably straightforward: the value of k generated with or
without variability around TPL (Equation 5A.4 or 5A.5) is used, along with µ, to
estimate the probability of at least T pests on a sample unit.

The OC functions obtained in this way may be regarded as averages of the OC
functions that would be obtained for each possible value of k. They are therefore
quite different from the OC functions obtained using a constant k, as in Exhibit
7.2. So which approach should be used? Examination of OC functions using con-
stant values of k can provide insight into ‘worst case’ scenarios. In contrast, OC
functions obtained using TPL with variability yield an OC that would be expected
on average. Ideally, both types of OC functions should be used to judge the accept-
ability of a proposed sample plan.
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Exhibit 7.3. Binomial classification sampling with the negative binomial distribu-
tion and TPL. 

This example is a continuation of Exhibit 7.2, sampling European red mite. Now we
use TPL to estimate k. Nyrop and Binns (1992) estimated a = 4.3, b = 1.4 and 

mse = 0.286 ( ). We can use 0.54 as an estimate of σε in Equation
5A.4. Three SPRT sample plans (µ1 = 6, µ0 = 4, α = β = 0.1, minn = 5 and maxn =
50) were compared: full count sampling, binomial sampling with T = 0 and no vari-
ation about TPL, binomial sampling with T = 0 including variation about TPL (σε =
0.54). The OC and ASN functions are shown in Fig. 7.12. Without variation about
TPL, the OC functions for the complete count and binomial count models are
nearly the same. Adding variation about TPL caused the OC function for the bino-
mial count plan to become significantly flatter.

The effect of variability in TPL on the OC functions for binomial count plans
can be lessened by increasing the tally number. The third plan above was com-
pared with two others with different tally numbers, 2 and 5. The results are shown
in Fig. 7.13. The OC function became steeper as T was increased. In Figs 7.9 and
7.10, we can see that for T = 5, the OC functions for binomial count sample plans
with and without variation about TPL are nearly the same.

Continued

mse = 0 54.
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Fig. 7.12. The OC (a) and ASN (b) functions for three SPRT plans used to classify
the density with respect to cd = 5. Sample counts were described by a negative
binomial distribution and the variance modelled using TPL with a = 4.3 and 
b = 1.4. The first plan (___) was based on complete counts. The second and third
plans were based on binomial counts with T = 0. SPRT parameters for all three
sampling plans were µ0 = 4, µ1 = 6, α = β = 0.1, minn = 5 and maxn = 50. The
standard deviation of the variance predicted from TPL was: 0 (___), 0 ( … ), and
0.55 (- – -).

Fig. 7.13. The OC (a) and ASN (b) functions for three binomial count SPRT plans
used to classify the density with respect to cd = 5. Sample counts were described
by a negative binomial distribution and the variances modelled using TPL with 
a = 4.3 and b = 1.4. SPRT parameters for all three sampling plans were µ0 = 4, 
µ1 = 6, α = β = 0.1, minn = 5 and maxn = 50. The standard deviation of the
variance predicted from TPL was 0.55. Tally numbers (T) were 0 (___), 
2 ( … ) 5 (- – -).



A probability model is not a necessary prerequisite for developing a binomial count
sample plan or for estimating their OC and ASN functions. A probability model
for the p–µ relationship can be replaced by an empirical model. Several models
have been proposed (see, e.g. Ward et al., 1986), but one that has been found most
useful and can easily be fitted using linear regression is as follows:

ln(� ln(1 � p)) = cT + dT ln(µ) (7.11)

where µ is the mean and p is the proportion of sample observations with more
than T organisms. Note that this model has been shown to fit the relationship for
values of T greater than as well as equal to 0 (see, e.g. Gerrard and Chiang, 1970),
so the parameters have a subscript T which signifies that they depend on the tally
number used. In a strict sense, there are problems with fitting Equation 7.11 using
linear regression, because both p and µ are estimated and so dT will tend to be
underestimated (see, e.g. Schaalje and Butts, 1993). However, provided that the
data cover a wide range of µ around cd (or, alternatively, if the range 0–1 is nearly
covered by p), and the estimates of p and µ are relatively precise, the underestima-
tion should be ignorable. It is more important to check that the data really are
linear before fitting the model. Upon fitting the model, the critical proportion, cpT
(note the suffix T) is calculated as

(7.12)

There will always be variability about the relationship expressed by Equation 7.12.
This variability is not used to determine the critical proportion, but it is of critical
importance for estimating the OC and ASN functions.

Once cpT has been determined, OC and ASN functions for any sample plan
that classifies binomial counts with respect to cpT can be estimated using a bino-
mial distribution, relating the range of true means (µi) to a range of probabilities
(pi) using Equation 7.11. Here, we must consider variability in Equation 7.11
because, while this model may provide a good average description of the data, not
all data points fall exactly on the line. Corresponding to any true mean (µi) there
will be a range of probability values around pi = 1 � exp(�ecTµi

dT), and the OC
function at µi is an average of points, each of which corresponds to one of these
probability values.

The procedure is similar to that followed for assessing the consequences of
variation about TPL (Chapter 5, Appendix). We assume that actual values of
ln(�ln(1 � p)) are approximately normally distributed about the regression line, as
determined from the equation

ln(�ln(1 � p)) = cT + dT ln(µ) + z(0,σε) (7.13)

where z(0,σε) is a normally distributed random variable with mean 0 and standard
deviation σε. The OC and ASN functions are determined using simulation. Each
time a sample plan is used to classify a particular density during the simulation,

  
cp e e cdT

e cd c d
cT dT

T T= − = − −( )−( )1 1 exp
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7.7 Binomial Sampling Using an Empirical Model



Equation 7.13 is used to generate the value of p that will be used to characterize the
population of binomial variates being sampled. In other words, if for a particular
true mean, 500 simulation runs are used to determine an OC and ASN value, 500
different values for p would be determined using Equation 7.13 and sampling would
be simulated from each of these values for p. To generate a value of p, a normally
distributed random variable, z, with mean 0 and standard deviation σε, is first gener-
ated, a random factor RF = ez is calculated, and the value of p is 1 �
exp(�ecTµdTRF). If random error is not to be included in the simulations, the
random factor is 1: RF = 1.

The only question that remains to be answered before calculating OC and
ASN functions for empirical binomial models is how to estimate σε. Several writers
have addressed this question (Binns and Bostanian, 1990b; Schaalje and Butts,
1992) and it has not yet been fully resolved. However, a reasonable and conserva-
tive approximation is

(7.14)

where mse is the mean square error from the regression, N is the number of data
points in the regression, ln(m)

——  
is the average of ln(m), and sd

2 is the variance of the
estimate of the variance of dT . The astute reader will note that when the same type
of variability was considered for TPL, only mse was used to estimate σε. Strictly
speaking, an Equation such as Equation 7.14 should be used to estimate variability
about TPL. However, we use mse to simplify matters. This simplification is unlikely
to have undesirable consequences because the last term in equations such as
Equation 7.14, namely mse, is almost certain to account for most of the estimate of
σε. If this is so, then why have we included the additional terms in Equation 7.14?
We included them because much has been written on estimating the variability
about the model expressed by Equation 7.11, whereas the variability about TPL has
scarcely been considered, and we wished to maintain consistency with the existing
literature. Nevertheless, when we deal with uncertainty in the incidence–mean
relationship in order to predict OC and ASN functions for proposed sample plans,
mse is the most important component to take into account. The other components
are less important, except when the relationship (Equation 7.11) is based on few
points and the standard error of the slope parameter dT is large.

The OC and ASN functions calculated using the procedures just described are
averages for the range of p that may occur for a particular true mean. Because these
OC and ASN are averages, they say nothing about the extremes that may be
encountered when using a sampling plan at a particular place and time. They dis-
play the average values that should be expected in the long run, if the sampling
plan were used for these mean densities over and over again.

The strategies for estimating OC and ASN functions for the negative binomial
and empirical models are similar but not identical, and can be summarized in a
table (note that RF is the random factor defined above, and is defined in the same
way for both binomial count methods):

σ ε =̇ + − +mse
N

m m s msed[ ]ln( ) ln( ) 2 2
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Full Binomial count based on Binomial count based on 
count negative binomial empirical binomial

Criterion cd cpT = Probnb(x > T|cd,k) cpT = 1 � e�ecT cddT

Range of means µi pi = Probnb(x ≥ T|µi,k)

Distribution  Negative Binomial Binomial
for binomial
simulation

As with all other binomial count models, the sample size and tally number influ-
ence the bias and precision of an empirical binomial count sample plan. To con-
sider the effect of T on the OC and ASN, it is necessary to estimate the parameters
for Equation 7.11 for several values of T. To minimize bias and maximize classifica-
tion precision, a useful guide is to use a T for which mse is smallest, subject to the
condition that the regression remains linear. These concepts are illustrated in
Exhibit 7.4.
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Exhibit 7.4. Binomial classification sampling using an empirical model

This example is based on sampling Colorado potato beetle on stalks of potato
plants. Binns et al. (1992) described data consisting of 50–200 counts of larvae
taken on 74 occasions over 3 years. Critical density for spring larvae can vary
depending on other stresses on the plant (poor growing conditions, other pests) and
the grower’s perception of the threat, but the one suggested by the authors, cd = 6,
is used here.

The development of a binomial count sample plan using an empirical model
follows the steps used in previous examples, when a probability model was used to
relate p to µ. The first three plans to be considered were as follows:

1. Fixed sample size binomial count (n = 50, T = 0).
2. SPRT binomial plan (µ1 = 7, µ0 = 5, α = β = 0.1, minn = 5, maxn = 50 and T = 0)

with no variability in the p–µ model.
3. SPRT binomial plan (µ1 = 7, µ0 = 5, α = β = 0.1, minn = 5, maxn = 50 and T = 0)

including variability in the p–µ model.

The OC functions for fixed sample size and sequential binomial counts determined
without p–µ model variability were nearly identical, but the sequential plan
resulted in significantly smaller sample sizes (Fig. 7.14). However, the evaluation of 

Continued
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the sequential plan gives an overly optimistic assessment of the precision of classifi-
cation, as it assumes that the relationship between m and p is completely determin-
istic. When variability in the p–µ model was included, the OC function became
much flatter, showing that the sample plan would probably be unacceptable due to
the great potential for errors. Further improvement of the sample plan is therefore
necessary.

Increasing the tally number can increase the precision of classifications made
by the binomial count sample plan. The fitted parameters of the p–m model for T = 0,
2 and 4 are shown in Table 7.3. SPRT plans (µ1 = 7, µ0 = 5, α = β = 0.1, minn = 5
and maxn = 50) comparing these tally numbers were compared (Fig. 7.15). The
slope of the p–µ model increases for each increase in T and, for T = 2 and 4, mse is
less than for T = 0. There is a big improvement in the OC when increasing T from 0
to 2. There is also an improvement in the OC when increasing T from 2 to 4,
although it is not as great.

Fig. 7.14. The OC (a) and ASN (b) functions for three binomial count sampling
plans used to classify the density with respect to cd = 6. The model ln(� ln(1 � p))
= cT + dT ln(µ) was used to describe the data with T = 0. The first plan (___) used a
fixed sample size with n = 50. The second ( … ) and third (- – -) plans were based
on the SPRT with parameters µ0 = 5, µ1 = 7, α = β = 0.1, minn = 5 and maxn = 50.
Variation about the p–µ model was included when determining the OC and ASN
for the third plan.

Table 7.3. Parameters for the model fitted to Colorado potato beetle data.

Parameter T = 0 T = 2 T = 4

Model slope (dT) 0.738 1.092 1.387
Variance of slope, sd

2 1.295 × 10�3 1.436 × 10�3 1.801 × 10�3

Model mse 0.187 0.121 0.126
Mean of ln(m) 0.773 1.286 1.641



Although estimation is not the main emphasis of the book, we need to illustrate
the relationship between estimation with full count sampling and estimation with
binomial count sampling. Similar methods can be used for binomial sampling as for
complete count sampling. In Section 3.2.1, we demonstrated how to calculate the
sample size, n, when a given coefficient of variation, CV, is required:

(7.15)

This can be used here, based on the approximate formula in the appendix (7A.4):

(7.16)

Writing p = g(µ) and noting the result in Equation 7.8, this can be written in terms
of µ as

(7.17)

Using either Equation 7.16 or 7.17, and substituting the incidence–mean relationship,

n
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Fig. 7.15. The OC (a) and ASN (b) functions for three binomial count SPRT plans
used to classify the density with respect to cd = 6. The model ln(�ln(1 � p) 
= cT + dT ln(µ) was used to describe the data with T = 0 (___), 2 ( … ) or 4 (- – -).
SPRT parameters were µ0 = 5, µ1 = 7, α = β = 0.1, minn = 5 and maxn = 50.
Variation about the p–µ model was included.

7.8 Estimation



f(p), for Equation 7.16 and g(µ) for Equation 7.17, we can calculate the required
sample size for a given value of CV. It is usually easier to use g(µ) and Equation
7.17.

Poisson presence–absence binomial sampling can be used as an example. The
equations for f(p) and g(µ) are

f(p) = �ln(1 � p) and g(µ) = 1 � e�µ

so

For CV = 25% and µ = 2, from Equation 7.17,

so 26 sample units are required (exactly the same result is obtained with Equation
7.16). The outcome, 26, can be compared with the number of sample units
required for full count sampling, based on the Poisson distribution for which the
variance is equal to the mean (Chapter 4). On the basis of Equation 7.15,

Three times as many sample units are required for the same precision! Using the
same formulation, but with f(p) and g(µ) redefined for T greater than 0, we can cal-
culate the sample sizes required for T = 1, 2, 3 and 4:

T 0 1 2 3 4
n 26 14 12 16 25

Binomial count sampling with T = 2 required only 50% more samples than a full
count procedure.

1. Binomial counts greatly reduce sampling time and make sampling far less
tedious.
2. Care must be taken to ensure that the bias and variability inherent in binomial
count sample plans do not seriously compromise the usefulness of the sample
information for decision-making.
3. By careful selection of the tally number, a compromise can usually be forged
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7.9 Summary



between (i) low bias and high precision, and (ii) the time required for and difficulty
of sampling.
4. Two basic types of p–µ model can be used, based on (i) a probability distribution
function and (ii) an empirical relationship.
5. When the negative binomial distribution is used, the effect of imperfect knowl-
edge on k should be checked. If TPL is used to estimate k, the effect of variability
around the fitted TPL regression line should be tested.
6. Before an empirical relationship is used, its fit to the regression must be tested.
The effect of variability around the fitted regression should be examined.
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To change from using a parameter u to a different parameter t, we need to specify t
in terms of u by a function, f(u). Presence–absence sampling with the Poisson dis-
tribution provides an example. Instead of counting all pests and obtaining a sample
estimate of the mean density, µ, we count the number of sample units, r, with at
least one pest, and estimate the probability, p, of a sample unit being infested by r/n.
Equation 7.2 defines the function f(p) as µ = f(p) = �ln(1 � p), so

(7A.1)

It is natural to want to know the variance of mbin, and also its bias, if any. We
can obtain approximations to these using the first three terms of what is called the
Taylor series expansion of f(u) around the expected value, um = E(u), of u (for
‘expected value’, see Chapter 2):

(7A.2)

where =. shows that this is an approximation, and the symbols df/du and d2f/du2 rep-
resent the first and second derivatives of the function, f(u). In Equation 7A.2 they
are evaluated at the value u = um or, in practice, at the best estimate of um.

The variance of f(u) can be approximated by using only the first two terms of
Equation 7A.2, moving f(um) to the left and squaring:

(7A.3)

Taking expectations and noting that E(u) = um,

(7A.4)

To estimate the bias of f(u), we take expectations of both sides in Equation 7A.2.
We find that:

so

(7A.5)
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Hence the bias is approximately equal to

(7A.6)

Notice that the bias is ignored in Equation 7A.3. There it is relatively unim-
portant (usually). Note also that var(u) occurs in both Equation 7A.4 and 7A.5. In
the binomial sampling considered in this chapter, u is a sample proportion and
var(u) is the variance of a sample proportion based on n sample units. Because of
Equation 2.3, var(u) is of the form V/n, where n is the sample size, so the variance
of a sample proportion, and its (mathematical) bias, decrease as n increases.

When used to estimate the variance, the method described here is sometimes
referred to as the ‘delta method’. The Taylor series expansion of a function is dis-
cussed in calculus texts for undergraduate mathematics students.

We can exemplify the procedure with presence–absence sampling based on the
Poisson distribution, where the estimate of µ is given in Equation 7A.1. The deriv-
atives of f(p) = �ln(1 � p) are as follows:

(7A.7)

Therefore, from Equation 7A.4, the variance of mbin is approximately

and from Equation 7A.5 the bias of mbin is approximately

In Chapter 2 we discussed bias and mean square error (mse). The mse is defined as
mse = variance + (bias)2. In this example,

(7A.8)

Because n, the sample size, is usually large relative to µ, we can see that the
variance is relatively more important than the bias term in the mse. It is partly for
this reason that many people ignore the bias. The bias term in Equation 7A.8 does
become relatively large as µ increases, but then binomial sampling with T = 0
becomes unattractive for large µ. For n = 50:
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µ 1 2 3 4 5 6 7
mse 0.04 0.13 0.42 1.4 5.1 24 142
Proportion due to bias 0.01 0.03 0.09 0.21 0.42 0.67 0.85

We have seen throughout this chapter that the use of T = 0 for mean values much
greater than 0 is next to useless: in the range where T = 0 is sensible, the bias term
is of minor interest.
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In this chapter we discuss the situation in which variability in sample counts is
associated with the structure of the host on which a pest is found or with the spatial
arrangement of observed sample units. Host structure refers to the nested ordering
of potential sample units, such as leaves within stems and stems within plants.
Spatial arrangement of sample units refers to the spatial proximity or clustering of
sample units. In each case, it is possible to identify a primary sample unit, such as a
plant or a position in a field, and a secondary sample unit, such as a leaf on a plant
or an actual sample observation located at a chosen position in a field. The relation
between primary and secondary sample units characterizes a nested hierarchy of
sample units: secondary sample units are nested within primary sample units.

In the first part of this chapter, we introduce a procedure called the nested
analysis of variance (ANOVA) to characterize and quantify the variability of
sample data at different levels of nesting. We derive a guiding principle to deter-
mine the number of secondary sample units that should be collected from each pri-
mary sample unit, to obtain the most precise pest management decision for a given
level of sampling effort.

In the second part of the chapter, we introduce a sampling method called ‘vari-
able intensity sampling’ (VIS). VIS was devised to address a difficulty concerning
adequate coverage of the whole of a management unit when the spatial pattern of
pests is aggregated and some sort of sequential sampling plan is used. An early exit
through a stop boundary with only part of the management unit covered could lead
to incorrect management action if the part covered did not represent the whole.
VIS ensures good coverage by imposing a two-level structure on the management
unit, with locations (primary sampling units) widely spread out over the manage-
ment unit. VIS also ensures that sample costs are minimized by analysing the data
already collected to adjust sequentially the number of sample units (secondary
sample units) collected at each location, so as not to waste sample effort when the
management decision appears to be clear.
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There is a general tendency for counts of biological organisms at neighbouring
positions on a host or on neighbouring hosts to be more similar than on widely sep-
arated hosts. For example, counts of leafhoppers on two leaves belonging to the
same plant may tend to be more alike than on two leaves drawn from different
plants. Another way of putting this is that there is a positive correlation among
leafhopper counts on leaves within plants. In practical terms, this means that if the
count on one leaf from a plant is known, then some information concerning the
counts on the other leaves is also implicitly known: selecting another leaf from the
same plant adds less information than selecting a leaf from another plant. These
considerations influence the choice of sample unit. The choice of a ‘high-level’
sample unit such as a plant means that pests must be counted on all leaves of the
plant. Although this provides very good information on the selected plants, it may
be time-consuming and may result in only a few sample units being selected in the
field. The choice of a lower-level sample unit such as a leaf means that less informa-
tion is available on each plant, but it does allow many more sample units to be
taken across the field.

Some new terminology needs to be introduced here. We have just referred to a
plant and a leaf as sample units, either of which might be useful in a sampling plan.
We can distinguish between them by appealing to the hierarchy of the host,
namely the plant. The higher-level sample unit (the plant) is called a primary
sample unit, or psu, and the lower-level sample unit (the leaf) is called a secondary
sample unit, or ssu. The concept of a hierarchy allows us a wide choice of sample
unit. Not only can we choose either one of psu or ssu as the sample unit, but we can
make combinations. We can define a sample unit as ‘two leaves from one plant’ if
we like, and use it in a sequential procedure: the data from each sample unit is the
total count (or mean count) on two leaves from a single plant, and cumulated sums
are plotted on a chart as before, taking data from different plants in turn. The
advantage of such a procedure (the sample unit is equal to two leaves on one plant)
is that any positive correlation among counts on leaves within a plant can be relied
on implicitly to augment the information contained in the leaves that are actually
selected. We restrict ourselves to two-stage sampling here mainly because sampling
for decision-making rarely uses more than two stages, and extension to three or
more stages follows precisely the same principles (Cochran, 1977).

If we think that there is correlation among (small) secondary sample units, ssu,
within (large) primary sample units, psu, and we want to develop a sampling plan
which exploits the assumed correlation within the psu, we need to decide how
many ssu (ns), to select in each psu. As is shown below, there are formulae for an
optimum choice of ns based on relative costs and variances. Once ns is determined,
the sample unit that is then used in decision-making is defined as ‘ns ssu from one
psu’. If, in the above example, two leaves within each plant was found to be opti-
mal, the sample unit would be ‘two leaves randomly selected from a plant’. Once a
decision has been made on the sample unit, all of the theory and practice of the
previous chapters can be used with no further change.
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ANOVA is used to obtain estimates of variability among primary and secondary
sample units. The ANOVA is based on a model for the variance of counts on sec-
ondary sample units in which the variance is assumed to be the sum of

• a component, VCb, that represents variability between psu (hence the subscript
b), and

• a component, VCw, that represents variability among ssu within psu (hence the
subscript w)

The purpose of the ANOVA is to estimate each variance component and test the
above model. Where there is a positive correlation among ssu within psu, VCb is
greater than zero. When there is no correlation among ssu within psu, VCb equals
zero, and all of the variability is accounted for by VCw. Another way of looking at
this is that if there is no correlation among ssu within psu, there is no point in trav-
elling from psu to psu more than is necessary to collect enough data, because all the
variation in the field is between ssu, regardless of what psu they belong to. This is
clearly unrealistic. Therefore, if an estimate of VCb is zero or negative (as it can
be), this result is either because of random error (or, very unlikely, the model for
the ANOVA is wrong).

The data required for the ANOVA are counts of individuals on np ns sample
units. Writing

• xi j as the number of individuals found on the jth ssu in the ith psu
• xi. as the mean number of individuals per ssu found on the ith psu, and
• x.. as the overall mean number of individuals per ssu

the total sum of squares among all the ssu is

(8.1)

This could be used as the basis of an estimate of the variance of the mean count per
ssu, VT = SST/(npns � 1) but this would not take into account the correlation
among ssu within psu. SST can be subdivided into two parts, SSb and SSw, that rep-
resent the variability between psu and among ssu within psu, respectively:

(8.2)

and some complicated algebra shows that

SST = SSw + SSb
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degrees of freedom, or df. The df are used to divide the sums of squares to obtain esti-
mates of variance, called mean squares (MS). The standard layout of results in the
ANOVA is shown in Table 8.1. The variance component ‘among psu’ is estimated
as

VCb = (MSb � MSw)/ns (8.3)

and the variance component among ssu within psu is estimated as

VCw = MSw (8.4)

The mean square MSb is the variance estimate per ssu, which is appropriate for
the two-stage sample (see the Appendix); the variance estimate of the sample
mean of all nsnp ssu is therefore equal to MSb /nsnp. Using MST instead of MSb as the
variance estimate would ignore the structure of the data, and generally would
underestimate the true variance per ssu by an amount which depends on the corre-
lation among ssu within psu. The variance components can be used to predict vari-
ances for sampling plans with different values of np and ns. The estimate of the
variance of the sample mean based on n�p psu and n�s ssu is

(8.5)

The above derivations have glossed over some theoretical points which could
be important in some instances, but we suggest that they may be safely ignored. We
have (i) not mentioned the ‘sampling fraction’ and we have (ii) assumed that all
psu contain the same number of ssu:

1. The ‘sampling fraction’, f, is defined as the ratio of the sample size to the total
number of sample units, and appears in formulae for sampling variances (Cochran,
1977). For all sampling plans in other chapters, f is very small and can be ignored,
but here there is a sampling fraction for the number of ssu sampled in a psu, and
that ratio may not be small. However, it turns out that this sampling fraction has
little effect on the variances that we use, and so it too can be ignored in the con-
text of pest management.
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Table 8.1. The layout of nested ANOVA results for partitioning variance components
among primary and secondary sample units.

