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Preface

Science is a process of asking questions, in most cases precise, quantitative ques-
tions that allow distinctions to be drawn between alternative explanations 
of events. Asking the right questions in the right way is a fundamental skill in
scientific enquiry, yet in itself it receives surprisingly little explicit attention 
in scientific training. Students being trained in scientific subjects, for instance in
sixth forms, colleges and universities, learn the factual science and some of the
tools of enquiry such as laboratory techniques, mathematics, statistics and com-
puting, but they are taught little about the process of question-asking itself.

The first edition of this book had its origins in a first-year undergraduate prac-
tical course that we, and others since, have run at the University of Nottingham
for several years. The approach adopted there now also forms the basis for a more
advanced second-year course. The aim of the courses is to introduce students 
in the biological sciences to the skills of observation and enquiry, but focusing
on the process of enquiry – how to formulate hypotheses and predictions from
raw information, how to design critical observations and experiments, and how
to choose appropriate analyses – rather than on laboratory, field and analytical
techniques per se. This focus is maintained in the third edition. However, as in
the second edition, we have responded to a number of positive suggestions from
people who have used the book, either as teachers or as students, which we
think enhance further its usefulness in teaching practical biology generally.

The most major change has been with respect to the presentation of statist-
ical tests. In the previous editions, we presented these as boxes of formulae for
hand calculation, supported by worked examples of each test in the Appendices.
Partly because of this, we also limited the tests to fairly basic ones. Feedback
from users and reviewers, however, as well as our own experience, strongly indi-
cates a preference for a computer-based presentation; that is, presenting tests as
they are encountered in computer statistical packages. We have thus entirely
replaced the hand-calculation boxes in the main text with boxes based on pro-
cedures and output in two widely used commercial packages: Microsoft Excel
and Statistical Packages for the Social Sciences (SPSS), along with a package
(AQB) written specifically to accompany the book that allows additional import-
ant tests not covered by the two (or any other, as far as we are aware) commer-
cial packages. However, we have included the hand-calculation boxes in the
Appendices because, as previously, we consider it important that the underlying
arithmetic of the (basic at least) tests is understood. As well as adopting a com-
puter package approach, we have greatly expanded the range of tests covered to
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viii PREFACE

include, among other things, repeated-measures designs, analysis of covariance,
multiple regression and principal components analysis. This therefore caters for
the wider spectrum of eventualities likely to be encountered in extended project
and research contexts. The Test Finder, Quick Test Finder and Help sections
have been expanded accordingly.

With increasing emphasis on the wider communication and public under-
standing of science, we have introduced entirely new sections on presenting
information as a talk or poster paper at meetings, and writing for a broader, non-
specialist readership, such as that of a newspaper or magazine. We have also
added sections on using on-line literature databases, such as the Web of Science
and Biosis, and the ethical implications of working with biological material, 
the latter a now essential consideration in any study as the legal regulation of
procedures, including those used in teaching, gathers pace.

The book looks at the process of enquiry during its various stages, starting
with unstructured observations and working through to the production of a
complete written report. In each section, different skills are emphasized and a
series of main examples runs through the book to illustrate their application at
each stage.

The book begins with a look at scientific question-asking in general. How do
we arrive at the right questions to ask? What do we have to know before we can
ask sensible questions? How should questions be formulated to be answered most
usefully? Chapter 1 addresses these points by looking at the development of test-
able hypotheses and predictions and the sources from which they might arise.

Chapter 2 looks at how hypotheses and predictions can be derived from
unstructured observational notes. Exploratory analysis is an important first 
step in deriving hypotheses from raw data and the chapter introduces plots and
summary statistics as useful ways of identifying interesting patterns on which to
base hypotheses. The chapter concludes by pointing out that although hypo-
theses and their predictions are naturally specific to the investigation in hand,
testable predictions in general fall into two distinct groups: those dealing with
some kind of difference between groups of data and those dealing with a trend
in the quantitative relationship between groups of data.

The distinction between difference and trend predictions is developed further
in Chapter 3, which discusses the use of confirmatory analyses. The concept of
statistical significance is introduced as an arbitrary but generally agreed yard-
stick as to whether observed differences or trends are interesting, and a number
of broadly applicable significance tests are explained. Throughout, however, the
emphasis is on the use of such tests as tools of enquiry rather than on the statis-
tical theory underlying them. Having introduced significance tests and some
potential pitfalls in their use, the book uses the main worked examples to show
how some of their predictions can be tested and hypotheses refined in the light
of testing.

In Chapter 4, the book considers the presentation of information. Once
hypotheses have been tested, how should the outcome be conveyed for greatest
effect? The chapter discusses the use of tables, figures and other modes of pre-
sentation and shows how a written report should be structured. The chapter
then moves on to consider the presentation of material in spoken and poster
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PREFACE ix

paper formats, and how to recast written reports of results for a general, rather
than specialist, readership.

At the end of the book is a number of appendices. These provide expanded
self-test questions and answers sections based on the material in the previous
chapters, formulae for calculating the simpler significance tests and some statis-
tical tables for use in significance testing.

We said that the book had its inception in our introductory practical course.
This course was developed in response to an increasingly voiced need on the
part of students to be taught how to formulate hypotheses and predictions
clearly and thus design properly discriminating experiments and observations.
As we descend into ever more neurotically prescribed teaching and assessment
procedures, the need for students to be given clear guidance on such aspects 
of their work becomes correspondingly greater. As always, both our practical
teaching and the book have continued to benefit enormously from our ongoing
and enjoyable interaction with our undergraduates. Their insights and enquiries
continue to hone the way we teach and have been the guiding force behind all
the discussions in the book.

Finally, we should like to thank all the people who have commented on the
book since its first appearance, and encouraged us to think about the further
amendments we have made in this present edition. In particular, we thank Tom
Reader for the generous amount of time he has spent discussing the book with
us, commenting on drafts of many of the amendments and giving freely of his
experience in and enthusiasm for the business of communicating science. We
also thank six anonymous reviewers of the second edition for their helpful sugges-
tions as to what a third edition might comprise; we have followed these almost
to the letter and the final product has undoubtedly been enhanced by them.

Chris J. Barnard
Francis S. Gilbert

Peter K. McGregor
November 2006 
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1 Doing science
Where do questions come from?

You’re out for a walk one autumn afternoon when you notice a squirrel pick-
ing up acorns under some trees. Several things strike you about the squirrel’s
behaviour. For one thing it doesn’t seem to pick up all the acorns it comes
across; a sizeable proportion is ignored. Of those it does pick up, only some are
eaten. Others are carried up into a tree where the squirrel disappears from view
for a few minutes before returning to the supply for more. Something else strikes
you: the squirrel doesn’t carry its acorns up the nearest tree but instead runs 
to one several metres away. You begin to wonder why the squirrel behaves in
this way. Several possibilities occur to you. Although the acorns on the ground
all look very similar to you, you speculate that some might contain more food
than others, or perhaps they are easier to crack. By selecting these, the squirrel
might obtain food more quickly than by taking indiscriminately any acorn it
encountered. Similarly, the fact that it appears to carry acorns into a particular
tree suggests this tree might provide a more secure site for storing them.

While all these might be purely casual reflections, they are revealing of the
way we analyse and interpret events around us. The speculations about the
squirrel’s behaviour may seem clutched out of the air on a whim but they are in
fact structured around some clearly identifiable assumptions, for instance that
achieving a high rate of food intake matters in some way to the squirrel and
influences its preferences, and that using the most secure storage site is more
important to it than using the most convenient site. If you wanted to pursue your
curiosity further, these assumptions would be critical to the questions you asked
and the investigations you undertook. If all this sounds very familiar to you as a
science student it should, because, whether you intended it or not, your specula-
tions are essentially scientific. Science is simply formalised speculation backed
up (or otherwise) by equally formalised observation and experimentation. In its
broadest sense most of us ‘do science’ all the time.
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2 CHAPTER 1 DOING SCIENCE

1.1 Science as asking questions

Science is often regarded by those outside it as an open-ended quest for objective
understanding of the universe and all that is in it. But this is so only in a 
rather trivial sense. The issue of objectivity is a thorny one and, happily, well
beyond the scope of this book. Nevertheless, the very real constraints that 
limit human objectivity mean that use of the term must at least be hedged about
with serious qualifications. The issue of open-endedness is really the one that
concerns us here. Science is open-ended only in that its directions of enquiry 
are, in principle, limitless. Along each path of enquiry, however, science is far
from open-ended. Each step on the way is, or should be, the result of refined
question-asking, a narrowing down of questions and methods of answering 
them to provide the clearest possible distinction between alternative explana-
tions for the phenomenon in hand. This is a skill, or series of skills really, 
that has to be acquired, and acquiring it is one of the chief objectives of any 
scientific training.

While few scientists would disagree with this, identifying the different skills
and understanding how training techniques develop them are a lot less straight-
forward. With increasing pressure on science courses in universities and colleges
to teach more material to more people and to draw on an expanding and increas-
ingly sophisticated body of knowledge, it is more important than ever to under-
stand how to marshal information and direct enquiry. This book is the result of
our experiences in teaching investigative skills to university undergraduates in
the life sciences. It deals with all aspects of scientific investigation, from thinking
up ideas and making initial exploratory observations, through developing and
testing hypotheses, to interpreting results and preparing written reports. It is not
an introduction to data-handling techniques or statistics, although it includes a
substantial element of both; it simply introduces these as tools to aid investiga-
tion. The theory and mechanics of statistical analysis can be dealt with more
appropriately elsewhere.

The principles covered in the book are extraordinarily simple, yet, paradoxic-
ally, students find them very difficult to put into practice when taught in a piece-
meal way across a number of different courses. The book has evolved out of 
our attempts to get over this problem by using open-ended, self-driven practical
exercises in which the stages of enquiry develop logically through the desire 
of students to satisfy their own curiosity. However, the skills it emphasises are
just as appropriate to more limited set-piece practicals. Perhaps a distinction 
– admittedly over-generalised – that could be made here, and which to some
extent underpins our preference for a self-driven approach, is that with many
set-piece practicals it is obvious what one is supposed to do but often not why
one is supposed to do it. Almost the opposite is true of the self-driven approach;
here it is clear why any investigation needs to be undertaken but usually less
clear what should be done to see it through successfully. In our experience,
developing the ‘what’ in the context of a clear ‘why’ is considerably more instruc-
tive than attempting to reconstruct the ‘why’ from the ‘what’ or, worse, ignoring
it altogether.
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BASIC CONSIDERATIONS 3

1.2 Basic considerations

Scientific enquiry is not just a matter of asking questions; it is a matter of asking
the right questions in the right way. This is more demanding than it sounds. 
For a start, it requires that something is known about the system or material in
which an investigator is interested. A study of mating behaviour in guppies, for
instance, demands that you can at least tell males from females and recognise
courtship and copulation. Similarly, it is difficult to make a constructive assess-
ment of parasitic worm burdens in host organisms if you are ignorant of likely
sites of infection and can’t tell worm eggs from faecal material.

Of course, there are several ways in which such knowledge can be acquired:
e.g. the Internet/World Wide Web, textbooks, specialist academic journals (many
of which are now available electronically through licensed subscribers like univer-
sities and colleges), asking an expert, or simply finding out for yourself through
observation and exploration.

These days, the first choice for browsing information is often the Internet/
World Wide Web. The advantages of such ‘online’ searching in terms of speed
and convenience hardly need detailing here, but there are dangers, as we indi-
cate later. A good way of accessing reliable scientific information like this is to use
one or more of the professional Web-based literature databases, such as the Web
of Science (http://wos.mimas.ac.uk), PubMed (www.pubmedcentral.nih.gov)
or BIOSIS (www.biosis.org). These search the peer-reviewed (and therefore
quality-controlled) academic journals for articles containing information relev-
ant to your request. Each of these provides tips on how best to use them, but a
handful of basic ones is given in Box 1.1.

Whichever mode of acquiring information is preferred, however, a certain
amount of background preparation is usually essential, even for the simplest
investigations. In practical classes, some background is usually provided for you
in the form of handouts or accompanying lectures, but the very variability of 
biological material means that generalised and often highly stylised summaries
are poor substitutes for hard personal experience. Nevertheless, given the inevit-
able constraints of time, materials and available expertise, they are usually a neces-
sary second best. There is also a second, more important, reason why there is
really no substitute for personal experience: the information you require may not
exist or, if it does exist, it may not be correct. The Internet/World Wide Web is
a particular hazard here because of the vast amount of unregulated information
it makes available, often dressed up to appear professional and authoritative.
Such material should always be treated with caution and verified before being
trusted. Where academic information is concerned, a first step might be to check
the host site to see whether it is a recognised institution, like a university or an
academic publisher; another might be to look for other research cited in the
information, for instance in the form of journal citations (see section 4.3.1),
which can be cross-checked. Entering the author’s name into the search field of
one of the web-based professional literature databases (Box 1.1) to see whether
this person has a published research track record can be another approach.
Using general-purpose search engines, like Yahoo! or Google, can often turn up

ASKQ_C01.qxd  18/06/2007  03:10PM  Page 3



4 CHAPTER 1 DOING SCIENCE

Searchable online literature
databases, like the Web of
Science, Biosis or PubMed,
allow you to search for 
articles by particular authors, 
or on particular topics, or
according to some other 
category, such as a journal 
title or research organisation.
An example of the kind of
search fields on offer, in this
case for the Web of Science,
is shown in Fig. (i).

The key to using the
search fields effectively lies
in the precision with which
you specify your terms: too
general and you will be
swamped with articles that
are of little or no interest, too
narrow and you will wind 
up with only one or two and
miss many important ones.
To help with this, the search fields provide vari-
ous means of linking terms so that searches can
be focused (the AND, OR, NOT options – called
‘operators’ – in Fig. (i)). However, the process
inevitably involves some compromises.

For example, suppose you were interested in
steroid hormone secretion as a cause of immune
depression in laboratory mice. You might start,
seemingly reasonably, by typing ‘steroid hormone
AND immune depression AND laboratory mice’
into the ‘Topic’ search field in Fig. (i) and hitting
the ‘Search’ button. Disappointingly, and rather
to your surprise, this yields nothing at all – appar-
ently nobody has published anything on steroid
hormones and immune depression in mice. At
the other extreme, a search for ‘immune AND
mice’ yields over 45,000 articles, a wholly un-
manageable number of which many can be seen
at a glance to be irrelevant to your needs. Clearly,
something between the two is what is required.

The reason the first search turned up nothing
is not, of course, because nobody has published

anything on the topic, but because the search
term was restricted to a very specific combination
of phrases. It could well be that people have 
published on the effects of steroid hormones 
on immune depression in mice but didn’t use 
the precise phrases selected. For instance, they
may have reported ‘depressed immune respon-
siveness’ or ‘depressed immunity’, rather than
‘immune depression’, and referred to specific
hormones, such as testosterone or cortisol, rather
than the generic term ‘steroid’. There are various
ways of catering for this. In the Web of Science,
the form ‘immun* SAME depress* AND mice’ 
in the ‘Topic’ search field allows the system 
to search for any term beginning with ‘immun’ 
or ‘depress’, such as ‘immune’, ‘immunity’,
‘immunocompetence’, ‘depression’, ‘depressed’
and so on, thus picking up all the variants. The
term ‘SAME’ ensures similar combinations of
phrase are recognised, in this case, say, ‘immune
depression’, ‘depressed immunity’ or ‘depressed
immune response’. Running the search again 

Box 1.1 Searching online literature databases

Figure (i) A screen capture from the Web of Science as it appeared in 2006.
Like other similar sites, it is regularly updated, so the exact appearance of the
search field screen changes.
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BASIC CONSIDERATIONS 5

information from the professional literature too, but just as often you’re likely 
to get information from unregulated personal websites, or other sources of un-
certain provenance. Taking received wisdom at face value can be a dangerous 
business – something even seasoned researchers can continue to discover, the
famous geneticist and biostatistician R. A. Fisher among them.

In the early 1960s, Fisher and other leading authorities at the time were greatly
impressed by an apparent relationship between duodenal ulcer and certain rhesus
and MN blood groups. Much intellectual energy was expended trying to explain
the relationship. A sceptic, however, mentioned the debate to one of his blood-
group technicians. The technician, for years at the sharp end of blood-group
analysis, resolved the issue on the spot. The relationship was an artefact of blood
transfusion! Patients with ulcers had received transfusions because of haemor-
rhage. As a result, they had temporarily picked up rhesus and MN antigens from
their donors. When patients who had not been given transfusions were tested,
the relationship disappeared (Clarke, 1990).

Where at all feasible, therefore, testing assumptions yourself and making up
your own mind about the facts available to you is a good idea. It is impossible to
draw up a definitive list of what it is an investigator needs to know as essential
background; biology is too diverse a subject and every investigation is to some
extent unique in its factual requirements. Nevertheless, it is useful to indicate the
kinds of information that are likely to be important. Some examples might be as
follows:

Question Can the material of interest be studied usefully under laboratory conditions or
will unavoidable constraints or manipulations so affect it that any conclusions
will have only dubious relevance to its normal state or functions?

For instance, can mating preferences in guppies usefully be studied in a small
plastic aquarium, or will the inevitable restriction on movement and the impover-
ished environment compromise normal courtship activity?

Or, if nutrient transfer within a plant can be monitored only with the aid of a
vital dye, will normal function be maintained in the dyed state or will the dye
interfere subtly with the processes of interest?

in this form yields around 450 articles, much 
better than zero or 45,000, but with quite a lot 
of them still redundant. If the search is spec-
ified a little more tightly as ‘immun* SAME
depress* AND mice AND hormone’, however, it
turns up around 40 articles, and all much more
on target.

All the searchable databases use these kinds 
of approaches for refining searches, some very

intuitive, some less so. One thing you will 
quickly notice, though, is that exactly the same
search can turn up a different number and selec-
tion of articles depending on which database you
are using – Biosis, for example, manages to find
something under the initial over-specific search
that drew a blank on the Web of Science. For this
reason, it is good practice to run searches on a
selection of databases.
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6 CHAPTER 1 DOING SCIENCE

Question Is the material at the appropriate stage of life history or development for the
desired investigation?

There would, for instance, be little point in carrying out vaginal smears on
female mice to establish stages of the oestrous cycle if some females were less
than 28 days of age. Such mice may well not have begun cycling.

Likewise, it would be fruitless to monitor the faeces of infected mice for the
eggs of a nematode worm until a sufficient number of days have passed after
infection for the worms to have matured.

Question Will the act of recording from the material affect its performance?

For example, removing a spermatophore (package of sperm donated by the
male) from a recently mated female cricket in order to assay its sperm content
may adversely affect the female’s response to males in the future.

Or, the introduction of an intracellular probe might disrupt the aspect of cell
physiology it was intended to record.

Question Has the material been prepared properly?

If the problem to be investigated involves a foraging task (e.g. learning to find
cryptic prey), has the subject been trained to perform in the apparatus and has
it been deprived of food for a short while to make it hungry?

Similarly, if a mouse of strain X is to be infected with a particular blood 
parasite so that the course of infection can be monitored, has the parasite been
passaged in the strain long enough to ensure its establishment and survival in the
experiment?

Question Does the investigation make demands on the material that it is not capable of
meeting?

Testing for the effects of acclimation on some measure of coping in a new environ-
ment might be compromised if conditions in the new environment are beyond
those the organism’s physiology or behaviour have evolved to meet.

Likewise, testing a compound from an animal’s environment for carcinogenic
properties in order to assess risk might not mean much if the compound is
administered in concentrations or via routes that the animal could never experi-
ence naturally.

Question Are assumptions about the material justified?

In an investigation of mating behaviour in dragonflies, we might consider using
the length of time a male and female remain coupled as an index of the amount
of sperm transferred by the male. Before accepting this, however, it would be
wise to conduct some pilot studies to make sure it was valid; it might be, for
instance, that some of the time spent coupled reflected mate-guarding rather
than insemination.
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BASIC CONSIDERATIONS 7

By the same token, assumptions about the relationship between the staining
characteristics of cells in histological sections and their physiological properties
might need verifying before concluding anything about the distribution of 
physiological processes within an organ.

The list could go on for a long time, but these examples are basic questions of
practicality. They are not very interesting in themselves but they, and others like
them, need to be addressed before interesting questions can be asked. Failure to
consider them will almost inevitably result in wasted time and materials.

Of course, even at this level, the investigator will usually have the questions
ultimately to be addressed – the whole point of the investigation – in mind, and
these will naturally influence initial considerations. Before we develop this fur-
ther, however, there is one further, and increasingly prominent, issue we must
address, and that is the ethics of working with biological material.

1.2.1 Ethical considerations

Because biological material is either living, or was once living, or is derived from
something that is or was living, we are sensitive to the possibility that another
living organism may be harmed in some way as a result of what we are doing. Of
particular concern is the possibility that our activity might cause such an organ-
ism to suffer, physically or psychologically. We try very hard to avoid suffering
ourselves because, by definition, it is extremely unpleasant, so the question arises
as to whether we should risk inflicting it on another living being simply because
we are interested in finding something out about it. This is not an easy ques-
tion to answer, not least because of the difficulty of knowing whether species
very different from ourselves, such as invertebrates, are capable of experiencing
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8 CHAPTER 1 DOING SCIENCE

anything that might reasonably be called suffering in the first place. However,
good science is mindful of the possibility, and works to various guidelines and
codes of practice, some enforced by law, to give organisms the benefit of the
doubt. While minimising the risk of suffering is important in itself, there is also
a straightforward practical reason why we should take care of the organisms 
we use, whatever they may be, since any results we obtain from them could be
affected if the organism is damaged or in some way below par.

Suffering may not be the only potential ethical concern. If material is coming
from the field, for example, there could be conservation issues. Is the species
concerned endangered? Is the habitat it occupies fragile? Are there unwelcome
consequences for populations or habitats of removing material and/or returning
it afterwards? Questions like this can lead to acute dilemmas. For instance, the
fact that a species is becoming endangered may mean there is a desperate need
for more information about it, but the very means of acquiring the information
risks further harm.

As awareness of these issues increases, ethical considerations are beginning to
play a more explicit role in the way biologists approach their work. Not just in
terms of taking greater care of the organisms they use, and being better informed
about their needs, but at the level of how investigations are designed in the first
place. Take sample size, for instance. Deciding on a suitable sample size is a
basic problem in any quantitative study. It might involve an informal judgement
on the basis of past experience or the outcome of other studies, or it might depend
on power tests (see Box 3.14) to calculate a sample size statistically. Where there
are ethical concerns, a power test would arguably be better than ‘guesstimation’
because it would provide an objective means of maximising the likelihood of a
meaningful result while minimising the amount of material needed (a smaller
sample would risk the outcome being swamped by random noise, while a larger
one would use more material than necessary). But, of course, the ideal sample size
indicated by the power test might demand more material than can be sustained
by the source, or involve a very large number of animals in a traumatic experi-
mental procedure. The value of proceeding then has to be judged against the
likely cost from an ethical perspective, a task with considerable room for debate.
Detailed discussion of these issues is beyond the scope of this book, but a good
idea of what is involved can be found in Bateson (1986, 2005), who provides a
digestible introduction to trading off scientific value and ethical concerns, and
the extensive ethical guidelines for teachers and researchers in animal behaviour
published by the Association for the Study of Animal Behaviour (ASAB) and its
North American partner, the Animal Behavior Society (ABS) (see www.asab.org
or www.animalbehavior.org or each January issue of the academic journal
Animal Behaviour). It is also well worth looking at the website of the UK National
Centre for the 3Rs (www.nc3rs.org; the three Rs stand for the Replacement,
Refinement and Reduction in the use of animals in research), a government-
funded organisation dedicated to progressing ethical approaches to the use of
animals in biology. For discussion of more philosophical issues, see, for example,
Dawkins (1980, 1993) and Barnard and Hurst (1996). It is important to stress
that, tricky as these kinds of decision can be, ethical considerations should
always be part of the picture when you are working with biological material.
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THE SKILL OF ASKING QUESTIONS 9

1.3 The skill of asking questions

1.3.1 Testing hypotheses

Charles Darwin once remarked that without a hypothesis a geologist might as
well go into a gravel pit and count the stones. He meant, of course, that simply
gathering facts for their own sake was likely to be a waste of time. A geologist is
unlikely to profit much from knowing the number of stones in a gravel pit. This
seems self-evident, but such undirected fact-gathering (not to be confused with
the often essential descriptive phase of hypothesis development) is a common
problem among students in practical and project work. There can’t be many 
science teachers who have not been confronted by a puzzled student with the
plea: ‘I’ve collected all these data, now what do I do with them?’ The answer,
obviously, is that the investigator should know what is to be done with the data
before they are collected. As Darwin well knew, what gives data collection direc-
tion is a working hypothesis.

The word ‘hypothesis’ sounds rather formal and, indeed, in some cases
hypotheses may be set out in a tightly constructed, formal way. In more general
usage, however, its meaning is a good deal looser. Verma and Beard (1981), for
example, define it as simply:

a tentative proposition which is subject to verification through subsequent
investigation. . . . In many cases hypotheses are hunches that the researcher
has about the existence of relationships between variables.

A hypothesis, then, can be little more than an intuitive feeling about how some-
thing works, or how changes in one factor will relate to changes in another, or
about any aspect of the material of interest. However vague it may be, though, it
is formative in the purpose and design of investigations because these set out to
test it. If at the end of the day the results of the investigation are at odds with the
hypothesis, the hypothesis may be rejected and a new one put in its place. As we
shall see later, hypotheses are never proven, merely rejected if data from tests so
dictate, or retained for the time being for possible rejection after further tests.

1.3.2 How is a hypothesis tested?

If a hypothesis is correct, certain things will follow. Thus if our hypothesis is 
that a particular visual display by a male chaffinch is sexual in motivation, we
might expect the male to be more likely to perform the display when a female is
present. Hypotheses thus generate predictions, the testing of which increases or
decreases our faith in them. If our male chaffinch turned out to display mainly
when other males were around and almost never with females, we might want
to think again about our sexual motivation hypothesis. However, we should be
wrong to dismiss it solely on these grounds. It could be that such displays are
important in defending a good-quality breeding territory that eventually will
attract a female. The context of the display could thus still be sexual, but in a less
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10 CHAPTER 1 DOING SCIENCE

direct sense than we had first considered. In this way, hypotheses can produce
tiers of more and more refined predictions before they are rejected or tentatively
accepted. Making such predictions is a skilled business because each must be
phrased so that testing it allows the investigator to discriminate in favour of or
against the hypothesis. While it is best to phrase predictions as just that (thus:
males will perform more of display y in the presence of females), they sometimes
take the form of questions (do males perform more of display y when females
are present?). The danger with the question format, however, is that it can 
easily become too woolly and vague to provide a rigorous test of the hypothesis
(e.g. do males behave differently when females are present?). Having to phrase 
a precise prediction helps counteract the temptation to drift into vagueness.

Hypotheses, too, can be so broad or imprecise that they are difficult to reject.
In general the more specific, mutually exclusive hypotheses that can be formu-
lated to account for an observation the better. In our chaffinch example, 
the first hypothesis was that the display was sexual. Another might be that it
reflected aggressive defence of food. Yet another that it was an anti-predator 
display. These three hypotheses give rise to very different predictions about the
behaviour and it is thus, in principle, easy to distinguish between them. As we
have already seen, however, distinguishing between the ‘sexual’ and ‘aggressive’
hypotheses may need more careful consideration than we first expect. Straw
man hypotheses are another common problem. Unless some effort has gone 
into understanding the material, there is a risk of setting up hypotheses that are
completely inappropriate. Thus, suggesting that our displaying chaffinch was
demonstrating its freedom from avian malaria would make little sense in an 
area where malaria was not endemic. We shall look at the development of 
hypotheses and their predictions in more detail later on.

1.4 Where do questions come from?

As we have already intimated, questions do not spring out of a vacuum. They are
triggered by something. They may arise from a number of sources.
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1.4.1 Curiosity

Questions arise naturally when thinking about any kind of problem. Simple
curiosity about how something works or why one group of organisms differs in
some way from another group can give rise to useful questions from which
testable hypotheses and their predictions can be derived. There is nothing wrong
with ‘armchair theorising’ and ‘thought experiments’ as long as, where possible,
they are put to the test. Sitting in the bath and wondering about how migratory
birds manage to navigate, for example, could suggest roles for various environ-
mental cues like the sun, stars and topographical features. This in turn could 
lead to hypotheses about how they are used and predictions about the effects 
of removing or altering them. By the time the water was cold, some useful 
preliminary experiments might even have been devised.

1.4.2 Casual observation

Instead of dreaming in the bath, you might be watching a tank full of fish, or sift-
ing through some histological preparations under a microscope. Various things
might strike you. Some fish in the tank might seem very aggressive, especially
towards others of their own species, but this aggressiveness might occur only
around certain objects in the tank, perhaps an overturned flowerpot or a clump
of weed. Similarly, certain cells in the histological preparations may show un-
expected differences in staining or structure. Even though these aspects of 
fish behaviour and cell appearance were not the original reason for watching 
the fish or looking at the slides, they might suggest interesting hypotheses for
testing later. A plausible hypothesis to account for the behaviour of the fish, 
for instance, is that the localised aggression reflects territorial defence. Two 
predictions might then be: (a) on average, territory defenders will be bigger 
than intruders (because bigger fish are more likely to win in disputes and thus
obtain a territory in the first place) and (b) removing defendable resources like
upturned flowerpots will lead to a reduction in aggressive interactions. Similarly,
a hypothesis for differences in cell staining and structure is that they are due to
differences in the age and development of the cells in question. A prediction
might then be: younger tissue will contain a greater proportion of (what are 
conjectured to be the) immature cell types.

1.4.3 Exploratory observations

It may be that you already have a hypothesis in mind, say that a particular species
of fish will be territorial when placed in an appropriate aquarium environment.
What is needed is to decide what an appropriate aquarium environment might
be so that suitable predictions can be made to test the hypothesis. Obvious things
to do would be to play around with the size and number of shelters, the position
and quality of feeding sites, the number and sex ratio of fish introduced into the
tank and so on. While the effects of these and other factors on territorial aggres-
siveness among the fish might not have been guessed at beforehand, such manip-
ulations are likely to suggest relationships with aggressiveness that can then be
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12 CHAPTER 1 DOING SCIENCE

used to predict the outcome of further, independent investigations. Thus if
exploratory results suggested aggressiveness among defending fish was greater
when there were ten fish in the tank compared with when there were five, 
it would be reasonable to predict that aggressiveness would increase as the 
number of fish increased, all other things being equal. An experiment could then
be designed in which shelters and feeding sites were kept constant but differ-
ent numbers of fish, say two, four, six, eight, ten or 15, were placed in the tank.
Measuring the amount of aggression by a defender with each number of fish
would provide a test of the prediction.

1.4.4 Previous studies
One of the richest sources of questions is, of course, past and ongoing research.
This might be encountered either as published literature (see Box 1.1) or ‘live’ as
research talks at conferences or seminars. A careful reading of most published
papers, articles or books will turn up ideas for further work, whether at the level
of alternative hypotheses to explain the problem in hand or at the level of further
or more discriminating predictions to test the current hypothesis. Indeed, this 
is the way most of the scientific literature develops. Some papers, often in the
form of mathematical models or speculative reviews, are specifically intended 
to generate hypotheses and predictions and may make no attempt to test them
themselves. At times, certain research areas can become overburdened with
hypotheses and predictions, generating more than people are able or have the
inclination to test. If this happens, it can have a paralysing effect on the devel-
opment of research. It is thus important that hypotheses, predictions and tests
proceed as nearly as is feasible hand in hand.

1.5 What this book is about

We’ve said a little about how science works and how the kind of question-
asking on which it is based can arise. We now need to look at each part of the
process in detail because while each may seem straightforward in principle,
some knotty problems can arise when science is put into practice. In what follows,
we shall see how to:

1. frame hypotheses and predictions from preliminary source material,

2. design experiments and observations to test predictions,

3. analyse the results of tests to see whether they are consistent with our 
original hypothesis, and

4. present the results and conclusions of tests so that they are clear and 
informative.

The discussion deals with these aspects in order so that the book can be read
straight through or dipped into for particular points. A summary at the end of
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each chapter highlights the important take-home messages and the self-test
questions at the end show what you should be able to tackle after reading the
book.

Remember, the book is about asking and answering questions in biology – 
it is not a biology textbook or a statistics manual and none of the points it 
makes are restricted to the examples that illustrate them. At every stage you
should be asking yourself how what it says might apply in other biological con-
texts, especially if you have an interest in investigating them!
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So far, we’ve discussed asking questions in a very general way. Simply being told
that science proceeds like this, however, is not particularly helpful unless it is
clear how the principles can be applied to the situation in hand. The idea of this
chapter is thus to look at the development of the procedure in the context of 
various investigations that you might undertake in practical and project work.
We shall assume for the moment that the material of interest is derived from
your own observations. We shall start, therefore, with the problem of making
observations and directing them in order to produce useful information.

2.1 Observation

2.1.1 Observational notes and measurements

When first confronted with an unfamiliar system, it is often difficult to discern
anything of interest straight away. This seems to be true regardless of the com-
plexity of the system. For instance, a common cause of early despair among 
students watching animals in a tank or arena for the first time is the mêlée of
ceaselessly changing activities, many of which seem directionless and without 
an obvious goal. An equally common complaint is that the animals seem to be
doing nothing at all worth mentioning. It is not unusual for both extremes to be
generated by the same animals.

In both of the earlier mentioned cases, the problem almost always turns out
to be not what the animals are or are not doing, but the ability of the observer
to observe. This is because observation involves more than just staring passively
at material on the assumption that if anything about it is interesting then it will

2 Asking questions
The art of framing hypotheses and predictions
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OBSERVATION 15

also be obvious. To be revealing, observations may need to be very systematic,
perhaps involving manipulations of the material to see what happens. They may
involve measurements of some kind since some things may be apparent quant-
itatively rather than qualitatively. In themselves, therefore, observations are
likely to involve a certain amount of question-asking. Their ultimate purpose,
however, is to provide the wherewithal to frame testable hypotheses and the 
discriminating predictions that will distinguish between the hypotheses.

To see how the process works, we shall first give some examples of observa-
tional notes and then look at the way these can be used to derive hypotheses and
predictions. These examples, therefore, develop through the book from initial
observational notes, through framing and testing hypotheses, to producing a
finished written report. The examples are based on the kinds of preliminary notes
made during practical, field course and research project exercises by our own
students at various stages of their undergraduate training. They come from four
different fields of study, but their common feature is that they provide scope 
for open-ended investigation and hypothesis testing. Of course, the fact that we
happen to have selected these particular examples to illustrate the process is
irrelevant to the aim of the book, as the range of other examples running through
it amply demonstrates. What emerges from the examples applies with equal
weight in all branches of biology from molecular genetics and cell biology to 
psychology and comparative anatomy.

Example 1 Material: Samples of leaves collected in the field from early-successional (dandelion,
Taraxacum officinale; plantain, Plantago lanceolata; poppy, Papaver rhoeas),
mid-successional (clover, Trifolium repens; ox-eye daisy, Leucanthemum vulgare)
and late-successional (dogrose, Rosa canina; ragwort, Senecio jacobaea; black-
thorn, Prunus spinosa; goldenrod, Solidago canadensis) plant species; graph
paper; binocular microscope.

Notes: Collected leaf samples show a lot of variation in damage. Some leaves
have several semi-circles eaten in from the edges; some have numerous holes
through the tissue, many brown round the edges; others show extensive damage
with most of the leaf missing in many cases and damage to the stems and twigs
they are on. There is considerable size variation in the leaves. Look at the size
range in undamaged leaves and divide into three size classes. Measure size by
drawing round whole leaves on graph paper and counting the squares within the
boundary. Count number of leaves with different kinds of damage in each size
class: ‘small’ leaves – 41 with small hole damage, four with marginal damage, 
17 with severe damage; ‘medium-sized’ leaves – 12 with small holes, 29 with
marginal damage, 34 with severe damage; ‘large’ leaves – two with small holes,
22 with marginal damage, 40 with severe damage. One obvious possibility is 
that size reflects height off the ground and the effects of different kinds of 
herbivore, perhaps mainly slugs and snails on the smaller leaves, caterpillars and
other insects on the medium-sized (shrubs, bushes?) leaves and maybe cattle or
deer on the largest. It also looks as if the smaller (low-growing?) leaves have
much more damage than the larger ones (84 per cent showing some damage,
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compared with 47 and 23 per cent in the other two categories). Maybe this is 
just because bigger plants have more leaves, so more escape damage. While
examining the samples, notice several other things. Some leaves have tough
‘skins’, often with hairs on the surface; these are mainly from the medium-sized
category (per cent with hairs visible to naked eye: small, 0; medium, 21; large,
9). Some of the bigger leaves smell strongly or have sticky or latexy sap when
squeezed, but the last is also the case with what look like dandelion leaves. The
stems of some of the medium-sized and bigger ones have thorns or sticky hairs.
There’s also more colour variation in these two categories, some leaves being
reddish rather than green. It looks like the tougher, more strongly smelling 
samples generally have less damage than the others.

Example 2 Material: Stained blood smears, vials of preserved ectoparasites, gut nematodes
and faecal samples from live-trapped bank voles (Clethrionomys glareolus), micro-
scope with eyepiece graticule, clean microscope slides and coverslips, pipettes.

Notes: Looking at blood smears under a microscope, notice range of red and
white blood cells. Some red cells in some of the smears have small stained 
bodies in them. These turn out to be a stage in the life cycle of a protozoan 
parasite, Babesia microti, which infects voles. Some slides seem to have much
higher densities of red cells than others. The number of fleas and ticks in each
vial varies a lot. Several voles didn’t seem to have any, while some had a large
number. Divide samples by age and sex, and do some counts of infected red
cells; scan a roughly standard-width field along the graticule scale for each vole
and count number of infected cells (adult males: 21, 45, 3, 0, 64; adult females:
16, 1, 13, 0, 0; juvenile males: 0, 5, 34, 0, 0; juvenile females: 0, 0, 0, 16, 0). Count
ticks recovered from same groups (adult males: 0, 8, 3, 0, 7; adult females: 0, 1,
0, 0, 2; juvenile males: 2, 2, 0, 5, 3; juvenile females: 0, 0, 0, 2, 0). Smear some
faecal samples onto slides and inspect under microscope. Lots of fragments 
of plant material and detritus. Some samples have clear oval objects which, on
asking, turn out to be nematode eggs. Sometimes there are very large numbers
of eggs, sometimes none. Too difficult to count all the eggs in each sample, so
designate a rank score from 0 (no eggs) to 5 (more than 100 eggs). Scores for
adult males: 3, 5, 5, 0, 3; for adult females: 2, 5, 0, 2, 2; for juvenile males: 
2, 2, 4, 2, 1; for juvenile females: 0, 1, 0, 2, 1. On looking at the tubes of preserved
worms from the same animals, notice that those with high egg scores do not
always have more worms, but some have a greater range of worm sizes. Measure
small samples of worms against scale on graticule (ranges for five males: 12–
25 units, 9–18 units, 13–28 units, 17–22 units, 11–14 units; ranges for five females:
14–23, 13–19, 12–20, 13–30, 15–29 units).
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Example 3 Material: Vials of water containing suspensions of soil-dwelling nematodes from
three sites differing in heavy metal and organophosphate pollution, microscope
with eyepiece graticule, clean microscope slides and coverslips, pipettes, diag-
nostic key to common species morphologies.

Notes: Pipette 2 × 0.2-ml droplets of each sample onto a clean slide and examine
under microscope. Count adult worms of identifiable species on each slide.
Sample 1 (heavy metal polluted site) six apparent species, call A–F for the
moment: numbers – A 27, B 5, C 17, D 3, E 32, F 2; Sample 2 (unpolluted) – B
43, C 4, D 15, F 18, plus four different species G 20, H 31, I 4, J 12; Sample 
3 (organophosphate polluted site) – A 5, C 48, E 19, H 11. Juvenile worms 
also present but not readily identifiable to adult species. Nevertheless, numbers
in each sample are 23 (Sample 1), 31 (Sample 2), 0 (Sample 3). Can also detect
adult females with eggs. Number of females with eggs of each species in samples:
Sample 1 – A 6, B 0, C 4, D 0, E 5, F 0; Sample 2 – B 13, C 0, D 2, F 6, G 5, 
H 11, I 0, J 1; Sample 3 – A 0, C 12, E 7, H 5. Samples contain quite a lot of
detritus, some of which can be identified as decomposing nematode material but
not related to species. Take ten arbitrarily chosen fields per slide and see how many
contain at least one piece of decomposing material: Sample 1 – 5, Sample 2 – 3,
Sample 3 – 7. Repeat for a further two droplets per sample. Number of adults in
second set: Sample 1 – A 15, C 21, D 9, F 4; Sample 2 – B 31, C 6, D 21, F 11,
G 16, H 24, J 3; Sample 3 – A 8, C 35, D 3, E 14, H 6. Juveniles per sample – 17
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(Sample 1), 19 (Sample 2), 5 (Sample 3). Females with eggs: Sample 1 – A 3, C 4,
D 0, F 0; Sample 2 – B 10, C 0, D 8, F 4, G 4, H 7, J 0; Sample 3 – A 0, C 11, 
D 0, E 5, H 0. Number of fields per slide with decomposing material: Sample 1
– 3, Sample 2 – 3, Sample 3 – 9.

Example 4 Material: Stock cage of virgin female and stock cage of virgin male field crickets
(Gryllus bimaculatus), two or three 30 × 30-cm glass/Perspex arenas with silver
sand substrate, dish of water-soaked cotton wool and rodent pellets, empty egg
boxes, assorted colours of enamel paint, fine paintbrush, paint thinners, rule,
bench lamps.

Notes: Females are distinguished from males by possession of long, thin ovi-
positor at the back. Put four males into an arena. After rushing about, males
move more slowly around the arena. When they meet, various kinds of inter-
action occur. Interactions involve variety of behaviours: loud chirping, tapping
each other with antennae, wrestling and biting. Interactions tend to start with
chirping and antenna tapping, and only later progress to fighting. Count number
of encounters that result in fighting (15 out of 21). Put in three more males so
seven in total and count fights again (8 out of 25). Take out males and choose
another five. Take various measurements from each male (length from jaws 
to tip of abdomen, width of thorax, weight) and mark each one with a small, 
different-coloured dot of paint. Introduce individually marked males into arena.
Count number of fights initiated by each male per encounter (red, thorax width
6.5 mm – 4/10; blue, width 7.5 mm – 8/11; yellow, width 7.0 mm – 8/10; silver,
6.0 mm – 3/12; green, 6.5 mm – 3/9). Continue observations and count number
of encounters won by each male (win decided if opponent backs off) (red, 3
wins/6 encounters; blue, 4/5; yellow, 7/7; silver, 1/4; green, 4/8).

Introduce three sections of egg box to arena and leave males for 10 minutes.
After 10 minutes, some males (blue, yellow, red) hiding under egg box shelters
or sitting close to them. Males in or near boxes chirping frequently. Count 
number of encounters resulting in fight (12 out of 16). Count fights/encounter at
different distances from burrows for each of the four males in turn – within 
5 cm: 4 attempts in 6 encounters for yellow, 2/2 for red, 0/3 for silver, 4/5 for
blue; between 5 and 10 cm: 5/11 (yellow), 2/3 (red), 1/5 (silver), 2/2 (blue);
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10–15 cm: 3/7 (yellow), 4/8 (red), 0/2 (silver), 3/6 (blue); 15–20 cm: 2/9 
(yellow), 1/6 (red), 1/5 (silver), 2/4 (blue); 20–25 cm: 1/8 (yellow), 1/12 (red),
0/2 (silver), 2/8 (blue). Introduce two females. Females move around the arena
but end up mainly around the box sections. Show interest in males and occasion-
ally mount. Other males sometimes interfere when female mounting particular
male. Number of approaches to, and number of mounts with, different males:
red, two approaches, no mounts; blue, two approaches, two mounts; yellow,
three approaches, two mounts; silver, no approaches; green, one approach, one
mount.

2.2 Exploratory analysis

Observational notes are, in most cases, an essential first step in attempting to
investigate material for the first time. However, as the examples amply demon-
strate, they are a tedious read and, as they stand, do not make it easy to formu-
late hypotheses and design more informative investigations. What we need is
some way of distilling the useful information so that points of interest become
more apparent. If we have some numbers to play with – and this underlines the
usefulness of making a few measurements at the outset – we can perform some
exploratory analyses.

Exploratory analysis may involve drawing some simple diagrams or plotting a
few numbers on a scattergram or it might involve calculating some summary or
descriptive statistics. We shall look at both approaches shortly using information
from the various sets of observational notes. These sorts of analyses almost
always repay the small effort demanded but, like much basic good practice in
any field, they are often the first casualty of impatience or prejudgement of what
is interesting or to be expected. It is always difficult to discern pattern simply 
by ‘eyeballing’ raw numbers and the more numbers we have the more difficult 
it becomes. A simple visual representation like a scattergram or a bar chart, 
however, can turn the obscure into the obvious.

2.2.1 Visual exploratory analysis

There are several instances in the examples of observational notes where similar
measurements were made from different kinds of material or under different
conditions. For instance, infected blood cell counts were taken from adult and
juvenile voles of both sexes, while fighting in male crickets was observed at 
different distances from artificial burrows. In both cases there seem to be some
differences in the numbers recorded from different kinds of material (age and 
sex of host) or under different conditions (distance from a burrow). What do the
differences suggest?

Eyeballing the blood cell data suggests some differences both between males
and females and between adults and juveniles. A simple way to visualise this
might be to total up the number of infected cells scored for each category of 
animal and present them in a bar chart (Fig. 2.1). If we do this, it looks as though
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males generally have higher infection levels than females, regardless of age, and
that adults have more infection than juveniles, regardless of sex. From this, we
might be tempted to suggest that adult males are particularly prone to infection
compared with other classes of individual. As we shall see later, however, we
might want to be cautious in our speculation.

In the cricket example, we can see that the number of fights per encounter
seems to vary with distance away from an artificial burrow. An obvious way to
see how is to plot a scattergram of number of fights per encounter against dis-
tance. The result (Fig. 2.2) suggests that, while there is a fair spread of values at
each distance, there is a tendency for more encounters to result in a fight when
crickets are close to a burrow. It is important to bear in mind that, as each
cricket was observed in turn, results for the different animals are independent of
each other and the trend is not a trivial outcome of a fight scored for one cricket
also counting as a fight for his opponent. As we shall see later, this and other
kinds of non-independence can be troublesome in drawing inferences from data.

Figure 2.1 The total number of infected red blood cells in voles of different age and sex (see
Example 2, Notes).

Figure 2.2 The number of fights per encounter between crickets at different distances from the
nearest burrow; symbols represent individuals (see Example 4, Notes).
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These are just two examples. We could do similar things with various other
measurements in the observational notes. Figure 2.3, for instance, suggests that
the number of Babesia-infected cells in different classes of host might have
something to do with tick burden since both show the same broad association
with class (see Fig. 2.1). Figure 2.4 hints at an association between the size of 
a leaf and the kind of damage it sustains. The Notes provide scope for other
exploratory plots; try some for yourself.

Casting data in the form of figures like this is helpful not just because visual
images are generally easier for most people to assimilate than raw numbers, but
because they can expose subtleties in the data that are less apparent in numer-
ical form. The plot of number of fights per encounter against distance from a
burrow in Fig. 2.2, for instance, suggests that while the likelihood of fighting
decreases further away from a burrow, there is considerable individual variation
(the different symbols) within the trend. We shall see later that this variation

Figure 2.3 The number of ticks recovered from voles of different age and sex (see Example 2, Notes).

Figure 2.4 The number of small, medium and large leaves showing different kinds of damage by
herbivores (see Example 1, Notes).
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leads to some interesting insights into the role of burrows in the behaviour of
both male and female crickets.

The sorts of plots we have used so far are helpful in seeing at a glance whether
something interesting might be going on. However, the data could be presented
in a different way to make the figures more informative. It is clear from the scat-
tergram in Fig. 2.2 and the raw data in the notes relating to Figs 2.1, 2.3 and 2.4
that there is a lot of variation in the numbers recorded in each case. Adult male
voles, for example, did not all have high Babesia burdens; indeed one male 
didn’t have any infected cells at all in the sample examined. This variability has
at least two important consequences as far as exploratory plots are concerned.
First it suggests that simply plotting totals in Figs 2.1 and 2.3 is likely to be 
misleading, because the totals are made up from a wide range of numbers. A
large total could be due to a single large result, with all the rest actually being
smaller than the results contributing to the other, lesser, totals, in which case 
our interest in the apparent differences between the bars in the figures might
diminish somewhat. Second, variability in the data might obscure some poten-
tially interesting tendencies in scattergrams. What we need, therefore, is a way
of summarising data so that: (a) the interesting features are still made clear, 
but (b) the all-important variability is also presented, though in a way that
clarifies rather than obscures patterns in the data. In short, we need some 
summary statistics.

2.2.2 Summary statistics

The usual way of summarising a set of data so as to achieve (a) and (b) above is
to calculate a mean (average) or median value and then to provide as a measure
of the variability the associated standard error (for a mean) or confidence limits
(for a median).

Means and standard errors
The mean (often represented by X (‘x-bar’)) is simply the sum of all the indi-
vidual values in the data set divided by the number of values (usually referred to
as n, the sample size). Formally, the mean is expressed as:

X =

The expression ∑i=n
i=1 xi indicates that the first (i = 1) to the nth (i = n) data values

(x) are summed (∑ is the summation sign) and can be expressed more simply as
∑x. This summed value is then multiplied by 1/n (equivalent to dividing by the
sample size n).

Since the mean is calculated from a number of values, we need to know 
how much confidence we can have in it. By ‘confidence’ we mean the reliability
with which we could take any such set of values from the material and still end
up with the same mean. A statistician would phrase this in terms of our sample
mean (X, the one we have calculated) reflecting the true mean (usually denoted µ)
of the population from which the data values were taken. Suppose, for instance,

( / )1
1
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we measured the body lengths of ten locusts caught in each of two different 
geographical areas and obtained the following results:

Length (cm)

Area 1 Area 2

6.3 6.0
7.1 6.4
6.2 6.3
6.5 6.0
7.0 5.9
6.7 6.5
6.5 6.1
7.0 6.2
6.8 6.2
7.1 6.4

X 6.7 6.2

Then suppose that we had obtained the following instead:

Length (cm)

Area 1 Area 2

8.3 8.0
5.1 5.4
7.2 5.3
5.5 6.5
8.0 8.4
5.7 5.5
5.5 7.1
8.0 5.2
8.8 5.2
5.1 5.4

X 6.7 6.2

In both cases, the mean body lengths from each area are the same and we might
want to infer that there is some difference in body size between areas. In the 
first case, the range of values from which each mean is derived is fairly narrow
but different between areas. We might thus be reasonably happy with our 
inference. In the second case, however, the values vary widely within areas and
there is considerable overlap between them. Now we might want to be more
cautious about accepting the means as representative of the different areas. We
can see that this is the case from the columns of numbers but we need some 
way of summarising it without having to present raw numbers all the time. We
can do this in several ways. The most usual is to calculate the standard error, a
quantitative estimate of the confidence that can be placed in the mean and
which can be presented with it as a single number. The calculation is simple and
is shown in Box 2.1.
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24 CHAPTER 2 ASKING QUESTIONS

The standard deviation (usually abbreviated to s.d. or SD) measures the spread
of actual data values around the mean, on the assumption that these data fol-
low the normal distribution (see p. 55); it is a measure of the confidence you
have that any particular data value will fall within a particular range (the mean
+ 1 s.d. and the mean − 1 s.d., hence the mean ± s.d.). The standard error of the
mean, usually just called the standard error (abbreviated to s.e. or SE) mea-
sures the spread of multiple sample means around the true population mean.
Normally you will only be taking a single sample, and hence the SE is an
expression of the confidence you have that your sample mean falls within a 
particular range (mean ± s.e.) of the true population mean. Since sample means
are almost always normally distributed, almost whatever the distribution of the
raw data, it is always OK to cite a standard error with your sample mean. The
calculations are as follows:

The standard deviation:

1. Calculate the sum of all the data values in your group (Σx).

2. Square the individual data values and sum them, giving (Σx2).

3. Calculate Σx2 − (Σx)2/n (remember that n is the sample size, the number 
of values in your set of data). This is actually a quick way of calculating 
the sum of squared deviations from the mean: Σ(x − X)2. The deviations 
are squared so that positive and negative values do not simply cancel each
other out.

4. Dividing by n − 1 gives the variance of the sample, an important inter-
mediate quantity in many statistical tests.

5. Taking the square root of the variance gives the standard deviation.

Box 2.1 Standard deviations and standard errors

Most scientific calculators will give you the mean of a set of numbers and
most will also give you the standard deviation (Box 2.1), usually represented as
σ or s. If your calculator has both σ and σn−1 buttons, it is the σn−1 one that you
want. The standard deviation will become important later, but for the moment
we can simply use it to obtain the standard error. All we need to do is call up
the standard deviation, square it, divide it by n and take the square root.

Whichever way you calculate the standard error (by hand or by calculator), it
should be presented with the mean as follows:

X ± s.e.

The ± sign indicates that the standard error extends to its value on either side of
the mean. The bigger the standard error, therefore, the more chance there is 
that the true mean is actually greater or smaller than the mean we’ve calculated.
We can see how this works with our locust data. Let’s look at the two sets of 
values for Area 1, first calculating the x2 value of the first example:
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Locust Body length (x) x2

1 6.3 39.69
2 7.1 50.41
3 6.2 38.44
4 6.5 42.25
5 7.0 49.00
6 6.7 44.89
7 6.5 42.25
8 7.0 49.00
9 6.8 46.24

10 7.1 50.41

n = 10 ∑x = 67.2 ∑x2 = 452.58

The steps are then:

1. ∑x = 67.2

2. ∑x2 = 452.58

3. ∑x2 − (∑x)2/n = 452.58 − (67.20)2/10 = 452.58 − 451.58 = 1

4. Divide by n − 1 = 1/9 = 0.11

5. Divide by n = 0.11/10 = 0.01

6. Take the square root = √0.01 = 0.11

Thus the mean length of locusts in the first example for Area 1 is:

6.72 ± 0.11 cm

If we repeat the exercise for the second example, however:

1. ∑x = 67.2

2. ∑x2 = 471.18

3. ∑x2 − (∑x)2/n = 471.18 − 451.58 = 19.6

4. Divide by n − 1 = 19.6/9 = 2.2

5. Divide by n = 2.2/10 = 0.22

6. Square root = √0.22 = 0.47

The mean is now expressed as:

6.72 ± 0.47 cm

We could leave the mean and standard error expressed numerically like this, or
we could present them visually in a bar chart. If we opt for the bar chart, then
the mean can be plotted as a bar and the standard error as a line through the top
centre of the bar extending the appropriate distance (the value of the standard
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error) above and below the mean. Figure 2.5a, b shows such a plot for the two
sets of example locust data.

Medians and confidence limits
An alternative summary statistic we could have used is the median. There are
good statistical reasons, to do with the distribution of data values (see Chap-
ter 3), why we may need to be cautious about using means and standard devia-
tions (but not standard errors – see Box 2.1 – unless sample sizes are very low).
The use of standard deviations in particular makes important assumptions about
the distribution of the data from which they are calculated that may not hold 
in many cases. Using medians and confidence limits avoids these assumptions.
Later, we shall see that statistical tests of significance can also avoid them.
Finding the median is simple. All we do is look for the central value in our data.
Thus, if our data comprised the following values:

5 7 11 21 8 12 14

we first rank them in order of increasing size:

5 7 8 11 12 14 21

and take the value that ends up in the middle, in this case 11. If we have an even
number of values so there isn’t a single central value, we take the halfway point
between the two central values, thus in the following:

2 6 8 20 23 38 40 85

the median is 21.5 (halfway between 20 and 23). Note that the median may yield
a value close to or very different from the mean. In the first sample, the mean is
11.1 and thus similar to the median. In the second sample, however, it is much
greater at 27.58.

Figure 2.5

ASKQ_C02.qxd  18/06/2007  03:11PM  Page 26



EXPLORATORY ANALYSIS 27

Again, we want some way of indicating how much confidence to place in the
median. By far the simplest way is to find the confidence limits to the median
using a standard table, part of which is shown in Appendix I. All we need to do is
rank order our data values as before, count the number of values in the sample
(n), then use n to read off a value r from the table. Normally, we would be inter-
ested in the r-value appropriate to confidence limits of approximately 95 per 
cent (‘approximately’ because, of course, the limits always have to be two of the
values in the data set, one above the median and one below – if n is less than 6,
95 per cent confidence limits cannot be found). This r-value then dictates the
number of values in from the two extremes of the data set that denote the
confidence limits. Thus in our first sample data set, there are seven values.
Reference to Appendix I shows that for n = 7, r = 1; the confidence limits to the
median of 11 are therefore 5 and 21. However, if we had a sample of nine 
values (say 7, 11, 15, 22, 46, 67, 71, 82, 100) r for approximately 95 per cent
confidence limits is 2, so for a median of 46, the limits would be 11 and 82.

As with the mean and standard error, we can represent medians and their
associated confidence limits visually in a bar chart.

Another common way of expressing the distribution of values about the
median is the interquartile range, which is the difference in values between the
data point one-quarter of the way down the rank order of values in the sample
and the point three-quarters of the way down. This is often presented in the form
of a so-called ‘box and whisker’ plot (Fig. 2.6). This shows the median value as
a bold bar within a box that represents the interquartile range. The ‘whiskers’ are

Figure 2.6 A box-and-whisker plot summarising the effect of a drug treatment and control on
patient response. See text for details. Note the outlier indicated for the eleventh data point in
Treatment 1.
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Figure 2.7 A bar-chart frequency distribution of different numbers of earthworms recovered from
core samples of soil (modified from Dytham, 2003).

not error bars in this case, but extend to the largest value in the sample that is
within 1.5 interquartile ranges of the top or bottom of the box. Some computer
statistical packages also present ‘outlier’ values as additional points on box and
whisker plots; these can provide useful alerts to typographical errors in data entry.

Frequency distributions
Means and standard errors, medians and confidence limits, then, are two con-
ventional ways of summarising central tendency and spread of values within
data. As we have seen, they are particularly useful in making quick ‘eyeball’ com-
parisons between two or more data sets. Such ‘eyeball’ comparisons, however,
are only one reason why visual summaries of data sets can be worth plotting.
Another is to allow the features of a single set of data to be explored fully, per-
haps to examine the distribution of values and decide on an appropriate method
of confirmatory analysis (see later). The usual way of doing this is to plot a fre-
quency distribution of the values (the number of times each occurs in the data
set), either as a bar chart, like the means in Fig. 2.7, or as a histogram. Bar charts,
in which the bars in the figure are separated by a small gap along the horizontal
(x) axis, are used to plot the distribution of discrete values where there are
sufficiently few of these to make such a plot feasible. Histograms, in which the
bars are contiguous, are used to plot the distribution of classes of values (e.g.
1–10, 11–20, 21–30, etc.), usually where there is a wide and continuous spread
of individual values. Figure 2.8 shows a range of frequency distribution histo-
grams. It is obvious almost at a glance why we urged caution in using the mean
as a general measure of central tendency and why frequency distributions can 
be a crucial first step in deciding how to analyse and present data. In Fig. 2.8a
the distribution is more or less symmetrical with a peak close to the centre.
Formally the peak is referred to as the mode and, in symmetrical, unimodal 
distributions like Fig. 2.8a, the mode and the arithmetic mean amount to the
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same thing. In these cases, therefore, the mean is an adequate measure of cen-
tral tendency. In Fig. 2.8b, c, however, it is clear that the mean and mode are far
from the same thing (in fact Fig. 2.8c has two modes and the distribution is said
to be bimodal). Here, it makes little quantitative sense to use the arithmetic
mean as a measure of central tendency. The shape of these distributions becomes
extremely important when deciding on further analysis of the data, as we shall
see shortly.

Of course, when plotting such distributions, one has first to decide on the
number of categories into which to cast the data along the x-axis. Perhaps not
surprisingly, there is no hard and fast rule about this. Dytham (2003), in his
excellent book, advocates 12–20 categories as a rough rule of thumb, or, as an

Figure 2.8 Histogram frequency distributions of: (a) the length of the right forelimb of field
cricket (Gryllus bimaculatus) nymphs, (b) the number of aggressive encounters per day between
male mice (Mus musculus) in an enclosure and (c) the duration of the aggressive displays of male
Siamese fighting fish (Betta splendens) in pairwise encounters.
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Although the modest data sets acquired during
practical classes and projects can often be
explored and analysed by hand without difficulty,
it is now almost unheard of to do so. Instead,
data are usually entered into one of the array 
of computer spreadsheet, database or statistical
packages available commercially or via the
Internet/World Wide Web, and analysed using
these. Needless to say, these provide a quick and
convenient means of dealing with data and are
the virtually universal instruments of choice these
days. However, as anyone who has ever used
computer programs will know, it is important to
maintain a healthy level of wariness when using
them. The all-too-human potential for pro-
grammer and/or user error can lay serious traps
for the unwary. On top of that, the immediacy of
the results – click a button and there they are –
does away with any need to understand what is

actually going on. When it comes to statistics,
therefore, computer packages should be seen as a
convenient adjunct to a proper formal training 
in the subject, not as a quick-fix substitute for it.
It is thus impossible to over-emphasise the need
to check and double-check that a package has
done what you think it has when you carry out an
operation – utterly meaningless rubbish can look
perfectly plausible on superficial inspection.

While data can be entered into any program 
of your choice, we strongly recommend using
Microsoft’s spreadsheet package Excel, rather
than a statistical package per se, for entering and
organising your data ahead of analysis. Excel is a
powerful program that allows data to be explored,
prepared and analysed in many different ways. It
comes as part of the standard installation of pack-
ages on many computers when they are purchased,
so is widely used and supported. Data in Excel

Box 2.2 Preparing data for analysis using computer packages

alternative, √n, where n is the number of data points in the sample. But, in the
end, it’s a matter of judgement and common sense.

Exploratory analysis, then, is a way of summarising data, visually or numeric-
ally, to make it easier to pick out interesting features. The calculations and plots
we’ve suggested here can, of course, be produced by various computer pack-
ages rather than by hand. All the main statistical packages, like SPSS, Minitab,
Statistica, GenStat, Statgraphics, GLIM, S-Plus and R, can do this, but many
people prefer to enter their data into a general spreadsheet for organising and
checking before transferring them into a statistical package. Microsoft’s Excel is
by far the most widely used of these spreadsheets, partly because it allows a range
of exploratory analyses via simple programmable formulae, and easily produces
data tables and plots (though see Box 2.3) that can be ‘cut and pasted’ into other
documents or PowerPoint slides. Data in Excel can also be read directly into sev-
eral different statistical packages, so provide a convenient basis for further, more
sophisticated analysis. We shall use Excel as our example spreadsheet package
throughout the book; our example output uses the Microsoft Office 2003 version
of the package. As our example commercial statistical package, we have chosen
SPSS (Statistical Packages for the Social Sciences), again because it is used
widely in higher education and research and, with an important exception we
shall introduce later, offers the range of tests required. The version we present in
the screen captures is v13. Box 2.3 summarises how to do the main kinds of
exploratory analyses in Excel and SPSS, but before looking at that, it is worth
considering some general ‘dos’ and ‘don’ts’ in preparing data for analysis using
computer packages. These are summarised in Box 2.2.
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can also be imported easily into most statistical
packages, so Excel is a convenient ‘universal donor’
when it comes to switching between different
packages. The same is not true for many of the
statistical packages themselves, where data often
have to be converted into other formats (often
Excel) before being exportable elsewhere, some-
times risking corruption on the way. Excel’s power
and flexibility, however, is a two-edged sword.
On the one hand it allows large data sets to be
organised and explored easily; on the other, it
provides a wealth of opport-
unities for error and confu-
sion. Two of the commonest
user problems are mistakes in
using formulae to calculate
new variables from existing
ones (see below), and mis-
takes in using menu com-
mands to reorganise data
within a worksheet (most
often inadvertently selecting
only data visible on-screen,
instead of the whole data set,
when using the ‘Sort’ com-
mand, thus shifting some
data out of line with the rest).
The key to using Excel to pre-
pare data for use in statistical
packages is ‘keep it simple’.

Formatting data worksheets
When you boot up Excel,
you are presented with the
empty rows and columns
screen in Fig. (i). This simple
layout is all you need. Excel
allows a vast range of row/
column formats within its
worksheets, and the ten-
dency among students is to
make liberal use of this cap-
ability, with header rows
spanning several columns,
worksheets subdivided into
sections, textual notes and
keys interspersed with data,

data split across different worksheets and so on
(e.g. Fig. (ii)). While all this is fine if the file is
simply being used as a spreadsheet in its own
right, it is completely unworkable if you want to
import the data into a statistical package. As a
general rule, statistical packages expect data in
simple column format, with each variable occu-
pying a separate column and the first cell of the
column containing the name of the variable.
Each row then represents one study sample to
which the data in each column cell along that

Figure (i) A newly opened Excel screen awaiting data entry.

Figure (ii) An example of an Excel worksheet format that would not be suitable
for reading into a statistical package. Problems include: multiple data within
cells, combinations of numerical data and textual comment within columns,
and unsuitable column headings.
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row relate. Thus, suppose we had conducted an
experiment looking at associations between
anogenital sniffing (often a prelude to aggression)
and circulating levels of the hormones testo-
sterone (as a measure of sex hormone activity)
and corticosterone (as a measure of stress levels)
in male mice. Let’s also suppose we had allocated
the mice to four different experimental treat-
ments, say different degrees of complexity of their
group’s home cage environment (e.g. (1) bare
cage, (2) cage + nest material, (3) cage + nest
material + nest boxes, (4) cage + nest material +
nest boxes + shelves). The experiment consisted
of introducing randomly chosen mice from eight
different cages within each treatment into a clean
empty cage and allowing them to interact one at
a time with another randomly chosen mouse (dif-
ferent in each case) that had been kept on its own
in an empty cage to standardise the social experi-
ence of the opponent across experimental sub-
jects. Each pair of mice was allowed to interact
for five minutes during which the number of
anogenital sniffs initiated by the subject towards
the opponent was recorded.

To set up our Excel data file for the experiment,
we allocate one column to each of the variables
in which we are interested. Thus our first column
might be Mouse and consists simply of numbers
1–32 so we know which mouse each row refers to.
So we type ‘Mouse’ into the first cell in Column
A and enter 1–32 in the successive cells below.
Next, we want to note the experimental treatment
for each mouse, so we head another column

Treatment. Here, the best thing is to use a simple
numeric code for each treatment, in this case ‘1’
for bare cages, ‘2’ for cage + nest material, and 
‘3’ and ‘4’ for the other two cage types. Avoid
using letters (e.g. A, B, C, D) or combinations of
letters and numbers (e.g. T1, T2, T3, T4), because
statistical packages sometimes treat these as text
variables and won’t allow them to be used in
analyses. We can then complete three further
columns for the number of sniffs initiated and the
testosterone and corticosterone concentrations
for each mouse, so the basic data set will appear
as in Fig. (iii). Notice how the header row of vari-
able names only occupies a single row, and each
variable name is a single short word. If you have
to use more than one word, use the underscore
(_) rather than a space in be-tween the words;
doing this avoids all sorts of potential problems
when transferring the data to a statistical pack-
age, so we strongly recommend that you do.

We could, of course, add other measures if we
wished, such as the body weight of each subject
mouse, the time of day of each test, and so on,
each in its own headed column. Depending on
the nature of the variables, we could also calcu-
late new ones within the file itself using Excel’s
formula capability (see also Boxes 2.3 and 2.4).
Suppose, for instance, we wished to express
anogenital sniffing in terms of the rate of sniffing
rather than total number. Since all mice were
observed for five minutes, this is simply a matter
of dividing the number of sniffs by five to get the
rate per minute. To do this, go to the first blank

column after the existing
data (here Column F), head
it Sniffrate (or similar) and
click on the first empty cell
below the heading (Cell F2).
Now type an ‘=’ sign, fol-
lowed by C2/5 (so ‘=C2/5’)
and hit ‘Return’. This pro-
duces the number 0.8 in the
cell, which is the number of
sniffs (from cell C2) divided
by 5. There’s no need to re-
peat this for every cell of the
Sniffrate column; all we need

Figure (iii) Part of an Excel worksheet in a suitable format for reading into a 
statistical package.
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to do is click on cell F2 again, then click on ‘Edit’
at the top of the screen, followed by ‘Copy’ (or
just click on the ‘Copy’ symbol itself at the top 
of the screen). The cell is now highlighted by a
shimmering dashed border, which indicates its
contents have been copied to the clipboard. To
complete the column, click on the cell below 
F2 and, holding down the ‘Shift’ key as you do 
it, the last cell in the column (here F25). The
remainder of the column is now highlighted.
Click ‘Edit’ and, this time, ‘Paste’ (or just click the
‘Paste’ symbol directly) to fill in the rates for each
remaining cell. What Excel does here is to copy
the actions of the formula you typed in (rather
than the numerical content of Cell F2 itself) to
each of the other cells you highlighted.

While calculating new variables like this in
Excel is easy, we recommend that you keep it to
a minimum. This is because worksheets with vari-
ables calculated using formulae may not be read
properly by some statistical packages, or require
special steps to ensure they are read properly.
Since all these calculations can be done just as
easily within statistical packages themselves,
using menus rather than embedded formulae, our
advice is to do them there
rather than in Excel.

Reading Excel data into
SPSS
To read the data in Fig. (iii)
into SPSS directly from
Excel, simply open SPSS,
then click ‘File’ and ‘Open’
on the opening screen. Select
the directory containing the
Excel file in the ‘Look in’
box, and change the ‘Files of
type’ box at the bottom from
the default ‘SPSS’ to ‘Excel’
in order to display the avail-
able Excel files. Double click on the file required,
and, in the ‘Opening Excel Data Source’ box
make sure the ‘Read variable names’ box is
ticked. Click ‘OK’ and the data, complete with
variable names, will appear* (Fig. (iv)a). Note,
however, that if you hadn’t chosen variable

names of appropriate length, SPSS may have
truncated them, depending on the version you
are using. You may have to do some editing, in

* If you are using older versions of SPSS, you may need
to save your Excel file in version 4 or earlier format
before reading it in. The best way of ensuring that your
data can be read is to save them in Excel version 3,
because this is the last version that only used single
worksheets. It is the multiple sheets of later versions
that can cause problems.

Figure (iv) (a) Data from Fig. (i) after having been read into SPSS. Note the 
truncated variable headings (as may happen in some versions). (b) The
‘Variable view’ screen of the same data, in which the column headings can be
edited.

(a)

(b)
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Various spreadsheet and database, and pretty
well all statistical, packages written for com-
puters will enable you to explore data sets and
calculate standard summary statistics. The means
of doing so are usually simplest, and the range of
options greatest, in statistical packages because
calculating statistics is their stock in trade. In
spreadsheets and databases, they’re often some-
thing of a frill and can be tricky to get at.

Exploratory analysis using Excel
Excel allows various kinds of exploratory ana-
lysis, some very straightforward, others requiring
more complicated procedures that highlight
Excel’s limitations on the statistical side. Again,

our advice would be to use Excel as a simple
spreadsheet for preparing raw data and reserve
statistical treatment, even of an exploratory kind,
for a proper statistical package. Some basic ana-
lyses that can be done in Excel, however, can be
summarised as follows:

Calculating summary statistics in Excel
Most useful summary statistics can be calculated
by using one or other of the menu functions at
the top of the screen (see Box 2.2, Figs (i) and
(iii)), or directly by typing in a simple formula.
For example, using the sample data in Box 2.2,
Fig. (iii), we could calculate a range of basic 
summary statistics for the columns or rows by

Box 2.3 Exploratory analysis using computer packages

the entire data set, excluding the variable names,
and ‘Edit’ and ‘Copy’ (or just click the ‘Copy’
symbol at the top of the screen) to copy it to the
clipboard. Open SPSS, click on the first empty
cell in the first column and click ‘Edit’ and ‘Paste’
(or click the ‘Paste’ symbol). The data will
appear, but not the variable names; instead the
columns will be headed ‘var0001, var0002’, etc.
To change this, click on ‘Variable view’ and edit
the names as above.

To calculate new variables from the entered
data, as above in Excel, click on ‘Transform’ at
the top of the screen and select ‘Compute’. Using
the example of calculating rate of sniffing again,
enter the new variable name (e.g. Sniffrt) into the
‘Target Variable’ box at top right in the dialogue
box (Fig. (v)), transfer Sniffs into the ‘Numeric
Expression’ box by highlighting it and clicking
the forward arrow (or simply type it into the box
manually), click on the forward slash (division
operator) in the pad of options beneath the
‘Numeric Expression’ box (or again type it in),
type ‘5’ (the number of minutes per test) and click
‘OK’. This will return you to the data, with the
new variable appearing in the first previously
blank column at the end.

Figure (v) The ‘Compute’ dialogue box in SPSS, set up
for calculating a new variable (Sniffrt) for sniffing rate
from the number of sniffs (Sniffs) and the duration of
tests (five minutes) (see above).

which case, click on ‘Variable view’ at the bottom
of the screen, highlight the relevant variable
name(s) and type in your changes (Fig. (iv)b).
You can also make other changes here, such as
altering the number of decimal places displayed.
Click on ‘Data view’ to restore the data screen,
now with renamed variables and anything else
you changed.

An alternative way of doing things is to cut
and paste the data into SPSS. In Excel, highlight
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clicking on ‘Tools’ followed by ‘Data Analysis’*
and ‘Descriptive Statistics’. This generates the
dialogue box in Fig. (i) above. If we wish to
obtain summary statistics for each of our columns
of data in Box 2.2, Fig. (iii), we can tick the
‘Summary statistics’ and ‘Grouped by: Columns’
options in the box in Fig. (i), and enter the first
and last data cells of the data we wish to include
in the ‘Input range:’ box. For the data in Box 2.2,
Fig. (iii), this would be cell C2 (the first data value
in column C [the first cell is taken up with the
name of the variable]), and cell F41 (we’re not
interested in summary statistics for the first two
columns, because these are just coding variables).
In Excel format, the range is entered as C2:F41.
Clicking the ‘OK’ button now results in a list of
summary statistics for each column of data. These
include some statistics relating to the shape of the
frequency distribution of values in the column,
such as kurtosis and skewness, which we shall
deal with in the next chapter. Also included are

all the ‘standard’ statistics commonly used to
summarise data: the mean and standard error,
the median and mode, the standard deviation
and variance, and the range, sum and number of
values. Selecting the ‘Confidence’ option in Fig. (i)
will add the 95 per cent confidence limits to 
the mean to the list. Unless otherwise instructed,
Excel will present the summary statistics in a new
sheet of the active data workbook. Clicking on
the ‘Output range’ button and specifying a new
cell in the current worksheet, however, will result
in the summary being presented next to the data
themselves.

Alternatively, summary statistics can be
obtained individually by selecting an empty cell
in the data sheet, clicking the ‘Paste function’ ( fx)
button at the top of the screen (Fig. (ii)) and
selecting from the ‘Statistical’ menu (note that
Excel uses ‘AVERAGE’ for the mean). Irritatingly,
this menu does not offer the standard error to the
mean, but this can be calculated easily from the
standard deviation using a simple formula (see
Box 2.4). Indeed, such formulae are what the
‘Paste function’ itself uses; these can be seen by
clicking on the cell containing the calculated
summary statistic and looking in the ‘=’ row
above the data columns. Once people are famil-
iar with them, the direct use of formulae usually
becomes the preferred method, since it avoids hav-
ing to click through the succession of options in
the dialogue boxes. Box 2.4 shows some examples.

Using pivot tables to summarise by category.
Often, we want to summarise according to 
categories of data within a data set, such as, for
example, the different cage treatments in the
mouse data in Box 2.2, Fig. (iii). This can be done
very simply for total values using the so-called
‘pivot table’ facility. Click on ‘Data’ at the top of
the screen (Box 2.2, Fig. (iii)) and select ‘Pivot
Table and Pivot Chart Report . . .’. Let’s assume
we’re interested in knowing how the total num-
ber of sniffs varies with treatment in the data set
in Box 2.2, Fig. (iii). Select ‘Microsoft Excel list or
database’ as the source of data in the first pivot
table dialogue box and click ‘Next’. In the ‘Range
box’ of the new dialogue box, enter the inclusive

Figure (i) The ‘Descriptive Statistics’ dialogue box in
Excel.

* If you’re using later versions of Excel, you will need
to install the ‘Analysis toolpack’ before ‘Data analysis’
appears under the ‘Tools’ menu. To do this, click on
‘Add-ins’ within ‘Tools’, select the analysis toolpack
you want and click ‘OK’ – ‘Data analysis’ will now
appear in the drop-down ‘Tools’ menu.
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cells of the data set; here we enter B1:F41 includ-
ing the variable names, note, because the pivot
table will use these to label the output. Clicking
‘Next’ produces the outline of the output table
and a request to drag the ‘field buttons’ (cor-
responding to our selectable columns of data) on

the right into the ‘Row’ or
‘Data’ compartments of the
table (Fig. (ii)a). In this case,
therefore, Sniffs is dragged
into the ‘Data’ compartment
(where it now says ‘Sum of
Sniffs’), since we’re inter-
ested in variation in this with
respect to treatment, and
Treatment is dragged into the
‘Row’ compartment. Click
‘Next’ again, and select a 
target cell in the worksheet
to receive the table, or select
‘New worksheet’ if you want
it in a separate sheet, then
click ‘Finish’ and the table
will appear (Fig. (ii)b).

Sometimes, we might
want to summarise by more

than one category within our data (for instance,
if we had recorded the number of sniffs by mice
with respect to both their cage treatment and
their social rank [dominant or subordinate] in
their home cage). Where totals are concerned,
this can be done easily once again using ‘pivot
tables’. Follow the procedure above, except this
time specify three columns (the two categories
and the variable of interest) in the ‘Range box’,
and drag both category columns into the ‘Row’
compartment of Fig. (ii)a. Select a target cell for
the table and click ‘Finish’, and a table of totals
by one category within the other will appear.

Of course, it would be useful to be able to 
produce mean or median values along with their
respective errors by category. Unfortunately,
Excel provides no simple way of doing this, again
underlining its limitations as a statistical package.
While there are circuitous routes through which
it can be done, it is really not worth the effort
when the whole operation can be accomplished
in a couple of clicks of the mouse in a statistical
package like SPSS.

Exploratory data plots in Excel
Using Excel to produce exploratory data plots
like those in Figs 2.1–2.6 is straightforward, with
the important exception of producing plots of

Figure (ii) (a) Setting up a ‘pivot table’ in Excel by drag-
ging variable headings into the Rows and Columns box;
(b) the resulting ‘pivot table’ in the worksheet.

(a)

(b)
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mean/median values with their individual error
bars. The figure-plotting menu does offer stan-
dard errors to means, but calculates a single 
standard error for the mean of the entire data set,
not a separate error for the mean of each cat-
egory within it, which is usually what is wanted.
Again, there are long-winded ways around this,
but it is far simpler to do the whole thing in a sta-
tistical package, which is what we recommend.

Plots of totals. Summary plots of totals by cat-
egory, like Fig. 2.1, however, are easy to produce
via the ‘pivot table’ function. The pivot table in 
Fig. (ii)b presents the kind of information we need.
To produce a graph, all we need to do is click on
the ‘Chart wizard’ option (the vertical coloured bars
button) at the top of the screen, select ‘Column’,
and the first chart subtype within that, and click
‘Next’. Selecting the four treatment totals in the
pivot table will enter their cell numbers in the
‘Data range’ box and produce a bar chart of them.
Note that Excel defaults to scaling the x-axis as 
1-n (here 1–4); if you wish to change this so the
axis says, for example, ‘2, 4, 6, 8’ or anything else,
you need to enter your new labels into an empty
column in your data set (so, here, just four cells
of the column), right-click on the figure, select
‘Source Data’, then ‘Series’. Put the cursor in the
‘Category (X) axis labels’ box and highlight the
cells containing your desired labels; their speci-
fication will appear in the box. Clicking ‘OK’ will
take you back to the now amended figure. Click
‘Next’ to edit as desired, or ‘Finish’ for the figure
as it is. However you choose to edit the figure, we
suggest you get rid of the default grid lines by right-
clicking on the plotting area, clicking the ‘Gridlines’
option, and unchecking the relevant checkbox.

Scatterplots. To produce a scatterplot, like Fig. 2.2,
highlight the two columns of data containing the
X and Y data you want to plot, and click again on
the ‘Chart wizard’ button and select ‘XY (Scatter)’.
Clicking on ‘Finish’ will then produce the scatter-
plot you want. If the X and the Y data are in
columns that are not adjacent, then highlight the
data in the first column, and press and keep down
the Ctrl key while you highlight the matching

data in the other column. Then press the ‘Chart
wizard’ button and follow the procedure above.

Frequency distributions. Unfortunately, Excel does
not provide a ready means of plotting frequency
distributions. You will need to use a statistical
package to do this (see below).

Exploratory analysis using SPSS
SPSS is designed as a comprehensive statist-
ical package, as opposed to a spreadsheet with
some statistical facilities added on, like Excel.
Consequently, life is usually more straightforward
when it comes to performing analyses, at least at
the simpler end of the spectrum. Data can either
be entered into SPSS manually, or imported from
other packages, including Excel (see Box 2.2).

Calculating summary statistics in SPSS
To obtain summary statistics for any of the vari-
ables in the data set, go to ‘Analyze’ at the top of
the screen, and select ‘Descriptive statistics’ fol-
lowed by ‘Explore’. Enter the variables for which
statistics are required by highlighting them in the
list on the left and clicking the arrow to transfer
them into the ‘Dependent List’ box (Fig. (iii)). The
output can be in terms of a table of numerical
statistics, box-and-whisker plots (like Fig. 2.6), or
both, depending on what is selected in the ‘Display’
panel on the bottom left. Choosing just ‘Statistics’
provides the table of output, which presents all
the standard summary statistics – mean, standard

Figure (iii) The ‘Explore’ dialogue box under ‘Descriptive
Statistics’ in SPSS, with Corticosterone from the data in
Box 2.2, Fig. (iii) transferred into the ‘Dependent List’ for
summary.
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error, standard deviation, median, interquartile
range, etc. – in a fashion similar to Excel above.
If more than one variable had been selected 
and transferred to the ‘Dependent List’ box, the 
table would present summary statistics for each
in turn. Summary statistics for selected variables
can also be subdivided by category. So, for ex-
ample, entering Treatment (Box 2.2, Fig. (iii)) into
the ‘Factor List’ box in Fig. (iii) will produce the
list of summary statistics by treatment for each
variable entered into the ‘Dependent List’.

Exploratory data plots in SPSS
Producing exploratory plots of data in SPSS is
much more straightforward than in Excel, with
most requirements being catered for directly in
the menus.

Plots of totals. To plot total sniffs by treatment 
as we did above, for example, simply click on
‘Graphs’ at the top of the data screen and select
‘Bar’. Choose ‘Simple’ and ‘Summaries for groups
of cases’, then click ‘Define’. Enter Sniffs in the
‘Variable’ box and Treatmen in the ‘Category
axis’ box. Note that the ‘Variable’ box defaults to
mean values; to change this to totals, highlight
‘MEAN(sniffs)’, click on the ‘Change summary’
button below it, select ‘Sum of values’ and click
‘Continue’. Click ‘OK’ and the figure output will
appear. Double-clicking on the figure itself then
takes you into the chart editor where the appear-
ance and labelling can be altered as required.

Plots of means or medians. While the ‘Bar’ option
above allows mean values to be plotted, it does not,
for some bizarre reason, provide a direct means of
adding standard error bars to the figure. Instead,
the simplest way to produce a figure of means with

standard errors within the ‘Graphs’ menu is to
select ‘Error bar’. Clicking on this, selecting ‘Simple’
and ‘Summaries for groups of cases’ again and
clicking ‘Define’ takes you to a similar dialogue
box to before. Once again, enter Sniffs in the ‘Vari-
able’ box and Treatmen in the ‘Category axis’ box,
but this time go to the ‘Bars represent’ box, select
‘Standard error of mean’ and change the ‘Multi-
plier’ setting to ‘1’. Clicking ‘OK’ produces the
figure, which can then be edited to requirement.

To plot medians and interquartile ranges as a
box plot, go to ‘Boxplot’ in the ‘Graphs’ menu.
Again, choose ‘Simple’ and ‘Summaries for groups
of cases’ and click ‘Define’. Enter Sniffs and
Treatmen in the ‘Variable’ and ‘Category axis’
boxes, respectively, and click ‘OK’ for the figure.

Scatterplots. To generate a scatterplot of the rela-
tionship between two variables, select ‘Scatter’
from the ‘Graph’ menu, and click ‘Simple’ then
‘Define’. Enter the desired variables (say, Sniffs
and Testoste in Box 2.2, Fig. (iv)) in the ‘Y-axis’
and ‘X-axis’ boxes and click ‘OK’.

Frequency distributions. To produce plots of 
frequency distributions for variables, click 
on ‘Analyse’, then ‘Descriptive Statistics’ and
‘Frequencies’. Select the variables of interest and
transfer them into the ‘Variable(s)’ box. Select
‘Chart’ from the options at the bottom of the dia-
logue box and choose either ‘Bar charts’ then
‘Frequencies’ if the data are discrete values, like
those in Fig. 2.7, or ‘Histograms’ if they are con-
tinuously distributed, like those in Fig. 2.8. Under
‘Histograms’, there is a ‘With normal curve’
option, which, if selected, fits a normal curve to
the resulting plot, thus giving an eyeball impres-
sion of how well the distribution conforms to a
normal distribution (but see Box 3.1).
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The following are some of the formulae commonly used to calculate summary
statistics in Excel. The cell numbers in parentheses are, of course, arbitrary for
the purposes of illustration:

Number of items in sample ‘=COUNT(A2:A51)’

Arithmetic mean ‘=AVERAGE(A2:A51)’

Mode ‘=MODE(A2:A51)’

Median ‘=MEDIAN(A2:A51)’

Variance ‘=VAR(A2:A51)’

Standard deviation ‘=STDEV(A2:A51)’

Standard error ‘=(STDEV(A2:A51))/(SQRT(COUNT(A2:A51)))’

Interquartile range ‘=QUARTILE(A2:A51,1)’ for the first quartile 
(the value 25% up the data set when rank ordered),

and ‘=QUARTILE(A2:A51,3)’ for the third quartile 
(the value 75% up the data set)

Box 2.4 Some basic formulae for summary statistics in Excel

As we emphasise in Box 2.2, using statistical packages on a computer will teach
you nothing about the underlying assumptions and mechanics of particular tests.
As far as the user is concerned, the package simply offers a magic box of tricks
that throws up results when data are put into it. While we use our selected pack-
ages as the main presentational vehicle for statistical tests in the text – because,
for better or worse, packages like these are what students will be recommended
to use – we also include worked examples of the main kinds of test in the
Appendices, so the reader can have some idea of what they actually do.

Of course, while interesting to do in their own right, exploratory analyses are
useful only to the extent that they promote further investigation to confirm that
what looks interesting at an exploratory level is still interesting when data are
collected more rigorously and subjected to more thorough analysis. This brings
us back to hypotheses and predictions, and leads to a consideration of confirm-
atory statistics.

2.3 Forming hypotheses

2.3.1 Turning exploratory analyses into hypotheses and predictions
Exploratory analyses are generally open-ended in that they are not guided by
preconceived ideas about what might be going on. However, they are the first
important step on the way to formulating hypotheses that do then guide invest-
igation. As we have seen already, hypotheses can be very general or they can be
specific. Both kinds can be generated from our observational notes.
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Hosts and
parasites

Plants and
herbivores

Example 1 The observations of leaf damage in the samples of plant species suggest that 
several factors are influencing the type and amount of damage. A possibility
emerging from the Notes is that damage decreases with height off the ground and
thus vulnerability to slugs. This can be framed as a readily testable hypothesis:

Hypothesis 1A The type and extent of leaf damage reflects availability to slugs.

from which some predictions for testing might be:

Prediction 1A(i) Taller plant species will have less leaf damage by slugs than
shorter species.

Prediction 1A(ii) Leaf damage will decrease the further up a plant that samples
are taken.

Of course, this is a very broad hypothesis and many features of a leaf affecting
its likelihood of predation are going to change along with its height off the
ground. Some of these are suggested by other observations. For example:

Observation Larger leaves are often tougher or smell strongly.

Hypothesis 1B The decrease in damage among larger leaves is due to their
reduced palatability.

Prediction 1B For any given size of leaf, damage will decrease the tougher the
cuticle or the stronger the odour on crushing.

Observation Larger leaves are sometimes associated with thorns or sticky hairs
on the stems.

Hypothesis 1C Reduced damage among larger leaves is due to grazing deterrents
on the stems.

Prediction 1C(i) The incidence of severe damage (suggestive of large herbivores)
will be lower on thorny species.

Prediction 1C(ii) The incidence of less severe damage (suggestive of invertebrate
herbivores) will be lower on species with sticky, hairy stems.

Example 2 The notes on the samples of material and parasites taken from voles suggest a
number of interesting possibilities, some to do with the age and sex of the voles,
others to do with relationships between the different parasites.

Observation The number of Babesia-infected red cells and faecal egg scores
appeared to be higher in male voles than in females, and higher in adults than
in juveniles.

Hypothesis 2A Parasite burdens are affected by differences in the levels of repro-
ductive hormones between age and sex classes.

Prediction 2A Parasite burdens will increase with host testosterone levels.
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Nematodes
and pollutants

Hypothesis 2B Parasite burdens are affected by differences in aggressive
behaviour and stress between age and sex classes.

Prediction 2B(i) Parasite burdens will be greater among dominant territorial
males.

Prediction 2B(ii) Parasite burdens will increase in any individual with the
amount of aggressive behaviour shown.

Prediction 2B(iii) Parasite burdens will increase with host corticosterone (stress
hormone) levels.

Observation Sex and age differences in Babesia levels appear to be associated
with the number of ticks on the host.

Hypothesis 2C The intensity of infection with Babesia depends on the degree of
exposure to infected ticks.

Prediction 2C Babesia burden will increase with the number of infected ticks
establishing on the host.

Hypothesis 2D The intensity of infection with Babesia depends on the degree of
resistance to tick infection.

Prediction 2D The intensity of infection with Babesia will decrease with the host’s
ability to mount an antibody response to ticks.

Example 3 Observations on the samples of soil-dwelling nematodes suggest a number of
things vary with the pollution status of the site of origin – species diversity and
fecundity among them.

Observation Fewer species were identified in the samples from the two polluted
sites compared with the unpolluted site.

Hypothesis 3A Pollution reduces species diversity.

Prediction 3A The addition of pollutants to identical multi-species nematode 
cultures will result in a reduction in the number of species supported over time.

Hypothesis 3A is another very broad hypothesis and could give rise to several
more specific hypotheses, each generating their own predictions. For example:

Hypothesis 3B Pollutants are toxic to those species missing from polluted sites.

Prediction 3B Species present at unpolluted sites but missing from polluted sites
will show greater mortality when exposed to pollutants.

Hypothesis 3C Pollutants affect resource availability for certain groups of 
nematodes.

Prediction 3C Species missing from polluted sites will tend to come from certain
trophic or microhabitat groups.
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Crickets

Observation Some species are present only in polluted sites.

Hypothesis 3D(i) Such species benefit from relaxed interspecific competition in
polluted sites.

Prediction 3D(i) Increasing the number of species in the culture in an otherwise
constant and pollutant-free environment will tend to result in the loss of such
species from the community.

Hypothesis 3D(ii) Pollutants create niche opportunities not available in unpol-
luted sites.

Prediction 3D(ii) For any given number of species in the culture in an otherwise
constant environment, such species will do better when pollutant is added com-
pared with an unpolluted control.

Observation Fewer juvenile stages were recorded from the organophosphate-
polluted site than from the other two sites, but there was no consistent difference
in the number of females with eggs.

Hypothesis 3E(i) Organophosphate pollution affects recruitment to nematode
populations through reduced egg viability.

Prediction 3E(i) Females reared in organophosphate-treated, single-species culture
will show reduced hatching success per egg compared with those reared in heavy
metal or untreated control cultures.

Hypothesis 3E(ii) Organophosphate pollution affects recruitment to nematode
populations through increased juvenile mortality.

Prediction 3E(ii) Females reared in organophosphate-treated, single-species cul-
ture will show comparable hatching success per egg but reduced survival of
resultant juvenile stages than those reared in heavy metal or untreated control
cultures.

Example 4 Male field crickets seemed to be aggressive to one another when put together 
in an arena. Whether or not an encounter resulted in fighting varied with the
number of crickets, and individuals differed in their tendency to initiate and win
fights. The apparent effects of providing egg box shelters and introducing females
suggest that interactions between males are concerned ultimately with gaining
access to females.

Observation The number of encounters leading to a fight was lower when more
crickets were present.

Hypothesis 4A The cost of fighting on encounter increases with population size
and the chance of encountering another male.

Prediction 4A The probability of an encounter’s resulting in a fight will decrease
with increasing numbers of males and in the same number of males maintained
at a higher density.
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Observation Larger males initiated more fights per encounter and won in a
greater proportion of encounters.

Hypothesis 4B Large size confers an advantage in fights between males.

Prediction 4B Males will be less likely to initiate a fight when their opponent is
larger.

Observation Interactions tended to escalate from chirping and antenna-tapping
to overt fighting.

Hypothesis 4C The escalating sequence reflects information-gathering regarding
the size of the opponent and the likelihood of winning.

Prediction 4C Encounters will progress further when opponents are more similar
in size and it is more difficult to judge which will win.

Observation Larger males ended up in or near egg box shelters and females
tended to spend more time with these males.

Hypothesis 4D(i) Females prefer to mate with males in shelters for protection from
predators.

Prediction 4D(i) Giving a male a shelter will increase the attention paid to him
by females and his chances of copulating.

Hypothesis 4D(ii) Females prefer large males.

Prediction 4D(ii) Given a choice of males, all with or without shelters, females
will spend more time and be more likely to copulate with larger males.
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2.3.2 Null hypotheses

In the examples above, we have phrased predictions in terms of the outcomes
they lead us to expect. Prediction 1B, for example, leads us to expect that the
amount of damage sustained by a leaf will decrease the tougher its cuticle or the
more volatiles it contains. We can test this prediction by carrying out a suitable
investigation and associated confirmatory analysis. Formally, however, we do
not test predictions in this form. Rather, we test them in a null form that is
expressed as a hypothesis against the prediction. This is known as a null hypo-
thesis and is often expressed in shorthand as H0 (the prediction made by the
study is then referred to conventionally as H1). Predictions are tested in the form
of a null hypothesis because science proceeds conservatively, always assuming
that something interesting is not happening unless convincing evidence suggests,
for the moment, that it might be. In the case of Prediction 1B, therefore, the 
null hypothesis would be that tougher cuticles or more volatiles would make 
no difference to the amount of damage sustained by a leaf. We shall see later
what burden of proof is necessary to enable us to reject the null hypothesis in
any particular case.

There is a second, and from a practical point of view more crucial, point to
make about the predictions. Skimming down them gives the impression of
specificity and diversity; each prediction is tailored to particular organisms and
circumstances, and those from one example seem to have little to do with those
from others. At the trivial level of detail, this is obviously true. However, in terms
of the kinds of question they reflect, predictions from the different examples in
fact have a great deal in common. Before we can proceed with the problem of
testing hypotheses and choosing confirmatory analyses, we need to be aware of
what these common features are.

2.3.3 Differences and trends

Although we derived some 23 different predictions from our notes, and could
have derived many more, all fall (and any others would have fallen) into one of
two classes. Regardless of whether they are concerned with nematodes or 
crickets or with surviving pollutants or fighting rivals, they either predict some
kind of difference or they predict some kind of trend. Recognising this distinc-
tion is vitally important because it determines the kind of confirmatory test we
shall be looking to perform and therefore the design of our experiments. Surpris-
ingly, however, it proves a stubborn problem for many students throughout their
course, with the result that confirmatory analyses often fall at the first fence.
Let’s look at the distinction more closely.

A difference prediction is concerned with some kind of difference between
two or more groups of measurements. The groups could be based on any char-
acteristics that can be used to make a clear-cut distinction; obvious examples
could be sex (e.g. a difference in body size between males (Group 1) and females
(Group 2)), functional anatomy (e.g. a difference in enzyme activity between
xylem (Group 1), phloem (Group 2) and parenchyme (Group 3) cells in the stem
of a flowering plant), or experimental treatment (e.g. a difference in the number
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Plants and
herbivores

Hosts and
parasites

Nematodes
and pollutants

of chromosomal abnormalities following exposure to a mutagen (Group 1) or
exposure to a harmless control (Group 2)). Which of the predictions we derived
earlier are difference predictions?

Example 1 In the leaf sample study there are two difference predictions:

n Prediction 1C(i) leads us to expect that the incidence of severe damage 
will be lower on thorny species (Group 1) than on non-thorny species
(Group 2).

n Prediction 1C(ii) leads us to expect a reduction in less severe damage on
species with sticky, hairy stems (Group 1) compared with species without
(Group 2).

Example 2 One prediction from the example of host/parasite relationships involves a 
difference:

n Prediction 2B(i) suggests a difference in parasite burden between domin-
ant territorial males (Group 1) and other age and sex categories of host
(Group 2).

Example 3 Almost all the predictions arising from the soil-dwelling nematode samples turn
out to be difference predictions:

n Prediction 3A suggests a difference in the number of species between 
cultures to which pollutant has been added (Group 1) and those that are 
pollutant-free (Group 2).

n Prediction 3B predicts a difference in sensitivity to pollutants between
species absent from polluted sites (Group 1) and those present at such sites
(Group 2).

n Prediction 3C suggests a difference between trophic groups (e.g. bacterial
feeders (Group 1), fungal feeders (Group 2), plant feeders (Group 3)) in the
tendency to be present at polluted sites.

n Prediction 3D(ii) leads us to expect a difference between cultures to which
pollutant has been added (Group 1) and pollutant-free controls (Group 2) 
in the tendency to support nematode species found only in polluted sites in
the field.

n Prediction 3E(i) suggests a difference in egg hatching success between
female worms exposed to organophosphate pollutant (Group 1) and those
not (Group 2).

n Prediction 3E(ii) is similar to the last prediction except that it suggests a 
difference in larval mortality instead.
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Plants and
herbivores
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Example 4 Two predictions from the crickets involve differences:

n Prediction 4B suggests that males will be less likely to intitiate a fight 
when their opponent is larger than them (Group 1) than when it is smaller
(Group 2).

n Prediction 4D(i) predicts that females will pay more attention to males with
a shelter (Group 1) than to males without a shelter (Group 2).

Trend predictions are concerned not with differences between hard and fast
groupings but with the relationship between two more or less continuously 
distributed measures. Thus, for example, a relationship might be predicted
between the amount of an anthelminthic drug administered to a rat infected with
nematodes and the number of worm eggs subsequently counted in the animal’s
faeces. In this case, we should expect the relationship to be negative with 
egg counts decreasing the more drug the rat has received. On the other hand, a
positive relationship might be predicted between the number of hours of sunlight
received and the standing crop of a particular plant. With trends we can there-
fore envisage two measures as the axes of a graph. One measure extends along
the bottom (x) axis, the other up the vertical (y) axis. Sometimes it doesn’t 
matter which measure goes along the x-axis and which up the y-axis because
there is no basis for implying cause and effect and we are interested only in
whether there is some kind of association. Thus, we might expect a strong asso-
ciation between the amount of ice cream eaten and the amount of time spent 
in the sea on a visit to the seaside because both would go up with temper-
ature. Since neither could reasonably be thought of as a cause of the other, 
it is of no consequence which goes on the x- or y-axis. In the two examples 
above, however, there are reasonable grounds for supposing cause and effect.
While it is plausible for the anthelminthic drug to affect faecal egg counts, 
it is not plausible for the egg counts to have influenced the amount of drug.
Similarly, hours of sunlight could influence a standing crop but not vice versa.
In these cases, the drug dose and hours of sunlight measures should go on the 
x-axis and the egg counts and standing crops on the y-axis. It is important to
stress, however, that by doing this we are not asserting that the x-axis measure
really is a cause of the y-axis measure – as we shall see later, inferring cause 
and effect from relationships requires extreme caution – merely that if there was
a cause-and-effect relationship it would most likely be that way round. This is
also clear in the remainder of our example predictions, all of which involve trends.

Example 1 In Prediction 1A(i), leaf damage is expected to decrease as the height of plant
species increases. Plant height should thus be the x measure and leaf damage the
y measure:

n Prediction 1A(ii) makes a similar prediction except that the expected rela-
tionship is within plants. Height up the plant is the x measure and leaf 
damage once again the y measure.
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n Prediction 1B suggests a negative relationship between toughness of the 
cuticle (x measure) and leaf damage (y measure).

Example 2 All except one of the predictions from the vole parasites example are trend 
predictions:

n Prediction 2A predicts an increase in parasite burdens (y measure) with
increasing testosterone levels (x measure).

n Predictions 2B(ii) and (iii) predict similar increases in parasite burdens 
(y measure) but this time as a function of increasing aggression and corti-
costerone levels (x measures), respectively.

n Prediction 2C suggests an increase in Babesia levels (y measure) with the
number of ticks recovered from the host (x measure).

n Prediction 2D suggests a reduction in Babesia levels (y measure) with host
immune responsiveness (x measure).

Example 3 Only one of the predictions arising from the nematode example suggests a 
trend:

n Prediction 3D(i) predicts a loss of species found only at polluted sites 
(y measure) as the number of species in a culture increases (x measure).

Example 4 Three predictions from the crickets involve trends:

n Prediction 4A first of all predicts that the number of encounters ending up
in a fight (y) will increase with the number of crickets (x), then predicts a
similar increase when the same number of crickets are maintained at higher
densities (density = x).

n Prediction 4C involves a predicted trend in the tendency to escalate an inter-
action (y) with decreasing difference in size between opponents (x).

n Prediction 4D(ii) suggests that the time females spend with a male (y) and
their tendency to copulate (y) will increase with male size (x).

There is thus a clear distinction between difference and trend predictions. Of
course, it is possible to recast some trend predictions as difference predictions
(for instance, a continuous measure of group size for use in a trend could always
be recast in terms of small groups (groups below size w) and large groups
(groups above size w) and thus be used in a difference prediction). What makes
the distinction, therefore, is not the data per se but the way data are to be col-
lected or classified for analysis. Thus, while measures such as group size or time
intuitively suggest trends, there is nothing to stop their being used in difference
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predictions. It all depends on what is being asked. This is often a source of ser-
ious confusion among students encountering open-ended data-handling for 
the first time.

2.4 Summary

1. Open-ended observation is a good way to develop the basis for forming
hypotheses and predictions about material. It pays to make observations
quantitative where possible so that exploratory analyses can highlight points
of interest.

2. Exploratory analysis is a useful (often essential) first step in extracting inter-
esting information from observational notes or other sources of exploratory
information. It can take a wide variety of forms, such as bar charts, scatter-
grams, or tables of summary statistics.

3. Exploratory analyses, or raw exploratory information itself, can lead to a
number of hypotheses about the material. In turn, each hypothesis can give
rise to several predictions that test it. Formally, predictions are tested in the
form of null hypotheses.

4. While predictions derived from hypotheses may be diverse and specific in
detail to the material of interest, they fall into two clearly distinguishable 
categories: predictions about differences and predictions about trends. Which
of these categories a prediction belongs to is determined by the way data are
to be collected or classified for analysis.

Reference
Dytham, C. (2003) Choosing and using statistics: a biologist’s guide. 2nd edition,

Blackwell, Oxford.
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3 Answering questions
What do the results say?

In the last chapter, we looked at the way hypotheses can be derived from
exploratory information. We turn now to the problem of how to test our
hypotheses. As we have seen, we begin by making predictions about what should
be the case if our hypotheses are true. These predictions then dictate the experi-
ments or observations that are required. However, this may not be as straight-
forward as it sounds; decisions have to be made about what is to be measured
and how, and how the resulting data are to be analysed. The questions of meas-
urement and analysis are, of course, interdependent. This is obvious both at the
level of choosing between difference and trend analyses – there is little point col-
lecting data suitable for a difference analysis if what we’re looking for is a trend
– and at the choice of analyses within differences and trends. While at first sight
it might seem like putting the cart before the horse, therefore, we shall introduce
confirmatory analysis before dealing with the collection of data so that the
important influence of choice of analysis on data collection can be made clear.

3.1 Confirmatory analysis

3.1.1 The need for a yardstick in confirmatory analysis: 
statistical significance

Take a look at the scattergram in Fig. 3.1. It shows a relationship between the
concentration of a fungicide sprayed on a potato crop and the percentage of
leaves sampled subsequently that showed evidence of fungal infection. A plot
like this was presented to a class of undergraduates. Students in the class were
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asked whether they thought it suggested any effect of fungicide concentration on
infection. The following are some of their replies:

Yes, fungicide concentration obviously has an effect because infection goes
down with increasing concentration.

It’s hard to say. It looks as though there is some effect, but it’s pretty weak.
More data are needed.

Fungicide concentration is reducing infection but there must be other things
affecting it as well because there’s so much scatter.

I don’t think you can say anything from this. Yes, there is some downward
trend with increasing concentration but several points for high concentrations
are higher than some of those for low concentrations. Totally inconclusive.

Yes, there is a clear negative effect.

Figure 3.1 A scattergram of the relationship between concentration of a fungicide applied to a
potato crop and the percentage of leaves subsequently found to be infected.
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Clearly there are different, subjective, reactions to the plot. To some it is unequi-
vocal evidence for an effect of fungicide concentration; to others it doesn’t 
suggest much at all. Left to ‘eyeball’ impressions, therefore, the conclusion 
that emerged would be highly dependent on who happened to be doing the 
eyeballing. What is required, quite clearly, is some independent yardstick for
deciding whether or not we can conclude anything from the relationship. Since
the scenario above could be repeated with any set of data – difference or trend
– the need for such a yardstick arises in all cases. One or two idiosyncratic
departures notwithstanding (one well-known ornithologist used to advocate 
the yardsticks ‘not obvious’, ‘obvious’ and ‘bloody obvious’), the yardstick used
conventionally in science is statistical significance. There is nothing magical or
complicated about statistical significance. It is simply an arbitrary criterion accepted
by the international scientific community as the basis for accepting or rejecting
the null hypothesis in any given instance and thus deciding whether predictions,
and the hypotheses from which they are derived, hold. If the criterion is reached,
the difference or trend in question is said to be significant; if it is not, the result
is non-significant. The term ‘significant’ thus has an important, formal meaning
in the context of data analysis and its use in a casual, everyday sense should be
avoided in discussions relating to scientific interpretation. How do we decide
whether differences or trends are significant? By using the most appropriate of
the vast range of significance tests at our disposal. Before we introduce some of
these tests, however, we must say a little more about significance itself.

3.2 What is statistical significance?

A statistic is a measure, such as a mean or a correlation, derived from samples
of data that we have collected. Our expectation is that it relates closely to an
equivalent, real value (parameter) in the population from which the samples
were drawn. Of course it might or it might not. Our sampling technique (see
later) may have been impeccable and produced a very accurate reflection of the
real world. More than likely, however, and for all kinds of forgivable reasons, it
will have produced a somewhat biased sample and our calculated statistics will
differ from their population parameters. This is what makes statistical inference
tricky. If we detect an apparent difference between two sets of data, or an appar-
ent trend in the relationship between them, is the difference or trend real or is it
just an artefact of the chance bias in our sampling? Or, to put it another way, is
it statistically significant?

The criterion that determines significance is the probability (usually denoted
as α) that a difference or trend as extreme as the one observed would have
occurred if the null hypothesis – that there is really no difference or trend in the
population from which the sample came – was true. Confused? An example
makes it clear. Let’s take one of our earlier predictions, say Prediction 2C. This
predicts an increase in Babesia burden in voles with increasing degree of tick
infestation. Suppose we had tested this by infesting each of ten sets of five 
parasite-free voles with a different number of Babesia-infected ticks, measured
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the subsequent number of infected blood cells in each vole and found what looked
like a convincing positive trend: Babesia burden goes up with increasing numbers
of ticks. The null hypothesis in this case, of course, is that Babesia burden will
not increase with the number of ticks. What, then, is the probability of obtain-
ing a positive relationship as extreme as the one we got if this null hypothesis 
is really true and the apparent trend a chance effect? A helpful analogy here
might be the probability of obtaining the apparent trend by haphazardly throw-
ing darts at the scattergram. An appropriate significance test will tell us (we shall
see how later). By convention in biology, a probability of 5 per cent (= 0.05 when
expressed as a proportion) is accepted as the threshold of significance. If the
probability of obtaining a relationship as extreme as ours by chance turns out to
be 5 per cent or less, we can regard the relationship as significant and reject the
null hypothesis. If the probability is greater than 5 per cent we do not reject the
null hypothesis and the relationship is regarded as non-significant. If the null
hypothesis is not rejected, we effectively assume that our apparent relation-
ship was due to a chance sampling effect. As a matter of interest, the negative
trend in Fig. 3.1 is significant at the 5 per cent level, so the optimists have it in
this case!

The 5 per cent threshold is, of course, arbitrary and still leaves us with a one-
in-twenty chance of rejecting the null hypothesis incorrectly (falsely accepting
there is a difference or a trend when there isn’t). Under some circumstances, 
for instance when testing the effectiveness of a drug, a one-in-twenty risk of
incorrect rejection might be considered too high. In certain areas of research
such as medicine, therefore, the arbitrary threshold of significance is set at 1 per
cent (= 0.01). In other disciplines it is sometimes relaxed to 10 per cent (= 0.1).
Although we have talked of threshold probability (p) values (p < 0.05, p < 0.01,
etc.), most computer statistical packages now quote exact probabilities (p = 0.0425,
p = 0.1024, etc.) for the outcome of significance tests. If the package doesn’t tell you
whether the exact probability it quotes is significant, simply apply the threshold
value rule as before. Thus, on the 5 per cent criterion, p = 0.0425 is significant,
because it is less than 0.05, but p = 0.1024 is not, because it is greater than 0.05*.

An important point must be made here regarding the inference to be drawn
from achieving different levels (10, 5, 1 per cent, etc.) of significance. A high level
of significance is not the same as a large effect in the sense of a large difference
or a steep trend. The magnitude of an effect – difference or trend – is usually

* There are differing opinions about the form in which the p-value from a statistical test should
be reported. Some take the view that, since most packages give the exact probability, this should
be reported as the result. However, some statisticians think that these probabilities are really
correct only if the assumptions of the test are absolutely fulfilled by the data, which is rarely
true, and hence it is misleading to give the appearance of accuracy by citing the exact prob-
ability. For many scientists the threshold is the important thing, and they report only whether
(a) it has not been equalled or crossed (in which case the outcome is reported as ‘non-significant’
or ‘ns’), or (b) if it has been crossed, at what level of probability, either by quoting the thresholds
themselves (p < 0.05, p < 0.01 or p < 0.001) or using a conventional indicator such as asterisks
(‘*’, ‘**’ or ‘***’) to denote the same thing (see also p. 155). However, see the interesting paper
by Ridley et al. (2007) which suggests scientists sometimes pursue these critical thresholds
rather too zealously.
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known as an effect size**. This is quite different from the level of significance.
The limitations of significance in this sense are made clear in Fig. 3.2. The figure
shows two trends. In Fig. 3.2a, the y measure increases in close relationship with
the x measure, yielding what looks like a clear positive trend. Figure 3.2b, on 
the other hand, shows a scatter of points in which it is more difficult to discern
a trend. However, if we perform a suitable significance test for a trend on the
two sets of data, the trend in Fig. 3.2b turns out to be significant at the 1 per cent
level while that in Fig. 3.2a isn’t even significant at the 10 per cent level. The 
crucial difference between the two trends, of course, is the sample size. The 
number of data points in Fig. 3.2a is low, so a few inconsistencies in the trend
are enough to push it below significance. Figure 3.2b, however, has a large num-
ber of points; so even though there is a wide scatter, the trend is still significant.
Exactly the same sample size effect would operate in the case of difference 
analyses.

Because the level of significance by itself gives little indication of the magni-
tude of a difference or trend, it is always important to provide such an indica-
tion, usually in the form of summary statistics and their associated sample sizes.
We shall return to this point later.

Figure 3.2 Scattergrams showing the effect of sample size on apparent trends (see text ).

** ‘Effect size’ is a name given to a family of indices that measure the magnitude of a difference
or trend. Unlike significance tests, effect sizes are independent of sample size. They are usually
measured in two ways: (a) as the standardized difference between means (difference analyses)
or (b) as the correlation between the independent variable classification and the individual
scores of the dependent variable (trend analysis) (see also Box 3.14).
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3.3 Significance tests

So far, we have seen how to get round the problem of subjective impression in
interpreting data by using the criterion of statistical significance, and we have
looked at some caveats on the interpretation of significance. We can now turn
to the statistical tests that enable us to decide significance.

Right at the beginning we said that this book was not about statistics. It isn’t.
At the same time, statistical significance tests are an essential tool in scientific
analysis and the rules for using them must be clearly understood. This does not
necessarily require a knowledge of statistical theory and the mathematical mech-
anics of tests any more than using a computer program requires an appreciation
of electronics and microcircuitry. As with most tools, it is competent use that
counts rather than theoretical understanding. But while our aim here is simply
to introduce the use of significance tests as a basic tool of enquiry, we stress
again (see Box 2.2) that acquaintance with statistical theory is strongly recom-
mended, and it is envisaged that many users of this book will also be pursuing
courses in statistics and have at their disposal some of the many introductory and
higher-level textbooks now available (e.g. Siegel and Castellan 1988; Sokal 
and Rohlf 1995; Grafen and Hails 2002; Dytham 2003; Hawkins 2005; Ruxton
and Colegrave 2006).

3.3.1 Types of measurement and types of test

The test we choose in a particular case may depend on a number of things. The
following are three important ones.

1 Types of measurement
The first is the kind of measurement we employ. Without getting too bogged
down in jargon, we can recognise three kinds.