Degrees of Sum of Mean squares, 
Source of variation freedom, df squares, SS MS

Between primary np � 1 SSb MSb = SSb/(np � 1)
sample units

Among secondary np(ns � 1) SSw MSw = SSw/[np(ns � 1)]
sample units within 
primary units

Total npns � 1 SST MST = SST/(npns � 1)



2. The exact formulae when the number of ssu per psu is not constant are compli-
cated (Cochran, 1977). Work has been done on the effect of this when the simple
formulae are used. We recommend that the simple formulae are quite adequate for
sampling in agricultural pest management.

We saw in previous chapters that Taylor’s variance–mean relationship can be used
for variances when simple random sampling is done. It can also be used for the vari-
ance components in the ANOVA, namely VCb and VCw. A pair of Taylor’s Power
Law lines (TPL) that describe the variance components as a function of the mean
can be estimated if enough data sets are available. The procedure is as follows:

1. An ANOVA is computed for each data set.
2. The variance components, VCb and VCw, are estimated.
3. TPL parameters are estimated by regressing ln(VCb) and ln(VCw) against
ln(sample mean).
4. The two TPLs are

VCb = abµ
bb and VCw = awµbw (8.6)

Note that we use ‘VC’ for the true values as well as for the estimates. This is
merely to avoid adding more symbols, and we hope that it will create no confusion.
Once the TPLs have been estimated, the variance components for any chosen µ
can be estimated. The mean squares MSb and MSw could be used instead of the
variance components to estimate TPL, and the variance components would be
derived from them. The two methods are equivalent in principle, although the esti-
mates may be slightly different arithmetically.

The possible correlation of counts within psu, and how much it might affect the
variance, can be tested by an F-test. The F-distribution is another statistical distrib-
ution whose properties have been well documented. To use this test here, 
F = MSb/MSw is calculated and compared with tabular F-values (as with χ2 values;
Chapter 4). If F is larger than the tabular value, then MSb is significantly greater
than MSw, which implies that the correlation among ssu within the same psu is sig-
nificant. In other words, the distribution is aggregated within psu, and MSb rather
than MST should be used as an estimate of variance of a sample mean. If, for some
reason, MST continues to be used, the variance of the sample mean will be underes-
timated. Whether or not this underestimation is important from the standpoint of
pest management decision-making can be assessed using the tools that we have
presented thus far. Of course, if the variance was never estimated correctly by keep-
ing track of the nested structure of the counts, it would never be known what the
correct variance should be, and it would not be possible to assess the influence on
decision-making of the use of an underestimate of the variance.
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The ratio

deff = MSb/MST (8.7)

can be used to correct estimates of MST to MSb (Kish, 1965; Cochran, 1977).
However, care must be exercised, because estimates of mean squares often are very
variable and because variance components, like variances, usually increase with
mean density.

The ANOVA can be used in combination with information on the costs of sample
collection to estimate an optimum value for ns. Costs are usually based on the time
it takes to perform certain tasks during sampling. If the cost of finding each psu is
estimated as C, and (having selected and located the psu in the field) the cost of
selecting an ssu and counting the individuals on it is estimated as c, the total cost of
sampling can be written as 

K = Cnp + cnpns (8.8)

The formula for the optimum value for ns is (Cochran, 1977; Nyrop and Binns,
1991)

(8.9)

For example, if moving from one psu to the next psu is costly, C will be large rela-
tive to c, so ns should be large; in such cases, it is best to take advantage of being at
a psu by observing more ssu. Or, if VCb is large relative to VCw, there is a lot of vari-
ability among psu, and so ns should be small to allow more psu to be looked at; in
this situation it would be best not to waste too much time obtaining details at one
psu, because more information is required at different psu. Because the variance
components are estimated, Equation 8.9 is an approximation, and so the optimum
value for ns should be close to nopts, but not necessarily exactly equal to it. Cochran
(1977) suggests that values near nopts should be nearly equivalent in terms of opti-
mality. Furthermore, because of the variability inherent in variance estimates, the
exact values obtained through Equation 8.9 should not be taken as sacrosanct.

Harcourt and Binns (1980) investigated the sampling variability in alfalfa of
eggs and mines of the alfalfa blotch leafminer, Agromyza frontella (Rond.). They
obtained data on several occasions and, on the basis of an equation like Equation
8.9, they estimated optimal numbers of leaves to take per stem. These ranged from
1.1 to 2.1 for eggs, and 1.3 to 2.7 for mines, suggesting that two or three leaves per
stem would be best. However, other considerations, such as the expectation that
the ratio c/C would decrease with sampling experience, moved the authors to rec-
ommend four leaves per stem. 
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Exhibit 8.1. Estimation of variance components

Two-stage sampling can be envisaged in terms of the aggregated distributions dis-
cussed in Chapter 4. Around any location in a field with an aggregated distribution
of individuals, the counts of individuals on sample units close to one another are
correlated. There is a small area around each location in the field where the sample
units behave as if they were ssu’s around a psu. Given an aggregated spatial distrib-
ution, it is therefore sensible to ask: ‘How many sample units should I collect at
each location as I go through a field? Should I visit 30 locations, collecting one
sample unit at each, or would 10 locations with three sample units at each location
be (almost) as good, and less work?’ ANOVA on a simulated field can illustrate how
to answer this question.

A spatial pattern (Fig. 8.1) was generated using the Poisson cluster process
method (Chapter 4, Appendix). A random sample was taken, consisting of 15
locations in the field (psu) and five sample units (ssu) collected from the square of 
3 × 3 sample units surrounding each chosen location, making 75 ssu in all. An
analysis of variance was done for the two-stage sample, with the results shown in
Table 8.2. An F-value equal to 2.51 with these degrees of freedom is significant (at
the 1% level). The variance of the sample mean would be estimated by MSb/75 =
10.17/75 = 0.14. If we had used the simple formula using MST, we would underes-
timate the variance by a factor of about 2 (10.17/5.21). 

Using the results of the ANOVA, an optimum value for ns can be estimated.
This is best approached by a plot of nopts on the ratio of the cost per ssu (c) to the
cost per psu (C) (Fig. 8.2). Here, if the ratio is about 1 or higher, nopts should be 2.
But if the ratio is much less, more secondary samples per primary sample should be
taken. Plots such as these should be used as guides, rather than as formulae to be
followed to the letter.

The results of an ANOVA can have low precision; this is often true for esti-
mated variances. To illustrate this, we took an additional five sets of samples from
the hypothetical field shown in Fig. 8.1 and calculated an ANOVA for each. The
mean squares for between psu’s and for among ssu’s within psu’s are shown in
Table 8.3. These results show that different samples from one field could give a
range of values for the variances (and variance components), despite the relatively
large sample size (15 psu, five ssu/psu). The take-home message is that ANOVA
results should be used, but only as a guide.

Table 8.2. ANOVA for the sample data depicted in Fig. 8.1.

Degrees of Sum of Mean squares, 
Source of variation freedom, df squares, SS MS

Between primary 14 142.35 10.17
sample units

Among secondary 60 243.2 4.05
sample units within 
primary units

Total 74 385.55 5.21

Continued
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Fig. 8.1. (a) A computer-generated spatial pattern and the location of 75 sample
points. The true mean per sample unit is 1.68. Samples were taken using a ‘V’
path through the simulated field. The location for each set of five samples is
identified by a group of diamonds. (b) A histogram of the complete data.



Pests frequently occur in patches where infestations are noticeably higher than in
the rest of the habitat. The possible causes for patchy distributions are many, but
can be grouped into three broad categories: (i) quality of resource, (ii) patterns of
colonization and subsequent natality, and (iii) patterns of mortality. Patches may
occur on a large and predictable scale, or they may occur more or less at random
and on a smaller scale throughout a field. For example, onion thrips (Thrips tabaci)
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Fig. 8.2. The optimum number of secondary sample units (ssu) to take at each
primary sample location (psu), as a function of the ratio of the cost per ssu to the
cost per psu. The curve was determined using Equation 8.9 based on the mean
squares in Table 8.2, rounding up to the next highest whole number.

Table 8.3. Mean squares (MS) for five sets of samples taken from the data shown
in Fig. 8.1. Ratios of variance components show how variability affects nopts
(Equation 8.9).

Sample replicate

Source of variation 1 2 3 4 5

Between primary 7.94 5.63 3.38 4.46 5.41
sample units

Among secondary 1.77 1.53 1.34 1.43 2.07
sample units within 
primary units

Total 2.94 2.3 1.73 2.00 2.70

0.47 0.52 0.63 0.57 0.62  VC VCw b/

8.4 Patchy Environments



frequently are more abundant on field margins than in the interior of fields. Also,
groups of neighbouring plants usually have more similar numbers of thrips on them
than plants a good distance from each other. When patchiness occurs on a large or
predictable scale, it may dictate particular management choices. Referring again to
the onion example, when sampling for onion thrips it is sometimes recommended
that the field margin be managed separately from the field interior, or that counts
from the margins of fields be used to schedule management actions for the entire
field. When patchiness occurs on a smaller, and more random fashion, it may
dictate particular sampling choices.

When patches are somewhat predictable, there are at least four ways in which one
might respond from the perspective of sampling for pest management decision-
making:

1. Ignore any available knowledge about patchiness and continue as in previous
chapters. 
2. Treat the portions of the field where pest abundance might differ substantially as
separate areas, each to be managed and sampled independently.
3. Sample from the portion of the field where pests are assumed to be most abun-
dant, and use the results to indicate how to treat the whole field.
4. Divide the total number of samples into two, taking some samples from the
(assumed) heavily infested area and the rest from the less infested part, and use a
weighted average for decision-making (this is called stratified sampling). 

The choice is obviously dependent on pest dynamics, the cost and effectiveness of
control, the cost of pest-inflicted damage, the cost of sampling, and on the practi-
cality and desirability of site-specific management. Bear in mind, though, that the
goal is to control the pest, not necessarily to estimate its density. This considera-
tion will often preclude the fourth option above, as being inappropriate. The use of
part of the field as a kind of indicator of potential problems (option 3) may be a
more efficient alternative than option 2. Option 1 has the advantage of simplicity,
but carries with it an increased variability among sample units, and also the danger
of classifying the pest density incorrectly and thus applying inappropriate manage-
ment.

Patchy spatial patterns require that samples be collected from throughout a man-
agement unit; otherwise, there is a risk that a sample will be taken that is not repre-
sentative. For example, if all samples are taken from one part of a field that
harbours very few pests, but pests are abundant in the remainder of the field, an
error would probably be made to not intervene when in fact some action was war-
ranted. This scenario could easily unfold through the use of a sequential procedure
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in which the minimum sample size was small. This problem can be circumvented
by collecting a fixed number of samples from throughout the field or, if using a
sequential procedure, by examining a sufficient minimum number of samples taken
from throughout the field to ensure a representative sample. There are shortcom-
ings to these solutions. As has been repeatedly demonstrated, an unnecessarily
large number of samples may be taken if a fixed sample size is used when the pest
abundance is either much less or much greater than the level that dictates action.
Collecting the initial sample for a sequential procedure from throughout the field
requires that the field be traversed twice. An alternative is to use VIS (Hoy et al.,
1983; Hoy, 1991).

Keeping the idea of sequential sampling in mind, there is no reason to take a
lot of sample units if the mean pest density appears to be very much higher or lower
than the critical density cd, but enough primary sample units must be taken over
the whole field to minimize the risk of missing pest clusters. The idea behind vari-
able intensity sampling is to adjust the number of secondary sample units taken
from each primary sample unit based on how close the estimated mean is to the
critical density. If, after examining the ssu from some of the psu, the estimated
mean is close to the critical density, the maximum number of ssu should be taken
from the next primary sample. On the other hand, if the estimated mean is far from
the critical density, perhaps only one ssu need be observed from the next psu. The
notation required to describe VIS more completely is extensive, and is laid out in
Table 8.4.

Suppose that to cover the field npsutot sample locations (psu) are required.
With VIS sampling there is a formula to calculate how many second-stage units,
nssu, need to be selected at the next primary unit during sampling. The formula
reflects how far away the current estimate of the mean (mc) is from cd, and comes
in two parts:

1. Re-estimate the required total number of second-stage units (nssutot).
2. Re-estimate the average number of second-stage units (nssu—–) required in each of
the psu not yet sampled to achieve nssutot units in all.

The first involves thinking about the confidence interval (Chapter 3) at the
end of sampling:

(8.10)

What we should like is that cd be outside this interval, because the classification
decision could then be made with some degree of confidence. After nssuc sample
units have been examined, we can predict the final confidence interval based on
the current estimates of the mean and variance (mc and Vc):

(8.11)

Note that in Equation 8.11 we use the current estimates of the mean and variance,

m z
V

nssuc
c

tot
±

m z
V

nssutot
±
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but the number of sample units at the end of sampling, nssutot. Of course, we do not
know nssutot at this time, but what we should like is that, at the end of sampling,
the actual value of nssutot is large enough for cd to be outside the confidence inter-
val Equation 8.11. In other words,

(8.12)

Equation 8.12 provides a way of determining what nssutot should be. Using either of
the inequalities, making it an equality and solving for nssutot yields

(8.13)

However, we have already collected nssuc sample units, and there are only npsutot �
npsuc locations left to obtain the right value for nssutot. There is good hope that the
final confidence interval will exclude cd, if nssutot can be realized by the following
formula, which involves the average number of sample units to be taken at each
subsequent location (nssu—–):

nssutot = nssuc + npsutot � (npsuc) nssu—–

which can be rearranged as

nssu—–  
(8.14)
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Table 8.4. The notation used in variable intensity sampling (VIS).

Symbol Description

Prespecified nssumax Maximum number of ssu at any psu
npsutot Total number of psu

Calculated from data nssuc The total current number of ssu examined
npsuc The current number of psu from which

ssu have been examined
mc The current estimate of the mean
Vc The current estimate of the variance

Specification for next psu nssu Number of ssu to be taken from the next
psu

nssutot Required total number of ssu at the end
of sampling

nssu
——

The average number of ssu to be taken
from the remaining psu



Combining Equations 8.13 and 8.14,

(8.15)

nssu—– 

Because partial sample units cannot be examined, nssu—– is rounded up to the nearest
integer. VIS can then be implemented, as follows:

1. Decide how many primary samples (locations) to use, npsutot, and the maximum
number of sample units to take at each location, nssumax. Equation 8.9 may be help-
ful in determining nssumax, provided that estimates of the variance components and
sampling costs are available.
2. Go to the first location (psu) and take nssumax sample units.
3. Estimate the mean and variance and determine nssu—– using Equation 8.15.
Calculate nssu as the smaller of nssumax and nssu—–.
4. Go to the next location and take nssu samples.
5. Repeat steps 3 and 4 until all npsutot locations have been visited.
6. Make a classification by straight comparison of the final sample estimate of the
mean with cd.

In the above, we have glossed over the calculation of Vc, the estimate of the
variance after samples have been taken from c locations. In principle, it should be
estimated as a two-stage variance according to formulae like Equation 8.5. In fact,
the formulae are even more complicated, because the number of ssu collected at
each psu is not constant. However, as we have stated earlier, the simple formulae
should be adequate for sampling in agricultural pest management. An estimate of
deff (Equation 8.7) may be used to adjust the simple formula for the variance each
time nssu—– is estimated. An alternative to estimating the variance is to predict it
using variance components modelled as a function of the mean; for example
Equation 8.6.

In the following exhibit, we illustrate the application of VIS using a computer-
generated aggregated distribution.
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Exhibit 8.2. An illustration of variable intensity sampling

VIS can be used on the spatial distribution shown in Fig. 8.1. Suppose that cd = 1.0,
and 15 sample locations are required to cover the field. The maximum number of
ssu per location, nssumax, was set to 4, using Fig. 8.2 and a cost ratio of about 0.25.
The confidence interval was defined by z = 2. Using a ‘V’ path through the field, an
illustration of sample units examined is shown in Fig. 8.3a, along with the history of
the estimated means (Fig. 8.3b) and ssu (Fig. 8.3c).

Continued
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Sampling started at the lower left corner of the field (Fig. 8.3a). Four ssu were
collected (nssumax = 4), and the sample mean per ssu was 1.8. Based on this, the
predicted number of sample units needed is 21. Four of these (nssuc) have already
been examined (Fig. 8.3c). There are 14 locations still to be visited, so the number
of secondary samples to take at the next location is (21 � 4)/14, or about 1.2. But
we must examine whole samples, so nssu for the next sample location is 2 (which

Fig. 8.3. (a) A computer-generated spatial pattern and the location of samples (�)
for variable intensity sampling (VIS) with critical density, cd = 1.0 (true mean =
1.68). Samples were taken using a ‘V’ path. (b) The estimated mean density 
(mc, �) and the confidence interval after samples were collected at each primary
sample location, the true mean density (- – -), and the critical density (___). 
(c) The predicted total number of required secondary sample units (nssutot, �) and
actual number of secondary sample units examined (cumulated total of 
nssu, ___) as a function of the number of primary sample locations examined.
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can be seen in Fig. 8.3a, where the second sample location is in the lower left
corner).

Overall, 19 samples were taken and the estimated mean was 2.105. This is
greater than the critical density, so a decision would be made to intervene. But sup-
pose that cd = 1.5. Using the same simulated field, another (randomly selected)
sample path is shown in Fig. 8.4a and the sampling history is depicted in Figs 8.4b

Fig. 8.4. (a) A computer-generated spatial pattern and the location of samples (�)
for variable intensity sampling (VIS) with a critical density, cd = 1.5 (true mean =
1.68). Samples were taken using a ‘V’ path. (b) The estimated mean density (mc, �)
and the confidence interval after samples were collected at each primary sample
location, the true mean density (- – -), and the critical density (___). (c) The
predicted total number of required secondary sample units (nssutot, �) and the
actual number of secondary sample units examined (cumulated total of nssu, ___)
as a function of the number of primary sample locations examined.

Continued



A hand-held calculator or small computer can be programmed to implement VIS.
However, using such devices is not always convenient. It is also possible to calcu-
late a chart beforehand that provides the number of ssu to take from the next psu,
given the number of primary and secondary sample units sampled thus far and an
estimate of the current mean. The calculations require that estimates of the vari-
ance components, VCb and VCw, be made with a variance mean model. A mathe-
matical link between mean and variance is a requirement to calculate the chart.

Calculation of the chart proceeds as follows. For each combination of psu and
cumulative ssu examined, we want to know the number of pests counted that indi-
cate a need for nssumax, nssumax � 1, …, 1 ssu from the next psu. If the current esti-
mate of the mean is close to cd, then the maximum number (nssumax) of ssu will be
needed at the next psu. The further the estimated mean is from cd, the fewer the
number of ssu required at the next location in the field. These relationships can be
quantified by modifying Equation 8.12. We replace the variance estimate,
Vc/nssutot, by the formula based on variance components using the numbers of pri-
mary and secondary sample units examined and yet to be examined (see Equations
8.5 and 8.15):
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and c. The final sample size was 49, which reflects the proximity of the population
mean to cd. Note that after samples were examined from the first three psu (lower
right in Fig. 8.4a), the estimated mean was quite low. In fact, after processing these
samples (six ssu), the confidence interval for the estimated mean was less than cd
(Fig. 8.4b), so a sequential procedure based on Iwao boundaries would have termi-
nated sampling unless a minimum sample size greater than six was specified. Even
if a minimum sample size was in effect, if all the samples were taken from the
lower right portion of the simulated field, as in Fig. 8.4a, an incorrect decision
would likely be made. This illustrates the need for placing samples throughout a
field or management unit when a spatially aggregated pattern of pests might occur.

We have illustrated a single application of VIS on the field depicted in Fig. 8.1.
What would happen in the long run using the two critical densities? We would
expect an operating characteristic (OC) value with cd = 1.0 to be lower than for cd
= 1.5 and for an average sample number (ASN) value also to be lower when the
lower cd value was used. We can test this by simulating variable intensity sampling
using the two critical densities several times, recording and then averaging the
results. In the simulations, different sample paths (a random selection of the orienta-
tion of the ‘V’ and the positions of psu and ssu) are taken, so the same sample units
are not repeatedly counted.

After 100 simulations, the OC values were 0.03 and 0.4 for the cd values 1.0
and 1.5, respectively. The corresponding ASN values were 34.5 and 43.7. Our
expectations are confirmed: The higher critical density for this field yields a higher
OC value and greater sampling effort. We will return to the question of OC and
ASN functions for VIS in a later exhibit.

8.6.1 A VIS look-up chart



(8.16)

For simplicity, the variance components are not subscripted with c, although they
depend on the value of mc through the TPL (see Equation 8.6). The value of mc,
the current sample mean after c psu, varies as more psu are examined. Note also
that the quantity used to divide VCw is the total number of ssu expected at the end
of sampling, but expressed as the number examined thus far plus the number yet to
be examined (nssuc + (npsutot � npsuc) nssu—–).

The inequalities in Equation 8.16 can be made equalities and mc placed on one
side of the inequality so that mc, rather than cd, is defined in terms of the other
parameters. If we now specify nssu—–, we can calculate the currently estimated pair of
values of the current sample mean (one less than and one greater than cd) that sig-
nify the need to examine nssu—– secondary sample units from the remaining psu. The
equations are as follows:

(8.17)

If VCb and VCw are assumed to be constant and known, Equation 8.17 can be
used to calculate mLnssu and mUnssu directly. We can also use TPL models (Equation
8.6) to predict them from the sample mean, but it is the mean that we are trying to
solve for! This conundrum can be solved using iteration. Values for VCb and VCw
are first calculated using the TPL models with µ equal to cd. These variances are
then used in Equation 8.17 to estimate starting values for calculating mLnssu and
mUnssu by iteration. The iterations continue, one for mLnssu and one for mUnssu. The
starting value is used to compute a new pair of variance components; these vari-
ance components are again used in Equation 8.17 to obtain a new value for the
mean; and the process is repeated until the mean changes by no more than some
specified small amount. These means, mLnssu and mUnssu, can then be converted to
total counts (counts are easier to use in a look-up table) by multiplying them by the
number of ssu examined thus far. The calculation of a VIS look-up chart and its use
is illustrated in the next exhibit.
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Exhibit 8.3. A VIS Look-up Chart

The spotted tentiform leafminer (STLM) (Phylonorycter blancardella [Fabr.]) is a pest
found on the leaves of apple trees. A critical density for the first generation is two
eggs per leaf or six eggs in a cluster of three leaves, which is the secondary sample
unit. A two-stage structure was set up for sampling: trees as psu and clusters of
leaves on trees as ssu. TPL was estimated for the variance components and the
parameters estimated to be ab = 0.206, bb = 1.37, aw = 1.872, bw = 1.39. It was pro-
posed that the number of trees (psu) to sample should be seven, and the number of
clusters per tree (ssu) should be one, two or, at most, three (Nyrop and Binns,
1991). Part of the look-up chart (it is large) is shown in Table 8.5.

The chart is used in the following way. Suppose that three trees (psu) and a
total of seven leaf clusters (ssu) have been sampled. In order for but one leaf cluster
to be taken from the next tree, the total number of STLM found must be less than or
equal to 29, or greater than or equal to 67. For two leaf clusters to be examined at
the next tree, the corresponding range of STLM numbers are: greater than 29 and
less than or equal to 30, or greater than or equal to 63 and less than 67. If the
number of STLM found thus far is greater than 30 but less than 63, the maximum
number of leaf clusters, three, is to be taken from the next tree sampled. 

Table 8.5. A VIS chart for sampling spotted tentiform leafminer (STLM). The maximum
number of trees (psu) is equal to seven, and the maximum number of leaf clusters (ssu) per
tree is equal to three.