Nominal or classificatory measurement. Here, observations or recordings are 
allocated to one of a number of discrete, mutually exclusive categories such as
male/female, mature/immature, red/yellow/green/blue, etc. Thus if we were to
watch chicks pecking at red (R), green (G) and orange (O) grains of rice and
recorded the sequence of pecks with respect to the colour targeted, we might end
up with a string of data as follows:

R O R R G G O R G G G G O O G R O

Such data are measured purely at the level of the category to which they belong
and measurement is thus nominal or classificatory.

Ordinal or ranking measurement. In some cases, it may be desirable (or necessary)
to make measurements that can be ranked along some kind of scale. For instance,
the intensity of the colour of a turkey’s wattles might be used as a guide to its
state of health. The degree of redness of the wattles of different birds could be
scored on a scale of 1 (pale pink) to 10 (deep red). The allocation of scores to
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wattles is arbitrary and there is no reason to suppose that the degree of redness
increases by the same amount with each increase in score. Thus the difference in
redness between scores of 8 and 9 might be greater than the difference between
scores of 2 and 3. All that matters is that 9 is redder than 8 and 3 is redder than
2; the absolute difference between them cannot be quantified meaningfully.

Constant interval measurements. In other scale measurements, the difference
between scores can be quantified so that the difference between scores of 2 and
3 is the same as that between scores of 8 and 9. Such measurements may have
arbitrarily set (e.g. scales of temperature) or true (e.g. scales of time, weight,
length) zero points. Such constant interval measurements can in fact be split into
two categories on the basis of arbitrary versus true zero points and their scaling
properties (e.g. Martin and Bateson, 1993), but this is not important here.

While defining measurements seems rather dry and theoretical, we need to 
be aware of the kind of measurement we use because, as we shall see, some
significance tests are very restrictive about the form of data they can accept.
Another reason for highlighting it, is that we should always seek the measures
that give us the maximum amount of information for the cost required (usually
in time) to obtain them. Usually this means constant interval measurements,
because they are on a continuous, non-arbitrary scale. However, nominal or
ordinal data are sometimes more appropriate and not infrequently the best that
can be achieved.

2 Parametric and non-parametric significance tests
The second thing we must keep an eye on is the nature of the data set itself, in
particular the sample size and the distribution of values within the sample. Again,
detailed consideration of this is unnecessary but it is a factor that determines the
range of tests we shall be introducing so a brief discussion is warranted.

Parametric tests. These make a number of important assumptions that are fre-
quently violated by the kinds of data sets collected during practical exercises.
The most critical concerns the distribution of values within samples. Parametric
tests generally assume that the data conform (reasonably closely at least) to what
is known as a normal distribution.

As Dytham (2003) puts it, the normal distribution is the most important dis-
tribution in statistics (but see Box 3.1a) and it is often assumed (all too frequently
without checking) that data are distributed in this way. We’ve already encoun-
tered it in our discussion of frequency distributions and it is illustrated again in
Fig. 3.3. Essentially a normal distribution demands that most of the data values
fall in the middle of the range (cluster about the mean) with the number taper-
ing off symmetrically either side of the mean to a few extreme values in each of
the two tails. The height of the adult male or female population in a city would
look something like this: most people would be around the average height for
their sex, some would be quite tall or quite short and a few would be extremely
tall or extremely short. While normality is not the only assumption underlying
parametric tests, the arithmetic of such tests is based on the parameters describ-
ing this symmetrical, bell-shaped curve (hence the term parametric). Therefore,
if you are testing for group differences, parametric tests assume that each group
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has the same normal distribution of values around its mean; if for trends, that
there is a normal distribution of Y-values at each X-value (for regression), or 
a normal distribution along both X and Y axes (for correlation). The more dis-
torted (less normal) the distribution becomes, therefore, the less meaning the
calculations of parametric tests have. We can convince ourselves of this by briefly
considering some basic features of the distribution. We shall then consider what
to do if the data are not normal.

The standard deviation and probability. We’ve talked about the arithmetic mean
as a measure of central tendency. This is a useful parameter that tells us one
thing about the nature of the data set. What it doesn’t tell us, of course, is any-
thing about the variation in the data. This is where we come back to the stand-
ard deviation, first encountered in calculating the standard error to the mean in
Box 2.1. The standard deviation (see calculation in Box 2.1) is a measure of the
spread of data values about the mean, but instead of simply being the full range
of actual values from smallest to largest (which will vary with sample size), it
reflects the theoretical spread of the majority of values (68.25 per cent of them
in a perfectly normal distribution) in the true population. We can represent this
as two vertical lines (one either side of the mean) in Fig. 3.3, which is actually a
standardised normal distribution (where the mean is subtracted from each data
value and the result divided by the standard deviation, thus giving a mean of zero
and a variance of 1). An easy way to visualise the standard deviation is as the
point of inflection either side of the mean (where the curve of the normal dis-
tribution changes from convex to concave). Taking the majority spread like this
avoids the distortion that might be inflicted by odd outlier values at the extremes
and provides a convenient standard yardstick of variability within data sets.
Moving two or three standard deviations away from the mean includes pre-
dictably greater percentages of the data set: 94.45 per cent in the case of two
standard deviations and 99.97 per cent in the case of three. The important 
point here is that we can use this property when it comes to significance testing.

Figure 3.3 A standardised normal distribution (with a mean of 0) and showing one standard
deviation (vertical lines) either side of the mean (modified from Dytham, 2003).
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Since we know what percentage of the data points is included within different
multiples of the standard deviation, we can easily work out how many standard 
deviations would include 95 per cent of the data or, more to the point, exclude
the 5 per cent at the extremes (2.5 per cent at each extreme). The answer is 1.96,
represented by the horizontal bar in Fig. 3.3. Thus 95 per cent of data values lie
within the range ‘mean ± 1.96 standard deviations (x̄ ± 1.96 s.d.)’, which means
that the probability of encountering a value larger or smaller than this range is 
5 per cent or less – the conventional threshold of statistical significance! If we
found a value with a probability of occurrence as low as this we’d be justified in
concluding that it was unlikely to have come from the population that generated
the curve. Of course, as the fact that the calculation of the standard deviation in
Box 2.1 is based on squared deviations makes clear, all this works only as long
as the curve is symmetrical and conforms respectably to a normal distribution.
Since the calculation of parametric significance tests generally employs the same
squared deviations procedure, as we shall see shortly, the restrictions apply to all
these tests.

One additional point. Quite a number of significance tests are based on cal-
culating the deviation of an observed mean from the null expectation of a 
standardised normal distribution (Fig. 3.3). Conventionally this is called a z-value 
and, from the above, we can see that if z exceeds 1.96 the result is significant 
at the 5 per cent level. (The value 1.96 is actually the threshold value when 
both sides – ‘tails’ in the jargon – of the distribution are taken into account, a 
so-called two-tailed test; when only one tail is considered (a one-tailed test), the
threshold value is 1.64. We shall discuss one- and two-tailed tests in detail later.)

Departures from normality. Frequency distributions can depart from normality
in a number of ways. Two broad kinds of departure, however, are skewness and
kurtosis. Skewness is a synonym for asymmetry, i.e. one or other tail of the dis-
tribution is more drawn out than the other. The distribution in Fig. 2.8b is said
to be skewed to the right (towards the y-axis), while the opposite bias would be
skewed to the left. Kurtosis refers to the flatness of the distribution, which can
be leptokurtic (more values are concentrated around the mean and in the tails
and fewer in the ‘shoulders’ of the distribution), or platykurtic (where the reverse
is true). Bimodal distributions, like that in Fig. 2.8c, are thus extremely platykurtic.

Percentages and proportions present their own problems for normality.
Because they range between 0 and 100, or 0 and 1, the distribution of values is
artificially truncated at either end. This may not present a serious problem if
most of the values in the data set occur in the middle two-thirds or so of the 
distribution, but if they approach 0 or 100/1 there is cause for concern.

Transformations. So what do we do if we suspect our data may not be normally
distributed? Happily, and as long as our sample size is big enough (> 50 as a
rough guide) to make a comparison meaningful, the wide range of statistical
packages now available for personal computers makes the answer simple. Test
it! There are some well-established significance tests (such as the chi-squared
and Kolmogorov–Smirnov tests) that allow comparisons between frequency dis-
tributions of data and various theoretical distributions of which the normal is the
commonest. But there is a catch, and Box 3.1b explains this in showing how to
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test for normality using SPSS. If we test our distribution and find it does not dif-
fer significantly from normal, then we’re at liberty to use any appropriate para-
metric test at our disposal. If it does differ, we can do one of two things. We can
abandon the idea of using parametric statistics and choose an appropriate non-
parametric test instead (see below), or we can transform the data to see whether
it can be normalised. Several transformations are available but the most widely
used are probably logarithmic (log x or, where there are zeros in the untrans-
formed data, log(x + 1)) or square root transformations. Simply log or take the
square root of each data value, recast the distribution and test it for normality
again. Where percentages or proportions stray below about 30 per cent (or 0.3)
or above 70 per cent (or 0.7), an arcsine square root transformation (calculated
by taking the square root of the proportion – so divide percentages by 100 first
– then the inverse sine (sin−1 on many calculators) of the result) will stretch out
the truncated tails and prevent undue violation of the normality assumption of
parametric tests or square root transformations (Box 3.1b shows how to trans-
form data in SPSS).

Of course, even transformation may not succeed in normalising our data, in
which case we must seriously consider using non-parametric statistics. Indeed,
we may not even get as far as worrying about the normality of our data before
opting for a non-parametric approach. Among their various other requirements,
parametric tests demand that measurements are of the constant interval kind, so
cannot usually deal with the other types of measurement we might be forced to
use. Non-parametric tests are much less restrictive here.

Non-parametric tests. Non-parametric tests are sometimes referred to as 
distribution-free, ranked or ranking tests because they do not rely on data 
being distributed normally, and generally work on the ranks of the data values
rather than the data values themselves. While they may be distribution-free,
however, they are not entirely assumption-free. They assume the data have some
basic properties, such as independence of measurement (see later) and a degree
of underlying continuity (see Martin and Bateson, 1993): crucially, they also make
the same assumption of equal dispersion among groups as do parametric tests
(which assume equal variances among groups). In most cases, however, these
assumptions are easily met. In the jargon of statisticians, non-parametric tests
are thus more robust because they are capable of dealing with a much wider
range of data sets than their parametric equivalents. While they can deal with
the same constant interval measurements as parametric tests, they can also cope
with ordinal (ranking) and classificatory measurements. Non-parametric tests are
especially useful when sample sizes are small and assumptions about underlying
normality particularly troublesome. There are a couple of drawbacks, however.
The first, arguably overstated (see Martin and Bateson, 1993), weakness is that
non-parametric tests are generally slightly less powerful (power here meaning
the probability of properly rejecting the null hypothesis – we shall return to 
this shortly) than their parametric equivalents. The second, which is slowly being
addressed (see for example Meddis, 1984), is that the range of tests for more
complex analyses involving several variables at the same time is very limited.
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Sophisticated multivariate analysis is still the undisputed province of parametric
statistics. Nevertheless, for our purposes, and with a few exceptions, there are
perfectly good parametric and non-parametric equivalents and we shall intro-
duce them both in our discussion of significance testing.

The normal (or Gaussian) distribution is a form
of continuous distribution, where, in principle,
data can take a continuum of values. There are
other forms of continuous distribution, but the
normal is by far the most relevant to biological
situations. However, there is another family of
distributions which is important in biology. These
are discontinuous or discrete distributions: two
are particularly relevant.

The Poisson distribution
The Poisson distribution describes occurrence in
units of time or space, for instance the number of
solitary bee burrows scored in a quadrat or the
number of hedgehogs dropping into a cattlegrid
overnight. The key assumptions are: (a) the 
mean number of occurrences per unit is small 
in relation to the maximum number possible – i.e.
occurrences are rare, (b) occurrences are inde-
pendent of each other – i.e. there is no influence
of one on the likelihood of another, (c) occur-
rences are random. Indeed, the reason a Poisson
distribution is fitted to data is to test for independ-
ence or randomness in time or space. Poisson
data are characterised by the mean being equal 
to the square of the standard deviation (known as
the variance). If the variance is bigger than the
mean, the data are more clustered than random;
if it is smaller, they tend towards uniformity. 
A glance at these two summary statistics thus
gives a good indication of the kind of distribution
we’re dealing with. When analysing count data
with small numbers close to zero, the Poisson dis-
tribution also makes the crucial assumption that
no values can be below zero. It can be very mis-
leading to use statistical tests based on the normal
distribution here, because this assumes the data
can take any value, including negative ones. It is
only relatively recently that statistical methods
have been available that can make the assumption

that the data are Poisson-distributed – packages
such as S-Plus, R, SAS, Genstat and GLIM are
able to do this.

The binomial distribution
The binomial distribution is a discrete distribu-
tion of occurrences where there are two possible
outcomes for each so that the probability of 
one outcome determines the probability of the
other. Thus if the probability of an egg’s hatch-
ing is 0.75, the probability that it won’t hatch is 
1 − 0.75, i.e. 0.25. This logic can be extended to
calculate the probability of various combinations 
of hatching (H) and failed (F) eggs in clutches 
of different size. Thus if two eggs are laid, there
are four possible outcomes: HH, HF, FH, FF.
Applying the values above gives a probability of
0.56 (0.75 × 0.75) for both eggs hatching success-
fully, 0.19 (0.75 × 0.25) for each of the two mixed
outcomes (HF and FH) and 0.06 for two failures.
The same could be done for clutches of three, four
or however many eggs. The binomial distribution
thus gives a baseline chance probability against
which outcomes in various situations can be
judged. So, if we found a population in which the
proportion of two-egg clutches failing completely
was 30 per cent instead of 6 per cent, we might
become suspicious about the health of the birds
or their environment. As with the Poisson distribu-
tion, it makes little sense to analyse probabilities
assuming an underlying normal distribution if 
the data are distributed in a binomial fashion,
since values cannot go below zero or above 1.
Logistic regression is the technique that (with
some restrictions) allows the assumption of the
binomial distribution, and is available in many
packages, including SPSS. It can also be incorpor-
ated easily into other statistical packages such as
S-Plus, R, SAS, Genstat and GLIM.

Box 3.1a Types of distribution

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 59



60 CHAPTER 3 ANSWERING QUESTIONS

Given the importance of the normal distribution
to parametric statistical analyses, you might be
forgiven for imagining that testing whether your
data conform to it would be made easy. Actually
it isn’t straightforward or automatic in any pack-
age: you have to understand what it is you are
trying to test, and hence how to go about it.

The key point to understand is that all statist-
ical tests involve fitting a model. If you are testing
for differences, this model usually involves the
fitting of mean values to each group, and testing
whether these mean values are different among
the groups. If you are testing for a trend, then the
model usually involves fitting a straight line to the
data, and then testing whether the slope of the
line is different from zero.

The assumption of normality in these statist-
ical tests is about the residuals, after you have
fitted the model (see discussion in Sokal and
Rohlf, 1995). A residual is the difference between
an individual measurement and the mean value
for its group (for analyses of differences between
groups), or from the value predicted by a regres-
sion line (for analyses of trends). Thus usually you
are not testing whether the raw data are normally
distributed, but whether the residuals are*. The
process therefore usually involves (a) fitting the
model, (b) saving the residuals, and (c) testing
whether the residuals are normally distributed.

Once we have the residuals, a variety of tests
can be used to detect departures from a normal
distribution. Those used most commonly are the
one-sample Kolmogorov-Smirnov test (for large
samples, where n > 2000), chi-squared, and, for

small- to medium-sized samples where n lies
between 3 and 2000, the Shapiro-Wilk test. The
‘Explore’ option under ‘Descriptive Statistics’ in
SPSS offers the first and third of these.

Testing for normality as part of a test for
differences
Assume that we are interested in whether the
mean sizes of seven groups of grasshoppers are
different, and that we have 100 measurements for
each group. One of the assumptions of the test is
that the residuals, the differences of each value
from the mean for its group, are normally dis-
tributed. Another assumption is that the residuals
of each group all have the same normal distribu-
tion (i.e. the variances of the groups all have the
same value – referred to as the ‘homogeneity 
of variances’ assumption): we shall show how to
test for this assumption, along with the details of
exactly how to carry out tests of difference, later
on (see Box 3.3a on p. 73). For now we are con-
cerned simply with testing for normality.

In SPSS, the data (‘size’) are in a single column,
and a second column (‘group’) indexes the group
to which each value belongs (Fig. (i)a). Click
‘Analyse’ and then ‘General Linear Model’ and
‘Univariate’. This will bring up the dialogue box
of Fig. (i)b, where we enter the variable being
analysed (‘size’) into the ‘Dependent Variable’ box,
and the index variable for the groups (‘group’)
into the ‘Fixed Factor(s)’ box. So far this is a stand-
ard test for a difference among groups, which we
shall meet in detail in Box 3.3a.

Now, in order to save the residuals, click 
the ‘Save’ button, bringing up the dialogue box 
of Fig. (i)c. Here, tick ‘Unstandardized’ in the 
box headed ‘Residuals’, and then click ‘Continue’.
Standardised residuals merely multiply each value
of your data by a constant so that the standard
deviation is 1.00, but it does not change them 
relative to one another, and so the shape of the
distribution is unchanged.

When we click ‘OK’ on the ‘Univariate’ dia-
logue, you will see that a new variable will appear
in the data spreadsheet, called RES_1 [Residual

Box 3.1b Testing whether data conform to a normal distribution

* We can understand intuitively why testing the raw
data for normality would be a mistake. Suppose, for
example, that the raw data reflect two widely separated
groups of values, perhaps body height from males and
females where males are much bigger than females.
Since the two groups differ significantly in mean value,
the distribution of the overall raw data will be bimodal,
i.e. having two peaks of value with a trough in between.
This will fail any test for normality, even though the
assumption of normality is almost certainly correct
(height is the classic case of the normal distribution).
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is ticked. Clicking ‘OK’ produces a histogram of
the distribution of the residuals, together with a
fitted normal distribution (Fig. (ii)c). Notice how,
relative to the normal distribution, there are too
few very small values, too many just below the
mean, too few above the mean, and a long tail out
to the right. This looks questionable as a normal
distribution.

for size]: these are the residuals. An Output 
window will open, but for the moment we are not
interested in what it contains.

Now to test the residuals for normality. Click
on ‘Graph’ and ‘Histogram’ (Fig. (ii)a), and in 
the resulting dialogue box (Fig. (ii)b), enter the
residuals variable RES_1 into the ‘Variable’ box,
and make sure that the ‘Display normal curve’ box

Figure (i) How to obtain residuals from a difference test before testing them for normality. (a) Data entry, (b) select-
ing the routine and variables, (c) choosing the residuals to save.

(a)

(b) (c)
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To test statistically whether it is, click 
on ‘Analyze’, ‘Descriptive Statistics’ and
‘Explore’. Enter the residuals into the
‘Dependent Variable’ box of the resulting
dialogue (Fig. (ii)d). Choose ‘Display Plots’,
and then click on the ‘Plots’ button. 
From the dialogue (Fig. (ii)e) uncheck the
‘Stem-and-leaf ’ descriptives, and ask for
‘None’ of the boxplots, but make sure that
the ‘Normality plots with tests’ is checked.
Pressing ‘Continue’ and then ‘OK’ brings
the Output window (Fig. (ii)f) with a couple
of tables and a couple of graphs. The first
table (not shown) just summarises the avail-
able data, but the second contains two 
statistical tests, a Kolmogorov-Smirnov test
and a Shapiro-Wilk test. Even with large
sample sizes, the Kolmogorov-Smirnov 
test is very conservative, and tends to reject
the normal distribution too often: thus the
Shapiro-Wilk test is the preferred method.
Here, both tests show that our data differ
significantly from the normal distribution,
because the p-values (the ‘Sig.’ column in
the table) are less than 0.05. The two graphs
show the same thing in two different ways:
the clearest one is the second (Fig. (ii)f ),
which shows departure from normality as
the degree of deviation from a horizontal
line at zero. In the figure here it is obvious
that the data for size differ most from the
normal distribution at the small and large
values, as we suspected.

Testing for normality as part of a test for 
a trend
Assume we have applied five concentra-
tions of enzyme to a substrate with 10
replicates of each, and we have measured
the amount of product produced. We 
are testing whether changing the enzyme
concentration causes linear changes in 
the amount of product. The assumption 
of the test is that the residuals of the 
Y-variable (amount of product) from the
regression line are normally distributed.

In SPSS, the enzyme concentration data
go in one column (conc), and the amount

Figure (ii) Testing residuals for normality. (a) The menu option,
(b) entering the residuals variable to obtain a histogram of 
the distribution together with a normal curve, (c) the result-
ing histogram, (d) entering the residuals variable into Explore,
(e) choosing normality tests, (f ) results of the normality testing.

(a)

(b)

(c)
fi
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of product generated (pro-
duct) in another (Fig. (iii)a).
Click on ‘Analyze’, ‘Regres-
sion’ and ‘Linear’, and enter
‘product’ into the ‘Depend-
ent’ box and ‘conc’ into the
‘Independent(s)’ box of the
resulting dialogue box (Fig.
(iii)b). Click ‘Save’, and
check the ‘Unstandardized’
box (Fig. (iii)c), as before.
Clicking ‘Continue’ and 
‘OK’ will again result in the
appearance of an extra col-
umn in the dataset, labelled
‘RES_1 [unstandardized
residual]’.

Now follow exactly the same procedure as 
for tests of difference above, to obtain the his-
togram plot and the test for normality (Fig. (iii)d). 
In this case we have fewer data (n = 50) and so 
it is harder to tell whether it really differs from
the normal distribution or not. Despite some
indications of systematic departures from norm-
ality at the ends, the pattern is not suspicious
enough to be able to reject the normal distribution
by the Shapiro-Wilk test (Fig. (iii)d). Thus we can
assume these data do conform to the assumption
of the test.

Normalising data by transformation
Where data do not conform to a normal distribu-
tion, we can, of course, try some transforma-
tions (see text) to see whether we can normalise
them. We can try this for the variable ‘size’,
which showed departure from normality in the
tests for a difference above. To transform ‘size’,
click on ‘Transform’ at the top of the screen, and
select ‘Compute’. Scroll down the ‘Functions’ 
box (Fig. (iv)a) to select a suitable transformation
operator – we’ll try a log10 (‘lg10(numexpr)’ in the
operator list) and a square root (‘sqrt(numexpr)’)
transformation as two widely used ones. Double
clicking on the operator of choice puts it into 
the ‘Numeric Expression’ box at the top, with a
highlighted question mark in the brackets. With
the question mark highlighted, double click on the
variable desired (here ‘size’) and it will transfer

(d)

(e)

(f)

Figure (ii) cont’d
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Figure (iii) Testing for normality for a trend. (a) Data entry, (b) entering variables to obtain the residuals, (c) choos-
ing the residuals to save, (d) results of the normality testing.

(a)

(c) (d)

(b)

into the brackets. We now have to choose a 
new variable name (here ‘transize’) to accept the
transformed variable, so enter a suitable name in
the ‘Target Variable’ box at top left (Fig. (iv)a)
and click ‘OK’ to return to the data screen where
the new variable will appear in the last column.

We now simply repeat the procedure for a 
test of difference above, but for the transformed
variables rather than the raw ones. If we do this
(Fig. (iv)b), it turns out that neither log10 nor square
root transformations help in the case of ‘size’; both
still show a significant departure from normality.
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3 One-tailed versus two-tailed, and general versus specific tests
The third important factor we must consider relates to the prediction we are 
trying to test. Suppose we are predicting a difference between two sets of data,
say a difference in the rate of growth of a bacterial culture on agar medium 

Figure (iv) (a) Using the ‘Transform’ option in SPSS to
log10 transform the variable ‘size’ and save it to a new
variable ‘transize’, (b) the resulting normality test.

(a)

(b)
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containing two different nutrients. We could make two kinds of prediction. On the
one hand, we could predict a difference without implying anything about which
culture should grow faster. In this case, we wouldn’t care whether culture A grew
faster than culture B or vice versa. This is a general prediction. On the other
hand, we might predict that one particular culture would grow faster than the
other, e.g. A would grow faster than B; this is a specific prediction. Which of
these kinds of prediction we make affects the way we test the predictions.

The same distinction arises with trend predictions. Imagine we want to know
whether there is a trend between the size of a male cricket and the number of
fights he wins over the course of a day. We can make a general prediction (there
will be a trend, positive or negative), or we can make a specific prediction (larger
males will win more fights; i.e. the trend will be positive). We can think of the
general prediction as incorporating both positive and negative trends; either
would be interesting. The specific prediction is concerned with only one of these.

In cases like those above, where there are only two possible specific predic-
tions within the general one, we can use the same significance test for either gen-
eral or specific predictions but with different threshold probability levels for the
test statistic (see below) to be significant. Because here the specific and general
predictions are concerned with one and two directions of effect respectively, the
threshold value of the test statistic at the 5 per cent level in the general test
becomes the threshold value at the 10 per cent level in the specific test. In statis-
ticians’ jargon, we thus do either a one-tailed (specific) or a two-tailed (general)
version of the same test. There is, of course, an obvious, and dangerous, trap for
the unwary here. The trap is this: if the value of a test statistic just fails to meet the
5 per cent threshold in a two-tailed test, there is a sore temptation to pretend the
test is really one-tailed so that the test statistic value appropriate to the 10 per
cent probability level in a two-tailed test can be used, thus increasing the like-
lihood of achieving a significant result. It must be stressed that this is tantamount
to cheating. A one-tailed test is legitimate only when the prediction is made 
in advance of obtaining the result and when results in the opposite direction 
can reasonably be regarded as equivalent to no difference or trend at all*. It 
is completely inadmissible as a fallback when a two-tailed test fails to yield a
significant outcome. A one-tailed test should thus be used only when there are
genuine reasons for predicting the direction of a difference or trend in advance.

However, the distinction between general and specific is not simply that
between two-tailed and one-tailed tests. The latter distinction is normally used
for two-group tests such as t-tests, where there are clearly only two possibilities
for a one-tailed test (A > B or B > A) that together make up the two-tailed case.
But the world of specific testing is much richer than this!

There are in fact two different ways of making specific hypotheses, and the
distinction is important. You can either predict the rank order of the means 

* If you predict from theory that A will have a greater mean value than B (i.e. H1 is A > B), you
are also assuming that both of the alternative results (A = B and A < B) are equivalent and
together form the null hypothesis, H0. Thus if you find that, contrary to your prediction, the
mean value of B is much greater than that of A, and would have been significant had you
framed your hypothesis as a general one (H1 is A ≠ B), you are not allowed to conclude any-
thing other than that the null hypothesis has not been rejected.
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(values or ranks) of all the groups in your experiment, or you can pick out 
particular sets of groups to make a contrast. The testing of these two kinds 
of specific hypothesis differs.

Imagine, for instance, that we are predicting a difference between three (or
more) groups – say the weight of fruits produced in a season from trees given
three different maintenance treatments: A, B and C. The general prediction is
that there will be differences between the three treatments, i.e. that A ≠ B ≠ C.
Unlike in the two-group case, this general prediction is ‘made up of’ six poten-
tial specific predictions about the rank order of the treatment means:

A > B > C, B > C > A, C > A > B, A > C > B, B > A > C and C > B > A

As long as we make the specific prediction before we collect the data, we 
can test any one of these in our experiment. Thus, as generally understood, the
one-tailed/two-tailed distinction is only a special, and limited, case of the differ-
ence between general and specific tests.

There is an alternative way of making specific predictions that uses contrasts.
These are ways of dividing up (‘decomposing’ in statistical parlance) the dif-
ferences between groups into particular patterns. Each contrast consists of one
subset of the groups (α) contrasted against a different subset of groups (β), effect-
ively creating two groups out of the data and comparing them using a two-group
test such as a t-test (see below). A contrast can be general (α ≠ β) or specific (e.g.
α > β), but must be made a priori, i.e. in advance of collecting the data. However,
each contrast should be independent of the others, so the general rule is a max-
imum of one fewer contrasts than the number of groups that could potentially
be compared. In the example of the effect of three treatments on fruit produc-
tion, for example, we could make two independent contrasts (because there are
three groups): one of A versus B + C, and the other of B versus C. We shall make
use of this approach later (see, for example, Boxes 3.9 b,d).

3.3.2 Simple significance tests for differences and trends

Having discussed the general principle of statistical significance, we come now
to some actual tests that allow us to see whether differences or trends are
significant at an appropriate level of probability. A glance at any comprehensive
statistics textbook will reveal a plethora of significance tests for both kinds of
analysis. These cater for the various subtleties of assumption and requirement 
for statistical power under different circumstances. Many of these tests, how-
ever, are sophistications of more basic tests that are suitable for a wide range 
of analyses. Here, we introduce a selection of such tests that can be used with
most kinds of data that are likely to be collected in practical exercises. Where
appropriate, and the package performs the test(s) in question, parametric and
non-parametric equivalents are presented in the on-screen format of SPSS.
There are some extremely useful non-parametric tests of difference, however, that
have been developed independently (Meddis, 1984) and are not available on any
existing statistical package as far as we are aware. We have therefore produced
routines for these in Excel as the package AQB, which is available free on the
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Internet/World Wide Web, and for which we include examples of on-screen
input and output for the relevant tests in the present chapter. As in previous edi-
tions of the book, we also include calculations for most of the simpler tests
(Appendix II) so their mechanics are clear and they can be done by hand if
required.

Test statistic
Significance tests calculate a test statistic that is usually denoted by a letter 
or symbol: t, H, F, χ2, r, rS and U are a few familiar examples from various 
parametric and non-parametric tests. The value of a test statistic has a known
probability of occurring by chance for any given sample size or what are known 
as degrees of freedom (see later). A calculated value can thus be checked to 
see whether it concurs with or passes (positively or negatively, depending on 
the test) the threshold value appropriate to the level of probability chosen for
significance. This used to mean comparing the value with a table of threshold
values but such comparisons are now made automatically for the tests in many
statistical computer packages.

3.3.3 Tests for a difference

Tests of differences between groups involve asking whether there are differences
in overall counts, or in mean (parametric tests) or median (non-parametric tests)
values. Since non-parametric tests replace the data with their ranked values,
these tests actually test for differences in the mean ranks, which, when decoded
back to the original data, represent the medians. Apart from tests of counts, 
all these tests involve comparing the variation in values within groups with the
differences in the central values (mean or median) between groups: they are
therefore all forms of ‘analysis of variance’. We shall introduce three types of 
difference test, with parametric and non-parametric equivalents as appropriate:
first χ2 (chi-squared, pronounced ‘ky-squared’), then the t-test and Mann–Whitney
U-test as parametric and non-parametric (respectively) tests for differences
between two groups, and finally other analyses of variance (parametric and 
non-parametric) dealing with differences between two or more groups.

Tests for a difference between two groups
We shall start with the relatively simple situation of comparing two groups.
Here, two mutually exclusive groups (e.g. male/female, small/large, with prop-
erty a/without property a, etc.) have been identified and measurements made
with respect to each (e.g. the body length of males versus the body length of
females, the number of seeds set by small plants versus the number set by large
plants, the survival rate of mice on drug A versus the survival rate on drug B).
Depending on the kind of measurement made, we can use one of a number of
tests to see whether any differences are significant.

Chi-squared (χχ2). A chi-squared test can be used if data are in the form of counts,
i.e. if two groups have been identified and observations classified in terms of the
number belonging to each. Chi-squared can be used only on raw counts; it can-
not be used on measurements (e.g. length, time, weight, volume) or proportions,
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percentages, or any other derived values. The test works by comparing observed
counts with those expected by chance or on some prior basis. As an example, 
we can consider a simple experiment in Mendelian inheritance. Suppose we
crossed two pea plants that are heterozygous for yellow and green seed colour,
with yellow being dominant. Our expectation from the principles of simple
Mendelian inheritance, of course, is that the progeny will exhibit a seed colour
ratio of 3 yellow : 1 green. We can use the chi-squared test to see whether our
observed numbers of yellow and green seeds differ from those expected on a 
3 : 1 ratio. The expected numbers are simply the total observed number of
progeny divided into a 3 : 1 ratio. Thus:

Seed colour

Yellow Green Total

Number observed 130 46 176

Number expected 132 44 176

To find our χ2 test statistic using SPSS and AQB, we can follow the procedure
in Box 3.2.

In the pea example, the expected numbers were dictated by the Mendelian
theory of inheritance; we have good reason to expect a 3 : 1 ratio of yellow :
green seeds and thus a difference between groups. In many cases, of course, we
should have no particular reason for expecting a difference and our expected
numbers for the two groups would be the same (half the total number of observa-
tions each). Thus if our yellow and green groups had referred to pecks by chicks
at one of two different coloured grains of rice on a standard background instead
of the inheritance of seed colour, our chi-squared table would have looked 
very different:

Grain colour

Yellow Green

Number of pecks observed 130 46

Number of pecks expected 88 88
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In our example of Mendelian ratios in seed colour
(see text), the data are nominal, in that each seed
is classified into one of two colour groups (yellow
or green). The nominal factor colour forms the
groups, with two levels, yellow and green. We
then arrive at the total numbers for the groups
(frequencies of each colour) and analyse them
using χ2. In this case, the null hypothesis H0 is
that the totals will be no different from those
expected under a Mendelian ratio of 3:1.

The data will be in one of two formats: either
raw data in the form of a list of the colours of
each individual seed, or the total numbers of
seeds calculated for each colour (as in the table
in the text). AQB deals with the ready-calculated
totals, whereas SPSS expects the former, although
you can get it to use the totals (see below).

Calculating a 1 ×× 2 χχ2 using AQB
In AQB (Fig. (i)), click on the tab at the bottom 
of the screen labelled ‘chi-sq’ and use the upper
input table marked ‘1-way’ (since your data are
categories [yellow/green] of a single classification
[colour]). Enter the calculated totals in the data:
counts line. Since you expect a 3:1 ratio, divide
your total number into this ratio (3/4N and 1/4N)
to generate the expected numbers, and enter
these in the expected line. The result appears
automatically in the ‘RESULTS’ table on the
right. In this case, the value of χ2 with one degree
of freedom (the number of groups minus 1) is
0.12. The probability (p) associated with a value
as low as this is p = 0.73, which is much greater
than 0.05, so we can conclude that the ratio 
of yellow:green seeds does not differ from our

expected Mendelian ratio and we do not reject
the null hypothesis.

Calculating a 1 ×× 2 χχ2 using SPSS
Instead of using pre-calculated totals, SPSS expects
to count the numbers up itself, so usually uses data
in the format shown in Fig. (ii)a. This is a pretty
long-winded way to go about it, though, and, norm-
ally, you will have the totals rather than a list of
the raw data. To get SPSS to deal with these, put
the totals in two columns as shown in Fig. (ii)b:
colour categories in one column (colour) and
totals in the second ( frequency). Make sure you
use numerical codes for the colour groups, as in
Fig. (ii)b; don’t use letters (e.g. ‘y’, ‘g’) or names (e.g.
‘yellow’, ‘green’) because SPSS will sometimes not
permit these to be used in the analysis (see also
Box 2.2). Then click ‘Data’ followed by ‘Weight
Cases’ from the menus at the top of the screen,
and select the ‘Weight cases by’ option, entering
the column containing the data, in this case fre-
quency (Fig. (ii)c). SPSS will then read the data
as totals rather than constituent numbers (but 
be sure to uncheck the ‘Weight cases by’ option
afterwards, otherwise it will remain to affect all
subsequent analyses). Then click ‘Analyze’ and
‘Non-parametric Tests’ followed by ‘Chi-Square’
(Fig. (ii)b). In the resulting dialogue box (Fig. (ii)d),
put the variable colour into the ‘Test Variable List’
(if colour consists of names rather than numbers,
it will not be listed as available). Then check the
‘Values’ option under ‘Expected Values’ in the
order of the values in frequency, clicking ‘Add’
after each one to enter it into the ‘Expected Values’
box. The order in which you enter them is crucial

as SPSS will assume you have
entered the expected values
to match up to the right data
values in calculating the out-
put. Clicking ‘OK’ will then
produce the analysis (Fig.
(ii)e) (and you can double-
check SPSS has read the data
in correctly by checking that
Expected values matching
the correct Observed ones).
Once again, a χ2 value of 0.12
is returned, with an associ-
ated probability of 0.73.

Box 3.2 A test comparing counts classified into two groups (1 ×× 2 χχ2 test)

Figure (i) Performing a 1 × 2 χ2 test in AQB.
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(a)

(d)

(b)

(c)

(e)

Figure (ii) (a) Standard data entry for a 1 × 2 χ2 test 
in SPSS, (b) a short cut data entry for a 1 × 2 χ2 test in
SPSS, (c) the ‘Weight cases’ dialogue box for setting 
up the analysis, (d) the ‘Chi-Square’ dialogue box, 
(e) output from the analysis.
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and the result would have been a χ2 value of 40.09, which exceeds even the
threshold value (10.83) for a significance level of 0.1 per cent (0.001) (see
Appendix III, Table A). In this case we could safely reject the null hypothesis of
no difference in the number of pecks to different coloured grains and infer a bias
towards yellow on the part of the chicks.

An important point to bear in mind with χ2 is that it is not very reliable when
very small samples are being tested. While a correction can be brought into play
here, it is a good idea not to use χ2 when the sample size is smaller than 20 data
values or when any expected value is less than 5.

t-tests and Mann–Whitney U-tests. t-tests and Mann–Whitney U-tests can both 
be performed on raw counts like chi-squared, except that they deal with each
contributing data value in the two groups separately instead of as a single total.
Thus if the pecking data in our last example of chi-squared were derived from
ten chicks given the opportunity to peck at yellow grains and ten more given 
the opportunity to peck at green grains on a standard background, the values
that would be used in the chi-squared and the t- or U-tests can be indicated 
as follows:

Pecks to Pecks to 
Chick yellow Chick green

a 12 k 2 5
b 14 l 3 4
c 13 m 10 4
d 3 n 6 4
e 23 o 4 6 A t- or U-test uses these values
f 13 p 5 4
g 11 q 3 4
h 15 r 1 4
i 9 s 7 4
j 17 t 5 7

Total 130 46
9 A chi-squared test uses these values (or, 
8 in principle, any subtotal of data values)

In addition, however, t- and U-tests can deal with data other than counts. We
can use them to compare two groups for constant interval data such as body size,
time spent performing a particular behaviour, percentage of patients responding
to different drug treatments or a host of other kinds of data. The non-parametric
U-test can also cope with ordinal (rank) data. In addition, unlike some kinds 
of two-group test working on individual data values, the U-test and most forms
of the t-test do not require equal sample sizes in the two groups. However, and
we stress this again, these tests can be used only for comparing two groups and
only if each data value is independent of all other data values. Furthermore, the
U-test can only test a general (or two-tailed) prediction (i.e. there is a difference,
but not in any one predicted direction). Analyses for differences between two
groups using AQB and SPSS are shown in Boxes 3.3a–d.

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 72



SIGNIFICANCE TESTS 73

We shall use data for chicks pecking at yellow
and green grains of rice. The data being analysed
are thus measured on a constant interval scale 
– the number of pecks. Testing the residuals for
normality (see Box 3.1) shows that they do not
depart significantly from a normal distribution
(Shapiro-Wilk = 0.98, d.f. = 80, ns), so we can
analyse them perfectly reasonably using a para-
metric test. The nominal factor seed colour con-
stitutes the grouping, with two categories, yellow
and green.

First we frame our prediction, in this case the
general prediction H1 that chicks will peck at dif-
ferent rates towards the two colours of grain; i.e.
that the two groups yellow (A) and green (B) will
have different mean values (A ≠ B). Thus the null
hypothesis H0 is that the two mean values will
not differ.

Testing for a general (two-tailed) difference 
in the means of two groups using AQB
In AQB (Fig. (i)), select the ‘two groups’ worksheet
from the options at the bottom of the screen, and

enter a ‘2’ (for a general test) in the top portion
of the top right-hand square in the first
(‘RESULTS, t-test’) box. Then enter the data 
for each group in a separate column. The mean
values, standard errors and sample sizes will
automatically appear, together with the test
statistic ‘t’ in the box labelled ‘t-test’. This value
for t allows for the possibility that each group
may have a different variance. The value of t is
high (12.88), with a p-value of less than 0.0001,
so we can reject the null hypothesis of no differ-
ence between the two groups.

Testing for a general (two-tailed) difference 
in the means of two groups using SPSS
In SPSS, we need to enter the data in the stand-
ard format, with the data values in a single 
column, and the group to which each value
belongs coded in another column (Fig. (ii)a). Then
click ‘Analyze’ and select ‘Compare Means’ and
‘Independent-samples T test’ (SPSS ignores the
convention of using the lower case for ‘t’) to
obtain the dialogue box in Fig. (ii)b. Transfer the

name of the data column (pecks)
into the ‘Test Variable’ box, and the
name of the factor (colour) into the
‘Grouping Variable’ box. Then click
on ‘Define Groups’ to declare to
SPSS that your groups are indexed
by the numbers ‘1’ and ‘2’ (in this
example). Click ‘OK’, and the result
will appear (Fig. (ii)c). The ‘Group
Statistics’ box presents the mean,
sample size, standard deviation and
standard error for each group, and
the test results themselves appear 
in the ‘Independent Samples Test’
box below. The latter first gives a
test for the equality of the variances
between the two groups (called
Levene’s test, with an ‘F’ value as its
test statistic). If the p-value asso-
ciated with this test is significant (p <
0.05), then use the t values quoted

Box 3.3a Mean values: a general parametric test for two groups 
(two-tailed t-test)

Figure (i) Data entry and analysis output for comparing the means of
two groups in a two-tailed test in AQB.
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in the second line of the box; otherwise use the
values in the first line. In this case, the F-value is
not significant, so the first line is the correct one
to use. Once again (of course), the conclusion 
is that the two groups show evidence of having
different mean values (t = 12.88, d.f. = 78, p < 0.001
– unfortunately it is another irritating habit of
computer statistical packages to cite very low
probabilities as ‘.000’, as both AQB and SPSS
have done here; the probability in these cases is
not actually zero, so one is left with a meaning-
less value that can’t be cited as it stands in
reports. One must therefore cite a threshold value
above this, so p < 0.001 would do in this case).

(a)

(b)

(c)

Figure (ii) (a) The data format and selection of test 
for comparing the means of two groups in a two-tailed
test in SPSS, (b) transferring the data and defining 
the groups for analysis, (c) the output of the analysis.
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As in Box 3.3a, the data concern the number of
pecks by chicks to yellow and green grains of
rice, but this is a different experiment and hence
different data. The residuals were checked for
normality (following Box 3.1), and they could be
assumed to be normally distributed (Shapiro-
Wilk = 0.97, d.f. = 80, ns).

Once more, we frame our prediction; this time,
though, we are going to predict that one particu-
lar group will have a larger mean than the other
– i.e. we shall decide in advance of collecting 
the data which of the two groups (A and B) is
predicted to have the greater mean value. There
needs to be some a priori reason (theory, or pre-
viously published or gathered data) for this 
prediction; it can’t just be made on a whim.
Suppose that on the basis of your knowledge, you
predict that chicks should peck more at yellow
than at green seeds, i.e. that A > B (H1). The null
hypothesis (H0) is that the mean value of A is not
greater than that of B.

Testing for a specific 
(one-tailed) difference in
the means of two groups
using AQB
In the ‘two groups’ work-
sheet of AQB again (Fig. (i)),
choose a specific test by
inserting ‘1’ in the top half of
the box in the top right cor-
ner of the first ‘RESULTS’
box, and enter the group
expected to have the larger
mean value (in this case, ‘A’)
in the lower half. Notice that
the value of t is large (8.85)
but negative (Fig. (i)), indicat-
ing that, contrary to predic-
tion, the mean of B is larger
than that of A. Because of
this, the p-value says ‘ns’, 
i.e. not significant. Had you
predicted the order the other

way round (B > A), then you would have ob-
tained a significant result (if you replace ‘A’ by ‘B’
in the lower half of the test selector box, you will
see that the t-value becomes positive, and the
probability changes from ‘ns’ to 0.0000, actually
half the two-tailed probability), but as it is, the
result is not significant, and you most certainly
cannot change the prediction retrospectively to
make it significant.

Testing for a specific (one-tailed) difference 
in the means of two groups using SPSS
In SPSS, there is no facility for doing one-tailed
tests. You therefore need to look at whether the
pattern of mean values falls into the predicted
pattern, and if it does, then halve the two-tailed
probability generated for t to obtain the one-
tailed probability of getting your t-value. Thus,
had you predicted chicks would peck more at
green grain than at yellow in the example of Box
3.3a, the two-tailed probability (Box 3.3a, Fig. (ii)c)

Box 3.3b Mean values: a specific parametric test for two groups 
(one-tailed t-test)

Figure (i) Data entry and analysis output for comparing the means of two
groups in a one-tailed test in AQB.
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stands at p < 0.001, so the one-tailed probability,
at half the value, will also be highly significant.
Once again, though, it must be stressed that you
can apply a one-tailed test like this only if you
had a sound reason for predicting the direction of

the difference in advance. In the current example,
however, the conclusion would once again be that
there is no evidence of the mean values falling
into the predicted pattern (t = −8.9, d.f. = 78, ns),
and the null hypothesis cannot be rejected.

Suppose an ecologist was interested in the effect
of microhabitat on the distribution of periwinkles
(Littorina spp.) on a rocky shore. Two habitats –
a boulder/shingle beach and crevices in a rocky
stack – were compared for the prevalence of 
the commonest periwinkle species measured 
as the percentage of the total number of all 
invertebrate individuals recorded within quadrat 
samples.

The data being analysed are measured on a
constant interval scale – percentage – but these
are bounded by zero and 100, and are therefore
unlikely to be normally distributed unless all 
values are well away from the boundaries. Testing
the residuals for normality (as in Box 3.1) shows
that the distribution is indeed far from normal
(Shapiro-Wilk = 0.42, d.f. = 80, 
p < 0.001), which remains so even
when the data have been arcsine-
square-root transformed (see text)
to ‘stretch out’ the tails: hence a
non-parametric test is required. The
nominal factor habitat forms the
level of grouping, with two cate-
gories: shingle beach and rock
crevices.

Frame the prediction, in this case
the general prediction H1 that the
prevalence of periwinkles will differ
between the two kinds of habitat. In
terms of our non-parametric test, we
are predicting that the two groups
beach (A) and rock (B) will have
different mean ranks (A ≠ B). Thus
the null hypothesis H0 is that the
two mean ranks will not differ.

Testing for a general difference in the medians
of two groups using AQB
In AQB (Fig. (i)), choose the ‘two groups’ work-
sheet as in Boxes 3.3a,b, enter the data for each
group in a separate column, and click the ‘go’
button of the lower box labelled ‘Mann–
Whitney U-test’. This will give you the sample
size in each group, the mean ranks, and the value
of the test statistic, U (for small sample sizes < 20
in both groups) and Z (for large sample sizes 
> 20 in either group). The value of U needs to 
be compared with the critical values for U in
Appendix III, Table B. If the value is less than the
threshold value for a probability of 0.05, we can
reject the null hypothesis that there is no differ-
ence between the groups. Note that in this test we 

Box 3.3c Mean ranks (medians): a general non-parametric test for two groups
(Mann–Whitney U)

Figure (i) Data entry and analysis output for comparing the medians of
two groups in a general test in AQB.
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use the sample sizes NA and NB rather than the
degrees of freedom to determine our threshold
value. In this case, we have large sample sizes,
and AQB has calculated z, and provided auto-
matically the probability under the null hypo-
thesis. Since z = 1.12 (ns), the difference in mean
ranks is obviously not significant. We ignore the
sign of the z-value here because we have posed 
a general rather than a specific prediction, and
the sign is only relevant to a test of a specific 
prediction.

Testing for a general difference in the medians
of two groups using SPSS
In SPSS, the data are entered in the standard 
format of the measured values in a single column,
and the group to which each value belongs in
another column (Fig. (ii)a). The habitat codes
must be numbers rather than letters: if SPSS thinks
that habitat is a string (text) variable rather than
a numeric one, the variable will not be avail-
able in the test. Then click ‘Analyze’ followed 
by ‘Non-parametric Tests’ and ‘2 Independent
Samples’ to obtain the dialogue box in Fig. (ii)b.
Transfer the data variable (here, prevalence) into
the ‘Test Variable List’ box, and the factor (here,
habitat) into the ‘Grouping Variable’ box, and
tell SPSS what the group category codes are by
clicking on ‘Define Groups’ and typing in the
codes you have used (in the example, these are 
‘1’ and ‘2’). Make sure that the ‘Mann–Whitney
U’ box is checked, and click ‘OK’.

The resulting output (Fig. (ii)c) shows three
test statistics. They are all different ways of test-
ing the same hypothesis – for small sample sizes
we want the ‘Mann–Whitney U’, whereas (as here)
when the sample sizes are large we use the z-
value. Once again, we conclude that there is no
significant difference between habitat types in the
prevalence of periwinkles (z = 1.28, ns).

(a)

(b)

(c)

Figure (ii) (a) The data format and selection of test 
for comparing the medians of two groups in a general
test in SPSS, (b) transferring the data and defining 
the groups for analysis, (c) the output of the analysis.
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Tests for two related samples
The tests for two groups introduced so far assume that data in the different
groups are independent of each other. In many cases, the values of the data in
each group are not independent, but are related in some way. For example, we
might have tested one leaf of a plant with one treatment, and another leaf of the
same plant with a different treatment. Or we might have provided a sample of
ten female Siamese fighting fish (Betta splendens) with a red male as a potential
mate on one occasion, and a blue male on another occasion, and measured their
reactions to each of them. In order to test for the effect of different treatments
with these kinds of data, we need a method that takes the non-independence of
the data into account. In these kinds of experiments, the data usually come in

We shall analyse the same data as in Box 3.3c for
this test. Assume that from the literature the eco-
logist is aware that periwinkles are said to form a
greater proportion of the invertebrate community
in rocky habitats. The prediction is therefore that
periwinkles will show a higher prevalence in the
rock habitats than in the beach habitats, i.e. H1 is
that B > A. Thus the null hypothesis is that B is
not greater than A, i.e. H0 is that B = < A.

Testing for a specific difference in the medians
of two groups using AQB
In AQB, unless there are large enough sample
sizes (n for either group > 20) so that the z test
statistic is calculated, it is not possible to do a
specific non-parametric version of the Mann–
Whitney. If a z-score is available, and the differ-
ence is in the predicted direction, then merely
halve the probability to get the specific (one-
tailed) probability. In the dataset here, notice that
while the mean rank for B (53.7) is indeed greater
than the mean rank for A (47.3), the arithmetic
mean values (shown above the data) are actually
the other way round. This situation underlines
the necessity for checking the residuals for 
conformity to the normal distribution, since a
specific (one-tailed) t-test of this hypothesis would
be very misleading. Here, the mean ranks are 
in the predicted pattern, and hence we can halve
the probability of the z-score (which is available
because of the large samples). Even so, the result
is not significant.

Testing for a specific difference in the medians
of two groups using SPSS
In SPSS we can perform a specific (one-tailed)
test by choosing to calculate the exact test by
clicking the ‘Exact’ button in the dialogue box 
of Box 3.3.c, Fig. (ii)b. Then check the ‘Exact’
option, and ‘Continue’. Clicking ‘OK’ yields the
‘Test statistics’ box (Fig. (i)) which contains some
extra information relative to Box 3.3c, Fig. (ii)c,
including ‘Exact Sig. (one-tailed)’. As long as the
mean ranks fall into the predicted pattern, you
can use this probability as the result. The conclu-
sion is that the data do not support the predic-
tion that periwinkles are at a greater prevalence
in rocky habitats (one-tailed exact probability =
0.101).

Box 3.3d Mean ranks (medians): a specific non-parametric test for two groups

Figure (i) SPSS output for a one-tailed exact probability
comparing the medians of two groups in a specific test.
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replicated pairs (as in the ‘pair’ of males presented to each female above), and
the appropriate statistical tests are known as ‘paired-sample’ tests. The sample
sizes of the two groups are therefore necessarily the same.

The methods that deal with this design work by taking the differences
between the measurements of each pair, and then analysing these differences. In
the parametric case, the paired t-test tests whether the mean of these differences
is significantly different from zero. In the non-parametric case, the Wilcoxon
matched-pairs signed ranks test ranks all the differences ignoring whether they
are positive or negative, and then tests whether the mean rank of the positive dif-
ferences is the same as that of the negative ones. A further test is also possible
here, since the null hypothesis is that there are equal numbers of positive and
negative differences: the binomial test tests for a departure from this equality.
Boxes 3.4a–d show how to do some of these tests in AQB and SPSS.

A botanist wanted to assess whether leaves treated
with nitrogen differed in length from untreated
leaves. She therefore treated one leaf with water
and another leaf of the same plant with a solu-
tion of nitrogen, replicating this across 40 plants.
After a suitable length of time, she
measured the length of each leaf.

The data being analysed are 
measured on a constant interval scale 
– length. The nominal factor ‘treat-
ment’ forms the groups, with two
categories: water-treated (control)
and nitrogen-treated (N). The (nom-
inal) blocking factor (see text) that
relates values in the two groups is
plant individual, with 40 levels. A
related-samples test looks at the 
differences between each pair of 
values, and it is these differences that
should be normally distributed for a
parametric test. The differences need
to be calculated in SPSS (using
‘Transform’ and ‘Compute’) (see Box
3.1) into a new variable, and then
this tested in the usual manner.
When we do this, we find that the
differences can indeed be assumed 
to be normally distributed (Shapiro-
Wilk = 0.98, n = 40, ns).

Frame the prediction. Here it is a general predic-
tion that the treatment will change the length of the
leaf within plants, so that water-treated controls (A)
and nitrogen-treated (B) leaves will differ in length,
i.e. H1 is that A ≠ B. H0 is therefore that A = B.

Box 3.4a Mean values: a general parametric test for related samples 
in two groups

Figure (i) Data entry and output for a two-tailed paired t-test in AQB.
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Testing for a general difference between
related samples in two groups using a
parametric test (two-tailed paired t-test) 
in AQB
In the ‘two groups’ worksheet of AQB, choose
the output table labelled ‘Paired t-test’ and enter 2
(for a general test) in the top right corner box,
then enter the data for each group in separate
columns. Since the data are paired, make sure
that the data for each pair (in this case, each indi-
vidual) are in the same row, and therefore that
there is exactly the same number of data values in
each column. The paired t-test result will appear
automatically in the output box (Fig. (i)). The dif-
ference between the paired values amounts to an
average of 4.41 ± 0.39 mm (n = 40 pairs), which
is significantly different from zero (t = 11.4, d.f. =
39, p < 0.001). The conclusion, therefore, is that
treating leaves with nitrogen significantly changes
the length of leaves.

Testing for a general difference between
related samples in two groups using a
parametric test (two-tailed paired t-test) 
in SPSS
In SPSS too the data for paired samples go into
two separate columns (note the difference com-

pared with the independent
samples t-test), and then
click ‘Analyze’ followed by
‘Compare Means’ and ‘Paired-
Samples T test’ (Fig. (ii)a).
Select (by highlighting them
simultaneously) and transfer
the two variables together
into the ‘Paired Variables’
box (Fig. (ii)b): SPSS will
assume they are paired by
rows. Click ‘OK’ and the out-
put box (Fig. (ii)c) shows 
the summary statistics for
each variable, then the corre-
lation between them (which 
is irrelevant here), and then
the paired-sample t-value of
11.4, leading to same con-
clusion as above.

(a)

(b)

(c)

Figure (ii) (a) Data entry and test selection for a two-tailed paired t-test in SPSS,
(b) transferring paired variables for analysis, (c) output for the analysis.
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Using the same example of leaf length as Box
3.4a, decide in advance of collecting the data
which of the two groups (A or B) is predicted 
to have the greater mean value. As always, there
needs to be some a priori reason (theory, or 
previous published or gathered data) for this 
prediction. Suppose that, on the basis of her
knowledge, the botanist in Box 3.4a predicted
that a leaf treated with nitrogen would be longer
than the control leaf on the same plant, i.e. that
B > A (H1). The null hypothesis (H0) is that the
mean value of B would not be greater than that
of A.

Testing for a specific difference between
related samples in two groups using a
parametric test (one-tailed paired t-test) 
in AQB
In AQB, using the ‘two groups’ worksheet, choose
a specific test by inserting ‘1’ in the top right cor-
ner of the ‘Paired t-test’ output box (see Box 3.4a,
Fig. (i)), and select which group is expected 
to have the larger mean value (‘B’). Notice that
the mean difference changes from negative to
positive, reflecting the fact that the differences
are now taken to be B-A rather than the default 
A-B. The value of t also changes from negative to
positive, and the significance changes from ‘ns’

(caused by the combination of a specific test but
a negative t-value) to ‘0.0000’ (or < 0.0001, as we
should cite it). The difference is clearly highly
significant in the predicted direction.

Testing for a specific difference between
related samples in two groups using a
parametric test (one-tailed paired t-test) 
in SPSS
Again, in SPSS there is no facility for doing
specific tests other than noting that the t-value it
provides (Box 3.4a, Fig. (ii)c) is for a two-tailed
test. We therefore need to look at whether the
pattern of mean values falls into the predicted
pattern, and if it does, halve the two-tailed prob-
ability to obtain the one-tailed probability of 
getting the declared t-value (but again, note the
health warning on this in Box 3.3b). Clearly,
since the difference in the example (Box 3.4a, 
Fig. (ii)c) is in the predicted direction, and the
two-tailed probability is already so low as to be
displayed as ‘.000’ in the output, the one-tailed
probability will also be highly significant.