Maximum Maximum Minimum Minimum 
number number number number 
of STLM of STLM of STLM of STLM 

Number Number already already already already 
of psu of ssu counted for counted counted for counted for 
already already taking one for taking taking two taking one 
sampled, sampled, ssu at next two ssu ssu at next ssu at 

c nssuc psu at next psu psu next psu

1 3 12 13 27 30
2 4 16 17 37 40
2 5 20 22 45 49
2 6 25 26 54 58
3 5 20 21 46 50
3 6 24 36 55 59
3 7 29 30 63 67
3 8 33 35 71 75
3 9 38 30 80 83
4 6 24 25 57 60
4 7 28 30 65 68
4 8 33 34 73 77
4 9 37 39 81 85
4 10 42 43 89 92
4 11 47 48 97 100
4 12 51 53 105 108
… … … … … …
6 18 79 79 154 156



We demonstrated in Exhibit 8.2 how it was possible to estimate OC and ASN
values for VIS using a simulated field pattern. The use of spatially explicit data is
not practical for evaluating and designing VIS plans, because it would require many
simulated field patterns covering a range of mean densities. However, we can gen-
erate sample data by simulating the nested structure of sample data and use the
generated data to estimate OC and ASN functions. With the exception that the
number of ssu per psu is updated as sample data are collected, the procedure is simi-
lar to that described previously for fixed sample size plans: there are no stop bound-
aries, a fixed number of psu are collected, and the final sample mean is compared
with cd to make a classification.

A method of simulating the nested structure is as follows:

1. Specify a range of true means, µ.
2. For each µ, do sr simulations, each time starting with nssu = nssumax (see Table
8.4).
3. Generate a psu mean, µpsu, from a negative binomial distribution with mean = m
and variance = abµ

bb:
3a. Generate nssu sample values for the ssu at this psu (negative binomial dis-
tribution with mean = µpsu and variance = awµ bw

psu ).
3b. Use all of the data so far in this simulation run to calculate the sample
mean, mc, and the sample variance, Vc.
3c. If this is the last psu in the sampling plan, go to step 4; otherwise, calculate
nssu for the next psu using Equation 8.15, and go back to step 3.

4. Repeat step 3 for sr simulations, always resetting nssu = nssumax.
5. Calculate the proportion of the sr simulations when mc was less than or equal to
cd (OC), and the average number of ssu collected (ASN).

The estimation of OC and ASN functions for a variable intensity sampling plan is
illustrated in Exhibit 8.4.
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The size of VIS look-up charts can be an obstacle to using these charts in prac-
tice. Provided that the maximum number of ssu or the number of psu is not too
large, the chart can be manageable. However, one can also see that these charts are
more difficult to use than stop boundaries for sequential sampling plans. This
aspect of VIS may limit its adoption.

8.6.2 OC and ASN functions for VIS plans



In this chapter we have addressed two further aspects of variability in sample
counts that are important to pest management decision-making. The first of these
occurs as a result of the nested structure of sample counts. When primary and sec-
ondary sample units are used, it is important to estimate the variance correctly
using ANOVA. Having done this, the appropriate number of ssu to observe from
each psu can be better determined.

When unpredictable aggregation occurs, it is important that samples be col-
lected from throughout a management unit, so that representative information on
pest abundance can be obtained. One way in which this can be achieved is through
variable intensity sampling. The main limitation to VIS is the cumbersome look-up
chart that must be used to adjust sample sizes, unless a portable computing device is
available as samples are collected.

202 Chapter 8

Exhibit 8.4. Simulating OC and ASN Functions for VIS

We continue to use the STLM example from the last exhibit. Three variable intensity
sampling plans were evaluated. Each used seven trees as psu and up to three leaf
clusters as ssu. The critical density was six and the TPL parameters were as given in
Exhibit 8.3. The sampling plans differed in the value of z used to determine the
number of ssu required from each primary unit; these values were 1.96, 1.64 and
1.28, corresponding to α values of 0.05, 0.1 and 0.2, respectively. The OC and ASN
functions based on 500 simulations are shown in Fig. 8.5. As we have seen in other
situations, increasing the sample size by lowering α did not result in an appreciable
improvement in classification accuracy.

Fig. 8.5. The OC (a) and ASN (b) functions for three VIS procedures used to
classify STLM with respect to a critical density of six eggs per leaf cluster. The VIS
plans differed in the values of α used; 0.05 (___), 0.1 ( … ), and 0.2 (- – -).

8.7 Summary
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Write Xi as the total count in the ith primary sample unit. Other notation is as in
Section 8.3. Using the same formula as in Chapter 2, Equation 2.1, the variance of
Xi is estimated by VX:

(8.A.1)

but

(8A.2)

so

(8A.3)

There is a result which we now need from statistics, but it is reasonably intuitive. If
y1, y2, …, yn are independent and each has the same variance, V, the variance of
the sum is equal to nV:

variance (y1 + y2 + … + yn) = n variance(y1) = nV (8A.4)

But each X in the above is the sum of ns secondary sample units, so the variance,
Vx, of a secondary sample unit, in the context of two-stage sampling, is given by

VX = nsVx (8A.5)

so

Vx = MSb (8A.6)

Therefore, using Equation 2.3, the estimated variance of the sample mean of all
nsnp secondary sample units is MSb/nsnp.
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Appendix: The Variance of the Sample Mean in Two-stage Sampling



In previous chapters we have relied on several kinds of models to evaluate the per-
formance of sampling plans (operating characteristics (OC) and average sample
number (ASN) functions). In Chapter 2 we used the normal probability distribu-
tion (and the assumption of constant variance) to model the distribution of
sample means. In Chapter 3 we introduced variance–mean relationships (Iwao
and Taylor’s Power Law (TPL)) to model the variance of individual sample obser-
vations. In Chapter 5, we used the four theoretical distributions introduced in
Chapter 4 to model the properties of sample data. In Chapter 7, we used prob-
ability models and incidence–mean relationships to model binomial count sample
data.

Sometimes, one or more of these models breaks down. In particular, the sample
data collected for a given pest may fit none of the four probability models of
Chapter 4. This does not reduce us to where we were in Chapter 3 (using the
normal distribution model): we can use the actual sample data already collected as
a data-based model for future sampling. The key element is that real sets of sample
data collected at previous times and/or sites and summarized as frequency distribu-
tions take the place of a theoretical distribution. OC and ASN functions are esti-
mated by simulation using these data-based distributions, as if they were probability
distributions from which subsequent sample unit observations can be derived. This
method of estimating the OC and ASN functions is called ‘bootstrap resampling’
or just ‘resampling’ (Efron, 1982).1

In this chapter we explain how resampling is done to estimate OC and ASN
functions and how these functions typically differ from those based on theoretical
distribution models. We also look at the effect of the quality of the basic data sets,
used for resampling, on the estimated OC and ASN curves.
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9.1 Introduction

© CAB International 2000. Sampling and Monitoring in Crop Protection 
(M.R. Binns, J.P. Nyrop and W. van der Werf)

1 The word ‘bootstrap’ is derived from the expression ‘to pull oneself up by one’s bootstraps’.



Resampling requires data to sample from. To accumulate data representing the dis-
tribution of the pest over the range of density and environmental conditions that
are relevant in decision-making, a substantial number of sample data sets must be
collected. These are the basic data sets. Each of these data sets must be of sufficient
size (nbasic sample units) to allow it to be representative of the true distribution at
that site.

Each basic data set specifies a frequency distribution of sample observations,
representing the sampling distribution of the pest at the density or incidence level
at the site. In previous chapters, we represented these distributions using mathe-
matical models, but now we use the observed data directly, without first fitting the-
oretical models to them.

To estimate OC and ASN values for one of the observed sampling distribu-
tions, the sampling process is simulated many times, using the observed frequency
distribution as if it were a probability distribution. Sampling is simulated with
replacement (see Section 2.7). To generate OC and ASN functions, this procedure
is repeated for each available data set. For instance, if we have 40 data sets, resam-
pling would be done for each set, resulting in 40 values to characterize the OC
function and 40 values to characterize the ASN function. These indicators would
be plotted, as before, against some location parameter for the population, such as
mean density or incidence calculated from the entire basic data set.

The only thing that is different from evaluation of sampling plans in earlier
chapters is that observed data rather than models are invoked to represent the sam-
pling distribution. As a result, the distribution of data points over the density or
incidence axis of OC and ASN functions is determined by pest abundance in the
basic data sets. It is not controlled during the simulation. We illustrate the process
with a simple example (Exhibit 9.1).
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9.2 Principles of Resampling

Exhibit 9.1. Resampling from two aphid data sets

We illustrate the technical principles of resampling using two sets of aphid data col-
lected by Müller (1953). On two occasions during one season the abundance of
black bean aphids (Aphis fabae Scop.) was estimated on individual field bean
plants (Vicia faba L.). Abundance was measured on all plants in the field according
to a nine-point scale:

Score Description
0 No attack
1 Initial infestation by small colonies of single-winged immigrant mothers

with or without offspring. The colonies are not conspicuous at superficial
inspection of the plant

2 Top shoot so densely infested with aphids that it conspicuously stands out
as ‘black’ at superficial observation

3 In addition to the top shoot, other shoots look ‘black’ with aphids; how-
ever, the main stem is not infested
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4 In addition to the top shoot, at least three internodes below the top of the
main stem are covered with a black mantle of aphids; the plant is starting
to suffer

5 The whole main stem is black with aphids from top almost to the bottom;
the plant is suffering severely

6 The stage beyond 5 when depopulation results from departure of winged
aphids; the black mantle is ‘gappy’, nevertheless white exuviae indicate
the denseness of the former colony; the plant is often severely injured

7 As 6 with the top cracked; the plant is withered, but with some more or
less green tissue remaining

8 The plant is completely black or brown, dried up or collapsed

The frequencies of data collected on 27 June and 24 July 1952 are shown in
Fig. 9.1. The negative binomial distribution (our versatile workhorse for count data)
does not fit either set of frequencies. We therefore resort to resampling from the two
observed distributions to assess the performance of sampling. In doing so, we act as
if each observed frequency distribution represents a probability distribution for
infestation categories.

We do the resampling using the second simulation method described in
Section 2.7. There are three preliminary steps:

1. Obtain the sample frequencies; for the first data set (27 June), these are 404,
345, 55, 36, 23, 11, 6, 0, 0 for the nine classes (0, 1, 2 … 8).
2. Calculate the cumulative frequencies 404, 749, 804, 840, 863, 874, 880, 880,
880.
3. Divide by total sample size (880): 0.459, 0.851, 0.914, 0.955, 0.981, 0.993,
1.000, 1.000, 1.000. We call these cumulative relative frequencies.

Sampling is done from these cumulative relative frequencies as follows:

1. A random number, X, between 0 and 1 is generated.
2. The smallest cumulative relative frequency is found which is greater than or
equal to X, and its corresponding sample data value is recorded. For example, if X =

Fig. 9.1. Frequency distributions for Müller’s two fields. (a) 27 June, mean score =
0.848; (b) 24 July, mean score = 3.68.

Continued



Provided that enough simulation replicates are used, OC and ASN functions based
on theoretical distributions are smooth, as we have observed in previous chapters.
The reason is that shapes and properties of theoretical distributions change
smoothly as the mean density, µ, changes. OC and ASN functions estimated by
resampling, however, are rarely smooth. The reason is that, even when their means
are close together, the shapes of observed frequency distributions can be somewhat
different (for example, their variances may differ greatly). These differences can
result in considerable variation (or jaggedness) in the OC or ASN functions.
Ordinarily, this variation would be due to natural random variation, but there is
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0.6, the smallest cumulative relative frequency is 0.851, and the corresponding
sample data value is 1. The generated random sample value, therefore, is 1.
These two steps are done sr times, where sr, as before, represents the number of
simulation replicates. For example, if sr = 10:

X 0.956 0.539 0.462 0.862 0.780 0.997 0.611 0.266 0.840 0.376
Score 5 1 1 2 1 6 1 0 1 0

with sample mean equal to 1.8. The value ‘1.8’ is interpreted as ‘close to the sever-
ity level for score equal to 2, but not quite so bad’.

Resampling from the two data sets was used to estimate the OC function for
fixed sample size full count plans (n = 25, 50 and 100) with a critical infestation
category equal to 1. The results (Fig. 9.2) are not satisfactory as a means to evaluate
a sampling plan, because with only two basic data sets, we have only two points on
the OC curves. Clearly, more basic data sets are required to gain a sound under-
standing of sampling performance.

Fig. 9.2. OC functions for Müller’s data, with cd = 1, 1000 simulations. Fixed
sample sizes: n = 25 (▫), n = 50 (+) and n = 100 (�).

9.3 Typical Properties of OC and ASN Functions Estimated by
Resampling



always the possibility that one or more of the data sets may not properly represent
the distribution of the pest. OC and ASN functions which illustrate natural varia-
tion are desirable in that they show what could happen in practice. Mistaking inad-
equate representation for random variation is undesirable in that the OC and ASN
functions may give a false impression of what could happen in practice. It is there-
fore important to analyse the basic data used in resampling.

Analysis includes examining the data sets where variation is large, and decid-
ing whether one or more data sets must be rejected because they do not truly repre-
sent the pest distributions in the crops. It also includes assessing whether the
coverage of means (or incidences) is adequate for displaying the evaluation proper-
ties of a sampling plan. If coverage is inadequate, more data sets should be col-
lected. Coverage and representativeness are key elements. We illustrate some
aspects of the analysis in Exhibit 9.2.
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Exhibit 9.2. Resampling to estimate the OC function of a full count fixed sample
size plan

This exhibit uses resampling from 40 data sets of caterpillar density in cabbages to
estimate OC functions for fixed size sampling plans. It illustrates that the OC curves
obtained by resampling are more variable (jagged) than those obtained in simula-
tions based on variance or probability models, and it explores the reasons why.

The pest The diamondback moth, Plutella xylostella, is a pest of cabbages. In
New York State, the number of larvae plus pupae is used as an indicator of damage
potential. In this exhibit, we use a critical density of 0.5 larvae and pupae per plant.
This corresponds to a critical proportion of 30% incidence (tally number, T = 0),
which has been used in practice to assess incidence levels in cabbage plants grown
for processing into sauerkraut.

The basic samples During one season, five fields of cabbages were each
sampled on seven, eight or nine occasions. The total number of sampling occasions
was 40. Between 236 and 308 sample units (cabbage plants) were examined on
each occasion by up to three observers. The numbers of diamondback moth larvae
and pupae were counted on each sample unit. For simplicity, possible differences
among observers are ignored.

Estimating the OC and ASN functions by resampling Fixed sample size plans
were used with sample sizes, n, equal to 25, 50 or 100 sample units. The OC func-
tions obtained by 1000 simulation replicates for each of the 40 data sets, are shown
in Fig. 9.3. As we have become used to noticing, OC functions become steeper as
the sample size increases. Because there were few data sets with mean values near
the critical density, we cannot be very confident about the effect of sample size on
the accuracy of classification here. Furthermore, the OC function near and just
below 0.4 is jagged, especially for n = 25. Nevertheless, the general effect of
increasing sample size – that is, increasing the steepness of the OC functions –
corresponds to what we have seen in previous chapters.

Jaggedness and variability of an OC function estimated by resampling OC
functions estimated by resampling are rarely smooth. Numerical methods can be
used to smooth them, and this is often useful to understand the general effects of 
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changing the parameters of sampling plans. In Fig. 9.3, the OC function near and
just below 0.4 is rather jagged, especially for n = 25. We noted in Chapter 2
(Equation 2.7) that the standard error of a point on the OC function estimated by sr
simulation replicates was

where p is the OC value. When sr = 1000 and p = 0.9, the standard error is 0.009,
which cannot reasonably account for the jaggedness in Fig. 9.3. As illustrated in
previous chapters, OC functions based on theoretical probability distributions are
smooth (when enough simulations are done) because the shape of the probability
distribution changes smoothly as the population mean, µ, increases. In resampling,
however, we use distributions based on real data. The properties of these distribu-
tions (e.g. variance, standard deviation) can change abruptly even if the mean den-
sities are very close. The implications for classification sampling can be assessed.
This is exemplified here, in particular by the six distributions whose mean values
were just less than 0.4, and for a sample size equal to 25:

Mean, µ 0.21 0.25 0.3 0.32 0.35 0.38

Standard deviation, σ 0.37 0.71 0.54 0.39 0.44 0.78

0.07 0.14 0.11 0.08 0.09 0.16

< 0.001 0.04 0.03 0.01 0.05 0.23P
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n
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Fig. 9.3. OC functions for the diamondback moth data, with cd = 0.5, 1000
simulations. Fixed sample sizes: n = 25 (▫), n = 50 (+) and n = 100 (�).
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Compared with their neighbours, the second and third of these distributions
have large standard deviations. The standard deviations of sample means based on 
25 sample units can be used to estimate the probability of a sample mean
based on 25 sample units being greater than 0.5 (assuming that n = 25 is enough for
the Central Limit Theorem; see Sections 2.9 and 2.10). The probability does not
decrease smoothly as µ increases, and there is more than a negligible chance that
the second and third data sets would be classified as greater than 0.5. As a result,
the two distributions with the larger values for standard deviation have the lower
OC values. To understand more precisely how large the chance is of the sample
mean becoming greater than 0.5, we need to look more precisely at the distribu-
tions of these means.

We used the normal approximation in the above argument, but it turns out that
25 sample units is not enough here. For the distributions with mean values equal to
0.25 and 0.30, the simulated distributions of sample means based on n = 25 are not
close to normal (Fig. 9.4a and b). More importantly, the long tails to the right of
these simulated distributions extend well beyond the critical density, cd = 0.5, and
well beyond the upper classification limits calculated above assuming a normal

σ / 25

Fig. 9.4. Frequency distributions (based on 1000 simulations) of sample means 
(n = 25) collected from the four distributions of diamondback moth larvae + pupae
with means equal to (a) 0.247, (b) 0.304, (c) 0.322 and (d) 0.352. Best fitting
normal distributions are shown by circles.

Continued



An important practical question is: How many basic samples are required, and how
large should they be? A generally valid and precise numerical answer is impossible,
but it is obvious that resampling will give more robust answers if there are more
basic data sets and if each of these is based on a larger sample size. The same princi-
ples apply – of course – when collecting basic data for the probability models, inci-
dence–mean relationships and variance–mean relationships that are used
throughout this book for sampling plan evaluation. There are special guidelines,
however, for collecting data sets for resampling.

One of the things that might concern us is that, if the basic sample size (nbasic)
is small, the sample mean of the data set may not be a very accurate estimate of the
true density, and the observed frequency distribution may differ markedly from the
‘true’ distribution. For instance, if we were sampling from a field where the distribu-
tion of pests is long-tailed, we would be ill-advised to collect only a few sample
units. If we used nbasic = 25, whether or not data in the tail of the true distribution
were collected for the basic data set, the sample distribution could not reasonably
be expected to represent the true distribution. Hence, the resampling OC and
ASN for this particular (sample) mean would not truthfully represent the OC and
ASN values at the particular ‘true’ density of the pest. Fortunately, the situation is
not quite as bad as it might seem. We illustrate in Exhibit 9.3 that the means and
estimated OC points for basic sample data sets generally move in concord: if the
mean is greater than the true mean, then the OC point is less than the true OC
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distribution. Based on these simulations, the probabilities of the sample mean being
less than 0.5 are 0.90, 0.91, 0.92 and 0.87 for the distributions with mean values
equal to 0.25, 0.30, 0.32 and 0.35, respectively (Fig. 9.4). These probabilities
match the corresponding points in the OC shown in Fig. 9.3. When n = 100, the
effect of the long tail in the original distribution has essentially disappeared, so the
OC function is smooth. For n = 50, the results are intermediate.

This analysis does not in itself suggest anything amiss with the two data sets
with means equal to 0.25 and 0.30. The original data sets and any information on
how they were collected may shed more light. Because nothing untoward was
found, and because these were two adjacent data sets that showed the effect, the
jaggedness can be accepted as due to random variability. As such, it is to be wel-
comed as illustrating what might happen if this sampling plan were to be used in
practice. It is a valuable ‘reality check’.

Another noticeable feature of the OC function in Fig. 9.3 is that there are few
data sets with means close to cd (cd = 0.5). There is likely to be as much variability
near and above µ = 0.5 as we found near µ = 0.3, but there are no data sets to illus-
trate it. Potential users might want to know how great the variability is in this
region, so that they can better assess the practical properties of the plan. More data
sets may be needed. We are thus revisiting the discussion on end-user involvement
in designing sample plans (see Section 6.2).

9.4 Collecting Data for Resampling: the Number and Size of 
the Basic Samples



point, and vice versa. There is no guarantee of this, but we have found it to occur
frequently, provided that nbasic is not too small. In Exhibit 9.3, nbasic = 25 is shown
to be too small. This is not unreasonable when we recall that 25 sample units are
certainly not enough to test whether a theoretical distribution fits the data (see
Section 4.12).

Another concern, when using resampling from observed distributions to calcu-
late OC and ASN functions, is that we may end up with an uneven distribution of
data points on the pest density (or incidence) axis. This would be especially both-
ersome if a ‘gap’ were to occur in a range of pest densities which is relevant in our
evaluation of the quality of decision-making; for example, close to cd. It follows
that basic sample data sets should continue to be collected until the range is satis-
factorily represented.

As a guideline, Naranjo and Hutchison (1997) suggest that, to use resampling
for sampling plan evaluation, at least 10–20 basic samples are needed and the basic
sample size should not be less than 50. More samples and greater sample sizes will
undoubtedly improve the representativeness of the basic samples. This is certainly
true if we need to consider a wide range of pest abundance and if the distributions
are long-tailed. A good representation is especially needed for pest densities close
to the critical level.
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Exhibit 9.3. The effect of the size of the basic data sets on OC functions of fixed
size full count sampling plans

Introduction using Müller’s data set (Exhibit 9.1) Suppose that each of Müller’s
two data sets contained not 880 units, but fewer. We can investigate what effect this
would have on the accuracy of OC functions by taking subsamples from the
original basic data sets and using these subsamples as our basic data sets.

Ten random subsamples of nbasic = 25 units and ten subsamples of nbasic =
100 units were taken without replacement from each of Müller’s sets. Using the
resulting 42 data sets (two of 880 units, 20 of 100 units and 20 of 25 units), we can
evaluate the OC function for a fixed size classification plan with sample size equal
to 25 and a critical incidence level equal to 1. Data points are shown in Fig. 9.5.

Twenty one of the points are grouped around the mean class incidence level of
0.8 (27 June) and the other 21 points are grouped around a value of 3.7 (24 July).
Not surprisingly, the points (diamonds) for nbasic = 25 are more spread out along
the horizontal axis than the points for nbasic = 100 (pluses). The spread is due to
the class mean of a subsample varying according to the random process of select-
ing nbasic units out of 880. As far as the points for the first sampling date (27 June)
are concerned, the OC value decreases as the mean incidence class increases.
Strikingly, all the 21 points are on a single smooth line, suggesting that, in this
example, there are no serious departures in the shape of the distribution in relation
to the location parameter, as the basic sample size varies. This illustrates what was
suggested above: the means and estimated OC points for basic sample data sets
move in concord. The fact that a data set mean is not likely to be equal to the true
mean is not a prima facie barrier to using resampling.

Continued
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The diamondback moth data We now perform a similar exercise using the
diamondback moth data, introduced in Exhibit 9.2. Here, the basic sample sizes in
our original data varied from 236 to 308. What if we had been more skimpy and
instead collected only nbasic = 100 or even nbasic = 25 sample units for each of
the data sets? What would the resampling OC functions look like? As with Müller’s
data, we simulated these two approaches to get one collection of 40 data sets with
nbasic = 100 and another collection with nbasic = 25. These new series of data sets
were then used to estimate the OC function for a fixed sample size full count sam-
pling plan with n = 25. The number of simulation replicates was 1000 for each data
set. 

The OC functions are shown in Fig. 9.6 along with the OC function based on
all the data. The results show shifts both in the population mean value, and in the
OC value, for each of the data sets. These differences are greatest for the smallest
basic sample size. Although the general shape of the OC function is maintained for
nbasic = 100, it is not maintained for nbasic = 25 (e.g. the jaggedness is no longer
there). When nbasic is small, we can easily obtain unrepresentative results.

To investigate what might happen in general, repeated subsampling was used
to obtain 10 different data sets (without replacement) of nbasic = 100 sample units
from each of the original 40 data sets. All these 400 data sets were then used to
estimate the OC function for fixed sample size full count sampling, with n = 25 as
before. The results are shown in Fig. 9.7, together with the OC function for the orig-
inal basic data sets.

The OC function for the 400 data sets follows that for the original data set quite
well. The jaggedness around µ = 0.3 is sometimes lost or replaced by mild ‘variabil-
ity’. In practice, only one data set is available for one field, so even with nbasic = 100
we might have lost the jaggedness/randomness. Nevertheless, ignoring variability, the
shape of the OC function would not be altered enough to cause much concern.