The conclusion from both tests is that the data
support the idea that nitrogen-treated leaves grow
to be longer than control leaves on the same plant
(paired t = 11.4, d.f. = 39, p < 0.001), and the null
hypothesis can be rejected.

Box 3.4b Mean values: a specific parametric test for related samples 
in two groups

In fact, having data values in pairs like this is only a particular case of data
occurring as related samples, where data values are not independent of each
other for a wide range of reasons, for instance because subjects have been kept
in the same cage and have been exposed to the same social experience that is
different from the social experience in any other cage. Such sources of non-
independence lead to data being treated in so-called blocks, where the blocking
designation allows the non-independence to be taken into account in sub-
sequent analyses. The experimenter may be completely uninterested in whether
or not there is a significant block effect, but it must be allowed for in the analysis
in order to see the true impact of the treatment. Box 3.5e shows an example of
a more general related samples (or ‘repeated measures’) analysis.
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In an experiment on two mouse
strains, the average number of off-
spring was compared over 50 years.
The data being analysed are meas-
ured on a constant interval scale 
– the average number of offspring.
The nominal factor strain forms the
level of grouping, with two levels:
strainA and strainB. The (nominal)
blocking factor that relates values 
in the two groups is year, with 
50 levels. As mentioned before 
(Box 3.4a), the normality assump-
tion in related-samples tests con-
cerns the differences between the
related values. When the differences
are tested here, there is strong 
evidence of a non-normal distribu-
tion (Shapiro-Wilk = 0.89, n = 50, 
p < 0.001). Thus a non-parametric
test is appropriate.

Frame the prediction. The gen-
eral prediction is that there will be 
a difference in the number of off-
spring between the two strains
across years. Thus, allowing for the
related samples (i.e. the differences
among years), the prediction (H1) is
that A ≠ B.

Testing for a general difference
between related samples in two groups 
using a non-parametric test in AQB
In the data in the ‘two groups’ worksheet in 
AQB (Fig. (i)), each year is a row in the table.
Clicking ‘go’ in the ‘Wilcoxon matched-pairs test’
box shows that the mean of the positive ranks 
is 23.3, and the mean of the negative ranks is
29.1. The test statistic is T, and it has a value of
552 (note that T is different from t of the t-test).
However, since the sample size is large enough, 
a z-value is calculated and this is the value we
use. It is not large enough (0.83) to reject the null
hypothesis, and thus the result is not significant.

Testing for a general difference between
related samples in two groups using a 
non-parametric test in SPSS
In SPSS (Fig. (ii)a), the data are again in the same
format, with separate columns for the strains, and
each row representing a block (year). Click 
‘Analyze’, followed by ‘Non-parametric Tests’ and 
‘2 Related Samples’, giving the dialogue box in
Fig. (ii)b. Enter the two variables into the ‘Test
Pair(s) List’ box together (as in Box 3.4a), so SPSS
assumes they are matched by row. The Wilcoxon
matched-pairs test is selected by default, so just

Box 3.4c Mean ranks: a general non-parametric test for related samples in two
groups (Wilcoxon matched-pairs signed ranks test)

Figure (i) Data entry and output for a general Wilcoxon matched-pairs
signed ranks test in AQB.

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 82



SIGNIFICANCE TESTS 83

box. Click ‘Continue’ then ‘OK’, and the new 
output box gives the general (two-tailed) and
specific (one-tailed) exact probabilities for the
test (Fig. (ii)d). Our z-value (−0.81) is clearly not
significant, whether we use the approximate
(asymptotic) or the exact probability.

click ‘OK’ to get the output (Fig. (ii)c). With small
sample sizes (< 25) the asymptotic significance
(‘Asymp. Sig.’) is unreliable, and you can choose
to calculate the Exact probability by clicking
‘Exact’ in the dialogue box in Fig. (ii)b and select-
ing the ‘Exact’ option in the resulting dialogue

(a)

(b)

(c)

Figure (ii) (a) Data entry and
test selection for a general
Wilcoxon matched-pairs signed
ranks test in SPSS, (b) transfer-
ring paired variables for ana-
lysis, (c) output for the analysis
of large samples, (d) selecting
the ‘Exact’ option, and the con-
sequent output, for analysing
small samples.

(d)
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Tests for a difference between two or more groups
So far, we have introduced significance tests that can test for a difference
between two groups. In many cases, of course, we shall be faced with more than
two groups. For instance, Fig. 2.4 suggests that the amount of damage around the
edges of leaves increases with leaf size class, perhaps indicating a predilection
for big leaves by particular kinds of pest. If we wanted to know whether the dif-
ference between the size classes was significant, we should have to deal with
three groups of data. How do we do it? The temptation to which many succumb
is to do a round robin comparison of pairs of groups using a t- or U-test. In our
Fig. 2.4 example, this would mean testing for a difference between small and
medium leaves, then for a difference between medium and large leaves, and
finally for a difference between small and large leaves. The error of this cannot
be emphasised too strongly. The most serious problem arising from such a prac-
tice is that it increases the likelihood of obtaining a significant difference by
chance when really none exists. To take an extreme example: if we carried out
100 two-group comparisons, then, just by chance, five of them stand to be
significant at the 5 per cent level. Even if we made only 20 comparisons, one is
likely to be significant by chance. While this may not seem a serious difficulty
when we are dealing with only three or four groups, these examples illustrate the
error in principle. To get round the problem, we need tests that can cope with
comparisons between several groups at the same time.

One-way analysis of variance. Where we have series of data values falling into 
several groups (in a similar fashion to data values in the two groups of a t- or 
U-test), a one-way analysis of variance (often expressed as the acronym one-way
ANOVA) is a suitable significance test. There are both parametric analyses of
variance and non-parametric tests that have an equivalent function. We shall
introduce both kinds here. While parametric analyses of variance are by far the
more widely used, the non-parametric version we shall describe has the advant-
age not only of being robust to a wider range of data but also of allowing two
kinds of specific predictions about the direction of differences between groups to
be tested. This test can thus be used to test general or specific predictions for two
or more groups. For two groups it is therefore more flexible than the U-test and,
as a result, we recommend it even in these cases. Procedures for the two kinds
of analysis of variance in AQB and SPSS are outlined in Boxes 3.5a–e. Pro-
cedures where there is a related samples design with more than two groups are
shown in Box 3.5e.

There is no non-parametric test specially designed to test for this kind of 
analysis for two groups, but you can use the Exact probability option of SPSS
to give you a one-tailed p-value (see Box 3.4c, Fig. (ii)d). Alternatively, use the
specific non-parametric analysis of variance (see Box 3.5c), because this can
cope with any number of groups.

Box 3.4d Mean ranks (medians): a specific non-parametric 
test for related samples in two groups
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We are interested in developing artificial tech-
niques for rearing bumblebees (Bombus spp.) for
pollinating greenhouse plants. Suppose we meas-
ure the weights of bumblebee queens that have
been overwintered in the soil under four different
conditions. The first condition is the normal rear-
ing environment (soil), while different components
(stones, leaves or cotton wool) are added to the
rearing environment of the other groups. We think
that any of these additional components might
increase the weight of the resulting queens, and
heavier queens in spring have a better chance of
producing successful colonies.

The data being analysed are the weights of
queens. The nominal factor treatment forms the
level of grouping, with four categories (1 = nor-
mal soil, 2 = plus stones, 3 = plus leaves, 4 = plus 
cotton wool). A test of the residuals (see Box 3.1)
shows that we can assume that they are normally
distributed (Shapiro-Wilk = 0.99, d.f. = 160, ns).

Frame the prediction, in this case the general
one that there are differences among the mean
values of the treatment groups (H1). The null
hypothesis (H0) is therefore that there are no 
differences among the groups.

Testing for a general
difference in the means of
two or more groups using a
parametric one-way ANOVA
in AQB
In AQB the data are entered
as four columns, the data for
each group in a separate 
column (Fig. (i)). The mean
values and their standard
errors appear above each
column, and can be pasted
into Excel for plotting (see
Box 2.3). The results appear
automatically in the ‘one-
way ANOVA table (general)’
in the RESULTS box to the
right. It is set out in the con-

ventional format of an analysis of variance output
table, which it is standard practice to reproduce
in reports and papers as the result of the test. The
test statistic is F, which reflects the ratio of
between-group to within-group variation (hence
it is usually referred to as an F-ratio): since each
of these sources of variation has a degree of 
freedom value, the test statistic has two sets of
degrees of freedom. Thus, in this case, we should
report F as F3,156 = 4.38, p < 0.001 (or F = 4.38, 
d.f. = 3,156, p < 0.001).

Testing for a general difference in the means
of two or more groups using a parametric 
one-way ANOVA in SPSS
In SPSS, the data should be in the usual format
for independent samples, i.e. the data values in
one column, indexed by a group code in a second
column: then click ‘Analyze’, followed by ‘Com-
pare Means’ and ‘One-way ANOVA’ (Fig. (ii)a).
In the dialogue box, transfer the data variable
(weight) into the ‘Dependent List’ box, and the
grouping factor (treatment) into the ‘Factor’ 
box (Fig. (ii)b). Click ‘Options’, and, in the next
dialogue box (Fig. (ii)c), make sure that the

Box 3.5a Mean values: a general parametric one-way ANOVA for differences
between two or more groups

Figure (i) Data entry and results output for a general one-way ANOVA in AQB.
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(a)

(b) (c)

(d)

Figure (ii) (a) Data entry test selection
for a parametric one-way ANOVA in SPSS,
(b) entering variables for the analysis,
(c) selecting supplementary tests and
statistics, (d) output from the analysis.
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‘Descriptive’, ‘Homogeneity of variance test’ and
‘Welch’ boxes are checked. The ‘Descriptive’
choice produces summary statistics for each
group. We need to test for homogeneity of vari-
ance because this is an important assumption 
of ANOVA; if the variances turn out to differ
significantly between groups, we shall need to use
a modified ANOVA, and one of these is called 
a Welch test, hence this is checked just in 
case. Clicking ‘Continue’ and ‘OK’ produces the
output (Fig. (ii)d). This contains the summary
statistics for the groups first. Then there is a
Levene’s test for homogeneity of variances,
which here is not significant (since the p-value is
above 0.05) – hence the variances are sufficiently
similar for the normal ANOVA to be valid. The
ANOVA table comes next, which is identical to
the one produced by AQB, with the F-ratio of
4.38. Finally, the Welch test is given in case the
variances had been different among groups, but
in this case we do not need it.

The conclusion in both cases is therefore that
there is good evidence that the treatments affect
the weight of overwintering queen bumblebees 
(F = 4.38, d.f. = 3,156, p < 0.01).

Post-hoc multiple comparisons
A general one-way ANOVA will tell us whether
or not there is a significant difference between
our groups, but it does not tell us where the dif-
ference lies. We cannot conclude which pairs of
mean values are significantly different (although
we can certainly suggest them from the group
means), because we did not make any specific
prediction beforehand, in advance of obtaining
the data, about the ordering of the mean values,
nor did we set up planned contrasts between 
particular sets of groups. Of course, it is entirely
natural to want to delve further and find out
where the differences lie, and many researchers
would like to be able to make such post hoc tests.
A plethora of different tests is available that test

every mean value against every other one, and
many of these are available in SPSS by clicking
the ‘Post Hoc’ button in Fig. (ii)b above and 
taking our pick from the options offered in the
resulting dialogue box (Fig. (iii)).

The very diversity of methods ought to warn 
us that any one of them might be inadequate.
Many biologists use them routinely, but others,
and many statisticians, avoid them altogether.
Detailed study shows that none of them can be
relied upon to give accurate p-values for differ-
ences (Day and Quinn, 1989): many are too con-
servative, but others are not conservative enough,
suggesting significance unjustifiably. Thus our view
is that, if they are used at all, they should be taken
only as a rough guide to where the differences
might lie (so are not really much better than
simply inspecting the group means). None can 
be recommended over the others. Many people
use the Least Significance Difference (LSD). All
this does is to take the within-groups (‘error’)
mean square from the analysis of variance and to
construct a 95 per cent confidence limit with it.
However, the LSD ‘test’ is only accurate for a 
priori contrasts (Day and Quinn, 1989).

Figure (iii) The range of post hoc multiple comparison
tests available in SPSS.
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Suppose we have measured the light absorbance
of an indicator of a particular biochemical reac-
tion under each of four temperature conditions.
We were unable to arrange the experiment so 
as to have equal numbers of replicates (which is
always desirable), but we do have several replic-
ates for each group. The data being analysed –
light absorbance – are on a constant interval scale.
The nominal factor temperature forms the level of
grouping, with four levels (A = 10 °C, B = 15 °C, 
C = 20 °C and D = 25 °C). Note that although the
temperature levels would be treated as nominal
groups in a general ANOVA, here they not only
form a rankable series, but they actually consist
of constant-interval measurements that are equally
spaced (by 5 degrees). This will become import-
ant in a moment. Testing the residuals for 
normality (Box 3.1) shows that we can assume
normality (Shapiro-Wilk = 0.97, d.f. = 35, ns).

When it comes to framing our predictions, 
theory (and past practice) tells us that temper-
ature speeds up biochemical reactions, and, fur-
thermore, that a 10 °C rise in temperature should
double the rate of reaction. We therefore predict
that the rank order of the mean values of light
absorbance should be A < B < C < D. Unfortun-
ately, such a simple specific prediction is hard to
test because it says nothing about the magnitude
of the changes between the groups. In theory it
should be testable (see Gaines and Rice, 1990),
and indeed this can be done in some statistical
packages (such as R), but it is complicated and
therefore not available in AQB or SPSS, or indeed
in most generally available packages.

Theory says there should be a particular rela-
tionship between temperature and the rate of
reaction. In this experiment with light absorbance,
which is measured on a logarithmic scale, as our
measure, this translates into a prediction of a 
linear positive relationship between temperature
and light absorbance. Because (and only because)
the temperature groups are evenly spaced, we can
test this prediction using so-called polynomial
coefficients (which require even spacing between
the levels) in SPSS, but not in AQB.

Testing for a specific difference in the means
of two or more groups using a parametric 
one-way ANOVA in AQB
In AQB (and SPSS) we can use the alternative 
of independent contrasts to test almost the same
prediction. These make a contrast between two
subsets of the groups (the factor levels). If the 
linear positive relationship between temperature
and light absorbance is correct, then the mean
light absorbance of the 10 °C group will be less
than the average of the other groups. This can be
tested using a contrast.

We have three degrees of freedom to use, and,
since each contrast involves one degree of free-
dom, we can frame three independent (so-called
orthogonal) contrasts. We can therefore create 
an hierarchical set of contrasts that encapsulates 
the linear relationship that actually we would like
to test. We therefore predict that:

A < (B + C + D)/3
and B < (C + D)/2
and C < D

We enter the data as columns in the usual
manner (Fig. (i)a). However, we now need to
enter some coefficients (weightings) for the first
contrast in the line marked ‘Contrast’, and this
requires a little explanation.

Basically, the contrast coefficients need to be
integers that sum to zero, as indicated by the
‘checks on contrasts’ (cell M6) to the right of the
coefficient input box. In the first contrast (for A),
the prediction is:

A < (B + C + D)/3
which is 3A < B + C + D

which, rearranged to express the inequality as
‘0< ’, becomes:

0 < −3A + B + C + D

therefore the coefficients are −3, +1, +1 and 
+1 on the groups A, B, C and D, respectively.
Placing these in the appropriate boxes brings up

Box 3.5b Mean values: a specific parametric one-way ANOVA

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 88



SIGNIFICANCE TESTS 89

the result for the contrast (‘RESULTS’ box in 
Fig. (i)a). The ANOVA in the box shows a signific-
ant outcome (F3,34 = 33.21, p < 0.0001) for the
general test among all the groups. Here we are
not merely making a contrast, but are also predict-
ing its direction, so we choose the specific version
of the contrast test by entering ‘1’ in the small
white box to the lower right of the ‘RESULTS’
box. When we do this, a t-value and associated
probability for the specific test is then generated,
showing a significant fit to our directional pre-
diction (t33 = 7.49, p < 0.0001).

Then we go through each of the remaining
contrasts, entering the coefficients and obtaining
the general ANOVA table and specific-contrast 
t-value (Fig. (i)b). By the same logic as above, the
coefficients are 0,−2,1,1 (for 2B < C + D) and
0,0,−1,1 (for C < D).

Testing for a specific
difference in the means of
two or more groups using a
parametric one-way ANOVA
in SPSS
In SPSS, we enter the data 
in the usual manner, with the
data in a single column and
the group codes in another
column. Then click ‘Analyze’,
‘Compare Means’ and ‘One-
Way ANOVA’ (Fig. (ii)a). In
the dialogue box (Fig. (ii)b),
transfer the data variable
(light) into the ‘Dependent

List’ box and the grouping factor (temperature)
into the ‘Factor’ box. Then click the ‘Contrasts’
button. In the resulting dialogue box (Fig. (ii)c)
we could enter the same contrast coefficients as
we did in AQB. In SPSS we are not allowed to
enter the contrasts ourselves, but must pick from
a predetermined set – in our case the pattern of
coefficients corresponds to one called ‘Helmert’
contrasts (click on the ‘Help’ button to find out
all the various possibilities).

However, we shall take advantage of the equally
spaced treatments, so check the ‘Polynomial’ 
box and click ‘Continue’ and ‘OK’. The output
(Fig. (ii)d) tests for linearity of the response to 
the evenly spaced factor levels using one degree
of freedom [1 d.f.] (for the slope of the line), 
with the remaining two degrees of freedom
(‘Deviation’) reflecting deviations from linearity.
Since there are unequal sample sizes for each
treatment, we need the weighted version of the
linear term. The linear term is very highly signific-
ant, whereas the remainder is barely significant. 
This means that the vast majority of the treat-
ment effect is accounted for within the linear
model.

The conclusion in both cases is that there is
good evidence that temperature increases light
absorbance, and hence also the rate of the 
biochemical reaction. Furthermore (from the
analysis in SPSS), this effect seems to be linear, 
at least within the range of temperatures studied
here.

(a)

(b)

Figure (i) (a) Data entry and results output in AQB for 
a parametric one-way ANOVA using specific contrasts,
(b) the resulting ANOVA and specific contrasts.
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(a)

(d)

(b)

(c)

Figure (ii) (a) Data input and test selection for a specific one-way ANOVA in SPSS, (b) the dialogue box for inputting
variables for the analysis, (c) selecting the polynomial linear fit option (see above), (d) output from the analysis.
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An experimenter measured how
much alcohol students in all-
female (F), mixed (MF), and
all-male (M) halls of residence
drank in one month. The data
for the variable being analysed
(Alcohol, the units of alcohol
consumed in one month by a
student) departs significantly
from a normal distribution
(Shapiro-Wilk = 0.96, d.f. =
300, p < 0.001), so we can opt to
use a non-parametric test. The
grouping factor, Hall type, 
has three levels. The experi-
menter’s prediction was a 
general one; she merely asked
whether these types of hall 
of residence differed in their
alcohol consumption per student, so that the expec-
tation was that F ≠ MF ≠ M.

A general non-parametric one-way ANOVA in AQB
In AQB, choose the ‘np 1-way’ worksheet and enter
the data in groups, one group per column (Fig. (i)).
This option will perform a Kruskal-Wallis non-
parametric one-way ANOVA. Clicking the ‘go’ button
in the ‘RESULTS’ box to the right leads to the out-
come being displayed in the box. H is the Kruskal-
Wallis test statistic, which here has two degrees of
freedom (the number of groups minus one), so there
is good evidence of a difference between the halls in
alcohol consumption (H = 143.7, d.f. = 2, p < 0.001).

A general non-parametric one-way ANOVA in SPSS
In SPSS (Fig. (ii)a) the alcohol measures are entered
in one column (Alcohol); the types of hall are coded
as 1–3 in another column (Hall type). Again, the
code needs to be a number, otherwise you will find
it impossible to select Hall type as a factor in the
analysis. Choose the Kruskal-Wallis test, the same 
as in AQB, by clicking ‘Analyze’ followed by ‘Non-
parametric Tests’ and ‘K Independent Samples’ 
(Fig. (ii)a). The dialogue box in Fig. (ii)b will then
appear. Transfer Alcohol into the ‘Test Variable 
List’ box, and Hall type into the ‘Grouping Variable’
box: we need to define the range of code values for

Hall type as well, by clicking the ‘Define Range’ 
button and entering ‘1’ and ‘3’ as the minimum and
maximum values. If your sample size is low (no group
> 25) then click the ‘Options’ button and check
‘Exact’ for the exact test option (Fig. (ii)c). This is
because, with large samples, an accurate approxima-
tion to the true probability is estimated, but this
becomes inaccurate at low sample sizes. In our case,
all sample sizes are large, and so the approximate
(standard) test is appropriate (AQB can only cope
with the approximate test). Click ‘Continue’ and make
sure the ‘Kruskal-Wallis H’ box (Fig. (ii)b) is checked,
then click ‘OK’. The resulting Output is shown in
Fig. (ii)d. Note that SPSS calls the Kruskal-Wallis test
statistic χ2 instead of H; this is because as sample size
increases, the distribution of H comes to approximate
that of χ2 – they thus refer to the same thing here
(hence the value is the same as that for H in AQB).

The conclusion therefore is that there is good 
evidence of differences in alcohol consumption
between halls (H (or χ2) = 143.7, d.f. = 2, p < 0.001).

Post-hoc multiple comparisons
There is no generally accepted post hoc multiple com-
parisons test for non-parametric analyses of variance,
and few if any are implemented in the standard 
statistical packages. However, they do exist.

Box 3.5c Mean ranks (medians): a general non-parametric one-way ANOVA for
two or more groups (Kruskal-Wallis test)

Figure (i) Data entry and results output for a general non-parametric one-way
ANOVA in AQB.
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Figure (ii) (a) Data entry and test selection
for a non-parametric one-way ANOVA in
SPSS, (b) entering and defining variables for
the analysis, (c) selecting the exact test
option, (d) output of results.

(a)

(d)

(b)

(c)
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Again, we can use non-
parametric analysis of vari-
ance to test specific as well
as general predictions of 
difference. To illustrate this,
we shall use a similar dataset
to that of Box 3.5c, on the
amount of beer drunk by 
students at all-female, mixed
or all-male halls of residence
during the course of one
week. Once again, the re-
siduals are highly non-normal
(Shapiro-Wilk = 0.94, d.f. =
300, p < 0.001), and so a
non-parametric test is again
appropriate.

Since it is well known that
young men are more likely to be heavy drinkers,
and to egg one another on in a drinking environ-
ment, than women, an obvious specific predic-
tion is that all-female halls (A) will have lower
alcohol consumption than mixed-sex halls (B),
which, in turn, will have lower consumption than
all-male halls (C).

A specific non-parametric one-way analysis 
of variance in AQB
In AQB we can test this prediction explicitly
using a predicted rank order. We can also test 
it indirectly using contrasts.

Testing rank order
In the ‘np 1-way’ worksheet again, enter the
groups and their predicted rank order in the
‘groups’ and ‘rank order’ boxes (Fig. (i)) and click
‘go’ in the ‘RESULTS’ box to the right. You can
see that the probability is quite a bit lower for the
test for a specific rank order (0.0015) than for the
general test for differences from Box 3.5c (0.005).
This demonstrates that the specific test, if the pre-
diction is supported by the data, is much more
powerful than the equivalent general test.

Using contrasts
We can also test the specific prediction using
contrasts, since we can (see Box 3.5b), with our
two degrees of freedom, predict that:

A < (B + C)/2, i.e. 2A < (B + C), 
or 0 < −2(A) + 1(B) + 1(C)

and B < C, i.e. 0 < −1(B) + 1(C)

Entering the first set of contrast coefficients
into the ‘contrasts’ box in AQB (Fig. (ii)) and
clicking ‘Go’ gives the outcome in the ‘RESULTS’
box. We can see that the contrast is significant 
(z = 1.89, p < 0.05). Repeating this for the second
set of coefficients again shows that the contrast 
is in the predicted direction and is significant 
(z = 2.57, p < 0.01).

A specific non-parametric one-way analysis of
variance in SPSS
As before in SPSS (see Box 3.5c, Fig. (ii)a) we
click ‘Analyze’, ‘Non-parametric Test’ and ‘K
Independent Samples’. This time, however, we
check the test called ‘Jonckheere-Terpstra’ in the
resulting dialogue box (Fig. (iii)a), which is a test

Box 3.5d Mean ranks (medians): a specific non-parametric one-way ANOVA

Figure (i) Data entry, rank order prediction and results output for a non-
parametric specific one-way ANOVA in AQB.
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for a predicted rank order. It
can only test for gradually
increasing or decreasing
mean ranks across the levels
of the factor, and so our
groups need to be already
entered in the order of the
expected mean ranks at the
outset. If the sample sizes 
are small, or we are making 
a specific prediction (as
here), then we can click the
‘Exact’ button and ask for
either Exact (only for small
sample sizes < 25 in each
group) or Monte Carlo
(larger sample sizes – as
here) (Fig. (iii)b)).

The Standardised Jonckheere-Terpstra statistic
(‘Std J-T Statistic’ in the output) is the same thing
as the z-value of AQB. There is a two-tailed
(decreasing or increasing mean ranks) and a one-
tailed (one of the two possibilities only) prob-
ability. Because we are asking a specific rank order
here, then the one-tailed probability is the correct
value if the mean ranks fall into the expected pat-
tern. Although in the text (p. 65), we’ve pointed

out that specific tests are usually more than just
one- versus two-tailed tests, here there are only
two possibilities because of rigid requirement of
ordering the groups beforehand.

In both cases, we conclude that the data 
on alcohol consumption fall into the expected
pattern of all-female < mixed < all-male halls 
(z = 2.96, p < 0.002 [AQB] OR z = 2.92, p < 0.002
[SPSS]).

Figure (ii) Use of contrasts and results output for a non-parametric specific
one-way ANOVA in AQB.

(a)

(b)

Figure (iii) (a) Entering and defining variables, and select-
ing the appropriate test for a specific non-parametric
analysis of variance in SPSS, (b) the output of results.
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A molecular biologist wanted to study the impact
of two different selection regimes on the produc-
tion of oxygen free radicals. He therefore distrib-
uted one culture of liver cells (which he obtained
from various sources) to 100 of his colleagues – a
different culture going to each – and asked them
to divide each into three selection treatments (ran-
domly selected control, selected for high growth
rate, and selected for low growth rate). After 10
rounds of cell division under these conditions, his
colleagues sent back their cultures and the molecu-
lar biologist measured the average production of
free radicals of 500 cells (a measure of metabolic
activity) of each treatment from each culture.

This is a one-way repeated-measures design
because cells from each culture are exposed to 
all treatments, and there is only one sort of treat-
ment (selection type). Cultures may differ in lots
of ways from each other, including their natural
level of free radicals; ‘culture’ is therefore a block
effect that needs to be allowed for in the analysis
in order to see the impact of the treatments. The
researcher only obtained a single measurement of
the dependent variable (level
of free radicals) from each
culture and each treatment.

First we frame the predic-
tion: that the selection re-
gimes change the level of free
radicals from the randomly
selected control condition
(H1), without specifying the
direction of change (this is
therefore a general hypo-
thesis). As with the usual
parametric one-way ANOVA
(see Box 3.5b), it is not pos-
sible to test a specific version
of this hypothesis, although,
as before in AQB, one can
approach it using contrasts.
The null hypothesis is that
selection does not change
the level of free radicals 
(H0).

Repeated-measures ANOVA using AQB
Select the ‘p 1-way’ sheet in AQB and enter the
measurement for each treatment as in Fig. (i),
with the data for each culture on a single row.
Therefore there will be equal numbers of values
in each column (treatment), and if this is so, 
the analysis will automatically appear in the
RESULTS box labelled ‘1-way repeated-measures
ANOVA’. There are two F-values. The lower one
is a test for the significance of differences among
the ‘blocks’, i.e. the repeated-measures factor.
Here it is huge and highly significant (F = 2880.9,
d.f. = 99,198, p < 0.001). The overall mean values
for each of the columns are quite similar (about
71–72) with a fairly high variation (ca. 4.5).
However, once this block effect is allowed for,
the treatment effect (the upper F-value) is also
significant (F = 30.1, d.f. = 2,198, p < 0.001).

In the RESULTS box for a simple ANOVA
(i.e. not repeated measures), which also appears
automatically, you can see that if there had 
been no repeated-measures factor, then the large

Box 3.5e A parametric repeated-measures ANOVA

Figure (i) A general parametric repeated-measures ANOVA in AQB.

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 95



96 CHAPTER 3 ANSWERING QUESTIONS

Figure (ii) A general parametric repeated-
measures ANOVA in SPSS. (a) Dialogue box
for defining the repeated-measures factor, 
(b) dialogue box for assigning the data to the
defined repeated-measures factor, (c) multi-
variate test for normality, (d) result for non-
normal data, (e) mean values ± s.e. for the
treatments.

(a)

(c)

(b)

(d)

(e)
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variation within the columns obscures any treat-
ment effect.

Repeated measures ANOVA using SPSS
SPSS adopts very general approaches to analysing
different experimental/observational designs, and
the price of generality can be complexity. This 
is nowhere more evident than in the repeated-
measures ANOVA, which follows a multivariate
mode of analysis because it uses the values for
each of the factor levels as if it were a different
variable. The individuals subjected to the repeated
measures are assumed by default to correspond
to each line of the data.

Click on ‘Analyze’, ‘General Linear Model’ and
then ‘Repeated Measures’ to obtain the dialogue
box in Fig. (ii)a, where we can define the repeated-
measures factor by naming it (here treatmen –
since only 8 letters are allowed) and assigning the
number of levels (here 3, since there are 3 levels
of the factor ‘treatmen’ – the three selection
regimes). Then click ‘Add’ and ‘Define’, bringing
up the second dialogue box in Fig. (ii)b. Here
assign the columns of data to these pre-defined
levels of the repeated-measures factor, either one
by one, or (if they are in the correct order) all in
one go (as in the figure). Clicking ‘OK’ then pro-
duces the output.

The first thing to check is whether the residu-
als conform to the assumption of normality. This
is impossible unless you have very large sample
sizes because of the way in which the test is done
in SPSS. You have therefore to assume normal-
ity, and take extra care in interpreting the results.

The result is shown in Fig. (ii)d, and gives four
different tests of the (general) null hypothesis
(H0) that none of the selection treatments have
any effect. The first line (‘sphericity assumed’) is
for data in groups with homogeneous variances
(see Box 3.1b), and the subsequent three lines 
are different ways of adjusting for inhomogenity.
Here, reassuringly, they all give the same answer,
which is that there is a highly significant effect of
treatment. The way in which they adjust for non-
homogeneity is complex, and need not concern
us here.

An additional point here is to notice the much
greater power of the repeated-measures design 
in cases like this where there is large variation
among individuals. The mean values of the treat-
ments (Fig. (ii)e) show that there is large overlap in
the standard errors, which would normally imply
no significant differences between the means. By
removing inter-individual variation, however, the
impact of the treatments becomes evident over
and above variation between individuals.

To illustrate a non-parametric approach, we shall
use the same example as in the parametric case
because of the significant non-normality of the
residuals, demonstrated by the SPSS analysis in 
Box 3.5e.

A non-parametric repeated-measures ANOVA
using AQB
In this case we will make a specific prediction:
we predict the ‘unselected’ line to have the inter-

mediate level of free radicals, so that slow <
unselected < fast (H1). The null hypothesis (H0) is
that the mean ranks will not follow this pattern.

In AQB (Fig. (i)) the data for the treatments
are in columns, with the data for each individual
on a single row. The hypothesis is placed as a 
predicted rank order in row 6, as shown, with 
the smallest predicted rank mean given the rank
of ‘1’. Clicking ‘Go’ in the RESULTS table for
repeated-measures produces the result. Both a

Box 3.5f A non-parametric repeated-measures ANOVA
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(a)

(b)

Figure (ii) A specific non-parametric repeated-measures
ANOVA in SPSS (Friedman test). (a) Adding the vari-
ables, (b) results.

general test (H) and the
specific one (z) are produced. 
It is clear that the result is
highly significant (z = 5.94, 
p << 0.001), indicating agree-
ment with the prediction.

A non-parametric repeated-
measures ANOVA using
SPSS (Friedman test)
Here we can test only the
general prediction that the
mean ranks will not differ.
Click on ‘Analyze’, ‘Non-
parametric Tests’ and then
‘K-related Samples’. Add the
three variables of the treat-
ments to the resulting dia-
logue (Fig. (ii)a), and the
Output appears (Fig. (ii)b).
As before, the mean ranks are
quite different, and the test
statistic shows that this is a
highly significant difference.

Figure (i) A specific non-parametric repeated-measures ANOVA in AQB.
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Covariates. Sometimes it is useful to control for other, nuisance, factors that 
are measured on a constant-interval scale within an analysis of variance. For
instance, an analysis of differences in mating success between territory-owning
and non-territory-owning male wood mice (Apodemus sylvaticus) might want to
control for body size to rule out an effect of territory ownership arising simply
because owners tend to be bigger. In a parametric analysis of variance, body size
could be incorporated as a covariate. The analysis would then reveal the inde-
pendent effects of territory ownership and body size. Most major statistical pack-
ages allow covariates to be included in analyses of variance. Box 3.6 shows how
to do this in SPSS.

A physiologist was interested in the impact of
three foods on the basal metabolic rate (BMR) of
rats, and conducted an experiment in his labor-
atory where rats in individual cages were randomly
assigned to one of the three foods (A, B and C),
and were fed this food over one week. He then
measured the BMR of each rat three times, taking
the average as the value for each rat. He suspected,
however, that body size might also influence BMR,
and might obscure the result of the experiment
unless controlled for. Thus he also recorded the
weight of each rat when he measured its BMR.

The dependent variable for analysis is BMR,
measured on a constant-interval scale. The ques-
tion concerns differences in the mean value of
BMR between the three levels of the factor food
type (group in Fig. (i)a, after having taken into
account the effect of a covariate, body size (size
in Fig. (i)a). After saving the residuals of BMR
from the analysis of covariance described below
(i.e. after fitting group and size), they were tested
for normality in the manner described in 
Box 3.1: they conformed to the normal distribu-
tion (Shapiro-Wilk = 0.97, d.f. = 60, ns).

Frame the prediction. In this case the phy-
siologist did not have any preconceptions about
what to expect, and therefore just tested the 
general prediction that the mean values differed.

The analysis is called an analysis of covariance
(ANCOVA), and this example is the simplest 
possible kind – a one-way analysis of variance

with a single covariate. ANCOVA can be very
complex, involving several factors and covariates,
and hence it cannot be done using the simple
AQB package. Thus we shall show how to do the
analysis in SPSS.

Analysis of covariance in SPSS
In SPSS the data are in the usual column format
(Fig. (i)a), with a column for BMR, one for size,
and one for the factor group. Click on ‘Analyze’
and ‘General Linear Model’ and ‘Univariate’ to
bring up the dialogue box in Fig. (i)b. Enter the
dependent variable for analysis (here, BMR) 
into the ‘Dependent Variable’ box, and the factor
(here, ‘group’) into the ‘Fixed Factor(s)’ box.

Before doing the ANCOVA, let’s first see what
the result is without taking the covariate of body
size into account. Click the ‘Options’ button and
transfer group into the ‘Display Means for’ box in
Fig. (i)c and tick the ‘Descriptive Statistics’, and
‘Homogeneity tests’ options. When the analysis
runs, we obtain the mean values of BMR for the
three levels of group (Fig. (i)d) – they are clearly
different, as the highly significant F-value of the
ANOVA demonstrates (Fig. (i)e).

Now, let’s perform the ANCOVA that controls
for body size in comparing the mean values of
BMR in the different group treatments. Add size
to the ‘Covariate(s)’ box (Fig. (i)f) and click ‘OK’
(leaving all other options as before). Now the
result is completely different (Fig. (i)g)! There is a

Box 3.6 Analysis of covariance – taking a covariate into account
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Figure (i)(a–h) Steps on the
way to doing an ANCOVA. (a)
Data entry and menu choice,
(b) entering the variables for 
a simple ANOVA, (c) options to
choose, (d) mean values of the
groups, (e) result of the simple
ANOVA, (f ) entering the vari-
ables for an ANCOVA, (g) result
of the ANCOVA, (h) estimated
group means, allowing for the
covariate.

(a)

(c)

(d)

(b)

(e)
fi
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(f)

(h)

(g)

Figure (i) cont’d

Sometimes, as in the body size example here,
covariates are just nuisance factors that need to
be taken into account to avoid bias in the out-
come of analyses. In other cases, however, we
may be interested in the effect of the covariate
itself. The routine in SPSS above can deal with
both situations and handle a number of factors
and a number of covariates at the same time.

very strong effect of body size on BMR (F1,86 =
2118.8, p < 0.001), and, once allowed for, there 
is no significant difference in BMR between the
mean values of the food types (F2,86 = 1.02, ns).
The ‘Estimated Marginal Means’ from the output
(Fig. (i)h) show the mean values for the three 
levels of group estimated once size has been
taken into account, and it is obvious that they
hardly differ at all from one another.

1 ×× n chi-squared. One-way analysis of variance uses a comparison of mean 
(or mean rank) values of individual data values to arrive at a test statistic. Where
data values are counts, however, we could, as in the two-group case (see Box 3.2)
perform a chi-squared test on the totals for each group. We then have what is
known as a 1 × n chi-squared analysis, where n is the number of groups. The
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A clinical microbiologist 
was assaying the effect of
four antibiotics on a bacterial
culture. To see whether the
antibiotics differed in their
ability to kill the bacterium,
he counted the number of
cultures on which clear
plaques appeared after drop
treatment with each one, and
performed a χ2 test, assuming
equal expected values across
the four antibiotics. The data
consist of the total numbers of cultures. The 
nominal grouping factor is treatment, with four
levels (the different antibiotics).

Frame the prediction, here that antibiotics 
differ in their ability to kill the bacterium, and
hence there will be differences in the numbers of
plaques between antibiotics (H1). The null hypo-
thesis is that all the antibiotics are equally effect-
ive, and hence there will be no differences (H0).

Calculating a 1 ×× n χχ2 using AQB
Under the ‘chi-sq’ worksheet in AQB, the counts
for each treatment are entered as in Fig. (i).

Leaving the ‘expected’ values empty is the default
assumption of equal expected numbers. The result
appears automatically in the ‘RESULTS’ box to
the right, showing, in this case, a significant dif-
ference between antibiotics (χ2 = 14.21, d.f. = 3, 
p < 0.01).

Calculating a 1 ×× n χχ2 using SPSS
To test the total counts directly in SPSS, we once
again use the weighting procedure outlined in
Box 3.2, but (here) for four groups instead of two.
On doing this, the same result as that above will
appear in the output.

Box 3.7 A test comparing counts classified into two or more groups 
(1 ×× n χχ2 test)

Figure (i) Performing a 1 × n χ2 test in AQB.

two-group (1 × 2) chi-squared test earlier is just one form of this, and the cal-
culation of expected values and the χ2 test statistic are exactly the same as for
the two-group case. Box 3.7 shows how to do these in AQB and SPSS.

Tests for differences in relation to two levels of grouping
In all the above difference tests, we were concerned with differences within a
single level of grouping, e.g. between groupings based on seed colour. However
many groups of seed colour we had (red, yellow, green, orange, blue, etc.) we
would still be dealing only with seed colour and thus with one level of grouping.
But we can easily envisage situations in which we would be interested in more
than one level of grouping. For example, we might want to know not only
whether chicks peck at some colours of grain more than others, but also whether
pecking in males is different from that in females. More interestingly still, we
might want to know whether the sex of chicks affects the difference in pecking
at the various colours of grain. Is the difference stronger in one sex? Is it in the
same direction in both sexes? Here we have two levels of groupings: seed colour
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and sex. In the examples that follow, we shall look at analyses that cater for two
levels of grouping with two groups in each.

2 ×× 2 chi-squared. If we have data in the form of counts, we can again use 
chi-squared, but the expected values in a 2 × 2 analysis (and in any other n ×
n chi-squared analysis) are calculated in a different way from those in a 1 × n
analysis. Instead of taking equal values, or values determined on the basis of
some a priori expectation, the rows and columns of the 2 × 2 (or n × n) table 
are totalled and the grand total calculated, and the respective expected values 
for each cell of the table are calculated as (row total × column total)/grand 
total. Box 3.8 shows the procedure for performing a 2 × 2 chi-squared analysis
in AQB and SPSS.

2 ×× 2 two-way analysis of variance. As before, if we want to compare sets of indi-
vidual data values, we can use analysis of variance but this time it is a two-way
rather than a one-way analysis. In a 2 × 2 two-way analysis of variance, the data
are cast into four cells (two × two groups, which can be cast as two rows and two

A count was made of the total number of men
and women with stomach biopsies showing a
presence or absence of cancerous cells. We 
have two grouping factors each with two levels:
sex (men/women) and cancer treatment (with/
without), and each person’s result is classified
into one of the four combinations.

The prediction is that the sex of the person
and whether they are treated affects their chance
of showing stomach cancer (H1); in a 2 × 2 chi-
squared this would be reflected as a significant
non-independence between
the two factors (see below).
The null hypothesis is that
sex and treatment have no
effect on the presence of
stomach cancer (H0).

A 2 ×× 2 χχ2 test in AQB
Under the ‘chi-sq’ worksheet
in AQB, simply enter the
group labels and four totals
into the cells of the ‘2-way’
box, as in Fig. (i), and the
outcome appears automatic-
ally in the lower, two-way,
line of the ‘RESULTS’ box.

So, in the example here, there is a significant inter-
action between sex and treatment (χ2 = 18.65, 
d.f. = 1, p < 0.001).

A 2 ×× 2 χχ2 test in SPSS
In SPSS, we either have to enter the raw data of
each person, row by row, or get the package to
accept the totals rather than the raw data of each
person by using the ‘Weight Cases’ option, as in
Box 3.2. Following the procedure in Box 3.2,

Box 3.8 A test comparing counts in a 2 ×× 2 classification (2 ×× 2 χχ2 test)

Figure (i) Data entry and results output for a 2 × 2 χ2 test in AQB.
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(b)

(d)

(c)

(a)

Figure (ii) (a) Data input and selection of 
the ‘Crosstabs’ option for a 2 × 2 χ2 test 
in SPSS (see above), (b) entering the rows
and columns for the analysis, (c) checking
the ‘Chi-square’ box, (d) the output for the
analysis.

click ‘Data’ followed by ‘Weight Cases’ from the
menus at the top of the screen, and select the
‘Weight cases by’ option, entering the column
containing the data, in this case freq (see Box 3.2,
Fig. (ii)c). Then click ‘Analyze’ followed by
‘Descriptive Statistics’ and ‘Crosstabs’ (Fig. (ii)a).
Enter the two factors (sex and treatment) into the
‘Row(s)’ and ‘Column(s)’ boxes (Fig. (ii)b), click

on ‘Statistics’ and make sure that the ‘Chi-square’
box is checked (Fig. (ii)c). Click ‘Continue’ and
‘OK’ and the output appears as in Fig. (ii)d. The
conclusion, once again, is that the two factors
interact, i.e. the chance of getting stomach cancer
differs between men and women (χ2 = 18.65, 
d.f. = 1, p < 0.001).
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columns of a table). If we wanted to do a 3 × 5 two-way analysis the data would
be cast into 15 cells, and so on for any combination of levels of grouping. Once
again there are both parametric and non-parametric versions of the analysis
(Boxes 3.9a–d). As usual, the parametric test assumes the data conform reasonably
to normality. This assumption is, of course, relaxed for the non-parametric
equivalent. However, both parametric and non-parametric tests assume that 
the data have the same variance within each cell (i.e. within each combina-
tion of levels of grouping) – another example of the distribution-free, but not
assumption-free, nature of non-parametric tests. Both types of analysis compare
the mean values of the columns within the classification and the mean values 
of the rows. In other words they compare means within each of the two levels
of grouping. Comparisons between the column means or between the row means
are known as the main effects and are distinguished from a second kind of 
comparison referred to as an interaction. (Note that an interaction can be 
calculated only if all cells contain more than one datum value.) If there is a
significant interaction it means the two sets of samples at one level of grouping
respond differently to differences in the second level of grouping. An example
makes the distinction between main effects and interaction clear. Imagine our
two levels of grouping are freshwater versus marine fish and male versus female,
and the variable for comparison is growth rate. Freshwater versus marine can be
the rows of the classification (see table below) and male versus female the
columns. The analysis would be concerned with the following: (a) main effect 1:
differences in row means (is there any difference in growth rate between fresh-
water and marine fish?), (b) main effect 2: differences in column means (is there
any difference in growth rate between males and females?) and (c) any inter-
action between the levels of grouping (e.g. is the difference in growth rate
between males and females greater in one environment than in the other?).

Water type

Fresh Marine

Male a b c d e f g h
mean = A mean = B

Sex
Female i j k l m n o p

mean = C mean = D
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An experiment aimed to detect the effects of food
type and parasitic infection on an enzyme (liver
alcohol dehydrogenase) in rats (Rattus norvegi-
cus). The variable being analysed (enzyme) is a
measure of the enzyme’s rate of reaction, and
there are two factors, each with two levels: food
(peas/beans) and parasitism treatment (unpara-
sitised, parasitised). The experimental design
required each rat to be in one food group (peas 
or beans) and one parasitism treatment group
(unparasitised or parasitised). Testing the residu-
als for normality (see Box 3.1) showed that the
data could be assumed to be normal (Shapiro-
Wilk = 0.99, d.f. = 160, ns).

Because of the two-way design, we have three
predictions, one about the effects of food, one
about the effects of parasitism (together called
the main effects), and one about the interaction
between food type and parasitism (e.g. is the
effect of food type affected by whether or not the
rat is also parasitised?)

Doing a general parametric two-way ANOVA 
in AQB
In AQB, select the ‘p 2-way’ worksheet and enter
the data as usual in columns, making sure that
they are in the correct ones. The advantages of

intuitive inputting of the data in columns for one-
way designs are lost for two-way designs, and you
must be careful.

It is often helpful to draw a diagram of the
design, as in Fig. (i)a. This shows the two levels of
food as the columns, and the two levels of para-
sitism as the rows. In the cells of this design in
Fig. (i)a, we have written the column in which
the data for that cell should be placed in AQB,
and indicated on Fig. (i)b by arrows where the
data should go. On row 3 of the worksheet are
spaces for the factor labels – in our case, Factor
A is parasitism, and factor B is food. There is
space on the worksheet for four levels of Factor
A and six levels of Factor B – these are indexed
by number on rows 4 and 5 of the worksheet, and
have spaces for the level labels on rows 6 and 7,
respectively. Thus columns B–G are for the six
possible levels of Factor B for level 1 of Factor A;
columns H–M are for the six possible levels of
Factor B for level 2 of Factor A; and so on up to
level 4 of Factor A. Rows 9 and 10 of the work-
sheet are for the contrasts, as we have met before
and will meet in Box 3.8b.

Then come five rows which automatically 
display (as you type in the data) the summary
statistics of the data: rows 12, 13 and 14 record

Box 3.9a Mean values – a general parametric two-way ANOVA

As in the one-way analysis of variance, the non-parametric version can be
used to test either general or specific predictions, but now about both the two
main effects and any interactions. Making specific predictions is rather more
involved in the two-way analysis because we need to be clear as to exactly what
we are comparing and to calculate different coefficients for each specific com-
parison so predictions can be tested. Box 3.9c illustrates the procedure.

Although we have confined ourselves to a two-way analysis of variance here,
the two-way model is only a particular case of a multifactor analysis of variance
where there can be three, four or more levels of grouping. The principles under-
lying more complex analyses are the same, but as the number of levels of group-
ing increases it becomes more and more difficult to interpret the proliferating
interactions terms. Moreover, the more levels of grouping that are included, the
slimmer the chance they are all truly independent. Full discussion of these ana-
lyses can be found in Sokal and Rohlf (1995). In parametric analyses, as in the
one-way case, it is also possible to incorporate covariates to control for factors
on a constant interval scale.
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(a)

(b)

(c) Note that the width of some of the columns has been reduced to fit data and result into a single frame. Note carefully
how the two-way design is pt into the column format.

Figure (i) (a) Experimental design, (b) data entry, and (c) results output for a general parametric two-way ANOVA
using AQB.
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the mean, s.e. and sample size of the data for each
column (i.e. for each cell of the two-way design).
Row 15 has four boxes, which show the mean
value for each of the levels of Factor A (para-
sitism in our design, and hence only two are filled
in, since we have only two levels for this factor).
Finally, row 16 has six boxes for the mean values
of the six possible levels of Factor B (but only 
two are filled in here, because food only has two
levels).

There is room for a 4 × 6 two-way design in the
spreadsheet, but anything larger will need to be
done in SPSS or another package. The result auto-
matically appears in the RESULTS box (Fig. (i)c).

Doing a general parametric two-way ANOVA 
in SPSS
In SPSS, the data are entered in their usual format,
with all the enzyme activity values in a single 
column, with other columns coding the parasitism
(1 = parasitised, 2 = unparasitised) or food type 
(1 = peas, 2 = beans) treatment groups (Fig. (ii)a).
To carry out a two-way ANOVA, click on ‘Analyze’
then ‘General Linear Model’ and ‘Univariate’
(Fig. (ii)a). General linear models (or GLMs for
short) are a broad family of parametric tests to
which analysis of variance belongs (see below).
Univariate is chosen because only one variable is
being analysed (here, enzyme activity). Transfer
the variable being analysed (enzyme) into the
‘Dependent Variable’ box, and the two treatment
groups ( food, parasitism) into the ‘Fixed Factor(s)’
box (Fig. (ii)b).

While the dialogue box offers a choice
between ‘Fixed Factor(s)’ and ‘Random Factor(s)’,
the distinction between the two is not hard and
fast, and the same factors can potentially be
treated as ‘fixed’ or ‘random’ in different tests
(Dytham, 2003). The distinction really lies in the
extent to which any significant difference emerg-
ing from a test can be generalised. Thus, for
example, if food in our example is entered as a
fixed factor, and we find a significant difference
between the levels in whatever we are measuring
(here, enzyme activity), this implies only that there
is a difference in the effect of peas and beans 
per se. If they are entered as levels of a random
factor, however, it implies differences in effect

between any two randomly selected foodstuffs. 
In other words, using them as a random factor
implies peas and beans represent foodstuffs in
general. The extent to which generalisation is
possible depends critically on how the levels of
the factor were selected – they really do have to
be a random selection in order to be able to gen-
eralise. Sometimes a factor is random because it
is a blocking factor where we have no idea what
the nature of the variation might be (e.g. differ-
ences among individuals, rearing cages, fields
used for fertiliser trials, or physiological prepara-
tions), but it must be allowed for in the analysis.
The distinction is not offered by many, more
basic, statistical packages, such as AQB. Whether
a factor is fixed or random makes a big difference
to the way the test statistic is calculated, and
hence to the results, so the choice is important.

Once the variables are entered, click the
‘Options’ button (Fig. (ii)c) and transfer the inter-
action term ( food*parasitism) into the ‘Display
Means for’ box (Fig. (ii)c) so that we get the
means and standard errors for each of the com-
binations of the factors in the eventual output.
Tick the ‘Observed power’ and ‘Homogeneity
tests’ boxes too. Click ‘Continue’ then ‘OK’ and
the output appears as in Fig. (ii)d. First, this gives
the test for homogeneity of variances among
groups (one of the main assumptions of para-
metric ANOVA), which shows no evidence of dif-
ferences in variance among groups (i.e. Levene’s
test is not significant). Then we get the ANOVA
itself, which is identical to the one provided 
by AQB except for some extra information – for
example, there is a line for the ‘intercept’, because
GLM models combine both differences and trends
into a single framework of regression models and
fit coefficients to express the quantitative contribu-
tion of variables in the analysis. In this case, in
very simple format the model is:

Rate of enzyme activity (enzyme) 
= (Overall Mean) + a( food) + b(parasitism) 

+ c( food*parasitism)

where a, b and c are coefficients weighting 
the contribution of each variable and their
interaction
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(a)

(b)

(c)

(d)

Figure (ii) (a) Data entry and test selection
for a parametric general two-way ANOVA in
SPSS, (b) entering the variables for the ana-
lysis, (c) entering the interaction term(s) and
checking the appropriate ‘Display’ options,
(d) the results output.

and the GLM estimates the values of the Overall
Mean and the coefficients a, b and c. The details
need not concern us here, except to note that the
‘intercept’ = Overall Mean. Thus the table is tell-
ing us that the overall mean value for enzyme is
very highly significantly different from zero. This

is not usually very informative, since normally
any dependent variable in analysis will have an
overall mean value different from zero.

Another important difference compared with
AQB lies in the table of ‘Estimated Marginal
Means’ that we requested when we entered the
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interaction term in Fig. (ii)c. Note that every
standard error is identical. This is because the
GLM takes the assumption of equal variances in
ANOVA to be literally true, and estimates the
common standard error from the overall within-
group variance. In AQB, each group is treated
separately, and hence the standard errors are all
different (see Fig. (i)). A further difference lies in
the ‘Power’ column, which tells us the power
with which the actual difference in mean values
has been detected (see Box 3.14).

Finally, note that the relevant degrees of free-
dom to cite with the F-ratio for each effect are the
ones on the same line as the variable (or inter-
action) in the table (the between-group d.f.), and,
in each case, the Error degrees of freedom (the
within-groups d.f.).

From all this, we conclude that:

n there is no evidence of a difference in
enzyme activity between food types (because
F = 1.3, d.f. = 1,156, ns)

n there is evidence of a difference in enzyme
activity between parasitism treatments
(because F = 7.8, d.f. = 1,156, p < 0.01)

n there is evidence of an interaction between
food type and parasitism that affects enzyme
activity (because F = 4.1, d.f. = 1,156, p < 0.05).

We can either present the statistical results in 
the text of our report, as above, or put them in the
legends to figures that show the means and s.e.s, or
reproduce the ANOVA table (Fig. (i) or Fig. (ii)d),
but they should be given only once. It is good
practice to give the table for all but the simplest
of designs, because it is very informative to experi-
enced scientists. When we are testing specific pre-
dictions within the ANOVA, the table becomes
all but essential, as we shall see in Box 3.9b.

N.B. The ‘General Linear Model’/‘Univariate’
option in SPSS can be used to perform a one-way
ANOVA (Boxes 3.5a,b) too. Indeed, as a multi-
factor ANOVA model, it can be used for ANOVAs
involving, in principle, any number of factors, in
which case we might be dealing with three-way,
four-way etc. analyses, all working in the same
basic way. One limitation on multifactor ANOVAs
with large numbers of factors, however, is the
near impossibility of interpreting some of the
multi-way interactions they produce.

We have deliberately chosen a complex example
here to show you how this works.

An experiment was designed to test the effect
of temperature and motivation on the mathemat-
ical performance of students in a standard test.
Students were tested one by one in an environ-
mental chamber that could be set to one of three
conditions of temperature (cold, normal warm
room temperature or hot). Each student was pre-
treated in one of three ways to alter their motiva-
tion: (a) in a very off-hand manner and generally
given the impression that they were incompet-
ent (low motivation), (b) neutrally with respect 
to their competence (neutral) or (c) in a praising
fashion, giving every encouragement (high motiva-
tion). Each student was randomly allocated to

one temperature and one motivation treatment.
Thus the target variable for analysis is mathemat-
ical performance, measured on a constant-interval
scale. There are two grouping factors: motivation,
with three levels (low, neutral, high) and tem-
perature, with three levels (cold/warm/hot). We
shall treat these as fixed factors (see Box below).
Testing the residuals for normality (see Box 3.1)
demonstrated that the assumption of normality is
acceptable (Shapiro-Wilk = 0.99, d.f. = 225, ns).
The specific predictions deriving from this were:

n Prediction 1 (main effect 1): lower motiva-
tion will reduce mathematical performance,

n Prediction 2 (main effect 2): higher temper-
atures will reduce mathematical performance,

Box 3.9b Mean values – a specific parametric two-way ANOVA
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n Prediction 3 (interaction): higher temperat-
ures and lower motivation together will
reduce mathematical performance more than
expected from their additive effects.

In order to see how to proceed, it is best to
visualise the pattern of the design (Fig. (i)) and
label each of the combination of treatments (the
cells of the design matrix) with letters. As with
the one-way ANOVA (Box 3.5b), we should, in
theory, be able to test for a specified rank order
of mean values, but, as we noted in Box 3.5b, this
method has not been implemented in most statist-
ical packages. We can test for a specified rank
order in a non-parametric ANOVA (see Box 3.9c),
but not easily in a parametric ANOVA. Once again,
therefore, we shall use contrasts to test hypo-
theses that are almost the same thing.

Setting up the predictions

Prediction 1: We have three levels of the factor
motivation (the rows in Fig. (i)), giving us two
degrees of freedom, and hence two single-degree-
of-freedom contrasts that we can use (as long as
they are independent of one another). The first
will contrast low motivation versus the other two,
and the second will contrast neutral versus high.
We proceed by casting them in terms of the cells
of the design matrix (Fig. (i)):

(a) high motivation > (neutral + low). The aver-
age performance for the high motivation cells
of the design (n = 3) will be greater than
those for the other cells (n = 6), i.e.:

(G + H + I)/3 > ((D + E + F) +
(A + B + C))/6

(a)

(b)

Figure (i) (a) The design, and (b) data entry in AQB of the two-way ANOVA under consideration.
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which rearranges as:

(−1)A + (−1)B + (−1)C + (−1)D + (−1)E 
+ (−1)F + (2)G + (2)H + (2)I > 0

where the numbers in the brackets are 
the coefficients of the first contrast (cf. 
Box 3.5b).

(b) neutral > low motivation. The average per-
formance measured for neutral motivation 
(n = 3) will be higher than that for low motiva-
tion (n = 3), i.e.:

(D + E + F) > (A + B + C)

which rearranges as:

(−1)A + (−1)B + (−1)C + (1)D + (1)E 
+ (1)F + (0)G + (0)H + (0)I > 0

where the numbers in the brackets are the
coefficients of the second contrast.

Prediction 2: This is done in exactly the same way,
involving the temperature factor (the columns 
of Fig. (i)) rather than motivation (the rows of
Fig. (i)). The relevant coefficients are:

(a) cold temperature versus other. The average
performance measured for the cold temper-
ature cells of the design (n = 3) will be greater
than those for the other cells (n = 6), i.e.:

(A + D + G)/3 > ((B + E + H) +
(C + F + I))/6

which rearranges as:

(+2)A + (−1)B + (−1)C + (2)D + (−1)E 
+ (−1)F + (2)G + (−1)H + (−1)I > 0

(b) warm versus high temperature. The average
performance measured for the normal tem-
perature cells of the design (n = 3) will be
greater than those for the high temperature
cells (n = 3), i.e.:

(B + E + H)/3 > (C + F + I)/3

which rearranges as:

(0)A + (1)B + (−1)C + (0)D + (1)E 
+ (−1)F + (0)G + (1)H + (−1)I > 0

Prediction 3: This concerns the interaction be-
tween temperature and motivation, and it has
four degrees of freedom (because the interaction
has (a − 1)(b − 1) degrees for the two factors A
and B which have a − 1 and b − 1 degrees, respect-
ively). We shall only use two of these degrees of
freedom in casting the prediction into independ-
ent contrast sets. An interaction is non-additivity
of factors, which means that the effect on one
factor (say temperature) is different at the differ-
ent levels of the other factor (motivation) (see
text). This is complicated to visualise, and it is
best to set out the interaction prediction as a 
difference between levels in the following way:

If the hypothesis is correct, then the motiva-
tion differences will increase as temperature
decreases because both cold temperature and
high motivation increase the ability of students 
to perform. The prediction is that this ability 
will increase more than the additive effect of
each factor, thus:

(a) the motivation difference (high – (neutral +
low)) will increase with temperature, so 

cold > (warm + hot)

(G − (A + D)) / 3 > [(H − (B + E)) + 
(I − (C + F))] / 6

which rearranges as:

(−2)A + (1)B + (1)C + (−2)D + (1)E 
+ (1)F + (2)G + (−1)H + (−1)I > 0

and:

(b) the motivation difference will follow the tem-
perature pattern warm > hot

H − (B + E) > I − (C + F)

which rearranges as:

(0)A + (−1)B + (1)C + (0)D + (−1)E 
+ (1)F + (0)G + (1)H + (−1)I > 0
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Testing for specific differences in a two-way
classification using a parametric two-way
ANOVA in AQB
In AQB (Fig. (i)b), the data are as usual put into
columns as indicated in the figure (see Box 3.9a
for a description). Note the labels at the top that
show how the two-way design is unpacked into a
single set of adjacent columns (as designs become
more complex, so the SPSS method of data entry
becomes more advantageous). The output for 
a general ANOVA appears automatically in the
‘RESULTS’ box (Fig. (ii)a), and you can see that
the effect of Factor A (motivation) is significant
(since F = 162.0, d.f. = 2,216, p < 0.001), as is
Factor B (temperature) (since F = 20.7, d.f. =
2,216, p < 0.001), and there is a significant 
motivation × temperature interaction (since F =
6.4, d.f. = 4,216, p < 0.001).

Within the general ANOVA, we are testing
specific hypotheses, since we expect higher tem-

perature to reduce (rather than merely change)
performance, and hence we enter ‘1’ in the 
white box within the ‘RESULTS’ box (Fig. (ii)a).
If the contrast coefficients sum correctly to zero,
then entering them will bring up the result auto-
matically. You can tell if they are correct because
their sum is on the AQB spreadsheet in cell AA9,
just to the right of the row for the coefficients. As
it reminds you in the adjacent cell, the sum needs
to be zero. If all is OK, then the results output
appears automatically in the lower part of the
‘RESULTS’ box labelled ‘Contrast’. They will not
appear if the sum of the coefficients is not zero.
The test statistic in this case is ‘t’.

For Prediction 1, that high motivation will
increase performance, the first contrast is highly
significant (since t = 16.8, d.f. = 216, p < 0.001):
the mean values do indeed fall into the expected
pattern because the contrast mean is positive
(28.3). For the second contrast, we need to check

(a) Note that the width of some of the columns has been reduced to fit data and result into a single frame.

(b)

Figure (ii) (a) Results output, and (b) checking the independence of contrast sets, for a specific parametric two-way
ANOVA using contrasts in AQB.
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whether it is independent of the first. We can do
this by entering the second set of coefficients into
the line below the first set (Fig. (ii)b). Once again,
the box at the end of the row (cell AA10) will
show zero if the two sets of coefficients are truly
independent of one another (Fig. (ii)b). If they are,
then we can transfer the second set of coefficients
into the contrast row proper (Row 9, where the
first set are) to obtain the result. We then find that,
once again, the value of ‘t’ is highly significant 
(t = 6.5, d.f. = 216, p < 0.001), so the mean values
fall into the predicted pattern here too (again
with a positive contrast mean).

Similarly for Predictions 2 and 3, we enter 
the coefficients and read off the result from the
Contrast part of the Results box.

Because of the complexity of the predictions
tested in this case, it is a good idea to set out 
the results in an ANOVA table, as in Fig. (iii); 
this contains all the details that are needed for
readers to see exactly what the results are.

Testing for specific differences in a two-way
classification using a parametric two-way
ANOVA in SPSS
In SPSS, as usual, the data are in one column 
and the codes for each of the two factors in 
two other columns (Fig. (iv)a). Click ‘Analyze’ 
then ‘General Linear Model’ and ‘Univariate’ 
and transfer the relevant data variable to the
‘Dependent Variable’ box, and the two groups to
the ‘Fixed Factor(s)’ box (Fig. (iv)a). Then click
the ‘Contrasts’ button, to bring up the relevant
dialogue box (Fig. (iv)b). SPSS does not allow 

us to choose our own contrasts; instead we 
have to choose one of a set of predetermined con-
trasts. It does not allow any contrasts for the
interaction – only the main effects are available
to be chosen. Our contrasts are actually what are
called ‘Helmert’ contrasts (clicking the ‘Help’
option and searching for Contrast Types ex-
plains what the various options mean in terms of
hypotheses).

Clicking ‘Continue’ then ‘OK’ gives the out-
put (Fig. (iv)c–h). First we get Levene’s test for
equality of variances (Fig. (iv)c); this is not signi-
ficant, and hence the normal tests are justified.
Then comes the general ANOVA (Fig. (iv)d), as
with AQB (except it has the ‘intercept’, as before
[Box 3.9a]). Then we get the contrast results for
each main effect, motivation (Fig. (iv)e–f ) and
temperature (Fig. (iv)g–h) (but not the interac-
tion). Notice that SPSS calculates contrasts quite
differently, giving a mean difference and its stan-
dard error, together with the significance. Again
it is best to report the results as an ANOVA table,
as in Fig. (v), to clarify exactly what has been
tested and the statistical evidence.

In conclusion, there is good evidence that:

n higher temperatures reduce mathematical
performance,

n lower motivation reduces mathematical 
performance,

n higher temperatures and lower motivation
together reduce mathematical performance
more than expected from their additive
effects (Fig. (iii)).

Figure (iii) Setting out the results from Fig. (ii) as a conventional ANOVA table for the purpose of a written report.
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(a)

(b)

(c)

(d)

(e)

Figure (iv) (a) Data entry and selecting variables for a
specific parametric two-way ANOVA in SPSS, (b) setting
up the contrasts for the analysis, (c) test for equality 
of variances among groups, (d) the general ANOVA 
output (see above), (e, f ) and (g, h) the output for the 
contrasts for the first and second main effects, respect-
ively (see left and next page). fi
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(f)

(g)

(h)

Figure (v) Setting out the results from Fig. (iv) as a conventional ANOVA table for the
purpose of a written report.

Figure (iv) cont’d
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General predictions in a two-way non-parametric
ANOVA can be tested only if the sample sizes are
equal for all groups. If they are not, then only
specific predictions are testable.

Suppose a behavioural experiment measured
the reaction times of different-sized insects of two
kinds to a threatening stimulus. The factor size
had three levels (small/medium/large), and the
factor taxa had two levels (flies/beetles). Testing
the residuals showed that they were far from 
normal (Shapiro-Wilk = 0.87, d.f. = 84, p < 0.001)
and hence a non-parametric test is appropriate.
The predictions were the usual general ones for a
two-way design, involving the main effects (here,
size and taxa) and their interaction:

n Prediction 1: beetles and flies will differ in
reaction times,

n Prediction 2: large, medium and small insects
will differ in reaction times,

n Prediction 3: there will be an interaction
between size and insect type that affects reac-
tion times.

Testing for general
differences in a two-way
classification using a 
non-parametric two-way
ANOVA in AQB
In AQB, choose the ‘np 2-
way’ worksheet, and then put
the data in columns in the
usual way (Fig. (i), and cf.
Box 3.9b, Fig. (i)b). Note the
‘labels’ at the top that show
how the two-way design (two
sets of three groups) is ar-
ranged into two sets of three
adjacent columns in the ‘data’
box below. Clicking the ‘Go’
button in the ‘RESULTS’ 
box will produce the output
(if sample sizes are equal 
– otherwise a message-box
reminder will appear). Like
the non-parametric one-way

ANOVA in Box 3.5c, the analysis generates the
test statistic H, but in this case we get one H-
value for each of the main effects and one for the
interaction. You can see that the medians (mean
ranks) of neither the main effects nor the inter-
action differ significantly, so we cannot reject the
null hypothesis for any of them.

Testing for general differences in a two-way
classification using a non-parametric two-way
ANOVA in SPSS
Curiously, it is not possible to test a non-
parametric two-way ANOVA in SPSS, nor in any
of the major commercial statistical packages. The
nearest approximation is Friedman’s test, which
is sometimes referred to as a two-way ANOVA,
but is actually a one-way ANOVA where data
come in sets of related measurements (such as
those involving repeating each treatment level on
the same individual). It is not a two-way ANOVA
in the true sense considered here.

Box 3.9c Medians (mean ranks) – a general non-parametric two-way ANOVA

Note that the width of some of the columns has been reduced to fit data and result into a 

single frame.

Figure (i) Data entry and results output for a non-parametric two-way ANOVA 
in AQB.

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 117



118 CHAPTER 3 ANSWERING QUESTIONS

A team of researchers interested in the con-
sequences of regular exercise on various measures
of health and well-being investigated the joint
effects of dietary fat and exercise (running on three
or more days per week) on levels of blood choles-
terol. They measured cholesterol in people who
had low and high fat intake, and who did or did
not run. They then carried out a non-parametric
two-way ANOVA. The dependent variable being
analysed is blood cholesterol level. There are two
factors each with two levels: diet (high-fat/low-
fat) and exercise treatment (no exercise/exercise).
The two-way design requires that each person
being investigated has been allocated randomly
to one diet treatment (low or high fat) and one
exercise treatment (not running, or running).
Testing the residuals for normality showed that
they were far from normal (Shapiro-Wilk = 0.82,
d.f. = 120, p < 0.001), and hence a non-parametric
approach is justified. Their predictions were:

n Prediction 1: running will reduce blood
cholesterol,

n Prediction 2: a low-fat diet will reduce blood
cholesterol,

n Prediction 3: the effect of running will be
greater when on a low-fat diet.

We can test these predic-
tions in two ways, either 
by predicting the rank order
of the mean rank values, 
or by using single-degree-of-
freedom contrasts. Since there
are only two levels of each
factor in the design, there is
only one degree of freedom
for each main effect, and one
for the interaction. We shall
see that, in a 2 × 2 design like
this, both methods produce
exactly the same result. Any
other design (e.g. 3 × 2) will
not do this.

As before (Box 3.9c), it 
is not possible to test the
specific non-parametric two-

way ANOVA in SPSS, nor in any of the major
statistical packages. We can only use AQB.

Testing for specific differences in a two-way
classification using a non-parametric two-way
ANOVA in AQB

Testing rank order
To predict the rank order in AQB, select the ‘np
2-way’ worksheet, and enter the data in the usual
way (see Box 3.9a). Then place the predicted
rank order in the appropriate cells of the ‘rank
order’ row (row 9) of the sheet (Fig. (i)). The
example shows the test of the main effect of exer-
cise. We expect cholesterol levels to be higher
where no exercise is taken, and therefore place
‘2’ in the two cells related to no exercise, and 
‘1’ in the two cells related to taking exercise.
Clicking ‘Go’ gives us the result. You can see that
a general ANOVA is produced anyway, emphasis-
ing the fact that specific tests are a component 
of the general ANOVA. The rank order test has 
z as its test statistic: it is highly significant (z =
4.30, p < 0.001). A similar test for the impact of
diet is also significant (z = 2.38, p < 0.01). In the
case of the interaction, there is no way to make a

Box 3.9d Medians (mean ranks) – a specific non-parametric two-way ANOVA

Note that the width of some of the columns has been reduced to fit data and result into a 

single frame.

Figure (i) Data entry, setting up predicted rank orders and the resulting output
for a specific two-way ANOVA in AQB.
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rank-order prediction of all four cells, and there-
fore this prediction cannot be tested in this way.

Using contrasts
The second method involves setting up contrasts
(see Boxes 3.5b and 3.9b) for the respective pre-
dictions as follows:

Prediction 1: This can be cast in the form of 
an inequality, following the design of the study
(Fig. (ii)):

i.e. B + D > A + C

and hence (−1)A + (+1)B + (−1)C + (+1)D > 0

The numbers in the brackets
are the coefficients to use for
the contrasts, to be placed in
the ‘contrast’ row (Row 11)
of the ‘np 2-way’ AQB sheet
(Fig. (iii)). Clicking ‘Go’ pro-
duces the result, which is
highly significant. Comparing
it with the output in Fig. (i),
we can see that it is identical.

Prediction 2: this can be
described as:

C + D > A + B

and hence

(−1)A + (−1)B + (+1)C 
+ (+1)D > 0

Entering these coefficients produces the test
result of z = 2.38, p < 0.01. Once again, this is
identical to the previous result with a predicted
rank order, because of the 2 × 2 design.

Prediction 3: this can be described in the form of
differences:

B − A > D − C

and hence (−1)A + (+1)B + (+1)C + (−1)D > 0

Entering these coefficients results in z = −0.70,
ns. Thus there is no evidence from these data for
the predicted interaction: dietary fat and exercise
appear to be purely additive in their effects. If we
look at the general ANOVA in the ‘RESULTS’
box, we can see that no interaction of any kind
seems to be present, so the lack of a significant
outcome for our particular interaction is hardly
surprising.

Figure (ii) The two-way classification in the study.

Figure (iii) Setting up the contrasts and resulting output for a specific two-way
ANOVA in AQB.

3.3.4 Tests for a trend

As with analysis of differences, there are many tests that cater for trends. We
shall introduce two simple ones here, both looking at the relationship between
two sets of data. More complex versions of these tests allow multiple relation-
ships to be tested at the same time and we shall also look at how these work.
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Correlation analysis
The first test is one of correlation. Correlation analyses calculate a test statistic
known as a correlation coefficient, the two most commonly used being the 
parametric Pearson’s product-moment correlation coefficient r and the non-
parametric Spearman rank correlation coefficient rS (Box 3.10). A correlation
coefficient quantifies the extent to which there is an association between two
sets of data values. A large positive coefficient indicates a strong tendency for
high values in one set to co-occur with high values in the other and low values
in one set to co-occur with low values in the other. A large negative coefficient
indicates a strong tendency for high values in one set to co-occur with low 
values in the other and vice versa. Correlation coefficients take a value between
+1.0 and −1.0, with values of +1 and −1 indicating, respectively, a perfect posit-
ive or negative association. ‘Perfect association’ means that every value in one
set is predicted perfectly by values in the other set. A coefficient of 0 indicates
there is no association between the two sets of values so that values in one set
cannot be predicted by those in the other. If a correlation is significant, it implies
that the size of the coefficient differs significantly (positively or negatively) from
zero, the value expected under the null hypothesis.

As a parametric test, the Pearson product-moment correlation is subject to a
number of assumptions about the data being analysed. The two sets of data must
be normally distributed individually and jointly (a bivariate normal distribution
in the jargon), both must be measured on a constant interval scale and the rela-
tionship between them must be linear. Satisfying these assumptions can be a tall
order and the Pearson correlation is probably used more liberally than it should

An experimenter was interested in the associa-
tion between the flight speed of house sparrows
(Passer domesticus) and their body sizes. To 
see whether size and speed were associated, 
she took a number of individual birds for which
she already had some body weight data and 
measured their maximum flying speed in a flight
chamber. Two points are important about these
measures. The first is that the experimenter had
not pre-determined the body weights in any way
(she hadn’t deliberately chosen birds of a particu-
lar weight, or fed any up to make them heavier 
in an experimental manipulation; she had simply
caught some birds arbitrarily with respect to their
weight). The second is that, should an associ-
ation between weight and flight speed emerge,
the cause-and-effect relationship between the two
could conceivably be in either direction: heavier

birds may be stronger and so be able to fly faster
(or have to spend more energy getting up speed,
so fly more slowly), or birds that fly faster may
burn up fat reserves and so be lighter. In other
words, weight might affect flight speed, or flight
speed might affect weight, or both could depend
on some other (unmeasured) variable: we can’t tell
a priori. For these reasons, the appropriate trend
analysis here is a correlation. Depending on the
distribution of the data (parametric correlation
requires both variables to be normally distributed,
and for both together to show a bivariate-
normal distribution – a three-dimensional (3D)
bell shape), we could perform either a parametric
or a non-parametric correlation.

This analysis is the only case where testing 
the raw data for normality is correct. Body 
mass seems to be normally distributed (Shapiro-

Box 3.10 Analysis of trends – tests of association (correlation)
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Wilk = 0.98, d.f. = 99, ns), but flight speed is 
not (Shapiro-Wilk = 0.95, d.f. = 99, p < 0.001). 
We cannot test for bivariate-normal distribu-
tions without extremely large sample sizes. We
shall therefore do both a parametric and a non-
parametric correlation with the same data to
demonstrate their similarity.

Let’s suppose we have good reason for think-
ing heavier birds will fly faster because they are
more powerful. We thus predict a positive correla-
tion between weight and flight speed (H1) (the
null hypothesis, H0, is that there is not a positive
correlation). This is an a priori prediction, so a
specific test is appropriate.

Correlation analysis in AQB
In AQB, select the ‘trends’ worksheet, and enter
the weight and speed data in two columns of
paired values, as in Fig. (i). The ‘RESULTS’ box
contains output for both regression and correla-
tion analyses, as in many statistical packages, but
these are different analyses with different under-
lying assumptions, so, for the present case, ignore
the regression output. The ‘normal’ correlation
(called a Pearson product-moment correlation in

full) appears automatically. Since we are testing
the specific prediction of a positive trend, we use
the ‘specific’ rather than ‘general’ output, which
gives us the one-tailed probability associated 
with the outcome if the value for the test statistic,
r, has the predicted sign (positive for a positive
trend, negative for a negative trend). It clearly has
here, and hence the result is highly significant here.

For a non-parametric (Spearman rank) correla-
tion, click the ‘Rank’ button. With large (n > 30)
sample sizes, as here, the difference in outcome
between Pearson and Spearman correlations is
negligible.

Correlation analysis in SPSS
In SPSS, the data are entered in a similar paired
fashion (Fig. (ii)a). Click on ‘Analyze’, followed
by ‘Correlate’ and ‘Bivariate’. In the resulting 
dialogue box (Fig. (ii)b), transfer the variables 
for the analysis (here mass and speed) into the
‘Variables’ box. For our specific test as a Pearson
correlation, we check the ‘Pearson’ and ‘one-
tailed’ options in the box and click ‘OK’. The out-
come is in the form of a table (Fig. (ii)c) because
it is designed to allow any number of variables to

be entered and correlations
calculated for all possible
pairs. Thus the diagonal pre-
sents the correlation of each
variable with itself (thus 
with a coefficient of 1.0, sig-
nifying, naturally enough, 
a perfect correlation). The 
correlation for each pair of 
different variables is given
twice: once as the correla-
tion of A on B, and once as
the correlation of B on A.
Thus, in Fig. (ii)c we have 
the correlation for mass on
speed and for speed on 
mass. While these are exactly
the same, presenting them
this way underlines the fact
that correlation makes no
assumptions about cause and
effect, i.e. about which is theFigure (i) Data entry and results output for trend analyses in AQB.
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dependent and which the independent variable
in the analysis. If the sign of the correlation is as
predicted, we can use the one-tailed probability;
if not, then the result is not significant. Here the
result is clearly highly significant.

To obtain a non-parametric (Spearman rank)
correlation coefficient in SPSS, we check the
‘Spearman’ option in Fig. (ii)b and click ‘OK’ to
produce the table in Fig. (ii)d, which has the
same layout as the Pearson table in Fig. (ii)c.

(a)

(d)

(b)

(c)

Figure (ii) (a) Data entry and test selection for correla-
tion analysis in SPSS, (b) transferring variables and
checking options for the analysis, (c) results output 
for a Pearson correlation (see above), (d) output for a
Spearman rank correlation.
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be. Being a non-parametric test, the Spearman rank correlation can be used 
with ordinal (ranking) or constant interval measurements and, of course, is not
sensitive to departures from normality. Importantly, the relationship also need
not be linear, but merely continuously increasing or decreasing (monotonic);
thus rS will test for many sorts of curved patterns of association.

While we can test for trends with correlation analyses, we must interpret them
with care. Two things in particular should always be borne in mind. First, a 
correlation does not imply cause and effect. While we may have reasons for 
supposing that one measure influences the other rather than vice versa (see
earlier discussion of x and y measures in trend analysis), a significant correlation
cannot be used to confirm this. All it can do is demonstrate that two measures
are associated. A well-known example illustrates the point. Suppose we acquired
some data on the number of pairs of storks breeding in Denmark each year since
1900, and also the number of children born per family in Denmark in the same
years. Plotting a scattergram, with breeding storks as the x-axis and babies as the
y-axis, and calculating a correlation coefficient reveals a significant positive cor-
relation at p < 0.001 between the two measures. Do we conclude that storks
bring babies? Of course not! All we can conclude is that, over the period exam-
ined, there is some association between the number of breeding storks and the
human birth rate; perhaps both species simply reproduce more during long, hot
summers! Second, as we have said, correlation analyses assume that associations
between measures are linear (or reasonably so) if the test is parametric, or at
least monotonic if the test is non-parametric. If they are neither, a lack of
significant correlation cannot be taken to imply a lack of association. This is
made clear in Fig. 3.4 in which the relationship between two measures is U-
shaped. A correlation coefficient for this would be close to zero, but this doesn’t
mean there is no association. The book by Martin and Bateson (1993) contains
a very useful discussion of these and other problems concerning correlation
analyses.

Linear regression
Correlation analyses allow us to judge whether two measures are associated, 
but that’s all. Two important things that they do not allow us to establish are: 
(a) whether changes in the value of one measure cause changes in the value of
the other and (b) anything quantitative about the association.

Cause and effect. In the case of the storks and babies above, it is fairly clear 
that changes in x (the number of breeding storks) do not cause changes in y
(the number of human babies): the association arises either through some 
indirect cause-and-effect relationship (probably that habitat destruction for
storks and the demographic transition to smaller family sizes in humans both
happened over the course of the twentieth century) or through trivial coincid-
ence. In many cases, though, it is not so clear whether there is or is not a direct
cause-and-effect relationship between x and y. The best way to decide is to do
an experiment where, instead of merely measuring x and y as in correlation 
analysis, we experimentally change x-values and measure what subsequently
happens to y. If we see that y changes when x is changed, we can be reasonably
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happy with a cause-and-effect interpretation. This is quite different from corre-
lation analysis.

Quantitative relationships. In addition, correlation analysis does not allow us to
say much about the quantitative relationship between x and y (if x changes by 
n units, by how much does y change?) or allow us to predict values not included
in the original trend analysis (e.g. can we predict the response of an insect pest
to a 40 per cent concentration of pesticide when an analysis of the effect of 
pesticide concentration goes up to only 30 per cent?). With certain qualifications,
linear regression analysis may allow us to do all the above. The qualifications
arise mainly from the usual assumptions made by parametric tests, though the
requirement for normality applies to one of the data sets only (the y-axis 
measure). However, like correlation analysis, and as its name implies, linear
regression also requires the relationship to be passably linear, though there are
ways of overcoming some forms of non-linearity, for instance by log-transforming
the data.

Figure 3.4 Associations between two variables need not be linear. Correlation analysis would
not reveal a significant trend, but an association between the variables appears to exist 
(see text).
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Regression analysis proceeds as follows: the x-values are decided upon in
advance by the investigator to cover a range of particular interest, and y-values
are measured in relation to them to see how well they are predicted by x.
Because x-values are selected by the investigator, they are regarded as fixed,
error-free values, hence the requirement of normality only on the y measure.
Linear regression then calculates the position of a line of best fit through the
data points and uses the equation for this line (the regression equation) to pre-
dict other values for testing. The criterion of ‘best fit’ in this case is the line that
minimises the magnitude of positive and negative deviations from it in the data
– a more precise, mathematical way of doing what we attempt to do when draw-
ing a straight line through a scattergram by eye. The significance of a trend can
be assessed in one of two ways: the first is based on the difference in the slope
of the best fit line from zero (a line with zero slope would be horizontal) and 
is indicated by the test statistic t; the second tests whether a significant amount
of variation in y is accounted for by changes in x, and is indicated by the test
statistic F. Generally speaking, if the trend fails to reach significance, the best fit
line should not be drawn through the points of the scattergram. Box 3.11 shows
how to perform a linear regression in AQB and SPSS.

Multiple regression. So far we have just dealt with simple linear regression
involving a single x and single y variable. It is not difficult to imagine, however,
that we might have several candidate independent (x) variables that could
potentially explain variation in our dependent (y) variable. If so, we need some
way of taking them into account simultaneously so we can control for the effects
of other variables when seeking effects of any particular one. Happily, there is a
relatively straightforward set of techniques for doing this, which come under the
umbrella term multiple regression. As ever, there are various ‘dos’ and ‘don’ts’
associated with the procedures, but Box 3.12 outlines a reasonably robust way
of setting about the business.

Data reduction
We conclude our summary of statistical procedures on a somewhat different
note from the preceding significance tests. As we have seen in the case of ana-
lysis of variance and regression, we are often confronted with several variables
that could individually or in various combinations and interactions, explain 
variation in a dependent variable. Multifactor and multivariate analysis of 
variance and multiple regression are one set of procedures that allows us to 
deal with this kind of situation. However, there is another way, which is not
itself a significance test of any kind, but is instead a statistical technique for 
collapsing several interrelated variables down to one or two composite vari-
ables that can then be treated as new data (either dependent or independent
variables). With the caveat that resulting composite variables can sometimes 
be complicated to interpret, this can be an extremely useful way of rendering 
multivariate data manageable for analysis. By way of example, we summarise a
commonly used such procedure, known as principal components analysis, in
Box 3.13.

ASKQ_C03.qxd  18/06/2007  03:15PM  Page 125



126 CHAPTER 3 ANSWERING QUESTIONS

b is the coefficient determining the slope, and 
Y is the growth value predicted by the equation
for any given vitamin concentration). Next the
value of r2 is given, the proportion of the vari-
ation in growth accounted for by the regression
relationship with vitamin concentration. There
are then two ways of assessing the significance 
of the regression: by an ANOVA (see Boxes
3.9a–d), which calculates an F-ratio (here, F =
170.5, d.f. = 1,23, p < 0.0001), or by a t-test
(which is itself a form of ANOVA [t is just the
square root of F] – see text for the difference in
what they test). Here, t = 13.1, d.f. = 23, p <
0.0001. An important point is that the ANOVA
version with its F-test is a general test only,
whereas the t-test can be general (two-tailed) or
specific (one-tailed), depending on the nature 
of the prediction.

There is a further possibility in AQB. We can
use the regression to make a prediction about
new values of Y (here growth) for any given new
value of X (vitamin). The new value of X must lie

Box 3.11 Analysis of trends – linear regression

A microbiologist was interested in the effect of
the concentration of a particular vitamin on the
growth of the fungus Aspergillus. He therefore
did an experiment in which the concentration of
vitamin solution added to the fungal culture was
varied and subsequent growth of the culture meas-
ured (as mg dry weight of fungus).

As the vitamin, and its requirement by the 
fungus, is known, prior information suggests that
there should be a relationship between concen-
tration and growth and that it should be positive,
with higher concentrations leading to greater
growth. We thus have a specific prediction of a
positive relationship between the two variables
(H1) and a null hypothesis (H0) of no positive
relationship. Unlike the correlation analysis in
Box 3.9a, however, we are here predicting a very
definite cause-and-effect relationship, because we
have experimentally fixed (manipulated) vitamin
concentrations in order to see the impact of these
manipulations on growth. In statistical termino-
logy, therefore, vitamin concentration is the inde-
pendent variable (the predic-
tor), and growth the depen-
dent variable (the response).
Analysis of the residuals (see
Box 3.1) shows that they 
can be regarded as normally
distributed (Shapiro-Wilk =
0.98, d.f. = 25, ns).

Performing regression
analysis in AQB
On the ‘trends’ worksheet 
in AQB, data for regres-
sion are entered in paired
columns exactly as for corre-
lation (Fig. (i)). The output
appears automatically in the
‘RESULTS’ box. The slope
(b) of the regression line and
its standard error (here, b =
0.184 ± 0.014) is given at the
top, along with the equation
describing the line (in which Figure (i) Data entry and results output for linear regression analysis in AQB.
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within the range of X-values used to generate the
regression equation, otherwise the prediction can
be very inaccurate indeed. This risk of inaccuracy
arises from two potential sources of error: first,
there is some uncertainty in the calculated value
of the slope – indicated by its standard error –
which will magnify the uncertainty of the Y-value
the further away we get from the middle of the
line (the mean values of X and Y); second, the
prediction error increases towards the ends of 
the regression line simply because there are usu-
ally fewer data points out there compared with
the middle of the line.

Bearing this caveat in mind, we can enter a
new X-value into the ‘X=’ box on the ‘prediction’
line of the AQB screen – here we’ve entered a
new value of 45 (Fig. (ii)) – and the new value of
Y predicted by it will appear as ‘predicted Y’ next
to it. The experimenter can then carry out some
new tests to see if this is upheld by the data. By
entering the newly measured Y from his test into
the ‘real Y=’ box, the experimenter can perform a
t-test to see if it differs significantly from the value

predicted by the regression equation. The t-value
and its associated probability appear next to 
‘predicted = real?’ on the next line in Fig. (ii).
Here we can see that the observed value of 28 is
not significantly different from the predicted one
of 27.5; so the regression equation seems to be a
good predictor of new Y-values, at least for X-
values within its range.

Performing regression analysis 
in SPSS
Data for regression analysis are entered in X-Y
pairs in SPSS too. Click ‘Analyze’, then ‘Regres-
sion’ and ‘Linear’ to obtain the dialogue box in
Fig. (iii)a. Enter vitamin in the ‘Independent(s)’
box and growth in the ‘Dependent(s)’ box and
click ‘OK’ for the output (Fig. (iii)b). This has
three components. First is the correlation r and 
r2 values, the latter of which is the proportion 
of variance in Y (growth) explained by the regres-
sion relationship with X (vitamin), as before.
Then there is the ANOVA, as before. Finally,
there is a table headed ‘Coefficients’, where 

the estimated values for the
intercept and the slope of 
the regression line appear,
together with t-tests of the
null hypothesis that their 
values are zero. Here, we 
can see that both differ signi-
ficantly from zero (Fig. (iii)c).
No facility is provided for 
the one-tailed, as opposed to
the default two-tailed, test, 
so if the sign (positive or 
negative) of the slope is as
predicted, we must halve 
the probability in order to get
the one-tailed outcome. In
the case here, the probability
is so low as to be indistin-
guishable from zero anyway,
so the one-tailed test will be
highly significant.

The conclusion from both
packages, then, is that increas-
ing vitamin concentration

Figure (ii) Predicting and testing new values of Y for given new values of X in
regression analysis using AQB.
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does indeed increase the growth 
of Aspergillus, and the regression
equation quantifies the amount 
by which growth is increased by
any given increase in vitamin 
concentration.
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Figure (iii) (a) Data entry and test selection for linear
regression analysis in SPSS, (b) transferring variables
for the analysis, (c) the results output of the analysis
(see above and below).

(a)

(b)
fi
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(c)

Figure (iii) cont’d

Often we are interested in the predictability of
some measure from a number of other variables.
For example, suppose we know that the body size
of, and the number of eggs laid by, an insect
(Cynips divisa) that lives inside a plant gall on
oak leaves (Quercus robur) are very closely related
to the size of gall in which it develops. The galls
grow on the veins underneath the leaves. What
determines gall size? We suspect that the avail-
ability of resources from the plant might be one
influence, and also the extent of competition for
those resources (how many galls there are per
leaf or per vein?). Thus we obtain a data set taken
from a large number of leaves (Fig. (i)a), where
we measure the width of the gall (gdiam) as a
measure of gall size, the length of the leaf (llen),
the width of the leaf (lwid), the number of galls
on the leaf (ngalls), the number of galls on a vein

(vgno), the order in which each gall developed 
on a vein (first gall, second, third, etc.) and the
distance of each gall from the midrib of the leaf
(vdist). Thus we might predict a priori that gall
diameter (gdiam) should:

(a) increase with leaf length (llen) and/or leaf
width (lwid), because bigger leaves will offer
more resources,

(b) decrease with the extent of competition
either on the whole leaf (ngalls) or on an
individual vein (vgno),

(c) decrease with increasing order on a vein, 
and for a given order, decrease with distance
from the midrib (vdist) (presuming that the
resources for growth come down the midrib
and along the veins – something that has
been demonstrated in other gall systems).

Box 3.12 Multiple regression
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Here we have one dependent variable (gall
diameter, gdiam), and a set of independent pre-
dictor variables (llen, lwid, ngalls, order, vngo,
vdist). The predictions can only be tested observ-
ationally since no manipulations are possible 
in this system. Even though regression is a 
technique developed for situations where the
experimenter determines the x-values, it is very
common for it to be used in other situations too,
and we shall do this here. We shall check for the
normality of the residuals when we have settled
on the best model for predicting the dependent
variable. To find the best model, we shall use 
an approach known as stepwise multiple regres-
sion, a procedure whereby the different avail-
able independent variables are added (or not,
depending on their individual contribution to the
model) successively to the analysis according to
certain statistical rules. Experience with multiple
regression shows that its results depend on how 
it is used, and the stepwise method of adding 
variables is one of the more robust ways of going
about it.

What it does is to proceed in a stepwise, 
logical manner, adding variables to the model
one by one, according to which best predicts the
dependent variable at each stage. So first of all 
it asks which single independent variable (among
all those independent variables that exceed a set
threshold of good prediction) is the best pre-
dictor. Having been identified as the best, this
variable is regressed against the dependent vari-
able, and the residuals saved. Then the process 
is repeated, asking which of the remaining inde-
pendent variables best predicts these residuals
(again, as long as they exceed the threshold). This
procedure carries on until either all the indepen-
dent variables have been added into the model,
or the threshold is no longer exceeded by any of
the remaining ones. There is also a threshold to
remove independent variables from the model.

Stepwise multiple regression in SPSS
Click on ‘Analyze’ and ‘Regression’ and ‘Linear’
to bring up the Linear Regression dialogue box
(Fig. (i)b), where gdiam is transferred into the
‘Dependent’ box, and the other variables into 

the ‘Independent(s)’ box. Make sure the ‘Method’
drop-down list reads ‘Stepwise’. Click on the
‘Statistics’ button, and in the resulting dialogue
(Fig. (i)c), tick the ‘Estimates’, ‘Model fit’ and ‘R-
squared change’ boxes. Clicking on the ‘Options’
button allows us to alter the thresholds of predic-
tion used by the stepwise procedure for adding
(and removing) independent variables, but this is
best left to experienced statisticians.

Now click ‘Continue’ and ‘OK’. This brings 
up the ‘Output’ window (Fig. (ii)a–d). The output
summarises each step of the stepwise procedure,
labelled here 1–3 since there were three steps 
of adding independent variables. We can see 
(Fig. (ii)a) that the first step added leaf length
(llen), the second added the number of galls on
the leaf (ngalls) and the third added the order of
the gall on a vein (order). The model summary
(Fig. (ii)b) shows the change in significance of 
the test statistic (‘F Change’) as each independent
variable is added, the correlation between the
actual values of the dependent variable and those
predicted by the resulting regression equation (R),
and the amount of variation in the dependent
(gdiam) that is explained by the independent
variables at each step (R2). Note that in ordinary
linear regression with just a single independent
variable (Box 3.10), the latter is called r2, but
when there is more than one variable it becomes
R2 to show it is a composite of the effects of 
several variables. The ‘adjusted R2’ values are the
ones to look at, since these are adjusted for the
correlations between the independent variables
(i.e. the variables are often not truly independent
of one another, but are intercorrelated, and the
adjustment takes this into account). We can see
that about 35 per cent (0.349) of the variation 
in gdiam is predicted by the final three-variable
model. The ANOVA is provided for each step
(Fig. (ii)c).

The most important part of the output is the
table of coefficients (Fig. (ii)d) because this shows
how the included independent variables affect
the dependent variable. We can see that in the
final model, there is a Constant (the overall mean
gall diameter, 3.3 ± 0.5 mm), a positive effect of
leaf length (llen, with a slope of 0.026 ± 0.004), a
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negative effect of the number of galls on a leaf
(ngalls, with a slope of −0.08 ± 0.02) and a negat-
ive effect of gall order on the vein (order, with a
slope of −0.3 ± 0.1).

We can now test our a priori predictions,
because we have t-tests in the Coefficient table
that test the (two-tailed, i.e. general) hypothesis
that the coefficient is zero (Fig. (ii)d). We pre-
dicted the sign of the slope, and hence if the slope
is in the predicted direction, we should halve the
given probability of t to make the specific (one-

tailed) test. Clearly, as we predicted, there is an
impact of both resources and competition, but
not in all our independent variables. This is not
surprising because none of them is measuring
resources or competition directly, but are proxy
measures intercorrelated with each other. So, 
for instance, once leaf length is included in the
model, leaf width (lwid) adds nothing more and
is not included. There is a table in the output 
(not shown) that gives details of the variable not
included in the model.

(b)

Figure (i) Doing a stepwise multiple regression in SPSS:
(a) data input, (b) transferring the variables for analysis,
(c) options to include in the output.

(a)

(c)
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(d)

Figure (ii) cont’d

A common problem in many studies is that data
are collected for a large number of variables that
are interrelated, so looking for differences or
trends in each of them separately would result in
a high degree of non-independence between tests.
However, there are statistical techniques that
help overcome this by producing single variables
that are composites of the original separate ones.
One of these techniques is known as principal
components analysis (PCA).

Unlike the tests we’ve encountered so far, PCA
isn’t an hypothesis-testing method at all, but a
method for reducing the number of variables to
something more manageable (the so-called prin-
cipal components). Thus, for us, its main attrac-
tion is that we can replace many variables with
just two or three that (a) capture the main fea-
tures of the data, and (b) are (by definition) sta-
tistically independent of one another. These new
variables can then be used like any others in sta-
tistical tests of hypotheses, usually representing

an enormous gain in clarity and efficiency. It is
best learned through an example, because math-
ematically it is complicated!

Suppose a biologist was interested in analysing
the differences in morphology among the species
of flies that he worked on, and therefore he meas-
ured a set of 17 variables on a large number of
individuals of many species. He then took the
averages of each of the variables for each species,
but kept males and females separate. This resulted
in the dataset of Fig. (i). Details of the variables
are in the figure legend.

Doing principal components analysis 
in SPSS
To carry out a PCA in SPSS, click ‘Analyze’,
‘Data Reduction’ and ‘Factor . . .’. This brings up
the Factor Analysis dialogue (Fig. (ii)a), where 
we transfer all the variables to be included into
the ‘Variables’ box. Factor analysis covers a 
number of methods, but the default is PCA, so we

Box 3.13 Principal components analysis – creating a reduced set of variables
from a larger set of intercorrelated ones
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needn’t change any of the options except two.
Click ‘Extraction’ (Fig. (ii)b) and force the PCA
to extract five ‘factors’ by checking ‘Number of
factors’ in Fig. (ii)b and entering ‘5’ in the box next
to it (the ‘factors’ are the new composite vari-
ables we are after; within PCAs they are usually
referred to as ‘components’ or ‘axes’). We do this

because often the third and subsequent compon-
ents contain significant biological information,
even though mathematically they don’t account
for much of the variation (since we had 17 vari-
ables, it is possible in principle to extract 17 new
components, but beyond around five, compon-
ents are likely to account for so little of the
remaining unexplained variation that they can
usually be ignored).

Click also on ‘Scores’ (Fig. (ii)a) and get the
PCA to save those five components as new vari-
ables in our data set by checking ‘Save as vari-
ables’ in the dialogue box (Fig. (ii)c) and leaving
the default ‘Regression’ selection under ‘Method’
below. This will save the components in the data
file as ‘fac1_1’, ‘fac1_2’ to ‘fac1_5’, respectively. It
is thus a good idea to rename these once we have
clarified what they each represent in terms of the
original variables (see below).

Clicking ‘Continue’ and ‘OK’ brings up the
Output window (Fig. (iii)a,b), with a number of
tables. Unlike some statistical packages, SPSS
doesn’t actually provide much in the way of out-
put for a PCA, which is curious given the reams
of material it churns out for other analyses.

Looking first at the table labelled ‘Total Vari-
ance Explained’ (Fig. (iii)a), we can see that (as
we asked) it has extracted five components (the
new composite variables), but it has extracted
them in order of their importance in accounting
for variation in the data set. Thus the first com-
ponent accounts for almost 84 per cent of the
variation in the data – a huge amount. The second
accounts for an additional 9 per cent, so cumulat-
ively the first two components account for almost
93 per cent of the variation in the data. Axes 3–5
only contain small amounts of variation, but they
might nevertheless be interesting biologically, so
let’s wait and see.

The second table of the SPSS output (Fig. (iii)b)
is labelled ‘Component Matrix’, and represents
the correlations between the new components and
the original variables; it is critical to the inter-
pretation of the new variables. Look at the first
column, the correlations for the first component
(headed ‘1’ in the table). All the correlations are
positive, of approximately the same magnitude,

(a)

(b)

(c)

Figure (ii) How to do a PCA in SPSS. (a) Transferring the
variables for analysis, (b) choosing the number of axes
to be extracted, (c) making sure the components are
saved as new composite variables in the data set.
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3.4 Testing hypotheses

The previous section has introduced an armoury of basic significance tests with
which we can undertake confirmatory analyses of differences and trends.
Knowing that such tests are available, however, is not much use unless we know
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and high. Clearly this component represents all
the values of the original data set relating posit-
ively together; as the value of the component
increases so does the value of each of the con-
stituent variables. We can thus characterise com-
ponent 1 as a composite measure of body size.
The second column shows that component 2 is
hardly correlated with any of the variables except
those that measure aspects of the proboscis.
Proboscis length (PL) and the length of its parts
(FU, LABR, PR) are all negative with similar
magnitude, while the fleshy pad (LL) and the
number of channels in it (PS) are positive. This
component is therefore measuring proboscis
shape (independently of body size). There are
two extremes of proboscis shape: short ones with
large pads, and long ones with small pads. Thus,
here, as the value of the component increases, the
values of variables measuring proboscis length
decrease, but that of the fleshy pad increases. We
must thus be aware that our new composite vari-
ables can reflect different directions of change
among the variables making them up.

Component 3 is the only one of the remaining
components with any correlation greater than
0.3. It is difficult to interpret components with
only very low correlations with the original vari-
ables, and hence, in this case, we can ignore com-
ponents 4 and 5. Component 3 represents the
contrast between species with narrow versus those
with broad abdomens (since T2, T3 and T4 are
widths of the abdominal segments). Increasing
scores along component 3 represent species with
narrower abdomens (since the correlations are
negative).

(a)

(b)

Figure (iii) Output from a PCA and its interpretation 
(a) details of the extracted components (the new com-
posite variables), (b) correlations between the new axes
and the original variables.
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how and when to employ them and gear our data collection to meet their
requirements. It is important to stress again, therefore, that the desired test(s)
should be borne in mind from the outset when experiments and observations are
being designed and the data to be collected decided upon.

3.4.1 Deciding what to do

Having arrived at some predictions from our hypotheses, we must decide how
best to test them. This sounds straightforward in principle but involves making
a lot of careful decisions. Are we looking for a difference or a trend? What are
we going to measure? How are we going to measure it? How many replicates 
do we need? What do we need to control for? There is no general solution to
any of these problems; the right decision depends entirely on the prediction in
hand and the material available to test it. In a moment, we shall go back to the
predictions we derived from our observational notes to see how we can test some
of them. Before doing that, however, we should be aware of some important
principles and pitfalls of experimental/observational design and analysis.

Significance, sample sizes and statistical power
As should be obvious from what we’ve said already, much hinges on the 
quality of the data sample we have at our disposal. It should be as representative
of the population from which it derives as possible if we’re to stand a chance 
of coming to sensible conclusions. But what does that mean? How many data
values make a representative sample? What sample size do we need to make 
our tests for differences or trends reasonably powerful, i.e. actually capable of
detecting the effects we’re testing for? Sadly, there is usually no simple answer.
Vague rules of thumb, such as ‘at least 20 values per sample’, can be and have
been suggested (e.g. Dytham, 2003), but they are just that, vague rules of thumb.

What is really needed is a formal analysis of the so-called statistical power of
a significance test in relation to the sample size available. Box 3.14 provides a
summary introduction to power tests.

Some dangerous traps

Confounding effects. One of the commonest problems in collecting and analysing
data is avoiding so-called confounding effects. Confounding effects arise when a
factor of interest in an investigation is closely correlated with some other factor
that may not be of interest. If such a correlation is not controlled for, either in
the initial design of an investigation or by using suitable techniques during ana-
lysis, such as analysis of covariance (see Box 3.6), the results will inevitably be
equivocal and any potential conclusions compromised. For example, suppose 
we wanted to know whether the burden of a particular parasitic nematode
increased with the body size of the host (e.g. a mouse). We might be tempted
simply to assay worm burden and measure body size for a number of arbitrarily
chosen host individuals, and then perform a correlation analysis. If we got a
significant positive correlation coefficient, we might conclude that burden in-
creased with body size. An unwelcome possibility, however, is that host body
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When we carry out an experiment, we are trying
to discern a pattern (a difference or a trend) in
the face of variation from a number of sources.
We use a statistical test to guide us, which in
essence boils down all the data into a single 
number, the test statistic for that analysis, the 
distribution of which is known under the null
hypothesis. Remember that the p-value we get
from the test statistic is the probability of obtain-
ing the data we did if the null hypothesis is true.

We can think about statistical testing in terms
of discriminating a signal from the noise of nat-
ural variability. This noise can cause us to make
errors in the conclusions of our experiment, since
we don’t know what the true situation is, i.e.
whether the null hypothesis is true or not. This
sets up four possibilities (Fig. (i)).

We can make two correct decisions (reject the
null hypothesis correctly because it is actually
false, or not reject the null hypothesis correctly
because it is in fact true). We can also make 
two mistakes. One (a Type I error) is important
because we are drawing a conclusion – we reject
(erroneously) the null hypothesis in favour of its
alternative, H1. All statistical tests of hypotheses
are designed to fix the probability (denoted α)
with which such mistakes are made – it’s the
familiar threshold for significance, usually 0.05.
We’re prepared to be wrong 5 per cent of the
time, but that’s low enough to be reasonable.

The other mistake (a Type II error) is when we
erroneously fail to reject the null hypothesis even
though it is false. This is less serious since we 
are not drawing any conclusions about the data
(unless we would like to make the much stronger
claim that the null hypothesis is actually correct,
an error of logic in scientific procedure). The rate
at which this mistake happens, β, is a function 
of a number of factors, including α, the design of
the experiment, the test used, the sample sizes,
the true (unknown) magnitude of the difference
or trend, and the true (unknown) variation. The
rate at which we get it right, (1 − β) is called the
power of the test. Clearly, there is a trade-off
between the two error rates: if we decrease α,

then we increase β (all else being equal) and the
power decreases.

Suppose we have two groups we are trying 
to discriminate with a t-test, each with the same
normal distribution of measurements but with
different mean values. If the means are far apart
with scarcely overlapping distributions, then 
they are easy to distinguish by eye, but, more
importantly, are likely to be different statistically
(Fig. (ii)a). Move the mean values closer so that
the distributions overlap substantially, and they
become much harder to tell apart by eye, and are
less likely to differ statistically (Fig. (ii)b). Reduce
the variance so that once more the distributions
hardly overlap, and once again they are easy to
tell apart (Fig. (ii)c). These situations emphasise
that the power of a test depends in part on the
true (unknown) situation of the data, in this 
case the true difference between the means, and
the true variance. How easy it is to tell the two
groups apart is measured by a parameter called
the effect size, which represents the ‘distance’
between H0 (no difference) and H1 (a significant
difference).

The accuracy of our estimates of means and
variances depend on the sample size we have
chosen to take, and hence is under our control.
Larger sample sizes provide more accurate estim-
ates, and hence a given difference between two

Box 3.14 Power tests

Figure (i) The four possible outcomes of a significance
test in terms of accepting or rejecting the null hypo-
thesis (see text).
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mean values is detected with greater power. Thus
for a given statistical test, if we know a set of
parameters (the Type I error rate α, the effect
size, and the sample size), then we can calculate
the power.

How much power is enough? What is an
acceptable error rate for β? Like the significance
level, α, this is essentially an arbitrary decision.
The usual levels quoted in the literature are 
80 per cent (i.e. β = 0.20), or (for those who
believe that both Type I and Type II error rates
should be the same) 95 per cent.

So what is a power test for? There are two
main uses:

(i) a priori power analysis. This is to ensure, 
in advance, that we are going to test our
hypothesis adequately, that the experimental
design we have chosen is actually capable of
doing the job. We specify the power we want
to have, and two of the three other para-
meters of α, effect size and sample size: given
those, we can then calculate the third para-
meter. For a given design, the most obvious
aspect under our control is the sample size,
and hence a priori power tests are usually
used to calculate how large the sample sizes
should be in order to achieve a particular
power. We specify α to be the conventional
0.05, and choose an effect size that indicates
just how far away from H0 we consider im-
portant enough to warrant attention. We can
choose to pay attention to ‘small’, ‘medium’
or ‘large’ effects, depending on what theory,
data or cost–benefit considerations tell us.
The recommended values vary with the kind
of test: for a t-test they are 0.2 (a small effect
size), 0.5 (medium) and 0.80 (large); for
ANOVA they are 0.1, 0.25 and 0.4, respect-
ively; and for correlation and regression,
0.02, 0.15 and 0.35, respectively (what is
being calculated varies among these tests, 
so they are not directly equivalent). Given a
particular value of effect size, we can then
calculate the required sample size using an
appropriate software program (such as the
free-to-download G*Power – SPSS cannot
perform a priori power tests). G*Power can
be downloaded from http://www.psycho.uni-
duesseldorf.de/aap/projects/gpower/. When
we do this (Fig. (iii)), the results are often a
bit of a blow – for example, using a one-tailed

(a)

(b)

Figure (ii) Three different degrees of spread and separa-
tion in the distribution of two variables, leading to dif-
ferent degrees of discriminability (see text).

(c)
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t-test to detect a medium-
sized effect with α = 0.05
needs a sample size of 102!

(ii) post hoc power testing. Here,
researchers retrospectively
calculate the power of the
test they have done. This is
the kind of power test im-
plemented in SPSS, and
demonstrated in Box 3.9a.
An unfortunate tradition has 
built up that suggests that
this kind of power test
should routinely be used
after a non-significant test
and can be used to interpret
the non-significant result – 
it cannot (see Hoenig and
Heisey, 2001). Indeed, post
hoc power tests are virtually
useless since they tell us
nothing more than the p-
value itself gives.

(a)

(b)

Figure (iii) Power calculation using G*Power. (a) Opening screen, (b) example
of the sample size required for a one-tailed t-test to detect a medium-sized
effect with α = 0.05.

size correlates with age so that bigger hosts also tend to be older. If there is some
age-related change in immune competence (e.g. older hosts are less able to resist
infection), a positive correlation with size could arise that actually has nothing
to do with host body size. In this case size is confounded with age and simple
correlation analysis cannot disengage the two. The best solution here would be
to select different-sized hosts from a given age group so that the confounding
effect is controlled for from the outset. Order effects are common confounding
factors in many undergraduate projects. Testing animals in, say, treatment 1 first,
then in treatment 2, then in 3, etc., confounds treatment with time. Animals may
simply be tired by the time they get to treatment 3, so any difference in their
response to the treatment could be due to that.

Floor and ceiling effects. Floor and ceiling effects arise when observational or
experimental procedures are either too exacting or too undemanding in some
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way to allow a desired discrimination to be made. For example, looking for dif-
ferences in mathematical ability among people by asking them the solution to 
5 + 3 is unlikely to be very fruitful because the problem is too easy; everyone 
will get the right answer straight away. A ceiling effect (everyone performs to a
high standard) will thus prevent any differences there may be in ability becoming
apparent. Conversely, if the same people were asked to solve a problem in catas-
trophe theory the odds are that no one would be able to do it. In this case, a floor
effect (everyone does badly) is likely to prevent discrimination of ability. Floor
and ceiling effects are not limited to performance-related tasks. Similar limitations
could arise in, for instance, histological staining. If a particular tissue requires
just the right amount of staining to become discriminable from other tissues, the
application of too little stain would result in everything appearing similarly 
pale (a floor effect) while too much stain would result in everything appearing
similarly dark (a ceiling effect). Real differences in tissue type would thus not
show up at the extremes of stain application. Floor and ceiling effects are clearly
a hazard to be avoided and are well worth testing for in preliminary investigations.

Non-independence. Another common source of error in data collection and analysis
arises from non-independence of data values. In many circumstances, there is a
temptation to treat repeated measures taken from the same subject material as
independent values during statistical analysis. As Martin and Bateson (1993)
point out, this error arises from the misconception that the aim of a scientific
observation or experiment is to obtain large numbers of measurements rather
than measurements from a large number of subjects. The point is, of course, that
obtaining additional measures from the same subject is not the same as increas-
ing the number of subjects in the sample. An example of such an error would be
as follows. Suppose an investigator wished to assess the average rate of nutrient
flow in the phloem of a particular plant species. Setting up a preparation might
be involved and time-consuming. To save effort, the investigator decides to take
as many measurements as possible from each preparation before discarding it.
As a result, there are 15 measurements from one preparation, 10 from another
and 12, 16 and 5 from three more. To calculate the average, the investigator
totals the measurements and divides by n = 58 (i.e. 15 + 10 + 12 + 16 + 5). Of
course, the measurements from each preparation are not independent; there
may be something about the plant in each case that gives it an unusually high or
low rate of nutrient flow relative to most of the plants in the population.
Incorporating each measurement taken from it as an independent example of
flow rate in the population as a whole is clearly going to bias the average upwards
or downwards. The true n-size in the above example is five (the number of pre-
parations), not 58. Measurements from each preparation should thus be averaged,
or collapsed in some other way, to provide a single value for use in analysis. The
fallacy of this kind of approach becomes obvious if we consider estimates of
average plant height rather than nutrient flow rate. Few people would seriously
measure the height of the same plant 16 times and regard these as independent
samples of the height of the species concerned. The principle, however, is exactly
the same in the flow rate example and is referred to as pseudoreplication.
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The problem with non-independence is that it can operate at several different
levels and sneak insidiously into analyses unless careful attempts are made to
exclude it (see, for example, Boxes 3.4 and 3.5e). We have discussed it only at
the level of the individual subject. However, depending on what is being mea-
sured, it could arise if, for example, related individuals are used as independent
subjects or if plants grown on the same seed tray or animals kept in the same
cage are used. We should thus be on our guard against it at all times.

3.5 Testing predictions

Having highlighted some potential pitfalls, we must now bear them in mind as
we return to our main observational examples and design experiments to test
some of their predictions. We shall take one prediction from each.

Example 1 E.g. Prediction 1A(ii) Leaf damage by slugs will decrease the further up a plant
that samples are taken.