Fig. 9.5. The effect of the size (nbasic) of the basic data set on the OC function
estimated by resampling for fixed sample size sampling (Müller’s aphid data, 
cd = 1, n = 25, 1000 simulations). Use of the two original data sets with nbasic =
880 sample units each (▫); use of 10 random subsets of each original data set as
data sets for resampling, each subset containing nbasic = 100 sample units (+);
use of 10 random subsets of each original data set as data sets for resampling,
each subset containing nbasic = 25 sample units (�). Points occur in two clusters
that correspond to the two data sets.
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Fig. 9.6. The effect of reducing the size of the original data set on the OC
function for fixed sample size sampling with n = 25 (diamondback moth data, 
cd = 0.5, 1000 simulations). Resampling from all the data (▫); nbasic = 100 (+);
nbasic = 25 (�).

Fig. 9.7. The effect of the size (nbasic) of the basic data set on the OC function
estimated by resampling for fixed sample size sampling (diamondback moth data,
cd = 0.5, n = 25, 1000 simulations). Use of the 40 original data sets (▫); use of 10
random subsets of each original data set as data sets for resampling, each subset
containing nbasic = 100 sample units (+).



Resampling can just as well be used to evaluate sequential sampling plans. In addi-
tion to the OC function, we also estimate the ASN function. As is clear from the
definitions of the Iwao and Converging Line stop boundaries (Equations 5.1 and
5.6), all that is needed are estimates of the critical density or proportion (cd or cp)
and the variance at this critical value. Although, in theory, Wald stop boundaries
require a distributional model, they can be used with a normal distribution model
and estimates of µ0 and µ1.

Plans are set up exactly as in Chapter 5, optionally making use of a vari-
ance–mean relationship if desired to estimate the variance at cd (see Table 5.1).
Simulation is done as before, by resampling from the cumulative probabilities based
on the data. Any variability that exists is contained in the data distributions used
in the simulations. Therefore, variation around TPL is not considered during the
simulation process. 

The general effects of changing the parameters of sequential plan stop bound-
aries (Table 5.2) are unchanged. The major difference is that it is not possible, or
even sensible, to test the effect of not knowing σ2 well (i.e. testing the accuracy of
the variance, V, used to set up the stop boundaries). However, sample variances
encountered in future applications of a sampling plan may be greater or smaller
than those found in the basic data sets. A partial test for this would be to replace
the variance used to set up the plan with one that is smaller or larger than that esti-
mated from the data, and repeat the simulations.
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9.5 Sequential Sampling

Exhibit 9.4. Resampling to estimate OC and ASN functions of sequential sampling
plans

Three full count sampling plans for diamondback moth with cd = 0.5 are compared
using resampling. The fixed sample size plan with n = 25 of Exhibit 9.2 was com-
pared with Iwao and Converging Lines plans with a minimum sample size, minn,
equal to 5 and a maximum sample size, maxn, equal to 50. Additional parameters
are α = 0.2 for Iwao, and αU = 0.001 and αL = 0.01 for Converging Lines. The para-
meters were chosen to make the OC functions similar. TPL was used to estimate the
variance, with parameters estimated from the data: a = 2.93 and b = 1.25. The stop
boundaries are shown in Fig. 9.8a.

As the OC functions are similar (Fig. 9.8b), the plans can be compared by their
ASN functions (Fig. 9.8c). On average, the Converging Lines plan generally
required fewer sample units than the other two plans. We noted a tendency for
Converging Lines to need fewer sample units than either Wald or Iwao in Exhibit
5.4. Here, we have another demonstration of the superior efficiency of Converging
Lines plans.

Note that the OC functions for the sequential plans display the same jagged-
ness around µ = 0.3 that we noted when evaluating the fixed sample size plans with
n = 25 in Fig. 9.3. Again, it is the variability in the shape of the frequency distribu-
tion that causes these effects. In Fig. 9.3 the extent of the jaggedness diminishes as
the sample size increases; for sequential plans, this would require wider stop
boundaries and/or larger maximum sample sizes.



We can use resampling methodology to estimate the OC and ASN functions of
binomial sampling plans. Three things need to be established first: (i) a tally
number T, (ii) a critical proportion, cpT, and (iii) the proportion, p, of sample units
with more than T pests in each of the basic data sets. Determining a tally number
proceeds as before by considering the critical density, sampling plan performance
for alternative choices of T, and practical considerations. 

When not using a probability distribution model, cpT was determined in
Chapter 7 by fitting an incidence–mean model:
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Fig. 9.8. Stop boundaries (a), and OC (b) and ASN (c) functions, for three
sampling plans with cd = 0.5: fixed sample size, n = 25 (▫); Iwao, minn = 5, 
maxn = 50, α = 0.2, V determined from Taylor’s Power Law, TPL (+); Converging
Lines, minn = 5, maxn = 50, αU = 0.001, αL = 0.01, V estimated from TPL (�).
TPL parameters a = 2.93, b = 1.25.

9.6 Binomial Sampling



ln(� ln(1 � p)) = cT + dT ln(µ) (9.1)

Substituting cd for µ, and solving for cpT:

cpT = 1 � e�ecTcddT (9.2)

Equation 9.2 can be used with resampling. However, variability about the model
(Equation 9.1) has consequences for resampling estimates of the OC function.
These are best described by referring to an example.

The data and fitted empirical binomial model for the diamondback moth data
are presented in Fig. 9.9, which shows the critical density (cd = 0.5) and the critical
proportion with T = 0 (cp0 = 0.274). When the model-based methods of Chapter 7
are used to assess sampling performance, probabilities, p, corresponding to a range
of mean values, µ, are calculated from the fitted model and the OC function is esti-
mated by simulation sampling from binomial distributions with probabilities equal
to the calculated p values (if random variability is requested, the p values are
adjusted according to Equations 7.13 and 7.14). When resampling is used to assess
sampling performance, the p values are given by the data points shown in Fig. 9.9.
The differences to be expected between the empirical binomial method and resam-
pling are related to how well the data points in Fig. 9.9 fit the model, especially
near the critical density, cd.

If a data point in Fig. 9.9 is above the fitted empirical model, the corresponding
point for the OC function estimated by resampling lies below the OC function esti-
mated by the empirical binomial method (and vice versa if it is below the model).
This is because a higher value of p means that the ‘intervene’ classification is,
according to resampling, more likely. How far these OC points differ from the
empirical binomial model OC function depend on how far the data points are from
the fitted model and how near they are to cpT. If a data point and its corresponding

218 Chapter 9

Fig. 9.9. Data and a fitted empirical binomial relationship for the diamondback moth
data (T = 0). (a) In the linearized form; (b) in the untransformed form, with the critical
density (0.5) and critical proportion based on the model (0.274) indicated by dotted
lines.



model value are far from cpT and sample size is high, it does not matter how bad the
fit is: the OC will be near 0 or 1 by both methods. But as the data point or model
approaches cpT, then the differences described above will begin to appear. This is
illustrated in Exhibit 9.5.

If the data points not only fit the model badly over a range of µ, but the depar-
tures from the model are consistently above or below the model or there is a pat-
tern to the departures, the possibility must be addressed that the model (Equation
9.1) may be inappropriate. If the model is inappropriate, then another way of esti-
mating cpT must be found. Because the data near cd in Fig. 9.9 are above the fitted
model, we might consider that the model is incorrect there, and use a different
method to estimate cpT. Using linear interpolation, we would obtain cpT = 0.336.
We can also note that the critical proportion used in New York State decision sam-
pling is 30% (Exhibit 9.2), which is between the value estimated by the model (i.e.
0.274) and 0.336. Without discussions with those involved in controlling the pest,
along the lines discussed in Chapter 6, all we can do here is recognize that this
(choosing a value for cpT) is an issue that requires attention. We shall proceed on
the assumption that the model is appropriate and that 0.274 is a good estimate of
cpT.

Random variation in a binomial count OC function estimated by resampling
arises from the above considerations (i.e. the values of p relative to cpT and/or the
empirical binomial model) and not from any other properties (e.g. variances) of the
frequency distributions of the data sets, other than through their effect on the rela-
tionship between p and µ. This means that the jaggedness or random variation in
binomial count OC and ASN functions may look different from that found in the
OC and ASN functions for full count plans.
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Exhibit 9.5. Resampling, compared with empirical binomial simulation of sam-
pling performance

The empirical binomial relationship for the diamondback moth data is shown in
Fig. 9.9. Near cd, all of the data points are above the fitted relationship. At each of
these points, therefore, the probability of incidence is greater than determined by
the relationship. This means that the OC values estimated by resampling will be
lower than those estimated by empirical binomial simulation. As a result, the OC
function estimated by resampling will be left-shifted compared to the function esti-
mated by empirical binomial simulation. This is illustrated by using both methods
to estimate an OC function for the same binomial count sampling plan. The sam-
pling plan was fixed sample size with n = 25, cd = 0.5 and T = 0, so cp0 = 0.274
(based on the fitted empirical binomial model). This plan was evaluated by using
the empirical binomial method described in Chapter 7 and by resampling. The
empirical binomial method starts with a user-provided range for µ, calculates
values of p from the incidence–mean model (Equation 9.1) and estimates OC and
ASN functions by simulation. The resampling method calculates values of p
directly from the data sets (the points in Fig. 9.9) and estimates OC and ASN func-
tions by simulation. The estimated OC functions (1000 simulations) are shown in
Fig. 9.10.

Continued
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The OC function for empirical binomial is similar to the full count OC function
(e.g. Fig. 9.6) but without the jaggedness. The jaggedness is not there because the
empirical binomial model removes the effect of the raw data, and always produces
a smooth curve. The OC function for resampling is quite different. Because all of
the data points from about µ = 0.3 to µ = 1 are above the fitted model in Fig. 9.9,
the OC function estimated by resampling is below the OC estimated by the empiri-
cal binomial model; some of the points are well below, because their data points in
Fig. 9.9 were well above the fitted relationship.

It is also worth noting that the jaggedness found in OC functions for full count
plans is still there, but is relatively minor compared with the effects noted in the
previous paragraph.

As in Exhibit 9.3, we must consider the implications of this analysis in terms of
the comprehensiveness and accuracy of the data sets. Are the deviations from the
empirical binomial OC function due to random variation or are some data sets sus-
pect? As we noted in Chapter 7, estimates based on binomial count sampling are
less precise than those based on full count sampling, so we must expect more vari-
ability in OC functions based on binomial count resampling. In this light, we have
no reason to doubt the representativeness of all the data sets.

Fig. 9.10. OC functions for a fixed sample size binomial count sampling plan for
diamondback moth larvae + pupae (n = 25, T = 0, cd = 0.5, cp0 = 0.274) estimated
by two methods (1000 simulations). Use of the empirical binomial relationship
with variability (––); use of binomial count resampling (�).



We would expect that, if two different methods for estimating OC and ASN func-
tions use the same basic data and account for the same basic principles, they should
give similar results. Therefore, if we fitted probability distributions to each individ-
ual basic data set and the fits were good, and we then used the fitted distributions to
estimate OC values, we would expect similar patterns of scatter and jaggedness as we
have seen for OC values estimated by resampling directly from the basic data sets.
Using the diamondback moth data, we illustrate some relationships between OC
functions estimated by resampling and by models including parameter uncertainty,
and demonstrate that uncertainties in OC and ASN values can be adequately cap-
tured by using models with parameter uncertainty in the evaluation process.
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9.7 A Comparison Between Resampling and Model-based Methods

Exhibit 9.6. Comparing estimates of OC and ASN functions based on a theoretical
distribution and on resampling

The diamondback moth data used in previous exhibits fit the negative binomial dis-
tribution. A summary of χ2 significance probabilities (P) for all 40 data sets after
grouping so that the expected frequency in the tails is at least 1 (see Section 4.5) is
as follows:

Too few 
frequency classes < 0.01 > 0.01–< 0.05 > 0.05–< 0.1 >0.1–< 0.5 > 0.5–< 1

P 12 0 1 4 11 12

With one P significant at the 5% level out of 28 testable sets of frequencies, it is
possible to assert that the negative binomial distribution is an acceptable model for
diamondback moth larvae + pupae data (but see Section 4.12). This means that we
can use the whole apparatus of Chapters 5 and 7 to estimate the OC and ASN func-
tions, and we can compare the OC and ASN functions estimated by the negative
binomial distribution and by resampling.

We now compare three different ways of calculating the OC function for a
fixed sample size (n = 25) full count plan with a critical density of cd = 0.5:

1. Evaluation by resampling, as in Exhibit 9.2.
2. Evaluation by first fitting a negative binomial distribution to each of the basic data
sets and using the theoretical distributions based on the fitted values of µ and k.
3. Evaluation by using the negative binomial distribution, letting k be estimated
from the fitted TPL (a = 2.93, b = 1.25, mse = 0.138) with random variation (see
Section 3.4 and the Appendix to Chapter 5).

The OC functions for evaluation methods 1 and 2 are close to each other (Fig.
9.11). This demonstrates that the negative binomial is a good model for each data
set separately. The features of the OC function as estimated by resampling can be
captured by simulation based on the negative binomial probability model using the
fitted value of k for each data set. The OC for evaluation method 3 is close to the 
other two below 0.5, but is higher between 0.5 and 1. This is because, for basic
data sets with means in the interval 0.5 to 1, the k values were somewhat higher 
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than their expectation based on TPL (Appendix and Fig. 9.12). As noted in Chapter
4, a higher k means a lower variance. Correct classifications are more easily made
at a lower variance (see Section 3.2.2), so for population means greater than cd, the
OC function should be lower for evaluation methods 1 and 2. 

Here, we see an advantage to being able to assume a probability model for
counts. If the above model is correct – and it appears to be sustainable for the data
to hand – we can be fairly sure that the OC function for plan 3 is a good estimate of
what would happen in general if the plan were to be adopted for practical use.

Fig. 9.11. OC functions for a fixed sample size full count sampling plan for
diamondback moth larvae + pupae (n = 25, T = 0, cd = 0.5) estimated by three
methods (1000 simulations). Resampling (▫); negative binomial using k values fitted
for each data set (+); negative binomial estimating k from TPL with random error (----).

Fig. 9.12. Diamondback moth larvae + pupae data. Model for estimating k from
TPL (___) and 95% confidence intervals ( … ); estimated k values (�).



Exhibit 9.6 illustrates that, if a theoretical distribution fits the data sets, then
including variability about TPL in the simulation can summarize the average OC
and the spread around it that would occur in practice. The great advantage of
resampling is that it illustrates what can happen with any particular decision-
making sample. OC functions based on resampling may be easier to understand,
and they can indicate where one must be cautious before recommending a sam-
pling plan. Where a theoretical distribution is an adequate model, the most infor-
mation is obtained by estimating the OC function in both ways.

Model-based simulation methods and resampling may both be used to evaluate the
performance of sampling plans before they are tested and used in the field. Both
evaluation methods are useful in the design process towards sampling plans that are
effective and efficient. But which approach is better? This is an unanswered, and
probably largely unanswerable, question. A more useful approach is to ask under
what circumstances is one more informative than the other, and whether they can
complement each other.

The main difference between model-based and data-based procedures for esti-
mating the properties of a sampling plan is the way in which the evaluation is done
on a computer. Models used in model-based evaluation include probability models
(Chapter 4), variance–mean relationships (Chapter 3) and incidence–mean rela-
tionships (Chapter 7). During sampling plan evaluation, sample data are simulated
using these models. If there is error in the general shape and fit of the models, the
OC and ASN functions would be biased. On the other hand, if the models provide
good descriptions of the data, the OC and ASN functions should be well esti-
mated.

When observed data are used in the simulations, the results are free of model-
based artefacts, which is an advantage. However, if one or more of the frequency
distributions among the data sets is not representative of the true distribution in
the field (e.g. by not having a long tail when the true distribution has one, or vice
versa) parts of the OC and ASN functions may be misleading. If there are few basic
data sets, these ‘outliers’ may obscure the true shape of the OC and ASN functions.
This is a weak point of the resampling approach, but we should point out that a
model based on only a few data sets is unlikely to be acceptable to other workers
anyway. There is no substitute for good comprehensive data.

Sensitivity analysis can be done (Chapters 5 and 6) on the parameters of sam-
pling plans (e.g. cd or sample size) for model-based and resampling evaluations.
With model-based evaluation, sensitivity analysis can be done on the parameters
used in the evaluation (e.g. the variance of sample data). With resampling, this
‘sensitivity analysis’ is built into the method (e.g. to obtain jagged OC functions).

If many basic data sets are used in resampling, the scatter in OC and ASN
functions may be used to assess the field-to-field variability in OC and ASN values,
as far as it is related to the variability of the underlying sampling distribution. The
visualization of such variability in the OC function can be regarded as an asset
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rather than a liability, provided that the observed variability of distributions reflects
true underlying differences in the shape of distribution, and is not the result of
unrepresentative basic data sets. The same variability can be assessed using model-
based methods by including parameter variability in the model during the evalua-
tion process (Exhibit 9.6). Note that the variability that we discuss here in OC and
ASN functions is not related to sampling error during the evaluation of the plan by
simulation; that variation is largely wiped out if enough simulation replicates are
done for each population mean or distribution.

What is the bottom line? Both techniques – model-based evaluation and data-
based evaluation – have a place, and use of either of the methods may provide
important insights during the design phase of a sampling plan. Resampling as a
technique is still very much in the course of development (Naranjo and Hutchison,
1997), and its strong and weak points as compared to model-based methods should
become clearer as more work is done.

1. Resampling can be used to estimate OC and ASN functions of sampling plans,
instead of using simulations based on distributional models, variance–mean rela-
tionships or incidence–mean relationships. Resampling uses previously collected
sample data to generate data distributions which are then used to replace theoreti-
cal distributions in simulations of the sampling process.
2. Sample data sets to be used for resampling must satisfy certain criteria; other-
wise, the OC and ASN functions may be misleading. Data sets must cover the
range of population means that is relevant in decision-making. The more data sets
are collected and the greater their sizes, the more reliable are the results of resam-
pling. As a guideline, 20 or more data sets are recommended, collected over more
than one season and site. Sample sizes should be large enough – not smaller than
50, but preferably larger – so that the data sets truly reflect the distributions that
exist in the fields.
3. Sampling plans and their parameters can be determined following essentially
the same strategies as discussed in previous chapters.
4. The jaggedness and variability of OC and ASN estimates obtained by resam-
pling can be insightful, as they may represent reality checks for the sampling plan.
Jaggedness in OC and ASN function can also be generated by including parameter
variability in models used in the simulation of sampling plan performance. In doing
so, model-based methods can mimic resampling.
5. For binomial count plans, care is needed for a proper determination of the criti-
cal proportion, in consultations with other workers. The effects of using or not
using incidence–mean relationships in the estimation of OC and ASN functions
must be considered. Jaggedness and variability are likely to be more pronounced,
due to the variability inherent in binomial count data. Minimum requirements for
number of basic data sets and their size (2 above) may be more stringent when they
are used for the evaluation of binomial plans.
6. Comparing OC and ASN functions determined by resampling and by model-
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based models (including parameter uncertainty or not) provides additional insights
into possible generalizations or caveats in sampling designs, and is therefore recom-
mended.
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If TPL is fitted by linear regression, we can generate a value for σ 2 by (see the
Appendix to Chapter 5)

(9A.1)

where z is normally distributed with mean 0 and standard deviation σε. We use the
method of moments to estimate k (Equation 5A.4):

(9A.2)

Equations 9A.1 and 9A.2 give k a distribution based on the distribution of z. In
particular, 95% confidence intervals for z provide 95% confidence intervals for k as
follows.

For any particular value of µ, a 95% confidence interval for ln(σ 2) can be cal-
culated from Equation 9A.1 as

ln(a) + b ln(µ) � 1.96σε < ln(σ 2) < ln(a) + b ln(µ) + 1.96σε (9A.3)

If we ignore, for simplicity, the bias due to the back transformation (see, e.g.
Finney, 1941), this can be transformed into a confidence interval for σ 2:

(9A.4)

In turn, this can be used with Equation 9A.2 to give an interval for k:

(9A.5)

Provided that these expressions do not require division by zero, or the interval
includes negative values, they can be calculated for a range of values of µ to obtain
confidence ranges for k, as in Fig. 9.12.
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Appendix: Confidence Intervals for Negative Binomial k Estimated by
TPL



In previous chapters we have discussed classification sampling at a single point in
time – a single sample bout. We have implicitly ignored the fact that pest problems
develop over time and that resampling on subsequent occasions may provide useful
additional data. Although information from one sample bout is often sufficient to
guide decision-making, this is not always so. Populations grow and decline, and a
population estimate at a single point in time may be useless without additional
information that extends that estimate to an assessment of pest pressure into the
future. If such information is required, then we must deal with uncertainties over
time due to the dynamics of the system. The question that we start to address in
this chapter is how the concepts of sampling for decision-making can be extended
to include decision-making over time. We refer to taking samples for decision-
making over time as monitoring.

A main consideration is whether the current density can be used to make a
prediction about the future development of the population. For some diseases, the
development of epidemics is heavily dependent on weather conditions. When
weather conditions are the dominant variable affecting population increase and
risk to the crop, a warning system may be based primarily on predicted and mea-
sured abiotic conditions, with sampling playing only a minor role. For most arthro-
pod pests, however, current density is often a valuable predictor of the risk of heavy
pest pressure later on. Several approaches have been proposed in the literature to
combine elements of population sampling and population forecasting into pest
management decision-making. In this chapter we discuss two procedures that
assume a coherent pattern for the population trajectory of the pest over the grow-
ing season. These represent the two sides of sampling that we have met before:
sampling for classification and sampling for estimation.

The first procedure is a method, proposed by Pedigo and van Schaick (1984),
which extends Wald’s Sequential Probability Ratio Test (SPRT) into the time
domain. In the SPRT, sample units are collected until the sample information is
convincingly (specified by α and β) in favour of one or other of two pest densities, 
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µ = µ0 or µ = µ1. In the method of Pedigo and van Schaick, the two population den-
sities (µ0 and µ1) are replaced by two population trajectories (µ0(t) and µ1(t)), and
sample data are collected over time until the accumulated sample information gives
convincing support (again specified by α and β) to either µ0(t) or µ1(t). Both trajec-
tories are completely specified as points over time. The one, µ0(t), is a low
(‘endemic’) trajectory that does not need intervention, while the other, µ1(t), is a
high (‘outbreak’) trajectory that does require control.

The second procedure, proposed by Plant and Wilson (1985), assumes that the
increase of incidence levels can be described by an incidence growth curve whose
shape is defined by two parameters. Plant and Wilson’s method estimates the para-
meters of this growth curve on the basis of data collected in successive sample bouts
over time. As the data from each sample bout become available, the growth curve
is re-estimated. Each new estimate is assumed to be closer to the true growth curve,
so better predictions can be made after each new sample bout. In particular, a deci-
sion can be made whether intervention is required (i.e. incidence is, or soon will
be, above a critical level) or whether it is worth collecting more sample data and, if
so, when it would be best to resample.

We defer to the next chapter a discussion of monitoring in situations in which
we do not wish to assume a coherent pattern for the population growth pattern of
the pest over the whole growing season.

The classification method described here is a development of Wald’s SPRT (see
Section 5.4), so it is useful to review some aspects of SPRT. At the heart of Wald’s
procedure is a function of the data called the likelihood ratio. For discrete distribu-
tions (e.g. Poisson, negative binomial, positive binomial) this is the ratio of two
probabilities, namely:

1. The probability of the data when the true density is µ1.
2. The probability of the data when the true density is µ0.

For example, with the Poisson distribution (see Chapter 4), the ratio for a single
observation (x1) is

(10.1)

which is easily extended to many observations x1, x2, …, xn:

(10.2)

It is convenient to take logarithms:

(10.3)
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Referring back to Section 5.4, sampling continues as long as

(10.4)

which is equivalent to

(10.5)

The formulae shown in Table 5.4 for the slope and intercept can be recognized
from Equation 10.5.

The simplicity of the results in Table 5.4 – but not their applicability –
depends on the parameters µ0 and µ1 remaining the same for all the data. If µ0 and
µ1 are allowed to vary with time, we can still write formulae that correspond to
Equations 10.2–10.4 for sample data collected at different times. It is less confusing
if we change the notation slightly: sampling takes place at times tj, the number of
sample units collected at time tj is nj, the sample mean at time tj is mj, and the cur-
rent sample bout is referred to as bout number i. Note that njmj is the total count at
time tj. The formulae that correspond to Equations 10.2–10.4 are

(10.6)

(10.7)

(10.8)

Comparing Equation 10.4 with Equation 10.8, we can see that the running total of
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sample counts, Σx, has been replaced by a weighted sum of sample counts and the
slope is no longer constant (the slope between two times tj and tj+1 depends on
µ1(tj) � µ0(tj) and on µ1(tj+1) � µ0(tj+1)). However, such an extended SPRT is feasi-
ble and can be implemented. For simplicity, a special notation is used for the terms
in Equation 10.8, which is rewritten as

(10.9)

or even more simply as:

(10.10)

Expressions for where hL equals and hU equals , b(tj) and

wj are given in Table 10.1 for the Poisson, negative binomial and positive binomial
distributions. These appear to be formidable to calculate, but all of the calculations
can be done before the first bout. The only extra difficulty at sampling time beyond
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Table 10.1. Time-sequential sampling stop boundary parameters, b(ti) and w(ti), for
three distributions. Sample size and sample mean at time ti are n(ti) and m(ti),
respectively. Endemic and outbreak trajectories at time ti are µ0(ti) and µ1(ti),
respectively. These parameters are used to define the weighted sums and stop
boundaries for the stopping criterion (combining Equations 10.8–10.10):

b(ti)
a w(t j)

a

Poisson

Negative binomial

Positive binomial

a Note that b(ti) is a sum but w(tj) is not.
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ordinary SPRT is having to multiply the total count (njmj) by a weighting factor
(wj) before adding it to the previous sum.

The idea of classifying population trajectories using SPRT was originally put for-
ward by Pedigo and van Schaik (1984). They proposed their method to give fore-
warning of potential trouble caused by green cloverworm (Plathypena scabra (F.)) on
soybeans, but suggested that it could be used in a more general situation. The idea
was to take samples of adults at intervals of 2–3 days over the period when they are
active, and use these data to indicate whether the larvae might or might not become
a problem. If adult numbers are high, larval sampling is required; if adult numbers are
low, larval sampling may be skipped (barring other eventualities which might dis-
count the information from adult sampling). Specifically, they noticed that when the
pests (in the larval stage) remained under control, the spring adults had seemed to
follow similar trajectories from the start. By averaging such trajectories, a typical
‘under control’ or endemic trajectory could be specified as µ0(t). In the same way, a
typical outbreak trajectory could also be specified, as µ1(t) (Fig. 10.1). Pedigo and van
Schaik used these two trajectories as extensions of Wald’s two critical mean densities,
µ0 and µ1, allowing them to extend Wald’s sequential procedure to compare trajec-
tories, as described above. They called their procedure time-sequential sampling (TSS),
but we prefer the more specific name time-sequential probability ratio test (T-SPRT),
because it emphasizes that classification is the goal and that the SPRT is its basis.

There is a difference between the ordinary SPRT and T-SPRT in the construc-
tion of the charts with stop boundaries. In SPRT each sample unit, as it is col-
lected, is added into a cumulative sum (Chapter 5). In T-SPRT, we have sample
bouts, and sample units per sample. It is advisable (of course!) to collect more than
one sample unit at each time to represent the pest population at that time. The
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Fig. 10.1. Typical endemic (___) and outbreak (- - - -) trajectories for time-sequential
sampling, based on Pedigo (1994).



total of these sample units is what is added, after weighting, to the sum and placed
on the chart with the stop boundaries. Fixed sample sizes are used at each bout:

Sequential sampling Time-sequential sampling

Number of sample bouts 1 More than 1
Chart: x-axis Number of sample units Number of sample bouts
Chart: y-axis Cumulative number of Accumulation of 

individual pests (weight × bout total)

It would be possible to use a sequential procedure for collecting sample units at
each sampling time. For various reasons, including its practicality, this has not been
pursued in the literature, and we regard it as relatively unimportant. As in ordinary
sequential sampling, if the last scheduled time for sampling is reached without a
decision having been made, the final weighted sum is compared to the mid-point
between the upper and lower limits.

Implementation of T-SPRT proceeds as follows:

1. Based on the endemic and outbreak trajectories, a time period for sampling is
determined. For Fig. 10.1, sample bouts on the first seven indicated times would be
acceptable, but there may be scope for skipping some of these, or adding more.
2. Obtain the mean values for the endemic and outbreak trajectories at each time:
µ0 at times 1, 2, …, and µ1 at times 1,2, … .
3. Decide on a probability distribution for the sample data. Decide how many
sample units to collect at each bout – sample size can change between bouts. 
4. Calculate the stop boundaries and weights for the cumulative sums, using Table
10.1, and prepare a simple sampling field sheet for the person who will do the
actual sampling.

After the season has started and some sampling has already been done, it is
possible to change the next scheduled time (ti+1) for sampling, if there are good
practical reasons for doing so. The boundaries and weights beyond the current time
(ti) must be changed, because the values of µ1(t) and µ0(t) will be different (see
Table 10.1). This is not too onerous, but requires some resetting of stop boundary
values in the decision aids that are used (e.g. field sheets and computer programs).
Eliminating or changing some of the scheduled times alters the properties of the
test, but if the changes are small the effects should also be small. For example,
advancing or delaying the times of sample bouts by 1 day should make no percepti-
ble difference. Eliminating one sample bout would make a noticeable difference
only if the true trajectory at that time was exceptionally high or low, relative to the
previous and subsequent bouts.

Although presented initially as an early warning procedure, T-SPRT can be
used directly on the damaging stage of a pest. The classification given by the proce-
dure leads in that case directly to intervention or non-intervention. The conse-
quences of ‘getting it wrong’ are then more critical and it is important to judge the
performance of the method, as characterized by the OC function. We do this in the
following exhibit.
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Exhibit 10.1. Time-sequential classification of a population growth curve

This example is based on Pedigo and van Schaick’s work on green cloverworm
(Plathypena scabra (F.)) on soybeans. The endemic (µ0) and outbreak (µ1) trajec-
tories, which are the targets of decision-making are shown in Fig. 10.5. As a first
exercise, we take a trajectory between the endemic and outbreak trajectories, but
which looks more like the latter. It is defined as

test trajectory = endemic1�ζ × outbreakζ

with ζ = 0.7. As a start, we investigate whether a reasonable classification of this
trajectory can be obtained with just one sample unit at each sampling time. The
parameters of the plan were α = 0.01, β = 0.01, n = 1 and k = 1.16. One test run
stopped at the sixth bout, classifying the trajectory in the outbreak class (Fig. 10.2a).

It is instructive to note how much variability there was in these data (Fig.
10.2b). The standard errors belong to the individual means, not accumulated
means. Clearly, there was so much variability that an incorrect decision was quite
likely, although here the decision was ‘correct’ in that the trajectory was nearer out-
break than endemic. When the sample size was increased to n = 10, the decision
was the same, but the smaller variability suggests that a ‘correct’ decision was more
likely (Fig. 10.3).

That a larger n gives more reliable results was confirmed by a number of simu-
lation runs with the same parameters as above, but comparing n = 1, n = 10 and 
n = 50. A smaller n resulted in more sample bouts and many more decisions for
non-intervention (overall operating characteristic (OC)):

Fig. 10.2. An example of a T-SPRT run with trajectory defined by ζ = 0.7, taking
one sampling unit at each bout, and α = β = 0.01. A negative binomial distribution
with k = 1.16 is assumed. (a) Weighted cumulative sums in the adapted Wald SPRT
(open circles refer to potential sample bouts which were not used); (b) sample data
at each bout, with approximate 95% confidence intervals.

Continued
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Sample units, n, 
per bout Overall OC Average bouts Average sample units

1 0.29 6.2 6.2
10 0.12 2.59 25.9
50 0.07 1.21 60.5

Most of the non-intervention decisions with n = 1 were taken at the last sample
bout, when a decision had to be made (Fig. 10.4). Consideration of Fig. 10.4 sug-
gests that taking more sample units at the first bout and fewer at subsequent bouts
might help reduce the number of bouts. Theoretically, this is true, but the usefulness
of such a strategy depends heavily on the endemic and outbreak trajectory values at
the first bout. If these values are not well established, there will be little or no
improvement.

We could estimate an OC function for a range of values of the ζ used to define
the test trajectory shown above. Results for ζ = 0.7 have been given here. Letting ζ
range over an interval, we can estimate other points on an OC function for trajecto-
ries of this type. Some values are shown for n = 20 in Fig. 10.5. This illustrates that,
if trajectories can be ordered in a sensible way, then the overall OC and ASN func-
tions look like those we encountered in earlier chapters.

Fig. 10.3. An example of a T-SPRT run with trajectory defined by ζ = 0.7, taking
ten sample units at each bout, and α = β = 0.01. Negative binomial distribution
with k = 1.16 is assumed. (a) Weighted cumulative sums in the adapted Wald
SPRT (open circles refer to potential sample bouts which were not used); 
(b) sample data at each bout, with approximate 95% confidence intervals.
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Fig. 10.4. Stopping times for T-SPRT based on trajectories in Fig. 10.1. Cumulative
proportions of 100 simulations stopping at each sample bout for sample sizes at
each bout equal to 1 (___), 10 (- – -) and 50 ( … ) . Other parameters: α = β =
0.01, ζ = 0.7, k = 1.16.

Fig. 10.5. Overall OC (a) and average number of sample bouts (b) for a T-SPRT
plan with 20 sample units at each bout, α = β = 0.01. The horizontal axis refers to
values of the parameter ζ in the text. TPL was used with parameters a = 2.8 and 
b = 1.3. For ζ = 0, the trajectory corresponds to the endemic trajectory, while for 
ζ = 1, the trajectory represents the outbreak trajectory.



The method described here derives from experience with spider mites (Tetranychus
spp.) in cotton. Plant and Wilson were concerned about the potential for explosive
population growth and damage of spider mites in cotton, following early pesticide
use which could disrupt spider mite predators. This disruption encouraged further
prophylactic acaricide treatments. In extreme cases, up to 70% yield reductions had
been noted. Plant and Wilson (1985) proposed an approach to management based
on an economic threshold.

They had observed that the relationship between the proportion of leaves with
at least one mite and cumulative degree days could often be represented by a logis-
tic curve. The logistic curve that they used has two parameters: initial incidence θ,
and a growth parameter, r:

(10.11)

where t represents cumulative degree days. 
The parameters r and θ are the growth rate and incidence, respectively, at time

0. We have chosen to replace r by a parameter, S, which is easier to estimate and
for which a prior distribution is easier to determine. S is the time at which 50% of
the plants are infested. Another interpretation of S is that it is the point of inflexion
of the incidence curve; that is, the time at which the slope of the (rising) curve
begins to decrease. The curve is also symmetric about S:

(10.12)

Such a model can rise above any prespecified action threshold, critical propor-
tion (cp), during the season, but on the other hand it might never reach it, depend-
ing on the parameters of the model (Fig. 10.6). What if samples were to be taken
from time to time during the season, and the parameters re-estimated each time?
Could this allow a prediction to be made whether the trajectory will ever rise above
cp, and, if so, when? Using Bayesian methods, Plant and Wilson showed how this
might be done. They noted that a more involved model for pest incidence over
time could replace Equation 10.11: in principle, their method can be used for any
parametric model.

The term ‘Bayesian’1 refers to an approach to data analysis and inference that con-
centrates on a parameter, φ, about which we have some information but not enough
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10.3 Time-sequential Estimation of a Population Growth Curve

10.3.1 Bayesian and regression approaches

1Thomas Bayes (1702–1761) was an English clergyman and mathematician.



for our needs (e.g. to make a classification), and we want to pin down its (φ ) value
more precisely. The information that we have at the start allows us to propose a
probability distribution for φ . This distribution is called the prior distribution of φ .
As real data are collected, they can be combined with the prior distribution to
update all of the information that we now possess about φ into the posterior distribu-
tion of φ . If we still have insufficient information for our needs, we can repeat the
process, using this posterior distribution in its turn as a prior distribution, collect
more data and calculate a new posterior distribution. In the example discussed
here, φ represents the two parameters of Plant and Wilson’s model. Once it is cal-
culated, the posterior distribution is used to estimate explicit values of the parame-
ters (and measures of their variability) to put into the model so that predictions can
be made. The mathematics required for these calculations are beyond the scope of
this book, but can be found in textbooks (see, e.g. Barnett, 1982).

Plant and Wilson’s Bayesian procedure can be summarized as follows. Previous
experience may suggest upper and lower limits for θ and r (or S), and, further, that
within these ranges, some values are more likely than others. This knowledge is
used to suggest prior probability distributions for the parameters, giving more proba-
bility to values that have occurred more often in previous years, or which seem
more plausible. It is then possible to display a prior ‘expected’ incidence curve for
the season. More to the point, as sample data are collected over time, they can be
incorporated into these prior probability distributions, using Bayesian methodology,
to calculate posterior probability distributions. These in turn provide updated esti-
mates of the incidence curve. In time, the incidence curve for the current season is
well estimated, and useful decisions can be made based on it, such as when next to
sample. Decisions on whether or not to intervene can be made using the sample
data alone, the predictions, or both.
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Fig. 10.6. A model of a growth/incidence curve. (___),Prior trajectory; ( … ), four
extreme trajectories using each of θ = 0.001, 0.2 and S = 200, 1200; (- – -), indication
of cp.



Fortunately, it is not necessary to use (complicated) Bayesian mathematics to
implement the gist of Plant and Wilson’s proposal. Instead of Bayesian mathemat-
ics, non-linear regression (see, e.g. Ross, 1990) may be used for estimating and
updating the model. In this approach, the initial prior distribution is replaced by
‘ghost data’. These are data points which lie on or near the long-term average inci-
dence curve. A first estimate of the curve is made using the ghost data. As real
sample data are collected over time, new estimates of the parameters are made (by
non-linear regression), each time using all the data, including the ‘ghost data’. In
this approach, the variances and covariances of parameter estimates, resulting from
the regression calculations, represent the estimates of uncertainty, which in
Bayesian mathematics are contained in the prior and posterior distributions for the
parameters.

The advantage of using regression is a simplification of the calculations,
making the idea of time-sequential estimation of a time-based model easier to
implement and understand. Regression is therefore what we use in the remainder of
this section. Provided that the model does not change during the season, the para-
meters should be estimated with better precision after each bout. On each occasion
when the model is fitted, the predicted trajectory can be drawn, with confidence
intervals around the predictions. Moreover, the time, tcp, at which the trajectory
would cross an intervention threshold (and an estimate of its accuracy) can be
expressed in terms of the parameters of the model. Therefore tcp can be estimated
along with approximations to its variance and bias (by methods similar to those
described in the Appendix to Chapter 7). All of this information can be used to
schedule sampling. Decisions on whether or not to intervene can be made using
the sample data alone, the predictions, or both. An illustration is given in Exhibit
10.2.

For the regression approach to mimic the Bayesian approach the ghost data must
follow certain guidelines. They must be available at two or more time points, to
represent a curve and not a single point; they should lie on the prior incidence
curve, to represent the prior information exactly; they should be based on relatively
small sample sizes, not to outweigh the sample data. The time points chosen for the
ghost data influence the weighting of the prior incidence curve relative to the
sample data (see, e.g. Ross, 1990), but the theory is beyond the scope of this book;
time points near the start and the middle of the time period being studied are sen-
sible. Our implementation of the regression approach is summarized in the follow-
ing steps.

Preliminary set-up
1. On the basis of all of the knowledge available, estimate prior values for r (or S)
and θ. Draw an ‘expected’ incidence curve based on Equation 10.11 or 10.12.
2. Obtain ghost data.

2a. Choose two values of degree-days for the ghost data, tG1 and tG2.
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10.3.2 Implementation of the regression approach



2b. Calculate the incidence proportions pG1 at tG1 and pG2 at tG2 based on the
prior incidence curve – the ghost data are equal to these proportions.
2c. Choose sample sizes for the ghost data, nG1 and nG2.
2d. (Optional) display the prior incidence curve.

Sampling
3. Choose a time (t1) and a sample size (n1) for the first sample bout, based on the
prior incidence curve, and set i = 1.
4. Sample bout i:

4a. Obtain a sample estimate, pi (proportion of infested sample units), from the
field.
4b. Fit the model, by non-linear regression, to all the sample proportion data
(ghost data and sample data up to and including bout i): {nG1, pG1}, {nG2, pG2},
{n1, p1}, … , {ni, pi}.
4c. Calculate predictions into the future, along with confidence intervals.
4d. Calculate tcp, the expected time when the incidence curve will reach the
critical proportion, cp, and its estimated variance.
4e. Display the fitted model, its predictions into the future, along with confi-
dence intervals, and tcp (see step 4d).
4f. Make a decision to stop or continue, based on step 4e:

• stop – go to step 5
• continue – increment i to i+1, decide on the time, ti and sample size, nij

for the next sample bout and go to step 4a.

Conclusion
5. Make a management recommendation: intervene or not.

Sampling over Time to Classify 239

Exhibit 10.2. Estimating a population growth curve, using time-sequential sampling

This example follows the gist of the method outlined by Plant and Wilson (1985), but
uses non-linear regression instead of Bayesian estimation. Based upon experience,
the population growth curves that may be encountered in practice are characterized
by ranges of the two parameters for the logistic growth curve (Equation 10.12):

• initial proportion of infested plants, θ: (0.001–0.2)
• inflexion point along time axis, S: (200–1200 degree-days)

A prior growth/incidence curve can be characterized by the parameters θ = 0.1 and
S = 600 degree-days. Extreme and average curves are presented in Fig. 10.6.

Curves with a high initial proportion and high growth parameter would consti-
tute ‘worst case’ scenarios that require early detection and intervention. Curves
with a low initial proportion and a low growth rate would constitute scenarios that
do not require control; they should not be treated in order to let biocontrol have its
way, and should be sampled as ‘lightly’ as possible in order to prevent waste of
time and resources. Prior knowledge is represented by the prior growth curve (Fig.
10.6). To represent this knowledge, we introduce ‘ghost data’ at times tG1 = 0 and
tG2 = 600, lying exactly on the average curve, and collected using a minutely low
sample size (nG1 = nG2 = 3) in order to limit the influence of these data points on the
regression.

Continued
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In order to do the simulation, we have to assume a ‘true’ trajectory, from which
samples are simulated. For this exhibit, we use a growth curve characterized by an
initial proportion θ = 0.134, and an inflexion point at S = 396 degree-days. The crit-
ical proportion, 0.6, is reached at tcp = 484 degree-days.

As real sample data are collected, the curve is re-estimated, using all of the
data (including ghosts). Once the model has been fitted, the predicted trajectory
can be drawn, with confidence intervals around it. It is reasonable to schedule each
sample bout for a time in the future when we can no longer be confident that the
population is below the critical proportion (0.6); that is, when the critical propor-
tion is included inside the confidence intervals. In the example, we use binomial
sample plans with a fixed sample size. Plant and Wilson described how to choose a
sampling plan based on previous data. We use fixed sample size for simplicity,
where choice of ni is made subjectively after viewing the current estimated trajec-
tory.

We begin our management control of the field with a sample of 40 units at
time 200. Early starting seems a good idea, in view of the risk of quickly rising tra-
jectories (Fig. 10.6) and a sample size larger than a modest 40 seems excessive at
this early time, when intervention is probably not yet necessary.

Ten infested sample units were found among the 40 collected (based on the
true trajectory and binomial sampling with 40 units). The trajectory is re-estimated
by non-linear regression (Fig. 10.7a). The predicted trajectory reaches cp at around
700 time units, but the confidence intervals are wide. Based on the 95% con-
fidence intervals, we would be safe to take our second sample bout at 400 time
units, so we decide to collect 50 sample units then. Nineteen of these are found to
be infested. The predicted trajectory, re-estimated from all of the data, now suggests
that we should probably check again at 500 time units (Fig. 10.7b). This is very
soon. Therefore, we take a risk and sample at 600 time units, where we collect 100
sample units, because we are beginning to worry about possible damage to the
crop and want a reliable decision. Based on these data (69 infested) and on the pre-
dicted trajectory, we decide that action is required right away (Fig. 10.7c).

Fig. 10.7. Estimates of growth/incidence curves and predictions (with
approximate 95% confidence limits) at times (a) 200, (b) 400 and (c) 600.
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We can follow the sequence of fitted trajectories, and compare them with the
true trajectory (Fig. 10.8). The sample proportion at 200 raised the fitted trajectory
slightly above where the ghost data had placed it (the prior trajectory is not shown,
but runs through both ghost data points). Because the sample proportion at 400
happened to be low (by chance), the fitted trajectory had a shallow slope. When a
large sample was taken at 600, the fitted trajectory became closer to the true trajec-
tory, although still under it.

Note that the confidence intervals tend to grow larger as the time for predic-
tion increases and decrease as more data are collected (cf. Figs 10.7a–c). The esti-
mates of θ, S and the estimated time, tcp, when cp = 0.6 is reached at the three
sample bouts were as follows:

ti ni θ S tcp

First bout 200 40 0.149 569 701
Second bout 400 50 0.148 557 687
Third bout 600 100 0.094 456 537
True value 0.134 396 482

so S was consistently overestimated, as indicated in Fig. 10.8, mainly because the
first two sample proportions were, unluckily, much smaller than the true values
(especially the second). This means that our samplers were led to think that the
population was growing more slowly than it actually did. Consistently overestimat-
ing S meant that tcp also was overestimated. 

Fig. 10.8. The true model trajectory (___) and the three model estimates made at
times 200 ( … ), 400 (- – -) and 600 (_ _ _) time units; sample proportions at these
times are shown as ●, and ghost proportions as �; sample sizes were 40, 50 and
100 sample units at 200, 400 and 600 time units respectively.

Continued



In this method, we always have an estimate of the current incidence, as with
one-time sampling procedures. In addition, we also have a prediction of when the
action threshold will be reached, and a measure of the variability of the prediction.
The value of such a prediction will vary with crop and pest. In some instances the
value may easily be worth the extra effort of making the extra calculations, but
each crop–pest situation must be decided on its own merits. The value will espe-
cially depend on the validity of the assumption that population growth over the
whole growing season shows regular trends, and can be characterized by growth
curves.

Both methods presented in this chapter combine information gathered in the past,
such as endemic and outbreak trajectories (T-SPRT; Pedigo and van Schaick,
1984), or prior distributions for incidence curve parameters (Plant and Wilson,
1985), with actual sample data on pest population growth, collected through time
in the current season. T-SPRT is designed to classify the population trajectory,
whereas Plant and Wilson’s method tries to estimate it. In T-SPRT, sampling times
are predetermined, whereas Plant and Wilson’s method allows flexible scheduling
of sampling times. In Plant and Wilson’s method, samples may be taken more fre-
quently as pest pressure approaches a threshold or if the fitted growth trajectory
indicates that the threshold may be reached soon.

Both Plant and Wilson’s method and T-SPRT depend on models of pest popu-
lation dynamics. In Plant and Wilson’s method, a functional form is provided, and
parameters are determined as data are collected. Practical use of Plant and Wilson’s
method requires a computer to fit trajectories and make predictions about future
pest densities with confidence intervals. In T-SPRT, the models appear in the guise
of the basic endemic and outbreak trajectories, and the collected sample data are
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The total sample cost includes the cost of collecting three samples, and
inspecting 190 sample units altogether. The estimate, tcp, of when the trajectory
crossed the critical proportion (cp = 0.6) was 537 degree-days (se = 34). If no effort
had been made to control the pest, the losses would have been commensurate with
having more than 60% incidence from about 540 degree-days onwards. These
costs should be weighed against the sample cost and the cost of implementing
some kind of pest control, but if 0.6 was a serious estimate of cp relating to unac-
ceptable damage, the decision to control would be correct. However, if cp is
deemed to be important during only the first part of the season, the predictions can
be used to help tell if and when sampling should stop. For example, by time 400
we can see that the trajectory is unlikely to rise above 60% before time 500. If, for
biological reasons, we knew that incidence did not matter after 500, a third sample
bout would have been unnecessary. We must always look to the practical goal,
rather than just trying to obtain very accurate estimates.

10.4 A Comparison Between the Methods and Other Considerations



processed by calculating cumulative weighted sums. Application of T-SPRT in the
field requires only simple calculations (multiplication and addition), and a sheet of
paper with the weights and stopping boundaries. T-SPRT is therefore easier to
implement than the method of Plant and Wilson.