This predicts a negative trend between leaf damage and height up the plant. The
assumption is that the height of a leaf off the ground influences its vulnerability
to slugs. Two approaches immediately suggest themselves. We could conduct a
survey in the field, measuring the height of leaves above the ground and scoring
the amount of slug damage on each, or we could carry out an experiment, in the
field or the laboratory, exposing leaves at different heights to slugs in a con-
trolled environment. Either way, there is a formidable number of factors to take
into account if we’re to get a sensible outcome.

The most obvious is that our exploratory samples came from a wide range 
of plant species. At the very least there are likely to be confounding effects of
species-specific attributes such as the presence of distasteful toxins or other
deterrents. A first consideration in a field survey, therefore, might be to select
plants of a similar range of heights within each of several species. This would
ensure that the confounding effects of height and species were removed, but 
on its own it would still not be enough for a robust comparison. A major 
uncontrolled factor remains: the prevalence of slugs. Different species of plant 
are likely to occupy different habitats, some of which are more suitable for 
slugs than others. Another potential confounding effect may therefore need to 
be removed. To check, we could carry out a simple census of slug populations
around our subject plants. If numbers did not differ significantly, we could 
happily ignore them. If they did differ, however, we should need some way of
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taking them into account. One way would be to weight the recorded damage by
the observed prevalence of slugs before analysis. We could analyse the relation-
ship between weighted damage and height as a trend, using a correlation or
regression analysis, but an alternative approach, that would allow us to look in
more detail at the effect of plant species, would be to use two-way analysis 
of variance. A two-way analysis of variance, with height of leaves above the
ground (low, medium, high) and plant species as the two levels of grouping,
would reveal the separate main effects of height and plant species, but also the
(very likely) interaction between them. The interaction term would probably be
very important here because structural and developmental differences between
species will almost certainly influence the effects of position up the plant. An
alternative way to take slug prevalence into account in a parametric analysis of
variance would be to include it as a covariate, a constant interval measurement
whose effect on the data can be controlled for within the analysis of main effects
and interaction.

If height did emerge as a significant predictor of slug damage, it would, of
course, lead to further questions. Is the height effect due to slugs being unwilling
to climb beyond a certain height? Is it due to leaves further up being tougher or
more noxious? Is it due to taller plants having greater gaps between successive
leaves so discouraging further ascent by slugs? Any height × species interaction
might offer a clue to some of these (and other) possibilities by highlighting
species characteristics that increase or decrease the height effect. An easier way
to get at them, however, might be to do some laboratory experiments.

A laboratory study would attempt to control things more tightly at the outset.
One approach might be to cultivate individual plants of some of the species 
sampled so that they were of similar height and the important morphological
characteristics, such as the number and spacing of leaves, were, as far as possible
with different species, standardised. Plants of different species could then be
arranged randomly or in a regular, alternating pattern on a bench, so that any
systematic confounding of position and species was avoided, and each plant 
was exposed to the same number of similarly sized slugs for a set period, say
overnight, and then scored for leaf damage. We might be tempted simply to
catch a few slugs in the field and use those. However, this would be unwise.
Freshly caught slugs would enter the experiment with an unknown feeding his-
tory. We would know neither their level of hunger, nor what they had recently
been feeding on. Both factors could introduce unwelcome bias into the experi-
ment or even cause a floor effect. The best thing to do would be to bring slugs
into the laboratory well before the experiment (or culture them in the laboratory),
feed them all on the same material (a combination of the plant species to be
tested) and deprive them of food for a short time (e.g. 12 hours) prior to testing.
All slugs would then be standardised for feeding experience and hunger.

The design above would allow us to assess the effect of leaf height on damage
and, if we chose to observe slug activity (directly or using, for example, time-
lapse photography), we might be able to conclude something about how any
effect came about. Suppose we found that higher leaves did indeed sustain less
damage, but that this was due not to slugs failing to get up to them but to slugs
feeding for a shorter time when they did get there. Two possible explanations
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might be: (a) slugs were nearly satiated by the time they reached the higher
leaves or (b) higher leaves are less palatable. An easy way to test for the latter
would be to present slugs with standard-sized discs of material cut from leaves
at different heights. We could choose three heights (high, medium and low) on
different, but standard-sized, plants. If higher leaves are less palatable, discs cut
from them would sustain less damage within the test time.

Example 2 E.g. Prediction 2A Parasite burdens will increase with host testosterone levels.

This prediction derives from the hypothesis that reproductive hormones might
influence susceptibility to infection. Both sex and stress hormones are known 
to affect the immune system, often in concert, though their effects on resistance
to parasites are very variable. Prediction 2A is based on the observation that
adult voles in the samples generally had greater parasite burdens than juveniles,
and males greater burdens than females (Fig. 2.1). Since the difference between
age classes is much more pronounced in males, testosterone becomes a plaus-
ible candidate for driving the effects of age and sex on parasite burdens. As with
the seemingly simple prediction about leaf height and herbivore damage, how-
ever, much needs to be thought about in testing whether there is a connection.

We could start by taking some animals from the field and assaying their para-
site burdens and testosterone levels. This could be done non-destructively by
taking blood samples and faeces for blood and gut parasites, and inspecting the
fur for ticks, fleas and other ectoparasites. Circulating testosterone concentrations
could be assayed from either the blood or the faecal samples. Since testosterone
secretion is highly pulsatile, and we are interested in chronic effects, faecal 
samples might provide the more appropriate measure since they accumulate
testosterone metabolites over a period. Depending on the degree of discon-
tinuity of testosterone concentration across age and sex classes, and the extent
to which it can be normalised, we could test for testosterone as a predictor of
age and sex differences in parasite burden by including it as a covariate in a 
two-way analysis of variance. The variable of interest would be our measure of
parasite burden and the levels of grouping sex and age class. If we first ran 
the analysis without testosterone and found significant age and sex effects (as
Fig. 2.1 suggests we might), but then found that the effects disappeared and were
replaced by a significant covariate effect of testosterone when the latter was
included, we should have some evidence that testosterone was important in gen-
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erating our initial age and sex differences in parasite burden. If the distribution
of testosterone values did not permit this, we could instead test for differences 
in testosterone between age and sex classes using non-parametric analysis of
variance and seek correlations between testosterone levels and parasite burden
within classes.

Such analyses might tell us something, but it would be limited. One of the
main problems is that simply taking animals from the field and testing for asso-
ciations between hormone levels and parasites does not allow us to say anything
about cause and effect. Testosterone may well influence parasite burden, but
equally both may correlate with something else, such as level of social activity,
which affects exposure to infection. The association would then be an artefact of
testosterone levels and parasite burden being linked to exposure. A further prob-
lem is that testosterone may covary with circulating levels of corticosterone, a
glucocorticoid ‘stress’ hormone that also influences the immune system. The best
way to control for these potentially confounding effects is either to manipulate
levels of testosterone and corticosterone directly, by injection or slow-release
implants, and then see what happens when animals are given a controlled infec-
tion with a known parasite, or to monitor spontaneous levels of the hormones
over a period and challenge in the same way. In order to use either approach,
however, animals would need to be cleaned of existing parasites and given a
period of acclimation before any experiment. Corticosterone plays a role in the
immune response to many infections, particularly gut helminths (worms), and
any residual infection is likely to compromise investigations of hormonal effects
on resistance. The best approach to start with would probably be to monitor
spontaneous levels of testosterone followed by challenge. While manipulating
levels experimentally allows selective control of individual hormones, it can also
cause unwanted side effects and disrupt the delicate interactions between phy-
siological systems that underpin hormonal effects on resistance. It may also be
necessary to remove relevant endocrine tissue surgically or by chemical ablation
to prevent spontaneous secretion affecting the control of circulating levels. Such
manipulations might thus be better as a follow-up to test conclusions arising
from the more observational approach. The assumption in the latter, of course,
is that differences in spontaneous circulating levels of hormone will predispose
individuals to correspondingly different degrees of resistance. We should then
look for an association between hormone levels prior to infection and the 
subsequent severity of the infection. Regression analysis would be the obvious
candidate, perhaps using a suitable multivariate model to take the effects of 
both testosterone and corticosterone levels into account simultaneously.

Example 3 E.g. Prediction 3B Species present at unpolluted sites but missing from polluted
sites will show greater mortality when exposed to pollutants.

This prediction assumes that pollution is causally responsible for the absence of
certain species from polluted samples. While this seems simple enough to test,
we might want to explore its basis a little more before embarking on a set of
experiments.
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The most obvious point is that, with samples from only three sites, pollution
status and site are confounded. Particular species may be present or absent at a
given site purely by chance, or because sites happened to differ in some other
important respect (e.g. interstitial water content of the soil) that affected their
viability for different species. Ideally, therefore, we should first replicate our 
samples within site categories by choosing a number of sites, say four to six, of each
kind (unpolluted, polluted with heavy metals, polluted with organophosphate)
across which there is some variation in other environmental features. Species
that are consistently absent from polluted sites in these samples would provide
a better basis for further investigation.

One way forward might then be to collect or culture representative nematode
species that are present only at unpolluted sites and expose them, say in stand-
ardised Petri dish cultures, to representative concentrations of heavy metal or
organophosphate pollutant, not forgetting a suitable control (e.g. distilled water).
Each treatment might be replicated half a dozen times. One-way analysis of vari-
ance of mortality by treatment would then reveal any significant effect due to the
experimental pollutants. Significantly greater mortality in the two polluted treat-
ments would be evidence in favour of a direct impact of pollution on species sur-
vival and thus presence/absence at particular sites. However, a lack of any effect
would not necessarily rule out pollution as being responsible for the absence of
certain species from polluted sites. Simply bathing adult worms in solutions and
seeing if they die is a crude approach to say the least. Pollutants may work at any
of a number of points in the worms’ life cycle, perhaps reducing fecundity (the
number of eggs produced) or the survival of larvae. Similar experiments could 
be performed to test these possibilities. More subtly, the effects may depend on
particular environmental conditions, for example interactions between pollutants
and other chemicals in the soil. This may be the case even though the simple
experiment above showed a mortality effect; bathing worms in raw pollutant
may kill them, but this may not be the way they are killed by pollution in the
field. More complex experimental treatments, simulating patterns of exposure in
the soil, might thus be called for.
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Example 4 E.g. Prediction 4C Encounters will progress further when opponents are more
similar in size and it is more difficult to judge which will win.

This prediction derived from observing that encounters between male crickets
followed an apparently escalating pattern from chirping and antenna-tapping 
to out-and-out fighting and that, on the whole, bigger crickets tended to win. A
possibility, therefore, is that progressive escalation reflects information-gathering
about the relative size of an opponent and the likelihood of winning if the
encounter is continued. If relative size is difficult to judge, as when two oppon-
ents are closely matched, the likelihood of winning cannot be judged in advance
and the only way to decide the outcome is to fight. The prediction is thus of a
negative trend between degree of escalation and the relative size of opponents:
degree of escalation should increase with decreasing difference in size.

At first sight, this seems easy enough to test using a Spearman rank correlation
or regression analysis. However, we first need some way of measuring degree of
escalation. So far all we have are behavioural descriptions – chirping, antennat-
ing, fighting, etc. – from which we have inferred levels of escalation. Somehow
we must put numbers to these. It is clear that we cannot put the behaviours on
some common constant interval scale; we cannot, for instance, say that anten-
nating is twice as escalated as chirping and fighting ten times as escalated. The
easiest thing is simply to rank them. Thus what we assume to be the lowest level
of escalation, say chirping, takes a rank of 1 and the highest level a rank of n,
where n is the number of levels we decide to identify. We can then use the ranks
of 1 to n as the y-values in our trend analysis.

To obtain our x-values, we must decide on a suitable measure of size. Ideally,
the measure should be reliable and repeatable within and between individuals;
measuring the size of the flexible abdomen, for instance, might not be a good
idea because this could vary with food and water intake and thus vary from one
encounter to another. It would be better to measure some component of the
hard exoskeleton, e.g. the length of the long hind leg or the width of the thorax,
which will not vary over the time course of observations. Of course, in our ana-
lysis, we are interested in a measure of the relative size of opponents, so our x-
values must be some measure of relative size. The most obvious might be the 
difference in size between opponents. However, it is not hard to see why this
would be inadequate. Suppose we observed two crickets of thorax widths 7.5
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and 8.5 mm respectively. Suppose we observed another pair of thorax widths 6.5
and 5.5 mm. In both cases, opponents differ by 1 mm and would score the same
on a simple difference measure. In the first case, however, 1 mm is only 6 per
cent of the combined width measures; in the second it is 8 per cent. A 1 mm dif-
ference may thus create a greater asymmetry in the likelihood of winning in the
second case than in the first. As a result it would be better to use a ratio rather
than a difference scale on the x-axis, e.g. size of bigger opponent/size of smaller
opponent.

Having decided on our measures, we can now plan observations. Since we are
looking for a trend, we want to end up with pairs of x- and y-values. One way
we might proceed is to put a number of individually marked males into a sand-
filled arena and record all encounters over, say, 20 minutes, noting the males
involved and the highest level (on our scale of 1 to n) to which each encounter
progressed. One problem with this approach, however, is that some males would
interact more than once. The pairs of x- and y-values arising from each repeat
encounter could not be used independently because body size ratio would be
confounded with pair of opponents and escalation levels might be influenced by
the males’ past experience of each other. It would therefore be better to arrange
encounters between different pairs of males to provide independent replicates 
of a range of size ratios. Since we are using ordinal (rank) measures of y and
selected ratios as x, and we have no reason to expect a linear relationship, we
should test for significance in our trend using a Spearman rank correlation
rather than regression.

3.6 Refining hypotheses and predictions

The discussions above do two things. First they give some simple indications as
to how to set about testing particular predictions. Second, they show that the
outcome of such tests differ in the extent to which they increase or decrease 
our confidence in the hypothesis from which the prediction derives. Thus, for
example, a failure to find an association between leaf damage and height up 
a plant in a field survey (Prediction 1A(ii)) would not greatly undermine our
confidence in the hypothesis (1A) that leaf damage reflected availability to slugs.
A host of factors besides height up the plant is likely to affect attack by slugs.
Prediction 1A(ii) is thus a very restrictive test of Hypothesis 1A. The important
point, however, is that the process of testing Hypothesis 1A does not stop there.
It isn’t abandoned just because one rather simplistic prediction did not work out.
Instead the predictions are refined, gradually ruling out confounding factors. We
saw this in the plants and herbivores example, as the suggested investigations
used laboratory experiments to test for effects of height by controlling for changes
in the size, spacing and palatability of leaves further up the plant.

Refinement also takes place in the opposite direction. A prediction that 
is borne out does not necessarily offer direct support for its parent hypothesis.
The test of Prediction 3B (nematodes and pollutants) is a good example. This
predicts that the species of nematode absent from polluted sites will die when
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exposed to pollutants in the laboratory. It derives from the general hypothesis
(3A) that pollution reduces species diversity. The finding that pollutants kill
these species when they are bathed in them in Petri dishes does not necessarily
mean that direct susceptibility to pollutants is the reason for reduced species
diversity at polluted sites, or even the absence of those particular species from
such sites. Their susceptibility in the laboratory may reflect a more general 
susceptibility to stressors. A variety of chemicals, quite unrelated to the envir-
onmental pollutants in question, might have a similar effect and this should 
certainly be tested. The absence of a particular species from polluted sites may
reflect an interaction between effects of pollutants and competitive ability, with
absence ultimately being due to competitive exclusion by other species rather
than mortality through pollution. A more complex experimental design com-
paring effects on putatively robust (present at polluted sites) as well as putatively
susceptible species would increase confidence in a mortality effect if differential
mortality of susceptible, but not robust, species emerged.

Although we have presented hypotheses and their predictions in a rather cut-
and-dried fashion through this book, it is clear that there is really considerable
fluidity in both. The relationship between hypothesis, prediction and test is a
dynamic one and it is through the modifying effects of each on the others that
science proceeds.

3.7 Summary

1. Predictions derived from hypotheses dictate the experiments and observations
needed to test hypotheses. As a result of testing, hypotheses may be rejected,
provisionally accepted or modified to generate further testable hypotheses.

2. Decisions about experimental/observational measurement and the con-
firmatory analysis of such measurements are interdependent. The intended
analysis determines very largely what should be measured and how, and
should thus be clear from the outset of an investigation.

3. Some kind of yardstick is needed in confirmatory analysis to allow us to
decide whether there is a convincing difference or trend in our measurements
(i.e. whether we can reject the null hypothesis of no difference or trend). The
arbitrary, but generally accepted, yardstick is that of statistical significance.
Significance tests allow us to determine the probability that a difference or
trend as extreme as the one we have obtained could have occurred purely by
chance. If this probability is less than an arbitrarily chosen threshold, usually
5 per cent but sometimes 1 or 10 per cent, the difference or trend is regarded
as significant and the null hypothesis is rejected.

4. Different significance tests may demand different attributes of the data. Para-
metric and non-parametric tests differ in the assumptions they make about
the distribution of data values within samples and the kinds of measurement
they can cope with. Tests can also be used in specific/one-tailed or general/
two-tailed forms depending on prior expectations about the direction of dif-
ferences or trends.
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5. Basic tests for a difference include chi-squared, the t-test, the Mann–Whitney
U-test and one- and two-way analysis of variance. Each has a number of
requirements that must be taken into account and care is needed not to make
multiple use of two-group difference tests in comparing more than two
groups of data.

6. Basic tests for a trend include Pearson product-moment and Spearman rank
correlations and regression analysis. Correlation is used when we merely
wish to test for an association between two variables. Regression is used
when we change the values of one variable experimentally and observe the
effect on another to test for a cause-and-effect relationship between two 
variables. Regression analysis yields more quantitative information about
trends than correlation but makes more stringent demands on the data.

7. Multifactor and multivariate forms of difference and trend analyses allow the
effects of several different variables to be analysed together within tests.

8. Testing predictions requires careful thought about methods of measurement,
experimental/observational procedure, replication and controlling for con-
founding factors and floor and ceiling effects.

9. Whether or not a test supports or fails to support a prediction, the implica-
tions for the parent hypothesis need careful consideration. A hypothesis does
not necessarily stand or fall on the outcome of one prediction; everything
depends on how discriminating the prediction really is.
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4 Presenting information
How to communicate outcomes and conclusions

If your investigation has gone to plan (and possibly even if it hasn’t), you will
have generated a pile of data that somehow needs to be presented as a critical
test of your hypothesis. Performing appropriate significance tests is only one step
on the way. While significance tests will help you decide whether a difference 
or trend is interesting, this information still has to be put across so that other
people can evaluate it for themselves. There are two reasons why we should 
take care how we present our results. The first is to ensure we get our message
over; there is little point making a startling discovery if we can’t communicate 
it to anyone. The purpose of our investigation was to test a hypothesis. We 
might conclude that the results support the hypothesis or that they undermine
it. Whichever conclusion we reach we must sell it if we wish it to be taken 
seriously. Since scientists are by training sceptical, selling our conclusion may
demand some skilful presentation and marshalling of arguments. The second
reason is that we must give other people a fair chance to judge our conclusions.
As we saw earlier, simply saying that some difference or trend is significant 
doesn’t tell us how strong the effect is. It is important to present results in such
a way that others can make up their own minds about how well they support our
conclusions. In this chapter, we shall look at some conventions in presenting
information that help satisfy both these requirements. We begin with some 
simple points about figures and tables.

4.1 Presenting figures and tables

We stressed earlier that it is usually not helpful to present raw data. Raw data
are often too numerous and the information in them too difficult to assimilate
for useful presentation. Instead, we summarise them in some way and present the
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summary form. We have already dealt with summary statistics in a general way
when we discussed exploratory analysis; here we discuss their use in presenting
the results of confirmatory analysis.

Although it is usually obvious that raw data require summarising, there can 
be a temptation to summarise everything, as if summary statistics or plots were
of value in themselves. In confirmatory analyses, they are of value only to the
extent that they help us evaluate tests of hypotheses. We thus need to be select-
ive in distilling our results. Naturally, the summaries and forms of presentation
that are most appropriate will depend on the type of confirmatory analysis. It is
therefore easiest to deal with different cases in turn.

4.1.1 Presenting analyses of difference

Where we are dealing with analyses of difference, the important information to
get across is a summary of the group values being compared. The form this takes
will vary with the number of groups and levels of grouping involved. There are
two basic ways of presenting a summary of differences: figures and tables. As we
have argued previously, figures tend to be easier to assimilate than tables, even
when the latter comprise summary statistics. However, tables may be more eco-
nomical when large numbers of comparisons are required, or where comparisons
are subsidiary to the main point being argued but helpful to have at hand. If
tables are used, it is important that they present all the key summary informa-
tion necessary to judge the claims they make. This usually means (a) summary
statistics (e.g. means ± standard errors*, medians ± confidence limits) for each 
of the groups being compared, (b) the sample size (n) for each group, (c) test
statistic values, (d) the probabilities (p-values) associated with the test statistic
values and (e) an explanatory legend detailing what the table tells us. The test
statistics and p-values can be presented either in the table itself or in the legend.
The same information, of course, should be presented in figures except that the
summary statistics are represented graphically (e.g. as bar charts) instead of as
numbers, and information about sample sizes, test statistics and probability levels
more conventionally goes in the legend (now usually called the figure caption)
rather than in the figure itself. (Nevertheless, as long as it doesn’t clutter the
figure and detract from its impact, it can be very helpful to include statistical
information within the figure and we shall do this later where appropriate.)

Differences between two or more groups (with one level of grouping)
Here we are presenting the kinds of result that might emerge from a Mann–
Whitney U-test, or a one-way analysis of variance. Suppose we have tested for a
difference in growth rate (general prediction) between two groups of plants, one
given a gibberellin (growth-promoting) hormone treatment, the other acting as

* While there are various forms of summary statistic, means ± standard errors are widely used
because the mean of a set of values is an easy concept to grasp and because the standard error
estimates the distribution of means within the population which approaches a normal distribu-
tion as the sample size increases. It is thus usually legitimate to quote means ± standard errors
as summary statistics even when the distribution of data values demands a non-parametric
significance test.
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The significance column could be omitted from the table, in which case the
test statistic and probability level should be given in the legend. The legend
would now read:

Table 4.1a The mean height to which plants grew during the experimental period when treated
with gibberellin or left untreated. H comparing the two groups = 12.22, p < 0.001.

an untreated control. The treated group contained 12 plants and the untreated
group eight. Using a one-way analysis of variance for two groups, we discover a
significant difference at the 0.1 per cent (p < 0.001) level between the groups,
with treated plants growing to a mean (± standard error) height of 14.75 ± 0.88
cm during the experimental period, and controls growing to a mean height of
9.01 ± 0.63 cm. We could present these results as in Table 4.1a. Note the legend
explaining exactly what is in the table. 

Table 4.1a The mean height to which plants grew during the experimental period when treated
with gibberellin or left untreated.

Experimental groups

Treated Untreated Significance

Mean (± s.e.) height (cm) 14.75 ± 0.88 9.01 ± 0.63 H = 12.22, 
n 12 8 p < 0.001
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An alternative and frequently adopted convention in presenting significance levels
is to use asterisks instead of the test statistic and probability numbers. In this
case, different levels of probability are indicated by different numbers of asterisks.
Usually * denotes p < 0.05, ** p < 0.01 and *** p < 0.001, but this can vary between
investigations so it is important to declare your convention when you first use 
it. Using the asterisks convention, the table would now read as in Table 4.1b.
Exactly the same forms of presentation, of course, could be used for comparisons
of more than two groups. However, if we had used a U-test to test for a differ-
ence between two groups, we should now have to change to a one-way analysis
of variance to avoid abuse of a two-group difference test (see Chapter 3).

The presentation of means and standard errors (or medians and confidence
limits) is appropriate whenever we are dealing with analyses that take account
of the variability within data samples. In chi-squared analyses, however, where
we are comparing simple counts, there is obviously no variability to represent. If
we were presenting a chi-squared analysis of the number of plants surviving each
of three different herbicide treatments and one control treatment, therefore, the
table would be as shown in Table 4.2a. Table 4.2b shows an alternative presen-
tation. If we wish to present our results as figures rather than tables, we can con-
vey the same information using simple bar charts. Thus Table 4.1a can be recast
as Fig. 4.1a. Similarly, Table 4.1b could be recast as Fig. 4.1b. For a comparison
of three groups, say comparing the effectiveness of the lambda bacteriophage in
killing three strains of Escherichia coli suspected of differing in susceptibility, the
figure might be as shown in Fig. 4.2a.

In Figs 4.1a, b and 4.2a, we have assumed a one-way analysis of variance was
used to test a general prediction (hence the test statistic H). If we had instead
tested a specific prediction because we had an a priori reason for expecting a
rank order of effect (e.g. gibberellin-treated plants would grow taller than
untreated plants (Fig. 4.1), or strain B of E. coli would be most resistant and

Table 4.1b The mean height to which plants grew during the experimental period when treated
with gibberellin or left untreated. ***, H = 12.22, p < 0.001.

Experimental groups

Treated Untreated Significance

Mean (± s.e.) height (cm) 14.75 ± 0.88 9.01 ± 0.63 ***
n 12 8

Table 4.2a The number of plants surviving treatment with different herbicides.

Experimental group

Herbicide Herbicide Herbicide

1 2 3 Control Significance

Number of plants
surviving 15 8 6 27 χ2 = 19.3,

p < 0.001
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Table 4.2b The number of plants surviving treatment with different herbicides. ***, χ2 = 19.3, 
p < 0.001.

Experimental group

Herbicide Herbicide Herbicide

1 2 3 Control Significance

Number of plants
surviving 15 8 6 27 ***

Figure 4.1 (a, b) The mean height to which plants grew during the experimental period when
treated with gibberellin (+G, n = 12) or left untreated (U, n = 8). ***, H = 12.2, p < 0.001. Bars
represent standard errors. (c) Figure 4.1b with a different scale. The mean height to which plants
grew during the experimental period when treated with gibberellin (+G, n = 12) or left untreated
(U, n = 8). ***, H = 12.2, p < 0.001. Bars represent standard errors.
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strain A least resistant to attack by the phage (Fig. 4.2)), we should recast the
figures with groups in the predicted order and quote the test statistic z rather
than H. Thus Fig. 4.2a could be recast as Fig. 4.2b.

For most people, bar charts like these convey the important differences
between groups more clearly and immediately than equivalent tables of num-
bers. However, it is worth stressing some key points that help to maximise the
effectiveness of a figure.

1. Make sure the scaling of numerical axes is appropriate for the difference 
you are trying to show. For instance, the impact of Fig. 4.1b is much reduced
by choosing too large a scale (see Fig. 4.1c).

2. Always use the same scaling on figures that are to be compared with one
another. Thus, Fig. 4.3a, b is misleading because the different scaling makes
the magnitude of the bars look the same in (a) and (b). Using the same scale,
as in Fig. 4.3c, shows that there is in fact a big difference between (a) and (b).

3. Make sure axes are numbered and labelled properly and that labels are easy
to understand and indicate the units used. Avoid obscure abbreviations in
axis labels: these can easily be ambiguous and misleading or unnecessarily
difficult to interpret.

4. Axes do not have to start at zero. Presentation may be more economical if an
axis is broken and starts at some other value. Thus, Fig. 4.4a could be recast
as Fig. 4.4b with the break in the vertical axis indicated by a double slash.

Figure 4.2 The mean percentage area of plaque (= bacterial death) formation by lambda bac-
teriophage on three strains (A–C) of E. coli. Bars represent standard errors. (a) Non-parametric
analysis of variance testing a general prediction of difference between strains. N = 8 cultures in
each case. (b) Non-parametric analysis of variance testing a specific prediction of difference
between strains (A > C > B). N = 8 cultures in each case.
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5. Include indications of variability (standard errors, etc.) where appropriate.
Also include sample sizes and p-values as long as these don’t clutter the
figure. If they do, put them in the legend.

6. Always provide a full, explanatory legend. The phrasing of the legend should
be based on the prediction being tested and the legend should include 

Figure 4.3 (a) The total number of T-helper cells in experimental samples from laboratory mice
following administration of two different cytotoxic drugs (A and B). N = 40 samples for each drug
treatment. (b) As Fig. 4.3a, but for experimental samples from humans. (c) The total number of
T-helper cells in experimental samples from laboratory mice (open bars) and humans (shaded
bars) following administration of two different cytotoxic drugs (A and B). N = 40 samples for each
drug treatment and species.
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any statistical information (sample sizes, test statistics, etc.) not included 
in the figure. Do not repeat information in both figure and legend, though.
The legend should allow a reader to assess the information in the figure
without having to plough through accompanying text to find more detailed 
discussion.

Figure 4.4 (a, b) The total number of species of trees bearing epiphytes in 2 km2 study areas of
rainforest in Bolivia where forests are managed economically (open bar) and unmanaged
(shaded bar). N = 1 × 2 km2 area in each case.
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Differences between two or more groups (with more than one level of
grouping)
Here we are concerned with the sort of results that might arise from a two-way
analysis of variance or n × n chi-squared analysis. Presentation is now a little
trickier because of the number of comparisons we need to take into account. A
table is probably the simplest solution. For instance, suppose we had carried out
a two-way analysis of variance looking at the difference in the frequency of 
accidental egg damage between three strains of battery hen maintained in three 
different housing conditions. Here we have two levels of grouping (strain and
housing condition) with three groups at each level. The analysis tests for a dif-
ference between strains (controlling for housing condition), a difference between
housing conditions (controlling for strain) and any interaction between the two
levels of grouping (see Chapter 3). The best way to present the differences
between groups within levels is to tabulate the summary statistics for each of the
nine (3 × 3 groups) cells and include the test statistics in the legend. Thus test-
ing for any difference between groups (i.e. not predicting a difference in any 
particular direction) might give the results shown in Table 4.3.

This analysis reveals significant effects of both strain and housing conditions
on egg breakage. These are obvious from the summary statistics in the table:
breakage in strains 1 and 3 is relatively high under housing conditions A and B
but drops sharply in condition C. In contrast, breakage in strain 2 is highest in
conditions B and C and lowest in A. Damage tends to be greater in types A and
B housing than in type C. In addition to these main effects, however, there is 
also a significant interaction between strain and housing condition (see legend
to Table 4.3) with the effect of housing differing between strains. Although inter-
action effects can also be gleaned from a table of summary statistics like Table 4.3,
they can be presented more effectively as a figure; one of the levels of grouping
constitutes the x-axis and the measure being analysed is the y-axis. The relation-
ship between the measure and the x-axis grouping can then be plotted for each
group in the second level. Figure 4.5 shows such a plot for the interaction 
in Table 4.3. The lines in the figure, of course, simply indicate the groups of data:
they are in no way comparable with statistically fitted lines. Full details of the
analysis are given in the legend because such a figure would not normally be 
presented as well as the summary table since it repeats information already given

Table 4.3 The mean (± s.e.) percentage number of eggs broken during the experimental period
by three strains of battery hen (1–3) under three different housing conditions (A–C). Parametric
two-way analysis of variance shows a significant effect of both strain (F = 145.09, d.f. = 2,27, 
p < 0.001) and housing (F = 103.29, d.f. = 2,27, p < 0.001) and a significant interaction between
the two (F = 58.76, d.f. = 4,27, p < 0.001). N = 4 in each combination of strain and housing 
condition.

Strain

1 2 3

A 43.50 ± 2.32 1.25 ± 0.75 22.25 ± 2.14
Housing condition B 38.75 ± 1.09 13.75 ± 1.38 16.50 ± 1.71

C 6.25 ± 0.85 10.25 ± 1.80 6.25 ± 1.80
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in the table. The graph should have the s.e.’s plotted with the mean values, but
it does tend to become very cluttered. Judgement is required as to whether 
a table or a figure is the best presentation. From Fig. 4.5 it is clear that, while 
all three strains show differences in egg damage across housing conditions, the
direction and degree of decline are different in different strains. This implies that
the effect of housing condition varies with strain, which is what is meant by an
interaction between housing condition and strain.

With an n × n chi-squared analysis, we are just dealing with total counts in each
cell so there are no summary statistics to calculate and present. The simplest 
presentation is thus an n × n table with each cell containing the observed and
expected values for the particular combination of groups (the expected value 
in each cell usually goes in brackets). Table 4.4 shows such a presentation for a

Figure 4.5 The mean percentage number of eggs broken by three strains of battery hen (solid,
strain 1; dash/dot, strain 2; dotted, strain 3) in three different housing conditions (A–C).
Parametric two-way analysis of variance showed a significant effect of both strain (F = 145.09,
d.f. = 2,27, p < 0.001) and housing condition (F = 103.29, d.f. = 2,27, p < 0.001) and a signi-
ficant interaction between the two (F = 58.76, d.f. = 4,27, p < 0.001). N = 4 in each combination
of strain and housing condition.

Table 4.4 The number of seeds germinating in a tray in relation to temperature (low, 5 °C; high,
25 °C) and soil type. Expected values in brackets. χ2 = 14.38, d.f. = 1, p < 0.001.

Number of seeds germinating

In clay soil In sandy soil

Low temperature 40 100
(57.97) (82.03)

High temperature 131 142
(113.03) (159.97)
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chi-squared analysis of the effects of temperature and soil type on the number of
seeds out of 150 germinating in a seed tray.

4.1.2 Presenting analyses of trends

Presenting trend analyses is rather simpler because, in most cases, a scattergram
with or without a fitted line is the obvious format. When it comes to more com-
plicated trend analyses that deal with lots of different measures at the same time,
it is usually possible to present the various significant relationships as so-called
partial correlation or regression plots. These can be selected within the regres-
sion analysis procedures of SPSS, for example. Alternatively, summary tables
rather than figures may be necessary.

Presenting a correlation analysis
Since correlation analysis does not fit a line to data points, presentation consists
simply of a scattergram, though depending on how we have replicated observa-
tions this may include some summary statistics (see below). Information about
test statistics, sample sizes and significance could be given in the figure, but it is
more usual to include it in the legend. Thus Fig. 4.6a shows a plot of the number
of food items obtained by male house sparrows (Passer domesticus) in relation
to their dominance ranking with other males in captive flocks of six (rank 1 is
the most dominant male that tends to beat all the others in aggressive disputes
and rank 6 is the least dominant that usually loses against everyone else). In this
case, observations were repeated for three sets of males so there are three separ-
ate points (y-values) for each x-value in the figure.
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Although there is a significant trend towards dominant males getting more
food, the correlation is negative because we chose to use a rank of 1 for the most
dominant male and a rank of 6 for the least dominant. Rankings are frequently
ordered in this way, leading to the slightly odd situation of concluding a positive
trend (e.g. dominants get more food) from what looks like a negative trend 
(the number of food items decreases with increasing rank number). There is no
reason, of course, why dominance shouldn’t be ranked the other way round 
(6 = most dominant, 1 = least dominant) so that a positive slope actually appears
in the figure.

Sometimes when replicated observations are presented in a scattergram, they
are presented as a single mean or median with appropriate standard error or
confidence limit bars. Thus an alternative presentation of Fig. 4.6a is shown in
Fig. 4.6b. Note that a different explanatory legend is now required because the
figure contains different information.

In some cases, replication may not occur throughout the data set. Say we
decided to sample a population of minnows (Phoxinus phoxinus) in a stream to
see whether big fish tended to have more parasites. To avoid the difficulties 
of making accurate measurements of fish size in the field and possibly injuring
the fish, we visually assess those we catch as belonging to one of six size classes.
We then count the signs of parasitism on them and return them to the water.
Because we have no control over the number of each size class we catch, we end
up with more samples for some classes than for others. When we come to pre-
sent the data, we could present them as individual data points for each size class
(Fig. 4.7a) or condense replicated data for classes to means or medians (Fig. 4.7b).

Figure 4.6 (a) The number of food items obtained during the period of observation by male
house sparrows of different dominance status in groups of six (rank 1, most dominant; rank 6,
least dominant, data for three groups at each rank). rS = −0.77, n = 18, p < 0.001. (b) The mean
number of food items obtained during the period of observation by male house sparrows of 
different dominance status in groups of six (rank 1, most dominant; rank 6, least dominant). 
rS = −0.77, n = 18, p < 0.001. Bars represent standard errors.
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In the latter case, only some points might have error or confidence limit bars
attached to them because only some classes are replicated (see Fig. 4.7a). Data
for those classes that are not replicated are still presented as single points.

It is, of course, important to remember that even where correlations are 
presented as mean or median values rather than independent data points, the
correlation analysis itself (i.e. the calculation of the correlation coefficient) is 
still performed on the independent data points, not on the means or medians.
Values of n are thus the same in Figs 4.6a and 4.6b and in Figs 4.7a and 4.7b.
Correlations can be performed on summary statistic values, but obviously a lot
of information is lost from the data and n-sizes are correspondingly smaller.

Presenting a regression analysis
Presenting a regression analysis is essentially similar to presenting a correlation
except that a line needs to be fitted through the data points. If the trend isn’t
significant, so that a line should not be fitted, a figure probably isn’t necessary 
in the first place. The details of calculating a regression line have been given 
earlier. You may sometimes come across regression plots that show confidence
limits as curved lines above and below the regression line itself. However, we
shall not be dealing with these here. For further information, see Sokal and
Rohlf (1995).

As with correlation, data can be presented as independent points or, where
replicated for particular x-values, as means or medians. Once again, where means
or medians are presented, significance testing and the fitting of the line are still
done using the individual data points, not the summary statistics. Figure 4.8 pre-
sents a regression of the effect of additional food during the breeding season on

Figure 4.7 (a) The relationship between the size of minnows (arbitrary size classes) and the 
number of signs of parasitic infection observed on them. rS = 0.74, n = 11, p < 0.02. (b) The rela-
tionship between the size of minnows (arbitrary size classes) and the mean number of signs of
parasitic infection observed on them. rS = 0.74, n = 11, p < 0.02. Bars represent standard errors.
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the number of young moorhens (Gallinula chloropus) surviving into their first
winter in three study populations. Five different quantities of food were used and
the three populations received them in a different order over a five-year experi-
mental period. In Fig. 4.8a, the numbers for each population are presented 
separately; in Fig. 4.8b they are presented as means (± s.e.) across the three 
study populations.

4.2 Presenting results in the text

So far in this section, we have assumed that results will be presented as figures
or tables. Figures and tables, however, take up a lot of space in a report and may
not be justified if the result is relatively minor or there is a strict limit on the
length of the report. In such cases, analyses can instead be summarised in paren-
theses in the text of the ‘Results’ section (see later). The usual form for a dif-
ference analysis is to quote the summary statistics, test statistic, sample size or
degrees of freedom and p-value. Thus the information in Table 4.1a could easily
be presented in the text as:

Treatment with gibberellin resulted in a significant increase in growth com-
pared with non-treated controls (mean (± s.e.) height of treated plants = 14.75
± 0.88 cm, n = 12; mean height of controls = 9.01 ± 0.63 cm, n = 8; H = 12.22,
p < 0.001).

Figure 4.8 (a) The number of chicks surviving to their first winter in relation to the number 
of units of extra food provided during the breeding season in three populations of moorhen. 
F = 13.27, d.f. = 1,13, p < 0.01. (b) The mean number of chicks surviving to their first winter 
in relation to the number of units of extra food provided during the breeding season in three 
populations of moorhen. F = 13.27, d.f. = 1,13, p < 0.01. Bars represent standard errors.
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For a trend, it is usual to quote just the test statistic, sample size or degrees of
freedom and the p-value. For instance, the information in Fig. 4.8a could be
summarised as follows:

The number of chicks hatching during a breeding season that survived into
their first winter increased significantly with the amount of extra food pro-
vided within the population (F = 13.27, d.f. = 1,13, p < 0.01).

It is impossible to generalise about when an analysis could be presented in the
text rather than in separate figures or tables. Sometimes, as we have said, it is
simply a matter of limited space. However, rough guidelines might include the
following: (a) difference analyses between only two or three groups; (b) corrobor-
ative analysis, supporting a main analysis already presented as a figure or table
(for instance, if a main analysis showed a significant correlation between body
size and fighting ability, a corroborative analysis might check that body size was
not confounded with age and that the correlation could not have arisen because
bigger individuals had more experience of fighting); (c) analyses providing back-
ground information (e.g. showing a significant sex difference in body size where
this is germane to, say, an analysis of the diet preferences of the two sexes).

Units
Whether we are dealing with data in tables, figures or text, it is essential that
appropriate units of measurement are included and cited with their conventional
abbreviations (Box 4.1). Summary statistics are meaningless without them.

4.3 Writing reports

Just as figures and tables of data should be presented properly to ensure they are
effective, so care must be taken in the text of a report. In the scientific commun-
ity, reports of experiments and observations are usually published in the form 
of papers in professional journals, or sometimes as chapters in specialist books.
In all cases, however, the aim is both to communicate the findings of a piece of
research and provide the information necessary for someone else to repeat the
work and check out the results for themselves. Both these elements are crucial
and, as a result, scientific papers are usually refereed by other people in the same
field to make sure they come up to scratch before being published. Not surpris-
ingly, a more or less standard format for reports has emerged which divides 
the textual information into well-recognised sections that researchers expect to
see and know how to refer to to find out about different aspects of the work.
Learning to use this format properly is one of the most important goals of any
basic scientific training. We shall therefore now discuss the general structure of
a report and what should and should not go in each of its sections; then we shall
develop a full report, incorporating our various points about text and data pre-
sentation, from some of our main example observations.
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4.3.1 The sections of a report

There are five principal sections in a report of experimental or observational work:
Introduction, Methods, Results, Discussion and References. Sometimes it is
helpful to have some small additional sections such as Abstract, Conclusions
and Appendices, but we shall deal with these later.

Length

Kilometre km
Metre m
Centimetre cm
Millimetre mm

Area

Square kilometre km2

Hectare ha
Square metre m2

Square centimetre cm2

Square millimetre mm2

Volume

Cubic decimetre dm3

(≡ Litre) (l)
Cubic centimetre cm3

(≡ Millilitre) (ml)
Cubic millimetre mm3

(≡ Microlitre) (µ l)

Weight

Kilogram kg
Gram g
Milligram mg
Nanogram ng

Time

Million years My
Years y
Hours h
Minutes min
Seconds s

Box 4.1 Some common units of measurement and 
their conventional abbreviations
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Introduction
The Introduction should set the scene for all that follows. Its principal object-
ive is to set out: (a) the background to the study, which means any theoretical
or previous experimental/observational work that led to the hypotheses under
test. Background information is thus likely to include references to previously
published work and sometimes a critical review of competing ideas or interpreta-
tions. It might also include discussion about the timing (seasonal, diel, etc.) of
experiments/observations and, in the case of fieldwork, the reasons for choosing
a particular study site; (b) a clear statement of the hypotheses and predictions
that are being tested; and (c) the rationale of the study, i.e. how its design allows
the specified predictions to be tested and alternatives to be excluded. The
Introduction should thus give the reader a clear idea as to why the study was 
carried out and what it aimed to investigate. The following is a brief example:

Reptiles are ectotherms and thus obtain most of the heat used to maintain
body temperature from the external environment (e.g. Davies, 1979).
Rattlesnakes (Crotalus spp.) do this by basking in the sun or seeking warm
surfaces on which to lie (Bush, 1971). An increased incidence of snake 
bites in the state over the past two years has been attributed to a number 
of construction projects that have incidentally provided rattlesnakes with 
concrete or tarmac surfaces on which to bask (North, 2006). The aim of this
investigation was to study the effect of the construction projects on basking
patterns among rattlesnakes to see whether these might increase the exposure
of people to snakes and thus their risk of being bitten. The study tests two
hypotheses: (a) concrete and tarmac surfaces are preferred basking substrates
for rattlesnakes and (b) such surfaces result in a higher than average density
of snakes near humans.

When the reader moves on to the Methods and Results sections, they will then
appreciate why things were done the way they were. Reading Methods or Results
sections without adequate introductory information can be a frustrating and
often fruitless business since the design of an experiment or observation usually
makes sense only in the context of its rationale. As we shall see below, it is some-
times appropriate to include background material in the Discussion section, but
in this case it should be to help develop an interpretation or conclusion, not an
afterthought about information relevant to the investigation as a whole; if it is
the latter, it should be in the Introduction.

Methods (or Materials and Methods)
The Methods section is perhaps the most straightforward. Nevertheless, there
are some important points to bear in mind. Chief among them is providing
enough detail for someone else to be able to repeat what you did exactly. Clearly,
the precise detail in each case will depend on the investigation, but points that
need attention are likely to include the following.

Experimental/observational organisms or preparations. The species, strain, number
of individuals used, growth or housing conditions and husbandry, age and 
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sex, etc. for organisms; the derivation and preparation and maintenance tech-
niques, etc. for preparations (e.g. cell cultures, histological preparations, pathogen
inoculations).

Specialised equipment. Details (make, model, relevant technical specifications,
etc.) of any special equipment used. This usually means things like tape or video
recorders, specialist computing equipment, spectrometers, oscilloscopes, autom-
atic data-loggers, optical equipment such as telescopes, binoculars or specialised
microscopes, centrifuges, respirometers, specially constructed equipment such 
as partitioned aquaria, choice chambers, etc. Run-of-the-mill laboratory equip-
ment like glassware, balances, hotplates and so on don’t usually require details,
though the dimensions of things like aquaria or other containers used for observa-
tion and the running temperature of heating devices, etc. should be given.

Study site (field work). Where an investigation has taken place in the field, full
details of the study site should normally be given. These should include its 
location (e.g. grid reference) and a description of its relevant features (e.g. size,
habitat structure, use by man) and how these were used in the investigation. The
date or time of year of the study may also be relevant.

Data collection. This should include details of all the important decisions that
were made about collecting data. Again, it is impossible to generalise, but the 
following are likely to be important in many investigations: any pretreatment 
of material before experiments/observations (e.g. isolation of animals, drug 
treatment, surgical operations, preparation of cell cultures, staining); details of
experimental/observational treatments and controls; sample sizes and replica-
tion; methods of measurement and timing; methods of recording (e.g. check sheets,
tape recording, tally counters, etc.); duration and sequencing of experimental/
observational periods; details of any computer software used in data collection.
Of course, it is important not to go overboard. For instance, it isn’t necessary to
relate that a check sheet was ticked with a red ball-point pen rather than a black
one, but if the pen was used to stimulate aggression in male sticklebacks (which
often attack red objects) then it would be relevant to state that a ball-point pen
was used and that it was red.

Results
The Results section is in some ways the most difficult to get right. Many students
regard it as little more than a dumping ground for all manner of summary and,
worse, raw data. Explanation, where it exists at all in such cases, frequently con-
sists of an introductory ‘The results are shown in the following figures . . .’ and a
terminal ‘Thus it can be seen . . .’. A glance at any paper in a journal will show
that a Results section is much more than this. At the other extreme, explanation
within the Results often drifts into speculative interpretation, which is more
properly the province of the Discussion (see below).

A Results section should do two things and only two things: first, it should
present the data (almost always in some summarised form, of course) neces-
sary to answer the questions posed; and second, it should explain and justify the
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analytical approach taken so that the reasons for choice of test and modes 
of data presentation are clear. The section should thus include a substantial
amount of explanatory text, but explanation should be geared solely to the ana-
lyses and presentation of data and not the interpretations or conclusions that
might be inferred from them. An example might be as follows:

Figure 1 shows that rattlesnakes are significantly more likely to be found on
concrete (Fig. 1a) and tarmac (Fig. 1b) surfaces around dawn and dusk than
around midday. Since many of the construction projects in the survey of
snake bite incidence have involved highways (Greenbaum et al., 1984), this
temporal pattern of basking may result in highest snake/human encounter 
at times when public conveniences are closed and motorists are forced to
relieve themselves at the roadside. Indeed Table 1 shows a strong association
for three highways between time of day and number of motorists stopping 
by the roadside.

It is also important that all the analyses and presentations of data involved in the
report appear in the Results section (as figures, tables or in the text) and only in
the Results section; no analysis should appear in any other section.

Discussion
The Discussion is the place to comment on whether the results support or 
refute the hypotheses under test and how they relate to the findings of other
studies. The Discussion thus involves interpretation and reasonable specula-
tion, with further details about the material investigated and any corroborative/
contradictory/background information as appropriate. As we have said, how-
ever, while the Discussion may flesh out, comment, compare and conclude, it
should not bring in new analysis. Neither should it develop background informa-
tion that is more appropriate to the Introduction (see earlier). The kind of thing
we’d expect might be as follows:

The results suggest that concrete and tarmac surfaces are not favoured for
basking by rattlesnakes in comparison with broadly equivalent natural surfaces
when relative area is taken into account. One reason for this might be the
greater proximity and greater density of cover close to the natural surfaces
sampled. Many snakes (Jones, 1981), including rattlesnakes (Wilson, 1998),
prefer basking areas within a short escape distance of thick cover. Despite 
not being preferred by snakes, the greater incidence of bites on concrete and
tarmac surfaces can be explained in terms of the greater intensity of use of
these surfaces by humans. However, Wilson (1998) has noted that the prob-
ability of attack when a snake is encountered increases significantly if there is
little surrounding cover. The paucity of cover around the concrete and tarmac
samples may thus add to the risk of attack in these environments.

References
Your report should be referenced fully throughout, with references listed chrono-
logically in the text and alphabetically in a headed Reference section at the end.
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References styles vary enormously between different kinds of report so there is
no one accepted format. However, a style used very widely is illustrated below
and we suggest using it except where you are explicitly asked to adopt a differ-
ent style. In this style, references in the text should take the form:

. . . Smith (1979, 1980) and Grant et al. (1989) claim that, during a storm, a
tree 10 m in height can break wind for over 100 m (but see Jones and Green,
2002; Nidley, 1999, 2001) . . .

In the References list at the end, journal references take the form:

Grant, A. J., Wormhole, P. and Pigwhistle, E. G. (1989) Tree lines and the
control of soil erosion. Int. J. Arbor. 121, 42–78.

Jones, A. B. and Green, C. D. (2002) Soil erosion: a critical review of the effect
of tree lines. J. Plant Ecol. 97, 101–107.

Smith, E. F. (1979) Planting density and canopy size among deciduous trees.
Arbor. Ecol. 19, 27–50.

Smith, E. F. (1980) Planting density and growth rate among deciduous trees.
Arbor. Ecol. 20, 38–52.

author year title of paper full or abbreviated volume no. inclusive page nos.
journal title

for books they take the form:

Nidley, R. (1999) Deforestation and its impact on national economies.
Hacker Press, London.

title of book in italics publisher place of publication
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and for chapters in edited volumes the form:

Nidley, R. (2001) Economic growth and deforestation. In Sustainable eco-
nomics and world resources, eds A. B. Jones and C. D. Green, pp. 64–78.
Hacker Press, London.

Where more than one source by a particular author (or set of authors) in a par-
ticular year is referred to, the sources can be distinguished by using lower case
letter suffixes, e.g. (Smith, 1976a, b) indicates that you are referring to two
reports by Smith in the year 1976. The order in which you attribute a, b, c, etc.
is determined by the order in which you happen to refer to the publications in
your report, not the order in which they were published in the relevant year.

Personal observations and personal communications. Although most of the refer-
ences you will make will be to work by other people, or yourself, that has been
published in some form, it is occasionally appropriate to refer to unpublished
observations. This usually arises where some previous, but unpublished, observa-
tion is germane to an assumption, fact, technique, etc. that you are relying on in
your own report. If such observations are your own, they can be referred to in
the text as ‘(personal observation)’ or ‘(pers. obs.)’. If they have been reported to
you by someone else, then they can be referred to as, for example, ‘(P. Smith,
personal communication)’ or ‘(P. Smith, pers. comm.)’ – note that the name of
the person providing the information is given as well.

Abstract. A small, but important, section of many scientific reports, certainly pub-
lished ones like papers in learned journals, is the abstract. This is a short (often
strictly word-limited) summary of the aims and main findings of the invest-
igation. The idea is to provide the reader with a quick overview of what was
done and what was interesting about it, so that the reader can decide whether
they want to read the report in more detail. Abstracts are particularly important
in the case of published reports because they are often made available online 
to people browsing the various searchable scientific literature databases (see
Box 1.1). They are thus a useful ‘shop window’ for available studies on the chosen
topic. Increasingly, as part of the general push for greater public awareness of
science, abstracts are now also being made available in the form of ‘lay summar-
ies’, meaning that they are redrafted in simple, everyday language that people
without formal scientific training can understand (see 4.4 below); often they are
sent out to the media. Whether or not you intend to try to publish your report, 
however, producing an abstract for it is good practice because it makes you think
clearly about the important messages in your work and express them succinctly.
An abstract is included in the example report in Box 4.2 to illustrate the point.

Other sections of a report
In some cases, there may be additional sections to a report.

Conclusions. Sometimes, especially where analyses and interpretations are long
and involved, it is helpful to highlight the main conclusions in a tail-end section
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so that the reader finishes with a reminder of the ‘take-home’ message of the
investigation.

Appendix. Occasionally, certain kinds of information may be incorporated into 
an Appendix. Such information might include the details of mathematical models
or calculations, detailed background arguments, selective raw data or other
aspects of the study that potentially might be of importance to readers but which
would clutter up and disrupt the main report were they to be included there.
Appendices are thus for informative asides that might help some readers but 
perhaps distract others. It follows, therefore, that appendices should be used
selectively, sparingly and for a clear purpose, not as a dumping ground for odds
and ends on the grounds that they might just turn out to be useful.

Use of abbreviations. It is also worth saying something about the use of abbrevi-
ations. Many long-winded technical and jargon terms are often abbreviated in
reports, papers and books. This is common practice and perfectly acceptable, 
as long as abbreviations are defined at their first point of use and conventions
are adhered to where they exist (some acronyms, for example, are so well-
established that people are hard put to recall the full terminology). Thus:

The hyperstriatum ventrale pars caudalis (HVc) in the forebrain of birds is
associated with the production of song. The volume of the HVc also varies
with the complexity of song in different species.

and

To see whether there was any effect of site on the frequency of calling, we car-
ried out a one-way analysis of variance (ANOVA). The results of the ANOVA
suggested that site had a profound effect.

present no problem, whereas:

The HVc in the forebrain of birds is associated with the production of song.

or

To see whether there was any effect on the frequency of calling, we carried
out an ANOVA.

leaves the uninitiated little the wiser.
While abbreviations and acronyms are acceptable, however, they should be

used judiciously. Littering text with them is a sure way to destroy its readability
and confuse the reader.

4.3.2 Example of a report
Having outlined the general principles of structuring a report, we can finish off
by illustrating them more fully in a complete report (see Box 4.2). The report is
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The effect of body size on the escalation of aggressive
encounters between male field crickets (Gryllus 
bimaculatus)

Abstract
Fighting is a costly activity; it takes time and energy and risks injury or even death. One
way animals may be able to reduce the cost of aggressive competition is by assessing their
chances of winning before becoming involved in a fight. Various attributes of oppon-
ents might provide information about the likelihood of winning, an obvious one being
body size. When male field crickets (Gryllus bimaculatus) were allowed to interact in a
sand-filled arena, encounters were more likely to become aggressive as the difference in
body size between opponents declined, suggesting relative body size was important in
assessing whether or not to escalate into a fight. However, the results also suggested that
experience of winning or losing a fight itself affected the tendency to initiate and win 
subsequent fights. Aggressive encounters between male crickets may thus depend on
both assessment of opponents and the degree of confidence of competing individuals at
the time of encounter.

Introduction
Fighting is likely to be costly in terms of time and energy expenditure and risk of injury
to the individuals involved. We might thus expect natural selection to have favoured
mechanisms for reducing the likelihood of costly fights. One way animals could reduce
the chance of becoming involved in an escalated fight is to assess their chances of win-
ning or losing against a given opponent before the encounter escalates into all-out fight-
ing. There is now a substantial body of theory (e.g. Parker, 1974; Maynard Smith and
Parker, 1976; Enquist et al., 1985) suggesting how assessment mechanisms might evolve
and much empirical evidence that animals assess each other during aggressive encoun-
ters (e.g. Davies and Halliday, 1978; Clutton-Brock et al., 1979; Austad, 1983). Since the
outcome of a fight is likely to be determined by some kind of difference in physical supe-
riority between opponents, features relating to physical superiority might be expected to
form the basis for assessment.

Male field crickets compete aggressively for ownership of shelters and access to females
(see Simmons, 1986). Casual observation of male crickets in a sand-filled arena suggested
that body size might be an important determinant of success in fights, with larger males
winning more often (pers. obs.). This is borne out by Simmons (1986), who found a 
similar effect of body size in male G. bimaculatus. Observations also showed that aggres-
sive interactions progressed through a well-defined series of escalating stages (see also
Simmons, 1986, and e.g. Brown et al., 2006 and Nosil, 2002 for other cricket species)
before a fight ensued. One possibility, therefore, is that these escalating stages reflect the
acquisition of information about relative body size and interactions progress to the later,
more aggressive, stages only when opponents are closely matched in size and the out-
come is difficult to predict. This study therefore tests two predictions arising from this
hypothesis:

1. large size will confer an advantage in aggressive interactions among male crickets,
and

2. interactions will escalate further when opponents are more closely matched in size.