Both methods require that enough previous data are available to specify the
following:

• The mathematical form of a typical trajectory and its likely shapes, and a criti-
cal damage criterion, or 

• Critical upper and lower trajectories to discriminate between damaging and
non-damaging populations

Both methods ‘remember’ the data from previous samples. This means that any
basic changes to the trajectory that nature makes during the season could make
nonsense of subsequent monitoring. For T-SPRT, the comparison with ordinary
sequential sampling is illuminating. In ordinary sequential sampling, remembering
earlier data is crucial because all the data are collected at one time from the single
field being tested. However, with T-SPRT, because data are collected on different
dates, they are much less firmly linked. Although it is not explicitly used in the for-
mulation, predictability in the pest growth process is necessary to ensure confi-
dence in both Plant and Wilson’s method and in T-SPRT. For T-SPRT, the link
between data collected at different times should fit the endemic/outbreak frame-
work.

In Plant and Wilson’s method, any gross change in the model due, for exam-
ple, to unexpected increases in numbers of natural enemies, can be ‘spotted’ by
examining how well previous and current data fit the model. This would be critical
for good decision-making. Spotting a trajectory change in T-SPRT is more difficult.
However, it is likely that such changes merely invalidate the theoretical ‘promises’
offered by the T-SPRT method (i.e. the probabilities of making a wrong decision),
but do not result in decision errors.

1. Many pests need to be sampled on more than one occasion before their poten-
tial for damage can be assessed. A scheme for scheduling sample bouts and specify-
ing sample plans for each is called a monitoring protocol. Every crop–pest complex
is unique, and no single monitoring protocol can be recommended across the
board.
2. Before embarking on a monitoring adventure, it is important to ask: (i) whether
sampling over time is the right procedure for controlling the pest in question, and
(ii) what characteristics of the trajectory are related to crop loss.
3. Two potentially useful approaches for time-sequential decision-making with
respect to a dynamic pest population are presented. One method is the T-SPRT,
first suggested by Pedigo and van Schaick (1984). The principle of the method is
that endemic and outbreak trajectories for the pest can be pre-specified, and that
data are accumulated over time to choose in a statistically optimal way between
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10.5 Summary



these two classifications. One classification leads to a control decision, whereas the
other leads to laissez faire; that is, to let the system dynamics look after themselves.
4. The second approach, first suggested by Plant and Wilson (1985), is based on
the notion that the system dynamics is such that pest incidence follows a specified
functional shape, which can be characterized by estimable parameters. By re-esti-
mating the incidence–time function after each sample bout, using all previous
sample data and including prior knowledge about likely parameter values, predic-
tions about future pest severity are possible. These predictions are used to schedule
sample bouts and to make classification decisions.
5. Methods relying on a model of pest trajectory, whether mathematical or data-
based, gain by being able to use all the data. However, the validity of the assump-
tions underlying these methods should be carefully checked; for example, by
plotting the data. Models, especially mathematical models, should be continuously
re-examined for their relevance.
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For some pest management situations it is desirable to know whether pest abun-
dance remains below some critical threshold(s) over a period of time. For example,
when biological control is substituted for a chemical pesticide, it may be necessary
to monitor the population for some time interval to be sure that control by natural
enemies is effective. Pests with multiple generations, such as aphids and mites,
often require checking the potential for outbreaks over an extended period of time,
and a single sample is not enough.

When a pest population is monitored through time, two questions must be
answered: (i) Does the pest density exceed a threshold that dictates management
action now? (ii) If the density is below the threshold now, when should the popula-
tion be sampled again? A simple solution to the second question is to sample very
frequently, but this would be unnecessarily costly. A better solution would be to use
information about the current density in conjunction with knowledge about popu-
lation growth to schedule future sampling.

The two procedures described in Chapter 10 are not well suited for answering
these two questions. While time-sequential estimation of population growth curves
can be used to schedule future sample bouts, the procedure is dependent on specify-
ing a model for the season-long population growth pattern. But if the model does
not describe the population trajectory that is being sampled, the management deci-
sion may be erroneous. Time-sequential classification of population trajectories
depends on specifying an acceptable and unacceptable population trajectory. This
may not be a serious limitation provided that all trajectories that require interven-
tion can be identified using the specified ‘unacceptable’ population trajectory and
all trajectories that do not require control can be identified using the specified
‘acceptable’ trajectory. If this condition is not met, the use of time-sequential classi-
fication of population trajectories may lead to incorrect decisions. A greater limita-
tion of this procedure is that it does not use the information collected about pest
abundance to schedule future sampling.

Monitoring Pest
Populations through Time 1111
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Attempts have been made to incorporate information on natural enemies into
monitoring strategies (Croft, 1975; Baillod et al., 1989; Nyrop and van der Werf,
1994), but none has found widespread use. The main reasons are the lack of suffi-
ciently precise knowledge about pest and natural enemy dynamics and the influ-
ence of biotic and abiotic factors, and (usually) the need to consider more than one
natural enemy.

In this chapter, we describe a method for pest monitoring that answers the two
questions posed above and is not encumbered by the requirement that pest trajec-
tories follow a specified model, although knowledge of potential pest population
growth is needed. The procedure is based on classifying pest density into one of
three categories: (i) low density, indicating that damaging pest levels are unlikely
to occur in the near future and hence sampling the population again can be
delayed; (ii) intermediate density, showing that densities are not currently at a
damaging level, but the population should be sampled again soon to make sure this
is still the case; and (iii) high density, requiring immediate action. The strategy can
be extended to four or more classification alternatives.

We begin our description by introducing some terminology. We then show
how sampling plans that classify density into three categories are constructed and
we describe the performance criteria that are used to evaluate these plans. We
follow this by showing how these sampling plans can be chained together to moni-
tor a population trajectory through time, and we discuss the criteria that can be
used to evaluate the effectiveness of the procedure. We conclude the chapter by
discussing future perspectives for monitoring.

The specification for collecting sample units on a single occasion and for processing
the resulting data to reach a decision is called a sampling plan, as noted in previous
chapters. A monitoring protocol is a strategy for combining one or more sampling
plans over a time period to allow for repeated checking of pest abundance. Here,
we will only consider use of a single sampling plan in a monitoring protocol. The
use of a set of multiple plans (each potentially different) in such a capacity is illus-
trated by Nyrop et al. (1994). We will use sample bout to indicate an instance of
sampling, potential as well as actual.

Pest populations can be monitored by ‘chaining’ sampling plans over a period of
time in such a way that the next sample bout is postponed as long as is deemed pru-
dent in view of observed pest abundance, knowledge of pest population growth and
the applicable critical density (Nyrop and van der Werf, 1994). This can be done
using a sampling plan to classify density into one of three categories with cor-
responding management recommendations:
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11.2 Terminology of Monitoring

11.3 Tripartite Classification Sampling Plans



• Class 0: pest density greater than the critical value; intervention is required
now.

• Class 1: pest density less than the critical value; resampling can be delayed for a
short period of time (e.g. 1 week) because the density is not expected to reach
the critical value within that time.

• Class 2: pest density much less than the critical value; resampling can be
delayed for a longer period of time (e.g. 2 weeks) because the density is not
expected to reach the critical value within that time.

The chaining of such tripartite classification sampling plans through time is illus-
trated in Fig. 11.1.

A new notation is needed here. When only two classifications are possible, we
have been using the terms critical density (cd) and critical proportion (cp) to
denote the population measure below which a sample mean would imply a non-
intervention decision. Now that three classifications are possible, we stop using cd
(to avoid confusion), and use the term action threshold, or at, for the density above
which a sample mean implies intervention, and waiting threshold, or wt, for the den-
sity below which a longer period until resampling is recommended. When the den-
sity is between at and wt, a shorter waiting period is indicated. The relationship
between wt and at is that at should be close to what wt would become if the pest
population was allowed to grow unchecked until the next sample bout. For exam-
ple, if growth rate per day is expected to be around r = 0.065 per day, then in 1
week a pest density, µ, would grow to µe0.455. A reasonable relationship between wt
and at would then be

at = wt e0.455 = 1.576 wt (11.1)

Therefore, for at = 10, wt = 10/1.576 = 6.3, so a good initial value for wt would be
around 6.
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Fig. 11.1. Chaining of sampling times when using tripartite classification sampling
plans for monitoring a pest population through time. Circles indicate potential sample
times (bouts). Arrows originating from a sample time indicate the three possible
decisions: (0) intervene because the density is high, (1) check the population at the
next sampling time because the density is intermediate or (2) check the population
after skipping the next sampling time because the density is low.



Sampling plans that classify density into one of two possible categories have
two evaluation criteria: the operating characteristic (OC) and average sample
number (ASN) functions. The OC function is the probability of classifying pest
abundance as less than some critical value and 1 � OC is the probability of
classifying pest abundance as greater than this critical value. With a tripartite
classification plan there are three possible classifications and three corresponding
probabilities of making these classifications as a function of the true pest abun-
dance (PCi , i = 0, 1 and 2 corresponding to Classes 0, 1 and 2 above). Tripartite
classification plans also have ASN functions, and these usually have two peaks
instead of one. Probability of classification (PC) and ASN functions must be deter-
mined using simulation. The methods are analogous to those we are familiar with
for OC and ASN functions. We illustrate constructing a tripartite classification
sampling plan and estimating the PC and ASN functions in Exhibit 11.1.
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Exhibit 11.1 Setting up a tripartite classification sampling plan and its PC and ASN
functions

In this exhibit we illustrate the design and evaluation of a sequential tripartite clas-
sification sampling plan based on Iwao’s stop boundaries. Two Iwao sequential
plans were set up based on the negative binomial distribution with Taylor’s Power
Law (TPL) parameters a = 3 and b = 1.3. The thresholds were wt = 6, at = 10, and α
= 0.2. The stop boundaries are shown in Fig. 11.2a. As for the ordinary Iwao plan,
the sum of pests counted is plotted against the number of sample units collected.
Sampling stops when:

0) the path crosses the topmost boundary,
1) the path emerges into the space between the two ‘arms’, beyond where the
upper boundary of the lower ‘arm’ intersects the lower boundary of the upper
‘arm’, or
2) the path crosses the lowest boundary.

The corresponding decisions are:

0) intervene,
1) resample at the next bout, or
2) resample after skipping the next bout.

The probabilities of making these classifications (PC) and the ASN depend on the
true pest density, and their values were estimated using simulation (Figs 11.2b and
c).



In previous chapters we have used OC and ASN functions to evaluate the perfor-
mance of a sampling plan. These performance measures are functions of the pest
density or pest incidence being sampled. Each OC or ASN value corresponds to a
particular pest density or incidence. However, when we evaluate monitoring proto-
cols, we need to express our evaluation as a function of the population trajectory,
rather than as a function of one single measure of pest abundance. This is a crucial
distinction between sampling once in time and monitoring a population through
time. The performance of a sampling plan is judged with respect to the densities
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Fig. 11.2. Stop boundaries (a), probability of classification functions (PC) (b) and
average sample number function (ASN) (c) for a tripartite sequential classification
sampling plan based on Iwao stop boundaries. The parameters for the sampling
plan were as follows: action threshold = 10, waiting threshold = 6, α = 0.2,
minimum sample size = 5 and maximum sample size = 50. The PC and ASN
functions were determined using simulation (1000 replicates) by describing counts
with a negative binomial distribution and modelling the variance using TPL with 
a = 3.0 and b = 1.3. ___, PC2; … , PC1; – - -, PC0.

11.4 Principles for Quantitative Evaluation of Monitoring Protocols



being assessed, whereas the performance of a monitoring protocol is judged with
respect to densities over time or, in other words, the population path or trajectory
being monitored. Thus, each value of a performance measure for a monitoring pro-
tocol is indexed to a specific population trajectory.

Including the time factor increases the number of meaningful measures of
monitoring protocol performance. These measures include:

• the overall probability of not intervening upon the population trajectory; we
call this the monitoring OC (MOC)

• the number of sample bouts (e.g. the number of times the population is sampled)
• the total number of sample units observed
• the pest abundance when intervention is recommended
• the realized cumulative pest abundance (e.g. the area beneath the population

trajectory), a measure of the overall stress that the crop has experienced

This list is not exhaustive, but these are the measures that we have found useful
when designing monitoring protocols.

These performance indicators can be estimated in two ways. Both methods
require specification of a population trajectory to be monitored and a model for the
distribution of the sample observations (e.g. negative binomial with TPL).

With this method, PC and ASN functions need to have been estimated for the
sampling plan proposed for the monitoring protocol. This is done by simulation
(Exhibit 11.1). The first step in calculating performance indicators for monitoring
is to determine the probability that a sample will be taken at any of the possible
sampling occasions. If, for example, the monitoring period is 71 days long and the
shortest interval between sample bouts is 7 days, then the possible days on which
samples might be taken are days 1, 8, 15, 22, … and 71, corresponding to bout
numbers, b = 1, 2, 3, 4 …, 11. Using the population trajectory, the density, µb, at
any sample bout, b, is known, and the expected outcome from sampling is provided
by the PC functions: PC0(µb) for intervention, PC1(µb) for resampling at the next
bout, and PC2(µb) for skipping one bout. Using these PC functions, we can calcu-
late the probability of sampling (psb) at bout b:

psb = psb�1PC1(µb�1) + psb�2PC2(µb�2) (11.2)

for b = 2, 3, … .
To make Equation 11.2 work for all possible sample bouts, we start with ps1 = 1

and ps0 = 0. Equation 11.2 reflects the fact that the probability of sampling at any
sampling occasion other than the first or second is dependent on the sampling out-
come of the previous two bouts.

The monitoring OC (MOC) – that is, the probability of ‘accepting’ the whole
trajectory and never intervening – is estimated as one minus the sum (over bouts)
of the probability of sampling at each bout, multiplied by the probability of an
intervention at that bout:
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(11.3)

The expected number of sample bouts (eb) is estimated as

(11.4)

The expected total number of sample units collected in all bouts (esu) is estimated
as 

(11.5)

The expected pest density at the end of sampling (ed) is the sum of the density at
each sample bout, multiplied by the product of the probability of sampling and the
probability of intervening:

(11.6)

Note that two endpoints are considered in this equation. If the last sample bout is
reached, then the contribution to ed is the probability of sampling times the density
at that time. At the next to last bout, a decision to wait two time periods to sample
again is equivalent to not intervening, so the density at the last sample occasion
applies here as well. Expected cumulative density (ecd) is calculated just as ed,
except that cumulative density from the start of sampling up to each bout is substi-
tuted for density. The implicit assumption is made here that after intervention, the
population density is zero for the rest of the season. In instances in which this
assumption is unrealistic, the formulae should be modified.

A shortcoming of the calculations in Section 11.4.1 is that they yield expected
values for each of the performance measures, with no indication of the variability
that might be encountered. The second way of estimating these performance mea-
sures allows for assessment of this variability. This method simulates the actual
monitoring process by simulating sampling at each sample bout, by scheduling
future sampling using the simulated data and by recording the results of the moni-
toring. To estimate the performance measures, the monitoring process is simulated
many times and average outcomes are calculated. The procedure is as follows:

1. Specify the population trajectory and calculate the mean densities (or infesta-
tions) at all possible sample bouts along the trajectory.
2. Determine the density, µ, (or infestation) at the first sample bout.
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− −∑ µ µ µ µ
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1 2
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11.4.2 Calculation based on simulation and the trajectory



3. Simulate a single sampling session and record the outcome (i.e. classification 0,
1 or 2) and the number of samples drawn. This simulation makes use of the speci-
fied pest abundance, µ, and a model for the distribution of sample observations (e.g.
negative binomial with TPL). The next step depends on the classification decision:

• Intervene decision: record the density and cumulative density as the final den-
sity and final cumulative density, calculate the total number of sample units
collected, record the number of sample bouts realized and proceed to step 4.

• Last sample bout reached: as for ‘intervene decision’ and proceed to step 4.
• Resample at the next bout: determine the density, µ, at the next sample bout

(from the population trajectory) and return to step 3, unless that sample bout
falls after the end of the monitoring period, in which case proceed as for ‘last
sample bout reached’.

• Skip a sample bout: determine the density, µ, that corresponds to the time for
the second sample bout in the future and return to step 3, unless that sample
bout falls after the end of the monitoring period, in which case proceed as for
‘last sample bout reached’.

4. Repeat steps 2 and 3 many (sr) times.
5. Calculate the summaries:

• MOC: the proportion of simulated monitorings in which a decision to inter-
vene was not made.

• esu, eb: the expected overall number of sample units (esu) and the expected
number of bouts (eb) are the averages of the total samples drawn and of the
number of bouts realized.

• ed, ecd: the expected density at the end of sampling (ed) and the expected
cumulative density (ecd) are the averages of these parameters.

• Variances, and so on: because the outcome after each simulated monitoring of
the population trajectory is available, the mean, variance and range of these
parameters (e.g. the sample size, bouts and density at the end of the monitor-
ing period) can be calculated.

The design of monitoring protocols is analogous to the design of sampling plans.
Parameters are adjusted until acceptable performance is obtained. Design of
monitoring protocols is, however, more difficult than design of sampling plans,
because there are more parameters that influence the performance characteristics,
and because performance must be judged for the many population trajectories that
might be encountered. However, some guiding principles are available.

Some of these principles are similar to those that guide development of sam-
pling plans used once in time (Table 5.2). This is logical because a monitoring pro-
tocol is built round its constituent sampling plan(s). Wide stop boundaries in
sampling plans result in more accurate decisions, while narrow boundaries give less
accurate decisions. Increased accuracy with the sampling plan will result in a
greater likelihood that the monitoring protocol will also lead to a correct decision.
Of course, increased accuracy carries the burden of increased sample cost. Binomial
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sampling plans reduce work, but give lower precision (and possibly lower accuracy:
see Chapter 7) than full count sampling, especially if a tally number of 0 is used and
pest density is high.

One principle is typical for sequential tripartite plans: the two sets of bound-
aries should allow for an intermediate decision to be reached. This can be accom-
plished by adjusting at and wt and by changing the width of the boundaries.
Another principle is typical for monitoring: the repeated testing of whether pest
abundance exceeds a critical value results in a reduction of the monitoring OC,
compared to the OC of constituent sampling plans. This is an important point
and is easily visualized. Suppose that obtaining a ‘tail’ in any flip of a coin is
equivalent to deciding to intervene during sampling and the number of possible
tosses of the coin is equivalent to the number of times (bouts) a population might
be sampled. If only one sample bout is possible, the likelihood of a ‘tails’ (inter-
vening) is 0.5. With two possible tosses of the coin (two possible sample bouts),
the likelihood of obtaining at least one tail is 0.75 ( 0.5, from the first toss; and
0.5 × 0.5 = 52, from getting heads first and then getting tails). With three possible
tosses of the coin the likelihood of obtaining at least one tail (i.e. intervening) is
0.5 + 0.52 + 0.53 = 0.875. Ways to circumvent this reduction in the monitoring
OC include raising at or reducing the number of sample bouts (by shortening the
monitoring period or increasing the time between bouts). However, either of
these actions results in a greater likelihood that the monitoring protocol will not
recommend timely intervention when intervention is required. A balance
between these conflicting objectives must be achieved. This conflict arises for
population trajectories that remain close to but below at for an extended period
of time. Therefore, some of the population trajectories used in evaluations of
monitoring protocols should belong to this group. Another way to diminish the
MOC-reducing effect of multiple testing in cascaded decision sampling is to use
very accurate plans. But this, of course, carries the cost of increased sampling
effort.

To see how a sampling plan (or plans) might perform in the context of monitor-
ing, the plan must be evaluated on population trajectories. These trajectories can
come from two sources. We can use data on actual trajectories or we can con-
struct artificial trajectories. The benefit of using trajectories based on actual data
is that the trajectories are real – or at least as real as the sampling upon which
they are based allows. The limitations of these trajectories are that there are rela-
tively few available for use and they may not provide a decisive test of the moni-
toring protocol. The benefit of artificial trajectories is that they can be
formulated to test very specific hypotheses concerning the performance of the
monitoring protocol. The pitfall with these trajectories is that they may be overly
artificial. We advocate using both types of trajectory. The actual trajectories can
provide insight into the overall performance of the monitoring protocol when
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11.5 Population Trajectories for Use in Evaluating Monitoring
Protocols



applied to real-world situations, whereas artificial trajectories can be used to test
the monitoring protocol in crucial ways. We now describe desirable criteria for
artificial trajectories.

Two types of test need to be made: (i) How quickly does the monitoring proto-
col detect trajectories which reach densities higher than at? (ii) How liable is it to
misclassify a trajectory which stays near but below at?

First, if densities exceed at for more than a brief period of time, any reasonable
monitoring protocol will almost certainly lead to an intervene decision (partly due
to the repeated testing, as noted above). With such population trajectories, it is the
timeliness of intervention which is important. This may be influenced by the rela-
tionship between wt and at, themselves related through the assumed population
growth rate (Equation 11.1). Two types of errors may lead to less than timely inter-
vention. First, as a result of sampling uncertainty, a decision may be made to skip
the next possible sample bout when in fact sampling would have been beneficial
there: not sampling there might allow the population to grow beyond at. Second,
the growth rate of the population being monitored may be greater than the one
used to determine wt, thereby also allowing the population to grow to above at
before sampling is done again. These potential errors indicate that we need to test
how the protocol performs when the trajectories have growth rates greater than the
one used to determine wt (Equation 11.1).

The second type of test that should be made of monitoring protocols is the
ability of the protocol not to recommend intervention when trajectories remain
below at. Incorrect decisions to intervene when the population density is less than
at depend on how close the density is to at and how long it remains there. Densities
close to at over several sample bouts will probably lead to decisions to intervene,
again as a result of the repeated-testing aspects of monitoring protocols based on
repeated sampling. This effect can be partially overcome by reducing the potential
number of sample bouts either by increasing the time interval between bouts or by
increasing wt. However, either of these actions will work against timely interven-
tion when intervention is needed.

A single family of population trajectories can be used to make both of the tests
described above. These trajectories are not meant to depict reality, but merely to
provide patterns that are needed for the tests. The trajectories consist of an expo-
nential increase to a maximum density, maintenance of the maximum density for
some period of time, and then exponential decline (Fig. 11.3). The exponential
decline is included for convenience as a way of reducing density from the maxi-
mum. When using these trajectories, it is also important that they be allowed to
start rising over a range of time intervals during the monitoring period. Otherwise,
the monitoring protocol will always sample the same densities, resulting in an
incomplete picture of performance. For example, if the minimum time between
sample bouts is 7 days, then the trajectory should be allowed to start at some
random point within the first 14 days. This can be accomplished by allowing the
starting time for the trajectory to be a random variable uniformly distributed
between 0 and 14. 
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In this section, we provide examples of designing and evaluating monitoring proto-
cols based on tripartite classification sampling plans. The material is organized into
three exhibits. The analyses presented are loosely based on our work with phy-
tophagous mites, but are not meant to depict any real system. Because the concepts
we are working with in this chapter are relatively new, there are few real systems to
which they have been applied and therefore there are few choices of systems to use
in the exhibits. We chose not to present our work on mites again because that is
readily available elsewhere (Nyrop et al., 1994; van der Werf et al., 1997).
Nonetheless, the exhibits do illustrate the most salient aspects of design and evalu-
ation of monitoring protocols.

The first exhibit (Exhibit 11.2) illustrates how changing at and wt affects the
performance of monitoring protocols. The sampling plans used are all full count
sequential plans based on Iwao boundaries. Two estimated population trajectories
are used in the evaluation. In one, the cumulative density is less than the level
requiring control, while in the other, the cumulative density exceeds this level.
The second exhibit (Exhibit 11.3) compares the performance of three Iwao proce-
dures, all with the same thresholds, where one is a full count procedure, the second
is a binomial procedure with a tally number of 2, and the third plan is a binomial
procedure with a tally number of 6. The same trajectories as in Exhibit 11.2 are
used. The third exhibit (Exhibit 11.4) replaces the single trajectories with trajectories
generated to test specific aspects of monitoring protocol performance.
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11.6 Evaluation of Monitoring Protocols Based on Cascaded Tripartite
Classification

Fig. 11.3. Stimulated population trajectories used to evaluate a monitoring protocol.
Three typical trajectories are shown, each with a different dashed line. The solid line is
the median trajectory.
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Exhibit 11.2. The effect of thresholds on performance of monitoring with tripartite
full count Iwao plans

In this exhibit we set up three Iwao plans, each based on a different pair of thresh-
olds, at and wt, and use the plans to monitor two population trajectories. The
objective in the monitoring is to intervene if cumulative density exceeds 550. The
monitoring period is 100 days and a single sampling plan is used for the entire
period. Three action thresholds (at) were tested; 8, 10 and 12. The minimum wait-
ing time between sample bouts was set to 7 days. Assuming a population growth
factor of about 1.67 per week, corresponding waiting thresholds (wt) were set at 5,
6 and 7 (for simplicity, we used integers for all the thresholds). Remaining parame-
ters for the each of the sampling plans were α = 0.2, minimum sample size 5 and
maximum sample size 50. Sample counts were described using a negative binomial
distribution with TPL parameters a = 3.0 and b = 1.3. Stop boundaries and PC and
ASN functions for the plan with at = 10 and wt = 6 are shown in Fig. 11.2. We
would expect the plan with the lowest thresholds (plan A) to indicate intervention
most frequently and earliest, and the plan with the highest thresholds (plan C) to
indicate intervention least frequently and latest. The remaining plan (plan B) should
provide intermediate results.