Box 4.2 Example report
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Methods
Four groups of six virgin male crickets were used in the experiment. All males were
derived from separate, unrelated stock colonies a week after adult eclosion so each group
comprised arbitrarily selected, unfamiliar males on establishment. Crickets were main-
tained on a 12 h : 12 h light : dark cycle that was shifted by 4 h to allow observation 
at periods of peak activity (Simmons, 1986). Before establishing a group, the width of
each male’s pronotum (thorax) was measured at its widest point using Vernier calipers
and recorded as an index of the male’s body size (the pronotum was chosen because it
consists of relatively inflexible cuticle that is unlikely to vary between observations or with
handling; adult body size is determined at eclosion so does not change with age). The
dorsal surface of the pronotum of each male was then marked with a small spot of
coloured enamel paint to allow the observer to identify individuals.

Groups were established in glass arenas (60 × 60 × 30 cm) with 2-cm deep silver 
sand substrate. Each arena was provided with water-soaked cotton wool in a Petri 
dish and two to three rodent pellets. No shelters or other defendable objects were pro-
vided to avoid bias in the outcome of interactions due to positional advantages. Arenas
were maintained under even 60 W white illumination in an ambient room temper-
ature of 25 °C throughout the experiment.

The six males in a group were introduced into their arena simultaneously and allowed
to settle for 5 min. They were then observed for 30 min, during which time all encoun-
ters between males were dictated on to magnetic tape, noting: (a) the individuals
involved, (b) the individual initiating the encounter (the first to perform any of the com-
ponents of aggressive behaviour – see below), (c) the individual that won (decided when
one opponent first attempted to retreat) and (d) the components of aggressive behaviour
used by each opponent during the encounter. Following Simmons (1986), the aggressive
behaviours recognised here are shown in Table 1.

Results
Do larger males tend to win aggressive encounters? To see whether larger males tended to
win more often, the percentage of encounters won by each male in the four groups was

Table 1 Degree of escalation increases from Aggressive stridulation to Flip. Each beha-
viour can thus be ascribed a rank escalation value ranging from 1 (low escalation) to 
6 (high escalation).

Escalation 
Behaviour Description ranking

Aggressive One or both males stridulate aggressively.   1
stridulation This may occur on its own or in conjunction with 

other aggressive behaviours

Antennal lashing One male whips his opponent with his antennae 2

Mandible One male spreads his mandibles and displays them 3
spreading to his opponent

Lunge A male rears up and pushes forward, butting the 4
opponent and pushing him backwards

Grapple Males lock mandibles and wrestle 5

Flip One male throws his opponent aside or onto his back. 6
Re-engagement was rare following a Flip
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Figure 1 The relationship between the size (pronotum width) of a male and the per-
centage of encounters won by the male in a group of six. rS = 0.81, n = 24, p < 0.0001.

plotted against pronotum width (Fig. 1). A significant positive trend emerged. Fig-
ure 1, however, combined data from all four groups. Did the relationship hold for each
group separately? Spearman rank correlation showed a significant relationship in three of
the four groups (rS = 0.94, 0.99, 0.97 (p < 0.05 in all cases) and 0.66 (ns), n = 6 in all
groups, one-tailed test).

If there is a size advantage as suggested by Fig. 1, we might expect larger males to 
initiate more encounters than smaller males since they have more to gain. Figure 2 
shows a significant positive correlation between pronotum width and the percentage 
of the recorded encounters for each male that was initiated (see Methods) by that 
male. As expected, therefore, larger males tended to be the initiator in more of their
encounters.

One possibility that arises from Figs 1 and 2 is that the apparent effect of 
body size was an incidental consequence of the tendency to initiate. There may be 
an advantage to initiating itself, perhaps because an individual initiates only when 
its opponent’s ability to retaliate is compromised (e.g. it is facing away from its attacker).
If the males doing most of the initiating in the groups just happened to be the 
bigger ones, the initiation could underlie the apparent effect of body size on the 
chances of winning. To test this, the percentage encounters won by each male when 
he was the initiator was compared with the percentage won when he was not. The 
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analysis showed no significant difference (U = 82, n1, n2 = 19, ns*) between the two 
conditions.

Does difference in body size affect the degree of escalation in encounters? Figure 3 shows 
the relationship between the ratio of pronotum width for pairs of opponents and the
degree of escalation of their encounters. A ratio of one indicates equal size and ratios
greater than one increasing departure from equality. Degree of escalation is measured as
the maximum rank value (1–6, see Methods, Table 1) recorded during an encounter. 
As predicted, the figure shows a significant negative correlation between size ratio and
degree of escalation so that escalated encounters were more likely between opponents
that were closely matched in size. The trend in Fig. 3 is for data across all groups. Does
the trend hold within individual males? Correlation analysis for those males (four) that
were involved in five or more encounters with opponents of different relative size sug-
gests that it did, although the trends were significant in only two cases (rS = −0.96, n = 7,
p < 0.05; rS = −0.72, n = 5, ns; rS = −0.76, n = 6, ns; rS = −0.99, n = 6, p < 0.05, one-tailed

Figure 2 As Figure 4.9 but for the relationship between male size and the percentage
number of encounters initiated by the male. rS = 0.63, n = 24, p < 0.03.

* Although it is perfectly legitimate to use a Mann–Whitney U-test here, the fact that we are
actually comparing data for the two conditions (initiated versus non-initiated encounters)
within males means we could have used a different sort of two-group difference test (e.g. a
Wilcoxon matched-pairs signed ranks test) which takes this into account.
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test). A similar analysis of the relationship between size ratio and the duration of aggres-
sive encounters also showed a significant tendency for closely matched males to fight for
longer (rs = 0.62, n = 20, p < 0.002).

Does the experience of winning or losing affect subsequent interactions? The results so far are
consistent with males assessing each other on the basis of relative size. However, it is pos-
sible that the experience of winning or losing a fight might itself influence a male’s
approach to subsequent encounters. A male that has just won a fight, for example, might
assess his chances of winning the next one as being higher than if he had just lost (a
‘confidence’ effect). To see whether this was the case, the outcome of fights for males
that were recorded as having ten or more encounters during the observation period were
analysed according to whether the male won or lost his first recorded encounter. A
Mann–Whitney U-test showed that males winning their first encounter won a significantly
greater proportion of their subsequent encounters than those losing their first encounter
(U = 8, n1 = 6, n2 = 9, p < 0.05). They also initiated a significantly greater proportion of
the encounters (U = 9, n1 = 6, n2 = 9, p < 0.05). Interestingly, there was no significant dif-
ference in body size between males winning versus losing their first encounter (U = 16,
n1 = 6, n2 = 9, ns), so the ‘confidence’ effect seemed to be to that extent independent of
the effect of size.

 

Figure 3 The relationship between ratio of pronotum widths of fighting males and the 
maximum level of escalation (1–6, see Methods) reached in fights. rS = −0.71, n = 20, 
p < 0.002.
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Discussion
The results bore out both predictions about the effects of body size on the outcome of
aggressive interactions between male field crickets: larger males were more likely to win
and escalation was more likely between closely matched opponents. This is consistent with
the outcome of fights being largely a matter of physical superiority and with the struc-
turing of interactions into a well-defined series of escalating stages reflecting assessment.

The fact that larger males were more likely to initiate an interaction could mean that
the relative size of a potential opponent is assessable in advance of physical interaction.
However, it could also reflect a general confidence effect arising from previous wins by
larger males (males may initiate according to the simple decision rule ‘if I won in the past,
I’ll probably win this time, so it is worth initiating’). Indeed, Simmons (1986) presents 
evidence that the number of past wins has a positive influence on the tendency for males
to initiate, a result consistent with the apparent confidence effect in the present study
(but see e.g. Brown et al., 2006 and Nosil, 2002 for more equivocal results from other
species). Alternatively, initiation could reflect individual recognition, with males picking 
on those individuals against whom they have won in the past. Since this study did not
record encounters independently of the performance of one of the categories of aggres-
sive behaviour, it is not possible to say whether initiations against particular opponents
occurred more or less often than expected by chance. Whatever the basis for deciding to
initiate, however, there was no evidence that initiation itself conferred an advantage in
terms of the outcome.

Although no resources (shelters and females) were available in the arenas, the size
advantage in the aggressive interactions recorded here is in keeping with the tendency
for larger males to take over shelters and mate successfully with females (Simmons,
1986). While females prefer to mate with males in or near shelters (because these provide
good oviposition sites and protection from predators), they will mate with males en-
countered in open areas (Simmons, 1986). Aggression between males in the absence 
of shelters or females may thus reflect an advantage to reducing competition should a
female happen to be encountered.
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one that might arise from some of the experiments we proposed earlier in the
main examples, in this case aggression in crickets.

4.4 Writing for a more general readership

So far, we’ve looked at writing reports on the assumption that the target reader-
ship is other biologists, whether these are lecturers or tutors in an educational
setting, or fellow researchers. The key concerns with this kind of writing are: 
(a) adhering to the appropriate conventions of scientific reporting, and (b) the
technical clarity with which the hypotheses and predictions under test, the 
manner in which the study was carried out, the statistical analyses and the back-
ground and conclusions to the study are presented for critical professional
scrutiny. This can make for a rather dry and jargon-strewn read for anyone com-
ing to it out of general interest, and perhaps with little or no formal scientific
education (the proverbial ‘intelligent layman’). Nevertheless, there are many
good reasons why such a person should be able to appreciate what has been
done, and why, in scientific research (not least because they are probably help-
ing to pay for it out of their taxes!), and equally good reasons why scientists
themselves should make the effort to render their work accessible rather than
leaving it to other people, such as journalists, who often have a poor grasp of the
work or try to sensationalise it into a newsworthy story.

In the UK, the art of explaining science to the ‘intelligent layman’ now has 
its own buzz phrase, the ‘Public Understanding of Science’ (or PUS, to use its
slightly unfortunate acronym), one enthusiastically promoted by government
and honoured with an eponymous chair at Oxford. In its wake, scientists 
are actively encouraged to engage with the media to promote and explain their
work, and many universities and colleges offer courses on popular scientific
writing and other public communication skills. Not surprisingly, therefore, 
science students increasingly see career opportunities in the wider communica-
tion of their subject. So what exactly does ‘wider communication’ entail? Well,
of course, it depends to some extent on what you’re trying to talk about and to
whom, but there are some general points that will help keep you on the right
track.

Avoid jargon
Probably the first golden rule is to avoid, as far as possible, using any technical
jargon or unfamiliar scientific terminology. For example, the following passage
in a scientific article on immune response to infection:

In a study of European bank voles (Clethrionomys glareolus) high burden
populations were characterised by high levels of plasma corticosterone 
and testosterone and high fluctuating asymmetry (FA) in hind foot length (a
putative measure of developmental instability; e.g. Palmer and Strobeck,
1986; Møller and Swaddle, 1997), but reduced aggressiveness among males
(Barnard et al., 2002, in review).
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might be rendered as:

Bank voles are small woodland rodents, rather like mice, but with shorter ears
and tails. They are common across Europe where, like other wild mammals,
they are often infected with various parasites, such as tapeworms and fleas. In
areas where infections are very severe, voles often show evidence of stress and
poor physical development, and males are less aggressive than their counter-
parts elsewhere.

This has managed to recast the whole thing in easily understood, everyday 
language that most people would be able to follow. It tells them what voles 
are (many may not know), and what the piece is talking about when it refers to
parasites. It also leaves out all the clutter of scientific referencing, essential for
the professional scientist, but a distraction for the general reader.

Sometimes, however, the use of a certain amount of technical jargon may be
inescapable, or even helpful in giving some idea of the scientific approach
behind a report. If so, explain it in simple everyday terms. For instance, a differ-
ent version of the passage above might have gone as follows:

Voles from areas with very high levels of parasite infection show poor phys-
ical development. This can be judged by something scientists call ‘fluctuating
asymmetry’, which is a measure of the difference in size between the same
parts of the body, say the front or hind legs, on the left and right sides. The
bigger the difference, the greater the hardship the animal is assumed to have
experienced during its development.

This includes the technical term ‘fluctuating asymmetry’, because the reader
might wonder exactly how poor physical development was measured, but immedi-
ately counters its potential to confuse with a simple description of what it means.

Use catchy analogies
Most people scanning a newspaper or magazine for articles that might interest
them need something to draw their attention to a particular piece in the first place,
and then to maintain their attention as they read it. A snappy title might achieve
the first aim, but ensuring the second can be a bit trickier. A favourite device is
to draw parallels with familiar aspects of our own experience. The old adage that
‘sex sells newspapers’, for example, is as true now as it ever was, and anything
that reflects on, or can be compared with, our own sexual behaviour, however
tangentially, can usually be assured of at least a passing glance. Health, war, culture
and intelligence are other good ‘hooks’ for getting attention, because they touch
on our preoccupations or views on what makes us uniquely human. Some popular
science writers use characters or events from literature or works of art to draw
analogies and create striking imagery, Stephen Jay Gould being an enthusiast of
the style. Indeed, cleverly appropriate metaphors are an effective way in general
to get points and ideas across, as illustrated by Richard Dawkins’s famous book
The Selfish Gene (Dawkins, 1976), a successful popular account of the principle
of natural selection that uses the ‘selfish’ metaphor to characterise the effects of
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selection on how organisms behave. As authors like Dawkins have discovered,
however, it is often wise to emphasise that you are using metaphors as just that,
and not in a literal sense (for instance, the ‘selfish’ gene metaphor simply captures
the idea that genes code for characteristics that enhance their chances of being
passed on to the next generation; it doesn’t imply they are thoughtlessly self-centred
in the sense we might use ‘selfish’ to describe other people). Bearing these points
in mind, we might lead into our vole story with something like the following:

The stressed office worker falling prey to every passing infection is a fam-
iliar cliché of our pressured, industrialised lives, and good medical research
suggests it has a sound basis in fact. But is it something unique to us and our
artificially hectic lifestyle? Evidence from the leafy glades of Europe’s wood-
lands suggests not. A recent study of voles in the Polish forests of Mazury, has
revealed an association between stress and infection with parasites that has
more than an echo of sick office worker syndrome.

So here we’ve used a familiar everyday analogy to get the reader’s attention and
cue them in to the message of what follows; the reader knows to expect some-
thing about how stress relates to disease and is thus primed to follow the piece.
Box 4.3 presents a general readership piece along these lines on the cricket study
reported in formal scientific style in Box 4.2.

4.5 Presenting in person: spoken papers and poster presentations

The outcomes and conclusions of your research can also be presented in person
in the form of a talk, or in a fashion somewhat intermediate between a written
and spoken presentation known as a poster presentation. As with the written
word, the audience for a talk or poster can be diverse – from a group of fellow
students reporting their research at the end of a field course, to the serried ranks
of a thousand or so delegates at an international conference. The major differ-
ence from the traditional written word is that you are presenting the information
live (poster presentations usually involve sessions where you explain and defend
your findings personally to interested readers), and this difference can be enough
to test the composure of even the most confident individual. At one level there
are as many styles of spoken and poster presentations as there are presenters
and, to a lesser extent, each person in the audience will have a slightly different
reaction to any given style. However, there are features that are shared by good
presentations and we discuss some of these here.

4.5.1 A presentation is not a written report

As we explained in section 4.3, writing for a general readership needs a different
approach from writing a scientific paper. The same is true of spoken and poster
presentations; indeed, they have more in common with writing for a general audi-
ence than writing a paper. And while presenting a spoken paper is sometimes
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CANNY CRICKETS SIZE UP THE OPPOSITION

As any military commander worth his salt will tell you, ‘know thine enemy’ is
a wise rule when it comes to a showdown against a powerful opponent. Rush
in on impulse and it probably won’t take long to regret it. This turns out to be
as true for other animals as it is for ourselves. And, while they may not be hot
on handy aphorisms, our fellow planetary inhabitants can be as wily as any 
military strategist when it comes to fisticuffs. Take the humble field cricket
(Gryllus bimaculatus), for example.

Field crickets are distributed widely throughout southern Europe, where males
contribute to the ringing chorus of insects that fills the evening air in summer.
The reason males put all this effort into calling, however, is not to provide musical
accompaniment for human bystanders, but to set about the serious business of
competing for females. And here, the males’ tuneful performance is just for starters.

As well as providing a sound beacon by which females can home in on a
male, calls are picked up by other, rival, males. Since calling is costly – it takes
time and effort, and can attract predators – these males can avoid paying the
cost themselves by keeping quiet and intercepting the females attracted by their
rival’s efforts. Thus, callers can rapidly find themselves having to compete for
their hard-won female with a bunch of freeloaders. Calling aggressively at them
may have some effect, but often not much, so it’s not long before things start to
get physical. This is where careful choices have to be made.

Observations of crickets in the field, and under laboratory conditions 
mimicking those in the field, show that males don’t just get stuck in indiscrim-
inately. Interactions follow a well-defined sequence of behaviours that gradu-
ally escalate in their level of aggressiveness. If an opponent doesn’t give way
when lashed with the aggressor’s antennae, for instance, the encounter might
progress to locking jaws and wrestling. Ultimately, the larger of the contesting
males tends to win, but the way encounters progressively up the ante strongly
suggests males are weighing each other up before going all out. If so, an obvious
prediction is that fights should last longer and be more intense as the difference
in size between opponents decreases, because it would be harder for each to tell
who was the biggest. Some recent experiments by scientists at the University of
Nottingham, UK have shown that this is exactly what happens.

When pairs of males were carefully measured and then allowed to compete
with each other, they were much more aggressive, and fought for longer, when
closely matched in size. Thus, if reliable information about relative size and
strength was not forthcoming when opponents prospectively probed each other,
there appeared to be nothing for it but to set to. But things weren’t quite as simple
as this. While assessing the opposition certainly seemed to be part of the process,
it turned out that males were also affected by their previous experience of winning
or losing. If they had just won a fight, they were more likely to enter the next one
with gusto and win that too. If they’d lost, however, they were more circum-
spect the next time and tended to lose again. This suggests that the degree of
confidence with which a male approaches a fight has an important role to play,
and that, in the world of crickets, just as in our own, he who hesitates is lost.

Box 4.3 A general readership account of fighting in crickets
(from Box 4.2)
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termed reading a paper, the result, if taken literally, usually makes for deadly 
listening for the simple reason that written and spoken language are generally
very different in style. Written prose is usually more formal in structure and use
of language than the spoken word, which abounds with illustrative figures of
speech, amusing asides and informal phraseology that is easy on the ear. For
instance, in a published paper we might write:

In summary, therefore: (a) female thargs are on average 50 per cent larger
than males, (b) only males over 4 kg in body weight initiate courtship, and 
(c) only males over 5 kg mate successfully.

But we’d probably say something more like:

OK, so what can we conclude from all this? Well for one thing it’s clear that
females are the larger sex in thargs, which may mean that only relatively big
males stand a chance of success in courtship. This may be why it’s only 4 kg
plus males that attempt courtship and only 5 kg plus males that actually get
anywhere with it.

Very few people can write successfully in spoken language, so a paper read out
verbatim usually sounds stilted and wooden. One past master of the art of writing
in spoken English (in his case) is the evolutionary biologist Richard Dawkins,
who customarily reads his talks from a prepared script, but he is a real exception.

The same is really true of poster presentations. One thing a poster absolutely
should not be is a written paper pinned to a board, however attractively the
author may feel the pages are set out. The art of good poster presentation owes
more to the skills of the advertising agency than the professional writer: it’s all
about getting a message over clearly and immediately (people browsing anything
from 20–30 upwards to 500 or more posters are not going to hang around read-
ing sheets of dense prose; they want headlines and images they can take in at a
glance). We have occasionally seen a scientific paper stapled to a poster board
at a conference, but this is more likely a consequence of a catastrophe befalling
the original, intended poster than a serious attempt to use a written report as a
poster presentation.

4.5.2 General considerations

Know your audience
It should probably go without saying that the content of a presentation will
depend on the audience. A more general audience, such as a local natural 
history society or schoolchildren, will require more background to the study 
and less technically demanding language than a group of specialists, such as we
should find in a research group. As a rule, the more general the audience, the
more a presentation should deal in simple (but nonetheless accurate) take-home
messages rather than the detailed mechanics of how the messages were arrived
at (see below). We are not advocating skipping important qualifying information
in general presentations, just recommending that care is taken not to lose the
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interesting facts and findings in it all. The key is therefore that the pitch and style
needs to be geared appropriately for different audiences.

Know your allocation
As well as choosing an appropriate style for your presentation, there is almost
always another challenge to be met: it has to fit into a predetermined alloca-
tion of time or space. Where talks at conferences are concerned, this can be
extremely short, 10 minutes or so sometimes, but may be up to 50 minutes or 
an hour if you’re a key speaker. People often underestimate how long it takes 
to speak to a slide in a talk, and therefore tend to have too many slides for the
time. As a general rule you should allow about two minutes per slide, which
means around 10 slides for a 20-minute talk. Remember to talk the audience
through each slide, pointing to the relevant pieces of information to which you
are referring; don’t just put the slide up and talk as if it wasn’t there. Poster sizes
are usually determined by the size and shape of available boards, and, of course,
the number of posters that have to be squeezed onto them. Either way, it is an
essential skill of giving spoken or poster presentations that you can tailor them
to a required slot. It is thus vital to know the time allotted for your spoken 
presentation or the dimensions of the poster space. If in doubt (though you
shouldn’t be), err on the short side – few in the audience will mind if the talk
finishes a few minutes early or if your poster doesn’t completely fill the poster
board. However, taking more than your allocation of time or space will usually
elicit negative reactions or result in you being cut off mid-presentation by an 
irritated session chairperson or not being able to put your poster up at all.

Know your aim
A presentation is sometimes seen as an opportunity (or temptation) to report
every last detail of your study. This is a fatal mistake! There is never enough time
or space to do it, and nobody’s attention span would take it even if there was.
Carefully, but ruthlessly, choose the aspects of your study that will be of most
interest to the audience. Thus, if you are reporting interesting mating behavi-
our in your study species, focus on what makes it interesting and perhaps sets it
apart from mating behaviour in other, similar species rather than on exactly how
many dreary wet days you spent freezing in a remote hide collecting the data, 
or how you finally arrived at the clever statistical analysis you used. Make sure
also that your points can be readily conveyed in the presentation – a personal
demonstration of your study species’ mating display on a table top could be the
highlight of a spoken presentation, but you will need to think of another way 
of conveying the information if presenting a mostly unattended (by you) poster
– a carefully chosen, clear photograph being an obvious option.

Less is more
Although a cliché, the spirit of this little aphorism has probably contributed more
to good presentations than almost anything else. Whether the text will appear as
a slide in a talk or as a panel on a poster, it is often surprising just how few words
are needed to convey the meaning. For example, a first attempt at an introduc-
tory slide for a talk about fighting in crickets might set the agenda as follows:
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Introduction

n Fighting is likely to be expensive in terms of time and energy and the
risk of injury to individuals

n We might thus expect selection to have favoured mechanisms to
reduce the likelihood of costly fights

n One way this could be achieved is by individuals assessing their chances
of winning against an opponent before getting involved in a fight

n There is now a substantial body of theory suggesting how assessment
mechanisms might evolve, and much evidence that animals do assess
each other during aggressive encounters

n Male field crickets (Gryllus bimaculatus) compete aggressively for owner-
ship of shelters and access to females, and casual observation suggests
that body size might be an important determinant of success in fights

However, this is a lot of text, which will probably take more time than the slide
is on the screen to read properly. The point is, you don’t need to use full sentences
to convey the essential message, and less text means you can use larger fonts and
maybe some associated images to make the whole thing more digestible. The follow-
ing box might be an effective distillation of the full-blown text in the box above.

INTRODUCTION

n Fighting can be costly
n Selection may thus favour reduced fighting
n Perhaps through assessing opponents first
n We can model the evolution of assessment
n And test models using fighting in crickets

This style is often referred to as telegraphese, because messages sent by telegram
were charged by the word and shorter messages saved money. (An extreme
example was an exchange of telegrams between the nineteenth-century French
author Victor Hugo and his publisher: Hugo sent a telegram containing only a
question mark, correctly assuming his publisher would understand he was ask-
ing how the sales of his recent novel were going – the publisher replied with an
exclamation mark, indicating they were extremely good).

Less is also more when it comes to images (like photographs or video windows)
and embellishments (like borders, cartoons and coloured text boxes), so the
advice is the same as for words: unless an image or embellishment is really cen-
tral to the message you are trying to convey, or essential for clarity, carefully
consider whether it merits inclusion (see also Box 4.4). The aim is to design 
the presentation around the core message, not to produce a kaleidoscope of
information for its own sake.
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Images versus text
‘A picture is worth a thousand words’ is another cliché, but again captures the
spirit of good presentation. Images and graphics can often replace text or they
can enhance and support it, perhaps by illustrating the environment in which 
the study took place, or the lifestyle of the species concerned. For instance, 
the detailed list of escalating aggressive behaviours in Table 1 of the report in
Box 4.2 could be replaced by a series of three to four photographs of the rele-
vant behaviours with simple accompanying labels. A picture or two of fighting
crickets might also helpfully embellish some of the introductory, data or sum-
mary slides that would comprise a talk, or figure as background embellishments
in a poster.

Tables of data published in papers (for example, like that in Table 4.3) can
very rarely be included in presentations as they are. Apart from the difficulty 
of reading the detail once the table becomes larger than a 3 × 3 matrix, the 
information is not in the best form for the audience to appreciate the interesting
differences and similarities in the data. Converting tables to graphs, such as 
bar charts or means plots, helps to make such differences clear (see Figs 4.1, 
4.2 and 4.3).

It is rather less obvious that figures from published papers are also not in the
best form for a presentation. Unless they make a key point, figures can take up
a lot of space. In some cases, therefore, it may be simpler to present summary
results in text form. The figures in the example report in Box 4.2, for example,
could, if pushed for time or space, be converted from scattergraphs to the sum-
mary text format below:

bigger crickets win more often rs = 0.81 n = 24***

and initiate more fights rs = 0.63 n = 24*

and similarly sized crickets are more likely to escalate rs = −0.71 n = 24**

However, in general, graphs make differences or trends easier to assimilate at a
glance and are probably preferable where constraints allow.

Legibility
The ease with which poster and projected text can be read is affected by many
things, some of which are specific to the venue and the local conditions. How-
ever, there are a few basic points worth bearing in mind:

Font sizes and styles. For slides used in talks, a sizeable font is needed to ensure
text can be read comfortably throughout a lecture venue. Our suggestion would
be somewhere in the range of 18 pt (for small rooms) to 28 pt (for large theatres),
with 24 pt probably being a good all-round working medium. For posters, 14 pt
is probably the minimum to go for; where posters are produced in PowerPoint
(see Box 4.4), and subsequently blown up to A0 size, the font size on screen is
likely to be somewhat smaller.
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But font size is not the only consideration. Many people have various forms
of visual impairment or reading difficulties such as dyslexia. The legibility of text
to such people can be greatly affected by the style of font chosen. In general, sans
serif fonts, like Arial or Verdana, are much clearer to people with visual impair-
ments or dyslexia than serif fonts such as Times New Roman, because of the
crisper, cleaner lines of the letters, which give them a sharper boundary with the
background.

Contrast and colour combinations. Contrast between text and background is 
obviously another issue, as is the degree of comfort in reading it. Black text on
a white background has nice high contrast, but it can be rather boring and harsh
on the eye in long presentations. Colour combinations such as pale blue or yellow
text on a dark blue background, or yellow text on green can be more comfort-
able, but be careful to avoid combinations that create problems for colour-blind
readers (combinations of red and green being an obvious one to avoid – about 
8 per cent of males are red/green colour blind). If you want to check the latter,
there are various websites and packages that can simulate the appearance of
your text to a reader who is colour-blind (e.g. http://www.vischeck.com/).

Getting attention
In both talks and posters, it is necessary to get the attention of people you want
to address. You may have a somewhat more captive audience for a talk, but that
doesn’t stop people’s attention wandering, and, if it wanders sufficiently, they
may even walk out. There are various things to think about here. One of the first
is your title slide or poster header.

The title of a written paper often tends to be literal and rather pedestrian,
though people do liven them up with snappy phrases. Thus, the title of a written
paper based on the cricket study in Box 4.2 might be something like.

The Effect of Body Size on the Escalation of Aggressive 
Encounters between Male Field Crickets Gryllus bimaculatus

W. G. Grace
Animal Behaviour & Ecology Research Group, School of Biology, 

University of Nottingham, University Park, Nottingham NG7 2RD, UK

This is perfectly descriptive of what is to follow, but a lot of text and not very
inspiring visually. In the case of a poster, where people are drifting casually past
waiting to be hooked by something attractive and interesting-looking, this is
unlikely to have much impact. Even in a talk it might suggest a rather dry and
cluttered offering is in prospect. Thus it is worth thinking of something catchy as
a title and choosing font styles and text layouts that catch the eye. Where fight-
ing in crickets is concerned, something along the lines of the following might do
the trick:
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Know Thine Enemy:

assessment and fighting in male crickets

image of two crickets fighting

W. G. Grace
photo of Animal Behaviour & Ecology Group, research
author(s) University of Nottingham, UK group logo

Again, some carefully chosen images can be used to brighten it up.

Gimmicks. In the scramble for attention, there is often the temptation to descend
into gimmickry. The advent of PowerPoint (see Box 4.4) has unfortunately
brought legion opportunities for this in the slides of spoken presentations, with
sound effects, innumerable modes of slide transition, animated cartoons, video
windows and many, many more offerings to tempt the over-enthusiastic. While
we certainly wouldn’t advise eschewing these entirely (some slide transitions,
animations and especially the use of video are extremely effective), use them
with a great deal of restraint. A gimmicky slide transition with sound effects, for
instance, may add a helpful element of surprise the first time, but it will pall to
a serious irritation by the third or fourth. In general, the use of gimmicks in slides
risks making you look more of a nerd than a slick professional.

To some extent, the case for a bit of carefully judged gimmickry is more
arguable in the case of posters, which have to speak out from a background of
countless rivals. Most posters are now printed as a single sheet (A0 size) from a
file produced by a presentation package such as PowerPoint. However, the
advantages of this in terms of ease of mounting and not having to keep track of
many separate components can be offset by the greater difficulty of making your
poster distinctive. One way in which you can combat this A0 uniformity prob-
lem is to have attachments. We have seen convincing recreations of a corner of
reed bed (complete with nest and artificial eggs of the study species), clockwork
models and miniature sound and video playback systems – all devices that suc-
cessfully made that poster stand out from the crowd enough to draw us in and
begin reading it. But we have also seen efforts (e.g. attached helium balloon ban-
ners and clumsy attempts at interactive gadgets) that made the poster look like
a tawdry fairground attraction and were decidedly off-putting. Less alternative,
and quite useful, extras are contact details, abstracts and preprints of the poster
on A4 sheets offered in a manner that can be taken away by interested visitors
to the poster – usually from a container attached to the poster.

Signposting
In a talk, slides are presented in sequence, so you might imagine there is no
problem for the audience in following the logical flow of text and images. This is
a dangerous assumption. It is easy to be fooled by your own familiarity with the
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material into assuming too much on the part of the audience. It is always worth
having a slide that outlines the structure of your talk and signposts it for people.
Thus the famous dictum ‘Stand up, say what you are going to say, say it, then sit
down’ is excellent advice. By signposting, of course, we don’t mean listing the
conventional sections of a written paper (Introduction, Methods, Results, etc.)
Even though your talk may de facto follow these sections; you should use the
opportunity of a talk structure slide to give a more specific indication of what
the talk will be about: for instance, to pursue our cricket example, a structure
slide here might go something like:

Fighting and assessment in crickets

1. why assess opponents in aggressive contests?
2. aggression in crickets
3. experimental design
4. the evidence for assessment
5. modelling assessment strategies
6. testing the model’s predictions
7. conclusions and the wider view

Again, this can be embellished with a judiciously chosen image in the corner to
give it some visual interest. The structure slide can be reprised at various points
in the talk to update the audience on where things have got to and where they’re
about to go.

A second piece of advice in terms of structuring a spoken presentation is to
move on to a new slide or point in an animated list (see Box 4.4) only when you
are ready to deal with the new material. To judge by the many speakers who
move on to the next slide or point before finishing the current one, there is a
strong temptation to hurry on. Resist the temptation! The audience’s attention
will be taken by the new material, your current point will be lost and confusion
is likely to start setting in.

Signposting in a poster presentation. In a poster, text and images tend to be pre-
sented in blocks spread over the area of the presentation. Under these circum-
stances it can sometimes be difficult to determine the intended route through it
all. Two obvious ways of overcoming this are to use arrows between successive
pieces of text, or to number each piece of text in sequence. Associated images,
tables and figures can then be numbered as Plate n, Table n or Figure n accordingly.
Numbering blocks of text is probably neater; arrows running through posters
can sometimes make them look fussy and cluttered, and you can always use a
different coloured font for your numbers to make them stand out.

Summaries
In many ways almost the most important part of your presentation is the final
impression you leave with your audience/readers. You need to finish with a bit
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of a bang in the form of some clear, crisp take-home messages that will stay with
those hearing or reading them. Thus, it is vital that you don’t just peter out at 
the end of a rambling discussion and leave the audience/readership to decide for
itself what was important about the work. Present a clear summary slide or
poster panel! The summary should be succinct and memorable, and, in a talk, we
strongly advise making it the last slide (rather than the common practice of end-
ing with the equivalent of the Acknowledgements section of a written paper).
Not only is it then the last slide the audience sees, but it can be displayed for the
longest period as it often remains on display during the question session. A sum-
mary slide/panel for the study of fighting in crickets might go something like:

Summary

n Large male G. bimaculatus are more likely to win fights
n Fighting is more severe when opponents are closely matched in size
n Both prior assessment and individual confidence influence the decision

to fight
n Fighting in the absence of females or reproductive resources may help

reduce competition when they are available

Questions
Questions from your audience/readers are an integral part of both spoken
papers and posters and deserve as much consideration as the talk or poster itself.
No study is ever the final word, and other people will often have refreshingly
new views on how it might be improved or developed. It is often possible to
imagine the sort of questions you could be asked, because you will be aware of
the study’s shortcomings and what remains to be done yourself, and it is well
worth thinking through these ahead of your presentation. But by far the best way
to prepare for what might come is to do some dummy runs of your talk or poster
to groups of people, such as classmates, members of your research group, depart-
mental seminar groups or whatever’s handy. This almost always throws up issues
you won’t have thought of, and is particularly good at highlighting where you’re
failing to make things clear. When on the spot receiving questions at your pre-
sentation proper, listen carefully to what is actually being asked; under stress
there can be a tendency to hear the question you are expecting rather than what
is really being asked. One way to avoid this trap is to begin a reply by briefly
paraphrasing the question back to the asker, not only does this help to establish
you are answering the right question, but it also gives a little extra time to marshal
your thoughts for the answer.

4.5.3 Using Microsoft PowerPoint to prepare slides and posters

Just as with preparing text and organising and analysing data, there are 
commercial software packages designed for the world of spoken and poster 
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presentations at meetings. For the same reasons as Excel (flexibility and avail-
ability), Microsoft’s PowerPoint is the almost universal package of choice here.
However, just like Excel, PowerPoint offers a combination of rich opportunities
and decided pitfalls. As with Excel, we don’t have the space here to give a full-
blown tutorial on using PowerPoint, but what follows below and in Box 4.4 is a
brief introduction to the package’s pluses and minuses.

The most obvious production advantage of PowerPoint is that slides for spo-
ken presentations are produced electronically and not photographically (i.e. as
transparencies or diapositives), a process associated with time delays, inflexible
results and, often, high cost. Unfortunately, the same advantage doesn’t apply to
posters. Although PowerPoint allows posters to be created electronically (see
Box 4.3), the actual poster still has to be produced through a time-consuming
and costly printing process and there is little scope for tinkering without reprint-
ing the entire thing.

One of the most irritating, and potentially disastrous, problems with
PowerPoint is that, despite being almost ubiquitous, different versions vary con-
siderably and perform differently on different computer systems, data projectors
and printers. As a result, there is no guarantee that what you saw during the 
creation process will appear during your talk or in your final poster, and, with
depressing regularity, your laptop may not work with the particular data pro-
jector in the auditorium. Even when all the hardware works together, colours,
fonts, layouts, animation effects and audio/visual embellishments are common
casualties of different versions of the software. It is therefore essential to check
your presentation thoroughly on the system that will be used at the time well
ahead of the giving it for real. It is also worth checking the compatibility of trans-
fer media ahead of a talk; many times we have seen the miserable consequences
of discovering five minutes before being introduced that the host machine won’t
read the floppy, CD, USB stick or whatever on which the speaker has saved their
presentation, or won’t connect with the speaker’s home network on which it
resides. Problems in all respects are particularly likely if you are switching
between PC and Macintosh systems, so always check doubly thoroughly here.

With such technical considerations in the background, Box 4.4 introduces
some basic facilities offered by PowerPoint for creating slides and posters, but
personal experience with using it will lead you to lots of others and your own
personal preferences for style and approach.

Microsoft’s PowerPoint is now almost the default vehicle for preparing and 
giving spoken and poster presentations. What follows is an extremely basic
summary of some of its facilities in this respect. As with most packages, there
are usually several ways of achieving the same result (e.g. the keyboard short-
cut Control Z undoes an action, as does selecting ‘Undo’ from the drop-down
Edit menu). Most users quickly become familiar with one way of doing things
and often remain in blissful ignorance of the others.

Box 4.4 A basic guide to PowerPoint
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Preparing slides for a talk

Slide styles
When you first boot up PowerPoint the screen offers a default slide format that
requests a title and subtitle. You may wish to use this, or you may want a dif-
ferent format. If the latter, click on the ‘New’ (empty page) icon on the far top
left of the screen and a range of alternative slide layouts will appear on the right
of the screen (of which the boot-up default layout is the first). Single click on
the design you want and it will appear centre screen ready for completion.
Where styles have ready-formatted text boxes, such as the first four in the ‘Test
Layouts’ panel, text can be added simply by clicking in the box and typing in.
When using the blank open slide in the first ‘Content Layouts’ format, text must
be added by clicking on the ‘Text Box’ button (the lined panel with the ‘A’ in
the top left corner) on the bottom tool bar, and immediately clicking on the
slide to create a panel within which to type text. Of course, the open slide 
format can be used for many other things besides text, including graphs, photo-
graphs, tables, video windows, free-style drawing and so on. Other formats offer
different combinations of image, table and text as indicated.

Backgrounds
The form and colour of the background of a slide can be changed by clicking
on ‘Format’ at the top of the screen, followed by ‘Background’ and selecting the
various colour and fill pattern options on offer. Remember to bear in mind the
legibility of any text you may want to overlay on the background. In general, 
the simpler and plainer the background the better. Complicated and fussy
images, like photographs of scenery or organisms, usually make very poor, 
confusing backgrounds.

Font size and style
The font size can be changed by selecting the appropriate number in the ‘Font’
box in the top tool bar (the white box with a number in it next to the font style
[e.g. Arial, Times New Roman] option). Follow the guidelines for font sizes and
styles in the main text. The colour of your text can be changed by highlighting
it and clicking on the A with a coloured (default black) bar underneath it on
the tool bar and choosing a colour from the available options; alternatively
click on the symbol and choose a colour prior to typing your text. Be aware of
the strengths and pitfalls of different combinations of font and background
colours (see text).

Transitions between slides
PowerPoint offers many different transition effects when moving from one 
slide to the next: fade or dissolve in, wipe effects, cover over and many more.
To choose one, click on the ‘Slide sorter view’ button (the one with four small
squares in it) at bottom left of the screen. This displays your presentation 
as rows of slides. Now click on the slide(s) (hold down ‘Shift’ if you wish to
select more than one slide simultaneously) for which you wish the transition
effect to apply, then click on ‘Transition’ in the top tool bar. This produces a
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menu of options to the right of the screen, on which you can click to make your
selection. PowerPoint will briefly demonstrate the effect as you click it.

‘Build’ effects within slides
As well as customising transitions between slides, you can customise the man-
ner in which text appears in some slide formats. The usual format for this is the
numbered or bullet-pointed text slide (the third in the panel of ‘Text Layouts’ 
formats above). To choose a style here, click on the ‘Normal view’ button to 
the farthest left at the bottom of the screen and move to the slide you wish 
to customise. Now click on ‘Design’ in the top tool bar, then on ‘Animation
schemes’ in the options panel that pops up to the right, and finally on your 
chosen effect. Again PowerPoint will quickly demonstrate the effect.

Images and movie and sound files
Images, such as photographs or graphs or tables from statistics packages 
or scanned from publications, can easily be added to slides in PowerPoint,
either from the Windows clipboard, if they’ve been copied there from another
Windows source ( just use the ‘Paste’ option to copy them into the active slide
in ‘Normal view’), or using the ‘Insert’ option, if the images are in files saved
elsewhere. To use the latter, click on ‘Insert’ and, if you want, say, a photograph
or figure that is saved as a ‘jpg’ or ‘gif’ file, click ‘Picture’ and ‘From File’ then
browse for the file concerned. Double-click on the file name and the image will
appear in the slide. You will now need to size and position it as required using
the mouse. The ‘Picture’ option also allows other possibilities, such as inserting
‘Clip Art’ images and ‘Autoshapes’ (the standard drawing shapes available from
the lower Windows tool bar).

Movie files (such as ‘avi’ or ‘mpeg’ files) can be inserted in the same way.
From ‘Insert’ click on ‘Movies and Sounds’, then ‘Movie from File’ and browse
for the required file. Double-click on it to make it appear in the slide. At this
point PowerPoint gives you the option of having the movie play automatic-
ally or not until you click on it. Choose which you wish, and size and 
position the movie window as required. You can now customise the animation
in various ways. To make the movie play as soon as the slide appears, right-
click on the movie window and choose ‘Custom Animation’. In the right-hand
column that now appears, click on the downward pointing arrowhead on the
blue background immediately next to the title of the movie file and check 
the ‘Start With Previous’ option. Click on the arrow again, select ‘Timing’ and
make sure there is a zero second delay (or type in a delay of your choice); then
click ‘OK’. If you want the movie clip to repeat play until you have finished
with the slide, right-click on the movie window again and click on ‘Edit Movie
Object’. In the resulting dialogue box, check the ‘Loop until stopped’ option
and click ‘OK’.

For sound (e.g. ‘wav’) files, the process is the same as for movies up to 
the point that a small loudspeaker icon appears on the slide to show that a
sound has been inserted. One very useful feature is that by highlighting this 
icon and using ‘Custom Animation’, you can make the sound play when you
press the Enter key, avoiding the need to position the mouse arrow over the
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icon. You can also arrange the slide in an animation sequence triggered by 
the appearance of a previous item such as a picture of the animal making 
the sound. An important consideration for both sounds and movies is the size
of the file. Even short clips usually exceed 1 MB and take what seems minutes
to load. Remember to keep clips as short as possible and check how long they
take to load – preferably with the setup that will be used when delivering 
the talk.

Checking slides and running the presentation
At any point during the creation of your presentation, you can check what
slides will look like when actually running by clicking on the ‘Slide Show’ 
button, which is the one with the goblet-like icon representing a slide screen on
the bottom tool bar. This is also the button to click when you give the presen-
tation itself. Left-clicking the mouse, or pressing the ‘Page Down’ or carriage
return keys on the keyboard will move the slide show forwards. Right-clicking
the mouse and clicking ‘Previous’, or pressing the ‘Page Up’ key will move the
slide show back.

Preparing a poster
A poster in PowerPoint is usually prepared as a single slide, which is then
printed at whatever size is required, normally A0, but A3 and other sizes are
occasionally used. Because you are working within a single slide, it is usually
necessary to work at something like 150 per cent or 200 per cent normal size,
which can be set using the percentage ‘Zoom’ scale in the top tool bar. Adding
text is then a matter of clicking on the ‘Text Box’ button on the bottom tool bar
and immediately clicking on the slide to create a panel within which to type
text (as for open field slides above). Because you are working at magnification,
there is a certain amount of judgement to be made about font sizes. First you
need to decide how much text there is going to be in total, and how this will be
broken up and mixed with figures, tables and images across the poster. Then
choose a font size that will accommodate this, but be clearly legible at a com-
fortable distance once the poster is printed up. You can usually judge this from
its appearance in ‘Slide Show’ (see above) format. Graphs, tables, photographs,
etc. can be inserted as for talk slides via the clipboard or ‘Insert’ options. Text
boxes and images can then be moved around with the mouse until the desired
layout has been achieved. Don’t forget a good clear banner or box title with all
the required information in large, clear font (see suggestions for title slides in
the text).

4.6 Plagiarism

Before leaving our discussion of reporting work, we have to mention one more
issue that has recently been gaining attention in the general education commun-
ity, and that is plagiarism. Plagiarism refers to any attempt to pass off somebody
else’s work as your own, and encompasses a wide range of possibilities from
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downloading pre-prepared essays from the Internet/World Wide Web, or copying-
and-pasting tracts of text or other material from other people’s documents into
your own without due acknowledgement of the source, to the slightly greyer 
area of insufficient referencing or use of quotation marks where odd phrases,
sentences or ideas have been gleaned from the literature. Science depends on
honesty and an ability to attribute ideas and results properly in reporting studies,
so quite apart from any dishonest advantage that may be sought in educational
assessments, wanton plagiarism undermines the scientific process itself. It is
therefore a serious matter. Of course, the possibility of plagiarism has always
been with us, but, in recent years, the Internet/World Wide Web has greatly
exacerbated the problem by making available a vast amount of material that is
downloadable at the push of a button and (at least until very recently) difficult
for an external party to trace. Many educational establishments now use sophist-
icated anti-plagiarism software, which can scan a submitted piece of work and
quickly match its contents to other electronic sources, so the arms race against
cheats has moved on significantly. However, as with any policing process, it is
possible to fall foul of the system inadvertently through carelessness or ignorance.
Our advice, therefore, is to take careful note of the reporting conventions in 
professional journals, books and conferences, and, especially if you’re a student,
the guidelines given to you by your university, college or school.

4.7 Summary

1. Confirmatory analyses are usually presented in summarised form (e.g. sum-
mary statistics, scattergrams) as tables or figures or in the text of a report. In
all cases, sample sizes (or degrees of freedom), test statistics and probability
levels should be quoted. In the case of tables and figures, these can be
included within the table or figure itself or within a full, explanatory legend.

2. Results should almost never be presented as raw numerical data because
these are difficult for the reader to assimilate. In the exceptional circum-
stances where the presentation of raw data is helpful, presentation should
usually be selective to the points being made and is best incorporated as an
Appendix.

3. The axes of figures should be labelled in a way that conveys their meaning
clearly and succinctly. Where analyses in different figures are to be com-
pared directly, the axes of the figures should use the same scaling.

4. The legends to tables and figures should provide a complete, self-contained
explanation of what they show without the reader’s having to search else-
where for relevant information.

5. Reports of investigations should be structured into clearly defined sections:
Introduction, Methods, Results, Discussion, References. Each section has a
specific purpose and deals with particular kinds of information. The dis-
tinction between them should be strictly maintained. When reports are long
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or involved it can be helpful to add an Abstract and/or Conclusions section
to highlight the main points and take-home messages.

6. At a time when increasing importance is being attached to the public under-
standing of science, writing for a general interest readership, as opposed to
the more usual professional scientific one, is a useful skill. Success often
depends on avoiding technical jargon, or at least explaining it in everyday
language, and using familiar analogies or imagery to get attention and facil-
itate understanding.

7. Information can also be presented in the form of talks or poster papers at
meetings. This can be a very important means of disseminating your work
and getting yourself known, and, as usual, there are various ‘dos’ and
‘don’ts’ that make for good practice in preparing presentations.

8. Be sure to reference sources of information properly in any presentation of
your work. Plagiarism (an attempt to pass off somebody else’s work as your
own) is a serious offence in education and scientific research.

Reference
Sokal, R. R. and Rohlf, F. J. (1995) Biometry, 3rd edition. Freeman, San Francisco.
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Test finder and help guide

Test finder
A Looking for a difference or a trend? (if unsure, go to Help 1)

* Trend – go to B
* Difference – go to C

B Have you fixed the X-values experimentally (looking to see whether changes in X cause changes in Y) or
do you require the equation of the line itself (e.g. for predicting new values)? (if unsure, go to Help 2)

* No – correlation
* Yes – linear regression

C Does each data value belong to treatments within one level of grouping, or does it belong to more than
one level of grouping? (if unsure, go to Help 3 and Help 6)

* One level of grouping (one-way designs) – go to D
* More than one level of grouping (n-way designs) – go to G

D Are data for each treatment replicated? (if unsure, go to Help 4)

* No – go to E
* Yes – go to F

E Data are in the form of counts

* No – (not analyzable)
* Yes – 1 × n chi-squared

F Data in one treatment are independent of those in other treatments (if unsure, go to Help 5)

* No > only two treatments – matched-pairs tests, or use
one-way repeated-measures ANOVA

> two or more treatments – one-way repeated-measures ANOVA

* Yes > only two treatments – t-test or Mann–Whitney test or use
one-way ANOVA

> two or more treatments – one-way ANOVA

G Are data for treatments within each level of grouping replicated? (if unsure, go to Help 6)

* No – n × n chi-squared
* Yes – n-way ANOVA
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Help 1 Difference or trend?
n Difference predictions are concerned with some kind of difference between

two or more groups of data. The groups could be based on any character-
istic that can be used to make a clear-cut distinction, e.g. sex, drug treatment,
habitat. Thus a difference might be predicted between the growth rates of
men and women, or between the development of disease in rats given drug
A versus those given drug B versus those given a placebo.

n Trend predictions are concerned not with differences between mutually exclus-
ive groupings but with the relationship between two more or less continu-
ously distributed measures, e.g. the relationship between the size of a shark
and the size of prey it takes, or the relationship between the amount of rain-
fall in a growing season and the number of apples produced by an apple tree.

Help 2 What sort of trend?

The basic choice here is between fitting a line (regression) or not (correlation).
Correlation is used whenever we merely want to know whether there is an

association between X and Y – there is no real dependent or independent vari-
able, and when plotted as a scattergraph you could equally well plot Y against X
as opposed to X against Y.

Regression was developed for situations where the experimenter manipulates
the values of the independent variable (X) and measures the impact of these
manipulations on another dependent variable (Y). You are therefore looking 
for a causal relationship between X and Y – changes in X cause changes in Y.
However, because knowing the slope of the relationship between X and Y is use-
ful in many other contexts, the use of regression has expanded to incorporate
many cases where the X values are merely measured rather than manipulated.
Technically this is wrong, but this usage is so firmly embedded in biological prac-
tice that the majority of scientific investigations do it. An example is when you
want to use the relationship to predict the value of Y for a particular X value.
Comparisons of slopes are also extremely informative, and used extensively in
biological research.

Help 3 Levels of grouping

Many difference predictions are concerned with differences at just one level of
grouping, e.g. differences in faecal egg counts following treatment of mice with
one of four different anthelminthic drugs. Here drug treatment is the only level
of grouping in which we are interested. However, if we wished, say, to distin-
guish between the effects of different drugs on male and female mice, we should
be dealing with two levels of grouping: drug treatment and sex.

Help 4 Replication

Replication simply means that each treatment within a level of grouping has more
than one data value in it. The table below shows replicated data as columns of
values within each treatment in a one-way (i.e. one level of grouping) design:
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Group

Pesticide A Pesticide B Control

10 30 0
5 27 1

% mortality 3 50 1
of pest 0 6 0

1 3 2
20 3 5

Help 5 Independence
Unless specifically allowed for in the analysis, all statistical analyses assume that
each data value is independent of all others. Each value in one group is non-
independent of one from each of the other groups if they have something in 
common (e.g. it is measured on the same individual, or derives from animals
from the same cage – i.e. a given individual is exposed to each treatment in 
turn, or the same cage provides animals for each treatment). The source of 
non-independence thus needs to be taken into account in any analysis, and so
requires a so-called repeated-measures design.

Help 6 Rows and columns
If data have been collected at two levels of grouping, then each data value can
be thought of as belonging to both a row and a column (i.e. to one row/column
cell) in a table, where rows refer to one level of grouping (say sex – see Help 4)
and columns to the other (drug treatment – see Help 4). If there are several 
values per row/column cell, as below for the number of individuals dying during
a period of observation:

Treatment

Experimental Control

Male 3, 4, 8, 12 23, 24, 12, 32
Sex

Female 1, 0, 2, 9 32, 45, 31, 21

then a two-way analysis of variance is appropriate. If there is just a single count
in each cell, as in the number of male and female fish responding to an experi-
mental or control odour stimulus:

Treatment

Experimental Control

Male 27 91
Sex

Female 12 129

then an n × n chi-squared test is appropriate.
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Some self-test questions
(Answers on p. 229)

1. An experimenter recorded the following body lengths of freshwater shrimps
(Gammarus pulex) in three different lakes.

Body size (mm)

Lake 1 Lake 2 Lake 3

9.9 10.5 9.6
8.7 12.1 9.0
9.6 11.2 8.7

10.7 9.7 13.2
8.9 8.7 11.9
8.2 11.1 14.0
7.7 10.7 12.9
8.1 11.8 10.8

Faunal diversity in the lakes was known (1 < 2 < 3) and the experimenter
expected shrimps from more diverse lakes to be smaller because of increased
interspecific competition. To test this idea he compared body lengths in
each pair of lakes (1 versus 2, 2 versus 3 and 1 versus 3) using Mann–Whitney
U-tests. Is this an appropriate analysis? If not, what would you do instead?

2. How would you decide between correlation and regression analysis when
testing a trend prediction?

3. The following is part of the Discussion section of a report into the effects of
temperature and weather on the reproductive rate of aphids on bean plants.

While the results show a significant increase in the number of aphids pro-
duced as temperature rises, there is a possible confounding effect of the
age of the host plant and the rate of flow of nutrients. Indeed, there was
a stronger significant positive correlation between nutrient flow rate and
the number of aphids produced (rS = 0.84, n = 20, p < 0.01) than between
temperature and production (see Results).

Do you have any criticisms of the piece?
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4. What does the following tell you about the analysis from which it derives?

H = 14.1, d.f. = 3, p < 0.01

5. An agricultural researcher discovered a significant positive correlation (rS =
0.79, n = 112, p < 0.01) between daily food intake and the rate of increase in
body weight of pigs. What can the researcher conclude from the correlation?

6. A plant physiologist measured the length of the third internode of some
experimental plants that had received one of three different hormone treat-
ments. The physiologist calculated the average third internode length for
each treatment and for untreated control plants. The data were as follows:

Treatment

Control Hormone Hormone Hormone

1 2 3

Average internode 
length (mm) 32.3 41.6 38.4 50.2

To see whether there was any significant effect of hormone treatment, the
physiologist performed a 1 × 4 chi-squared test with an expected value of
40.6 in each case and three degrees of freedom. Was this an appropriate test?

7. What do you understand by the terms:

(a) test statistic,
(b) ceiling effect,
(c) statistical significance?

8. The figure shows a significant positive correlation, obtained in the field,
between body size in female thargs and the percentage of females in each
size class that were pregnant. From this, the observer concluded that male
thargs preferred to mate with larger females. Is such a conclusion justified?
Give reasons for your answer.
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9. Why are significance tests necessary?

10. The following were the results of an experiment to look at the effect of
adding an enzyme to its substrate and measuring the rate at which the sub-
strate was split. In the control Treatment A, no enzyme was added; in
Treatment B, 10 mg of enzyme was added; in Treatment C, 10 mg was
added but the reaction was cooled; and in Treatment D, 10 mg was added
but the reaction was warmed slightly.

Treatment Treatment Treatment Treatment

A B C D

0 20 52 71
1 21 69 92
2 35 100 55
1 15 32 78
0 20 105
0 24 82

92

What predictions would you make about the outcome of the experiment
and how would you analyse the data to test them?

11. A farmer called in an agricultural consultant to help him decide on the best
housing conditions (those resulting in the fastest growth) for his pigs. Three
types of housing were available (sty + open paddock, crating, and indoor
pen). The farmer also kept four different breeds of pig and wanted to know
how housing affected the growth rate of each. What analysis might the con-
sultant perform to help the farmer reach a decision?

12. Figures (a) and (b) were used by a commercial forestry company to argue
that the effect of felling on the number of bird species living in managed
stands (assessed by a single standardised count in each case) was similar in
both deciduous and coniferous forest. Would you agree with the company’s
assessment on this basis?
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13. What would a negative value of the test statistic r signify to you?

14. Derive some hypotheses and predictions from the following observational
notes:

Sampled some freshwater invertebrates from three different streams
using a hand-net. There were more individuals of each species at some
sites than others, both within streams and between them. Also some sites
had a more or less even distribution of individuals across all species
whereas others had a highly biased distribution with some species 
dominating the community. Some species occurred in all three streams
but they tended to be smaller in some streams than others. A number of
predatory dragonfly nymphs were recorded but there was never more
than one species in any one sample, even when more than one existed 
in a stream. Water quality analyses showed that one stream was badly
polluted with effluent from a local factory. This stream and one of the 
others flowed into the third stream, forming a confluence. It was noticed
that stones and rocks on the substrate had fewer organisms on or under
them in regions of faster flow rate.

15. Is chi-squared used for testing differences or trends?

16. A student in a hall of residence suffered from bed bugs. During the course
of a week he was bitten 12 times on his legs, 3 times on his torso, 6 times
on his arms and once on his head. Could these data be analysed for site
preferences by the bugs? If so, how?

17. An experimenter had counted the number of times kittens showed ele-
ments of play behaviour when they were in the presence of their mother 
or their father and with or without a same-sex sibling. The experimenter had
collected ten counts for each condition: (a) mother/sibling, (b) mother/no
sibling, (c) father/sibling, (d) father/no sibling, and was trying to decide
between a 2 × 2 chi-squared analysis and a 2 × 2 two-way analysis of vari-
ance. What would you suggest and why?

18. Why do biologists regard a probability of 5 per cent or less as the criterion
for significance? Why not be even stricter and use 1 per cent?

19. A fisheries biologist was interested in the maximum size of prey that was
acceptable to adult barracuda. To find out what it was, he introduced six
adult barracuda into separate tanks and fed them successively larger species
of fish (all known to coexist with barracuda in the wild). He then calculated
the mean size of the fish that the barracuda last accepted before refusing a
fish as a measure of the maximum size they would take. Is this a sensible
procedure?

20. A psychologist argued that since males of a species of monkey had larger
brains than the females there was less point in trying to teach females com-
plex problem-solving exercises. Any comments?
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What implications does this have for the regression analysis?

24. What is meant by pseudoreplication?

25. When a botanist compared the frequency of different leaf sizes on a tree to
a normal distribution, the significance test comparing the two distributions
yielded a test statistic value with an associated probability of 0.0341. Does
the botanist’s data conform to a normal distribution or not?

26. A behavioural ecologist was interested in the effects of other competing
males in the environment on sperm production by focal courting males. Her
prediction was that courting males should produce more sperm to transfer
to a female if there are more males around to compete for her. She decided

SOME SELF-TEST QUESTIONS 205

21. An ecologist studying populations of voles in different woods suspected
from a glance at the data that males from some woods had larger adrenal
glands than those from others. Unfortunately, the age of the animals also
appeared to differ between the woods. How might the ecologist test for a dif-
ference in adrenal glands between woods while controlling for the potential
confounding effect of age?

22. What do you understand by an ‘order effect’?

23. A parasitologist wished to test for the effect of increasing the amount of
food supplement to nestling birds on subsequent parasite burdens as adults.
The parasitologist intended to carry out a linear regression analysis with
amount of food supplement on the x-axis and adult parasite burden on the
y-axis. However, when the distribution of parasite burden data was checked
for normality, the following was found:
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to test her idea by exposing 20 focal males to each of three treatments: (a) no
other males present, (b) one other male present, and (c) four other males
present. She was careful to randomise the order in which the three treat-
ments were presented to her different subjects and she measured the width
of the thorax of each subject male and stimulus female to gauge their body
size. The number of sperm produced was estimated as the weight of the
spermatophore (package of sperm) transferred to the female. How might
she go about analysing the data from the experiment to test her prediction?

27. A psychologist interested in sexual attitudes in men and women from 
different social environments carried out a questionnaire survey of some
150 subjects. The questionnaire consisted of 40 questions covering a range
of aspects of sexual behaviour from behavioural characteristics preferred 
in potential partners to attitudes towards promiscuity and homosexuality. It
also asked for various items of background information, such as financial
status, family background, age, religion and ethnic group. How might the
psychologist set about preparing this kind of data for analysis, and what
analysis might they choose?

28. In a study of the effects of various environmental variables on resistance to
an experimental infection in male house mice (Mus domesticus), a student
had measured four variables with respect to subject males: food availability
during development, maternal body weight, local population density and 
litter size. These were then related to a measure of resistance to an experi-
mental infection with a blood protozoan (clearance rate) by means of four
separate regression analyses with clearance rate as the dependent variable
in each case. Is this a reasonable approach to the analysis?

29. In a study of the behaviour of foraging bees, individual bees were pres-
ented with flowers treated in one of three different ways: (a) not previously
visited by any bees, (b) previously visited by the subject forager herself, and
(c) previously visited by a different individual forager. Several aspects of
each subject’s behaviour were measured, including the speed of approach to
the flower, the length of time spent hovering in front of the flower before
visiting it, whether the flower was touched by the bee, how many times the
bee touched the flower with its antennae, the duration of antenna touches,
whether the flower was visited at all, the length of any visit, the length of
time spent hovering by the flower after a visit, and the speed of departure
from the flower. How might these data be analysed to reveal how the bees
responded to the different flower treatments?

30. A physiologist was interested in the effect of mobile phones on nerve 
cell (neurone) function. He therefore measured impulse transmission rates
in replicated laboratory preparations of neurones under three different
strengths of electromagnetic field, plus a control of zero magnetic field.
Each preparation was only used once, and each treatment was replicated 
30 times. What kind of analysis is appropriate?

ASKQ_Z02.qxd  20/06/2007  11:27 AM  Page 206



Appendix I
Table of confidence limits to the median

Table of non-parametric confidence limits to the median

Sample size (n) r (for p approx. 95%)

2 –
3 –
4 –
5 –
6 1
7 1
8 1
9 2

10 2
11 2
12 3
13 3
14 3
15 4
16 4
17 5
18 5
19 5
20 6
21 6
22 6
23 7
24 7
25 8
26 8
27 8
28 9
29 9
30 10

r denotes the number of values in from the extremes of the data set that identifies the 95 per cent
confidence limits (see text). Modified after Colquhoun (1971) Lectures on biostatistics, Clarendon 
Press, Oxford.
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Appendix II
How to calculate some simple significance tests

Examples of tests for a difference between two or more groups

If you calculate the test statistic of many parametric statistical tests by hand, the 
calculations often involve a standard set of core operations on the data. Rather than
repeating them in all the relevant boxes, we have placed them here for reference. They
all involve calculating a quantity known as the sum of squares, which is actually the
same operation performed when finding the standard deviation or standard error (see
Box 2.1).

1. Follow steps 1–3 of Box 2.1. The resulting quantity is the sum of squares of x, 
conventionally denoted by Sxx.

Sometimes you will have a y-variable as well as an x-variable (e.g. in regression, see
p. 124). If so:

2. Calculate the sum of all the y-values in the data set (∑y).

3. Square all the y-values and sum them, giving (∑y2).

4. Multiply the x- and y-values of each x–y pair together, and add them together, 
giving (∑xy).

5. Calculate ∑y2 − [(∑y)2/n], giving the sum of squares of y, Syy.

6. Calculate ∑xy − [(∑x)(∑y)/n] giving the sum of the cross-products, Sxy.

Box A1 The basic calculations for parametric test statistics

1. Frame the prediction. In this case it is the general prediction that the two groups
(A and B) will have different mean values (A ≠ B). Thus the null hypothesis is that
the two group means will not differ.

2. Count the number of data values in the first group; this number is referred to 
as n1. If n1 = 1, then there is definitely something wrong! (If this number repres-
ents a count of the number of items in one of two categories – that form the two

Box A2a (i) Mean values: how to do a general parametric 
test for two groups (two-tailed t-test)
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groups – then you should be doing a χ2 test. If it is a rank or a constant-interval
measurement, then you need to collect some more data!) Count the number of
data values in the second group; this number is referred to as n2 (it should be
greater than 1, as before).

3. Calculate the variances of each group separately (see Box 2.1 for how to do this),
producing s1

2 and s2
2.

4. Calculate the value of P = (n1 + n2)/(n1n2).

5. Calculate the value of Q = (s1
2(n1 − 1) + s2

2(n2 − 1))/(n1 + n2 − 2).

6. Calculate the value of R = √(PQ). This is the standard error of the difference
between the two groups.

7. Calculate the mean values of each group separately, and take the difference S =
(µ1 − µ2). Switch the mean values round so as to make the difference positive,
since in a general test we are not interested in the direction of the difference, but
merely in whether it differs from zero.

8. Calculate the value of the test statistic, t = S/R.

9. In order to calculate t, we needed to know the difference in mean values, and 
the s.e. of this difference, i.e. two prior parameters were required. The degrees of
freedom of t are therefore n1 + n2 − 2.

10. Look up the two-tailed value of t in Table D of Appendix III for the critical value
for your degrees of freedom. If your value is greater than the relevant value in the
table, then the difference you found is significant.

1. Frame the prediction, i.e. decide which of the two groups (A and B) is predicted
to have the greater mean value. There needs to be some a priori reason (theory, or
previous published or gathered data) for this prediction. Suppose that on the basis
of your knowledge, you predict that A > B. The null hypothesis is that the mean
values for the two groups do not differ in the predicted direction.

2. Calculate the value of t as steps 2–9 above, but make sure that the difference in
mean values is done in the way that is predicted to generate a positive difference.
Here you are predicting that A > B, and hence (A − B) should generate a positive
value of t. If it does not actually generate a positive difference, then you know
automatically that the result is not significant. Note that if the result is an unusu-
ally large but negative value of t (that would have been significant, had you pre-
dicted the opposite pattern of mean values), you are not allowed to conclude
anything other than that your prediction is not supported by the data. This is the
cost of a specific (one-tailed) prediction paid in exchange for the benefit of the
more powerful test.

3. Look up the critical value of a one-tailed t-test in Table D of Appendix III using
the degrees of freedom you have. If your t-value is greater than the critical one,
then you conclude that the result is significant: the evidence suggests that the
group mean predicted to be greater really is so, and you reject the null hypothesis.

Box A2a (ii) Mean values: how to do a specific parametric 
test for two groups (one-tailed t-test)
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Box A2b (ii) Mean ranks: how to do a specific non-parametric
test for two groups

1. Count the number of data values in the group with the fewer values (if there is
one); this number is referred to as n1.

2. Count the number of data values in the other group; this is n2.

3. Rank all the values in both groups combined. The smallest value takes the lowest
rank of 1, the next smallest value a rank of 2 and so on. If two or more values 
are the same they are called tied values and each takes the average of the ranks
they would otherwise have occupied. Thus, suppose we have allocated ranks 
1, 2 and 3 and then come to three identical data values. If these had all been 
different they would have become ranks 4, 5 and 6. Because they are tied, how-
ever, they each take the same average rank of 5 ((4 + 5 + 6)/3), though – and this
is important – the next highest value still becomes rank 7 just as if the three tied
values had been ranked separately. If there had been only two tied values they
would each have taken the rank 4.5 ((4 + 5)/2) and the next rank up would 
have been 6. We should thus end up with rank values ranging from 1 to N, where
N = n1 + n2.

4. Add up the rank values within each group giving the total R1 and R2 respectively.

5. Calculate U1 = n1 × n2 + ((n1(n1 + 1))/2) − R1.

6. Calculate U2 = n1 × n2 − U1.
If U2 is smaller than U1 then it is taken as the test statistic U. If not, then U1 is

taken as U.

7. We can now check our value of U against the threshold values in U tables (a 
sample is given in Appendix III, Table B). If our value is less than the threshold
value for a probability of 0.05, we can reject the null hypothesis that there is 
no difference between the groups. Note that, in this test, we use the two sample
sizes, n1 and n2, rather than degrees of freedom to determine our threshold 
value.

If one of the groups has more than 20 data values in it, U cannot be checked against
the tables directly. Instead, we must use it to calculate another test statistic, z, and then
look this up (some sample threshold values are given in Appendix III, Table C). The
calculation is simple:

z
U n n

n n n n
=

− ×
+ +

( )/
[( )( )( )]/

1 2

1 2 1 2

2
1 12

Box A2b (i) Mean ranks: how to do a general non-parametric
test for two groups (Mann–Whitney U-test)

There is no non-parametric test specially designed to test for a specific difference
between two groups. Use the specific non-parametric analysis of variance (see
Box 3.4a), because this can cope with any number of groups.
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1. Frame the prediction. In this case, the general prediction being made is to ask
whether there are any differences among the mean values of the groups. Therefore
the null hypothesis actually tested is that there are no differences among the mean
values of the groups.

2. The test considers i groups of data, each of which contains ni data values. The total
number of data values in all groups together = N = ∑ni.

3. Calculate the mean values of each of the groups, µi.
Work out T, the total sum of squares of all the data (follow Box 3.2, items 1–3).

4. Work out Si, the sum of squares for the data of each group separately (again, fol-
low Box 3.3, 1–3).

5. Calculate the error sum of squares, SSerror = ∑Si .

6. Calculate the among-groups sum of squares, SSamong = T − SSerror. This should give
the same result as calculating the sum of squares using the mean values µi rather
than the raw data.

7. The d.f.total, the total degrees of freedom, is N − 1.

8. The among-groups degrees of freedom, d.f.among, is (i − 1).

9. The error degrees of freedom, d.f.error, is (N − i).

10. The mean square among groups, MSamong = SSamong/d.f.among.

11. The error mean square, MSerror = SSerror/d.f.error.

12. The test statistic, F = MSamong/MSerror.

13. The degrees of freedom for F are d.f.among, d.f.error

(note that F has two values for degrees of freedom, unlike other test statistics,
which have only one).

14. Now look up the critical value of F in Table G of Appendix III for f1 = d.f.among, and
f2 = d.f.error.

15. If your value for F is greater than the critical value, then the result is taken to be
significant, and we reject the null hypothesis of equal mean values for all groups.
Present the one-way ANOVA laid out in the standard manner (see worked example
in Appendix II).

16. Note that this is a general prediction and, therefore, we can only conclude 
that there are some differences among the means: we are not allowed to say which
particular pair of mean values are significantly different because we did not make
any specific prediction beforehand about the ordering of the mean values, nor 
did we set up planned specific contrasts between particular sets of groups. Many
researchers would like to be able to make such post hoc tests, however, and a
plethora of different methods are available and are often used. However, they
should only be used as a rough guide to what the differences might be, preferably
to set up a priori hypotheses for a new data set to test. Many people use the least
significant difference, or LSD test. All this does is to take the MSerror from the
ANOVA (which is an estimate of the variation within groups) and construct a 
95 per cent confidence limit with it using:

Box A3a (i) Mean values: how to do a general parametric 
one-way analysis of variance (ANOVA)
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LSD = tN−i × √[(2/n) × MSerror]

where tN−i is the 5 per cent threshold value of t for N − i degrees of freedom. This
looks a simple enough procedure, but in fact the LSD test is only accurate for a
priori contrasts. It should, therefore, only be used as a rough guide in post hoc
testing.

Unfortunately there is effectively no parametric equivalent of the test for a particular
rank order of mean ranks, as in Box A3b(ii). Although one does exist, called isotonic
regression (see Gaines and Rice, 1990), it is very obscure and hardly ever used; it also
involves computer-intensive randomisations of the data, and is well beyond the scope
of this book. More common (but still unusual) is the use of a priori contrasts. If done
in advance of obtaining the data, these allow (i − 1) contrasts to be made. We explain
this technique here.

1. Each contrast consists of one subset of the i groups (A) contrasted against another
subset (B) (for example, a control (A) versus all treated groups (B)): each there-
fore involves effectively creating two groups out of the data, and testing them using
a t-test. Such contrasts can themselves be either general (A ≠ B) or specific (e.g. 
A > B).

2. Frame the predictions. Here you do this by formulating the contrasts that you
want to make in advance of collecting the data. You are allowed (i − 1) contrasts.
Express each contrast as an inequality, and make the left-hand side greater or
equal to zero. For example, if you have three groups (A, B and C), and want to test
whether group A is different from the other two groups (i.e. from the average of 
B + C), then this general hypothesis is that:

A ≠ (B + C)/2

and hence

2A − B − C ≠ 0, i.e. +2(A) − 1(B) − 1(C) ≠ 0

This gives us a set of coefficients to apply to the mean values of each group; in this
case they are +2, −1 and −1 for the mean values of groups A, B and C, respectively.

Groups that you want to leave out of the contrast have a coefficient of zero.
Thus another example might be that you are predicting that the control group A
has a greater mean value than group C; this specific hypothesis is that:

A > C

and hence (making the left-hand side greater than zero)

+1(A) + 0(B) − 1(C) > 0

The coefficients are labelled as λi for the i groups.

3. You can check that you have a valid set of coefficients, because if so, then they
sum to zero, i.e. ∑λi = 0.

In addition, each contrast must be independent of all the others. This is 
the main reason why a maximum of (i − 1) contrasts are allowed, since it is not
possible for more than that to be independent. Statistically, if two contrasts are

Box A3a (ii) Mean values: how to do a specific parametric
one-way ANOVA
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independent they are called orthogonal. If you have equal sample sizes per group
(as every well-designed experiment should have!), you can easily check whether
any two contrasts (a and b) are independent since the following must be true:

∑λia × λib = 0

In the case of unequal sample sizes of ni per group, the equivalent formula is 
∑ni × λia × λib, and there are additional complications later on in the calculation.
Strictly it is not essential for every contrast to be independent, but if they are not
(as in this example), you need to adjust the threshold probability of significance:
instead of 0.05, it becomes 1 − (0.95)1/r, where r = the number of non-independent
contrasts you make.

4. Do a general parametric one-way ANOVA first (see Box 3.5a(i)), since technically
you are breaking the among-group differences down into specific independent
contrasts (decomposing the sums of squares in statistical jargon). You will need
the error mean square, MSerror, to test each contrast.

5. For each contrast, obtain the coefficients (λi) and using the mean values (mi) for
each of the original groups, do the following calculation, which results in a sum of
squares for the contrast. This contrast has one degree of freedom, and hence is
also a mean square (MS):

L = ∑λi × mi

If you are testing a specific hypothesis about the contrast, check at this point that
L is positive. If it is, this means that the data follow the predicted pattern (ana-
logous to the positive value of a one-tailed t-test). If it is not positive, then you know
already that your hypothesis will not be supported by the data, and will not be
significant.

MSL = L2n/∑λ i
2

where n is the sample size of each group.
If you have unequal sample sizes for your groups, follow the method of Sokal

and Rohlf (1995, pp. 528–529), but you should probably use a computer package
to do this calculation for you!

6. Now form the variance ratio

F = MSL/MSerror

where MSL is the mean square for the contrast, and MSerror is the error mean
square from the one-way ANOVA. The test statistic is then

t = √F

7. The degrees of freedom of the t-test for the contrast is a(n − 1), where a is the 
number of groups involved in the contrast (excluding the groups left out, those
with coefficients of zero).

(a) If your hypothesis is general, then look up the critical value of a two-tailed 
t-test in Table D of Appendix III.

(b) If your hypothesis is specific, then look up the critical value of a one-tailed 
t-test in Table D of Appendix III.

8. Repeat steps 2–7 for each contrast.

9. Present the results of the one-way ANOVA, as well as the contrasts, laid out in the
standard manner.

ASKQ_Z04.qxd  18/06/2007  03:27PM  Page 213



214 APPENDIX II

There are two ways of making specific predictions about the mean ranks of your
groups. The one we favour here uses all the groups in a single a priori prediction of
their rank order. The alternative is to use a priori contrasts (see point 9, below).

1. Formulate the specific prediction by specifying a particular rank order of the mean
ranks of the groups, based on some a priori knowledge (theory, or previous pub-
lished or gathered data), in advance of obtaining the data. The null hypothesis is
that the rank order does not follow the prediction.

Box A3b (ii) Mean ranks: how to do a specific non-parametric
one-way ANOVA

1. Formulate the prediction. In this case, the general prediction being made is to ask
whether there are any differences at all among the mean ranks of the groups.
Therefore the null hypothesis actually tested is that there are no differences among
the group mean ranks.

2. The test considers i groups of data, each of which contains ni data values. The total
number of data values in all the groups together = N = ∑ni.

3. Rank all the values across all the groups combined (as in the U-test), giving low
rank scores to low values. Once again, tied values are given the average of the ranks
they would have been ascribed had they been slightly different. Where there are lots
of tied values relative to the sample size, you may need to apply a tie-correction
factor, but in this case it is better to get the calculation done by a computer.

4. Sum the ranks in each group, giving Ri in each case.

5. The test statistic is H, where

H = × (∑Ri
2/ni) − 3(N + 1)

6. The degrees of freedom are (i − 1).

7. Look up the significance of the calculated H value as if it were a χ2, in Table A of
Appendix III (although H is not actually a χ2, its value is distributed in the same
way, so it is as if we were using χ2). There is no standard layout for a general non-
parametric ANOVA; just quote the test statistic, its degrees of freedom and the
probability (see worked example in Appendix II).

8. Note that this is a general prediction and, therefore, if significant we can only con-
clude that there are some differences among the mean ranks: we are not allowed
to say which particular pair of mean values are significantly different because we
did not make any specific prediction beforehand about the ordering of the mean
values, nor did we set up planned specific contrasts between particular sets of
groups. Many researchers would like to be able to make such post hoc tests, how-
ever, and some methods are available (but not often used). They should only 
be used as a rough guide to what the differences might be, preferably to set up a
priori hypotheses for a new data set to test. Sokal and Rohlf (1995, p. 431) and Day
and Quinn (1989) have some recommendations.

12
1N N( )

 
+

Box A3b (i) Mean ranks: how to do a general non-parametric
one-way ANOVA
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2. The test considers i groups of data, each of which contains ni data values. There
are N data values in total in all the groups (= ∑ni).

3. Rank all the values across all the groups combined (as in the U-test), giving low
rank scores to low values. Once again, tied values are given the average of 
the ranks they would have been ascribed had they been slightly different. Where
there are lots of tied values relative to the sample size, you may need to apply 
a tie-correction factor, but in this case it is better to get the calculation done by a
computer.

4. Sum the ranks in each group, giving Ri in each case.

5. Assign the predicted rank order to the groups, from the lowest (rank = 1) to the
highest (rank = i). This rank order then provides the λi coefficient values. Using
these λi values, calculate:

the observed L = ∑λ iRi,

the expected E = (N + 1)(∑niλi)/2,

the variance V = (N + 1)(N ∑niλ i
2 − (∑niλ i)

2)/12.

6. Calculate the test statistic, z, as: z = (L − E)/√(V). (Note that z is a standardised
statistic which does not have any degrees of freedom.)

7. Look up the value of z in Table C of Appendix III, where you will see that the crit-
ical value for this specific (one-tailed) test is 1.64. If your value is greater than this,
then the result is significant. If it is significant, we then reject the null hypothesis:
there is evidence that the mean ranks fall into the predicted rank order.

8. What do you do if the result is not significant? If the mean ranks in fact fall in the
opposite direction to your prediction, the value of z will be negative and quite 
possibly greater in absolute magnitude than 1.64. You cannot conclude anything
about this, since your predicted rank order was not supported. You benefited from
a gain in power over a general test, but the cost was that you could not conclude
anything from a failure to reject the null hypothesis. You certainly cannot go and
test an alternative rank order: this would now be post hoc since you have seen 
the actual pattern of the mean ranks. What you can do, following on from a non-
significant specific test, is to ask the question: my predicted rank order was not
supported, but is there evidence of any differences among groups in the data? In
other words, you can go ahead and do a general test for any differences.

9. An alternative method is to use a priori contrasts, similar to the parametric case
of Box A3a(ii). If done in advance of obtaining the data, these allow (i − 1) 
independent contrasts to be made, each one consisting of a subset of the groups
contrasted against another subset. Follow the method of Box A3a(ii), points 1–2, to
obtain the coefficients for the contrast you want to make, and then create two new
groups by adding together the data for all the original groups that have the same
sign (+ or −) coefficient. These two artificial groups are then tested using either a
Mann–Whitney U-test (general prediction only), or preferably a non-parametric
one-way ANOVA (general or specific prediction).

Note that the coefficients for these specific contrasts are not the same thing as
the coefficients that specify the rank order for the test outlined above, points 1–8.
You cannot use positive, negative and zero coefficients in the rank order test,
imagining that you are doing a specific contrast.
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10. There is no standard layout for a specific non-parametric one-way ANOVA; just
quote the test statistic for each prediction, its degrees of freedom (if appropriate)
and the probability. Note that a z-test does not have degrees of freedom, whereas
specific contrasts have one degree of freedom (using either Mann–Whitney U-tests
or non-parametric one-way ANOVA).

This is a little more complicated than a parametric one-way ANOVA, but in principle
it is the same. Using the freshwater/marine fish example:

1. The two-way design is cast as ij cells (here 4) formed from i columns (here i = 2)
and j rows (here j = 2) in a table. Each cell has a number of replicate measure-
ments, n per cell.

Formulate the predictions. In this case for example, (a) rows: marine fish differ
in growth rate from freshwater fish; (b) columns: male fish differ in growth rate from
female fish; (c) interaction: water type and sex of fish interact to determine growth
rate. The appropriate null hypotheses are that there are no differences among the
rows, or among the columns, and that there are no interactions of any kind.

2. Work out the mean values of all the replicates in each cell (Bij), and the overall
means of each column (Ci) and row (Rj) in the two-way design. The grand mean
of all the data is M.

3. Calculate SSrows, the sum of squares of the row mean values (not the raw data), fol-
lowing the method given in Box 3.1. Do the same for the column mean values to
find SScols, and the cell means to find SSgrps.

4. Calculate the interaction sum of squares, Sint = SSgrps − SSrows − SScols.

5. Calculate the sum of squares of each cell separately, and add them up to give SSerror.

6. The degrees of freedom for columns d.f.cols = (i − 1), for rows d.f.rows = ( j − 1), for the
interaction d.f.int = (i − 1)( j − 1). The error degrees of freedom d.f.error = ij(n − 1).

7. Calculate the mean squares: MSrows = SSrows/d.f.rows; MScols = SScols/d.f.cols; MSint =
SSint/d.f.int; MSerror = SSerror/d.f.error.

8. Calculate the test statistic for each component:

Frows = MSrows/MSerror with degrees of freedom of d.f.rows, d.f.error

Fcols = MScols/MSerror with degrees of freedom of d.f.cols, d.f.error

Fint = Mint/MSerror with degrees of freedom of d.f.int, d.f.error

9. Look up these values of F with the appropriate degrees of freedom in Table G 
of Appendix III to see whether they exceed the relevant critical values. Present 
the two-way ANOVA laid out in the standard manner.

Box A4a (i) Mean values: how to do a general parametric 
two-way ANOVA
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10. Note that if the interaction is significant, then the row and the column effects
don’t really mean much, because the difference among the row groups will then
depend on which column group it is, and vice versa.

11. You should be aware that there are two kinds of grouping factors that create the
‘ways’ of a one- or two-way ANOVA. The distinction doesn’t make a difference in
a one-way parametric analysis, but it does in a two-way. First, there are fixed
factors, where the groups are fixed by the experiment, and are not intended to 
represent a few of a great range of possibilities; the hypothesis being tested is about
whether real differences exist among the actual groups in the experiment. Many
experimentally created groupings are of this type, such as a treated and a control
group (which are not representative of a range of different possible groups). A 
random factor, on the other hand, has groups that are merely a sample of all pos-
sible groups, and are intended to represent this range of possibilities; here one is
not really interested in whether there are differences among these particular groups,
but rather in how much of the variation is contained among as opposed to within
the groupings. Rearing sets of animals in different cages would be a good example:
cage differences are not really treatments, but merely random variation that is 
not interesting but nevertheless must be allowed for. Sokal and Rohlf (1995,
Section 8.4) and Underwood (1997) have good discussions of this distinction.

As in the one-way case (Box 3.5a(ii)), we cannot specify a particular rank order that
we expect, but we can make a priori contrasts. If these contrasts are specified in
advance of obtaining the data, they allow (i − 1) contrasts to be made among column
groups, ( j − 1) contrasts among row groups, and (i − 1)( j − 1) contrasts involving the
interaction of both row and column groups. As before, each contrast consists of a 
subset of the groups contrasted against another subset.

1. Formulate the predictions that you want to make in the form of contrasts, before
collecting the data. You do this by expressing the prediction as an inequality, just
as in Box 3.9b(ii). From rearranging the inequality, you obtain the relevant set of
coefficients, λi, for each contrast. Unlike Box 3.9b(ii), however, you can either cast
each contrast as a general or a specific contrast (using ≠ or <, respectively, in the
inequality, just as in Box 3.5a(ii), point 2).

2. Each contrast must be valid and independent of all the others (using the checks
exactly as detailed in Box 3.5b(ii), point 3).

3. Do a general parametric two-way ANOVA first (see Box 3.9a(i)), since you are
technically breaking the among-group differences down into specific independent
contrasts (‘decomposing the sums of squares’ in statistical jargon). You will need
the MSerror term from this analysis.

4. For each contrast, obtain the coefficients (λi) and the mean values (mi) for each
group, and follow exactly the method detailed for the one-way case in Box 3.5a(ii),
points 5 and 6, to obtain the test statistic, t, and its significance for your contrast.

5. Repeat step 4 for each contrast.

6. Present the results of the two-way ANOVA, as well as the contrasts, laid out in the
standard manner.

Box A4a (ii) Mean values: how to do a specific parametric 
two-way ANOVA
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Testing our specific predictions is a little more complicated but still relatively straight-
forward. We give three illustrations below:

(a) A prediction about the columns, e.g. marine fish grow faster than freshwater fish
(or vice versa). In terms of the means in the table above this predicts that (B + D)
> (A + C). Another possibility is the opposite prediction, that freshwater fish grow
faster than marine, i.e. (A + C) > (B + D).

(b) A prediction about the rows, e.g. male fish grow faster than female fish (or vice
versa). This predicts (A + B) > (C + D) (or, conversely, for the prediction that
females grow faster than males, (C + D) > (A + B)).

(c) A prediction about interaction, e.g. the effect of water type on growth rate will be
greater in male fish than in female fish. This predicts that (A − B) > (C − D). The
converse (the effect will be greater in females) would, of course, predict (C − D) >
(A − B). This class of prediction is thus concerned with the interaction between
water type and sex.

Box A4b (ii) Mean ranks: how to do a specific non-parametric
two-way ANOVA

1. Rank the data values in all cells combined and add up the ranks in each cell to give
a rank total R for that cell.

2. We can now use these rank totals to test our general predictions:

(a) Marine fish differ from freshwater fish.
Sum the rank totals for each column (see table on p. 119) separately giving
an Ri value for marine and an Ri value for freshwater environments. Now cal-
culate H as in the one-way analysis of variance (Box 3.4b), using the column
Ri values and their appropriate ni values (here there are eight values making
up each Ri, hence ni = 8), and check the resulting value in an appropriate
table (e.g. Appendix III, Table A) as if it were χ2 for (i − 1) degrees of freedom.

(b) Male fish differ from female fish.
Sum the rank totals for each row separately giving an Ri value for male and
an Ri value for female fish and calculate H again as above. Again, ni = 8 in
our example.

(c) There is an interactive effect of water type and sex on the growth rate of fish.
This is an open-ended general prediction which combines both (a) and (b)
above. It is asking whether there is any interaction between levels of group-
ing in determining growth rate. The calculation of H is exactly as above but
the ∑Ri

2/ni term includes the rank totals for all the cells in the table instead
of just the columns or the rows to give Htot. Here ni is again the number 
of values making up each Ri (= 4 in our example). H for the interaction, Hint,
can then be calculated as: Hint = Htot − Hwater − Hsex, where Hwater and Hsex

refer to H values from (a) and (b) above. The degrees of freedom for Hint are
d.f.tot − d.f.water − d.f.sex, in this case, therefore, 3 − 1 − 1 = 1 (d.f.tot is the total 
i (number of group means) minus 1).

Box A4b (i) Mean ranks: how to do a general non-parametric
two-way ANOVA
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These are the predictions we can make about the relative sizes of the means; how do
we arrive at the coefficients for testing? The procedure is as follows:

1. The first step is to rearrange the various predicted inequalities so that all the means
are on the left, thus:

(a) The prediction about the effect of water type becomes −A + B − C + D > 0 (for
growth in marine > growth in fresh water) or +A − B + C − D > 0 (for growth
in fresh water > growth in marine).

We then substitute 1 with the appropriate sign for each letter so that we
arrive at −1, +1, −1, +1 or +1, −1, +1, −1, respectively.

(b) In the same way, the prediction about the effect of sex becomes +A + B − C −
D > 0 (for males > females) or −A − B + C + D > 0 (for females > males) and
the coefficients thus +1, +1, −1, −1 or −1, −1, +1, +1.

(c) The interaction predictions must also be framed in this way. Thus the pre-
diction (A − B) > (C − D) becomes +A − B − C + D > 0 and the coefficients +1,
−1, −1, +1. The prediction (C − D) > (A − B) becomes −A + B + C − D and the
coefficients therefore −1, +1, +1, −1.

2. Then, testing these predictions

(a) Marine fish grow faster than freshwater fish.
Remember this means we are testing the prediction −A + B − C + D > 0. The
coefficients λi thus become −1, +1, −1, +1 so that the rank totals for each cell
are weighted as follows:

L = ∑λiRi

= (−1)(Rfreshwater/male) + (+1)(Rmarine/male)

+ (−1)(Rfreshwater/female) + (+1)(Rmarine/female)

E and V can then be calculated as:

E = (N + 1)(∑niλi)/2

V = (N + 1)[N∑niλi
2 − (∑niλi)

2]/12

The test statistic z can then be calculated as:

z = (L − E)/√V

and checked against a table of z-values (see Appendix III, Table C).

(b) Male fish grow faster than female fish.
Now we are testing the prediction +A + B − C − D > 0, so λi becomes +1, +1,
−1, −1. The calculation of L, E and V and then the test statistic z can proceed
as above, but with the new λi weightings.

(c) The effect of water type is greater in males than in females.
This tests the interaction prediction +A − B − C + D > 0 using λi of +1, −1, −1,
+1. Once again, follow the calculations above for L, E, V and z.

There is no standard layout for a non-parametric two-way analysis of variance; just
quote the test statistic, its degrees of freedom and the probability.
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Examples of tests for a trend

Set out the two sets of data values to be correlated in pairs (remember, for each value
in set 1 there must be a corresponding value in set 2). Thus, if we were looking for a
correlation between height and weight in people, the data would be set out as below:

Person Weight (kg) Height (m)

1 63 1.8 (pair 1)
2 74 1.7 (pair 2)
3 60 1.9 (pair 3)
4 71 1.8 (pair 4)
. . . .
. . . .
. . . .

etc.

It may be that several values of one measure are paired with the same value of
the other, for example when measuring some behaviour in several individuals
from the same social group and using these values in a correlation of time spent
doing the behaviour and group size. In this case, the data might be as follows:

Time spent in
Observation behaviour (s) Group size

1 15.3 3 (pair 1)
2 17.1 3 (pair 2)
3 18.0 5 (pair 3)
4 6.0 5 (pair 4)
5 31.1 5 (pair 5)
. . . .
. . . .
. . . .

etc.

We can now calculate either a parametric (Pearson) or non-parametric (Spearman
rank) correlation:

Box A5 How to calculate a correlation coefficient

This tests for a linear association between two (bivariate-) normally distributed variables.

1. Formulate the prediction, either as a general (any) or a specific (positive or negat-
ive) association. You can test for either a general (two-tailed) or specific (one-tailed)
correlation coefficient by using different threshold values of the test statistic.

2. Calculate Sxx, Syy and Sxy as shown in Box A1.

3. Calculate the test statistic, r = Sxy/√(Sxx × Syy).

4. Look up the threshold value for r using (n − 2) degrees of freedom in Table E of
Appendix III, using either the one-tailed or two-tailed levels of significance, as
appropriate to your hypothesis.

Box A5 (i) Pearson correlation coefficient (parametric)
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1. Calculate Sxx, Syy and Sxy as in Box A1.

2. Calculate the slope of the line as: b = Sxy/Sxx.

3. Calculate the intercept of the line on the y-axis as: a = Y − bX, where Y is the mean
of the y-values and X is the mean of the x-values.

The line can now be fitted by calculating y = a + bx for some sample x-values and draw-
ing it on the scattergram.

To calculate the standard error of the slope:

4. Calculate the variance of y for any given value of x as:

s2
y/x = [1/(n − 2)][Syy − S2

xy/Sxx].

5. The standard error of the slope is then: √(s2
y/x/Sxx).

Box A6 (i) How to do a parametric linear regression

This tests for a monotonic (i.e. continuously increasing or decreasing) association
between two variables, and works with ranking or constant-interval measurements,
making no assumptions about the normality of the data. As with the Pearson coeffici-
ent, we can test for either a general (two-tailed) or specific (one-tailed) correlation by
using different threshold values of the test statistic.

1. Rank the values for the first measure only, then rank the values for the second
measure only.

2. Subtract second-measure ranks from first-measure ranks (giving di) then square
the resulting differences (di

2) and calculate the Spearman coefficient as:

rS = 1 − [(6∑i d i
2)/(n3 − n)]

where n is the number of pairs of data values.

3. If n is between 4 and 20 (4 is a minimum requirement), consult Appendix III,
Table F for the appropriate sample size to see whether the calculated rS value is
significant. Remember that general (two-tailed) or specific (one-tailed) tests have
different threshold values for rS. Thus you must know whether you are looking for
any association at all (general), or just a positive, or just a negative one (specific).

4. If n is greater than 20, a different test statistic, t, is calculated from rS as:

t = rS√[(n − 2)(1 − r2
S)]

t can then be checked against its own threshold values (Appendix III, Table D) for
n − 2 degrees of freedom.

A significant calculated value for rS or, with large samples, t, allows us to reject the null
hypothesis of no trend in the relationship between our two measures.

Box A5 (ii) Spearman rank correlation coefficient 
(non-parametric)
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6. To find the test statistic F, calculate the following:

Regression sum of squares (RSS) = (Sxy)
2/Sxx

Deviation sum of squares (DSS) = Syy − (Sxy)
2/Sxx

Regression mean square (RMS) = RSS/1

(1 is the value always taken by the regression degrees of freedom.)

Deviation mean square (DMS) = DSS/(n − 2).

(n − 2 is the value taken by the deviation degrees of freedom.)

F is now calculated simply as F = RMS/DMS and its value can be checked against critical
values in F-tables (Appendix III, Table G) for 1 ( f1) and n − 2 ( f2) degrees of freedom.

7. To find y for new values of x:
Having established our regression equation, we might well want to predict y for
other values of x that lie within the range we actually used in the analysis. Once
we had then gone away and measured y for our new x-value we should want to
see whether it departed significantly from its predicted value. Three steps are
needed:

(a) calculate the predicted y-value using the equation y = a + bx as when fitting
the regression line, but this time use the new x-value (x′) in which you are
interested;

(b) calculate the standard error (s.e.) of the predicted y-value as follows:

s.e. = √[(s2
y/x)(1 + 1/n + d2/Sxx)]

where d = x′ − X;

(c) calculate the test statistic t as:

and look up the calculated value of t in t-tables (Appendix III, Table D) for 
n − 2 degrees of freedom (where n is the number of pairs of data values in 
the regression). If t is significant it means the measured value of y departs
significantly from the value predicted by the regression equation and might
lead to interesting questions as to why.

t
y y

=
−observed predicted

s.e.
  

A non-parametric approach to regression is little used (see Sokal and Rohlf, 1995, 
p. 539). There seem to be few advantages over using a simple rank correlation in 
cases where you do not want to predict a value of y from x, or to discover the actual
equation of their relationship. However, some use is made of a non-parametric pro-
cedure (spline regression) fitted to a set of points to produce a smoothed description
of highly non-linear irregular relationships (see Schluter, 1988 and Pentecost, 1999).

Box A6 (ii) How to do a non-parametric regression
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Significance tables

Table A Critical values of chi-squared at different levels of p. To be significant, calculated values
must be greater than those in the table for the chosen level (0.05, 0.01, 0.001) of p and the
appropriate number of degrees of freedom.

Probability, p

Degrees of freedom 0.05 0.01 0.001

1 3.841 6.635 10.83
2 5.991 9.210 13.82
3 7.815 11.34 16.27
4 9.488 13.28 18.47
5 11.07 15.09 20.51

6 12.59 16.81 22.46
7 14.07 18.48 24.32
8 15.51 20.09 26.13
9 16.92 21.67 27.88

10 18.31 23.21 29.59

Table B Critical values of Mann–Whitney U at p = 0.05. To be significant, values must be smaller
than those in the table for appropriate sizes of n1 and  n2.

n2 3 4 5 6 7 8 9 10 15 20

n1

2 – – 0 0 0 0 0 0 1 2
3 0 0 1 2 2 2 2 3 5 8
4 1 2 3 4 4 4 5 10 13
5 4 5 6 7 7 8 14 20

6 7 8 10 10 11 19 27
7 11 12 12 14 24 34
8 15 15 17 29 41
9 17 20 34 48

10 20 23 39 55

15 34 39 64 90
20 48 55 90 127
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Table C Probabilities associated with different values of z. The body of the table shows prob-
abilities associated with different values of z. Values of z given to the first decimal place vertically
and the second decimal place horizontally. z must therefore exceed 1.64 to be significant at 
p < 0.05.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007
3.3 .0005
3.4 .0003

3.5 .00023
3.6 .00016
3.7 .00011
3.8 .00007
3.9 .00005

4.0 .00003
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Table D Critical values of t at different levels of p. To be significant at the appropriate level of prob-
ability, values must be greater than those in the table for the appropriate degrees of freedom.

Degrees
Probability, p

of 0.05 0.025 0.01 0.005 0.001 0.0005 (one-tailed)
freedom 0.10 0.05 0.02 0.01 0.002 0.001 (two-tailed)

1 6.314 12.71 31.82 63.66 318.3 636.6
2 2.920 4.303 6.965 9.925 22.33 31.60
3 2.353 3.182 4.541 5.841 10.21 12.92
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869

6 1.942 2.447 3.143 3.707 5.208 5.959
7 1.895 2.365 2.998 3.499 4.785 5.408
8 1.860 2.306 2.896 3.355 4.501 5.041
9 1.833 2.262 2.821 3.250 4.297 4.781

10 1.812 2.228 2.764 3.169 4.144 4.587

11 1.796 2.201 2.718 3.106 4.025 4.437
12 1.782 2.179 2.681 3.055 3.930 4.318
13 1.771 2.160 2.650 3.012 3.852 4.221
14 1.761 2.145 2.624 2.977 3.787 4.140
15 1.753 2.131 2.602 2.947 3.733 4.073

16 1.746 2.120 2.583 2.921 3.686 4.015
17 1.740 2.110 2.567 2.898 3.646 3.965
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 5.845 3.552 3.850

Table E Critical values for the Pearson product-moment correlation coefficient r. Values must be
greater than those in the table to be significant at the indicated level of probability.

Degrees
Probability, p

of 0.05 0.025 0.01 0.005 0.0005 (one-tailed)
freedom 0.1 0.05 0.02 0.01 0.001 (two-tailed)

1 0.988 0.997 1.000 1.000 1.000
2 0.900 0.950 0.980 0.990 0.999
3 0.805 0.878 0.934 0.959 0.991
4 0.729 0.811 0.882 0.917 0.974
5 0.669 0.755 0.833 0.875 0.951

6 0.622 0.707 0.789 0.834 0.925
7 0.582 0.666 0.750 0.798 0.898
8 0.549 0.632 0.716 0.765 0.872
9 0.521 0.602 0.685 0.735 0.847

10 0.497 0.576 0.658 0.708 0.823

11 0.476 0.553 0.634 0.684 0.801
12 0.458 0.532 0.612 0.661 0.780
13 0.441 0.514 0.592 0.641 0.760
14 0.426 0.497 0.574 0.623 0.742
15 0.412 0.482 0.558 0.606 0.725

16 0.400 0.468 0.543 0.590 0.708
17 0.389 0.456 0.529 0.575 0.693
18 0.378 0.444 0.516 0.561 0.679
19 0.369 0.433 0.503 0.549 0.665
20 0.360 0.423 0.492 0.537 0.652

25 0.323 0.381 0.445 0.487 0.597
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Table F Critical values for the Spearman rank correlation coefficient rS. Values must be greater
than those in the table to be significant at the indicated level of probability.

Probability, p

0.05 0.025 0.01 0.005 (one-tailed)
n 0.10 0.05 0.02 0.01 (two-tailed)

4 1.000
5 .900 1.000 1.000
6 .829 .886 .943 1.000
7 .714 .786 .893 .929
8 .643 .738 .833 .881

9 .600 .700 .783 .833
10 .564 .648 .745 .794
11 .536 .618 .709 .755
12 .503 .587 .671 .726
13 .484 .560 .648 .703

14 .464 .538 .622 .675
15 .443 .521 .604 .654
16 .429 .503 .582 .635
17 .414 .485 .566 .615
18 .401 .472 .550 .600

19 .391 .460 .535 .584
20 .380 .447 .520 .570
21 .370 .435 .508 .556
22 .361 .425 .496 .544
23 .353 .415 .486 .532

24 .344 .406 .476 .521
25 .337 .398 .466 .511
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Answers to self-test questions

1. No, this is not an appropriate analysis because it involves the multiple use
of a two-group test (Mann–Whitney U-test). A significant result becomes
more likely by chance the greater the number of two-group comparisons
that are made. An appropriate analysis would be a non-parametric one-way
analysis of variance, which allows a test of the specific prediction that body
size will be greatest in Lake 1, intermediate in Lake 2 and least in Lake 3.

2. Regression analysis is appropriate when testing for cause and effect in the
relationship between x- and y-values, and the x-values are established in the
experiment. The data are measured on some kind of constant interval scale
that allows a precise, quantitative relationship to be calculated. Because 
it depends on establishing a quantitative relationship, predicting new 
values of one variable from new values of the other also demands regression
analysis. In other cases, correlation analysis is necessary. Non-parametric
correlation analysis is appropriate for both these kinds of data, and others
where x-values are merely measured, but yields only the sign and magnitude
of the relationship and makes no assumptions about the cause-and-effect
relationship between x- and y-values.

3. The investigator has introduced a new analysis into the Discussion (the
correlation between nutrient flow rate and aphid production). The analysis
should, of course, be in the Results section.

4. The information tells you that the investigator carried out a non-parametric
one-way analysis of variance and that they tested a general prediction, thus
using the test statistic H instead of z. The three degrees of freedom tells you
that the analysis compared four groups and the p-value that H = 14.1 at 
d.f. = 3 is significant at the 1 per cent level.

5. The researcher can conclude that there is a significant positive association
between daily food intake and growth rate, but can’t necessarily infer that
increased growth rate is caused by greater food intake; it could be that
faster growing pigs simply eat more food as a result.

6. No, a chi-squared test is not appropriate here because the data are constant
interval measurements and not counts.
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230 ANSWERS TO SELF-TEST QUESTIONS

7. (a) A test statistic is calculated by a significance test and its value has a
known probability of occurring by chance for any given sample size or
number of degrees of freedom.

(b) A ceiling effect occurs where observational or experimental procedures
are too undemanding to allow a prediction to be tested; all samples
approach the maximum value.

(c) Statistical significance refers to cases where the probability that a dif-
ference or trend as extreme as the one observed could have occurred
by chance, if the null hypothesis of no difference or trend is true, is
equal to or less than an accepted threshold probability (usually 5 per
cent, but sometimes 1 or 10 per cent).

8. No, the observer cannot conclude that male thargs prefer larger females
just from this. It could be, for instance, that larger females are simply more
mature and thus more likely to conceive. Alternatively, depending on how
and when size was measured, pregnant females may be larger precisely
because they are pregnant!

9. Significance tests provide a generally accepted, arbitrary yardstick for
deciding whether a difference or trend is interesting. The yardstick is the
probability that the observed difference or trend could have occurred by
chance when there wasn’t really such a difference or trend in the popula-
tion. Random variation in sampling will mean that differences or trends
will crop up from time to time just by chance.

10. A reasonable prediction would be that the rate of reaction would be lowest
in Treatment A because no enzyme had been added and highest in the
warmed enzyme/substrate mixture of Treatment D. By the same rationale,
Treatment C should have a lower rate than Treatment B because it is
cooler. The predicted order is thus A < C < B < D. A suitable significance
test would be a specific form of a non-parametric one-way analysis of 
variance using z as the test statistic.

11. The consultant could try a two-way analysis of variance. The two levels 
of grouping would be ‘housing condition’ and ‘breed’ with three groups at
the first level and four at the second. A dozen or so samples for each com-
bination of housing and breed would be useful, though the same number 
of samples should be used in each case since general rather than specific
predictions are being tested. One thing the consultant should be careful 
to do is distribute pigs from different families arbitrarily across housing
conditions so that any effect of housing on growth rate is not confounded
with family-specific growth rates (related pigs might grow at a similar rate
because they inherited similar growth characteristics). The analysis would
indicate any independent effect of housing and breed and any interaction
between the two in influencing growth rate.
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ANSWERS TO SELF-TEST QUESTIONS 231

12. Although the figures look very similar, they are deceptive because their 
y-axes are scaled differently. The drop in numbers in felled deciduous 
forest represents 49 per cent of the number in unfelled forest. In coniferous
forest it represents only 38 per cent. In proportional terms, therefore, the
impact of felling seems to be greater in deciduous forest. However, the 
fact that the analysis is based on only single counts means it should act only
as an exploratory analysis leading to a properly replicated confirmatory
analysis.

13. A negative value of r indicates a negative correlation, i.e. the value of y
decreases as that of x increases. The sign of the coefficient is ignored when
checking against threshold values of significance.

14. Some predictions can be derived as follows:

(a) Difference predictions

Observation The distribution of individuals across species varied between
different sites.

Hypothesis Differences in the degree of dominance of species within a com-
munity vary with the ability of species to compete with others for limited
resources.

Prediction Dominant species will be those whose individuals win in con-
tests with individuals of other species over the resource they occupy.

Observation Individuals of some species are smaller in some streams than
in others and some streams are more polluted.

Hypothesis Pollution results in reduced body size among some freshwater
species.

Prediction The body size of any given species will be smallest in the most
polluted stream and largest in the least polluted stream.

(b) A trend prediction

Observation Fewer organisms were seen attached to the substrate in fast-
flowing parts of the streams.

Hypothesis Flow rate influences the ability of organisms to settle on the
substrate.

Prediction If clean substrate is provided in areas of different flow rate, then
fewer of the organisms drifting by will settle the faster the flow.

15. Differences.

16. Yes, a 1 × 4 chi-squared analysis could be carried out, but care would have
to be taken in calculating expected values because of the different surface
areas of the body sites and their possibly different degrees of vulnerability.

ASKQ_Z06.qxd  18/06/2007  03:28PM  Page 231



232 ANSWERS TO SELF-TEST QUESTIONS

17. Since the experimenter had collected ten counts for each combination of
‘parent’ and ‘sibling’ treatment, a two-way analysis of variance would pro-
vide most information. It would allow either general or specific predictions
about the effects of ‘parent’ and ‘sibling’ treatments and the interaction
between them to be tested. The ten values in each case could be totalled
and used in a 2 × 2 chi-squared analysis but this would only test for an over-
all combined effect of the treatments; much useful information would thus
be lost in comparison with the analysis of variance.

18. The threshold probability of 0.05 is an arbitrarily agreed compromise
between the risk of accepting a null hypothesis in error (as would happen
by setting the threshold p-value too high) and the risk of rejecting it in error
(by setting the threshold too low). For many situations in biology, a thresh-
old of p = 0.01 would result in an unnecessary risk of accepting the null
hypothesis when it was not true.

19. Clearly this is not a sensible procedure because it confounds the size of
prey with the amount each barracuda has already eaten. Barracuda may
give up at a certain size of fish simply because they are satiated, not because
the fish is too big. Also size is confounded with species, some of which may
be distasteful or be unpalatable in other ways. Again, therefore, barracuda
may reject a fish for reasons other than size.

20. There are at least three logical flaws in this line of reasoning. First, if males
are generally larger than females then their brains will be proportionally
larger too; any comparison of brain sizes should thus be on a relative scale.
Second, should the brains of males turn out to be relatively larger, there is
no a priori reason to suppose this will affect learning or any other ability.
Third, even if differences in brain size do produce differences in learning,
training may overcome any such differences.

21. The analysis requires a test for a difference. There is one level of grouping
(different woods), so a one-way analysis of variance of the effect of wood
on adrenal gland size would be appropriate. The potentially confounding
factor of age may be a problem, but as long as the distributions of adrenal
gland size and age are normal, the ecologist could do a parametric analysis
of variance and include age as a covariate. The result would then test for
an effect of wood controlling for any confounding effect of age.

22. An order effect may occur when there is a systematic confounding of experi-
mental treatment and time. Thus, testing for a difference in the performance
of chicks in three different learning environments would suffer from an
order effect if birds always encountered environment 1 first, then environ-
ment 2 and then environment 3. Any difference between environments may
simply be due to being earlier or later in the sequence experienced by the
birds (or earlier or later in the day/week/season if individual birds experi-
enced only one of the environments).
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24. Pseudoreplication occurs where there is non-independence between 
measures purporting to be independent replicates. An extreme case would
be taking repeated measurements of a particular character from the same
individual, but more subtle pseudoreplication can arise, for example, when
animals from the same cage or litter are treated as independent samples.
Animals sharing a cage can have a profound influence on each other
behaviourally, physiologically and even morphologically, and those from
the same litter obviously share a genetic and experiential background. The
number of cages or litters, rather than the number of individuals, thus
determines the sample size in any statistical analysis.

25. A bit sneaky this one. Unlike most significance tests of difference, you are
looking for a non-significant outcome when you compare the distribution
of data with a normal distribution. If the comparison is not significant, it
means your data do not depart from normality more than you would expect
by chance. In the example the probability associated with the test outcome
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23. On the face of it, things don’t look good for the parasitologist’s regression
analysis. The parasite-burden data clearly aren’t normal, so violate an import-
ant assumption about the y-axis variable in a linear regression. However,
all is not lost. It may be possible to normalise the data by performing an
appropriate transformation. Indeed, a log10 transformation normalises 
the data quite nicely, as the figure below shows (a Kolmogorov–Smirnov
one-sample test yielded the outcome z = 1.113, n = 120, p = 0.157, showing
the parasite data did not depart significantly from a normal distribution).
The parasitologist can therefore carry on with the planned analysis using the
transformed data.
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was 0.0341, which is less than 0.05. The data thus differ significantly from
normal, so the botanist will have to use transformed data if they want to do
a parametric significance test, or use a non-parametric test instead.

26. The behavioural ecologist is testing for a difference between three experi-
mental treatments (since the treatments involve the number of males, it
could also be argued to be testing for a trend, but it is not clear a priori that
any response by focal males would relate linearly to the number of com-
petitors, so the analysis is probably best treated as one of difference). So an
analysis of variance (ANOVA) of some kind would be the obvious choice.
A crucial feature of the experimental design, however, is that each focal
male was tested in each of the treatments, so we have a repeated measures
design. Assuming data for spermatophore weight satisfies the test for 
normality, we can use a parametric repeated-measures ANOVA. Since
males may be tempted to invest more when confronted with larger females
(because they are likely to have more eggs to fertilise), female thorax 
widths could be included as a covariate in the analysis to control for this.
Since the design is a repeated-measures one, we do not have to control for
male size – the treatment effects are being measured within each male. If
spermatophore weight is not normally distributed, then a non-parametric
repeated-measures Friedman ANOVA could be used, but it isn’t possible to
include covariates in this case.

27. An obvious problem facing the psychologist is that the questionnaire data
relating to attitudes will contain a lot of responses reflecting different
aspects of sexual behaviour, many of which may be intercorrelated. So 
carrying out an analysis of each response individually would run into ser-
ious problems of non-independence and inflated estimates of significance. 
One approach to overcome this would be to subject the 40 responses to a
principal components analysis to distil the data down to a set of mutually
uncorrelated composite variables that each reflect different aspects of atti-
tudes towards sex. The 40 separate responses may well boil down to two or
three composite variables that can then be used as dependent variables in
an analysis of variance by, for example, sex and ethnic group, with perhaps
financial status (e.g. salary) and age as covariates.

28. As long as clearance rate is normally distributed, the idea of using regression
analysis is reasonable, but what is problematic is the use of four separate
analyses. The independent variables are very likely to be intercorrelated
(e.g. maternal weight may well depend on local food availability), so ana-
lysing them as if they are all independent of each other risks a Type 1 error
(see Box 3.14). A better approach would be to conduct a multiple regression
where the independent variables are all included in a single analysis and
their mutual intercorrelations taken into account in assigning significance.

29. Since many behavioural variables were recorded that are (probably) inter-
correlated, the best approach would be to perform a principal components
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analysis first to reduce the many variables to their main features. It is likely
that this will produce two or three components (each a composite of the
original variables) that can be interpreted in terms of combinations of the
bees’ responses. Each of these components can be used as a dependent
variable in a one-way analysis of variance of flower treatment (with three
levels: unmanipulated control, previously visited by the subject bee, pre-
viously visited by a different bee).

30. The treatment has four levels (three strengths of electromagnetic field and
a control), and apart from the control, no information is available about the
relative magnitudes of the experimental fields. Each response measure is
independent of the others because each neurone preparation was used only
once; it is thus clearly not a repeated-measures design. A simple one-way
analysis of variance would thus be appropriate. The only issue is whether a
general or a specific prediction should be tested. Unless there is a good a
priori reason for expecting a particular directional effect of field strength,
the only possible specific prediction is the contrast of control versus elec-
tromagnetic levels (i.e. coefficients of +3 [control] and −1 for each treat-
ment): this is a sensible choice of specific contrast.
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proportion explained (r2) 126
adjusted r2 130

Victor Hugo 186
Vital dye 5

Web of Science 3, 4–5
Welch test 87
Wilcoxon matched-pairs signed ranks

test 79, 82–3
Within-subjects effects 97
Wood mouse (Apodemus sylvaticus) 99
Worldwide Web (see Internet)

Yahoo 3

z 57, 76–7, 78, 83, 93, 118, 157, 224,
229, 233

Zero 55
arbitrary 55
true 55
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