Two population trajectories were used to evaluate the resulting monitoring pro-
tocol. In one, density had a maximum of 9.5 and cumulative density was 525,
while in the second, densities grew to 15 and cumulative density was 725. These
population trajectories, while hypothetical, are meant to reflect estimates of actual
population changes. Application of the three monitoring protocols to the two popu-
lation trajectories is illustrated in Figs 11.4 and 11.5. These figures show the two
population trajectories and the sample results through time. A dot indicates the

Fig. 11.4. Illustrative monitoring of a population trajectory using three tripartite
sequential classification sampling plans A–C (a, b and c, respectively). The dashed
horizontal lines show the action and waiting time thresholds for each of the
sampling plans. The trajectory is represented by the solid and dotted line, the
dotted portion indicating that part of the trajectory which was not monitored
because a decision was made to intervene (indicated by the cross). The circles
represent the sample information collected at each monitoring bout.
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sample information that was collected at each realized sample bout. The density
estimate depicted by the dot was calculated by dividing the total count at the end
of the sequential sample by the sample size. These estimates are not used in the
decision-making (which is based on classification); the points are only shown as an
indication of when samples were collected, and what kind of sample information
was collected. A cross indicates that a decision was made to intervene. Note that
the sample estimates of density (dots) for each of the two trajectories are not the
same for each plan. This is because samples are randomly drawn each time a sam-
pling plan is applied to one of the population trajectories. For the first trajectory
(maximum density = 9.5), protocols A and B recommended intervention while pro-
tocol C did not (Fig. 11.4). All three plans led to fortnightly sampling when the pop-
ulation was lower than wt, whereas above wt, weekly samples were taken when
using plan C. For the second trajectory (maximum density = 15), all three plans rec-
ommended intervention, with plan A doing so earliest.

The graphs in Figs 11.4 and 11.5 are useful for visualizing the monitoring
process when applied to a population trajectory. However, these figures do not pro-
vide an insight into how the monitoring protocol will perform on average when
assessing these population patterns. By simulating monitoring of these trajectories
many times, average performance can be calculated. The results of 100 simulations
using the population trajectory with a maximum density of 9.5 are shown in Table
11.1. Plan A nearly always recommended intervention, plan B recommended inter-
vention about 40% of the time and plan C did so about 10% of the time. As this
population trajectory had a cumulative density of 525, the MOC of plan C should
be regarded as much superior to those of plans A and B. The number of sample
bouts was highest with plan C, reflecting that the population was usually monitored
for the entire period.

Continued

Fig. 11.5. Illustrative monitoring of a population trajectory using three tripartite
sequential classification sampling plans A–C (a, b and c, respectively). The dashed
horizontal lines show the action and waiting time thresholds for each of the
sampling plans. The trajectory is represented by the solid and dotted line, the
dotted portion indicating that part of the trajectory which was not monitored
because a decision was made to intervene (indicated by the cross). The circles
represent the sample information collected at each monitoring bout.
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Because at for plan A (8) was less than the maximum density for the first trajec-
tory (9.5), it is not surprising that the monitoring protocol based on this plan had an
MOC close to zero. More surprising perhaps is the large proportion of interventions
scheduled by plan B, whose at (10) was slightly greater than the maximum density
(9.5). This occurred because classification uncertainty was greatly amplified by the
effect of repeated classification.

The results of 100 monitoring simulations using the second population trajec-
tory (some densities > 10) are shown in Table 11.2. Monitoring protocols based on
all three sampling plans always recommended intervention. Plan A did so the earli-
est with resulting lowest density when intervention was recommended and lowest
cumulative density. Plan C resulted in the highest density when intervention was
recommended and the highest cumulative density. Plan B was intermediate in these
regards.

Table 11.1. Results of simulating monitoring of a population trajectory 100 times
using three full count tripartite sequential sampling plans. The sampling plans
differed only in their action and waiting thresholds (at and wt): for plan A at = 8
and wt = 5; for plan B at = 10 and wt = 6; and for plan C at = 12, wt = 7. The
density was less than or equal to 9.5 and the trajectory is portrayed in Fig. 11.4.

Sampling plan

Performance measure A B C

Monitoring OC 0.01 ± 0.01a 0.58 ± 0.05 0.92 ± 0.03
Sample bouts 4.6 ± 0.12 8.2 ± 0.24 8.8 ± 0.12
Total sample units 85.9 ± 5.4 180.0 ± 8.0 161.0 ± 4.9
Cumulative density 176.1 ± 6.6 411.7 ± 14.7 506.5 ± 7.8

aMean and standard error.

Table 11.2. Results of simulating monitoring of a population trajectory 100 times
using three full count tripartite sequential sampling plans. The sampling plans
differed only in their action and waiting thresholds (at and wt): for plan A at = 8
and wt = 5; for plan B at = 10 and wt = 6; and for plan C at = 12, wt = 7. The
maximum density was 15 and the trajectory is shown in Fig. 11.5.

Sampling plan

Performance measure A B C

Monitoring OC 0 0 0
Sample bouts 4.2 ± 0.1a 5.3 ± 0.1 5.6 ± 0.1
Total sample units 78.5 ± 3.4 106.3 ± 3.8 112.2 ± 3.9
Cumulative density 146.7 ± 4.7 236.0 ± 5.2 302.9 ± 6.7
Density at intervention 8.8 ± 0.11 11.2 ± 0.18 12.7 ± 0.11

aMean and standard error.
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Provided that a density at intervention of about 13 and a cumulative density of
approximately 300 is acceptable, plan C is better than plans A or B, because it rec-
ommended intervention many fewer times when intervention was not needed. If
these density and cumulative density values are not acceptable, then one must
resort to plan B. At the beginning of this exhibit we stated that our objective in
monitoring the hypothetical pest was to keep cumulative density below 550. Of
course, before accepting any of these three proposed sampling plans – or any other
plan – further tests should be made using other population trajectories.

Exhibit 11.3. Evaluation of monitoring with full count and binomial tripartite Iwao
plans

In this exhibit we continue the investigation into the properties of tripartite plans in
the context of monitoring, by introducing binomial count plans. We set up three
plans, each with at = 12 and wt = 7. The first plan (A) used complete counts and
was identical to plan C in the previous exhibit. The second plan (B) used binomial
counts with a tally, T, equal to 2 and α = 0.4. The parameter α was increased to
allow for room between the two arms of the stop boundaries, and hence for more
classifications of density between wt and at. The third plan (C) was identical to the
second except that T = 6, which is expected to improve classification accuracy
because the tally number 6 is closer to at and wt (Chapter 7). The negative binomial
distribution with TPL was again used to describe sample observations. 

Stop boundaries for these plans are shown in Fig. 11.6 and probability of clas-
sification (PC) and ASN functions are shown in Fig. 11.7. The precision of the clas-
sifications is greatest with the complete count plan, with the tally 6 binomial plan
offering a slight improvement over the tally 2 binomial plan. The results of 100 sim-
ulations with the lower population trajectory used in Exhibit 11.2 (maximum den-
sity = 9.5) are shown in Table 11.3. The full count plan classified the density as
greater than the action threshold about 5% of the time, the tally 2 plan did so about
60% of the time, and the tally 6 plan did so approximately 30% of the time. The
binomial count plans required fewer sample observations, partly because they
resulted in fewer sample bouts, but also because the ASN functions for these plans
were lower than for the complete count plan (Fig. 11.7).

For the higher population trajectory used in Exhibit 11.2 (maximum = 15), all
three sampling plans did equally well at scheduling intervention when needed
(Table 11.4). In fact, the binomial count plan with a tally point of 2 did slightly
better, in that the density when intervention was recommended was the lowest. This
is a result of the increased variability and bias that occurs when using a tally
number of 2 and the mean is much greater than 2 (Chapter 7).

This exhibit begins to illustrate a general principle of tripartite classification
sampling plans used for monitoring. Sampling plans with low accuracy are often
adequate for detecting growing populations that will exceed the action threshold.
This property stems from the repeated-testing effect of cascading sampling plans.
However, sampling plans with low accuracy are not as effective as sampling plans
with higher accuracy at avoiding incorrect decisions to intervene.

Continued
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Fig. 11.6. Stop boundaries for three tripartite sequential classification sampling
plans. All three plans use an action threshold of 12 and a waiting threshold of 7.
Plan A (a) uses complete counts and α = 0.2. Plans B (b) and C (c) use binomial
counts with T = 2 and 6 respectively and α = 0.4. All three plans have minimum
sample sizes of 5 and maximum sample sizes of 50.

Table 11.3. Results of simulating monitoring of a population trajectory 100 times
using three tripartite sequential sampling plans. The sampling plans had identical
action and waiting thresholds (at and wt) of 12 and 7. Plan A used complete
counts and α = 0.2, plan B used binomial counts with T = 2 and α = 0.4, and plan
C used binomial counts with T = 6 and α = 0.4. The maximum density was 9.5
and the trajectory is portrayed in Fig. 11.4.

Sampling plan

Performance measure A B C

Monitoring OC 0.93 ± 0.03a 0.38 ± 0.05 0.68 ± 0.05
Sample bouts 8.8 ± 0.1 6.6 ± 0.2 7.8 ± 0.2
Total sample units 168.4 ± 5.0 84.5 ± 5.2 86.9 ± 4.0
Cumulative density 509.3 ± 7.4 350.6 ± 16.2 438.6 ± 14.1

aMean and standard error.

Table 11.4. Results of simulating monitoring of a population trajectory 100 times
using three tripartite sequential sampling plans. The sampling plans had identical
action and waiting thresholds (at and wt) of 12 and 7. Plan A used complete counts
and α = 0.2, plan B used binomial counts with T = 2 and α = 0.4 and plan C used
binomial counts with T = 6 and α = 0.4. The maximum density was 15 and the
trajectory is portrayed in Fig. 11.5.

Sampling plan

Performance measure A B C

Monitoring OC 0 0 0
Sample bouts 5.6 ± 0.07a 4.8 ± 0.1 5.4 ± 0.08
Total sample units 113.3 ± 3.9 63.7 ± 3.7 64.0 ± 2.7
Cumulative density 308.8 ± 6.03 251.7 ± 10.7 308.9 ± 8.03
Density at intervention 12.7 ± 0.09 10.9 ± 0.25 12.579 ± 0.15
aMean and standard error.
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Fig. 11.7. Probability of classification (PC) and average sample size (ASN)
functions for the three sampling plans described in Fig. 11.6. The functions were
estimated using simulation (500 replicates) by describing counts with a negative
binomial distribution and modelling the variance using TPL with a = 3.0 and 
b = 1.3.
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Exhibit 11.4. Testing binomial count plans using families of trajectories

In this exhibit we use five families of population trajectories to further examine the
performance of the three sampling plans described in Exhibit 11.3. In each family
the trajectory was described by an exponential increase in density, attainment and
maintenance of a maximum density for a period of time, and then an exponential
decline. Families of trajectories were constructed by allowing the starting point for
the trajectories to be uniformly distributed between 1 and 14 days with an initial
density equal to 0.5.

Two families of trajectories were used to test the effectiveness of the monitor-
ing protocols at avoiding unnecessary decisions to intervene. Each of these used a
growth rate of 0.067 per day and a maximum density of 8. In the first family, maxi-
mum density persisted for 14 days, whereas in the second, the maximum persisted
for 28 days. The results from 100 simulated monitorings are shown in Table 11.5.
For each simulation replicate of monitoring, a new population trajectory was con-
structed (using a random starting time). The sampling plan that used complete
counts (A) was most effective at avoiding unnecessary interventions and the sam-
pling plan that used binomial counts with a tally point of 2 (B) was the least effec-
tive. Increasing the length of time during which density was close to the action
threshold from 14 to 24 days resulted in little change in the monitoring OC for plan
A, but caused a noticeable reduction for both binomial count plans.

The other three families of trajectories were used to test the effectiveness of the
monitoring protocols at scheduling intervention when required. Each family had a
maximum density of 25 that persisted for 7 days. The growth rates for the three
families were 0.067, 0.076 and 0.084 per day. On the basis of 100 simulated

Table 11.5. Results of simulating monitoring families of population trajectories 100
times using three tripartite sequential sampling plans. The sampling plans had
identical action and waiting thresholds (at and wt) of 12 and 7. Plan A used
complete counts and α = 0.2, plan B used binomial counts with T = 2 and α = 0.4
and plan C used binomial counts with T = 6 and α = 0.4. Two families of
trajectories with maximum densities of 8 were used; one where the maximum
persisted for 14 days, and the other where the maximum persisted for 28 days.

Sampling plan

Performance measure A B C

Trajectory with maximum density of 8 for 14 days
Monitoring OC 0.99 ± 0.01a 0.71 ± 0.05 0.91 ± 0.03
Sample bouts 8.4 ± 0.06 7.5 ± 0.15 8.1 ± 0.12
Total sample units 109.3 ± 3.3 75.9 ± 3.3 70 ± 2.7

Trajectory with maximum density of 8 for 28 days
Monitoring OC 0.96 ± 0.02 0.6 ± 0.05 0.71 ± 0.05
Sample bouts 9.1 ± 0.1 7.5 ± 0.19 8.0 ± 0.17
Total sample units 153.0 ± 4.4 89.7 ± 4.6 79.5 ± 3.7
aMean and standard error.



There are three additional topics related to monitoring with cascaded sampling
plans that warrant introduction: the use of sampling plans with more than three
classification choices, the incorporation of time-varying thresholds, and strategies
for including information about pest dynamics into the monitoring protocol. None
of these topics is developed in detail, because they have not been well studied and
have as yet, not shown much practical application. Nonetheless, we think that
they may provide further ideas for developing monitoring protocols in the future.

Monitoring can be done with any sampling plan that provides a choice
between intervening and resampling at a later moment. Sampling plans that clas-
sify pest abundance into one of two categories result in sampling at each successive
potential sample bout if pest density is low. This is feasible, but it incurs greater
sampling effort than necessary (Nyrop et al., 1994; Binns et al., 1996). Monitoring
plans that make use of constituent sampling plans that skip one or more sampling
times, as density allows, can save sample bouts. Tripartite classification sampling
plans allow for skipping the next possible sample bout. Sampling plans can be
designed that allow for skipping more than one future sample bout.

Monitoring with sampling plans that allowed for up to three sample bouts to be
skipped before resampling was proposed and evaluated by van der Werf et al. (1997).
Constituent sampling plans were constructed by combining an upper stop boundary
from an SPRT (for intervention) with a fixed sample size plan (to estimate when to
resample). Density estimates based on the fixed sample size were grouped into cate-
gories that indicated the allowable time to the next sample. These categories were
identified by determining the upper confidence limit for the estimated density that,
assuming a specific growth rate, would lead to the action threshold one, two, three
or four sample bouts in the future. Monitoring with such sampling plans was termed
‘adaptive frequency monitoring’ to emphasize the adaptiveness of sampling fre-
quency. The procedure was evaluated favourably in computer simulations and via
field tests with mites infesting apples in New York State, but has not yet been used
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monitorings, there was little variation in the performance measures among the three
sampling plans, and the plan with the least accuracy did about as well as the plan
with the highest accuracy (the results are not shown). As expected, all plans always
classified density as greater than the action threshold. Perhaps not as obviously, the
densities at which a decision was reached to intervene were similar for each sam-
pling plan and did not increase greatly with increasing growth rate of the popula-
tion being monitored. For the two lower growth rates these densities were about 15
and for the highest growth the densities were about 17. These are all greater than
the action threshold (12), and if unacceptable, would require both wt and at to be
reduced. In all cases the cumulative density was less than the target of 550. These
results reinforce the principle put forth at the end of the previous exhibit: monitor-
ing protocols using sampling plans with low accuracy are often adequate for
detecting growing populations that will exceed the action threshold.

11.7 Further Considerations



in practice. The lack of adoption is probably because the sampling plans are some-
what complicated to use. Action thresholds that increased during the growing
season were used in the monitoring protocol, and this resulted in a set of stop
boundaries that are indexed to a specific time during the growing season.

In the design of monitoring programs, the notion of time-varying thresholds is
highly relevant. For growing pest populations, an early occurrence of a low popula-
tion density may give forewarning of later trouble. Later in the season, less further
growth of the pest population is expected and plants are often less vulnerable to
attack. Hence, there is reason to use lower thresholds initially than later on. On the
other hand, higher thresholds for the early season may be advocated to minimize the
chance that intervention will be recommended when it is not needed. Scenario
studies with sampling plans with different thresholds and varying pest trajectories are
a great help in determining which thresholds give the best monitoring performance,
in view of the objectives of monitoring. These scenario studies can be carried out by
independently studying a portion of the monitoring period when a particular
threshold applies, or by cascading sampling plans with different thresholds over the
entire monitoring period. The advantage of the first approach is that potential prob-
lems with specific sampling plans can be more readily identified. The advantage of
the second approach is that a picture of overall performance is obtained.

The final topic to be presented here concerns incorporation of knowledge
about pest dynamics into the monitoring protocol. As presented thus far, the only
information about pest dynamics used in monitoring protocols based on cascading
sampling plans is the growth rate used to determine the waiting threshold. There
may be instances when the actual growth rate is considerably less than the value
used to determine the waiting threshold, as would be the case when natural ene-
mies were abundant or weather conditions did not favour pest population growth.
If this knowledge of population growth could be incorporated into the monitoring
protocol, the protocol might be less likely to recommend intervention unnecessar-
ily and sampling resources might be conserved. This could be accomplished two
ways. First, a higher waiting threshold could be used if it was suspected that the
actual growth rate was less than the one originally used to construct the sampling
plan. Second, a longer waiting time between sample bouts could be adopted.

This concept also offers an alternative to predicting the outcome of pest – natural
enemy ratios for predicting future pest abundance (Nyrop and van der Werf, 1994).
Decision guides based on this concept have not been widely adopted, probably
because it is often difficult to estimate both natural enemy and pest numbers and
because use of a ratio of pests to natural enemies for predicting the outcome of an
interaction is only useful when there is one key natural enemy or group of similar
natural enemies that drive pest dynamics.

Many important crop pests have multiple generations, and pose a risk of outbreak
over an extended period of time. In order to design and evaluate sampling methods
for the surveillance and management of these pests, we must take the time aspect
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into account. When sampling plans are used in the context of monitoring, design
and evaluation of the plans is more complicated. We not only have to deal with
sampling uncertainty, but also with uncertainty about pest dynamics. The notion of
designing monitoring protocols and evaluating their performance is fairly new and
more work is needed.

There are principles that can be used to guide the development of sampling
plans that are cascaded for the purpose of monitoring population trajectories. For
tripartite classification plans, the action threshold is related to the waiting thresh-
old via the expected growth rate of the target population. The performance of the
monitoring protocol will be influenced by the growth rate used to determine the
waiting threshold. A higher growth rate will lead to a lower waiting threshold,
more intermediate density classifications and hence more sample bouts. Having
more sample bouts guards against a rapidly growing population, but causes more
incorrect decisions to intervene when densities are low.

Another principle is that monitoring results in repeated sampling of the popu-
lation which, even with changing density, leads to an increased likelihood that
intervention will be called for when it is not needed. To circumvent this, action
thresholds must be raised.

A final principle is that the accuracy of constituent sampling plans influences
the performance of the monitoring protocol. This influence is more pronounced
when population trajectories remain below the action threshold. With such popu-
lation patterns, sampling plans with higher accuracy help guard against incorrect
decisions to intervene. However, when populations exceed the action threshold,
increased sampling plan accuracy may add little to the effectiveness of the monitor-
ing protocol.
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The intention of this book is to provide an introduction and basic overview of sam-
pling approaches for use in pest management. We have not tried to cover all possi-
ble approaches and available literature. Other books provide more comprehensive
outlooks; for example, the voluminous multi-author Handbook of Sampling Methods
for Arthropods in Agriculture (Pedigo and Buntin, 1994). Instead, we have concen-
trated on the basic design ingredients and performance indicators that are impor-
tant variables to be considered in any sampling approach. We believe that,
armoured with the ideas and methods that are covered in this volume, the reader
can confidently approach practical problems and consult the literature to find addi-
tional details and helpful suggestions where that seems fit.

Throughout the book, simulation of sampling processes is used as a tool to
design and evaluate proposed sampling plans with respect to their practical pur-
pose. Theory is important for proposing methods; simulation is an indispensable
tool for predicting the practical performance of proposed methods, to compare
methods and alternative sampling designs, and so save a lot of fieldwork. Software
tools are placed on the World Wide Web. They allow a hands-on live experience
that should complement and enhance the experience of reading the book – hope-
fully for the better.

While composing this book, we (re)discovered some approaches that hold
promise for pest management, but are not much used as yet: sequential sampling
plans based on Converging Lines stop boundaries and the calculations for the eco-
nomic value of sampling (VSI) are examples.

Monitoring is a subject where we have gone deeper than might be necessary
for an introductory book. We believe that sampling is often conducted in the
framework of a pest surveillance exercise that extends over a lengthy period of
time. It can be misleading to evaluate sampling performance as if sampling were
done only once. Viewing sampling as a component of time-sequential quality con-
trol of cropping systems provides a different outlook, and suggests other questions
that should be asked relative to sampling than have been asked for the past 10–20
years. For instance, more thought and work is needed on the question of how often
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and at what time samples might be taken optimally, and what is an optimal series of
thresholds to use through time.

There is a wealth of literature on fitting parameters to sampling distributions of
pests and on variance–mean relationships, but there is a lack of underpinning for
economic thresholds, and there is not quite enough information on pest trajec-
tories over time. These two aspects have tremendous influence on the design para-
meters of sampling plans, and they deserve more attention in future studies. It
would also be helpful if more data were made available on frequency distributions
for pest counts to allow for bootstrapping. The Internet might be a useful place to
store and make available such data.

There is also a need to develop tools for management (including sampling) at
higher levels of scale, because it is not always appropriate to assume that a pest
occurs or develops in a single field, independent of the situation in neighbouring
fields. For instance, foci of potato late blight (Phytophthora infestans) spread their
spores to neighbouring crops (Zwankhuizen et al., 1998), and calculations of infec-
tion pressure due to dispersal processes at the between-fields scale are relevant to
farmers. This requires observations on the density and source strength of disease
foci at the regional scale. Sampling methodology for such sources is non-existent;
nevertheless, practice is going ahead in this area (see www.dacom.nl).

Related to the matter of scale is whether agriculture will emphasize curative or
preventative methods to combat pests. Sampling is often framed in a reactive mode
of pest management. If that were the only application of sampling, pest manage-
ment should be renamed ‘pest mismanagement’. Proactive methods, based on plant
resistance, crop rotation, sanitation and so on, are required, and are often most
effective when implemented at larger scales. The most recent policy plans for agri-
culture not only demand a reduction of pesticide usage, but they also call for a shift
of emphasis, away from end-of-pipe solutions towards the purposeful design of pest-
suppressive agro-ecosystems. There is no reason why observations and sampling
should not play a role in designing proactive and potentially area-wide approaches
for pest management. The same principles as are described in this book may be
useful.

The fact that this book is largely about theory and calculations does not mean
that we believe that sampling approaches can be designed behind the computer
screen only. There is a mix needed between demand and supply and between practice
and theory. Design tools create value if they are matched with practical questions and
when practitioners are involved in the design process. But if tools are developed
without taking into account user feedback, they are not likely to be adopted.

In the simulations, this book emphasizes descriptive models; that is, models
that characterize a process or phenomenon without bothering about the underlying
causal relationships. We use such models for frequency distributions (although
some of these models represent stochastic processes based on biological parame-
ters), for spatial patterns, for variance–mean relationships, for pest dynamics and
for damage. Mechanistic models, if available, could replace the descriptive models.
Unfortunately, in many situations process-based models are not available, or they
may be available but are not valid beyond a restricted range of conditions, whereas
it may be possible to construct meaningful descriptive models without these restric-
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tions. Descriptive models with few parameters have the advantage of ease of use.
Therefore, the bias towards descriptive models in this book should be regarded
more a matter of practicality than a matter of preference. Especially in the area of
crop damage, the use of crop physiological models may give substantial help in
establishing time-variable action thresholds (Rossing et al., 1994).

Sampling natural enemies was treated as a possibility. Its practicality, however,
seems low because of the increased sampling effort. Yet the social desirability is
high, given decreasing consumer and governmental acceptance of pesticide use.
We cannot predict the way in which things will develop. It will certainly be attrac-
tive to bring more ecology into sampling for pest management, but who will pay
the bill? Or will legislation push for adoption of such approaches? Researchers help
the implementation of enemy-conserving approaches by developing decision tools,
but the adoption of such tools depends on factors that are outside the control of
researchers. A worthwhile aspect of including enemies in sampling programs may
be the learning component. Some growers seem to appreciate the learning com-
ponent of decision tools more than direct decision support (Zadoks, 1989; Leeuwis,
1993; Wagenmakers et al., 1999). This aspect may be used to encourage adoption,
especially in an era that is seeing expansion of nature-friendly production methods.

A complicating factor is the topic of multiple pests and multiple pest thresh-
olds. Most of the approaches outlined in this book are based on single pests, yet
practical decision-making proceeds in the presence of multiple pests, with the pos-
sibility of using a single management action to combat multiple pests. It is
inevitable that this will tend to lower action thresholds. It is difficult to include
these aspects in a general and formal way. Much depends on the particularities of
the production system, and methods should be developed in view of actual
problems.

Information and communication technology may have profound impacts on
the way in which sampling and monitoring in cropping systems are implemented.
Many of the current sampling approaches work with charts on which pre-calcu-
lated and integrated information are summarized into simple decision criteria that
are compared to collected sample information. Hand-held or tractor-mounted com-
puting systems, in conjunction with communication technologies, may enable real-
time and very site-specific calculations to be made. The new tools provide ways to
put more biological realism and site specificity into decision tools.

As computer hardware becomes faster, smaller and cheaper, and global posi-
tioning equipment becomes affordable for large-scale farming operations, we are
likely to see more spatially explicit approaches in pest management. Another factor
driving this development is the progress in spatial statistics. More fine tuning
becomes technically, computationally and economically feasible. This may lead to
the disappearance of sampling approaches that take the whole field as a manage-
ment unit. The time seems ripe to take space into account in crop protection and
to start asking questions such as: What are the spatial patterns? How can they be
observed efficiently? What techniques can be developed for site specific manage-
ment? What are the relevant damage relationships when we take spatial variability
into account? What benefits for crop protection can be expected when using spatially
explicit information at small scales? We have chosen not to deal with the matter in
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this book, because the area is too new and bare. There are texts that deal with spa-
tial statistics in an ecological context (Bailey and Gatrell, 1995) and papers on site-
specific management of pests and diseases in the primary literature (see, e.g. Weisz
et al., 1996).

Can we do with less variance–mean modelling? All of the sampling methods
presented in Chapter 5 use some kind of variance model, be it a probability distrib-
ution, a variance–mean relationship (Taylor’s Power Law (TPL)) or a correlation
coefficient, to set up stop boundaries. When sample data are collected for classifica-
tion, any information about variability contained therein is not used. Why is this?
There are two reasons: practicality and the generally poor precision of variance
estimates, as discussed in Chapter 3 (Section 3.3.1). Therefore, although the use of
hand-held devices for data logging and processing brings variance calculations
close (and variable intensity sampling (VIS) in Chapter 8 uses it), we are often
well off using a variance model.

An important question is: When a sampling plan has been developed, can it be
used in another agro-eco-economical setting? In other words, is the plan portable?
We touched on this in Chapter 6, but no general answer can be given. From situa-
tion to situation, there may be variability in the damage potential of the pest, the
price of the product, the pest growth rate, the sampling distribution and so on,
which would preclude portability. Nevertheless, asking whether plans could be
transported is a worthwhile research question. And most certainly within organism
groups variance–mean models and damage relationships show similarities, which
would suggest that management approaches should to a certain extent also be
portable. For instance, variance–mean models for mites vary within a limited
range. Hence, estimating parameters for such models in every new instance seems
less than worthwhile, especially because simulation studies such as those in
Chapter 5 show that the operating characteristic function of sample plans is not
overly sensitive to the choice of parameter value within the biologically plausible
range, provided that an appropriate tally number is used if the sample plan is bino-
mial (Nyrop et al., 1999). The two factors that carry the largest risks of causing
sample plan failure, and which therefore deserve the most attention during trans-
port from one situation to another are the critical density of the pest, and the
acceptability of a plan to growers and advisers in view of their experience, objec-
tives and constraints with the cropping system and its pests.

As to evaluation, Chapter 6 has dwelled on it at length. We think that the hard
criteria that may be derived from simulation are important, and an indicator such as
average sample size will weigh heavily in any evaluation by practitioners. However,
practitioners also include heavily perceived or real risks to their crop, and practicali-
ties such as multiple pests, scheduling farm operations and so on when they think
about adopting sample plans for pest management decision-making. Therefore,
evaluation cannot be only a laboratory undertaking. This is only one of the stages in
the process at which interaction with the users is a key element of evaluation.

You have now reached the end of this book (or you cheated). That is good
(not the cheating!) because it shows you started with the end in mind. All of the
tools in this book are discussed towards an end – practically, economically and eco-
logically sound crop protection. We wish you much success in applying these tools.
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Some of the terms used in this book may be unfamiliar to readers, especially those
who have no background in statistics. We give here short definitions of some of
these terms and where each one is described first (or where the description is
extended).

Term Chapter Brief definition

accuracy 2 A measure of how close an estimate is to what it is
estimating. It combines bias and precision, and can be
estimated by the mean square error, mse. The greater the
mse, the lower is the accuracy, and vice versa.

average sample 1, 5 For a sequential sampling plan, the average number of 
number (ASN) required sample units. The ASN function is the

relationship between the population mean, µ, and the
expected number of sample units required before
sampling stops.

bias 2, 7 The difference between the expectation of an estimate
and the true value.

binomial count 7 A sampling plan where the information collected from a
sampling plan sample unit is only whether or not the number of

individuals on it is greater than a prespecified tally
number, T.

cascaded 11 The use of sampling plans sequentially in time to 
sampling monitor a population.

Central Limit 2 A mathematical theorem which states that, under very 
Theorem broad conditions, the mean of n sample units becomes

close to a normal distribution as n increases. 

Glossary
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Term Chapter Brief definition

classification 3 A probability interval around cd (or cp) which can be 
interval used to classify a sample mean. For example, if 

, it can be classified as less than 

cd with probability of being correct approximately equal

to α /2, and vice versa if 

(assuming that n is large enough for the Central Limit 

Theorem). We call a classification
interval. See also ‘confidence interval’ (q.v.).

coefficient of 2, 3 The standard deviation divided by the mean: σ/µ. The 

variation (CV) CV of a sample mean is, { }/µ, which can be 

estimated by { }/m.

confidence 3 An interval that is used to delimit the value of an 
interval unknown population characteristic. For example, if n is

large enough for the normal distribution to be assumed,
a (1 � α)% confidence interval for µ is 

(m � zα /2 sem, m + zα /2 sem) 
where the probability, under the standardized normal
distribution, of getting a value greater than zα /2 is α /2,
and sem is the standard error of the mean.

Converging Lines 5 A sequential sampling plan characterized by straight 
sampling plan converging stop boundaries.

critical density 1 A density of individual pests per sample unit used for 
(cd) comparison purposes to decide on a management

action. Intervention is regarded as appropriate when 
µ > cd, and as inappropriate when µ ≤ cd.

critical 4, 7 When the sample mean is a proportion (p), cp plays a 
proportion (cp) similar role to the critical density, cd: intervention is

regarded as appropriate when p > cp, and as
inappropriate when p ≤ cp. When binomial count
sampling is used, cp may depend on T, the tally number,
and cp is then often written as cpT.

cumulative 2, 4 The theoretical probability of getting a given data value 
probability or any smaller value. For example, the Poisson 
distribution probability of getting 1 or fewer individuals when the 
function mean is equal to µ = e�µ + µe�µ.

expected value 2 The expected value of an estimate is the long-term 
of an estimate average of sample estimates.

frequency 2, 4 A summary of the sample data. The sample data (Xj) are 
distribution classified into classes: the number of sample units for

which Xj is equal to i is defined as the frequency, fi. The
collection of all fi, i = 0, 1, 2 … is the frequency distribution.

  V n/

σ / n

cd z V n± α / /2

m cd z V n> + α / /2

m cd z V n< − α / /2
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Term Chapter Brief definition

goodness-of-fit 4 An objective method for determining if sample data 
test (χ2) conform to a specific distributional model.

incidence–mean 7 A descriptive mathematical model for the relationship 
relationship between a population mean and the proportion of

sample units with more than T pests per unit.

Iwao sampling plan 5 Sampling plan proposed by Iwao, based on classification
intervals around the critical density or proportion. 

likelihood 4 Given a collection of sample data, Xi, and a probability
distribution model p(X|θ) with parameter θ, the
likelihood is the probability of getting the data as a
function of θ. The value of θ for which the likelihood is
maximized, written as 

^
θ, can be used to obtain an

optimal probability model for the data: p(X|
^
θ).

mean square error 2, 7 The variance plus the bias (squared) of an estimate. If 
of an estimate (mse) the estimate is unbiased, mse = variance. 

median 5 The value that divides a frequency or probability
distribution into two equal parts. For a frequency
distribution, 50% of the data values lie above the
median, and 50% below it. For a probability
distribution, p(X ≤ median) = 0.5.

monitoring 11 A strategy for determining (i) when sample bouts should 
protocol be made, based on information and data already

obtained, and (ii) as data are collected and analysed,
how to use the results for decision-making.

normal 2, 3 When enough sample units are collected, the sample 
distribution mean is distributed approximately according to the

normal distribution see ‘Central Limit Theorem’. The
parameters of the normal distribution are the mean, µ,
and the variance, σ 2.

observer bias 2 Sample units are collected by human beings (observers).
Depending on the sample unit or other properties of a
sampling plan, an observer may consistently under-
estimate (or over-estimate) the true mean. This
constitutes observer bias. 

operating 1, 2 A type of probability of classification function. The 
characteristic OC function is the probability, for any true mean pest 
(OC) function density, µ, of recommending non-intervention based 

on sample data collected according to the sampling
plan.

pest density per 2 The average number of pests per sample unit in the 
sample unit population being studied.
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Term Chapter Brief definition

pest incidence 4, 7 When the information collected on a sample unit is
restricted to 0 or 1, such as whether or not the sample
unit is infected by a pathogen (X = 1 if infected, X = 0 if
not), pest incidence is defined as the probability 
p(X = 1). In binomial count sampling, pest incidence is
defined as the probability of more than T pests in a
sample unit: p(X > T).

population 2 The expectation, or long-term average, of the number of 
mean (µ) organisms on a sample unit.

population (of 2 Total number of sample units (in the area to be 
sample units) sampled), each of which has a chance of being selected.

precision 2, 3 A measure of how close a sample estimate is to its
expectation. The precision of an estimate is inversely
proportional to its variance.

presence–absence 7 A binomial count sampling plan with tally number 
sampling plan T = 0.

primary sample 8 See ‘two-stage sampling’.
unit

probability 4 A theoretical model for a frequency distribution. A 
distribution probability distribution has one or more parameters

which can be adjusted to make it fit more closely as a
model for a given frequency distribution (see ‘likelihood’).

probability of 1, 11 Once a decision-making sampling plan has been 
classification properly specified, the probability of any one of the 
(PC) function; allowable classification decisions can be estimated for 
also called all values of the true mean density, if the distribution of 
probability of sample data is known. The functions that relate the 
decision function probabilities of these classifications to the true mean are
(PD) defined as probability of classification functions. In

particular, the probability of a classification
recommending a decision not to intervene is called the
OC function.

probability 2, 4 The theoretical probability of obtaining a given data 
density function value. For example, the Poisson probability of getting

one individual when the mean is equal to µ is µe�µ.

quartile 5 The quartiles and median divide a frequency or
probability distribution into four equal parts. For a
frequency distribution, 25% of the data values lie below
the lower quartile, 50% below the median, and 75%
below the upper quartile. For a probablity distribution,
p(X ≤ lower quartile) = 0.25, p(X ≤ median) = 0.5, 
p(X ≤ upper quartile) = 0.75.
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Term Chapter Brief definition

relative frequencies 4, 9 The frequencies (fi) divided by the sample size (n).

resampling 9 A method for estimating properties of a sampling plan
by resampling from data which have already been
collected. It is especially useful when no suitable
theoretical distribution can be found to represent the
sample data. The resampling is done with 
replacement.

sample 1, 2 All the sample units collected according to a sampling
plan.

sample bout 10, 11 The complete process of implementing a sampling plan,
including going to the site. It may also include choosing
an appropriate sampling plan.

sample data 2, 4 The data collected on sample units; in this book, usually
the numbers of organisms counted on sample units 
(Xi = data in sample unit i).

sample mean (m) 2 The average of the data collected on sample units: 
m = ΣXi/n.

sample size (n) 2 The number of sample units collected in a sample.

sample unit 2, 6 The smallest physical entity which is collected during
sampling, and from which data are recorded. 

sample variance (V) 2 An estimate of the true variance, σ 2. V is the sum of the
squared differences between the data on each sample
unit, Xi, and the sample mean, m, divided by the sample
size minus one: V = Σ (Xi � m)2/(n � 1).

sampling with 2, 9 Allowing repeated selection of the same sample units. If 
replacement n sample units are collected by sampling with

replacement, the total number of distinct sample units
may be less than n.

sampling without 2 Not allowing repeated selection of any sample unit. 
replacement Sample units selected in this way are all different.

secondary 8 See ‘two-stage sampling’.
sample unit

sequential 5 A sampling plan in which sample units are collected 
sampling plan one by one (or in groups of more than one). As each

sample unit is collected, the data are accumulated and
compared with preset boundary conditions to decide
whether to stop and make a classification decision, or
continue sampling.
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Term Chapter Brief definition

spatial pattern 4 The way in which individual organisms are situated in
an area. The organisms may be spread out at random,
independently of each other; or their positions may
depend on each other, so that the pattern becomes
either more aggregated or more uniform.

Sequential 5 A sequential sampling plan based on a Sequential 
Probability Probability Ratio Test: proposed by Wald. The stop
Ratio Test (SPRT) boundaries are parallel straight lines for most 
sampling plan distribution types used in decision sampling.

standard deviation 2 The square root of a population variance. For example, 

the standard deviation of the mean is .

standard error (se) 2, 3 The square root of a sample variance, calculated from 

sample data .

standard error 2, 3 The square root of the sample variance of a mean. 
of a mean (sem)

standard 2 The normal distribution with mean, µ, equal to 0 
normal distribution and variance, σ 2, equal to 1. A common notation for a

random variable following the standard normal
distribution is z. A useful notation for defining values of
z is p(Z ≤ zα) = 1 � α.

tally number (T) 7 In binomial count sampling, the number that defines a
classification of sample units. If the number of
individuals on a sample unit is greater than T that
sample unit is classified as ‘greater than T’, and as ‘less
than or equal to T’ otherwise. See pest incidence.

Taylor’s Power 3 A descriptive mathematical model for the relationship 
Law (TPL) between the mean density of a population (pests per

sample unit) and the variance: V = a mb.

theoretical 2 The expectation, or long-term average, of the squared 
variance (σ2) difference between the data on each sample unit and

the population mean: σ2 = E(X � µ)2 In general, σ 2

denotes the true variance of any distribution.

time-sequential 10 The time-sequential version of the SPRT, proposed 
probability ratio for sampling through time by Pedigo and van Schaick. 
test (T-SPRT)

trajectory (of a 10, 11 The density (or infestation) of an organism, as it varies 
population) over time.

tripartite sampling 11 A sampling plan with three classification alternatives. 
plan Tripartite sampling plans are constructed by combining

two sets of stop boundaries (either Iwao, SPRT or
Converging Lines). 

sem V n= /

s V=

σ σ2 / /n n=
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Term Chapter Brief definition

two-stage sampling 8 A procedure used when there is a hierarchical
arrangement of sample units in a crop, such as leaves on
plants, and the pest is most conveniently counted on the
smaller units. A number of primary sample units (e.g.
plants) are selected, and from these a number of
secondary sample units (e.g. leaves) are examined for
the pest.

value of sample 6 VSI is a summary statistic, representing an overall 
information (VSI) numerical evaluation of the economic costs and benefits

of sampling for decision-making.

variable intensity 8 A method of ensuring good coverage of a management 
sampling (VIS) unit while collecting sample data. Locations for

sampling are chosen over the whole management unit,
and at least one sample unit is taken at each location.
As data are collected from each location in turn, they
are all analysed together to determine how many sample
units to take at the next location.
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Accuracy 20–21
Adaptive frequency monitoring see Monitoring
Aggregated spatial pattern see Spatial aggregation
Analysis of variance see Nested sampling
ASN function see Average sample number

function
Average sample number function (ASN)

definition of 9
distribution, in sequential procedures

107–108
estimation of, see Iwao’s sequential

procedure
for double sampling 48–52
see also Batch sequential sampling; Variable

intensity sampling

Batch sequential sampling 46–59
average sample number (ASN) function 53
double sampling 46–52
operating characteristic (OC) function 53

Bayesian estimation 236–238
posterior distribution 237–238
prior distribution 237–238

Beta-binomial distribution 83–89
cluster size in 83
intracluster correlation, ρ 84–89, 128–129
relationship to other distributions 90
see also Simulation; Variance–incidence

relationship 89, 128–129
Bias 19–23

dealing with 22–23
enumeration bias 19, 22
selection bias 19–22

Binomial count sampling 
bias 156–157, 164, 180–182
estimation 177–178
tally number 158–165
variance 156–157, 164, 180–182
with empirical model 173–177
with negative binomial distribution

165–172
with Poisson distribution 156–165
with variance–mean relationship

170–171
Binomial distribution 82–83

relationship to other distributions 89–90
Binomial sampling see Binomial count sampling;

Resampling
Bootstrap see Resampling

cd see Critical density
Central Limit Theorem 29–38, 42, 53
χ2 distribution see Goodness of fit
Chi square distribution see χ2 distribution
Classification 45–46
Classification interval 45, 46, 98, 117
Cluster see Beta-binomial distribution, Variable

intensity sampling
Coefficient of variation (CV) 28, 30, 44–45, 177
Confidence interval 43–44
Converging Lines sequential procedure

116–121, 122–124
effect of parameters on 102, 

117–118
stop boundary 116–117

Critical density (cd) 5–8, 45, 140

Index
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Decision guide 132
adoption by users 132
design of 132–134
evaluation of 132–134, 138–141
expected value of sample information see

Expected value of sample information
field evaluation of 139–140
robustness of 140–141
sampling plan in, see Sampling plan
see also Management unit

Degrees of freedom see Goodness of fit

Economic injury level (EIL) 3–5
Economic threshold (ET) 5
EIL see Economic injury level
Error 

random 20
systematic 19–20

Estimation 42–45
Green’s stop boundary 120, 122
see also Bayesian estimation; Binomial count

sampling; Time sequential estimation
ET see Economic threshold
Evaluation see Decision guide
Expected value of sample information 19–20, 42

Fitting distributions 
effect of sample size 78–80
goodness-of-fit test see Goodness of fit
maximum likelihood estimates see

Maximum likelihood
mechanics of 80–81

Frequency distribution 27–29, 62–63
Full count sampling 156

Gibbs process 94–95
Goodness of fit 67–71

degrees of freedom 68
grouping in 69
significance probability 69
χ2 test for 68–69

Green’s stop boundary see Estimation

Incidence 82–89
Incidence–mean relationship 89, 128
Integrated pest management 2–3

Iwao’s variance–mean relationship (IVM) see
Variance–mean relationships

Iwao’s sequential procedure 98–108, 122–124
effect of parameters on 102, 103
estimating operating characteristic (OC)

and average sample number (ASN)
functions 100–101

stop boundaries 98, 100

Likelihood ratio 108–110, 228–229

Management unit 3, 134–135
Maximum likelihood 66–69, 80
Monitoring 11–12

action threshold 247
adaptive frequency monitoring 263–264
expected bouts 251
expected density 251
expected total sample units 251
monitoring operating characteristic (MOC)

250, 251
monitoring protocol 11, 246, 249–263
probability of classification 248, 250–251
simulation of 251–252
tripartite classification sampling 246–249,

255–263
waiting threshold 247

Monitoring protocol see Monitoring
Multistage sampling see Nested sampling

Negative binomial distribution 71–77
exponent k 72–77, 127–128, 226
Iwao’s variance–mean relationship in 77
relationship to other distributions 89–90
Taylor’s power law in 77
variance formula 72
see also Simulation

Nested sampling 
analysis of variance, use in 185–191
definition of 184
optimal sample size 188
primary sample unit 184
secondary sample unit 184
two-stage sampling 184, 185–191
variance components 185–188
variance of sample mean 186, 187–188, 204
variance–mean relationships in 187
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Normal distribution 29–38, 42–44, 46, 211
standard normal deviate 33–34
standard normal distribution 43–44
see also Central Limit Theorem

OC function see Operating characteristic
function

Operating characteristic function (OC)
calculation using Normal distribution

34–38
definition of 9–10
estimating, see Iwao’s sequential procedure
for double sampling 48–52
simulating 35
steepness of 10
see also Batch sequential sampling;

Resampling; Variable intensity sampling 

Patches see Spatial pattern
Pattern see Spatial pattern
Poisson cluster process 94
Poisson distribution, relationship to other

distributions 89–90
Poisson probability distribution 63–66
Population 18
Population trajectory 231, 249, 253–255
Precision 20–21, 44–45
Probability distributions 62–63, 91
Probability of classification see Monitoring
Probability of decision curves 7–9
Probability of decision functions 11–12

Random pattern 63–64
Random sampling 17–19
Relative frequencies 63
Resampling 

basic samples for 212–215
comparison with distribution models 221
evaluation of binomial sampling 217–220
evaluation of sequential sampling 216–217
OC functions, estimate of 208–212
principles of 206–208

Sample path 137
Sample size 

choosing for estimation 44–45, 177–178

minimum with sequential procedures 101,
141

Sample unit 18–29, 63, 135–136
see also Nested sampling

Sample variance 27–32
Sampling 

definition of 3
with replacement 26–27
without replacement 26–27

Sampling effort 8
Sampling plan 24, 134–138

criteria 24
design ingredients 134–138
practical feasibility 24
precision 24, 44–45
relevance 24
reliability 24, 42, 101
representativeness 23–24, 42, 101
see also Sample unit

Sequential sampling 97–98
Significance probability see Goodness of fit
Simulation 

of beta-binomial ρ 128–129
of negative binomial k 127–128
of sampling process 25–27
see also Decision guide, evaluation of;

Monitoring
Spatial aggregation 71–72
Spatial pattern 61–63

patches 71, 191–192
simulation of 94–95

SPRT see Wald’s sequential probability ratio test
Standard deviation 30–36
Standard error 30
Standard normal distribution see Normal

distribution
Stop boundary 

for batch sequential sampling 52
for double sampling 47
see also Converging Lines sequential

procedure; Iwao’s sequential procedure;
Wald’s sequential probability ratio test 

Tally number see Binomial count sampling
Taylor’s power law (TPL) see Variance–mean

relationships
Time sequential classification 228–235, 242–243
Time sequential estimation 236–243
Time sequential sampling (TSS) see Time

sequential classification
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Tripartite classification sampling see Monitoring
T-SPRT see Time sequential classification
Two-stage sampling see Nested sampling

Uncertainty 
effect on decision making 6–8
in sample estimates 43

Value of sample information (VSI) 141–153
loss functions 141
prior distributions 141

Variable intensity sampling (VIS) 192–202
look-up charts 198–201
operating characteristic (OC) and average

sample number (ASN) functions
201–202

use of variance components 198–199
variance–mean relationship in 201–202

Variance 27–32
see also Nested sampling

Variance components see Nested sampling;
Variable intensity sampling

Variance–incidence relationship see
Beta-binomial distribution

Variance–mean relationships 53–55
Iwao’s variance–mean relationship (IVM)

54, 77
portability of 54–55
Taylor’s power law (TPL) 54–55, 77, 99, 127
variability about 55, 127
see also Nested sampling; Variable intensity

sampling

Wald’s sequential probability ratio test (SPRT)
108–115, 122–124, 228

effect of parameters on 102, 111
stop boundary 110
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